WO2020116399A1 - 防音材の吸音特性の制御方法 - Google Patents

防音材の吸音特性の制御方法 Download PDF

Info

Publication number
WO2020116399A1
WO2020116399A1 PCT/JP2019/047055 JP2019047055W WO2020116399A1 WO 2020116399 A1 WO2020116399 A1 WO 2020116399A1 JP 2019047055 W JP2019047055 W JP 2019047055W WO 2020116399 A1 WO2020116399 A1 WO 2020116399A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound absorption
layer
bonding
sound
area
Prior art date
Application number
PCT/JP2019/047055
Other languages
English (en)
French (fr)
Inventor
憲和 松本
章子 酒井
大谷 憲司
宮田 照久
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Priority to JP2020559186A priority Critical patent/JPWO2020116399A1/ja
Priority to US17/299,191 priority patent/US20220076653A1/en
Publication of WO2020116399A1 publication Critical patent/WO2020116399A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • B32B5/265Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer
    • B32B5/266Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer next to one or more non-woven fabric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/86Sound-absorbing elements slab-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • B32B7/14Interconnection of layers using interposed adhesives or interposed materials with bonding properties applied in spaced arrangements, e.g. in stripes

Definitions

  • the present invention relates to a soundproof material, and more particularly, to a method of controlling sound absorption characteristics of the soundproof material.
  • Living noise is generated from, for example, transportation equipment, construction machinery/equipment, electronic/electrical equipment, home appliances, and is of various types, and includes a wide range of frequencies from low to high frequencies.
  • the low sound range of the engine sound (about 63 to 250 Hz), the tire sound (about 500 to 1500 Hz), and the wind noise (about 1000 to 4000 Hz)
  • the low sound range of the engine sound (about 63 to 250 Hz), the tire sound (about 500 to 1500 Hz), and the wind noise (about 1000 to 4000 Hz)
  • sound insulation to block the sound coming from outside the vehicle
  • “sound absorption” to mitigate the sound of the sound inside the vehicle.
  • a sound absorption method is used to prevent intrusion noise.
  • soundproofing materials are required to have higher sound absorption performance than conventional products, while possible.
  • sound absorption refers to a method of suppressing the reflection of sound by absorbing the sound, and the smaller the volume of the sound reflected by absorption, the higher the sound absorbing property.
  • the sound absorption mechanism is such that when sound is incident on a material composed of a skeleton of fiber material such as felt, glass wool, rock wool, etc. and a space between them, a part of the energy of the sound wave is It absorbs sound by exchanging it with thermal energy due to friction and viscous resistance with the peripheral wall of the skeleton and vibration of the skeleton.
  • the sound consumes the maximum sound energy at the position where the particle velocity of the sound wave is large, and therefore, for example, if there is a soundproof material from the hard wall to the position where the particle velocity is large, such as ⁇ /4, the sound absorption coefficient increases. Therefore, for example, the material attached to the rigid wall has a higher sound absorption coefficient as the frequency becomes higher, and the sound absorption coefficient at the lower frequency side can increase as the thickness of the soundproof material increases.
  • Patent Document 1 describes an ultralight soundproof material that prevents noise from the engine room of an automobile from propagating into the vehicle interior.
  • This soundproof material has a sound-absorbing layer made of a breathable material such as thermoplastic felt and a breathable resonance layer made of a lightweight foam or a thin film body with a predetermined adhesive strength and a bonded area by an adhesive layer. It is composed of a laminated body adhered so that
  • the use of the adhesive layer between the breathable resonance layer and the sound absorbing layer causes the phenomenon of resonance at the interface between the breathable ultra-lightweight resonance layer and the sound absorbing layer to absorb sound. Therefore, the resonance of the spring mass system and the rigidity are adjusted according to the adhesion area and the density of the sound absorbing layer, and the frequency and sound absorption rate of the sound absorbed at the interface are controlled.
  • Patent Document 2 describes a sound-absorbing material suitable for automobile interiors and the like.
  • This sound absorbing material is a non-woven fabric in which a surface material made of a thermoplastic synthetic fiber non-woven fabric by a spun bond method calendered and a back material made of a synthetic fiber non-woven fabric are joined together by using a hot melt adhesive after partial thermocompression bonding. is there.
  • the sound absorbing material of Patent Document 2 is made of a thermoplastic synthetic fiber non-woven fabric having a high density structure in which the surface material has small voids, the wavelength of sound is reduced to penetrate into the voids of the non-woven fabric, and a rough structure having large voids.
  • the infiltrating sound waves can be transmitted and vibrated in the single fiber of the backing material made of the synthetic fiber non-woven fabric, and sound energy can be efficiently converted into heat energy, and an excellent sound absorbing effect can be obtained.
  • Patent Document 3 describes an automobile floor laying material that is laid on a floor panel in a vehicle interior.
  • This laying material is a laying material in which a cushion layer, a perforated sheet layer having a large number of openings, and a ventilation surface layer are laminated in this order on a floor panel.
  • the flow resistance value of the lamination of the perforated sheet layer and the ventilation surface layer is adjusted to less than 1000 Nsm ⁇ 3 by defining factors such as the porosity of the perforated sheet layer and the band of 100 to 3000 Hz.
  • the sound absorption and sound insulation properties of are controlled arbitrarily.
  • Patent Document 4 describes a composite sound absorbing structure relating to the sound absorbing structure using a fibrous porous material.
  • a skin layer made of a non-woven fabric having a single fiber shape of circular or flat and having an equivalent single fiber system of 11 to 35 ⁇ m, and a base material layer made of a polymer fiber porous material are hot-melted. It is composed of a composite sound absorbing structure in which the surface layer of the non-woven fabric is arranged on the sound incident side by superposing them through the materials, heating/pressurizing, and heat-sealing to form an integral composite.
  • the composite sound-absorbing structure of Patent Document 4 has a flow resistance as a composite sound-absorbing structure by forming a basis weight of a polymer-based hot-melt material for composite-integrating a skin layer and a base material layer or forming a plurality of skin layers. Is adjusted to 2 ⁇ 10 4 to 3.5 ⁇ 10 4 N ⁇ sec/m 4 and controlled so as to have excellent sound absorption characteristics in a wide frequency band.
  • JP 2005-208494 A JP, 2006-28709, A Japanese Patent Laid-Open No. 2005-1403 WO2009-125742
  • the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to change the sound absorption characteristics of the soundproof material without changing the constituent material, the total thickness, and the total weight of the soundproof material. It is to provide a method of controlling the sound absorption characteristics of
  • a skin layer made of a predetermined fiber material and a back surface layer made of a porous material in which voids communicate with each other by a bonding layer A more detailed study was conducted based on a soundproofing material (Japanese Patent Application No. 2018-146130) partially joined so as to have a predetermined total joining area ratio.
  • the total bonding area ratio means the ratio of the total area of the bonding layer to the entire contact surface between the skin layer and the back surface layer.
  • the contact surface means a surface where the skin layer and the back surface layer face each other.
  • a first aspect of the present invention is a skin layer made of a fiber material, a back layer laminated on the skin layer and made of a porous material in which voids communicate with each other, and a back layer laminated between the skin layer and the back layer. And controlling the sound absorption characteristics of the soundproofing material having one or more bonding layers made of a bonding material and having a total bonding area ratio of less than 100% with respect to the entire contact surface between the skin layer and the back surface layer.
  • a method for controlling the sound absorbing characteristics of a soundproofing material wherein the sound absorbing characteristics of the soundproofing material are changed by changing individual areas of the bonding layer.
  • the total joint area ratio is selected from the range of 50 to 95%.
  • the joining material is a coated adhesive or a double-sided adhesive tape.
  • a plurality of the bonding layers are present on the contact surface between the skin layer and the back surface layer.
  • the bonding layer has a rod-like shape.
  • the frequency of the sound absorption peak of the soundproofing material is shifted to the low frequency side by increasing the area of each of the bonding layers, or the area of each of the bonding layers is reduced. As a result, the frequency of the sound absorption peak of the soundproof material can be shifted to the high frequency side.
  • the sound absorption coefficient of the band on the high frequency side of the sound absorption peak frequency of the soundproofing material is reduced, and the sound absorption coefficient on the low frequency side of the sound absorption peak frequency is reduced.
  • the sound absorption coefficient of the band is increased or the individual area of the bonding layer is reduced to increase the sound absorption coefficient of the sound absorbing material in the frequency band higher than the sound absorbing peak frequency, and the sound wave absorbing material in the frequency band lower than the sound absorbing peak frequency.
  • the sound absorption coefficient of can be reduced.
  • a second invention in the present invention is a skin layer made of a fibrous material, a back surface layer made of a porous material having voids in communication, which is laminated on the skin layer, and between the skin layer and the back surface layer. And a bonding layer made of a bonding material, the method for controlling sound absorption characteristics of a soundproof material having a total bonding area ratio of less than 100% with respect to the entire contact surface between the skin layer and the back surface layer.
  • the contact surface between the skin layer and the back surface layer when there is a region in which a region composed of a plurality of bonding layers is not arranged, at least a part of the region. A region formed of one bonding layer having a larger area than the bonding layer is arranged.
  • the fiber material of the skin layer of the present invention preferably has a basis weight of 5 to 300 g/m 2 and an average fiber diameter of 1 to 17 ⁇ m and an air permeability of 5 to 200 cm 3 /cm 2 ⁇ sec.
  • the back surface layer of the present invention preferably has a unit area flow resistance of 0.5 ⁇ 10 4 to 3.5 ⁇ 10 4 N ⁇ sec/m 4 .
  • the back surface layer of the present invention is preferably made of a fiber material having a basis weight of 100 to 300 g/m 2 .
  • the coated adhesive or the adhesive of the double-sided adhesive tape of the present invention preferably has a shear storage elastic modulus at 25° C. of 1.0 ⁇ 10 4 to 1.0 ⁇ 10 6 Pa.
  • the method of controlling the sound absorbing property of the present invention can change the sound absorbing property of the sound insulating material without changing the constituent material, the total thickness, and the total weight of the sound insulating material, and the sound absorbing property according to various applications. It is possible to more easily provide the design.
  • FIG. 1 is a perspective view schematically showing the structure of a soundproof material used in the method of the present invention.
  • FIG. 2 is a horizontal cross-sectional view showing an arrangement mode of a plurality of bonding layers used in Examples 1 and 16 of the present invention.
  • FIG. 3 is a horizontal sectional view showing an arrangement mode of a plurality of bonding layers used in Examples 2 and 17 of the present invention.
  • FIG. 4 is a horizontal sectional view showing an arrangement mode of a plurality of bonding layers used in Example 3 of the present invention.
  • FIG. 5 is a horizontal sectional view showing an arrangement mode of a plurality of bonding layers used in Examples 4 and 18 of the present invention.
  • FIG. 6 is a horizontal sectional view showing an arrangement mode of a plurality of bonding layers used in Example 5 of the present invention.
  • FIG. 7 is a horizontal sectional view showing an arrangement mode of a plurality of bonding layers used in Example 6 of the present invention.
  • FIG. 8 is a horizontal sectional view showing an arrangement mode of a plurality of bonding layers used in Example 7 of the present invention.
  • FIG. 9 is a horizontal sectional view showing an arrangement mode of a plurality of bonding layers used in Example 8 of the present invention.
  • FIG. 10 is a horizontal sectional view showing an arrangement mode of a plurality of bonding layers used in Example 9 of the present invention.
  • FIG. 11 is a horizontal cross-sectional view showing the arrangement mode of the bonding layer used in Example 10 of the present invention.
  • FIG. 12 is a horizontal sectional view showing an arrangement mode of a plurality of bonding layers used in Example 11 of the present invention.
  • FIG. 13 is a horizontal sectional view showing an arrangement mode of a plurality of bonding layers used in Example 12 of the present invention.
  • FIG. 14 is a horizontal sectional view showing an arrangement mode of a plurality of bonding layers used in Example 13 of the present invention.
  • FIG. 15 is a horizontal sectional view showing an arrangement mode of a plurality of bonding layers used in Example 14 of the present invention.
  • FIG. 16 is a horizontal sectional view showing an arrangement mode of a plurality of bonding layers used in Example 15 of the present invention.
  • FIG. 17 is a graph in which the sound absorption coefficients of the soundproofing materials obtained in Examples 1 to 3 are plotted for each 1/3 octave band center frequency.
  • FIG. 18 is a graph in which the sound absorption coefficients of the soundproofing materials obtained in Examples 1, 4 and 5 are plotted for each 1/3 octave band center frequency.
  • FIG. 19 is a graph in which the sound absorption coefficients of the soundproofing materials obtained in Examples 6 to 8 are plotted for each 1/3 octave band center frequency.
  • FIG. 20 is a graph in which the sound absorption coefficients of the soundproofing materials obtained in Examples 6, 9 and 10 are plotted for each 1/3 octave band center frequency.
  • 21 is a graph in which the sound absorption coefficients of the soundproofing materials obtained in Examples 11 to 13 are plotted for each 1/3 octave band center frequency.
  • 22 is a graph in which the sound absorption coefficients of the soundproofing materials obtained in Examples 11, 14 and 15 are plotted for each 1/3 octave band center frequency.
  • FIG. 23 is a graph in which the sound absorption coefficients of the soundproofing materials obtained in Examples 16 and 17 are plotted for each 1/3 octave band center frequency.
  • FIG. 24 is a graph in which the sound absorption coefficients of the soundproofing materials obtained in Examples 16 and 18 are plotted for each 1/3 octave band center frequency.
  • the bonding layer 12 is a layer for bonding the surface layer 11 and the back surface layer 13 described later.
  • the bonding layer 12 is formed on a part of the contact surface between the skin layer 11 and the back surface layer 13 (hereinafter, simply referred to as “contact surface”).
  • the bonding layer refers to a single member, not an aggregate.
  • the area of the bonding layer refers to the area of the bonding layer substantially parallel to the contact surface.
  • the individual area of the bonding layer refers to the area of one bonding layer.
  • a single bonding layer 12 or a plurality of bonding layers 12 may be formed.
  • the pressure-sensitive adhesive used for the above-mentioned coated pressure-sensitive adhesive or double-sided pressure-sensitive adhesive tape is not particularly limited, and conventionally known pressure-sensitive adhesives can be used. Examples thereof include rubber-based adhesives, acrylic-based adhesives, silicone-based adhesives, urethane-based adhesives, polyester-based adhesives and ethylene-vinyl acetate copolymer-based adhesives. Among these, a rubber-based pressure-sensitive adhesive or an acrylic pressure-sensitive adhesive is preferable from the viewpoints of versatility, width of variable thickness region, and not excessively restraining the skin layer and the back surface layer.
  • the shear storage elastic modulus (G′) at 25° C.
  • the present inventors have already proposed a skin layer made of a predetermined fiber material and a back surface layer made of a porous material in which voids communicate with each other by the joining layer to obtain a predetermined total joining area ratio.
  • the sound-insulating material partially bonded as described above Japanese Patent Application No. 2018-146130
  • the sound-insulating material couples resonance at the bonding interface with fiber vibration at the skin layer and the back surface layer, and further by the bonding layer opening,
  • the sound absorption mechanism with the back surface layer and the viscous resistance of the back surface layer can be utilized, so each sound absorption mechanism is synergistically balanced and effective even in actual use even if the total thickness of the soundproofing material is thin.
  • a skin layer made of a fibrous material a back surface layer made of a porous material having voids in communication with each other, laminated on the skin layer, and a bonding material laminated between the skin layer and the back surface layer.
  • a soundproofing material having one or more bonding layers and having a total bonding area ratio of less than 100% with respect to the entire contact surface between the skin layer and the back surface layer, the total bonding area ratio is within the predetermined range.
  • the sound absorbing property of the soundproofing material can be changed by disposing one or more regions composed of a plurality of bonding layers having a predetermined disposition pattern on at least a part of the contact surface.
  • the frequency at which the sound absorption coefficient becomes maximum ( It is possible to shift the sound absorption peak frequency) to a lower frequency side.
  • the sound absorption coefficient in the frequency band higher than the sound absorption peak frequency decreases and the sound absorption coefficient in the frequency band lower than the sound absorption peak frequency increases.
  • the frequency at which the sound absorption coefficient is maximized (sound absorption peak frequency) can be shifted to a higher frequency side.
  • the sound absorption coefficient in the band higher in frequency than the sound absorption peak frequency increases and the sound absorption coefficient in the band lower in frequency than the sound absorption peak frequency tends to decrease. Further, it is possible to further reduce the sound absorption coefficient while securing the sound absorption coefficient at a certain level.
  • reducing the area of the bonding layer is a direction in which the effect of the porous sound absorbing mechanism becomes particularly strong in the balance of the three sound absorbing mechanisms (constrained by the bonding layer formed by one continuous surface).
  • the effect of the membrane vibration type sound absorbing mechanism at the bonding interface is weakened because the area of the bonding interface is reduced, and the number of openings formed is increased.Therefore, the effect of the porous sound absorbing mechanism and the resonance type sound absorbing mechanism is affected. Therefore, it is considered that the sound absorption peak frequency can be shifted to a higher frequency side.
  • the ratio of entering into the upper portion (the side in contact with the bonding layer) of the back surface layer 13 disposed directly below the bonding layer 12 having an increased area is reduced, and the porous sound absorbing mechanism of the back surface layer 13 has As a result of suppressing a part of the effect, it is considered that the sound absorption coefficient can be reduced as a whole.
  • reducing the area of each bonding layer increases the number of openings 14 having air permeability between the bonding layers, and the openings 14 are evenly formed over the entire soundproof material.
  • FIGS. As shown in 16, by arranging one or more regions composed of a plurality of bonding layers having a predetermined layout pattern, the layout patterns of the bonding layers in the regions other than the above regions are diversified, and a certain level of sound absorption coefficient is secured. Then, the sound absorption characteristics can be controlled.
  • the contact surface between the skin layer and the back surface layer when there is a region in which a region composed of a plurality of bonding layers is not disposed, at least a part of the region, a larger area than the bonding layer.
  • the number of the openings 14 formed decreases and the unevenness of the arrangement of the openings 14 increases as the area of each bonding layer increases ( Unbalanced), the sound absorption coefficient in the middle to high frequency band is reduced, while the sound absorption coefficient in the low frequency band is slightly increased. As a result, a certain level of sound absorption coefficient is secured and then low. It is possible to equalize the sound absorption coefficient of the soundproof material in the high frequency band.
