WO2020115842A1 - 移動体制御装置、移動体、移動体制御方法およびプログラム - Google Patents

移動体制御装置、移動体、移動体制御方法およびプログラム Download PDF

Info

Publication number
WO2020115842A1
WO2020115842A1 PCT/JP2018/044750 JP2018044750W WO2020115842A1 WO 2020115842 A1 WO2020115842 A1 WO 2020115842A1 JP 2018044750 W JP2018044750 W JP 2018044750W WO 2020115842 A1 WO2020115842 A1 WO 2020115842A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
unit
area
unmanned aerial
aerial vehicle
Prior art date
Application number
PCT/JP2018/044750
Other languages
English (en)
French (fr)
Inventor
真澄 一圓
小川 雅嗣
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US17/297,149 priority Critical patent/US20220026900A1/en
Priority to PCT/JP2018/044750 priority patent/WO2020115842A1/ja
Priority to JP2020558732A priority patent/JP7188451B2/ja
Publication of WO2020115842A1 publication Critical patent/WO2020115842A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0022Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement characterised by the communication link
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0027Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement involving a plurality of vehicles, e.g. fleet or convoy travelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0044Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement by providing the operator with a computer generated representation of the environment of the vehicle, e.g. virtual reality, maps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point

Definitions

  • the present invention relates to a moving body control device, a moving body, a moving body control method, and a program.
  • Patent Document 2 robots are moved away from the base station one by one, and when the radio wave intensity from the base station becomes lower than a threshold value, a new robot is started from the base station, and a wide range of robot groups are provided while relaying. I suggest a method to move to.
  • Patent Document 3 when the radio wave intensity from the detected radio terminal is measured and a terminal having a lower intensity is detected as compared with a predetermined value, I have proposed a method to increase the output of radio waves.
  • Patent Document 4 proposes a method in which a mobile data terminal has an operating state of a base station and selects a base station with the largest received electric field strength in an idle state to establish a wireless communication line.
  • the inventor of the present application when using the techniques described in Patent Documents 1 to 4, uses a plurality of unmanned aircraft to communicate in a place where the situation is not confirmed (a place where safety is uncertain). We found a problem that the persistence of the communication path was reduced when forming the. For example, in the case of use in a disaster area or a conflict area, there is a place with uncertain safety, and there may be an obstacle, a trap, or an enemy. The inventor of the present application has found that when an unmanned aerial vehicle moves to such a place, its function is unexpectedly stopped or destroyed, and it becomes difficult to maintain a stable communication path.
  • An example of an object of the present invention is to provide a mobile body control device, a mobile body, a mobile body control method, and a program capable of maintaining a more stable communication path even in an area where safety is unclear. Is to provide.
  • the mobile unit control device acquires, for each of at least two or more places, safety information indicating the safety of the place for the mobile unit equipped with the communication device.
  • a safety information acquisition unit a communication status information acquisition unit that acquires communication status information indicating communication status at each of the at least two locations, the safety information, and the communication status information Based on the above, a location selecting unit that selects any one of the at least two locations, and a moving body control unit that controls the moving body so that the moving body is located at the selected location.
  • the moving body control method acquires, for each of at least two or more places, safety information indicating the safety of the place for the moving body equipped with the communication device.
  • the method includes the steps of selecting one of the above locations and controlling the moving body so that the moving body is located at the selected location.
  • the program causes the computer to acquire, for each of at least two or more places, safety information indicating the safety of the place for a mobile body equipped with a communication device.
  • control device of the present invention it is possible to maintain a more stable communication path even in an area where there is a place where safety is unclear.
  • FIG. 1 is a schematic configuration diagram showing an example of the configuration of a communication system according to the first embodiment.
  • the communication system 1 includes a plurality of unmanned aerial vehicles 10 and a communication network 20.
  • the number of unmanned aerial vehicles 10 included in the communication system 1 may be two or more, and is not limited to a specific number.
  • the communication system 1 can relay long-distance communication by the plurality of unmanned aerial vehicles 10 relaying communication.
  • the unmanned aerial vehicle 10 may be, for example, a robot that performs an autonomous action such as for land and air. Each of the unmanned aerial vehicles 10 senses the inside of the determined area with a sensing device, and calculates and controls the position of the unmanned aerial vehicle 10 while monitoring the situation and the communication situation in the area.
  • the unmanned aerial vehicle 10 corresponds to an example of a mobile body.
  • the mobile body included in the communication system 1 is not limited to an unmanned one.
  • the operation mode of the moving body includes an automatic mode and a manual mode, and in the case of the automatic mode, the moving body may perform the processing described below.
  • the moving body may assist the driving by the driver by providing information to the driver of the moving body.
  • the communication network 20 is a route for exchanging information with a plurality of unmanned aerial vehicles 10.
  • the type of communication in the communication network 20 is not limited to a particular type.
  • the unmanned aerial vehicle 10 includes a sensing device 11, an unmanned aerial vehicle control device 12, and a drive unit 13.
  • the unmanned aerial vehicle control device 12 includes a peripheral sensing unit 100, a communication unit 101, an area condition calculation unit 102, a current position information acquisition unit 103, a communication strength measurement unit 104, an area condition map storage unit 105, and position calculation.
  • a unit 106, a communication strength map storage unit 107, and a control unit 108 are provided.
  • the unmanned aerial vehicle control device 12 controls the unmanned aerial vehicle 10.
  • the unmanned aerial vehicle control device 12 determines the destination of the unmanned aerial vehicle 10 and controls the drive unit 13 to move the unmanned aerial vehicle 10 toward the destination.
  • the unmanned aerial vehicle control device 12 corresponds to an example of a mobile body control device.
