WO2020115868A1 - セラミックス焼結体及び半導体装置用基板 - Google Patents

セラミックス焼結体及び半導体装置用基板 Download PDF

Info

Publication number
WO2020115868A1
WO2020115868A1 PCT/JP2018/044942 JP2018044942W WO2020115868A1 WO 2020115868 A1 WO2020115868 A1 WO 2020115868A1 JP 2018044942 W JP2018044942 W JP 2018044942W WO 2020115868 A1 WO2020115868 A1 WO 2020115868A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
content
less
sintered body
terms
Prior art date
Application number
PCT/JP2018/044942
Other languages
English (en)
French (fr)
Inventor
勇治 梅田
大上 純史
Original Assignee
日本碍子株式会社
Ngkエレクトロデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社, Ngkエレクトロデバイス株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2018/044942 priority Critical patent/WO2020115868A1/ja
Priority to JP2020558756A priority patent/JP7062087B2/ja
Priority to CN201880098397.9A priority patent/CN112789256B/zh
Priority to EP18942212.4A priority patent/EP3854766A4/en
Publication of WO2020115868A1 publication Critical patent/WO2020115868A1/ja
Priority to US17/317,986 priority patent/US11897817B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/54Oxidising the surface before joining
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates

Definitions

  • the present invention relates to a ceramic sintered body and a semiconductor device substrate.
  • a DBOC substrate Direct Bonding of Copper Substrate
  • DBOA substrate Direct having an aluminum plate on the surface of the ceramic sintered body
  • Patent Document 1 discloses a ceramic sintered body containing alumina, partially stabilized zirconia, and magnesia.
  • the partially stabilized zirconia content is 1 to 30 wt% and the magnesia content is 0.05 to 0.50 wt%.
  • the molar fraction is 0.015 to 0.035, and 80 to 100% of the zirconia crystals contained in the ceramic sintered body is a tetragonal phase. According to the ceramics sintered body described in Patent Document 1, it is possible to improve mechanical strength and to generate cracks and voids (partial peeling or rising) at the bonding interface between the ceramics sintered body and the copper plate or the aluminum plate. It is said that it can be suppressed.
  • Patent Document 2 discloses a ceramic sintered body containing alumina, zirconia, and yttria.
  • the content of zirconia is 2 to 15% by weight, and the average particle diameter of alumina is 2 to 8 ⁇ m. It is said that the ceramic sintered body described in Patent Document 2 can improve the thermal conductivity.
  • Patent Document 3 discloses a ceramic substrate containing alumina, a stabilizing component, hafnia and zirconia.
  • the weight ratio of hafnia and zirconia to alumina is 7 to 11 and the average particle diameter of alumina is 1.0 to 1.5 ⁇ m, and the average particle diameter of zirconia is 0. 0.3 to 0.5 ⁇ m. It is said that the ceramic sintered body described in Patent Document 3 can improve the thermal conductivity.
  • the ceramic sintered body described in Patent Document 2 does not contain Mg and the ceramic substrate described in Patent Document 3 does not contain Na or K, there is a limit to improvement of mechanical strength.
  • MgAl 2 O 4 (spinel) crystals are not generated in the ceramic sintered body described in Patent Document 2 and the ceramic substrate described in Patent Document 3, when a copper plate or an aluminum plate is bonded to the ceramic sintered body.
  • the wettability with the Cu—O eutectic liquid phase generated at the bonding interface is reduced and voids are easily generated.
  • the present invention has an object to provide a ceramics sintered body and a semiconductor device substrate capable of suppressing cracks and voids.
  • a copper plate or an aluminum plate is joined to the ceramic sintered body according to the present invention.
  • the Zr content is 17.5% by mass or more and 23.5% by mass or less in terms of ZrO 2
  • the Hf content is 0.3% in terms of HfO 2.
  • the content of Al is 7 mass% or more and 0.5 mass% or less
  • the Al content is 74.3 mass% or more and 80.9 mass% or less in terms of Al 2 O 3
  • the Y content is Y 2 O 3
  • the conversion is 0.8% by mass or more and 1.9% by mass or less
  • the content of Mg is 0.1% by mass or more and 0.8% by mass or less in terms of MgO
  • the content of Si is SiO.
  • the Ca content is 0.03% by mass or more and 0.35% by mass or less in terms of CaO, and the total content of Na and K
  • the amount is 0.01% by mass or more and 0.10% by mass or less
  • the content of the balance is an oxide.
  • the content is 0.05 mass% or less, the content of Mg converted to MgO, the content of Si converted to SiO 2 , the content of Ca converted to CaO, the content of Na converted to Na 2 O, and the K of K.
  • the sum of the content of 2 O and the content of the balance is 0.3% by mass or more and 2.0% by mass or less.
  • the present invention it is possible to provide a ceramic sintered body and a semiconductor device substrate capable of suppressing cracks and voids.
  • FIG. 1 is a sectional view of a semiconductor device 1 according to the embodiment.
  • the semiconductor device 1 is an automobile, air conditioner, industrial robot, commercial elevator, household microwave oven, IH electric rice cooker, power generation (wind power generation, solar power generation, fuel cell, etc.), electric railway, UPS (uninterruptible power supply). It is used as a power module in various electronic devices such as.
  • the semiconductor device 1 includes a semiconductor device substrate 2, a first bonding material 5, a second bonding material 5 ′, a semiconductor chip 6, a bonding wire 7 and a heat sink 8.
  • the semiconductor device substrate 2 is a so-called DBOC substrate (Direct Bonding of Copper Substrate).
  • the semiconductor device substrate 2 includes a ceramics sintered body 3, a first copper plate 4 and a second copper plate 4'.
  • the ceramic sintered body 3 is an insulator for the semiconductor device substrate 2.
  • the ceramic sintered body 3 is formed in a flat plate shape.
  • the ceramic sintered body 3 is a substrate of the semiconductor device substrate 2. The structure of the ceramic sintered body 3 will be described later.
  • the first copper plate 4 is bonded to the surface of the ceramic sintered body 3.
  • a transmission circuit is formed on the first copper plate 4.
  • the second copper plate 4 ′ is joined to the back surface of the ceramic sintered body 3.
  • the second copper plate 4' is formed in a flat plate shape.
  • the semiconductor device substrate 2 may be a so-called DBOA substrate (Direct Bonding of Aluminum Substrate) using first and second aluminum plates instead of the first and second copper plates 4 and 4'.
  • DBOA substrate Direct Bonding of Aluminum Substrate
  • the thermal stress generated inside can be further relaxed.
  • the method for producing the semiconductor device substrate 2 is not particularly limited, but it can be produced, for example, as follows. First, a laminated body in which the first and second copper plates 4 and 4'are arranged on the front and back surfaces of the ceramic sintered body 3 is formed. Next, the laminated body is heated under a nitrogen atmosphere condition of 1070° C. to 1075° C. for about 10 minutes. As a result, a Cu—O eutectic liquid phase is generated at the interface where the ceramics sintered body 3 and the first and second copper plates 4 and 4′ are bonded (hereinafter collectively referred to as “bonding interface”), and the ceramics firing is performed. The front and back surfaces of the united body 3 get wet. Next, the Cu—O eutectic liquid phase is solidified by cooling the laminated body, and the first and second copper plates 4 and 4 ′ are joined to the ceramic sintered body 3.
  • the first copper plate 4 on which the electric transmission circuit is formed is bonded to the surface of the ceramic sintered body 3, but the electric transmission circuit may be formed by a subtractive method or an additive method. ..