  • the number of the openings 14 formed is increased and the area and the arrangement of the bonding layer in each area are arranged so as to eliminate the unevenness of the arrangement. Adjust the style.
  • the effect degree of the effects of the above three sound absorbing mechanisms can be changed according to the total arrangement pattern of the bonding layers by the mechanism described in the first invention. Can be adjusted. For example, when a region having a larger bonding layer area is arranged in a region other than a region composed of a plurality of bonding layers having a predetermined arrangement mode, the effect of the membrane vibration type sound absorbing mechanism due to the bonding interface is strongly added. Therefore, the sound absorption peak frequency of the entire soundproofing material can be shifted to a lower frequency side, or the sound absorption coefficient in the low frequency band can be increased.
  • the total number of the openings 14 formed and the arrangement balance thereof are controlled by adjusting the area of the bonding layer in other regions as well, so that the porous type Since the degree of influence of the effects of the sound absorbing mechanism and the resonance type sound absorbing mechanism can be adjusted, the level of the sound absorbing coefficient in the middle to high frequency band can be adjusted. It is possible to dispose one or more regions, each of which is composed of a plurality of bonding layers having a predetermined disposition pattern, on at least a part of the contact surface between the skin layer and the back surface layer without changing the total bonding area ratio of the bonding layer.
  • the number of the openings 14 having air permeability between the bonding layers is reduced, and it becomes difficult to uniformly form and arrange the openings 14 over the entire soundproof material.
  • the back surface layer 13 disposed immediately below the joining layer 12 having an increased area is used.
  • the porous type sound absorbing mechanism of the back surface layer 13 is suppressed as a result of the decrease in the rate of penetration into the upper part (the side in contact with the bonding layer) of the back surface layer 13 as a result. I think that it can be reduced to.
  • the number of the air-permeable openings 14 formed between the bonding layers is increased so that the openings 14 can be formed and arranged uniformly over the entire soundproof material.
  • the arrangement mode of the bonding layer is adjusted, it is difficult to suppress some of the effect of the porous sound absorbing mechanism of the back surface layer 13, and as a result, the sound absorbing coefficient in the middle to high frequency band can be increased overall. I think it can be done.
  • the joining layer 12 does not excessively restrain the skin layer 11 and the back surface layer 13. Therefore, it is considered that the suppression of the above-described porous sound absorbing mechanism is further reduced, and it becomes easier to secure a certain level of sound absorbing coefficient.
  • the soundproofing material 10 used in the present invention comprises a skin layer 11 made of a fiber material and a back surface layer 13 made of a porous material in which voids communicate with each other, and a joining layer 12 made of a joining material such as an adhesive tape.
  • the contact area between the skin layer 11 and the back surface layer 13 can be improved. It is presumed that the effect of controlling the sound absorption characteristics of the soundproof material was achieved by appropriately adjusting the number of openings 14 that are formed and the balance of the arrangement of the openings 14.
  • the above total joint area ratio is relative to the entire contact surface between the skin layer 11 and the back surface layer 13.
  • the total bonding area ratio is in the range of less than 100%, preferably in the range of 50 to 95%. If the total bonding area ratio is less than 50%, the contribution of the effect of the membrane vibration type sound absorbing mechanism is low, and the effect of increasing the sound absorbing rate in the low to middle frequency direction may be insufficient.
  • the total bonding area ratio is in the range of less than 100%, preferably 50%, with respect to the entire contact surface between the skin layer 11 and the back surface layer 13.
  • the total bonding area ratio is less than 50%, it may be difficult to make the arrangement balance of the openings 14 of the bonding layer non-uniform (unbalanced) with respect to the entire contact surface between the skin layer and the back surface layer. In this case, since it becomes difficult to reduce the sound absorption coefficient in the middle to high frequency band, the sound absorption coefficient may not be leveled sufficiently.
  • the shape of the bonding layer 12 is not particularly limited. For example, a linear shape, a dot shape, a punching sheet shape (a shape in which a sheet is perforated), and the like can be mentioned.
  • the bonding layer 12 may be a single layer or a plurality of layers. When a plurality of bonding layers 12 are formed, it is preferable to form regularly arranged regions on the contact surface.
  • the skin layer 11 is made of a fiber material.
  • the fibrous material is a material whose shape is supported by the fibers, has a space between the fibers, and allows gas to pass through the space.
  • the fibrous material may have multiple types of fibers.
  • the fibrous material is preferably in sheet form. Nonwoven fabrics, woven fabrics and knits are included in the fibrous material here.
  • the resin foam or the resin film material is not included in the fiber material here even if it is a material having air permeability.
  • the average fiber diameter of the fibers forming the fiber material of the skin layer 11 is preferably in the range of 1 to 17 ⁇ m, more preferably in the range of 1 to 10 ⁇ m. It is preferable that the fiber diameter forming the skin layer 11 has a structure having small voids and is made small in order to increase the sound absorption coefficient in the middle to high frequency band.
  • the fiber diameters of the fibers forming the fiber material may be the same or different. When the fiber diameters are different, the fiber material is a mixture of thick fibers having an average fiber diameter of 17 ⁇ m or more and fine fibers having an average fiber diameter of less than 1 ⁇ m so that the average fiber diameter is in the range of 1 to 17 ⁇ m. You can use it.
  • the average fiber diameter of the fibers constituting the fibrous material is less than 1 ⁇ m, the strength, rigidity, handleability, etc. may decrease, and the price may be disadvantageous. On the other hand, if the average fiber diameter exceeds 17 ⁇ m, the sound absorption coefficient in the middle to high frequency band may decrease.
  • the fiber material of the skin layer 11 is likely to have a relatively dense structure, and the resonance type sound absorbing mechanism and the porous sound absorbing mechanism are provided. It has a sound absorption effect that is a combination of the above, that is, an effect of increasing the sound absorption coefficient in the middle to high frequency band.
  • the soundproofing material 10 used in the present invention can exhibit the effect of expanding the frequency band capable of absorbing sound in actual use even if the thickness is thin. The smaller the average fiber diameter of the skin layer 11, the greater the effect can be obtained.
  • the thickness of the skin layer 11 is preferably 0.01 to 5 mm, more preferably 0.05 to 4 mm.
  • the basis weight of the skin layer 11 is preferably 5 to 300 g/m 2 , and more preferably 15 to 100 g/m 2 .
  • the average apparent density of the skin layer 11 is preferably in the range of 0.01 to 1.0 g/cm 3 , and more preferably in the range of 0.02 to 1.0 g/m 3 .
  • the fibrous material of the skin layer 11 is not particularly limited, but it is preferable to use a nonwoven fabric made of synthetic fibers.
  • the fibers constituting the non-woven fabric include polyolefin fibers such as polyethylene, polypropylene and copolymer polypropylene, polyamide fibers such as nylon 6, nylon 66 and copolymer polyamide, polyethylene terephthalate, polybutylene terephthalate, copolymer polyester, Polyester fiber such as aliphatic polyester, acrylic fiber, aramid fiber, composite fiber such as core-sheath structure in which the sheath is made of polyethylene, polypropylene or copolymer polyester and the core is made of polypropylene or polyester, polylactic acid, polybutylene sax Synthetic fibers such as biodegradable fibers such as nate and polyethylene succinate can be used.
  • the method for producing the fibrous material for the skin layer 11 is not particularly limited, and examples thereof include a conventionally known wet method, dry method, or a method for producing a non-woven fabric by direct spinning (spun bond, melt blow, etc.).
  • the method for producing a non-woven fabric in which thick fibers and thin fibers are interfiber-bonded by a binder is preferable, but these are merely examples and the present invention is not limited thereto.
  • the above-mentioned cross-latitude orthogonal nonwoven fabric is prepared by first stretching fibers directly spun from the above-mentioned raw material resin such as polyester, and then processing and preparing into two types of webs in which the fibers are arranged in the longitudinal and transverse directions respectively, and then these two types
  • the webs are laminated so that the arranged fibers are orthogonal to each other, and are joined by point heat fusion by heat embossing.
  • hot embossing as a method of laminating the longitudinal and transverse webs, a method of impregnating and adhering with an emulsion, and a method of entwining short fibers with a water jet to form a composite and integrate them can be mentioned.
  • the non-woven fabric in which the thick fibers and the thin fibers are interfiber-bonded by a binder is first obtained by melt-spinning or wet-spinning fibers having different fiber diameters from the above-mentioned raw material resin such as polyester, for example, to cut into a flock shape having a fiber length of 10 mm or less.
  • the suspension is manufactured by an ordinary papermaking method.
  • the fibers having different fiber diameters may be made of the same material or different materials.
  • a dry method in which short fibers are formed into a sheet by a card machine and a webber (air laid method) using an air flow, etc. may be used in addition to the above-described paper making method which is a wet method.
  • the fibers may be arranged in either cross or random.
  • the back surface layer 13 is made of a porous material having voids communicating with each other.
  • the porous material in which the voids communicate with each other is not limited as long as it is used as a sound absorbing material.
  • a non-woven fabric made of felt or synthetic fiber (a mixture of synthetic fibers by needle punching or synthetic fiber 100) is used. % Of felt) and foam materials having open cells.
  • the fibrous material examples include cotton, wool, wood wool, scrap fiber, and the like processed into a felt shape with a thermosetting resin (general name: resin felt); polyester fiber felt such as polyethylene terephthalate, nylon fiber Felt, polyethylene fiber felt, polypropylene fiber felt, acrylic fiber felt, composite fiber felt having a core-sheath structure in which the sheath is composed of polyethylene, polypropylene or copolyester and the core is polypropylene or polyester, polylactic acid, poly Examples thereof include synthetic fiber felts such as biodegradable fiber felts such as butylene succinate and polyethylene succinate; inorganic fiber felts such as silica-alumina ceramics fiber felts, silica fiber felts, glass wool, rock wool, and rock wool long fibers.
  • resin felt polyester fiber felt such as polyethylene terephthalate, nylon fiber Felt, polyethylene fiber felt, polypropylene fiber felt, acrylic fiber felt, composite fiber felt having a core-sheath structure in which the sheath is composed of
  • the average fiber diameter of the fibers forming the fiber material is preferably in the range of 10 to 30 ⁇ m.
  • the thickness of the fibrous material is preferably in the range of 5 to 15 mm.
  • the basis weight of the fibrous material is preferably in the range of 50 ⁇ 1500g / m 2, more preferably in the range of 100 ⁇ 300g / m 2, particularly preferably in the range of 200 ⁇ 280g / m 2.
  • the average apparent density of the fiber material is preferably in the range of 0.01 to 0.1 g/cm 3 .
  • the thickness of the foam material is preferably in the range of 5 to 15 mm.
  • the basis weight of the foam material is preferably in the range of 50 ⁇ 4500g / m 2, more preferably in the range of 100 ⁇ 2000g / m 2, particularly preferably in the range of 100 ⁇ 1000g / m 2.
  • the average apparent density of the foam material is preferably in the range of 0.01 to 0.3 g/cm 3 .
  • the air flow rate of the back surface layer 13 is not particularly limited, but is preferably equal to or more than the air flow rate of the skin layer 11, specifically, in the range of 5 to 1000 cm 3 /cm 2 ⁇ sec. It is preferable that it is in the range of 100 to 300 cm 3 /cm 2 ⁇ sec. If the back surface layer 13 has an air flow rate of more than 1000 cm 3 /cm 2 ⁇ sec, the handleability and mechanical strength may decrease.
  • the unit area flow resistance of the back surface layer 13 is preferably 0.5 ⁇ 10 4 to 3.5 ⁇ 10 4 N ⁇ sec/m 4 .
  • the effects of the porous sound absorbing mechanism and the resonance type sound absorbing mechanism can be sufficiently exhibited, so that it is easy to secure a certain level of sound absorbing coefficient in the middle to high frequency band. ..
  • the method for manufacturing the synthetic fiber felt used for the back surface layer 13 is not particularly limited, and a conventionally known manufacturing method can be used.
  • the above synthetic fibers are defibrated and mixed by a dry method (carding method or air laid method), and molded into a felt-like mat laminated on the layers with a felt sorter to retain the shape of the felt and the layer shape.
  • a synthetic fiber felt can be obtained by performing interlayer stitching by a needle punch method.
  • the chemical bond method, the thermal bond method, the hydroentangling method, or the like may be used to perform the interlayer stitching and the interfiber bonding.
  • the method for producing the foam material having the open cells used for the back surface layer 13 is not particularly limited, and conventionally known production methods can be mentioned.
  • a urethane foam material can be obtained by mixing a polyisocyanate and a polyol with a catalyst, a foaming agent, a foam stabilizer, and the like, and simultaneously performing a foaming reaction and a resinification reaction.
  • a closed-cell type polyolefin foam material is manufactured in advance, and by performing a compression process in which it is compressed by passing through two roll gaps that rotate in different directions, the bubble film is ruptured It is also possible to obtain an open-celled polyolefin-based foam material by a method of communicating the above.
  • the soundproofing material 10 used in the present invention is obtained by partially bonding the skin layer 11 to one surface of the back surface layer 13 with the bonding layer 12.
  • each layer is coated with a predetermined pressure-sensitive adhesive or a double-sided pressure-sensitive adhesive tape (including a double-sided pressure-sensitive adhesive tape without a base material).
  • a method of laminating so that the total bonded area ratio is obtained is preferable.
  • a double-sided pressure-sensitive adhesive tape (including a double-sided tape without a base material having no base material) slit on one surface of the skin layer 11 to have a predetermined width, or a double-sided tape punched or
  • the bonding layer 12 made of a sheet or the like coated with a pressure-sensitive adhesive in a striped shape or a dot shape on the release film so as to have a predetermined total bonding area ratio
  • both layers are pressure-bonded and bonded.
  • the pressure bonding between the skin layer 11 and the back surface layer 13 can be performed without heating in an environment at room temperature. However, it is also possible to perform the pressure bonding while heating if necessary.
  • the thickness of the soundproof material 10 used in the present invention is preferably in the range of 10 to 30 mm. If the thickness of the soundproofing material 10 is less than 10 mm, the sound absorption coefficient may decrease as a whole. On the other hand, if the thickness of the soundproofing material 10 exceeds 30 mm, it is not suitable for thinning and weight reduction.
  • the sound absorption peak frequency of the soundproof material shifts to the lower frequency side when the individual area of the bonding layer is increased. Further, in the soundproof material used in the present invention, the sound absorption peak frequency of the soundproof material shifts to the high frequency side when the individual area of the bonding layer is reduced.
  • the soundproofing material used in the present invention when the individual area of the bonding layer is increased, the sound absorption coefficient of the higher frequency side band than the sound absorbing peak frequency of the soundproofing material is reduced, and the sound absorption coefficient of the lower frequency side band of the sound absorbing peak frequency is reduced. Sound absorption increases. Further, the soundproof material used in the present invention, when the individual area of the bonding layer is reduced, the sound absorption coefficient of the band in the high frequency side higher than the sound absorption peak frequency of the soundproof material increases, and the sound absorption coefficient in the low frequency side of the sound absorption peak frequency increases. The sound absorption coefficient of the band is reduced.
  • the soundproof material used in the present invention does not need to change the total joint area ratio or the constituent material in order to reduce or increase the sound absorption peak frequency or sound absorption coefficient.
  • the total joint area ratio is selected from a predetermined value less than 100%, preferably in the range of 50 to 95%. It may be fixed to one value.
  • the soundproof material used in the present invention may be added with a constituent material or the constituent material of the soundproof material may be changed.
  • the soundproofing material used in the present invention for example, when a plurality of soundproofing materials having different bonding layer areas are arranged in parallel, the sound absorbing properties of the respective soundproofing materials are expressed in accordance with the area, and the sound absorbing characteristics are fused. Is understood. Then, the soundproofing material used in the present invention is, for example, partially forming a bonding layer on a contact surface, forming a region composed of a plurality of bonding layers wholly or partially, or forming a plurality of bonding layers. The sound absorption coefficient in a desired frequency band can be changed by combining a plurality of layers and forming them entirely or partially.
  • Reverberation room sound absorption coefficient A reverberation room sound absorption coefficient test was performed using an impulse response conforming to ISO354.
  • the reverberation room method sound absorption coefficient is the sound absorption coefficient calculated from each reverberation time obtained from the decay curve of the reverberation sound of the radiated sound source with and without the test body in the reverberation room. ).
  • ⁇ s (55.3V/(c ⁇ S)) ⁇ (1/T 2 ⁇ 1/T 1 ) (1)
  • V is the volume [m 3 ] of the reverberation room, which is 8.9 m 3 in this evaluation test.
  • c is the speed of sound [m/s].
  • T 1 is the reverberation time of the reverberation room before the installation of the test body
  • T 2 is the reverberation time of the reverberation room after the installation of the test body.
  • the calculated sound absorption coefficient ⁇ s indicates the ratio of the energy of the sound that has not reflected to the energy of the sound that has entered the test body, and the larger the value of ⁇ s , the easier it is to absorb the sound.
  • Average fiber diameter A magnified photograph of 500 times was taken with a microscope, 100 fibers were arbitrarily selected, the average value was calculated, and one decimal place was rounded off to calculate the average fiber diameter.
  • a Frazier type air permeability tester DAP-360 (product model number) manufactured by Daiei Kagaku Seiki Seisakusho was used.
  • the measurement conditions were a differential pressure of 125 Pa, a measurement hole diameter of 70 mm, and measurement was performed at three or more points, and the average value was obtained.
  • Thickness of Skin Layer and Back Layer Measured according to JIS-L-1913-B method.
  • the load was 20 kPa for the skin layer and 0.02 kPa for the back surface layer, and the average value was obtained by measuring at 3 or more points.
  • Storage elastic modulus (G') of bonding material Regarding the material used for the bonding layer, a sample having a thickness of 500 ⁇ m was prepared, and dynamic viscoelasticity was measured using a viscoelasticity measuring device DMA6100 (product name) manufactured by Hitachi High-Tech Science Co., Ltd. to determine a storage elastic modulus. I asked. The measurement condition is that the temperature rise rate is 5°C/min while the shear strain of frequency 1Hz is applied, the temperature is changed from -80°C to 80°C, the storage elastic modulus (G') is measured, and the value at 25°C is measured. I asked.