  • the unmanned aerial vehicle control device 12 may be configured by using a computer such as a microcomputer or a workstation.
  • the unmanned aerial vehicle control device 12 may be configured using hardware designed specifically for the unmanned aerial vehicle control device 12, such as using an ASIC (Application Specific Integrated Circuit).
  • ASIC Application Specific Integrated Circuit
  • FIG. 1 shows an example in which the unmanned aerial vehicle 10 includes the unmanned aerial vehicle control device 12, and thus the unmanned aerial vehicle control device 12 is installed in the unmanned aerial vehicle 10.
  • the unmanned aerial vehicle control device 12 may be installed outside the unmanned aerial vehicle 10.
  • the unmanned aerial vehicle control device 12 determines and moves the destination of the own apparatus.
  • the drive unit 13 moves the unmanned aerial vehicle 10 under the control of the unmanned aerial vehicle control device 12.
  • the surroundings sensing unit 100 senses the surroundings of the unmanned aerial vehicle 10 by using the sensing device 11 to grasp the situation around the unmanned aerial vehicle 10.
  • Examples of the sensing device 11 include, but are not limited to, cameras and various radar sonars.
  • the communication unit 101 communicates with other devices.
  • the unmanned aerial vehicle control device 12 including the communication unit 101 corresponds to an example of a communication device.
  • the unmanned aerial vehicle 10 may include a communication device separately from the unmanned aerial vehicle control device 12.
  • the area situation calculation unit 102 performs processing for recognizing the area situation for the own device based on the data from the peripheral sensing unit 100.
  • the area here may be a predetermined area or may be an area determined according to the position of the own device such as 1 km (km) around the own device.
  • the area status calculation unit 102 performs processing for recognizing information indicating the safety of the place for the unmanned aerial vehicle 10, such as the presence or absence of dangerous objects or obstacles, the status of disaster occurrence, etc.
  • the area situation calculation unit 102 updates the area situation map information stored in the area situation map storage unit 105 based on the recognition result. By this update, the area situation calculation unit 102 reflects the recognition result in the area situation map information.
  • the area situation map information is information indicating the safety of the unmanned aerial vehicle 10 at each place for each place.
  • the area situation calculation unit 102 corresponds to an example of the safety information acquisition unit.
  • Area situation map information corresponds to an example of safety information.
  • the safety information here is not limited to the map format information, and may be information indicating the safety of the unmanned aerial vehicle 10 at each of at least two locations.
  • the safety information may be information indicating the safety of the unmanned aerial vehicle 10 at each of a plurality of predetermined specific locations.
  • the current position information acquisition unit 103 acquires current position information.
  • the current position information is information indicating the current position of the own device.
  • the method by which the current position information acquisition unit 103 acquires the current position information is not limited to a specific method.
  • the current position information acquisition unit 103 may include a GNSS (Global Navigation Satellite System) terminal device to measure the position of the own device.
  • the current position information acquisition unit 103 may image-recognize an image of the surrounding area of the own device and estimate the position of the own device.
  • GNSS Global Navigation Satellite System
  • the communication strength measuring unit 104 determines the goodness of the communication status with the other unmanned aerial vehicle 10 at the present location or the good communication status with the other terminal such as a terminal device possessed by a person. To measure.
  • the current location is the location where the aircraft is currently located.
  • the communication strength measurement unit 104 may measure the received signal strength or the S/N ratio (Signal-To-Noise Ratio) of the received signal in the communication unit 101, or both, but the present invention is not limited thereto.
  • the degree of good communication status is also called communication strength.
  • the communication strength measurement unit 104 updates the communication strength map information stored in the communication strength map storage unit 107 based on the communication strength measurement result. With this update, the communication strength measuring unit 104 reflects the measurement result of the communication strength on the communication strength map information.
  • the communication strength map information is information indicating the communication status at each place for each place.
  • the communication strength measurement unit 104 corresponds to an example of the communication status information acquisition unit.
  • the communication strength map information corresponds to an example of communication status information.
  • the communication status information here is not limited to the information in the map format, and may be the information indicating the communication status at each of at least two locations, at least.
  • the communication status information may be information indicating the communication status at each of a plurality of predetermined specific locations.
  • the area situation map storage unit 105 is a storage unit that stores the area situation map information described above.
  • the communication strength map storage unit 107 is a storage unit that stores the communication status information described above.
  • the position calculation unit 106 determines the next position (place) of the own device by calculation using the communication strength map information and the area situation map information. When the position calculation unit 106 determines the next position of the own device as a place other than the current position, the own device moves to that position. When the position calculation unit 106 determines the next position of the own device as the current position, the own device stays at the current position. The position calculation unit 106 selects one of the places indicated by the communication strength map information and the area condition map information. The position calculation unit 106 corresponds to an example of the place selection unit.
  • the control unit 108 controls the unmanned aerial vehicle 10 so that the unmanned aerial vehicle 10 is located at the location selected by the position calculation unit 106.
  • the control unit 108 corresponds to an example of the moving body control unit.
  • the control unit 108 controls the own device so as to move the own device to the position calculated by the position calculation unit 106.
  • the control unit 108 controls the own device so that the own device remains at the current position.
  • FIG. 2 is a diagram showing an example of a processing procedure in which the unmanned aerial vehicle control device 12 calculates the position of the own apparatus and controls the own apparatus.
  • the current position information acquisition unit 103 detects the current position of the own device, and the communication strength measurement unit 104 measures the communication strength at the current location (step S101). Then, the communication strength measurement unit 104 reflects the information on the measured communication strength on the information on the current location of the communication strength map information stored in the communication strength map storage unit 107 (step S102).