  • the first bonding material 5 is arranged between the first copper plate 4 and the semiconductor chip 6.
  • the semiconductor chip 6 is bonded to the first copper plate 4 via the first bonding material 5.
  • the bonding wire 7 connects the semiconductor chip 6 and the first copper plate 4.
  • the second bonding material 5 ′ is arranged between the second copper plate 4 ′ and the heat sink 8.
  • the heat sink 8 is bonded to the second copper plate 4'via the second bonding material 5'.
  • the heat sink 8 can be made of, for example, copper.
  • the ceramic sintered body 3 includes Zr (zirconium), Hf (hafnium), Al (aluminum), Y (yttrium), Mg (magnesium), Si (silicon), Ca (calcium), and Na. At least one of (sodium) and K (potassium), and the rest other than these are included.
  • the content of the constituent elements of the ceramic sintered body 3 is as follows.
  • ⁇ Zr in terms of ZrO 2, 17.5 mass% or more 23.5% by mass ⁇ Hf: at HfO 2 terms, or 0.3 wt% 0.5 wt% or less ⁇ Al: terms of Al 2 O 3, 74.3 wt% or more 80.9% by mass ⁇ Y: Y 2 O 3 in terms of more than 0.8 mass% 1.9 mass% or less ⁇ Mg: in terms of MgO, 0.1 wt% 0.8 wt% or less ⁇ Si: in terms of SiO 2, 0.1 wt% to 1.5 wt% or less ⁇ Ca: calculated as CaO, more than 0.03 wt% 0.35 wt% or less ⁇ Na and K: content of Na When the amount is converted to Na 2 O and the K content is converted to K 2 O, the total content is 0.01 mass% or more and 0.10 mass% or less.
  • the balance 0.05 mass in terms of oxide. % Or less-Additive: Mg in MgO conversion content, Si in SiO 2 conversion content, Ca in CaO conversion content, Na in Na 2 O conversion content, K in K 2 O conversion content , And the total content of the balance are 0.3 mass% or more and 2.0 mass% or less
  • the wettability with the Cu—O eutectic liquid phase at the time of copper plate bonding can be improved.
  • the Zr content By setting the Zr content to 17.5 mass% or more in terms of ZrO 2 , it is possible to prevent the coefficient of linear thermal expansion of the ceramic sintered body 3 from becoming too small, and the ceramic sintered body 3 and the first and second It is considered that the difference in the coefficient of linear thermal expansion from the copper plates 4 and 4'can be reduced. As a result, it is considered that the thermal stress generated at the joint interface can be reduced, which contributes to suppressing the occurrence of cracks at the joint interface.
  • the heat resistance of the ceramic sintered body 3 is increased, and it is possible to suppress the formation of pores inside the ceramic sintered body 3, It is considered to contribute to the suppression of the decrease in mechanical strength.
  • the ceramic sintered body 3 can be sintered without raising the firing temperature excessively, and Al 2 O 3 particles and ZrO 2 particles can be obtained. It is considered that it is possible to suppress an increase in the particle size of (i.e., coarsening). As a result, it is considered that the mechanical strength of the ceramics sintered body 3 can be improved, which contributes to the suppression of cracking at the bonding interface.
  • the ceramic sintered body 3 can be sintered without raising the firing temperature excessively, and Al 2 O 3 particles and ZrO 2 particles can be formed. It is considered that coarsening can be suppressed. As a result, it is considered that the mechanical strength of the ceramics sintered body 3 can be improved, which contributes to the suppression of cracking at the bonding interface.
  • a sufficient amount of MgAl 2 O 4 crystals (hereinafter referred to as “spinel crystals”) can be generated in the ceramic sintered body 3, and the wettability with the Cu—O eutectic liquid phase at the time of copper plate bonding is improved. It is considered possible. As a result, it is considered that it contributes to the suppression of the occurrence of voids at the bonding interface.
  • the ceramic sintered body 3 can be sintered without raising the firing temperature excessively, and Al 2 O 3 particles and ZrO 2 particles can be obtained. It is considered that the coarsening of the can be suppressed. As a result, it is considered that the mechanical strength of the ceramics sintered body 3 can be improved, which contributes to the suppression of cracking at the bonding interface.
  • the ceramic sintered body 3 can be sintered without raising the firing temperature excessively, and Al 2 O 3 It is considered that the coarsening of the particles and the ZrO 2 particles can be suppressed. As a result, it is considered that the mechanical strength of the ceramics sintered body 3 can be improved, which contributes to the suppression of cracking at the bonding interface.
  • the total content is 0.01% by mass or more, so that the firing temperature is not excessively increased. It is considered that the sintered body 3 can be sintered and the coarsening of Al 2 O 3 particles and ZrO 2 particles can be suppressed. As a result, it is considered that the mechanical strength of the ceramics sintered body 3 can be improved, which contributes to the suppression of cracking at the bonding interface.
  • the ceramic sintered body 3 can be prevented from being excessively sintered and the porosity of the ceramic sintered body 3 can be reduced. As a result, it is considered that the mechanical strength of the ceramics sintered body 3 can be improved, which contributes to the suppression of cracking at the bonding interface.
  • the content of the balance is 0.05 mass% or less in terms of oxide, it is possible to prevent the ceramic sintered body 3 from being excessively sintered even if the firing temperature is not excessively high. It is considered that the porosity of the ceramic sintered body 3 can be reduced. As a result, it is considered that the mechanical strength of the ceramics sintered body 3 can be improved, which contributes to the suppression of the occurrence of cracks at the joint interface.
  • Mg converted to MgO Content of Mg converted to MgO, content of Si converted to SiO 2 , content of Ca converted to CaO, content of Na converted to Na 2 O, content of K converted to K 2 O, and remaining content.
  • M phase ratio which will be described later, can be set in a suitable range and the mechanical strength of the ceramic sintered body 3 can be improved by setting the sum of the above to 0.3 mass% or more and 2.0 mass% or less. .. As a result, it is considered that it contributes to suppressing the occurrence of cracks at the bonding interface.
  • the content of the constituent elements of the ceramic sintered body 3 is calculated as oxide as described above, but the constituent elements of the ceramic sintered body 3 exist in the form of oxide. Or may not be present in the oxide form.
  • at least one of Y, Mg, and Ca may not exist in the form of oxide and may be solid-dissolved in ZrO 2 .
  • the content of the constituent elements of the ceramic sintered body 3 in terms of oxide is calculated as follows. First, the constituent elements of the ceramic sintered body 3 are qualitatively analyzed using an X-ray fluorescence analyzer (XRF) or an energy dispersive analyzer (EDS) attached to a scanning electron microscope (SEM). Next, each element detected by this qualitative analysis is quantitatively analyzed using an ICP emission spectroscopic analyzer. Next, the content of each element measured by this quantitative analysis is converted into an oxide.
  • XRF X-ray fluorescence analyzer
  • EDS energy dispersive analyzer
  • SEM scanning electron microscope
  • the elements contained in the balance may be elements that are intentionally added or elements that are inevitably mixed.
  • the element contained in the balance is not particularly limited, but examples thereof include Fe (iron), Ti (titanium), Mn (manganese), and the like.