  • Example 1 (Skin layer) As a skin layer, a polyester fiber material having an average fiber diameter of 3 ⁇ m, a ventilation amount of 21 cm 3 /cm 2 ⁇ sec, a basis weight of 20 g/m 2 , an average apparent density of 0.33 g/cm 3 and a thickness of 0.06 mm. was prepared (size 1000 mm ⁇ 1000 mm). In this polyester fiber material, the fibers are arranged in the longitudinal direction.
  • Back layer As the back surface layer, an average fiber diameter of 19 ⁇ m, an air flow rate of 165 cm 3 /cm 2 ⁇ sec, a basis weight of 200 g/m 2 , an average apparent density of 0.02 g/cm 3 , 1.0 ⁇ 10 4 N ⁇ sec/m.
  • a polyester fiber felt having a unit area flow resistance of 4 and a thickness of 10 mm was prepared (size 1000 mm ⁇ 1000 mm).
  • the total thickness of the obtained soundproof material was 10.6 mm. Further, in a 1000 mm ⁇ 1000 mm reverberation chamber method sound absorption coefficient measurement sample, the total bonding area ratio of the bonding layer formed by the adhesive tape was 100% of the area (1 m 2 ) of the surface where the skin layer and the back surface face each other. was 70%.
  • Example 2 A soundproof material was obtained in the same manner as in Example 1 except that the joining method was as follows.
  • the total thickness of the obtained soundproof material was 10.6 mm. Moreover, in the measurement sample of the sound absorption coefficient by the reverberation chamber method of 1000 mm ⁇ 1000 mm, the total bonding area ratio of the bonding layer formed by the adhesive tape was 70%.
  • Example 3 A soundproof material was obtained in the same manner as in Example 1 except that the joining method was as follows.
  • Maxell's double-sided adhesive tape "No. 5938 Super Butyl Tape” using butyl rubber-based adhesive (trade name, base material: polyethylene net, adhesive tape thickness: 0.5 mm, single-sided separator, storage elastic modulus of adhesive: 3.5 ⁇ 10 5 Pa) was cut into a rod shape having a width of 100 mm.
  • the skin layer was expanded, and rod-shaped pressure-sensitive adhesive tapes were arranged and attached in parallel on the surface so that lines (pressure-sensitive adhesive tape joints)/spaces (openings)/lines/spaces were alternated.
  • the detailed arrangement method is as shown in FIG.
  • the total thickness of the obtained soundproof material was 10.6 mm. Moreover, in the measurement sample of the sound absorption coefficient by the reverberation chamber method of 1000 mm ⁇ 1000 mm, the total bonding area ratio of the bonding layer formed by the adhesive tape was 70%.
  • Example 4 A soundproof material was obtained in the same manner as in Example 1 except that the joining method was as follows.
  • Maxell's double-sided adhesive tape "No. 5938 Super Butyl Tape” using butyl rubber-based adhesive (trade name, base material: polyethylene net, adhesive tape thickness: 0.5 mm, single-sided separator, storage elastic modulus of adhesive: 3.5 ⁇ 10 5 Pa) was cut into a rod shape having a width of 10 mm and 250 mm.
  • the skin layer was spread, and rod-shaped pressure-sensitive adhesive tapes were arranged and adhered on the surface in parallel in such a manner that lines (adhesive tape joints)/spaces (openings)/lines/spaces were alternated for each area.
  • the detailed arrangement method is as shown in FIG.
  • the skin layer was divided into four equal parts in the width direction, and from the left end, it was divided into 1/4 area (1), 1/4 area (2), 1/4 area (3), and 1/4 area (4).
  • the total thickness of the obtained soundproofing material was 10.6 mm. Moreover, in the measurement sample of the sound absorption coefficient by the reverberation chamber method of 1000 mm ⁇ 1000 mm, the total bonding area ratio of the bonding layer formed by the adhesive tape was 70%.
  • Example 5 A soundproof material was obtained in the same manner as in Example 1 except that the joining method was as follows.
  • Maxell's double-sided adhesive tape "No. 5938 Super Butyl Tape” using butyl rubber-based adhesive (trade name, base material: polyethylene net, adhesive tape thickness: 0.5 mm, single-sided separator, storage elastic modulus of adhesive: 3.5 ⁇ 10 5 Pa) was cut into a rod shape having a width of 10 mm and 500 mm.
  • the skin layer was spread, and rod-shaped pressure-sensitive adhesive tapes were arranged and adhered on the surface in parallel in such a manner that lines (adhesive tape joints)/spaces (openings)/lines/spaces were alternated for each area.
  • the detailed arrangement method is as shown in FIG.
  • the skin layer was divided into two equal parts in the width direction, and from the left end, a 1/2 area (1) and a 1/2 area (2) were obtained.
  • the total thickness of the obtained soundproofing material was 10.6 mm. Moreover, in the measurement sample of the sound absorption coefficient by the reverberation chamber method of 1000 mm ⁇ 1000 mm, the total bonding area ratio of the bonding layer formed by the adhesive tape was 70%.
  • the total thickness of the obtained soundproof material was 10.6 mm. Moreover, in the measurement sample of the sound absorption coefficient by the reverberation chamber method of 1000 mm ⁇ 1000 mm, the total bonding area ratio of the bonding layer formed by the adhesive tape was 50%.
  • Example 7 A soundproof material was obtained in the same manner as in Example 1 except that the joining method was as follows.
  • the total thickness of the obtained soundproofing material was 10.6 mm. Moreover, in the measurement sample of the sound absorption coefficient by the reverberation chamber method of 1000 mm ⁇ 1000 mm, the total bonding area ratio of the bonding layer formed by the adhesive tape was 50%.
  • Example 8 A soundproof material was obtained in the same manner as in Example 1 except that the joining method was as follows.
  • Maxell's double-sided adhesive tape "No. 5938 Super Butyl Tape” using butyl rubber-based adhesive (trade name, base material: polyethylene net, adhesive tape thickness: 0.5 mm, single-sided separator, storage elastic modulus of adhesive: 3.5 ⁇ 10 5 Pa) was cut into a rod shape having a width of 100 mm.
  • the skin layer was expanded, and rod-shaped pressure-sensitive adhesive tapes were arranged and attached in parallel on the surface so that lines (pressure-sensitive adhesive tape joints)/spaces (openings)/lines/spaces were alternated.
  • the detailed arrangement method is as shown in FIG.
  • the total thickness of the obtained soundproofing material was 10.6 mm. Moreover, in the measurement sample of the sound absorption coefficient by the reverberation chamber method of 1000 mm ⁇ 1000 mm, the total bonding area ratio of the bonding layer formed by the adhesive tape was 50%.
  • Example 9 A soundproof material was obtained in the same manner as in Example 1 except that the joining method was as follows.
  • Maxell's double-sided adhesive tape "No. 5938 Super Butyl Tape” using butyl rubber-based adhesive (trade name, base material: polyethylene net, adhesive tape thickness: 0.5 mm, single-sided separator, storage elastic modulus of adhesive: 3.5 ⁇ 10 5 Pa) was cut into a rod shape having a width of 10 mm and 250 mm.
  • the skin layer was spread, and rod-shaped pressure-sensitive adhesive tapes were arranged and adhered on the surface in parallel in such a manner that lines (adhesive tape joints)/spaces (openings)/lines/spaces were alternated for each area. Note that the detailed arrangement method is as shown in FIG.
  • the skin layer was divided into four equal parts in the width direction, and from the left end, it was divided into 1/4 area (1), 1/4 area (2), 1/4 area (3), and 1/4 area (4).
  • the total thickness of the obtained soundproof material was 10.6 mm. Moreover, in the measurement sample of the sound absorption coefficient by the reverberation chamber method of 1000 mm ⁇ 1000 mm, the total bonding area ratio of the bonding layer formed by the adhesive tape was 50%.
  • Maxell's double-sided adhesive tape "No. 5938 Super Butyl Tape” using butyl rubber-based adhesive (trade name, base material: polyethylene net, adhesive tape thickness: 0.5 mm, single-sided separator, storage elastic modulus of adhesive: 3.5 ⁇ 10 5 Pa) was cut into a rod shape having a width of 500 mm.
  • the skin layer was spread, and rod-shaped pressure-sensitive adhesive tapes were arranged and adhered on the surface in an alternating manner of line (adhesive tape joining part)/space (opening)/line/space for each area. Note that the detailed arrangement method is as shown in FIG.
  • the skin layer was divided into two equal parts in the width direction, and from the left end, a 1/2 area (1) and a 1/2 area (2) were obtained.
  • the total thickness of the obtained soundproof material was 10.6 mm. Moreover, in the measurement sample of the sound absorption coefficient by the reverberation chamber method of 1000 mm ⁇ 1000 mm, the total bonding area ratio of the bonding layer formed by the adhesive tape was 50%.
  • Example 11 A soundproof material was obtained in the same manner as in Example 1 except that the joining method was as follows.
  • the total thickness of the obtained soundproof material was 10.6 mm. Further, in the measurement sample of the sound absorption coefficient by the reverberation chamber method of 1000 mm ⁇ 1000 mm, the total bonding area ratio of the bonding layer formed by the adhesive tape was 90%.
  • Example 12 A soundproof material was obtained in the same manner as in Example 1 except that the joining method was as follows.
  • the total thickness of the obtained soundproof material was 10.6 mm. Further, in the measurement sample of the sound absorption coefficient by the reverberation chamber method of 1000 mm ⁇ 1000 mm, the total bonding area ratio of the bonding layer formed by the adhesive tape was 90%.
  • Example 14 A soundproof material was obtained in the same manner as in Example 1 except that the joining method was as follows.
  • Maxell's double-sided adhesive tape "No. 5938 Super Butyl Tape” using butyl rubber-based adhesive (trade name, base material: polyethylene net, adhesive tape thickness: 0.5 mm, single-sided separator, storage elastic modulus of adhesive: 3.5 ⁇ 10 5 Pa) was cut into a rod shape having a width of 10 mm and 250 mm.
  • the skin layer was spread, and rod-shaped pressure-sensitive adhesive tapes were arranged and adhered on the surface in parallel in such a manner that lines (adhesive tape joints)/spaces (openings)/lines/spaces were alternated for each area.
  • the detailed arrangement method is as shown in FIG.
  • the total thickness of the obtained soundproof material was 10.6 mm. Further, in the measurement sample of the sound absorption coefficient by the reverberation chamber method of 1000 mm ⁇ 1000 mm, the total bonding area ratio of the bonding layer formed by the adhesive tape was 90%.
  • Example 15 A soundproof material was obtained in the same manner as in Example 1 except that the joining method was as follows.
  • Maxell's double-sided adhesive tape "No. 5938 Super Butyl Tape” using a butyl rubber-based adhesive (trade name, base material: polyethylene net, adhesive tape thickness: 0.5 mm, single-sided separator, storage elastic modulus of adhesive: 3.5 ⁇ 10 5 Pa) was cut into a rod shape having a width of 10 mm and 500 mm.
  • the skin layer was spread, and rod-shaped pressure-sensitive adhesive tapes were arranged and adhered on the surface in parallel in such a manner that lines (adhesive tape joints)/spaces (openings)/lines/spaces were alternated for each area. Note that the detailed arrangement method is as shown in FIG.
  • the skin layer was divided into two equal parts in the width direction, and from the left end, a 1/2 area (1) and a 1/2 area (2) were obtained.
  • the total thickness of the obtained soundproof material was 10.6 mm. Further, in the measurement sample of the sound absorption coefficient by the reverberation chamber method of 1000 mm ⁇ 1000 mm, the total bonding area ratio of the bonding layer formed by the adhesive tape was 90%.
  • Example 16 A soundproof material was obtained in the same manner as in Example 1 except that the skin layer was changed to the following.
  • a polyester fiber material having an average fiber diameter of 17 ⁇ m, an air flow rate of 197 cm 3 /cm 2 ⁇ sec, a basis weight of 85 g/m 2 , an average apparent density of 0.14 g/cm 3 and a thickness of 0.6 mm. was prepared (size 1000 mm ⁇ 1000 mm). In this polyester fiber material, the fibers are random.
  • the total thickness of the obtained soundproof material was 11.1 mm. Moreover, in the measurement sample of the sound absorption coefficient by the reverberation chamber method of 1000 mm ⁇ 1000 mm, the total bonding area ratio of the bonding layer formed by the adhesive tape was 70%.
  • Example 17 A soundproof material was obtained in the same manner as in Example 2 except that the skin layer was changed to the following.
  • a polyester fiber material having an average fiber diameter of 17 ⁇ m, an air flow rate of 197 cm 3 /cm 2 ⁇ sec, a basis weight of 85 g/m 2 , an average apparent density of 0.14 g/cm 3 and a thickness of 0.6 mm. was prepared (size 1000 mm ⁇ 1000 mm). In this polyester fiber material, the fibers are random.
  • the total thickness of the obtained soundproof material was 11.1 mm. Moreover, in the measurement sample of the sound absorption coefficient by the reverberation chamber method of 1000 mm ⁇ 1000 mm, the total bonding area ratio of the bonding layer formed by the adhesive tape was 70%.
  • Example 18 A soundproof material was obtained in the same manner as in Example 4 except that the skin layers were changed to the following.
  • a polyester fiber material having an average fiber diameter of 17 ⁇ m, an air flow rate of 197 cm 3 /cm 2 ⁇ sec, a basis weight of 85 g/m 2 , an average apparent density of 0.14 g/cm 3 and a thickness of 0.6 mm. was prepared (size 1000 mm ⁇ 1000 mm). In this polyester fiber material, the fibers are random.
  • the joining patterns of the joining layer are shown in Tables 1 to 4.
  • Tables 5 to 8 show the sound absorption coefficient for each 1/3 octave band center frequency of the obtained soundproof material.
  • the sound absorption coefficient values of Examples 1 to 18 are actually measured values based on the results of the reverberation room sound absorption coefficient test.
  • FIG. 17 is a graph in which the sound absorption coefficients of the soundproofing materials obtained in Examples 1 to 3 are plotted for each 1/3 octave band center frequency.
  • the line width of the bonding layer increases from 10 mm ⁇ 50 mm ⁇ 100 mm, in other words, as the area of the bonding layer increases from 100 cm 2 ⁇ 500 cm 2 ⁇ 1000 cm 2 , the sound absorption peak of the soundproofing material increases. It can be seen that the frequency shifts to the lower frequency side.
  • the sound absorption coefficient decreases in the higher frequency band than the sound absorption peak frequency, and the sound absorption coefficient increases in the lower frequency band than the sound absorption peak frequency.
  • the average sound absorption coefficient at the center frequency of the 1/3 octave band of 400 to 5000 Hz decreased as the line width of the bonding layer increased.
  • FIG. 18 is a graph in which the sound absorption coefficients of the soundproofing materials obtained in Examples 1, 4 and 5 are plotted for each 1/3 octave band center frequency.
  • the arrangement mode of the bonding layer of the soundproofing material of Example 4 is such that, among the areas (regions) divided into four, three areas are areas composed of a plurality of bonding layers, and one area is composed of one bonding layer. ..
  • one of the areas (regions) divided into two is an area composed of a plurality of bonding layers, and one area is composed of one bonding layer. ..
  • Example 5 When the arrangement patterns of the bonding layers of Example 4 and Example 5 are compared, it is Example 5 that the area of the bonding layer is larger and the arrangement of the openings is more unbalanced. In the arrangement mode of the bonding layer of the soundproofing material, the individual areas of the bonding layers are small, and the openings are formed and arranged relatively uniformly over the entire soundproofing material. It can be seen that the sound absorption coefficient is reduced in the frequency band of 1250 Hz or higher and the sound absorption coefficient is increased in the frequency band of less than 1250 Hz. Further, in Example 5, it can be seen that the sound absorption coefficient is reduced in the frequency band of 1000 Hz or higher and the sound absorption coefficient is increased in the frequency band of less than 1000 Hz. As a result, in Examples 4 and 5, compared with Example 1, the sound absorption coefficient of the soundproofing material in the low to high frequency band was further leveled.
  • FIG. 19 is a graph in which the sound absorption coefficients of the soundproofing materials obtained in Examples 6 to 8 are plotted for each 1/3 octave band center frequency.
  • the line width of the bonding layer increases from 10 mm ⁇ 50 mm ⁇ 100 mm, in other words, as the area of the bonding layer increases from 100 cm 2 ⁇ 500 cm 2 ⁇ 1000 cm 2 , the sound absorption peak of the soundproofing material increases. It can be seen that the frequency shifts to the lower frequency side.
  • the line width of the bonding layer increases, the sound absorption coefficient decreases in the higher frequency band than the sound absorption peak frequency, and the sound absorption coefficient increases in the lower frequency band than the sound absorption peak frequency.
  • the average sound absorption coefficient at the center frequency of the 1/3 octave band of 400 to 5000 Hz decreased as the line width of the bonding layer increased.
  • FIG. 20 is a graph in which the sound absorption coefficients of the soundproofing materials obtained in Examples 6, 9 and 10 are plotted for each 1/3 octave band center frequency.
  • the arrangement mode of the bonding layer of the soundproofing material of Example 9 was such that, of the areas (regions) divided into four, two areas were areas composed of a plurality of bonding layers, and one area was composed of one bonding layer. , One area has no bonding layer.
  • one of the areas (regions) divided into two is an area composed of one bonding layer, and one area has no bonding layer.
  • Example 10 When the arrangement patterns of the bonding layers of Example 9 and Example 10 are compared, it is Example 10 that the area of the bonding layer is larger and the arrangement of the openings is more unbalanced.
  • Example 9 In the arrangement mode of the bonding layer of the soundproof material, compared with Example 6 in which the individual areas of the bonding layers are small and the openings are formed and arranged relatively uniformly over the entire soundproof material, Example 9 is It can be seen that the sound absorption coefficient is reduced in the frequency band of 1600 Hz or higher and the sound absorption coefficient is increased in the frequency band of 1250 Hz or lower. Further, it can be seen that in Example 10, the sound absorption coefficient is reduced in the frequency band of 1250 Hz or higher and the sound absorption coefficient is increased in the frequency band of 1000 Hz or lower. As a result, in Examples 9 and 10, as compared with Example 6, the sound absorption coefficient of the soundproofing material in the low to high frequency band was further leveled.
  • FIG. 21 is a graph in which the sound absorption coefficients of the soundproofing materials obtained in Examples 11 to 13 are plotted for each 1/3 octave band center frequency.
  • the line width of the bonding layer increases from 10 mm ⁇ 50 mm ⁇ 100 mm, in other words, the area of the bonding layer increases from 100 cm 2 ⁇ 500 cm 2 ⁇ 1000 cm 2 .
  • the sound absorption peak of the soundproofing material increases. It can be seen that the frequency shifts to the lower frequency side.
  • the line width of the bonding layer increases, the sound absorption coefficient decreases in the higher frequency band than the sound absorption peak frequency, and the sound absorption coefficient increases in the lower frequency band than the sound absorption peak frequency.
  • the average sound absorption coefficient at the center frequency of the 1/3 octave band of 400 to 5000 Hz decreased as the line width of the bonding layer increased.
  • Example 15 When the arrangement patterns of the bonding layers of Example 14 and Example 15 are compared, it is Example 15 that the area of the bonding layer is larger and the arrangement of the openings is more unbalanced.
  • Example 14 In the arrangement mode of the bonding layer of the soundproof material, compared with Example 11 in which the individual areas of the bonding layers are small and the openings are formed and arranged relatively uniformly over the entire soundproof material, Example 14 is It can be seen that the sound absorption coefficient is reduced in the frequency band of 1000 Hz or higher and the sound absorption coefficient is increased in the frequency band of less than 1000 Hz. Further, it can be seen that in Example 15, the sound absorption coefficient is reduced in the frequency band of 1000 Hz or higher, and the sound absorption coefficient is increased in the frequency band of 800 Hz or lower. As a result, in Examples 14 and 15, compared with Example 11, the sound absorption coefficient of the soundproofing material in the low to high frequency bands was further leveled.
  • FIG. 24 is a graph in which the sound absorption coefficients of the soundproofing materials obtained in Examples 16 and 18 are plotted for each 1/3 octave band center frequency.
  • the layout of the bonding layer of the soundproofing material of Example 18 is such that, among the areas (regions) divided into four, three areas are areas composed of a plurality of bonding layers, and one area is composed of one bonding layer. ..
  • the arrangement patterns of the bonding layers of Example 16 and Example 18 are compared, it is Example 18 that the area of the bonding layer is larger and the arrangement of the openings is more unbalanced.
  • Examples 16 and 18 in which the average fiber diameter of the skin material is 17 ⁇ m have the same arrangement pattern of the bonding layer, It can be seen that the sound absorption coefficient is low overall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Textile Engineering (AREA)
  • Multimedia (AREA)
  • Architecture (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Building Environments (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