  • the peripheral sensing unit 100 senses the surroundings of the unmanned aerial vehicle 10 using the sensing device 11, and the area status calculation unit 102 numerically indicates the status of the peripheral area of the own device based on the information from the peripheral sensing unit 100.
  • the area situation calculation unit 102 reflects the information obtained by digitizing the situation of the surrounding area of the own device in the area situation map information stored in the area situation map storage unit 105 (step S104).
  • the position calculation unit 106 acquires the communication strength map information from the communication strength map storage unit 107 and acquires the area status map information from the area status map storage unit 105 (step S105). Then, the position calculation unit 106 can use the two pieces of map information to avoid a place where the safety of the own device is uncertain and a place where the own device is dangerous, and the terminal of another unmanned aerial vehicle 10 or a person. A position where communication connectivity with another device such as a device can be maintained is calculated (step S106).
  • the control unit 108 controls the drive unit 13 to move itself to the position calculated by the position calculation unit 106 (step S107).
  • the unmanned aerial vehicle control device 12 determines whether or not a certain time has elapsed (step S108).
  • the start timing of the fixed time here is not limited to a specific timing.
  • the unmanned aerial vehicle control device 12 may determine whether or not a certain period of time has elapsed since the processing of FIG. 2 was started.
  • the unmanned aerial vehicle control device 12 may determine whether or not a predetermined time has elapsed after the processing of step S107 is completed.
  • step S108 NO
  • the process returns to step S108.
  • the unmanned aerial vehicle control device 12 waits for a certain period of time to elapse.
  • step S108: YES the process returns to step S101.
  • the unmanned aerial vehicle control device 12 periodically performs a series of processes of steps S101 to S107.
  • the unmanned aerial vehicle control device 12 calculates and controls the position of the own vehicle.
  • the data structure of the communication strength map information and the area status map information there is a structure in which the target area is divided into small areas by a grid and a scalar value is set for each small area.
  • the Q value described in Patent Document 1 may be used.
  • the Q value is a value obtained by the communication strength and the communication speed from the two objects to be bridged, and the better the relay point, the higher the value. Further, since the communication strength changes with the passage of time, the value of each grid may be made to decline with the passage of time.
  • the information on the recognition result of the situation of the area for the own device, which is output by the area situation calculation unit 102, may be, for example, the recognition information of an obstacle or the like in the traveling direction of the own device. Further, the area situation calculation unit 102 may determine an area that cannot be recognized well as an area with uncertain safety. In this case, the area status calculation unit 102 may calculate a predetermined numerical value indicating a relatively high risk as the numerical value indicating the status of this area. The area situation calculation unit 102 updates the area situation map information based on the situation recognition result. For example, the area status calculation unit 102 digitizes the safety of the own machine in the small area in units of the small areas set in the area status map information, and updates the numerical value of the corresponding small area in the area status map information. May be.
  • the position calculation unit 106 calculates the position using the communication strength map information and the area situation map information
  • first, one evaluation value is calculated from the values of the two information, and the evaluation value is the highest.
  • the position calculation unit 106 may take these two numerical values as one evaluation value by averaging the numerical values read from the communication strength map information and the numerical values read from the area condition map information.
  • the position calculation unit 106 may set the evaluation value of the place where the uncertainty is higher than a certain value to 0 (the lowest evaluation). Good.
  • the area status calculation unit 102 for each of at least two or more locations, an area status map showing the safety of the location for the unmanned aerial vehicle 10 equipped with the unmanned aerial vehicle control device 12 as a communication device. Get information.
  • the communication strength measuring unit 104 acquires, for each of the above-mentioned at least two locations, communication strength map information indicating the communication status at that location.
  • the position calculation unit 106 selects any one of the above-mentioned at least two places based on the area situation map information and the communication strength map information.
  • the control unit 108 controls the drone 10 so that the drone 10 is located at the selected location.
  • the unmanned aerial vehicle control device 12 can maintain a more stable communication path even in a dangerous place or an area where safety is unclear.
  • the unmanned aerial vehicle control device 12 can provide a more reliable and durable method when a plurality of unmanned aerial vehicles constitute a communication path bridge in a dangerous place or an area where safety is unclear. High communication channel can be maintained. The reason is that the unmanned aerial vehicle control device 12 calculates the position where the own device can safely maintain the communication route based on the information on the communication strength with other devices in the area and the information on the situation in the area. Then, the player's aircraft is moved to that position.
  • FIG. 3 is a schematic configuration diagram showing an example of the configuration of the communication system according to the second embodiment.
  • the communication system 2 includes a plurality of unmanned aerial vehicles 40, a communication network 20, and a terminal device 30.
  • the unmanned aerial vehicle 40 includes the sensing device 11, the unmanned aerial vehicle control device 42, and the drive unit 13.
  • the unmanned aerial vehicle control device 42 includes a peripheral sensing unit 100, an unmanned aerial vehicle side communication unit 401, an area status calculation unit 102, a current position information acquisition unit 103, a communication strength measurement unit 104, and an unmanned aerial vehicle side area status map storage. It includes a unit 405, a position calculation unit 106, a communication strength map storage unit 107, a control unit 108, and an unmanned aerial vehicle side area situation map sharing unit 409.
  • the terminal device 30 includes a terminal-side communication unit 300, a terminal-side area status map sharing unit 301, a terminal-side area status map storage unit 302, and an area status input unit 303.
  • the communication network 20 of each part of the communication system 2 is the same as that of the communication system 1 (FIG. 1), and the same reference numerals are given and the description thereof is omitted here.
  • the sensing device 11 and the drive unit 13 are the same as those in the unmanned aerial vehicle 10 (FIG. 1), and are denoted by the same reference numerals, and description thereof will be omitted here.