  • the ratio of the Y 2 O 3 -converted content of Y to the ZrO 2 -converted content is preferably 4.5% or more and 7.9% or less. It is considered that this makes it possible to maintain the stability of ZrO 2 in an appropriate state and contribute to the suppression of the decrease in the mechanical strength of the ceramic sintered body 3.
  • the ceramic sintered body 3 can include an Al 2 O 3 crystal phase and a ZrO 2 crystal phase as crystal phases.
  • the ZrO 2 crystal phase may include a monoclinic phase (monoclinic phase) and a tetragonal phase (tetragonal phase) as a crystal structure.
  • M phase ratio the ratio of the peak intensity of the monoclinic phase to the sum of the peak intensities of the monoclinic phase and the tetragonal phase
  • M phase ratio is 12% or less.
  • coarsening of Al 2 O 3 particles and ZrO 2 particles can be suppressed.
  • the phase transition from the monoclinic phase to the tetragonal phase is suppressed when the ceramic sintered body 3 is heated, the volume shrinkage of the ceramic sintered body 3 can be suppressed.
  • the mechanical strength of the ceramics sintered body 3 can be improved, even if the ceramics sintered body 3 is subjected to a thermal cycle, it is possible to suppress the occurrence of cracks at the bonding interface.
  • the M phase rate is more preferably 7% or less.
  • the M phase ratio is obtained from the following formula (1) using an X-ray diffraction pattern obtained by analyzing the outer surface of the ceramic sintered body 3 with an X-ray diffractometer (XRD: MiniFlexII manufactured by Rigaku Corporation).
  • XRD X-ray diffractometer
  • M1 is the peak intensity of the monoclinic (111) plane
  • M2 is the peak intensity of the monoclinic (11-1) plane
  • T1 is the peak intensity of the tetragonal (111) plane.
  • T2 is the peak intensity of the cubic (111) plane.
  • Ratio of monoclinic phase 100 ⁇ (M1+M2)/(T1+T2+M1+M2)...(1)
  • the ceramic sintered body 3 may include a spinel crystal phase as a crystal phase.
  • the ratio of the peak intensity of MgAl 2 O 4 to the peak intensity of Al 2 O 3 (hereinafter, referred to as “spinel phase ratio”) is preferably 4% or less. With this, it is possible to suppress an excessive reaction at the bonding interface at the time of bonding the copper plates, and thus it is possible to suppress generation of a void at the bonding interface.
  • the spinel phase rate may be 0%.
  • the spinel phase rate is more preferably 0.5% or more and 3.5% or less.
  • the spinel phase rate can be obtained from the following equation (2) using the X-ray diffraction pattern obtained by analyzing the surface of the ceramic sintered body 3 by XRD.
  • A1 is the peak intensity of the spinel phase (311) plane
  • B1 is the peak intensity of the alumina phase (104) plane.
  • the average particle size of ZrO 2 is not particularly limited, but is preferably 0.6 ⁇ m or more and 1.5 ⁇ m or less. As a result, it is possible to suppress an increase in the M phase ratio due to a decrease in the interfacial energy of the crystal transformation and a decrease in the mechanical strength accompanying it, and it is also possible to suppress the formation of pores inside the ceramic sintered body 3. A decrease in mechanical strength can be suppressed.
  • the average particle size of Al 2 O 3 is not particularly limited, but it is preferably 1.6 ⁇ m or more and 2.5 ⁇ m or less.
  • the average particle size of Al 2 O 3 is preferably 1.6 ⁇ m or more and 2.5 ⁇ m or less.
  • the average particle diameters of ZrO 2 and Al 2 O 3 are calculated as follows. First, when the outer surface of the ceramic sintered body 3 is imaged by a scanning electron microscope, the magnification is adjusted so that about 500 to 1000 crystal particles are imaged in the entire imaged image. Next, using image processing software, the average equivalent circle diameter of 100 crystal grains randomly selected from the captured image is calculated as the average grain size.
  • the average equivalent circle diameter is the average value of equivalent circle diameters, and the equivalent circle diameter is the diameter of a circle having the same area as a particle.
  • FIG. 2 is a flowchart showing a method for manufacturing the ceramic sintered body 3.
  • step S1 the following powder materials are prepared.
  • Each of ZrO 2 , HfO 2 , and Y 2 O 3 may be a single powder material, or may be a ZrO 2 —HfO 2 powder that is partially stabilized with Y 2 O 3 in advance.
  • Mg, Ca, and alkali metals (Na and K) may be oxide powder or carbonate powder. When Fe and Mn are contained in the balance, these may be oxide powder or carbonate powder.
  • step S2 the prepared powder material is pulverized and mixed by, for example, a ball mill.
  • step S3 an organic binder (for example, polyvinyl butyral), a solvent (xylene, toluene, etc.) and a plasticizer (dioctyl phthalate) are added to the pulverized and mixed powder material to form a slurry-like substance.
  • organic binder for example, polyvinyl butyral
  • solvent xylene, toluene, etc.
  • plasticizer dioctyl phthalate
  • step S4 the slurry-like substance is formed into a desired shape by a desired forming means (for example, a die press, a cold isostatic press, injection molding, a doctor blade method, an extrusion molding method, etc.) to form a ceramic molded body.
  • a desired forming means for example, a die press, a cold isostatic press, injection molding, a doctor blade method, an extrusion molding method, etc.
  • step S5 the ceramic molded body is fired (1580°C to 1620°C, 0.7 hours to 1.0 hour) in an oxygen atmosphere or an air atmosphere.
  • polyvinyl butyral as an organic binder xylene as a solvent, and dioctyl phthalate as a plasticizer were added to the pulverized and mixed powder material to form a slurry-like substance.
  • the slurry-like substance was formed into a sheet by the doctor blade method to produce a ceramic compact.
  • the ceramic molded body was fired at a firing temperature shown in Table 1 for 0.8 hours in an air atmosphere to produce a ceramic sintered body 3.
  • the size of the ceramic sintered body 3 was 0.32 mm in thickness, 39 mm in length, and 45 mm in width.
  • the laminated body in which the ceramic sintered body 3 is sandwiched between the first and second copper plates 4 and 4' is placed on the mesh material 11 made of Mo (molybdenum), and 1070 in a nitrogen (N 2 ) atmosphere. Heated at 0°C for 10 minutes.
  • the first and second copper plates 4 and 4 ′ were joined to the ceramic sintered body 3 and the mesh material 11 was joined to the second copper plate 4 ′.
  • M phase rate Using the X-ray diffraction patterns obtained by analyzing the outer surfaces of the ceramic sintered bodies 3 according to Examples 1 to 19 and Comparative Examples 1 to 17 with XRD (MiniFlexII manufactured by Rigaku Corporation), the above formula (1) was used. , M phase ratio was calculated. Table 1 shows the calculated M phase ratios.
  • ⁇ Zr in terms of ZrO 2, 17.5 mass% or more 23.5% by mass ⁇ Hf: at HfO 2 terms, or 0.3 wt% 0.5 wt% or less ⁇ Al: terms of Al 2 O 3, 74.3 wt% or more 80.9% by mass ⁇ Y: Y 2 O 3 in terms of more than 0.8 mass% 1.9 mass% or less ⁇ Mg: in terms of MgO, 0.1 wt% 0.8 wt% or less ⁇ Si: in terms of SiO 2, 0.1 wt% to 1.5 wt% or less ⁇ Ca: calculated as CaO, more than 0.03 wt% 0.35 wt% or less ⁇ Na and K: content of Na When the amount is converted to Na 2 O and the K content is converted to K 2 O, the total content is 0.01 mass% or more and 0.10 mass% or less.
  • the balance 0.05 mass in terms of oxide. % Or less-Additive: Mg in MgO conversion content, Si in SiO 2 conversion content, Ca in CaO conversion content, Na in Na 2 O conversion content, K in K 2 O conversion content , And the total content of the balance are 0.3 mass% or more and 2.0 mass% or less
  • the ceramics sintered body and the semiconductor device substrate according to the present invention can be used in various electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