発明の課題は、防音材の構成材料、総厚さ、及び総重量を同程度に維持しながら、防音材の吸音特性を変化させることができる防音材の吸音特性の制御方法を提供することである。課題の解決手段は、繊維材からなる表皮層と、表皮層に積層された、空隙が連通している多孔質材からなる裏面層と、該表皮層と裏面層との間に積層された、接合材からなる接合層とを備え、前記表皮層と前記裏面層との接触面全体に対して100%未満の総接合面積率を有する防音材の吸音特性を制御する方法であって、前記接合層の面積を変化させることにより防音材の吸音特性を変化させる、防音材の吸音特性を制御する方法である。

Description

防音材の吸音特性の制御方法
 本発明は防音材に関し、特に、防音材の吸音特性の制御方法に関する。
 都市化の進行、又は行政サービスの効率化等のため、近年、人々が狭い地域に密集して生活する傾向が明確になっている。人口密度が高くなると、生活、労働、娯楽等の活動が接近して行われることになり、生活者が騒音に接する頻度及び騒音の種類が増加する。騒音が多い環境下でも快適な生活環境を確保するために、生活の場面で遭遇する生活騒音を全般的に遮断することが可能な防音材が求められている。また、生活騒音の発音体である各種機器等の小型・軽量化に伴い、これらに使用される防音材に対しても薄膜・軽量化が求められている。
 生活騒音は、例えば、輸送機器、建設機械・機器、電子・電気機器、家電などから発せられ、種類が多様であり、低周波数から高周波数にわたって幅広い周波数の音が含まれる。
 自動車の場合を例にとると、自動車での走行中に室内に侵入する音域は、エンジン音(63~250Hz程度)の低音域とタイヤ音(500~1500Hz程度)、風切り音(1000~4000Hz程度)などの中高音域にピークを示す特性を持つ。一般的に自動車の防音手法は、車外から侵入する音を遮断するための「遮音」と、車内の音の響きを和らげるための「吸音」の二つがあり、低音域には遮音、中高音域には吸音という手法で、侵入音への対策が講じられている。次世代自動車で問題が顕著化すると懸念されるタイヤ音や風切り音の特性である中高音域の音を和らげるために、防音材には従来品以上の吸音性能が求められている一方で、可能な限り薄さ、軽さを維持した上で、所望の吸音特性を適切かつ容易に設計することができる吸音特性の制御方法も求められている。またさらに、シチェーションに応じた快適な音環境を作り出すために、吸音性能を単に向上させるのではなく、所定の周波数領域の音に対して、その吸音率を適切なレベルに容易に調節したいという要望も今後は増えてくるものと予想される。
 騒音・異音などを遮断する防音方法の一つの方法として、上記した「吸音」がある。ここで、「吸音」とは、音を吸収することで音の反射を抑える方法のことを指し、吸収によって反射する音の大きさが小さいほど、吸音性が高い。吸音のメカニズムは、一般的にフェルト、グラスウール、ロックウールなどの繊維材料の骨格部分とその間の空隙から構成される材料に音が入射した際に、音波の持つエネルギーの一部が、空隙中で骨格部分の周壁との摩擦や粘性抵抗、さらに骨格の振動などによって、熱エネルギーに交換されることで、吸音するものである。音は、音波の粒子速度が大きい位置で、音エネルギーの消耗が最大になるので、例えば、剛壁から粒子速度の大きいλ/4等の位置まで防音材があると吸音率が高くなる。そのため、例えば、剛壁に貼り付けた材料は、高周波になるほど、吸音率が高く、又、防音材料の厚さが大きい程、低周波側の吸音率を高くすることができる。
 したがって、従来防音材よりも有効な高いレベルの吸音率を有し、さらに吸音可能な周波数領域が拡大された防音材を設計するためには、例えば、フェルトなどの繊維材料の厚さを厚くすることが有効な手法の一つとなるが、この手法は防音材の厚さ制限がない場合には有効であるが、上述したような薄膜・軽量化を目的とした用途にはそぐわない。そこで、フェルトなどの繊維材料の厚さを厚くするのではなく、比較的厚さの薄いフェルトなどの繊維材料の上に、厚さの薄い特定の表皮材やフィルム状共振材などを熱融着繊維や接着剤を利用して接合・積層した防音材により、可能な限り薄さ、軽さを維持しつつ、吸音特性を向上させる手法が提案されている。
特許文献1には自動車のエンジンルームなどの騒音を車室内に伝播しないようにする超軽量な防音材が記載されている。この防音材は、熱可塑性フェルト等の通気性の材質でなる吸音層と、軽量な発泡体または薄いフィルム体等でなる通気性の共振層とが、接着層により所定の接着強度および接着面積となるように接着された積層体からなるものである。
 特許文献1の防音材は、通気性の共振層と吸音層との間にある接着層の利用によって、通気性の超軽量な共振層と吸音層との界面での共振現象を発現させて吸音しており、接着面積や吸音層の密度によって、バネマス系共振や剛性の調整を行い、界面において吸音する音の周波数や吸音率を制御している。
 特許文献2には自動車の内装用などに好適な吸音材が記載されている。この吸音材は、部分熱圧着後、更にカレンダー加工されたスパンボンド法による熱可塑性合成繊維不織布からなる表面材と合成繊維不織布からなる裏面材とをホットメルト接着剤等の使用により接合した不織布である。
 特許文献2の吸音材は、表面材が小さな空隙を有する高密度構成の熱可塑性合成繊維不織布からなるため、音の波長を小さくして不織布の空隙に侵入させ、かつ大きな空隙を有する粗な構成の合成繊維不織布からなる裏面材の繊維単糸に、該侵入した音波を伝達して振動させ、音エネルギーを効率よく熱エネルギーに変換することができ、優れた吸音効果を得ることができる。
特許文献3には自動車室内のフロアパネル上に敷設する自動車用フロア敷設材が記載されている。この敷設材は、フロアパネル上に、クッション層、多数の開孔を有する孔あきシート層、通気表層をこの順に積層してなる敷設材である。
 特許文献3の敷設材は、孔あきシート層の開孔率等の因子を定めることにより、孔あきシート層と通気表層の積層の流れ抵抗値を1000Nsm-3未満に調整して100~3000Hz帯域の吸音性、遮音性を任意に制御している。
 特許文献4は、繊維系多孔質材料を用いた吸音構造体に関する複合吸音構造体が記載されている。この複合吸音構造体は、単繊維の形状が円形状あるいは扁平上で等価単繊維系が11~35μmの不織布からなる表皮層と高分子繊維系多孔質材料からなる母材層とを、ホットメルト材を介して重ね合わせ、加熱・加圧し、熱融着して一体複合化し、不織布の表皮層が音の入射側に配される複合吸音構造体からなるものである。
 特許文献4の複合吸音構造体は、表皮層と母材層を複合一体化するための高分子系ホットメルト材の目付けや表皮層を複数枚で構成することにより、複合吸音構造体として流れ抵抗を2×10~3.5×10 N・sec/m に調整し、広い周波数帯域で優れた吸音特性を有するように制御している。
特開2005-208494号公報 特開2006-28709号公報 特開2005-1403号公報 WO2009-125742号公報
 しかしながら、上記の特許文献1~4の技術では、例えば、「現在検討している防音材の設計仕様において、(1)使用材料は変更したくない、(2)総重量についてはこれ以上重くしたくない、(3)総厚さについてもこれ以上厚くしたくはないが、(A)吸音可能な周波数帯域をもう少しシフトさせたい、(B)ある周波数帯域の吸音率のレベルをもう少し調節したい、(C)当初予定から吸音特性の仕様変更があったので吸音可能な周波数帯域を大きくシフトさせたい」といった吸音特性の調整要望に対して、十分に応えられるものとは言えず、まだ改善の余地があった。すなわち、可能な限り現状設計における防音材の総重量、総厚さや構成材料を維持しながらも、従来技術よりも、吸音特性を大きく変化させることができる新たな制御方法が求められていた。
 本発明は上記従来の問題を解決するものであり、その目的とするところは、防音材の構成材料、総厚さ、及び総重量を変化させることなく防音材の吸音特性を変化させる、防音材の吸音特性の制御方法を提供することにある。
 本発明者らは、上記課題を解決するために、本発明者らがすでに提案した、所定の繊維材からなる表皮層と空隙が連通している多孔質材からなる裏面層とを接合層により所定の総接合面積率となるように部分的に接合した防音材(特願2018-146130号)をベースに、更に詳細に検討した。尚、総接合面積率とは、表皮層と裏面層との接触面全体に対する接合層の合計面積の割合をいう。ここで、接触面とは、表皮層と裏面層が対面している面のことを示す。
 その結果、接合層の総接合面積率が同一でも、言い換えれば、防音材の重量及び総厚さを変更することなく、個々の接合層の面積を変化させて、接合層を配置した場合に、防音材の吸音特性が実質的に変化する現象を見出し、本発明を成すに至った。
 本発明における第一の発明は、繊維材からなる表皮層と、表皮層に積層された、空隙が連通している多孔質材からなる裏面層と、該表皮層と裏面層との間に積層された、接合材からなる一つ以上の接合層とを備え、前記表皮層と前記裏面層との接触面全体に対して100%未満の総接合面積率を有する防音材の吸音特性を制御する方法であって、前記接合層の個々の面積を変化させることにより防音材の吸音特性を変化させる、防音材の吸音特性を制御する方法を提供する。
 第一の発明のある一形態においては、前記総接合面積率は50~95%の範囲から選択される。
 第一の発明のある一形態においては、前記接合材は塗工された粘着剤又は両面粘着テープである。
 第一の発明のある一形態においては、前記接合層は前記表皮層と前記裏面層との接触面に複数存在する。
 第一の発明のある一形態においては、前記複数の接合層は規則的な配置様式を有する。
第一の発明のある一形態においては、前記接合層は棒状の形状を有する。
第一の発明のある一形態においては、前記接合層の個々の面積を増大させることにより防音材の吸音ピークの周波数を低周波数側へシフトさせるか、又は前記接合層の個々の面積を低減させることにより防音材の吸音ピークの周波数を高周波数側へシフトさせることができる。
第一の発明のある一形態においては、前記接合層の個々の面積を増大させることにより防音材の吸音ピーク周波数より高周波数側の帯域の吸音率は低減させ、吸音ピーク周波数より低周波数側の帯域の吸音率は増大させるか、又は前記接合層の個々の面積を低減させることにより防音材の吸音ピーク周波数より高周波数側の帯域の吸音率は増大させ、吸音ピーク周波数より低周波数側の帯域の吸音率は低減させることができる。
 また、本発明における第二の発明は、繊維材からなる表皮層と、表皮層に積層された、空隙が連通している多孔質材からなる裏面層と、該表皮層と裏面層との間に積層された、接合材からなる接合層とを備え、前記表皮層と前記裏面層との接触面全体に対して100%未満の総接合面積率を有する防音材の吸音特性を制御する方法であって、前記表皮層と前記裏面層との接触面の少なくとも一部に、所定の配置様式を有する複数の接合層からなる領域を1領域以上配置することにより防音材の吸音特性を変化させる、防音材の吸音特性を制御する方法を提供する。
 第二の発明のある一形態においては、前記表皮層と前記裏面層との接触面に、複数の接合層からなる領域が配置されていない領域が存在する場合に、その領域の少なくとも一部に、該接合層よりも大きな面積を有する一つの接合層からなる領域を配置する。
 第二の発明のある一形態においては、防音材の低~高周波数帯域における吸音率を平準化することができる。
また、本発明の前記表皮層の繊維材は、5~300g/mの目付、1~17μmの平均繊維径、5~200cm/cm・secの通気量を有することが好ましい。
 また、本発明の前記裏面層は、0.5×10~3.5×10N・sec/mの単位面積流れ抵抗を有することが好ましい。
 また、さらに本発明の前記裏面層は100~300g/mの目付を有する繊維材からなることが好ましい。
 また、本発明の前記塗工された粘着剤又は両面粘着テープの粘着剤は、1.0×10~1.0×10Paの25℃におけるせん断貯蔵弾性率を有することが好ましい。
 本発明の吸音特性の制御方法は、防音材の構成材料、総厚さ、及び総重量を変化させることなく防音材の吸音特性を変化させることが可能であり、多様な用途に応じた吸音特性の設計をより容易に提供することが可能である。
図1は、本発明の方法で使用する防音材の構成を模式的に示す斜視図である。 図2は、本発明の実施例1及び実施例16で使用した、複数の接合層の配置様式を示す水平断面図である。 図3は、本発明の実施例2及び実施例17で使用した、複数の接合層の配置様式を示す水平断面図である。 図4は、本発明の実施例3で使用した、複数の接合層の配置様式を示す水平断面図である。 図5は、本発明の実施例4及び実施例18で使用した、複数の接合層の配置様式を示す水平断面図である。 図6は、本発明の実施例5で使用した、複数の接合層の配置様式を示す水平断面図である。 図7は、本発明の実施例6で使用した、複数の接合層の配置様式を示す水平断面図である。 図8は、本発明の実施例7で使用した、複数の接合層の配置様式を示す水平断面図である。 図9は、本発明の実施例8で使用した、複数の接合層の配置様式を示す水平断面図である。 図10は、本発明の実施例9で使用した、複数の接合層の配置様式を示す水平断面図である。 図11は、本発明の実施例10で使用した、接合層の配置様式を示す水平断面図である。 図12は、本発明の実施例11で使用した、複数の接合層の配置様式を示す水平断面図である。 図13は、本発明の実施例12で使用した、複数の接合層の配置様式を示す水平断面図である。 図14は、本発明の実施例13で使用した、複数の接合層の配置様式を示す水平断面図である。 図15は、本発明の実施例14で使用した、複数の接合層の配置様式を示す水平断面図である。 図16は、本発明の実施例15で使用した、複数の接合層の配置様式を示す水平断面図である。 図17は、実施例1~3で得られた防音材の吸音率を1/3オクターブバンド中心周波数ごとにプロットしたグラフである。 図18は、実施例1、4及び5で得られた防音材の吸音率を1/3オクターブバンド中心周波数ごとにプロットしたグラフである。 図19は、実施例6~8で得られた防音材の吸音率を1/3オクターブバンド中心周波数ごとにプロットしたグラフである。 図20は、実施例6、9及び10で得られた防音材の吸音率を1/3オクターブバンド中心周波数ごとにプロットしたグラフである。 図21は、実施例11~13で得られた防音材の吸音率を1/3オクターブバンド中心周波数ごとにプロットしたグラフである。 図22は、実施例11、14及び15で得られた防音材の吸音率を1/3オクターブバンド中心周波数ごとにプロットしたグラフである。 図23は、実施例16、17で得られた防音材の吸音率を1/3オクターブバンド中心周波数ごとにプロットしたグラフである。 図24は、実施例16、18で得られた防音材の吸音率を1/3オクターブバンド中心周波数ごとにプロットしたグラフである。
 以下、添付図面を参照して本発明の実施の形態について詳細に説明する。
[防音材の構成]
 図1は、本発明の方法で使用する防音材の構成を模式的に示す斜視図である。防音材10は、繊維材からなる表皮層11と、空隙が連通している多孔質材からなる裏面層13、接合層12、及び通気性の開口部14とを備えた積層構造を有する。防音材10は、例えば、輸送機器、建設機械・機器、電子・電気機器、家電などの発音体から発せられる音を吸音するための部材や公共建造物内、周辺の音場環境を調整するための部材として用いられてよい。
<接合層>
 接合層12は後述する表皮層11と裏面層13とを接合するための層である。接合層12は表皮層11と裏面層13との接触面(以下、単に「接触面」ということがある。)の一部に形成される。本明細書において接合層とは、集合体ではなく、一つの部材を指して言う。接合層の面積とは上記接触面と実質的に平行な接合層の面積をいう。接合層の個々の面積とは、一つの接合層の面積をいう。接合層12は単数又は複数形成されてよい。
 上記接合材としては、形状及び寸法を容易、正確に実現することができて、連通した空隙を実質的に有しない材料を使用する。接合材は、例えば、粘着剤、接着剤等を含む材料を使用することができる。具体的には、塗工された粘着剤、塗工された接着剤、又はこれらをテープ状、シート状、粉末状に加工したもの等が挙げられる。中でも、作業性、生産性、寸法精度の観点から、塗工された粘着剤又は両面粘着テープ(基材を有しない基材レス両面粘着テープも含む)により接合層12を形成するのが好ましい。
上記の塗工された粘着剤又は両面粘着テープに使用される粘着剤としては、特に限定されるものではなく、従来公知の粘着剤を使用することができる。例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤やエチレン-酢酸ビニル共重合体系粘着剤等が挙げられる。これらの中でも、汎用性、厚さの可変領域の広さ、表皮層と裏面層を過度に拘束しない等の観点から、ゴム系粘着剤又はアクリル系粘着剤が好ましい。上記粘着剤の25℃におけるせん断貯蔵弾性率(G’)は、1.0×10~1.0×10Paの範囲であることが好ましい。上記せん断貯蔵弾性率を、このような範囲とすることにより、表皮層11と裏面層13の音の振動による変形や変位はある程度可能であり、表皮層11と裏面層13の境界部分で音を反射させる硬質部分を生じさせず、音波をある程度通過させることができ、表皮層11、裏面層13および防音材10全体としての吸音機構を問題なく機能させることができる。上記粘着剤の25℃におけるせん断貯蔵弾性率(G’)は、好ましくは5.0×10~8.0×10Paの範囲であり、より好ましくは1.0×10~6.0×10Paの範囲である。
上記接合層に関して、本発明者らは、すでに提案した、所定の繊維材からなる表皮層と空隙が連通している多孔質材からなる裏面層とを接合層により所定の総接合面積率となるように部分的に接合した防音材(特願2018-146130号)において、該防音材は、接合界面における共振と表皮層及び裏面層における繊維振動とを連成させ、さらに接合層開口部により、裏面層との共鳴型吸音機構や裏面層の粘性抵抗も活かせる構成としているので、それぞれの吸音メカニズムが相乗的にバランス良く発現し、防音材の総厚さが薄くても実使用において有効な高いレベルの垂直入射吸音率を有し、さらに吸音可能な周波数帯域が拡大するという効果を奏することを示している。本発明では、この提案技術をベースに、より実環境に近い残響室法で測定した吸音率(残響室法吸音率)と接合層の配置様式の関係について、更に詳細に検討した結果、上述したように、総接合面積率が同一であっても、言い換えれば、防音材の重量及び総厚さを変更することなく、個々の接合層の面積を変化させて、接合層を配置した場合に、防音材の吸音特性が実質的に変化する現象を見出した。すなわち、繊維材からなる表皮層と、表皮層に積層された、空隙が連通している多孔質材からなる裏面層と、該表皮層と裏面層との間に積層された、接合材からなる一つ以上の接合層とを備え、上記表皮層と上記裏面層との接触面全体に対して100%未満の総接合面積率を有する防音材において、上記総接合面積率を上記所定の範囲内のある一つの値に設定した際に、第一に、個々の接合層の面積を変化させることにより防音材の吸音特性を変化させることができること、第二に、前記表皮層と前記裏面層との接触面の少なくとも一部に、所定の配置様式を有する複数の接合層からなる領域を1領域以上配置することにより防音材の吸音特性を変化させることができること、を見出した。
第一の発明を具体的に説明すると、総接合面積率が同一であっても、個々の接合層の面積を増大させて、該接合層を配置することにより、吸音率が最大となる周波数(吸音ピーク周波数)を、より低周波数側へシフトさせることができる。この場合、吸音ピーク周波数より高周波数側の帯域の吸音率は低減し、吸音ピーク周波数より低周波数側の帯域の吸音率は増大する傾向が認められる。逆に、個々の接合層の面積を低減させて、該接合層を配置することにより、吸音率が最大となる周波数(吸音ピーク周波数)を、より高周波数側へシフトさせることができる。この場合、吸音ピーク周波数より高周波数側の帯域の吸音率は増大し、吸音ピーク周波数より低周波数側の帯域の吸音率は低減する傾向が認められる。また、さらに一定レベルの吸音率を確保した上で、吸音率を全体的に低減させることもできる。
上記効果を奏するメカニズムは、以下のように推察される。表皮層11と裏面層13が接合層12により部分的に接合された構造は、いわゆる多孔質型吸音機構(裏面層13)、共鳴型吸音機構(開口部14と裏面層13との積層構造)、及び膜振動型吸音機構(表皮層11と接合層12と裏面層13との接合界面)を兼ね備えた構造を示していると考えられ、個々の接合層の面積を変化させることは、言い換えれば、上記3つの吸音機構のバランスを変化させることを意味する。すなわち、接合層の総接合面積率を変えずに、個々の接合層の面積を増大させることは、上記3つの吸音機構のバランスにおいて、特に膜振動型吸音機構の効果の影響が強くなる方向(開口部の形成個数は低減するため、多孔質型吸音機構及び共鳴型吸音機構の効果の影響は弱くなり、一つの連続面で形成された接合層により拘束される接合界面の面積は増大するため、接合界面における膜振動型吸音機構の効果の影響は強くなる方向)となるため、吸音ピーク周波数をより低周波数側へシフトさせることができるものと考える。逆に、接合層の面積を低減することは、上記3つの吸音機構のバランスにおいて、特に多孔質型吸音機構の効果の影響が強くなる方向(一つの連続面で形成された接合層により拘束される接合界面の面積は低減するため、接合界面における膜振動型吸音機構の効果の影響は弱くなり、開口部の形成個数は増大するため、多孔質型吸音機構及び共鳴型吸音機構の効果の影響は強くなる方向)となるため、吸音ピーク周波数をより高周波数側へシフトさせることができるものと考える。又、接合層の総接合面積率を変えずに、個々の接合面積を増大させることは、接合層と接合層との間の通気性を有する開口部14の形成個数を低減し、開口部14を防音材全体に渡り、満遍なく形成・配置することを困難化する方向となるため、残響室法吸音率試験のようなランダム入射音を想定した測定の場合、表皮層11を通じて斜めから入射した音については、特に、面積の増大した接合層12の真下に配置された裏面層13の上部(接合層に接する側)部分へ進入できる割合が低減し、裏面層13が有する多孔質型吸音機構の効果の一部が抑制される結果、吸音率を全体的に低減させることができるものと考える。逆に、個々の接合層の面積を低減することは、接合層と接合層との間の通気性を有する開口部14の形成個数を増大し、開口部14を防音材全体に渡り、満遍なく形成・配置することを容易化する方向となるため、残響室法吸音率試験のようなランダム入射音を想定した測定の場合、表皮層11を通じて斜めから入射した音については、特に、面積の低減した接合層12の真下に配置された裏面層13の上部(接合層に接する側)部分へ進入できる割合が増大し、裏面層13が有する多孔質型吸音機構の効果の一部が抑制されにくくなる結果、吸音率を全体的に増大させることができるものと考える。なお、上述したように、接合材として、塗工された粘着剤又は両面粘着テープを用いた場合は、接合層12は表皮層11と裏面層13を過度に拘束しないので音波をある程度通過させることができ、上記の多孔質型吸音機構の抑制はより低減されて、一定レベルの吸音率を確保しやすくなるものと考える。