  • the peripheral sensing unit 100, the area condition calculation unit 102, the current position information acquisition unit 103, the communication strength measurement unit 104, the position calculation unit 106, and the communication strength map storage are the same as in the case of the unmanned aerial vehicle control device 12 (FIG. 1 ), and are assigned the same reference numerals and explanations thereof are omitted here.
  • the unmanned aerial vehicle side communication unit 401 is the same as the communication unit 101 (FIG. 1), and a description thereof will be omitted.
  • the unmanned-apparatus-side communication unit 401 has its name and reference numeral changed from that of the communication unit 101 in order to distinguish it from the terminal-side communication unit 300.
  • the unmanned aerial vehicle side area status map storage unit 405 is similar to the area status map storage unit 105 (FIG. 1), and a description thereof will be omitted.
  • the unmanned aerial vehicle side area situation map storage unit 405 has a name and a code changed from the area situation map storage unit 105 in order to distinguish it from the terminal side area situation map storage unit 302.
  • the communication system 2 differs from the communication system 1 in that it includes the terminal device 30 and each unit thereof, and that the unmanned aerial vehicle control device 42 of the unmanned aerial vehicle 40 includes the unmanned aerial vehicle side area status map sharing unit 409. In other respects, the communication system 2 is similar to the communication system 1.
  • the unmanned aircraft side area status map sharing unit 409 communicates with other communicable unmanned aircraft 40 and the terminal device 30 via the unmanned aircraft side communication unit 401 and the communication network 20, and each has an area situation map. Exchange and share information.
  • the unmanned aircraft side area situation map sharing unit 409 corresponds to an example of the information sharing unit.
  • the terminal device 30 is a device that a person carries and uses. A person who owns and uses the terminal device 30 is referred to as a user of the terminal device 30 or simply a user.
  • the terminal device 30 receives the input of the area situation determined by the user, and transmits the input area situation information to the unmanned aerial vehicle 40.
  • FIG. 3 shows an example in which the communication system 2 includes one terminal device 30, but the number of terminal devices 30 included in the communication system 2 is not limited to a specific number.
  • the communication system 2 may include a plurality of terminal devices 30. Alternatively, the communication system 2 may not include the terminal device 30.
  • each terminal device 30 may share the area situation map information with another terminal device 30 in addition to the unmanned aerial vehicle 40.
  • the terminal-side communication unit 300 communicates with the unmanned aerial vehicle 40 via the communication network 20 to exchange information.
  • the terminal-side area situation map sharing unit 301 communicates with the communicable unmanned device 40 via the terminal-side communication unit 300 and the communication network 20, and exchanges and shares the area situation map information that each has.
  • the terminal-side area situation map storage unit 302 stores information indicating the situation of the area determined by the user so far in the area situation map information.
  • the area status map information stored in the terminal side area status map storage unit 302 also reflects the area status map information acquired by the terminal side area status map sharing unit 301 from the unmanned aerial vehicle 40.
  • the area status input unit 303 includes, for example, an input device such as a touch panel or a keyboard, and receives input of information indicating the status of the area determined by a person.
  • FIG. 4 is a diagram showing an example of a processing procedure in which the unmanned aerial vehicle control device 42 calculates the position of the own device and controls the own device.
  • the processing of steps S201 to S204 of FIG. 4 is the same as the processing of steps S101 to S104 of FIG.
  • the unmanned aerial vehicle control device 42 updates the area situation map information based on the sensing information around the own device.
  • the unmanned aerial-side area situation map sharing unit 409 shares the area situation map information with another unmanned aerial vehicle 40 and the terminal device 30 with which communication is possible (step S205).
  • Subsequent processing of steps S206 to S209 is similar to the processing of steps S105 to S108 of FIG.
  • the unmanned-machine-side area situation map sharing unit 409 shares area situation map information with other communicable unmanned vehicles 40 and terminal devices 30.
  • Each of the unmanned aerial vehicles 40 and the terminal device 30 is assumed to store, as the area situation map information, for each small area in which the target area is divided by a grid, a value indicating the situation of the small area is stored.
  • the unmanned aircraft side area situation map sharing unit 409 has acquired one or more area situation map information from another device.
  • a plurality of area situation map information is obtained together with the area situation map information stored in the unmanned aerial area situation map storage unit 405.
  • the unmanned aerial vehicle side area status map sharing unit 409 may read the value of the small area from each of the plurality of area status map information for each small area and calculate the average value. Then, the unmanned aerial vehicle side area situation map sharing unit 409 may generate new area situation map information in which the average value for each small area is combined, and may store it in the unmanned aerial vehicle side area situation map storage unit 405.
  • the unmanned aerial vehicle side area status map sharing unit 409 may acquire the maximum value (value indicating the highest safety) in the small area instead of calculating the average value for each small area.
  • the unmanned aerial vehicle side area status map sharing unit 409 may acquire the minimum value (value indicating the highest risk) in the small area instead of calculating the average value for each small area. The same applies to the sharing of the area situation map information by the terminal side area situation map sharing unit 301.
  • FIG. 5 is a diagram illustrating an example of a processing procedure in which the terminal device 30 receives a user input of the area situation.
  • the user of the terminal device 30 grasps the surrounding situation of the user himself and inputs the grasped situation to the terminal device 30 as the situation of the area.
  • the area status input unit 303 receives a user operation for inputting the area status (step S301).
  • the area situation input unit 303 reflects the input information in the area situation map information stored in the terminal side area situation map storage unit 302 (step S302).
  • the terminal side area situation map sharing unit 301 shares the updated area situation map information with the unmanned aerial vehicle 40 capable of communicating via the terminal side communication unit 300 and the communication network 20 (step S303).
  • the terminal device 30 ends the process of FIG.