セラミックス焼結体(3)において、Zrの含有量は、ZrO換算で、17.5質量%以上23.5質量%以下であり、Hfの含有量は、HfO換算で、0.3質量%以上0.5質量%以下であり、Alの含有量は、Al換算で、74.3質量%以上80.7質量%以下であり、Yの含有量は、Y換算で、0.8質量%以上1.9質量%以下であり、Mgの含有量は、MgO換算で、0.1質量%以上0.8質量%以下であり、Siの含有量は、SiO換算で、0.1質量%以上1.5質量%以下であり、Caの含有量は、CaO換算で、0.03質量%以上0.35質量%以下であり、Na及びKの合計含有量は、Naの含有量をNaO換算とし、Kの含有量をKO換算とした場合、0.01質量%以上0.10質量%以下であり、残部の含有量は、酸化物換算で、0.05質量%以下である。MgのMgO換算の含有量、SiのSiO換算の含有量、CaのCaO換算の含有量、NaのNaO換算の含有量、KのKO換算の含有量、及び残部の含有量の和は、0.3質量%以上2.0質量%以下である。

Description

セラミックス焼結体及び半導体装置用基板
 本発明は、セラミックス焼結体及び半導体装置用基板に関する。
 パワートランジスタモジュールなどに用いる半導体装置用基板として、セラミックス焼結体の表面に銅板を備えたDBOC基板(Direct Bonding of Copper Substrate)や、セラミックス焼結体の表面にアルミニウム板を備えたDBOA基板(Direct Bonding of Aluminum Substrate)が知られている。
 特許文献1には、アルミナと部分安定化ジルコニアとマグネシアとを含むセラミックス焼結体が開示されている。特許文献1に記載のセラミックス焼結体において、部分安定化ジルコニアの含有量は1~30wt%であり、マグネシアの含有量は0.05~0.50wt%であり、部分安定化ジルコニアにおけるイットリアのモル分率は0.015~0.035であり、セラミックス焼結体に含まれるジルコニア結晶のうち80~100%が正方晶相である。特許文献1に記載のセラミックス焼結体によれば、機械的強度を向上させてセラミックス焼結体と銅板又はアルミニウム板との接合界面にクラック及びボイド(部分的な剥離又は浮き上がり)が生じることを抑制できるとされている。
 特許文献2には、アルミナとジルコニアとイットリアとを含むセラミックス焼結体が開示されている。特許文献2に記載のセラミックス焼結体において、ジルコニアの含有量は2~15重量%であり、アルミナの平均粒径は2~8μmである。特許文献2に記載のセラミックス焼結体によれば、熱伝導率を向上させることができるとされている。
 特許文献3には、アルミナ、安定化成分、ハフニア及びジルコニアを含むセラミック基板が開示されている。特許文献3に記載のセラミックス基板において、ハフニア及びジルコニアのアルミナに対する重量比は7~11重量比であり、アルミナの平均粒径は1.0~1.5μmであり、ジルコニアの平均粒径は0.3~0.5μmである。特許文献3に記載のセラミックス焼結体によれば、熱伝導率を向上させることができるとされている。
特許4717960号公報 特表2015-534280号公報 国際公開第2016-208766号明細書
 しかしながら、特許文献1に記載のセラミックス焼結体では、Zr、Mg、Si及び残部それぞれの含有量が最適化されていないため、接合界面に生じるクラック及びボイドを抑制するにも余地が残されている。
 特許文献2に記載のセラミックス焼結体はMgを含有しておらず、特許文献3に記載のセラミック基板はNa又はKを含有していないため、機械的強度の向上に限界がある。また、特許文献2に記載のセラミック焼結体及び特許文献3に記載のセラミック基板では、MgAl(スピネル)結晶が生成されないため、銅板又はアルミニウム板をセラミックス焼結体に接合する際に接合界面に生成されるCu-O共晶液相との濡れ性が低下してボイドが発生しやすいという問題がある。
 本発明は、クラック及びボイドを抑制可能なセラミックス焼結体及び半導体装置用基板の提供を目的とする。
 本発明に係るセラミックス焼結体には、銅板又はアルミニウム板が接合される。本発明に係るセラミックス焼結体において、Zrの含有量は、ZrO換算で、17.5質量%以上23.5質量%以下であり、Hfの含有量は、HfO換算で、0.3質量%以上0.5質量%以下であり、Alの含有量は、Al換算で、74.3質量%以上80.9質量%以下であり、Yの含有量は、Y換算で、0.8質量%以上1.9質量%以下であり、Mgの含有量は、MgO換算で、0.1質量%以上0.8質量%以下であり、Siの含有量は、SiO換算で、0.1質量%以上1.5質量%以下であり、Caの含有量は、CaO換算で、0.03質量%以上0.35質量%以下であり、Na及びKの合計含有量は、Naの含有量をNaO換算とし、Kの含有量をKO換算とした場合、0.01質量%以上0.10質量%以下であり、残部の含有量は、酸化物換算で、0.05質量%以下であり、MgのMgO換算の含有量、SiのSiO換算の含有量、CaのCaO換算の含有量、NaのNaO換算の含有量、KのKO換算の含有量、及び残部の含有量の和は、0.3質量%以上2.0質量%以下である。
 本発明によれば、クラック及びボイドを抑制可能なセラミックス焼結体及び半導体装置用基板を提供することができる。
実施形態に係る半導体装置の構成を示す断面図である。 実施形態に係る半導体装置用基板の製造方法を説明するためのフローチャートである。 実施例に係る半導体装置用基板サンプルの構成を示す断面図である。
 以下、本発明に係るセラミックス焼結体及びそれを用いた半導体装置用基板の構成について、図面を参照しながら説明する。
 (半導体装置1の構成)
 図1は、実施形態に係る半導体装置1の断面図である。半導体装置1は、自動車、空調機、産業用ロボット、業務用エレベータ、家庭用電子レンジ、IH電気炊飯器、発電(風力発電、太陽光発電、燃料電池など)、電鉄、UPS(無停電電源)などの様々な電子機器においてパワーモジュールとして用いられる。
 半導体装置1は、半導体装置用基板2、第1接合材5、第2接合材5’、半導体チップ6、ボンディングワイヤ7及びヒートシンク8を備える。
 半導体装置用基板2は、いわゆるDBOC基板(Direct Bonding of Copper Substrate)である。半導体装置用基板2は、セラミックス焼結体3、第1銅板4及び第2銅板4’を備える。
 セラミックス焼結体3は、半導体装置用基板2用の絶縁体である。セラミックス焼結体3は、平板状に形成される。セラミックス焼結体3は、半導体装置用基板2の基板である。セラミックス焼結体3の構成については後述する。
 第1銅板4は、セラミックス焼結体3の表面に接合される。第1銅板4には、電送回路が形成されている。第2銅板4’は、セラミックス焼結体3の裏面に接合される。第2銅板4’は、平板状に形成される。
 なお、半導体装置用基板2は、第1及び第2銅板4,4’に代えて、第1及び第2アルミニウム板を用いた、いわゆるDBOA基板(Direct Bonding of Aluminum Substrate)であってもよい。銅板よりも柔らかいアルミニウム板が用いられるDBOA基板では、内部に発生する熱応力を更に緩和させることができる。
 半導体装置用基板2の作製方法は特に制限されないが、例えば次のように作製することができる。まず、セラミックス焼結体3の表裏面に第1及び第2銅板4,4’を配置した積層体を形成する。次に、積層体を1070℃~1075℃の窒素雰囲気条件下で10分程度加熱する。これによって、セラミックス焼結体3と第1及び第2銅板4,4’とが接合する界面(以下、「接合界面」と総称する。)にCu-O共晶液相が生成され、セラミックス焼結体3の表裏面が濡れる。次に、積層体を冷却することによってCu-O共晶液相が固化されて、セラミックス焼結体3に第1及び第2銅板4,4’が接合される。
 なお、半導体装置用基板2では、電送回路が形成された第1銅板4がセラミックス焼結体3の表面に接合されているが、電送回路は、サブトラクティブ法又はアディティブ法によって形成されてもよい。
 第1接合材5は、第1銅板4と半導体チップ6との間に配置される。半導体チップ6は、第1接合材5を介して第1銅板4に接合される。ボンディングワイヤ7は、半導体チップ6と第1銅板4とを接続する。
 第2接合材5’は、第2銅板4’とヒートシンク8との間に配置される。ヒートシンク8は、第2接合材5’を介して第2銅板4’に接合される。ヒートシンク8は、例えば銅などによって構成することができる。
 (セラミックス焼結体3の構成)
 セラミックス焼結体3は、Zr(ジルコニウム)と、Hf(ハフニウム)と、Al(アルミニウム)と、Y(イットリウム)と、Mg(マグネシウム)と、Si(ケイ素)と、Ca(カルシウム)と、Na(ナトリウム)及びK(カリウム)の少なくとも一方と、これら以外の残部とを含む。
 セラミックス焼結体3の構成元素の含有量は、以下の通りである。
 ・Zr:ZrO換算で、17.5質量%以上23.5質量%以下
 ・Hf:HfO換算で、0.3質量%以上0.5質量%以下
 ・Al:Al換算で、74.3質量%以上80.9質量%以下
 ・Y:Y換算で、0.8質量%以上1.9質量%以下
 ・Mg:MgO換算で、0.1質量%以上0.8質量%以下
 ・Si:SiO換算で、0.1質量%以上1.5質量%以下
 ・Ca:CaO換算で、0.03質量%以上0.35質量%以下
 ・Na及びK:Naの含有量をNaO換算とし、Kの含有量をKO換算とした場合の合計含有量が、0.01質量%以上0.10質量%以下
 ・残部:酸化物換算で、0.05質量%以下