 第二の発明を具体的に説明すると、総接合面積率が同一であっても、前記表皮層と前記裏面層との接触面の少なくとも一部に、例えば、図5、6、10、15、16に示した様に所定の配置様式を有する複数の接合層からなる領域を1領域以上配置することにより、上記領域以外の領域の接合層の配置様式を多様化し、一定レベルの吸音率を確保した上で、吸音特性を制御することができる。特に、前記表皮層と前記裏面層との接触面に、複数の接合層からなる領域が配置されていない領域が存在する場合に、その領域の少なくとも一部に、該接合層よりも大きな面積を有する一つの接合層からなる領域を配置することにより、該接合層の面積の大きさに応じて、吸音ピーク周波数をシフトさせることができる。例えば、該接合層の面積を増大させることにより、吸音ピーク周波数は、より低周波数側へシフトさせるか、低周波数帯域の吸音率を増大させることができる。また、接合層と接合層の間の開口部14の形成個数、及びその配置バランス、すなわち、開口部14が防音材全体に渡り、満遍なく形成・配置されているか不均一に形成・配置されているか、を調整することにより、主に中~高周波数帯域の吸音率のレベルを制御することができる。例えば、上記接合層の総接合面積率が一定の場合、上記接合層の個々の面積が増大するにつれて、上記開口部14の形成個数は減少、上記開口部14の配置の不均一さは増す(アンバランスとなる)傾向となるため、中~高周波数帯域の吸音率は低減する一方で、低周波数帯域の吸音率はやや増大し、その結果、一定レベルの吸音率を確保した上で、低~高周波数帯域における防音材の吸音率を平準化させることができる。中~高周波数帯域の吸音率をある程度確保したい場合は、上記開口部14の形成個数を増加させ、その配置の不均一さを解消する方向となるように、各領域において接合層の面積と配置様式を調整すれば良い。
 上記効果を奏するメカニズムは、基本的には第一の発明と同様に推察することができる。すなわち、多孔質型吸音機構、共鳴型吸音機構、及び膜振動型吸音機構を兼ね備えた本発明の防音材構造の表皮層と裏面層との接触面において、領域毎に接合層の配置様式を変化させることは、言い換えれば、上記3つの吸音機構のバランスを変化させることを意味する。接合層の総接合面積率を変えずに、前記表皮層と前記裏面層との接触面の少なくとも一部に、所定の配置様式を有する複数の接合層からなる領域を1領域以上配置することにより、上記領域以外の領域の接合層の配置様式を多様化できるので、第一の発明で説明したメカニズムにより、接合層のトータルの配置様式に応じて、上記3つの吸音機構の効果の影響度合いを調整することができる。例えば、所定の配置様式を有する複数の接合層からなる領域以外の領域に、接合層の面積を大きくした領域を配置した場合は、該接合界面による膜振動型吸音機構の効果の影響が強く付加されるため、防音材全体の吸音ピーク周波数は、より低周波数側へシフトさせることができるか、低周波数帯域の吸音率を増大させることができる。さらに、この場合、表皮層と裏面層との接触面において、トータルの開口部14の形成個数、及びその配置バランスを他の領域の接合層の面積も調整しながら制御することにより、多孔質型吸音機構及び共鳴型吸音機構の効果の影響の度合いを調整できるので、中~高周波数帯域の吸音率のレベルを調整することができる。接合層の総接合面積率を変えずに、前記表皮層と前記裏面層との接触面の少なくとも一部に、所定の配置様式を有する複数の接合層からなる領域を1領域以上配置することは、総じて、接合層と接合層との間の通気性を有する開口部14の形成個数を低減し、開口部14を防音材全体に渡り、満遍なく形成・配置することを困難化する方向となるため、残響室法吸音率試験のようなランダム入射音を想定した測定の場合、表皮層11を通じて斜めから入射した音については、特に、面積の増大した接合層12の真下に配置された裏面層13の上部(接合層に接する側)部分へ進入できる割合が低減し、裏面層13が有する多孔質型吸音機構の効果の一部が抑制される結果、中~高周波数帯域の吸音率を全体的に低減させることができるものと考える。逆に、接合層と接合層との間の通気性を有する開口部14の形成個数を増大し、開口部14を防音材全体に渡り、満遍なく形成・配置することを容易化する方向となるように接合層の配置様式を調整した場合は、裏面層13が有する多孔質型吸音機構の効果の一部が抑制されにくくなる結果、中~高周波数帯域の吸音率を全体的に増大させることができるものと考える。なお、上述したように、接合材として、塗工された粘着剤又は両面粘着テープを用いた場合は、接合層12は表皮層11と裏面層13を過度に拘束しないので音波をある程度通過させることができ、上記の多孔質型吸音機構の抑制はより低減されて、一定レベルの吸音率を確保しやすくなるものと考える。
 以上の結果、本発明で使用する防音材10は、繊維材からなる表皮層11と空隙が連通している多孔質材からなる裏面層13とを、粘着テープ等の接合材からなる接合層12の総接合面積率を変えることなく、言い換えれば、防音材の重量及び総厚さを変更することなく、表皮層11と裏面層13との接触面において、個々の接合層の面積、通気性を有する開口部14の形成個数、及び開口部14の配置バランスを適宜調整することにより、防音材の吸音特性を制御するという効果を奏したものと推測する。
 本発明で使用する防音材10において、例えば、シチュエーションに応じて低周波数方向の吸音率を上げる必要がある場合、上記総接合面積率は、表皮層11と裏面層13との接触面全体に対して、100%未満の範囲であり、好ましくは50~95%の範囲である。上記総接合面積率が50%未満であると、膜振動型吸音機構の効果の寄与が低くなるので、低~中周波数方向の吸音率を増大する効果が不十分となるおそれがある。次に、シチュエーションに応じて、吸音率を平準化する場合、上記総接合面積率は、表皮層11と裏面層13との接触面全体に対して、100%未満の範囲であり、好ましくは50~95%の範囲である。上記総接合面積率が50%未満であると、表皮層と裏面層との接触面全体に対して、接合層の開口部14の配置バランスを不均一(アンバランス)にしにくくなる場合があり、この場合、中~高周波数帯域の吸音率を低減しにくくなるので、吸音率の平準化が不十分となるおそれがある。
 接合層12の形状は特に限定されない。例えば、線状、ドット状、パンチングシート状(シートに穴を開けた形状)等の形状が挙げられる。接合層12は単一であっても良いが、複数形成されてもよい。接合層12が複数形成される場合は、接触面に、規則的な配置様式の領域を形成することが好ましい。
 作業性、加工性の観点から、好ましい一形態において、接合層12は、例えば、棒状の形状を有する。棒状とは所定の幅を有する直線状の形状をいう。棒状である接合層12を接触面に規則的に形成した場合、複数の棒状層は縞模様を形成する。この場合、接触面には、縞模様という規則的な配置様式の領域が形成される。縞模様とは、直線をおよそ一定間隔で平行に並べた線条文をいう。その結果、接触面上の隣り合った2つの棒状層の間に上記通気性の開口部14が形成される。
 上記棒状層の幅は、上記総接合面積率及び所望とする吸音特性の他、使用する防音材のサイズ、棒状層の数等を考慮して適宜決定されるが、好ましくは1mm以上である。上記棒状層の幅が1mm未満であると、形状および寸法を正確に維持、加工することが困難となるおそれがある。一方、上記棒状層の幅の上限は、本発明の効果を妨げない限りにおいては、特に限定されるものではない。上記の隣り合った棒状層同士の間隔は、上記総接合面積率及び吸音特性の他、使用する防音材のサイズ、棒状層の数等を考慮して適宜決定される。
 上記接合層12の厚さは、本発明の効果を妨げない限りにおいては、特に限定されるものではないが、0.025~3mmの範囲であることが好ましい。上記接合層12の厚さが0.025mm未満であると、防音材10の吸音率が全体的に低下するおそれや表皮層11と裏面層13との接合強度が低下するおそれがある。一方、上記接合層の厚さが3mmを超えると、接合面積が大きい場合、高周波数帯域の吸音率が低下するおそれがあり、また、防音材10の厚さや重量が大きくなり、薄型・軽量化にそぐわない。また、上記接合層12の密度は、本発明の効果を妨げない限りにおいては、特に限定されるものではないが、軽量化の観点から、1.0~1.5g/cmの範囲であることが好ましい。
<表皮層>
 表皮層11は繊維材からなる。繊維材とは、繊維によってその形状が支持されており、繊維と繊維の間に空間を有し、気体がその空間を通過することができる材料をいう。繊維材は複数種類の繊維を有していてよい。繊維材は、好ましくはシート状である。不織布、織布及び編み物はここでいう繊維材に含まれる。反対に、樹脂発泡体又は樹脂フィルム材は、仮に通気性を有する材料であってもここでいう繊維材に含まれない。
 上記表皮層11の繊維材を構成する繊維の平均繊維径は、1~17μmの範囲であることが好ましく、1~10μmの範囲であることがより好ましい。上記表皮層11を構成する繊維径は、小さな空隙を有する構造とし、中~高周波数帯域の吸音率を増大させるために、小さくすることが好ましい。上記繊維材を構成する繊維の繊維径は同一であっても良いし、異なっていても良い。繊維径が異なる場合は、平均繊維径が1~17μmの範囲となるように、例えば平均繊維径が17μm以上の太い繊維と平均繊維径が1μm未満の細い繊維を混繊したものを繊維材として供しても構わない。上記繊維材を構成する繊維の平均繊維径が1μm未満であると、強度、剛性、取扱性等が低下するおそれがあり、さらに価格面でも不利となるおそれがある。一方、上記平均繊維径が17μmを超えると中~高周波数帯域の吸音率が低下するおそれがある。
 上記表皮層11の繊維材の通気量は、5~200cm/cm・secの範囲であることが好ましく、10~100cm/cm・secの範囲であることがより好ましい。上記表皮層11の通気量が5cm/cm・sec未満であると、中~高周波数帯域での吸音率が低下するおそれがある。一方、上記表皮層11の通気量が200cm/cm・secを超えると、中周波数以下の帯域での吸音率が低下するおそれがある。
 上記表皮層11の平均繊維径および通気量をそれぞれ上記範囲とすることにより、上記表皮層11の繊維材は比較的緻密な構造を有しやすくなり、共鳴型吸音機構と多孔質型吸音機構とを複合したような吸音効果、すなわち、中~高周波数帯域の吸音率を増大させる効果を有する。その結果、本発明で使用する防音材10は、厚さが薄くても実使用において吸音可能な周波数帯域が拡大するという効果を奏することができる。上記表皮層11の平均繊維径は小さいほど、より大きな効果を奏することができる。
 上記表皮層11の厚さは、0.01~5mmの範囲が好ましく、0.05~4mmの範囲がより好ましい。また、上記表皮層11の目付は、5~300g/mの範囲が好ましく、15~100g/mの範囲がより好ましい。またさらに、上記表皮層11の平均みかけ密度は、0.01~1.0g/cmの範囲が好ましく、0.02~1.0g/mの範囲がより好ましい。
 上記表皮層11の厚さ、平均みかけ密度および目付を、このような構成とすることにより、繊維材を透過する音波の音エネルギーを、空隙入口近傍部での空気摩擦と繊維骨格の内壁との粘性摩擦等により、より効果的に消耗することができる。上記表皮層11の厚さが0.01未満、平均みかけ密度が0.01g/cm未満、また目付が5g/m未満であると、強度、剛性、繊維密度等が低下し、取扱性および吸音効果が低下するおそれがある。一方、上記表皮層11の厚さが5mmを超え、平均みかけ密度が1.0g/mを超え、また、目付が300g/mを超えると、強度、繊維密度は大きくなるが、剛性が大きすぎて裁断性、取扱性が低下するおそれがある。また、薄型・軽量化にそぐわない。
 本実施の形態において、上記表皮層11の繊維材としては、特に限定されるものではないが、合成繊維からなる不織布を用いることが好ましい。上記不織布を構成する繊維としては、例えば、ポリエチレン、ポリプロピレン、共重合ポリプロピレン等のポリオレフィン系繊維、ナイロン6、ナイロン66、共重合ポリアミド等のポリアミド系繊維、ポリエチレンテレフタレート、ポリブチレンテレフタレート、共重合ポリエステル、脂肪族ポリエステル等のポリエステル系繊維、アクリル系繊維、アラミド繊維、鞘がポリエチレン、ポリプロピレンまたは共重合ポリエステルで芯がポリプロピレンまたはポリエステルなどで構成された芯鞘構造等の複合繊維、ポリ乳酸、ポリブチレンサクシネート、ポリエチレンサクシネート等の生分解性繊維等の熱可塑性合成繊維を用いることができる。これらの繊維は単独でまたは2種以上を混合して用いることができ、また、扁平糸などの異形断面繊維、捲縮繊維、割繊繊維などを混合または積層して用いることもできる。これらの中でも、特に、汎用性、耐熱性、難燃性等の観点から、ポリエステル系繊維が好ましい。
 上記表皮層11の繊維材の製造方法としては、特に限定されるものではなく、従来公知の湿式法、乾式法又は紡糸直結(スパンボンド、メルトブロー等)による不織布の製造方法等が挙げられる。これらの中でも、繊維材の強度、取扱性、細孔の均一性の観点から、例えば、経糸と緯糸とがほぼ直交するように配列された経緯直交不織布又は経糸の一方向のみに配列された不織布の製造方法、又は、太い繊維と細い繊維がバインダーにより繊維間結合された不織布の製造方法が好ましいが、これらは一例にすぎず、これらに限定されるものではない。
 上記経緯直交不織布は、先ず、ポリエステル等上述した原料樹脂から直接紡糸した繊維を、延伸した後、縦、横それぞれの方向に繊維が配列した2種類のウェブに加工・準備し、次いでこの2種のウェブを配列した繊維が直交するように積層し、熱エンボスによるポイント熱融着で接合することで製造される。また、縦・横ウェブを積層する方法として、熱エンボス以外にも、エマルションで含侵接着する方法、ウォータージェットで短繊維を絡めて複合化し一体化する方法が挙げられる。また、同様に縦方向のみに繊維配列した不織布も製造可能であり、この不織布を繊維材として供しても構わない。このような方法により製造された不織布は、従来のスパンボンド法により製造された不織布とは異なり、縦横それぞれの方向又は縦方向に、あらかじめ延伸された平均繊維径が数μmの極細繊維が配列されているので、荷重を掛けた時の変形が小さく、形態を維持できるので、低目付であっても張力を必要とする二次加工(ロール・ツー・ロール加工)等が容易にできる。これらの不織布の引張強度(ASTM D882に準拠)は、MD方向において、20~300N/50mmの範囲であることが好ましい。
 上記太い繊維と細い繊維がバインダーにより繊維間結合された不織布は、先ず、ポリエステル等上述した原料樹脂から溶融紡糸又は湿式紡糸した繊維径の異なる繊維を、例えば繊維長10mm以下のフロック状にカットし、バインダーとなるポリビニルアルコール系等の繊維とともに混繊、均一分散した懸濁液を作製した後、通常の抄紙法により製造される。繊維径の異なる繊維は、同じ材質であっても良いし、異なる材質であっても良い。シート化に際しては、湿式法である上記抄紙法以外に、短繊維をカード機と空気流によるウエッバー(エアーレイド法)等によりシート化する乾式法を用いても構わない。繊維の配列はクロス、ランダムのいずれであっても良い。
<裏面層>
 裏面層13は、空隙が連通している多孔質材から成る。空隙が連通している多孔質材としては、吸音材として使用されるものであれば限定されるものではないが、フェルト、合成繊維からなる不織布(ニードルパンチによる合成繊維の混合品又は合成繊維100 %のフェルトを含む)等の繊維材や連続気泡を有するフォーム材等が挙げられる。
 上記繊維材としては、例えば、綿、羊毛、木毛、クズ繊維等を熱硬化性樹脂でフェルト状に加工したもの(一般名:レジンフェルト);ポリエチレンテレフタレート等のポリエステル系繊維フェルト、ナイロン系繊維フェルト、ポリエチレン系繊維フェルト、ポリプロピレン系繊維フェルト、アクリル系繊維フェルト、鞘がポリエチレン、ポリプロピレンまたは共重合ポリエステルで芯がポリプロピレンまたはポリエステルなどで構成された芯鞘構造を有する複合繊維フェルト、ポリ乳酸、ポリブチレンサクシネート、ポリエチレンサクシネート等の生分解性繊維フェルト等の合成繊維系フェルト;シリカ-アルミナセラミックスファイバーフェルト、シリカ繊維フェルト、グラスウール、ロックウール、岩綿長繊維等の無機繊維系フェルトが挙げられる。また、上記連続気泡を有するフォーム材としては、例えば、ポリウレタンフォーム、ポリエチレンフォーム、ポリプロピレンフォーム、フェノールフォーム、メラミンフォーム;ニトリルブタジエンラバー、クロロプレンラバー、スチレンラバー、シリコーンゴム、ウレタンゴム、EPDM等のゴムを連通気泡状に発泡させたもの、又はこれらを発泡後にクラッシング加工等を施しフォ-ムセルに孔を明けて連通気泡化したもの等が挙げられる。これらの中でも、汎用性の観点から、合成繊維系フェルトが好ましく、さらに、耐熱性、難燃性等の観点から、ポリエステル系繊維フェルトがより好ましい。
 裏面層13として繊維材を用いる場合、上記繊維材を構成する繊維の平均繊維径は、10~30μmの範囲が好ましい。また、上記繊維材の厚さは、5~15mmの範囲が好ましい。さらに、上記繊維材の目付は、50~1500g/mの範囲が好ましく、100~300g/mの範囲がより好ましく、200~280g/mの範囲が特に好ましい。またさらに、上記繊維材の平均見かけ密度は、0.01~0.1g/cmの範囲が好ましい。
 裏面層13として連続気泡を有するフォーム材を用いる場合、上記フォーム材の厚さは、5~15mmの範囲が好ましい。また、上記フォーム材の目付は、50~4500g/mの範囲が好ましく、100~2000g/mの範囲がより好ましく、100~1000g/mの範囲が特に好ましい。また、上記フォーム材の平均見かけ密度は、0.01~0.3g/cmの範囲が好ましい。
 裏面層13の繊維の平均繊維径、厚さ、平均みかけ密度、及び目付を、このような構成とすることにより、表皮層11の繊維材により吸収されずに透過した音波を、効率よく裏面層13の繊維材又は連続気泡を有するフォーム材に伝達させ、音波のエネルギーの一部を、骨格部分の周壁との摩擦や粘性抵抗、さらに骨格の振動などによって、熱エネルギーに交換・消耗させることができる。裏面層13において、繊維の平均繊維径、厚さ、平均見かけ密度、及び目付が上記範囲未満であると、吸音率が全体的に低下するおそれがある。一方、繊維の平均繊維径、厚さ、平均見かけ密度、及び目付が上記範囲を超えると、薄膜・軽量化にそぐわない。
  裏面層13の通気量は、特に限定されるものではないが、表皮層11の通気量と同等以上であることが好ましく、具体的には、5~1000cm/cm・secの範囲であることが好ましく、100~300cm/cm・secの範囲であることがより好ましい。裏面層13の通気量が1000cm/cm・secを超えると、取り扱い性や機械的強度が低下するおそれがある。
 裏面層13の単位面積流れ抵抗は、0.5×10~3.5×10N・sec/mであることが好ましい。上記単位面積流れ抵抗が、上記の範囲であると、多孔質型吸音機構及び共鳴型吸音機構の効果が十分に発現できるので、中~高周波数帯域の吸音率をある一定のレベルに確保しやすい。
  裏面層13に用いる合成繊維系フェルトの製造方法としては、特に限定されるものではなく、従来公知の製造方法が挙げられる。具体的は、乾式法(カーディング法又はエアーレイド法)により、上述した合成繊維を解繊混合し、フェルト振分機で層上積層されたフェルト状マットに成型し、フェルトの保形性、層状剥離性を防止するため、ニードルパンチ法により層間縫合を施すことにより、合成繊維系フェルトを得ることができる。ニードルパンチ法以外に、ケミカルボンド法、サーマルボンド法、水流交絡法等を用いて層間縫合、繊維間結合を行っても良い。
 裏面層13に用いる連続気泡を有するフォーム材の製造方法としては、特に限定されるものではなく、従来公知の製造方法が挙げられる。例えば、ポリイソシアネートとポリオールとを、触媒、発泡剤、整泡剤等と混合し、泡化反応と樹脂化反応を同時に行うことによりウレタンフォーム材を得ることができる。また、あらかじめ独立気泡タイプのポリオレフィン系フォーム材を製造し、これに対して、異方向に回転する2本のロール間隙を通過させて圧縮する圧縮処理を行うことにより、気泡膜を破裂させて気泡を連通化させる方法により連続気泡ポリオレフィン系フォーム材を得ることもできる。
<防音材>
  本発明で使用する防音材10は、裏面層13の一方の面に、表皮層11を、接合層12により部分的に接合して得られる。裏面層13と表皮層11との結合方法としては、各々の層を、塗工された粘着剤又は両面粘着テープ(基材を有しない基材レス両面粘着テープも含む)を用いて、所定の総接合面積率となるように貼り合わせる方法が好ましい。具体的には、まず、表皮層11のいずれか一方の面に、あらかた所定の幅にスリットされた両面粘着テープ(基材を有しない基材レス両面テープも含む)、パンチングされた両面テープ又は離型フィルムにストライプ状やドット状に粘着剤を塗工したシート等から成る接合層12を所定の総接合面積率となるように貼り合わせ、又は転写した後、両層を圧着・接合する。表皮層11と裏面層13との圧着は、常温の環境下において、非加熱で行うことができる。しかしながら、必要に応じて加熱しながら圧着を行うこともできる。
 本発明で使用する防音材10の厚さは、10~30mmの範囲が好ましい。上記防音材10の厚さが10mm未満であると、吸音率が全体的に低下するおそれがある。一方、上記防音材10の厚さが30mmを超えると、薄型・軽量化にそぐわない。
<吸音特性の制御>
 本発明で使用する防音材は、接合層の個々の面積を増大させた場合に防音材の吸音ピーク周波数が低周波側へシフトする。また、本発明で使用する防音材は、接合層の個々の面積を低減させた場合に防音材の吸音ピーク周波数が高周波側へシフトする。
 本発明で使用する防音材は、接合層の個々の面積を増大させた場合に防音材の吸音ピーク周波数より高周波数側の帯域の吸音率は低減し、吸音ピーク周波数より低周波数側の帯域の吸音率は増大する。また、本発明で使用する防音材は、接合層の個々の面積を低減させた場合に防音材の吸音ピーク周波数より高周波数側の帯域の吸音率は増大し、吸音ピーク周波数より低周波数側の帯域の吸音率は低減する。
 本発明で使用する防音材は、吸音ピーク周波数又は吸音率を低減又は増大させるために、総接合面積率又は構成材料を変更する必要はない。防音材の吸音ピーク周波数をシフトさせる場合、又は防音材の吸音率を変化させる場合、例えば、総接合面積率は、100%未満である所定の値、好ましくは50~95%の範囲から選択される一つの値に固定されてよい。
 しかしながら、防音材の吸音特性を変化させる機能が実質的に阻害されない場合は、本発明で使用する防音材に構成材料を追加し、又は該防音材の構成材料を変更してもよい。
 本発明で使用する防音材において、例えば、接合層の面積が異なる複数の防音材を並列させた場合に、面積に応じて各防音材の吸音特性が発現し、融合された吸音特性になることが理解される。そうすると、本発明で使用する防音材は、例えば、接触面に、接合層を部分的に形成すること、複数の接合層からなる領域を全体的に又は部分的に形成すること、又は複数の接合層からなる領域を複数組み合わせて、全体的に又は部分的に形成すること等により、所望の周波数帯域における吸音率を変化させることができる。
 その結果、本発明で使用する防音材は、低~高周波数帯域において最適な吸音率を防音材の様々な用途に応じて容易に設計し、実現することができる。
 以下の実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されない。なお、実施例および比較例の各特性値については、下記の方法により測定した。
(1)残響室法吸音率
ISO354に準拠したインパルス応答を用いた残響室法吸音率試験を実施した。残響室法吸音率とは、残響室内の試験体有・無の状態において、放射音源の残響音の減衰曲線から求めた各々の残響時間から算出される吸音率のことで、下記の式(1)により算出する。