  • the terminal device 30 may display the area situation map information in which the target area is divided by a grid or a part of the area situation map information, and may accept a user operation to update the value of the grid.
  • FIG. 6 is a diagram showing an example of an input screen of the situation of the area displayed by the terminal device 30.
  • the terminal device 30 displays the area situation map information 501 in which the target area is divided into small areas by a grid, and the current position (the position of the terminal device 30 itself) is displayed on the map with a star icon 502. Showing.
  • the terminal device 30 displays darker in a small area having a higher degree of uncertainty or risk, that is, a smaller area having a lower degree of safety.
  • the terminal device 30 also displays an indicator 511 that specifies the degree of uncertainty or the risk.
  • the user specifies the degree of uncertainty or the degree of risk by sliding the slider 512 indicated by the indicator 511 to the left or right by a touch operation.
  • the value of the touched small area is set to the value designated by the indicator 511.
  • the value set in the small area here is a value indicating the degree of uncertainty or the risk of the small area.
  • the unmanned aircraft side area situation map sharing unit 409 shares the area situation map information with other unmanned aircraft 40.
  • the unmanned aerial vehicle control device 42 can maintain a more stable communication path even in a dangerous place or an area where safety is unclear.
  • the unmanned aerial vehicle control device 42 when a plurality of unmanned aerial vehicles constitute a bridge of a communication path in a dangerous place or an area where safety is unclear, the unmanned aerial vehicle control device 12 It is possible to maintain a more reliable and more durable communication path than in the case of.
  • the reason is that the situation of the unmanned aerial vehicle 40 and the area determined by the person is shared between the unmanned aerial vehicles 40, so that the unmanned aerial vehicle control device 42 can determine the position of the own aircraft based on more accurate and more area situation information. This is because it can be calculated. Sharing the area situation map information is expected to improve the accuracy of the area situation map information. By increasing the accuracy of the area situation map information, the unmanned aerial vehicle 40 can more reliably avoid a dangerous place or a place where safety is unclear.
  • the unmanned aerial vehicle side area status map sharing unit 409 shares the area status map information with another unmanned aerial vehicle control device 42 with which communication is possible.
  • Each of the unmanned aerial vehicle control devices 42 stores the area situation map information in a common format, so that not only the specific unmanned aerial vehicle control device 42 but also the communicable unmanned aerial vehicle control device 42 and the area situation map information are stored. Can share.
  • each of the unmanned aerial vehicles 40 and the terminal device 30 stores, as the area status map information, a value indicating the status of the small area for each small area obtained by dividing the target area with a grid. ..
  • the unmanned aerial vehicle control device 42 there are relatively many opportunities to share the area situation map information. In this respect, the unmanned aerial vehicle control device 42 can maintain a more stable communication path even in a dangerous place or an area where safety is unclear.
  • the unmanned aerial vehicle side area status map sharing unit 409 shares the area status map information of the terminal device 30 which receives a user operation for inputting the area status map information and updates or generates the area status map information. According to the unmanned aerial vehicle control device 42, by sharing the area situation map information updated or generated by a person's judgment, even if there is a dangerous place or a place where safety is unclear, Furthermore, a stable communication path can be maintained.
  • FIG. 7 is a diagram illustrating an example of the configuration of the mobile unit control device according to the embodiment.
  • the mobile unit control device 600 shown in FIG. 7 includes a safety information acquisition unit 601, a communication status information acquisition unit 602, a location selection unit 603, and a mobile unit control unit 604.
  • the safety information acquisition unit 601 acquires, for each of at least two or more places, safety information indicating the safety of the place for the mobile body equipped with the communication device.
  • the communication status information acquisition unit 602 acquires, for each of the above-mentioned at least two locations, communication status information indicating the communication status at that location.
  • the location selection unit 603 selects any one of the above-mentioned at least two locations based on the safety information and the communication status information.
  • the moving body control unit 604 controls the moving body so that the moving body is located at the selected place.
  • the mobile unit control device 600 can maintain a more stable communication path even in a dangerous place or an area where safety is unclear.
  • FIG. 8 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • the computer 700 includes a CPU (Central Processing Unit) 710, a main storage device 720, an auxiliary storage device 730, and an interface 740. Any one or more of the unmanned aerial vehicle control device 12, the unmanned aerial vehicle control device 42, the mobile unit control device 600, and the terminal device 30 may be implemented in the computer 700. In that case, the operation of each processing unit described above is stored in the auxiliary storage device 730 in the form of a program.
  • the CPU 710 reads the program from the auxiliary storage device 730, expands it in the main storage device 720, and executes the above processing according to the program.
  • the CPU 710 secures a storage area corresponding to each storage unit described above in the main storage device 720 according to a program. Communication between the unmanned aerial vehicle control device or the mobile device control device and another device is performed by the interface 740 having a communication function and performing communication under the control of the CPU 710.
  • the operation with 108 is stored in the auxiliary storage device 730 in the form of a program.
  • the CPU 710 reads the program from the auxiliary storage device 730, expands it in the main storage device 720, and executes the above processing according to the program.
  • the CPU 710 secures a storage area corresponding to the area status map storage unit 105 and the communication strength map storage unit 107 in the main storage device 720 according to the program.
  • Communication between the unmanned aerial vehicle control device 12 and another unmanned aerial vehicle control device 12 by the communication unit 101 is executed by the interface 740 having a communication function and performing communication under the control of the CPU 710.
  • the operations of 108 and the unmanned aerial vehicle side area status map sharing unit 409 are stored in the auxiliary storage device 730 in the form of a program.
  • the CPU 710 reads the program from the auxiliary storage device 730, expands it in the main storage device 720, and executes the above processing according to the program.
  • the CPU 710 secures a storage area corresponding to the unmanned aerial vehicle side area status map storage unit 405 and the communication strength map storage unit 107 in the main storage device 720 according to the program.