 ・添加物:MgのMgO換算の含有量、SiのSiO換算の含有量、CaのCaO換算の含有量、NaのNaO換算の含有量、KのKO換算の含有量、及び残部の含有量の和は、0.3質量%以上2.0質量%以下
 このようにセラミックス焼結体3の構成元素の種類及び含有量を至適化することによって、銅板接合時のCu-O共晶液相との濡れ性を高めることができるため、銅板接合時において、接合界面にボイド(部分的な剥離又は浮き上がり)が生じることを抑制できるとともに、セラミックス焼結体3の機械的強度を高めることができるため、セラミックス焼結体3に熱サイクルがかかったとしても、接合界面にクラックが生じることを抑制することができるものと考えられる。含有量も含めた、それぞれの構成元素の組み合わせによりかかる効果が生まれているものと考えられ、その具体的な作用は定かではないが、個々の構成元素の主な作用及び効果は以下のように考えられる。
 Zrの含有量をZrO換算で17.5質量%以上とすることによって、セラミックス焼結体3の線熱膨張係数が過小になることを抑制でき、セラミックス焼結体3と第1及び第2銅板4,4’との線熱膨張係数差を小さくできると考えられる。その結果、接合界面に生じる熱応力を小さくでき、接合界面にクラックが生じることの抑制に寄与するものと考えられる。
 Zrの含有量をZrO換算で23.5質量%以下とすることによって、銅板接合時の接合界面における反応が過剰になることを抑制でき、接合界面にボイドが生じることを抑制できると考えられる。これは、AlとZrOの銅板接合時のCu-O共晶液相との濡れ性が違うためである。
 Hfの含有量をHfO換算で0.3質量%以上とすることによって、セラミックス焼結体3の耐熱性が上がって、内部に気孔が形成されることを抑制でき、セラミックス焼結体3の機械的強度の低下の抑制に寄与するものと考えられる。
 Hfの含有量をHfO換算で0.5質量%以下とすることによって、焼成温度を過剰に高くしなくてもセラミックス焼結体3を焼結させられ、Al粒子及びZrO粒子の粒径が大きくなること(すなわち、粗大化)を抑制できると考えられる。その結果、セラミックス焼結体3の機械的強度を向上でき、接合界面にクラックが生じることの抑制に寄与するものと考えられる。
 Yの含有量をY換算で0.8質量%以上とすることによって、後述するZrO結晶相のうち単斜晶相のピーク強度比が過大になることを抑制できると考えられる。その結果、セラミックス焼結体3の機械的強度を向上でき、接合界面にクラックが生じることの抑制に寄与するものと考えられる。
 Yの含有量をY換算で1.9質量%以下とすることによって、単斜晶相のピーク強度比が過小になることを抑制できると考えられる。その結果、セラミックス焼結体3の機械的強度を向上でき、接合界面にクラックが生じることの抑制に寄与するものと考えられる。
 Mgの含有量をMgO換算で0.1質量%以上とすることによって、焼成温度を過剰に高くしなくてもセラミックス焼結体3を焼結させられ、Al粒子及びZrO粒子の粗大化を抑制できると考えられる。その結果、セラミックス焼結体3の機械的強度を向上でき、接合界面にクラックが生じることの抑制に寄与するものと考えられる。また、セラミックス焼結体3中に十分な量のMgAl結晶(以下、「スピネル結晶」という。)を生成でき、銅板接合時におけるCu-O共晶液相との濡れ性を向上させることができると考えられる。その結果、接合界面にボイドが生じることの抑制に寄与するものと考えられる。
 Mgの含有量をMgO換算で0.8質量%以下とすることによって、機械的強度が低いスピネル結晶が過剰に形成されることを抑制でき、セラミックス焼結体3の機械的強度を向上できると考えられる。その結果、接合界面にクラックが生じることの抑制に寄与するものと考えられる。
 Siの含有量をSiO換算で0.1質量%以上とすることによって、焼成温度を過剰に高くしなくてもセラミックス焼結体3を焼結させられ、Al粒子及びZrO粒子の粗大化を抑制できると考えられる。その結果、セラミックス焼結体3の機械的強度を向上でき、接合界面にクラックが生じることの抑制に寄与するものと考えられる。
 Siの含有量をSiO換算で1.5質量%以下とすることによって、セラミックス焼結体3中にスピネル結晶相が生成されやすくなり、銅板接合時におけるCu-O共晶液相との濡れ性を向上させることができると考えられる。その結果、接合界面にボイドが生じることの抑制に寄与するものと考えられる。
 Caの含有量をCaO換算で0.03質量%以上0.35質量%以下とすることによって、焼成温度を過剰に高くしなくてもセラミックス焼結体3を焼結させられ、Al粒子及びZrO粒子の粗大化を抑制できると考えられる。その結果、セラミックス焼結体3の機械的強度を向上でき、接合界面にクラックが生じることの抑制に寄与するものと考えられる。
 Naの含有量をNaO換算とし、Kの含有量をKO換算とした場合の合計含有量を0.01質量%以上とすることによって、焼成温度を過剰に高くしなくてもセラミックス焼結体3を焼結させられ、Al粒子及びZrO粒子の粗大化を抑制できると考えられる。その結果、セラミックス焼結体3の機械的強度を向上でき、接合界面にクラックが生じることの抑制に寄与するものと考えられる。
 Naの含有量をNaO換算とし、Kの含有量をKO換算とした場合の合計含有量を0.10質量%以下とすることによって、焼成温度を過剰に高くしていないにも関わらずセラミックス焼結体3が過剰に焼結してしまうことを抑制でき、セラミックス焼結体3の気孔率を小さくできると考えられる。その結果、セラミックス焼結体3の機械的強度を向上でき、接合界面にクラックが生じることの抑制に寄与するものと考えられる。
 残部の含有量を酸化物換算で0.05質量%以下とすることによって、焼成温度を過剰に高くしていないにも関わらずセラミックス焼結体3が過剰に焼結してしまうことを抑制でき、セラミックス焼結体3の気孔率を小さくできると考えられる。その結果、セラミックス焼結体3の機械的強度を向上でき、接合界面にクラックが生じることの抑制に寄与するものと考えられる。
 MgのMgO換算の含有量、SiのSiO換算の含有量、CaのCaO換算の含有量、NaのNaO換算の含有量、KのKO換算の含有量、及び残部の含有量の和を0.3質量%以上2.0質量%以下とすることによって、後述するM相率を好適な範囲に入れることができ、セラミックス焼結体3の機械的強度を向上できると考えられる。その結果、接合界面にクラックが生じることの抑制に寄与するものと考えられる。
 本実施形態において、セラミックス焼結体3の構成元素の含有量は、上記のとおり酸化物換算にて算出されるが、セラミックス焼結体3の構成元素は、酸化物の形態で存在していてもよいし、酸化物の形態で存在していなくてもよい。例えば、Y、Mg及びCaのうち少なくとも1種は、酸化物の形態で存在せず、ZrO中に固溶していてもよい。
 セラミックス焼結体3の構成元素の酸化物換算での含有量は、以下のように算出される。まず、蛍光X線分析装置(XRF)、又は、走査型電子顕微鏡(SEM)に付設のエネルギー分散型分析器(EDS)を用いて、セラミックス焼結体3の構成元素を定性分析する。次に、この定性分析により検出された各元素につき、ICP発光分光分析装置を用いて定量分析を行う。次に、この定量分析により測定された各元素の含有量を酸化物に換算する。
 なお、残部に含まれる元素は、意図的に添加する元素であってもよいし、不可避的に混入する元素でもよい。残部に含まれる元素は特に制限されないが、例えば、Fe(鉄)、Ti(チタン)、Mn(マンガン)などが挙げられる。
 ZrのZrO換算の含有量に対するYのY換算の含有量の割合は、4.5%以上7.9%以下であることが好ましい。これにより、ZrOの安定性を適度な状態に保つことができ、セラミックス焼結体3の機械的強度の低下の抑制に寄与するものと考えられる。
 セラミックス焼結体3は、結晶相として、Al結晶相とZrO結晶相とを含むことができる。ZrO結晶相は、結晶構造として、単斜晶相(monoclinic相)と正方晶相(tetragonal相)とを含んでいてもよい。この場合、X線回折パターンにおいて、単斜晶相及び正方晶相それぞれのピーク強度の和に対する単斜晶相のピーク強度の比(以下、「M相率」という。)は、12%以下であることが好ましい。これにより、Al粒子及びZrO粒子の粗大化を抑制できる。また、セラミックス焼結体3が加熱された際に単斜晶相から正方晶相への相転移が抑制されるため、セラミックス焼結体3の体積収縮を抑制できる。これらの結果、セラミックス焼結体3の機械的強度を向上させることができるため、セラミックス焼結体3に熱サイクルがかかったとしても、接合界面にクラックが生じることを抑制することができる。
 M相率は、7%以下であることがより好ましい。これにより、セラミックス焼結体3の機械的強度をより向上させることができるため、接合界面にクラックが生じることをより抑制できる。
 M相率は、セラミックス焼結体3の外表面をX線回折装置(XRD:リガク社製、MiniFlexII)で解析して得られるX線回折パターンを用いて、以下の式(1)から求めることができる。式(1)において、M1は単斜晶(111)面のピーク強度であり、M2は単斜晶(11-1)面のピーク強度であり、T1は正方晶(111)面のピーク強度であり、T2は立方晶(111)面のピーク強度である。
 単斜晶相の比=100×(M1+M2)/(T1+T2+M1+M2) ・・・(1)
 セラミックス焼結体3は、結晶相として、スピネル結晶相を含んでいてもよい。この場合、X線回折パターンにおいて、Alのピーク強度に対するMgAlのピーク強度の比(以下、「スピネル相率」という。)は、4%以下であることが好ましい。これにより、銅板接合時の接合界面における反応が過剰になることを抑制できるため、接合界面にボイドが生じることを抑制できる。なお、スピネル相率は0%であってもよい。