α=(55.3V/(c・S))・(1/T-1/T)   (1)

なお、Vは残響室の容積[m]であり、本評価試験では8.9mである。cは音速[m/s]である。Sは試験体表面積[m]であり、本評価試験では1m(1m×1m)とした。Tは、試験体設置前の残響室の残響時間であり、Tは、試験体設置後の残響室の残響時間である。算出される吸音率αは、試験体に入射した音のエネルギーに対する、反射しなかった音のエネルギーの割合を示すものであって、αが大きいほど音を吸収しやすい。
(2)平均繊維径
顕微鏡で500倍の拡大写真を取り、100本の繊維を任意に選び出し、その平均値を求め、小数点以下1桁を四捨五入し、平均繊維径を求めた。
(3)通気量
 JIS L 1096に準拠したフラジール形通気性試験機により測定した。フラジール形通気性試験機は、大栄科学精器製作所社製のDAP-360(製品型番)を使用した。測定条件は、差圧125Pa、測定孔径70mmとし、3箇所以上を測定し、その平均値で求めた。
(4)表皮層、裏面層の厚さ
 JIS-L-1913-B法に準じて測定した。荷重に関しては、表皮層の場合は20kPa、裏面層の場合は0.02kPaの荷重とし、3箇所以上測定し、その平均値で求めた。
(5)表皮層、裏面層の目付
 JIS-L-1913に準じて測定した。
(6)接合層の厚さ
 ダイヤルゲージにて、測定子の径10mm、終圧0.8Nで3箇所以上測定し、その平均値で求めた。
(7)接合材の貯蔵弾性率(G’)
 接合層に用いた材料について、厚さ500μmの試料を準備し、株式会社日立ハイテクサイエンス社製の粘弾性測定装置DMA6100(製品名)を用いて、動的粘弾性を測定し、貯蔵弾性率を求めた。測定条件は、周波数1Hzのせん断ひずみを与えながら、昇温速度5℃/分とし、-80℃から80℃まで温度を変化させ、貯蔵弾性率(G’)を測定し、25℃における値を求めた。
<実施例1>
(表皮層)
表皮層として、3μmの平均繊維径、21cm/cm・secの通気量、20g/mの目付、0.33g/cmの平均見かけ密度及び0.06mmの厚さを有するポリエステル繊維材を準備した(大きさ1000mm×1000mm)。このポリエステル繊維材は、繊維が縦方向に配列している。
(裏面層)
裏面層として、19μmの平均繊維径、165cm/cm・secの通気量、200g/mの目付、0.02g/cmの平均見かけ密度、1.0×10N・sec/mの単位面積流れ抵抗及び10mmの厚さを有するポリエステル繊維フェルトを準備した(大きさ1000mm×1000mm)。
(接合方法)
ブチルゴム系粘着剤を使用したマクセル社製両面粘着テープ「No.5938スーパーブチルテープ」(商品名、基材:ポリエチレンネット、粘着テープ厚さ:0.5mm、片面セパ、粘着剤の貯蔵弾性率:3.5×10Pa)を幅10mmの棒状に裁断した。表皮層を広げその表面に、棒状の粘着テープを、ライン(粘着テープ接合部)/スペース(開口部)/ライン/スペースと交互になるように並行に配置・貼り合せた。なお、その詳細な配置方法については、図2の通りとする。表皮層の左端から、ライン/スペース=10mm/4mmの接合パターンが6本、次いでライン/スペース=10mm/6mmの接合パターンが1本となるようにした接合基本パターンを10回繰り返して接合層を形成した。尚、パターンとは、規則的な配置様式と同意義である。
この接合パターンを本願発明では幅方向設定値:[(ライン幅10mm/スペース幅4mm)×6回+(ライン幅10mm/スペース幅6mm)×1回]×10回=1000mmと表現する。
次いで、表皮層に配置・貼合された粘着テープの離型紙を剥がした後、その上に、裏面層を広げて載せ、常温環境下で圧着して、両層を接合させることにより防音材を得た(1000mm×1000mm)。なお、残響室法吸音率試験は、1000mm×1000mmのサイズで測定を行った。
得られた防音材の総厚さは、10.6mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は表皮層と裏面層が対面している面の面積(1m)を100%とした場合に70%であった。
<実施例2>
 接合方法を下記とした以外は、実施例1と同様にして防音材を得た。
(接合方法)
ブチルゴム系粘着剤を使用したマクセル社製両面粘着テープ「No.5938スーパーブチルテープ」(商品名、基材:ポリエチレンネット、粘着テープ厚さ:0.5mm、片面セパ、粘着剤の貯蔵弾性率:3.5×10Pa)を幅50mmの棒状に裁断した。表皮層を広げその表面に、棒状の粘着テープを、ライン(粘着テープ接合部)/スペース(開口部)/ライン/スペースと交互になるように並行に配置・貼り合せた。なお、その詳細な配置方法については、図3の通りとする。表皮層の左端から、ライン/スペース=50mm/22mmの接合パターンが5本、次いでライン/スペース=50mm/20mmの接合パターンが2本となるようにした接合基本パターンを2回繰り返して接合層を形成した。
この接合パターンを本願発明では幅方向設定値:[(ライン幅50mm/スペース幅22mm)×5回+(ライン幅50mm/スペース幅20mm)×2回]×2回=1000mmと表現する。
得られた防音材の総厚さは、10.6mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は70%であった。
<実施例3>
接合方法を下記とした以外は、実施例1と同様にして防音材を得た。
(接合方法)
ブチルゴム系粘着剤を使用したマクセル社製両面粘着テープ「No.5938スーパーブチルテープ」(商品名、基材:ポリエチレンネット、粘着テープ厚さ:0.5mm、片面セパ、粘着剤の貯蔵弾性率:3.5×10Pa)を幅100mmの棒状に裁断した。表皮層を広げその表面に、棒状の粘着テープを、ライン(粘着テープ接合部)/スペース(開口部)/ライン/スペースと交互になるように並行に配置・貼り合せた。なお、その詳細な配置方法については、図4の通りとする。表皮層の左端から、ライン/スペース=100mm/43mmの接合パターンが6本、次いでライン/スペース=100mm/42mmの接合パターンが1本となるようにした接合基本パターンを1回繰り返して接合層を形成した。
この接合パターンを本願発明では幅方向設定値:[(ライン幅100mm/スペース幅43mm)×6回+(ライン幅100mm/スペース幅42mm)×1回]×1回=1000mmと表現する。
得られた防音材の総厚さは、10.6mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は70%であった。
<実施例4>
接合方法を下記とした以外は、実施例1と同様にして防音材を得た。
(接合方法)
ブチルゴム系粘着剤を使用したマクセル社製両面粘着テープ「No.5938スーパーブチルテープ」(商品名、基材:ポリエチレンネット、粘着テープ厚さ:0.5mm、片面セパ、粘着剤の貯蔵弾性率:3.5×10Pa)を幅10mm、250mmの棒状に裁断した。表皮層を広げその表面に、棒状の粘着テープを、各々エリアごとに、ライン(粘着テープ接合部)/スペース(開口部)/ライン/スペースと交互になるように並行に配置・貼り合せた。なお、その詳細な配置方法については、図5の通りとする。表皮層を幅方向に4等分し、左端から、1/4エリア(1)、1/4エリア(2)、1/4エリア(3)、1/4エリア(4)とした。まず、1/4エリア(1)において、左端から、ライン/スペース=10mm/15mmの接合基本パターンを10回繰り返して接合層を形成した。次いで,1/4エリア(2)において、左端から、ライン/スペース=250mm/0mmの接合基本パターンを1回繰り返して接合層を形成した。次いで、1/4エリア(3)において、左端から、ライン/スペース=10mm/6mmの接合パターンが2本、次いでライン/スペース=10mm/8mmの接合パターンが1本となるようにした接合基本パターンを5回繰り返して接合層を形成した。最後に、1/4エリア(4)において、左端から、ライン/スペース=10mm/2mmの接合パターンが3本、次いでライン/スペース=10mm/4mmの接合パターンが1本となるようにした接合基本パターンを5回繰り返して接合層を形成した。
 この接合パターンを本願発明では幅方向設定値:
1/4エリア(1)(ライン幅10mm/スペース幅15mm)×10回=250mm
1/4エリア(2)(ライン幅250mm/スペース幅0mm)×1回=250mm
1/4エリア(3)[(ライン幅10mm/スペース幅6mm)×2回+(ライン幅10mm/スペース幅8mm)×1回]×5回=250mm
1/4エリア(4)[(ライン幅10mm/スペース幅2mm)×3回+(ライン幅10mm/スペース幅4mm)×1回]×5回=250mm
と表現する。
 得られた防音材の総厚さは、10.6mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は70%であった。
<実施例5>
接合方法を下記とした以外は、実施例1と同様にして防音材を得た。
(接合方法)
 ブチルゴム系粘着剤を使用したマクセル社製両面粘着テープ「No.5938スーパーブチルテープ」(商品名、基材:ポリエチレンネット、粘着テープ厚さ:0.5mm、片面セパ、粘着剤の貯蔵弾性率:3.5×10Pa)を幅10mm、500mmの棒状に裁断した。表皮層を広げその表面に、棒状の粘着テープを、各々エリアごとに、ライン(粘着テープ接合部)/スペース(開口部)/ライン/スペースと交互になるように並行に配置・貼り合せた。なお、その詳細な配置方法については、図6の通りとする。表皮層を幅方向に2等分し、左端から、1/2エリア(1)、1/2エリア(2)とした。まず、1/2エリア(1)において、左端から、ライン/スペース=10mm/15mmの接合基本パターンを20回繰り返して接合層を形成した。次いで,1/2エリア(2)において、左端から、ライン/スペース=500mm/0mmの接合基本パターンを1回繰り返して接合層を形成した。
 この接合パターンを本願発明では幅方向設定値:
1/2エリア(1)(ライン幅10mm/スペース幅15mm)×20回=500mm
1/2エリア(2)(ライン幅500mm/スペース幅0mm)×1回=500mm
と表現する。
 得られた防音材の総厚さは、10.6mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は70%であった。
<実施例6>
接合方法を下記とした以外は、実施例1と同様にして防音材を得た。
(接合方法)
ブチルゴム系粘着剤を使用したマクセル社製両面粘着テープ「No.5938スーパーブチルテープ」(商品名、基材:ポリエチレンネット、粘着テープ厚さ:0.5mm、片面セパ、粘着剤の貯蔵弾性率:3.5×10Pa)を幅10mmの棒状に裁断した。表皮層を広げその表面に、棒状の粘着テープを、ライン(粘着テープ接合部)/スペース(開口部)/ライン/スペースと交互になるように並行に配置・貼り合せた。なお、その詳細な配置方法については、図7の通りとする。表皮層の左端から、ライン/スペース=10mm/10mmの接合基本パターンを50回繰り返して接合層を形成した。
 この接合パターンを本願発明では幅方向設定値:(ライン幅10mm/スペース幅10mm)×50回=1000mmと表現する。
得られた防音材の総厚さは、10.6mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は50%であった。
<実施例7>
接合方法を下記とした以外は、実施例1と同様にして防音材を得た。
(接合方法)
ブチルゴム系粘着剤を使用したマクセル社製両面粘着テープ「No.5938スーパーブチルテープ」(商品名、基材:ポリエチレンネット、粘着テープ厚さ:0.5mm、片面セパ、粘着剤の貯蔵弾性率:3.5×10Pa)を幅50mmの棒状に裁断した。表皮層を広げその表面に、棒状の粘着テープを、ライン(粘着テープ接合部)/スペース(開口部)/ライン/スペースと交互になるように並行に配置・貼り合せた。なお、その詳細な配置方法については、図8の通りとする。表皮層の左端から、ライン/スペース=50mm/50mmの接合パターンを10回繰り返して接合層を形成した。
 この接合パターンを本願発明では幅方向設定値:(ライン幅50mm/スペース幅50mm)×10回=1000mmと表現する。
 得られた防音材の総厚さは、10.6mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は50%であった。
<実施例8>
接合方法を下記とした以外は、実施例1と同様にして防音材を得た。
(接合方法)
ブチルゴム系粘着剤を使用したマクセル社製両面粘着テープ「No.5938スーパーブチルテープ」(商品名、基材:ポリエチレンネット、粘着テープ厚さ:0.5mm、片面セパ、粘着剤の貯蔵弾性率:3.5×10Pa)を幅100mmの棒状に裁断した。表皮層を広げその表面に、棒状の粘着テープを、ライン(粘着テープ接合部)/スペース(開口部)/ライン/スペースと交互になるように並行に配置・貼り合せた。なお、その詳細な配置方法については、図9の通りとする。表皮層の左端から、ライン/スペース=100mm/100mmの接合基本パターンを5回繰り返して接合層を形成した。
 この接合パターンを本願発明では幅方向設定値:(ライン幅100mm/スペース幅100mm)×5回=1000mmと表現する。
 得られた防音材の総厚さは、10.6mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は50%であった。
<実施例9>
接合方法を下記とした以外は、実施例1と同様にして防音材を得た。
(接合方法)
ブチルゴム系粘着剤を使用したマクセル社製両面粘着テープ「No.5938スーパーブチルテープ」(商品名、基材:ポリエチレンネット、粘着テープ厚さ:0.5mm、片面セパ、粘着剤の貯蔵弾性率:3.5×10Pa)を幅10mm、250mmの棒状に裁断した。表皮層を広げその表面に、棒状の粘着テープを、各々エリアごとに、ライン(粘着テープ接合部)/スペース(開口部)/ライン/スペースと交互になるように並行に配置・貼り合せた。なお、その詳細な配置方法については、図10の通りとする。表皮層を幅方向に4等分し、左端から、1/4エリア(1)、1/4エリア(2)、1/4エリア(3)、1/4エリア(4)とした。まず、1/4エリア(1)において、左端から、ライン/スペース=0mm/250mmの接合基本パターンを1回繰り返して接合層を形成した。次いで,1/4エリア(2)において、左端から、ライン/スペース=250mm/0mmの接合基本パターンを1回繰り返して接合層を形成した。次いで、1/4エリア(3)において、左端から、ライン/スペース=10mm/15mmの接合基本パターンを10回繰り返して接合層を形成した。最後に、1/4エリア(4)において、左端から、ライン/スペース=10mm/6mmの接合パターンが2本、次いでライン/スペース=10mm/8mmの接合パターンが1本となるようにした接合基本パターンを5回繰り返して接合層を形成した。
この接合パターンを本願発明では幅方向設定値:
1/4エリア(1)(ライン幅0mm/スペース幅250mm)×1回=250mm
1/4エリア(2)(ライン幅250mm/スペース幅0mm)×1回=250mm
1/4エリア(3)(ライン幅10mm/スペース幅15mm)×10回=250mm
1/4エリア(4)[(ライン幅10mm/スペース幅6mm)×2回+(ライン幅10mm/スペース幅8mm)×1回]×5回=250mm
と表現する。
得られた防音材の総厚さは、10.6mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は50%であった。
<実施例10>
接合方法を下記とした以外は、実施例1と同様にして防音材を得た。
(接合方法)
ブチルゴム系粘着剤を使用したマクセル社製両面粘着テープ「No.5938スーパーブチルテープ」(商品名、基材:ポリエチレンネット、粘着テープ厚さ:0.5mm、片面セパ、粘着剤の貯蔵弾性率:3.5×10Pa)を幅500mmの棒状に裁断した。表皮層を広げその表面に、棒状の粘着テープを、各々エリアごとに、ライン(粘着テープ接合部)/スペース(開口部)/ライン/スペースと交互になるように並行に配置・貼り合せた。なお、その詳細な配置方法については、図11の通りとする。表皮層を幅方向に2等分し、左端から、1/2エリア(1)、1/2エリア(2)とした。まず、1/2エリア(1)において、左端から、ライン/スペース=0mm/500mmの接合基本パターンを1回繰り返して接合層を形成した。次いで,1/2エリア(2)において、左端から、ライン/スペース=500mm/0mmの接合基本パターンを1回繰り返して接合層を形成した。
 この接合パターンを本願発明では幅方向設定値:
1/2エリア(1)(ライン幅0mm/スペース幅500mm)×1回=500mm
1/2エリア(2)(ライン幅500mm/スペース幅0mm)×1回=500mm
と表現する。
得られた防音材の総厚さは、10.6mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は50%であった。
<実施例11>
接合方法を下記とした以外は、実施例1と同様にして防音材を得た。
(接合方法)
ブチルゴム系粘着剤を使用したマクセル社製両面粘着テープ「No.5938スーパーブチルテープ」(商品名、基材:ポリエチレンネット、粘着テープ厚さ:0.5mm、片面セパ、粘着剤の貯蔵弾性率:3.5×10Pa)を幅10mmの棒状に裁断した。表皮層を広げその表面に、棒状の粘着テープを、ライン(粘着テープ接合部)/スペース(開口部)/ライン/スペースと交互になるように並行に配置・貼り合せた。なお、その詳細な配置方法については、図12の通りとする。表皮層の左端から、ライン/スペース=10mm/1mmの接合パターンが8本、次いでライン/スペース=10mm/2mmの接合パターンが1本となるようにした接合基本パターンを10回繰り返して接合層を形成した。