  • Communication between the unmanned aerial vehicle control device 42 and the other unmanned aerial vehicle control device 42 or the terminal device 30 by the unmanned aerial vehicle side communication unit 401 is executed by the interface 740 having a communication function and performing communication under the control of the CPU 710. .
  • the operations of the safety information acquisition unit 601, the communication status information acquisition unit 602, the location selection unit 603, and the mobile unit control unit 604 are in the form of a program. It is stored in the auxiliary storage device 730.
  • the CPU 710 reads the program from the auxiliary storage device 730, expands it in the main storage device 720, and executes the above processing according to the program. Communication between the mobile unit control device 600 and other devices is performed by the interface 740 having a communication function and performing communication under the control of the CPU 710.
  • the operations of the terminal side area status map sharing unit 301 and the area status input unit 303 are stored in the auxiliary storage device 730 in the form of a program.
  • the CPU 710 reads the program from the auxiliary storage device 730, expands it in the main storage device 720, and executes the above processing according to the program. Further, the CPU 710 secures a storage area corresponding to the terminal side area status map storage unit 302 in the main storage device 720 according to the program. Communication between the terminal device 30 and the unmanned aerial vehicle control device 42 or another terminal device 30 by the terminal-side communication unit 300 is performed by the interface 740 having a communication function and performing communication under the control of the CPU 710.
  • a program for realizing all or a part of the functions of the unmanned aerial vehicle control devices 12 and 42 is recorded in a computer-readable recording medium, and the program recorded in this recording medium is read by a computer system and executed. You may perform the process of each part by doing.
  • the “computer system” mentioned here includes an OS (operating system) and hardware such as peripheral devices.
  • the "computer-readable recording medium” is a portable medium such as a flexible disk, a magneto-optical disk, a ROM (Read Only Memory), a CD-ROM (Compact Disc Read Only Memory), a hard disk built in a computer system, or the like. A memory device.
  • the above-mentioned program may be one for realizing a part of the above-mentioned functions, and may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system.
  • the embodiment of the present invention may be applied to a moving body control device, a moving body, a moving body control method, and a program.

Abstract

移動体制御装置が、少なくとも2か所以上の場所の各々について、通信機器を搭載した移動体にとってのその場所の安全性を示す安全性情報を取得する安全性情報取得部と、前記少なくとも2か所以上の場所の各々について、その場所での通信状況を示す通信状況情報を取得する通信状況情報取得部と、前記安全性情報と前記通信状況情報とに基づいて、前記少なくとも2か所以上の場所のうち何れかの場所を選択する場所選択部と、選択された前記場所に前記移動体が位置するよう、前記移動体を制御する移動体制御部と、を備える。

Description

移動体制御装置、移動体、移動体制御方法およびプログラム
 本発明は、移動体制御装置、移動体、移動体制御方法およびプログラムに関する。