 スピネル相率は、0.5%以上3.5%以下であることがより好ましい。これにより、銅板接合時におけるセラミックス焼結体3とCu-O共晶液相との濡れ性を向上させることができるとともに、銅板接合時の接合界面における反応が過剰になることをより抑制できるため、接合界面にボイドが生じることを更に抑制できる。
 スピネル相率は、セラミックス焼結体3の表面をXRDで解析して得られるX線回折パターンを用いて、以下の式(2)から求めることができる。式(2)において、A1はスピネル相(311)面のピーク強度であり、B1はアルミナ相(104)面のピーク強度である。
 MgAlの比(%)=100×A1/(A1+B1) ・・・(2)
 ZrOの平均粒径は特に制限されないが、0.6μm以上1.5μm以下であることが好ましい。これにより、結晶変態の界面エネルギーの低下によるM相率の増化とそれに伴う機械的強度の低下とを抑制できるとともに、内部に気孔が形成されることを抑制できるため、セラミックス焼結体3の機械的強度の低下を抑制できる。
 Alの平均粒径は特に制限されないが、1.6μm以上2.5μm以下であることが好ましい。Alの平均粒径を1.6μm以上とすることによって、内部に気孔が形成されることを抑制でき、Alの平均粒径を2.5μm以下とすることによって、破壊強度の抵抗となる結晶粒界の減少を抑制できるため、セラミックス焼結体3の機械的強度の低下を抑制できる。
 ZrO及びAlそれぞれの平均粒径は、以下のように算出される。まず、セラミックス焼結体3の外表面を走査型電子顕微鏡で撮像した場合に、撮像画像全体に500~1000個程度の結晶粒子が写るように倍率を調整する。次に、画像処理ソフトを用いて、撮像画像から無作為に選出した100個の結晶粒子の平均円相当径を平均粒径として算出する。平均円相当径とは円相当径の平均値であり、円相当径とは粒子と同じ面積を有する円の直径である。
 (セラミックス焼結体3の製造方法)
 図2を参照しながらセラミックス焼結体3の製造方法について説明する。図2は、セラミックス焼結体3の製造方法を示すフローチャートである。
 ステップS1において、以下の粉体材料を調合する。
 ・17.5質量%以上23.5質量%以下のZrO
 ・0.3質量%以上0.5質量%以下のHfO
 ・74.3質量%以上80.9質量%以下のAl
 ・0.8質量%以上1.9質量%以下のY
 ・0.1質量%以上0.8質量%以下のMgO
 ・0.1質量%以上1.5質量%以下のSiO
 ・0.03質量%以上0.35質量%以下のCaO
 ・合計で0.01質量%以上0.10質量%以下のNaO及びK
 ・0.05質量%以下の残部
 ・MgのMgO換算の含有量、SiのSiO換算の含有量、CaのCaO換算の含有量、NaのNaO換算の含有量、KのKO換算の含有量、及び残部の含有量の和は、0.3質量%以上2.0質量%以下
 なお、ZrO、HfO、Yのそれぞれは単独の粉体材料でもいいが、予めYで部分安定化されたZrO-HfO粉体でもいい。また、Mg、Ca、及びアルカリ金属(Na及びK)は、酸化物粉体であってもよく、炭酸塩粉体であってもよい。また、残部にFe及びMnが含まれる場合、これらは、酸化物粉体であってもよく、炭酸塩粉体であってもよい。
 ステップS2において、調合した粉体材料を、例えばボールミルなどにより粉砕混合する。
 ステップS3において、粉砕混合した粉体材料に、有機質バインダー(例えば、ポリビニルブチラール)、溶剤(キシレン、トルエンなど)及び可塑剤(フタル酸ジオクチル)を添加してスラリー状物質を形成する。
 ステップS4において、所望の成形手段(例えば、金型プレス、冷間静水圧プレス、射出成形、ドクターブレード法、押し出し成型法など)によって、スラリー状物質を所望の形状に成形してセラミックス成形体を作製する。
 ステップS5において、セラミックス成形体を、酸素雰囲気又は大気雰囲気で焼成(1580℃~1620℃、0.7時間~1.0時間)する。
 図3に示すように、実施例1~19及び比較例1~17に係る半導体装置用基板サンプル10を作製して、銅板を接合したときに接合界面に生じるボイドと、熱サイクルをかけたときに接合界面に生じるクラックとを観察した。
 (半導体装置用基板サンプル10の作製)
 まず、表1に示す組成物を調合した粉体材料を、ボールミルで粉砕混合した。
 次に、粉砕混合した粉体材料に、有機質バインダーとしてのポリビニルブチラールと、溶剤としてのキシレンと、可塑剤としてのフタル酸ジオクチルとを添加してスラリー状物質を形成した。
 次に、ドクターブレード法によって、スラリー状物質をシート状に成形してセラミックス成形体を作製した。
 次に、セラミックス成形体を、大気雰囲気において表1に示す焼成温度で0.8時間焼成してセラミックス焼結体3を作製した。セラミックス焼結体3のサイズは、厚み0.32mm、縦39mm、横45mmであった。
 次に、JIS C1020に準拠した無酸素銅からなる第1及び第2銅板4,4’(それぞれ、0.40mm厚み)を大気中で300℃に加熱することによって、第1及び第2銅板4,4’それぞれの外表面を酸化させた。
 次に、セラミックス焼結体3を第1及び第2銅板4,4’で挟んだ積層体を、Mo(モリブデン)からなるメッシュ材11上に載置し、窒素(N)雰囲気中において1070℃で10分加熱した。
 次に、積層体を冷却することによって、セラミックス焼結体3に第1及び第2銅板4,4’を接合するとともに、第2銅板4’にメッシュ材11を接合した。
 (M相率)
 実施例1~19及び比較例1~17に係るセラミックス焼結体3の外表面をXRD(リガク社製、MiniFlexII)で解析して得たX線回折パターンを用いて、上記式(1)から、M相率を算出した。算出したM相率を表1にまとめて示す。
 (スピネル相率)
 実施例1~19及び比較例1~17に係るセラミックス焼結体3の外表面をXRD(リガク社製、MiniFlexII)で解析して得たX線回折パターンを用いて、上記式(2)からスピネル相率を算出した。算出したスピネル相率を表1にまとめて示す。
 (抗折強度)
 実施例1~19及び比較例1~17に係るセラミックス焼結体3の抗折強度(機械的強度)を、試料サイズ(15×45×厚み0.32mm)、スパン30mmの3点曲げ強度試験を行った。
 表1では、実施例1~19及び比較例1~17について、10ピースずつの測定値の算術平均値が抗折強度(MPa)として記載されている。
 (ボイド発生率)
 実施例1~19及び比較例1~17に係る半導体装置用基板サンプル10を水中に浸漬し、セラミックス焼結体3と第1及び第2銅板4,4’との接合界面を超音波顕微鏡で観察して、直径2.0mm以上のボイドの有無を確認した。
 表1では、実施例1~19及び比較例1~17について、100ピースのうちボイドが観察されたものの割合がボイド発生率(%)として記載されている。表1では、ボイド発生率(%)が0.2未満のサンプルが「◎」と評価され、0.2以上0.3未満のサンプルが「○」と評価され、0.3以上0.5未満のサンプルが「△」と評価され、0.5以上のサンプルが「×」と評価されている。
 (クラック発生率)
 実施例1~19及び比較例1~17に係る半導体装置用基板サンプル10について、セラミックス焼結体3にクラックが発生するまで、「-40℃×30分→25℃×5分→125℃×30分→25℃×5分」のサイクルを繰り返した。
 表1では、実施例1~19及び比較例1~17について、10ピースのいずれかにクラックが発生したサイクル数がクラック発生サイクル数として記載されている。表1では、クラック発生サイクル数(回)が101以上のサンプルが「◎」と評価され、51以上100以下のサンプルが「○」と評価され、31以上50以下のサンプルが「△」と評価され、30以下のサンプルが「×」と評価されている。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、セラミックス焼結体3における構成元素の含有量を以下の通り至適化した実施例1~19では、接合界面におけるボイドを抑制できるとともに、接合界面にクラックが生じることを抑制することができた。
 ・Zr:ZrO換算で、17.5質量%以上23.5質量%以下
 ・Hf:HfO換算で、0.3質量%以上0.5質量%以下
 ・Al:Al換算で、74.3質量%以上80.9質量%以下
 ・Y:Y換算で、0.8質量%以上1.9質量%以下
 ・Mg:MgO換算で、0.1質量%以上0.8質量%以下
 ・Si:SiO換算で、0.1質量%以上1.5質量%以下
 ・Ca:CaO換算で、0.03質量%以上0.35質量%以下
 ・Na及びK:Naの含有量をNaO換算とし、Kの含有量をKO換算とした場合の合計含有量が、0.01質量%以上0.10質量%以下
 ・残部:酸化物換算で、0.05質量%以下
 ・添加物:MgのMgO換算の含有量、SiのSiO換算の含有量、CaのCaO換算の含有量、NaのNaO換算の含有量、KのKO換算の含有量、及び残部の含有量の和は、0.3質量%以上2.0質量%以下
 本発明によれば、セラミックス焼結体におけるクラック及びボイドを抑制することができるため、本発明に係るセラミックス焼結体及び半導体装置用基板は、種々の電子機器において利用することができる。
1…半導体装置
2…半導体装置用基板
3…セラミックス焼結体
4,4’…銅板
5,5’…接合材
6…半導体チップ
7…ボンディングワイヤ
8…ヒートシンク
10…半導体装置用基板サンプル
11…メッシュ材
 