この接合パターンを本願発明では幅方向設定値:[(ライン幅10mm/スペース幅1mm)×8回+(ライン幅10mm/スペース幅2mm)×1回]×10回=1000mmと表現する。
得られた防音材の総厚さは、10.6mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は90%であった。
<実施例12>
接合方法を下記とした以外は、実施例1と同様にして防音材を得た。
(接合方法)
ブチルゴム系粘着剤を使用したマクセル社製両面粘着テープ「No.5938スーパーブチルテープ」(商品名、基材:ポリエチレンネット、粘着テープ厚さ:0.5mm、片面セパ、粘着剤の貯蔵弾性率:3.5×10Pa)を幅50mmの棒状に裁断した。表皮層を広げその表面に、棒状の粘着テープを、ライン(粘着テープ接合部)/スペース(開口部)/ライン/スペースと交互になるように並行に配置・貼り合せた。なお、その詳細な配置方法については、図13の通りとする。表皮層の左端から、ライン/スペース=50mm/6mmの接合パターンが5本、次いでライン/スペース=50mm/5mmの接合パターンが4本となるようにした接合基本パターンを2回繰り返して接合層を形成した。
この接合パターンを本願発明では幅方向設定値:[(ライン幅50mm/スペース幅6mm)×5回+(ライン幅50mm/スペース幅5mm)×4回]×2回=1000mmと表現する。
得られた防音材の総厚さは、10.6mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は90%であった。
<実施例13>
接合方法を下記とした以外は、実施例1と同様にして防音材を得た。
(接合方法)
ブチルゴム系粘着剤を使用したマクセル社製両面粘着テープ「No.5938スーパーブチルテープ」(商品名、基材:ポリエチレンネット、粘着テープ厚さ:0.5mm、片面セパ、粘着剤の貯蔵弾性率:3.5×10Pa)を幅100mmの棒状に裁断した。表皮層を広げその表面に、棒状の粘着テープを、ライン(粘着テープ接合部)/スペース(開口部)/ライン/スペースと交互になるように並行に配置・貼り合せた。なお、その詳細な配置方法については、図14の通りとする。表皮層の左端から、ライン/スペース=100mm/11mmの接合パターンが8本、次いでライン/スペース=100mm/12mmの接合パターンが1本となるようにした接合基本パターンを1回繰り返して接合層を形成した。
この接合パターンを本願発明では幅方向設定値:[(ライン幅100mm/スペース幅11mm)×8回+(ライン幅100mm/スペース幅12mm)×1回]×1回=1000mmと表現する。
得られた防音材の総厚さは、10.6mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は90%であった。
<実施例14>
接合方法を下記とした以外は、実施例1と同様にして防音材を得た。
(接合方法)
ブチルゴム系粘着剤を使用したマクセル社製両面粘着テープ「No.5938スーパーブチルテープ」(商品名、基材:ポリエチレンネット、粘着テープ厚さ:0.5mm、片面セパ、粘着剤の貯蔵弾性率:3.5×10Pa)を幅10mm、250mmの棒状に裁断した。表皮層を広げその表面に、棒状の粘着テープを、各々エリアごとに、ライン(粘着テープ接合部)/スペース(開口部)/ライン/スペースと交互になるように並行に配置・貼り合せた。なお、その詳細な配置方法については、図15の通りとする。表皮層を幅方向に4等分し、左端から、1/4エリア(1)、1/4エリア(2)、1/4エリア(3)、1/4エリア(4)とした。まず、1/4エリア(1)において、左端から、ライン/スペース=10mm/2mmの接合パターンを3回繰り返して、次いでライン/スペース=10mm/4mmの接合パターンが1本となるようにした接合基本パターンを5回繰り返して接合層を形成した。次いで,1/4エリア(2)において、左端から、ライン/スペース=250mm/0mmの接合基本パターンを1回繰り返して接合層を形成した。次いで、1/4エリア(3)において、左端から、ライン/スペース=10mm/1.8mmの接合パターンを15回繰り返して、次いでライン/スペース=7.5mm/1.5mmの接合パターンを3回繰り返して、次いでライン/スペース=10mm/1.5mmの接合パターンを4回繰り返した接合基本パターンを1回繰り返して接合層を形成した。最後に、1/4エリア(4)において、左端から、ライン/スペース=10mm/0.5mmの接合パターンが10本、次いでライン/スペース=9.5mm/0.6mmの接合パターンが5本、次いでライン/スペース=10mm/0.5mmの接合パターンが9本となるようにした接合基本パターンを1回繰り返して接合層を形成した。
この接合パターンを本願発明では幅方向設定値:
1/4エリア(1)[(ライン幅10mm/スペース幅2mm)×3回+(ライン幅10mm/スペース幅4mm)]×5回=250mm
1/4エリア(2)(ライン幅250mm/スペース幅0mm)×1回=250mm
1/4エリア(3)[(ライン幅10mm/スペース幅1.8mm)×15回+(ライン幅7.5mm/スペース幅1.5mm)×3回+(ライン幅10mm/スペース幅1.5mm)×4回]×1回=250mm
1/4エリア(4)[(ライン幅10mm/スペース幅0.5mm)×10回+(ライン幅9.5mm/スペース幅0.6mm)×5回+(ライン幅10mm/スペース幅0.5mm)×9回]×1回=250mm
と表現する。
得られた防音材の総厚さは、10.6mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は90%であった。
<実施例15>
接合方法を下記とした以外は、実施例1と同様にして防音材を得た。
(接合方法)
ブチルゴム系粘着剤を使用したマクセル社製両面粘着テープ「No.5938スーパーブチルテープ」(商品名、基材:ポリエチレンネット、粘着テープ厚さ:0.5mm、片面セパ、粘着剤の貯蔵弾性率:3.5×10Pa)を幅10mm、500mmの棒状に裁断した。表皮層を広げその表面に、棒状の粘着テープを、各々エリアごとに、ライン(粘着テープ接合部)/スペース(開口部)/ライン/スペースと交互になるように並行に配置・貼り合せた。なお、その詳細な配置方法については、図16の通りとする。表皮層を幅方向に2等分し、左端から、1/2エリア(1)、1/2エリア(2)とした。まず、1/2エリア(1)において、左端から、ライン/スペース=10mm/2.5mmの接合基本パターンを40回繰り返して接合層を形成した。次いで,1/2エリア(2)において、左端から、ライン/スペース=500mm/0mmの接合基本パターンを1回繰り返して接合層を形成した。
 この接合パターンを本願発明では幅方向設定値:
1/2エリア(1)(ライン幅10mm/スペース幅2.5mm)×40回=500mm、
1/2エリア(2)(ライン幅500mm/スペース幅0mm)×1回=500mm
と表現する。
得られた防音材の総厚さは、10.6mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は90%であった。
<実施例16>
表皮層を下記とした以外は、実施例1と同様にして防音材を得た。
(表皮層)
表皮層として、17μmの平均繊維径、197cm/cm・secの通気量、85g/mの目付、0.14g/cmの平均見かけ密度及び0.6mmの厚さを有するポリエステル繊維材を準備した(大きさ1000mm×1000mm)。このポリエステル繊維材は、繊維がランダムである。
得られた防音材の総厚さは、11.1mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は70%であった。
<実施例17>
表皮層を下記とした以外は、実施例2と同様にして防音材を得た。
(表皮層)
表皮層として、17μmの平均繊維径、197cm/cm・secの通気量、85g/mの目付、0.14g/cmの平均見かけ密度及び0.6mmの厚さを有するポリエステル繊維材を準備した(大きさ1000mm×1000mm)。このポリエステル繊維材は、繊維がランダムである。
得られた防音材の総厚さは、11.1mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は70%であった。
<実施例18>
表皮層を下記とした以外は、実施例4と同様にして防音材を得た。
(表皮層)
表皮層として、17μmの平均繊維径、197cm/cm・secの通気量、85g/mの目付、0.14g/cmの平均見かけ密度及び0.6mmの厚さを有するポリエステル繊維材を準備した(大きさ1000mm×1000mm)。このポリエステル繊維材は、繊維がランダムである。
得られた防音材の総厚さは、11.1mmであった。また、1000mm×1000mmの残響室法吸音率の測定試料において、粘着テープにより形成された接合層の総接合面積率は70%であった。
 接合層の接合パターンを表1~4に示す。
 得られた防音材の1/3オクターブバンド中心周波数ごとの吸音率を表5~8に示す。実施例1~18の吸音率の値は残響室法吸音率試験を実施した結果に基づく実測値である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 図17は、実施例1~3で得られた防音材の吸音率を1/3オクターブバンド中心周波数ごとにプロットしたグラフである。図17から明らかなように、接合層のライン幅が10mm→50mm→100mmと増大するに従って、言い換えれば、接合層の面積が100cm→500cm→1000cmと増大するに従って、防音材の吸音ピーク周波数は、より低周波数側へシフトしていることが分かる。また、この場合、同様に接合層のライン幅が増大するに従って、吸音ピーク周波数より高周波数側の帯域で吸音率が低減し、吸音ピーク周波数より低周波数側の帯域で、吸音率が増大していることが分かる。また、接合層のライン幅が増大するに従って、1/3オクターブバンド中心周波数400~5000Hzの平均吸音率が低下する傾向が認められた。
 図18は、実施例1、4及び5で得られた防音材の吸音率を1/3オクターブバンド中心周波数ごとにプロットしたグラフである。実施例4の防音材の接合層の配置様式は、4等分されたエリア(領域)の内、3つのエリアは複数の接合層からなるエリアであり、一つのエリアが一つの接合層からなる。実施例5の防音材の接合層の配置様式は、2等分されたエリア(領域)の内、一つのエリアは複数の接合層からなるエリアであり、一つのエリアが一つの接合層からなる。実施例4と実施例5の接合層の配置様式を比較した場合、接合層の面積がより大きく、開口部の配置がよりアンバランスなのは実施例5である。防音材の接合層の配置様式において、接合層の個々の面積が小さく、開口部が防音材全体に渡り比較的均一に形成・配置されている実施例1と比較して、実施例4は、1250Hz以上の周波数帯域で吸音率が低減し、1250Hz未満の周波数帯域で吸音率が増大していることが分かる。又、実施例5は、1000Hz以上の周波数帯域で吸音率が低減し、1000Hz未満の周波数帯域で吸音率が増大していることが分かる。その結果、実施例4と実施例5は、実施例1と比較して、防音材の低~高周波数帯域における吸音率がより平準化した。
 図19は、実施例6~8で得られた防音材の吸音率を1/3オクターブバンド中心周波数ごとにプロットしたグラフである。図19から明らかなように、接合層のライン幅が10mm→50mm→100mmと増大するに従って、言い換えれば、接合層の面積が100cm→500cm→1000cmと増大するに従って、防音材の吸音ピーク周波数は、より低周波数側へシフトしていることが分かる。また、この場合、同様に接合層のライン幅が増大するに従って、吸音ピーク周波数より高周波数側の帯域で吸音率が低減し、吸音ピーク周波数より低周波数側の帯域で、吸音率が増大していることが分かる。また、接合層のライン幅が増大するに従って、1/3オクターブバンド中心周波数400~5000Hzの平均吸音率が低下する傾向が認められた。
 図20は、実施例6、9及び10で得られた防音材の吸音率を1/3オクターブバンド中心周波数ごとにプロットしたグラフである。実施例9の防音材の接合層の配置様式は、4等分されたエリア(領域)の内、2つのエリアは複数の接合層からなるエリアであり、一つのエリアが一つの接合層からなり、一つのエリアは接合層がない。実施例10の防音材の接合層の配置様式は、2等分されたエリア(領域)の内、一つのエリアは一つの接合層からなるエリアであり、一つのエリアは接合層がない。実施例9と実施例10の接合層の配置様式を比較した場合、接合層の面積がより大きく、開口部の配置がよりアンバランスなのは実施例10である。防音材の接合層の配置様式において、接合層の個々の面積が小さく、開口部が防音材全体に渡り比較的均一に形成・配置されている実施例6と比較して、実施例9は、1600Hz以上の周波数帯域で吸音率が低減し、1250Hz以下の周波数帯域で吸音率が増大していることが分かる。又、実施例10は、1250Hz以上の周波数帯域で吸音率が低減し、1000Hz以下の周波数帯域で吸音率が増大していることが分かる。その結果、実施例9と実施例10は、実施例6と比較して、防音材の低~高周波数帯域における吸音率がより平準化した。
 図21は、実施例11~13で得られた防音材の吸音率を1/3オクターブバンド中心周波数ごとにプロットしたグラフである。図21から明らかなように、接合層のライン幅が10mm→50mm→100mmと増大するに従って、言い換えれば、接合層の面積が100cm→500cm→1000cmと増大するに従って、防音材の吸音ピーク周波数は、より低周波数側へシフトしていることが分かる。また、この場合、同様に接合層のライン幅が増大するに従って、吸音ピーク周波数より高周波数側の帯域で吸音率が低減し、吸音ピーク周波数より低周波数側の帯域で、吸音率が増大していることが分かる。また、接合層のライン幅が増大するに従って、1/3オクターブバンド中心周波数400~5000Hzの平均吸音率が低下する傾向が認められた。
 図22は、実施例11、14及び15で得られた防音材の吸音率を1/3オクターブバンド中心周波数ごとにプロットしたグラフである。実施例14の防音材の接合層の配置様式は、4等分されたエリア(領域)の内、3つのエリアは複数の接合層からなるエリアであり、一つのエリアが一つの接合層からなる。実施例15の防音材の接合層の配置様式は、2等分されたエリア(領域)の内、一つのエリアは複数の接合層からなるエリアであり、一つのエリアは一つの接合層からなる。実施例14と実施例15の接合層の配置様式を比較した場合、接合層の面積がより大きく、開口部の配置がよりアンバランスなのは実施例15である。防音材の接合層の配置様式において、接合層の個々の面積が小さく、開口部が防音材全体に渡り比較的均一に形成・配置されている実施例11と比較して、実施例14は、1000Hz以上の周波数帯域で吸音率が低減し、1000Hz未満の周波数帯域で吸音率が増大していることが分かる。又、実施例15は、1000Hz以上の周波数帯域で吸音率が低減し、800Hz以下の周波数帯域で吸音率が増大していることが分かる。その結果、実施例14と実施例15は、実施例11と比較して、防音材の低~高周波数帯域における吸音率がより平準化した。
 図23は、実施例16、17で得られた防音材の吸音率を1/3オクターブバンド中心周波数ごとにプロットしたグラフである。実施例17の防音材では、接合層のライン幅が50mm(接合層の面積500cm)であり、実施例16の10mm(接合層の面積100cm)と比較して増大している。その結果、吸音ピーク周波数が実施例16よりも低周波数側へシフトした。また、この場合、同様に接合層のライン幅が増大するに従って、吸音ピーク周波数より高周波数側の帯域で吸音率が低下し、吸音ピーク周波数より低周波数側の帯域で、吸音率が増大していることが分かる。また、接合層のライン幅が増大するに従って、1/3オクターブバンド中心周波数400~5000Hzの平均吸音率が低下する傾向が認められた。なお、表皮材の平均繊維径が3μmである実施例1、2と比較して、表皮材の平均繊維径が17μmである実施例16、17は、接合層の配置様式が同じであるが、吸音率は全体的に低いことが分かる。
 図24は、実施例16、18で得られた防音材の吸音率を1/3オクターブバンド中心周波数ごとにプロットしたグラフである。実施例18の防音材の接合層の配置様式は、4等分されたエリア(領域)の内、3つのエリアは複数の接合層からなるエリアであり、一つのエリアが一つの接合層からなる。実施例16と実施例18の接合層の配置様式を比較した場合、接合層の面積がより大きく、開口部の配置がよりアンバランスなのは実施例18である。防音材の接合層の配置様式において、接合層の個々の面積が小さく、開口部が防音材全体に渡り比較的均一に形成・配置されている実施例16と比較して、実施例18は、1600Hz以上の周波数帯域で吸音率が低減し、1250Hz以下の周波数帯域で吸音率が増大していることが分かる。その結果、実施例18は、実施例16と比較して、防音材の低~高周波数帯域における吸音率がより平準化した。なお、表皮材の平均繊維径が3μmである実施例1、4と比較して、表皮材の平均繊維径が17μmである実施例16、18は、接合層の配置様式が同じであるが、吸音率は全体的に低いことが分かる。
 10…防音材
 11…表皮層
 12…接合層
 13…裏面層
 14…通気性の開口部