 無人機にセンサまたはカメラなどの情報取得機器を搭載し、その無人機を複数配置制御して、特定エリア内で効率的かつ安全にオペレーション遂行に活用しようとする潮流がある。例えば、被災地区等で通信インフラが利用できないエリアにて、通信経路を臨時的に複数無人機で形成し、エリアを捜索し確認する小隊と本部との間の情報伝達を行う応用が考えられる。例えば無線通信で経路を形成する場合、時間経過や他機の配置で変化する通信強度に合わせて自機の配置を制御する必要がある。
 無人機を使った通信経路の形成の方法はいくつか提案されている。ロボットの配置を制御することで通信経路を形成し維持するアプローチでは、例えば特許文献1は2つの無線通信装置がある場合に、両方からの電波強度を測定して、両方と通信可能な中継位置を検出して移動するロボットを提案している。
 特許文献2は基地局から1台ずつロボットが離れるように移動し、基地局からの電波強度が閾値より低くなった場合は、基地局から新たなロボットを発進させ、中継させながらロボット群が広範囲に移動していく方法を提案している。
 無線電波の出力を制御することで形成・維持するアプローチでは、例えば特許文献3は検出された無線端末からの電波強度を測定し、所定の値と比較して低い強度の端末が検出された場合に、電波の出力を上げる方法を提案している。特許文献4は移動データ端末が基地局の運用状態を持ち、空き状態にある受信電界強度の最も大きい基地局を選択して無線通信回線を確立する方式を提案している。 
日本国特開2005-86262号公報 日本国特開平7-202791号公報 日本国特開2000-286790号公報 日本国特開平7-307971号公報
 本願発明者は、特許文献1乃至特許文献4に記載されている技術を用いた場合に、状況が確認されていない場所(安全性が不確実な場所)にて、複数の無人機で通信路を形成する際、通信路の持続性が低下するという課題を見出した。例えば、被災地区や紛争地区などでの用途の場合には、安全性が不確実な場所が存在し、そこには障害物、罠、または、敵がいる可能性がある。そのような場所に無人機が移動すると想定外に機能が停止したり、破壊されたりして、通信路を安定的に維持することが難しくなることを本願発明者は見出した。
 本発明の目的の一例は、安全性が不明確な場所が存在するエリアであっても、より安定した通信路を維持することが可能な移動体制御装置、移動体、移動体制御方法およびプログラムを提供することである。
 本発明の第1の態様によれば、移動体制御装置は、少なくとも2か所以上の場所の各々について、通信機器を搭載した移動体にとってのその場所の安全性を示す安全性情報を取得する安全性情報取得部と、前記少なくとも2か所以上の場所の各々について、その場所での通信状況を示す通信状況情報を取得する通信状況情報取得部と、前記安全性情報と前記通信状況情報とに基づいて、前記少なくとも2か所以上の場所のうち何れかの場所を選択する場所選択部と、選択された前記場所に前記移動体が位置するよう、前記移動体を制御する移動体制御部と、を備える。
 本発明の第2の態様によれば、移動体制御方法は、少なくとも2か所以上の場所の各々について、通信機器を搭載した移動体にとってのその場所の安全性を示す安全性情報を取得する工程と、前記少なくとも2か所以上の場所の各々について、その場所での通信状況を示す通信状況情報を取得する工程と、前記安全性情報と前記通信状況情報とに基づいて、前記少なくとも2か所以上の場所のうち何れかの場所を選択する工程と、選択された前記場所に前記移動体が位置するよう、前記移動体を制御する工程と、を含む。
 本発明の第3の態様によれば、プログラムは、コンピュータに、少なくとも2か所以上の場所の各々について、通信機器を搭載した移動体にとってのその場所の安全性を示す安全性情報を取得する工程と、前記少なくとも2か所以上の場所の各々について、その場所での通信状況を示す通信状況情報を取得する工程と、前記安全性情報と前記通信状況情報とに基づいて、前記少なくとも2か所以上の場所のうち何れかの場所を選択する工程と、選択された前記場所に前記移動体が位置するよう、前記移動体を制御する工程と、を実行させるためのプログラムである。
 本発明に係る制御装置によれば、安全性が不明確な場所が存在するエリアであっても、より安定した通信路を維持することができる。
第1実施形態に係る通信システムの構成の例を示す概略構成図である。 第1実施形態に係る無人機制御装置が自機の位置を計算して自機を制御する処理手順の例を示す図である。 第2実施形態に係る通信システムの構成の例を示す概略構成図である。 第2実施形態に係る無人機制御装置が自機の位置を計算して自機を制御する処理手順の例を示す図である。 第2実施形態に係る端末装置が、エリアの状況のユーザ入力を受け付ける処理手順の例を示す図である。 第2実施形態に係る端末装置が表示するエリアの状況の入力画面の例を示す図である。 実施形態に係る移動体制御装置の構成の例を示す図である。 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 以下、本発明の実施形態を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
<第1実施形態>
 図1は、第1実施形態に係る通信システムの構成の例を示す概略構成図である。図1に示す構成で、通信システム1は、複数の無人機10と、通信網20とを備える。通信システム1が備える無人機10の個数は、2つ以上であればよく、特定の個数に限定されない。複数の無人機10が通信を中継することで、通信システム1は、遠距離通信を中継することができる。
 無人機10は、例えば水陸空用などの自律行動をおこなうロボットであってもよい。無人機10の各々は、決められたエリア内をセンシング機器にてセンシングし、エリア内の状況と通信状況を監視しながら、無人機10自らの位置を計算して制御する。
 無人機10は、移動体の例に該当する。但し、通信システム1が備える移動体は、無人のものに限定されない。例えば、移動体の運転モードに自動モードと手動モードとがあり、自動モードの場合に移動体が以下で説明する処理を行うようにしてもよい。あるいは、移動体が、移動体の運転者に対して情報を提供するなど、運転者による運転を補助するようにしてもよい。
 通信網20は複数の無人機10が情報交換するための経路である。通信網20における通信の種類は、特定のものに限定されない。
 無人機10は、センシング機器11と、無人機制御装置12と、駆動部13とを備える。無人機制御装置12は、周辺センシング部100と、通信部101と、エリア状況算出部102と、現在位置情報取得部103と、通信強度測定部104と、エリア状況マップ記憶部105と、位置計算部106と、通信強度マップ記憶部107と、制御部108とを備える。
 無人機制御装置12は、無人機10を制御する。特に、無人機制御装置12は、無人機10の移動先を決定し、駆動部13を制御して無人機10を移動先に向けて移動させる。無人機制御装置12は、移動体制御装置の例に該当する。
 無人機制御装置12が、例えばマイコン(Microcomputer)またはワークステーション(Workstation)等のコンピュータを用いて構成されていてもよい。あるいは、無人機制御装置12が、ASIC(Application Specific Integrated Circuit)を用いて構成されるなど、無人機制御装置12専用に設計されたハードウェアを用いて構成されていてもよい。