Claims (9)

  1.  銅板又はアルミニウム板が接合されるセラミックス焼結体であって、
     Zrの含有量は、ZrO換算で、17.5質量%以上23.5質量%以下であり、
     Hfの含有量は、HfO換算で、0.3質量%以上0.5質量%以下であり、
     Alの含有量は、Al換算で、74.3質量%以上80.9質量%以下であり、
     Yの含有量は、Y換算で、0.8質量%以上1.9質量%以下であり、
     Mgの含有量は、MgO換算で、0.1質量%以上0.8質量%以下であり、
     Siの含有量は、SiO換算で、0.1質量%以上1.5質量%以下であり、
     Caの含有量は、CaO換算で、0.03質量%以上0.35質量%以下であり、
     Na及びKの合計含有量は、Naの含有量をNaO換算とし、Kの含有量をKO換算とした場合、0.01質量%以上0.10質量%以下であり、
     残部の含有量は、酸化物換算で、0.05質量%以下であり、
     MgのMgO換算の含有量、SiのSiO換算の含有量、CaのCaO換算の含有量、NaのNaO換算の含有量、KのKO換算の含有量、及び残部の含有量の和は、0.3質量%以上2.0質量%以下である、
    セラミックス焼結体。
  2.  結晶相として、Al結晶相とZrO結晶相とを含み、
     前記ZrO結晶相は、結晶構造として、単斜晶相と正方晶相とを含み、
     X線回折パターンにおいて、単斜晶相及び正方晶相それぞれのピーク強度の和に対する単斜晶相のピーク強度の比は、12%以下である、
    請求項1に記載のセラミックス焼結体。
  3.  結晶相として、Al結晶相とZrO結晶相とを含み、
     前記ZrO結晶相は、結晶構造として、単斜晶相と正方晶相とを含み、
     X線回折パターンにおいて、単斜晶相及び正方晶相それぞれのピーク強度の和に対する単斜晶相のピーク強度の比は、7%以下である、
    請求項1に記載のセラミックス焼結体。
  4.  結晶相として、MgAl結晶相を含み、
     X線回折パターンにおいて、Alのピーク強度に対するMgAlのピーク強度の比は、4%以下である、
    請求項1乃至3のいずれかに記載のセラミックス焼結体。
  5.  結晶相として、MgAl結晶相を含み、
     X線回折パターンにおいて、Alのピーク強度に対するMgAlのピーク強度の比は、0.5%以上3.5%以下である、
    請求項1乃至3のいずれかに記載のセラミックス焼結体。
  6.  ZrOの平均粒径は、0.6μm以上1.5μm以下である、
    請求項1乃至5のいずれかに記載のセラミックス焼結体。
  7.  Alの平均粒径は、1.6μm以上2.5μm以下である、
    請求項1乃至6のいずれかに記載のセラミックス焼結体。
  8.  ZrのZrO換算の含有量に対するYのY換算の含有量の割合は、4.5%以上7.9%以下である、
    請求項1乃至7のいずれかに記載のセラミックス焼結体。
  9.  電子部品を実装するための半導体装置用基板であって、
     セラミックス焼結体と、
     前記セラミックス焼結体に接合される銅板又はアルミニウム板と、
    を備え、
     前記セラミックス焼結体において、
     Zrの含有量は、ZrO換算で、17.5質量%以上23.5質量%以下であり、
     Hfの含有量は、HfO換算で、0.3質量%以上0.5質量%以下であり、
     Alの含有量は、Al換算で、74.3質量%以上80.9質量%以下であり、
     Yの含有量は、Y換算で、0.8質量%以上1.9質量%以下であり、
     Mgの含有量は、MgO換算で、0.1質量%以上0.8質量%以下であり、
     Siの含有量は、SiO換算で、0.1質量%以上1.5質量%以下であり、
     Caの含有量は、CaO換算で、0.03質量%以上0.35質量%以下であり、
     Na及びKの合計含有量は、Naの含有量をNaO換算とし、Kの含有量をKO換算とした場合、0.01質量%以上0.10質量%以下であり、
     残部の含有量は、酸化物換算で、0.05質量%以下であり、
     MgのMgO換算の含有量、SiのSiO換算の含有量、CaのCaO換算の含有量、NaのNaO換算の含有量、KのKO換算の含有量、及び残部の含有量の和は、0.3質量%以上2.0質量%以下である、
    半導体装置用基板。
PCT/JP2018/044942 2018-12-06 2018-12-06 セラミックス焼結体及び半導体装置用基板 WO2020115868A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/044942 WO2020115868A1 (ja) 2018-12-06 2018-12-06 セラミックス焼結体及び半導体装置用基板
JP2020558756A JP7062087B2 (ja) 2018-12-06 2018-12-06 セラミックス焼結体及び半導体装置用基板
CN201880098397.9A CN112789256B (zh) 2018-12-06 2018-12-06 陶瓷烧结体以及半导体装置用基板
EP18942212.4A EP3854766A4 (en) 2018-12-06 2018-12-06 CERAMIC SINTERED BODY AND SUBSTRATE FOR SEMICONDUCTOR DEVICE
US17/317,986 US11897817B2 (en) 2018-12-06 2021-05-12 Ceramic sintered body and substrate for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044942 WO2020115868A1 (ja) 2018-12-06 2018-12-06 セラミックス焼結体及び半導体装置用基板

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/317,986 Continuation US11897817B2 (en) 2018-12-06 2021-05-12 Ceramic sintered body and substrate for semiconductor device

Publications (1)

Publication Number Publication Date
WO2020115868A1 true WO2020115868A1 (ja) 2020-06-11

Family

ID=70974928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044942 WO2020115868A1 (ja) 2018-12-06 2018-12-06 セラミックス焼結体及び半導体装置用基板