Claims (15)

  1.  繊維材からなる表皮層と、表皮層に積層された、空隙が連通している多孔質材からなる裏面層と、該表皮層と裏面層との間に積層された、接合材からなる一つ以上の接合層とを備え、前記表皮層と前記裏面層との接触面全体に対して100%未満の総接合面積率を有する防音材の吸音特性を制御する方法であって、
     前記接合層の個々の面積を変化させることにより防音材の吸音特性を変化させる、防音材の吸音特性を制御する方法。
  2.  前記総接合面積率が50~95%の範囲から選択される、請求項1に記載の防音材の吸音特性を制御する方法。
  3.  前記接合材は塗工された粘着剤又は両面粘着テープである、請求項1又は2に記載の防音材の吸音特性を制御する方法。
  4.  前記接合層は前記表皮層と前記裏面層との接触面に複数存在する、請求項1~3のいずれか一項に記載の防音材の吸音特性を制御する方法。
  5.  前記複数の接合層は規則的な配置様式を有する、請求項1~4のいずれか一項に記載の防音材の吸音特性を制御する方法。
  6.  前記接合層は棒状の形状を有する、請求項1~5のいずれか一項に記載の防音材の吸音特性を制御する方法。
  7.  前記接合層の個々の面積を増大させることにより防音材の吸音ピークの周波数を低周波数側へシフトさせるか、又は前記接合層の個々の面積を低減させることにより防音材の吸音ピークの周波数を高周波数側へシフトさせる、請求項1~6のいずれか一項に記載の防音材の吸音特性を制御する方法。
  8.  前記接合層の個々の面積を増大させることにより防音材の吸音ピーク周波数より高周波数側の帯域の吸音率は低減させ、吸音ピーク周波数より低周波数側の帯域の吸音率は増大させるか、又は前記接合層の個々の面積を低減させることにより防音材の吸音ピーク周波数より高周波数側の帯域の吸音率は増大させ、吸音ピーク周波数より低周波数側の帯域の吸音率は低減させる、請求項1~6のいずれか一項に記載の防音材の吸音特性を制御する方法。
  9.  繊維材からなる表皮層と、表皮層に積層された、空隙が連通している多孔質材からなる裏面層と、該表皮層と裏面層との間に積層された、接合材からなる接合層とを備え、前記表皮層と前記裏面層との接触面全体に対して100%未満の総接合面積率を有する防音材の吸音特性を制御する方法であって、
     前記表皮層と前記裏面層との接触面の少なくとも一部に、所定の配置様式を有する複数の接合層からなる領域を1領域以上配置することにより防音材の吸音特性を変化させる、防音材の吸音特性を制御する方法。
  10.  前記表皮層と前記裏面層との接触面に、複数の接合層からなる領域が配置されていない領域が存在する場合に、その領域の少なくとも一部に、該接合層よりも大きな面積を有する一つの接合層からなる領域を配置する、請求項9に記載の防音材の吸音特性を制御する方法。
  11.  防音材の低~高周波数帯域における吸音率を平準化する、請求項9又は10に記載の防音材の吸音特性を制御する方法。
  12.  前記表皮層の繊維材は、5~300g/mの目付、1~17μmの平均繊維径、5~200cm/cm・secの通気量を有する請求項1~11のいずれか一項に記載の防音材の吸音特性を制御する方法。
  13.  前記裏面層は、0.5×10~3.5×10N・sec/mの単位面積流れ抵抗を有する請求項1~12のいずれか一項に記載の防音材の吸音特性を制御する方法。
  14.  前記裏面層は100~300g/mの目付を有する繊維材からなる請求項1~13のいずれか一項に記載の防音材の吸音特性を制御する方法。
  15.  前記塗工された粘着剤又は両面粘着テープの粘着剤は、1.0×10~1.0×10Paの25℃におけるせん断貯蔵弾性率を有する請求項3~14のいずれか一項に記載の防音材の吸音特性を制御する方法。
PCT/JP2019/047055 2018-12-04 2019-12-02 防音材の吸音特性の制御方法 WO2020116399A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020559186A JPWO2020116399A1 (ja) 2018-12-04 2019-12-02 防音材の吸音特性の制御方法
US17/299,191 US20220076653A1 (en) 2018-12-04 2019-12-02 Control method of sound absorption characteristics of soundproof material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018227599 2018-12-04
JP2018-227599 2018-12-04

Publications (1)

Publication Number Publication Date
WO2020116399A1 true WO2020116399A1 (ja) 2020-06-11

Family

ID=70973805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047055 WO2020116399A1 (ja) 2018-12-04 2019-12-02 防音材の吸音特性の制御方法

Country Status (3)

Country Link
US (1) US20220076653A1 (ja)
JP (1) JPWO2020116399A1 (ja)
WO (1) WO2020116399A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468255B2 (ja) 2020-08-31 2024-04-16 東レ株式会社 吸音材用不織布、吸音材、および吸音材用不織布の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372033U (ja) * 1986-10-30 1988-05-14
JPH1088689A (ja) * 1996-09-12 1998-04-07 Nisshin Steel Co Ltd 吸音フィルムを部分的に貼り合わせた吸音構造体
JP2004294619A (ja) * 2003-03-26 2004-10-21 Takehiro:Kk 超軽量な防音材
JP2007127908A (ja) * 2005-11-04 2007-05-24 Achilles Corp 吸音フィルム
JP2007223273A (ja) * 2006-02-27 2007-09-06 Toray Ind Inc 吸音材
WO2011013427A1 (ja) * 2009-07-31 2011-02-03 名古屋油化株式会社 接着性吸音シート、吸音表皮材、吸音材料および吸音材料成形物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6786793B2 (ja) * 2015-12-07 2020-11-18 Dic株式会社 粘着テープ及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372033U (ja) * 1986-10-30 1988-05-14
JPH1088689A (ja) * 1996-09-12 1998-04-07 Nisshin Steel Co Ltd 吸音フィルムを部分的に貼り合わせた吸音構造体
JP2004294619A (ja) * 2003-03-26 2004-10-21 Takehiro:Kk 超軽量な防音材
JP2007127908A (ja) * 2005-11-04 2007-05-24 Achilles Corp 吸音フィルム
JP2007223273A (ja) * 2006-02-27 2007-09-06 Toray Ind Inc 吸音材
WO2011013427A1 (ja) * 2009-07-31 2011-02-03 名古屋油化株式会社 接着性吸音シート、吸音表皮材、吸音材料および吸音材料成形物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468255B2 (ja) 2020-08-31 2024-04-16 東レ株式会社 吸音材用不織布、吸音材、および吸音材用不織布の製造方法

Also Published As

Publication number Publication date
JPWO2020116399A1 (ja) 2021-10-21
US20220076653A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
JP5634600B2 (ja) 音響的に調整可能な吸音物品およびそれを製造する方法
JP5586851B2 (ja) 多孔質膜
US20110284319A1 (en) Acoustic Panels, Apparatus and Assemblies with Airflow-Resistive Layers Attached to Sound Incident Surfaces
JP2008537798A (ja) 積層吸音不織布
JP2023093414A (ja) 積層パネル
WO2006013810A1 (ja) 吸音断熱材
JP7326649B2 (ja) 自動車用遮音材
JP2005227747A (ja) 超軽量な防音材
JP2006028708A (ja) 吸音性積層体およびその製造法
WO2020116399A1 (ja) 防音材の吸音特性の制御方法
WO2004091350A1 (ja) 吸音カーペットの製造方法及び製造装置
JP2021043388A (ja) 吸遮音材
EP1574326A1 (en) Laminated surface skin material and laminate for interior material
JP3968648B2 (ja) 吸音材
JP7450538B2 (ja) 防音材
JP5898934B2 (ja) 防音床材
JP7186045B2 (ja) 防音材
KR20090106211A (ko) 초경량 흡음재 및 그 제조방법
JP2001316961A (ja) 吸音構造体
JP7160667B2 (ja) 防音材
US20220165243A1 (en) Laminated sound absorbing material
US20220410525A1 (en) Layered sound-absorbing material
JP2005208494A (ja) 超軽量な防音材
JP2019043014A (ja) 複合吸音材
JP2004209975A (ja) 積層表皮材およびそれを用いた内装材用積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893394

Country of ref document: EP

Kind code of ref document: A1