Country Status (5)

Country Link
US (1) US11897817B2 (ja)
EP (1) EP3854766A4 (ja)
JP (1) JP7062087B2 (ja)
CN (1) CN112789256B (ja)
WO (1) WO2020115868A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118802A1 (ja) * 2020-12-04 2022-06-09 Ngkエレクトロデバイス株式会社 セラミック焼結体及び半導体装置用基板
WO2022230220A1 (ja) * 2021-04-28 2022-11-03 富士電機株式会社 半導体装置
WO2023085313A1 (ja) * 2021-11-12 2023-05-19 京セラ株式会社 摺動部材およびそれを用いた仮撚機用ディスク
WO2024053619A1 (ja) * 2022-09-05 2024-03-14 Ngkエレクトロデバイス株式会社 セラミック基板、及びこれを備えた半導体装置用基板
WO2024071385A1 (ja) * 2022-09-29 2024-04-04 京セラ株式会社 複合セラミックス

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4242192A1 (en) * 2022-03-11 2023-09-13 CeramTec GmbH Ceramic substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140072A (en) * 1980-03-11 1981-11-02 Gen Electric Manufacture of alumina ceramic
JPH06107454A (ja) * 1992-09-25 1994-04-19 Toshiba Tungaloy Co Ltd アルミナ系焼結体及びその製造方法
WO2010114126A1 (ja) * 2009-04-03 2010-10-07 株式会社住友金属エレクトロデバイス セラミックス焼結体およびそれを用いた半導体装置用基板
WO2014103465A1 (ja) * 2012-12-25 2014-07-03 ニッコー株式会社 アルミナ質基板及び半導体装置用基板
JP2015534280A (ja) 2012-10-29 2015-11-26 ロジャーズ ジャーマニー ゲーエムベーハー 金属・セラミック基板および金属・セラミック基板の製造方法
WO2016208766A1 (ja) 2015-06-26 2016-12-29 京セラ株式会社 セラミック基板およびこれを用いた実装用基板ならびに電子装置
WO2017217490A1 (ja) * 2016-06-16 2017-12-21 日本碍子株式会社 セラミック素地及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8614542B2 (en) * 2006-12-18 2013-12-24 Federal-Mogul Ignition Company Alumina ceramic for spark plug insulator
EP2637204B8 (en) * 2010-11-01 2017-05-31 Nippon Steel & Sumikin Electronics Devices Inc. An electronic component element housing package
KR101522807B1 (ko) * 2011-07-14 2015-05-26 가부시끼가이샤 도시바 세라믹스 회로 기판
SG188775A1 (en) * 2011-09-30 2013-04-30 Hoya Corp Manufacturing method of glass substrate for magnetic disk, magnetic disk, and magnetic data recording/reproducing device
JP5836862B2 (ja) * 2012-03-26 2015-12-24 京セラ株式会社 電子部品実装用基板および電子装置
JP6038698B2 (ja) * 2013-03-22 2016-12-07 日本碍子株式会社 セラミックス部材及び半導体製造装置用部材
FR3008967B1 (fr) * 2013-07-26 2016-12-30 Saint-Gobain Centre De Rech Et D'Etudes Europeen Produit a haute teneur en alumine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140072A (en) * 1980-03-11 1981-11-02 Gen Electric Manufacture of alumina ceramic
JPH06107454A (ja) * 1992-09-25 1994-04-19 Toshiba Tungaloy Co Ltd アルミナ系焼結体及びその製造方法
WO2010114126A1 (ja) * 2009-04-03 2010-10-07 株式会社住友金属エレクトロデバイス セラミックス焼結体およびそれを用いた半導体装置用基板
JP4717960B2 (ja) 2009-04-03 2011-07-06 株式会社住友金属エレクトロデバイス セラミックス焼結体およびそれを用いた半導体装置用基板
JP2015534280A (ja) 2012-10-29 2015-11-26 ロジャーズ ジャーマニー ゲーエムベーハー 金属・セラミック基板および金属・セラミック基板の製造方法
WO2014103465A1 (ja) * 2012-12-25 2014-07-03 ニッコー株式会社 アルミナ質基板及び半導体装置用基板
WO2016208766A1 (ja) 2015-06-26 2016-12-29 京セラ株式会社 セラミック基板およびこれを用いた実装用基板ならびに電子装置
WO2017217490A1 (ja) * 2016-06-16 2017-12-21 日本碍子株式会社 セラミック素地及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3854766A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118802A1 (ja) * 2020-12-04 2022-06-09 Ngkエレクトロデバイス株式会社 セラミック焼結体及び半導体装置用基板
JPWO2022118802A1 (ja) * 2020-12-04 2022-06-09
CN114867699A (zh) * 2020-12-04 2022-08-05 Ngk电子器件株式会社 陶瓷烧结体以及半导体装置用基板
JP7251001B2 (ja) 2020-12-04 2023-04-03 Ngkエレクトロデバイス株式会社 セラミック焼結体及び半導体装置用基板
WO2022230220A1 (ja) * 2021-04-28 2022-11-03 富士電機株式会社 半導体装置
WO2023085313A1 (ja) * 2021-11-12 2023-05-19 京セラ株式会社 摺動部材およびそれを用いた仮撚機用ディスク
WO2024053619A1 (ja) * 2022-09-05 2024-03-14 Ngkエレクトロデバイス株式会社 セラミック基板、及びこれを備えた半導体装置用基板
WO2024071385A1 (ja) * 2022-09-29 2024-04-04 京セラ株式会社 複合セラミックス

Also Published As

Publication number Publication date
CN112789256A (zh) 2021-05-11
US20210261473A1 (en) 2021-08-26
EP3854766A1 (en) 2021-07-28
US11897817B2 (en) 2024-02-13
CN112789256B (zh) 2022-11-08
JP7062087B2 (ja) 2022-05-02
EP3854766A4 (en) 2022-05-11
JPWO2020115868A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2020115868A1 (ja) セラミックス焼結体及び半導体装置用基板
JP6591455B2 (ja) 高熱伝導性窒化珪素焼結体、それを用いた窒化珪素基板および窒化珪素回路基板並びに半導体装置
JP4997431B2 (ja) 高熱伝導窒化ケイ素基板の製造方法
JP5934069B2 (ja) 積層構造体、半導体製造装置用部材及び積層構造体の製造方法
JPWO2006118003A1 (ja) 窒化珪素基板、その製造方法、それを用いた窒化珪素配線基板及び半導体モジュール
JP2009218322A (ja) 窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュール
JPWO2020027077A1 (ja) 窒化珪素焼結体、窒化珪素基板、及び窒化珪素回路基板
JP7035220B2 (ja) セラミックス焼結体及び半導体装置用基板
JP2009215142A (ja) 窒化珪素基板及びその製造方法並びにそれを使用した窒化珪素回路基板及び半導体モジュール
JP7251001B2 (ja) セラミック焼結体及び半導体装置用基板
WO2022208900A1 (ja) セラミック焼結体及び半導体装置用基板
JP7148613B2 (ja) アルミナ質磁器およびセラミックヒータ
JP2010215465A (ja) 窒化アルミニウム基板およびその製造方法並びに回路基板、半導体装置
JP7176002B2 (ja) 半導体装置用基板
JPH11100274A (ja) 窒化珪素質焼結体、その製造方法及びそれを用いた回路基板
JP5481273B2 (ja) 窒化珪素・メリライト複合焼結体を用いた基板および部材
JP5073135B2 (ja) 窒化アルミニウム焼結体、その製造方法及び用途
JP2002029851A (ja) 窒化珪素質組成物、それを用いた窒化珪素質焼結体の製造方法と窒化珪素質焼結体
JPH11100273A (ja) 窒化珪素質焼結体、その製造方法及びそれを用いた回路基板
JPH11322437A (ja) 窒化珪素質焼結体とその製造方法、それを用いた回路基板
JP2021034633A (ja) セラミックス回路基板の製造方法
JP2002173373A (ja) 窒化アルミニウム焼結体およびその製造方法、並びにそれを用いた電子用部品
JP2002016365A (ja) 窒化珪素質配線基板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558756

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018942212

Country of ref document: EP

Effective date: 20210422

NENP Non-entry into the national phase

Ref country code: DE