 図1では、無人機10が無人機制御装置12を備えている場合、したがって、無人機制御装置12が無人機10に搭載されている場合の例を示している。但し、無人機制御装置12が無人機10の外部に設置されていてもよい。無人機制御装置12が無人機10に搭載されている場合、無人機制御装置12を搭載する無人機10を自機と称する。無人機制御装置12は、自機の移動先を決定し、移動させる。
 駆動部13は、無人機制御装置12の制御に従って、無人機10を移動させる。
 周辺センシング部100は、センシング機器11を用いて無人機10の周辺をセンシングすることで、無人機10の周辺の状況を把握する。センシング機器11の例として、カメラおよび各種レーダー・ソナーを挙げることができるが、これらに限定されない。
 通信部101は他の機器と通信を行う。通信部101を備える無人機制御装置12は、通信機器の例に該当する。あるいは、無人機10が、無人機制御装置12とは別に通信機器を備えるようにしてもよい。
 エリア状況算出部102は周辺センシング部100からのデータを基に自機にとってのエリアの状況を認識する処理を行う。ここでのエリアは、予め定められているエリアであってもよいし、自機の周囲1キロメートル(km)など、自機の位置に応じて定まるエリアであってもよい。
 エリア状況算出部102は、危険物または障害物等の有無、あるいは災害発生状況など、無人機10にとっての場所の安全性を示す情報を認識する処理を行う。エリア状況算出部102は、エリア状況マップ記憶部105が記憶するエリア状況マップ情報を、認識結果に基づいて更新する。この更新により、エリア状況算出部102は、認識結果をエリア状況マップ情報に反映させる。エリア状況マップ情報は、場所毎に、無人機10にとってのその場所の安全性を示す情報である。
 エリア状況算出部102は、安全性情報取得部の例に該当する。エリア状況マップ情報は、安全性情報の例に該当する。
 但し、ここでの安全性情報は、マップ形式の情報に限定されず、少なくとも2か所以上の場所の各々について、無人機10にとってのその場所の安全性を示す情報であればよい。例えば、安全性情報は、予め複数定められた特定の場所の各々について、無人機10にとっての、その場所の安全性を示す情報であってもよい。
 現在位置情報取得部103は、現在位置情報を取得する。現在位置情報は、自機の現在の位置を示す情報である。
 現在位置情報取得部103が現在位置情報を取得する方法は、特定の方法に限定されない。例えば、現在位置情報取得部103が、GNSS(Global Navigation Satellite System)の端末装置を備え、自機の位置を測位するようにしてもよい。あるいは、現在位置情報取得部103が、自機の周囲を撮影した画像を画像認識して、自機の位置を推定するようにしてもよい。
 通信強度測定部104は、現在地における、他の無人機10との通信状況の良好度合い、または、人が所持する端末装置との通信状況の良好度合いなど、他の機器との通信状況の良好度合いを測定する。現在地は、現時点において自機が位置する場所である。
 例えば、通信強度測定部104が、通信部101における受信信号強度または受信信号のS/N比(Signal-To-Noise Ratio)、あるいはそれら両方を測定するようにしてもよいが、これら限定されない。
 通信状況の良好度合いを通信強度とも称する。
 通信強度測定部104は、通信強度マップ記憶部107が記憶する通信強度マップ情報を、通信強度の測定結果に基づいて更新する。この更新により、通信強度測定部104は、通信強度の測定結果を通信強度マップ情報に反映させる。通信強度マップ情報は、場所毎に、その場所での通信状況を示す情報である。
 通信強度測定部104は、通信状況情報取得部の例に該当する。通信強度マップ情報は、通信状況情報の例に該当する。
 但し、ここでの通信状況情報は、マップ形式の情報に限定されず、少なくとも2か所以上の場所の各々について、その場所での通信状況を示す情報であればよい。例えば、通信状況情報は、予め複数定められた特定の場所の各々について、その場所での通信状況を示す情報であってもよい。
 エリア状況マップ記憶部105は、上述したエリア状況マップ情報を記憶する記憶部である。
 通信強度マップ記憶部107は、上述した通信状況情報を記憶する記憶部である。
 位置計算部106は通信強度マップ情報とエリア状況マップ情報とを用いて自機の次の位置(場所)を、計算によって決定する。位置計算部106が、自機の次の位置を現在地以外の場所に決定した場合、自機は、その位置へ移動する。位置計算部106が、自機の次の位置を現在地に決定した場合、自機は、現在地に留まる。
 位置計算部106は、通信強度マップ情報およびエリア状況マップ情報に示される場所のうち何れかの場所を選択する。位置計算部106は、場所選択部の例に該当する。
 制御部108は、位置計算部106が選択した場所に無人機10が位置するよう、無人機10を制御する。制御部108は、移動体制御部の例に該当する。
 位置計算部106が、自機の次の位置を現在地以外の位置に決定した場合、制御部108は、位置計算部106が計算した位置に自機を移動させるように、自機を制御する。位置計算部106が、自機の次の位置を現在地に決定した場合、制御部108は、自機を現在地に留まらせるように、自機を制御する。
 次に図2を参照して、無人機制御装置12が自機の位置を計算して自機を制御する処理フローについて説明する。
 図2は、無人機制御装置12が自機の位置を計算して自機を制御する処理手順の例を示す図である。図2の例で、現在位置情報取得部103が自機の現在位置を検出し、通信強度測定部104が現在地における通信強度を測定する(ステップS101)。
 そして、通信強度測定部104は、測定した通信強度の情報を、通信強度マップ記憶部107が記憶する通信強度マップ情報の、現在地の情報に反映させる(ステップS102)。
 また、周辺センシング部100が、センシング機器11を用いて無人機10の周辺をセンシングし、エリア状況算出部102は、周辺センシング部100からの情報を基に、自機の周辺エリアの状況を数値化する(ステップS103)。
 そして、エリア状況算出部102は、自機の周辺エリアの状況を数値化した情報を、エリア状況マップ記憶部105が記憶するエリア状況マップ情報に反映させる(ステップS104)。
 次に、位置計算部106は、通信強度マップ記憶部107から通信強度マップ情報を取得し、エリア状況マップ記憶部105からエリア状況マップ情報を取得する(ステップS105)。そして、位置計算部106は、2つのマップ情報を使って、自機の安全性が不確実な場所、および、自機にとって危険な場所を回避でき、かつ、他の無人機10または人の端末装置など、他の装置との通信接続性を維持できる位置を計算する(ステップS106)。
 そして、制御部108が駆動部13を制御して、位置計算部106が計算した位置へ自機を移動させる(ステップS107)。
 次に、無人機制御装置12は、一定時間が経過したか判定する(ステップS108)。ここでの一定時間の開始タイミングは、特定のタイミングに限定されない。例えば、無人機制御装置12が、図2の処理を開始してから一定時間が経過したか判定するようにしてもよい。あるいは、無人機制御装置12、ステップS107の処理を終了してから一定時間が経過したか判定するようにしてもよい。
 一定時間が経過していないと無人機制御装置12が判定した場合(ステップS108:NO)、処理がステップS108へ戻る。これにより、無人機制御装置12は、一定時間の経過を待ち受ける。
 一方、一定時間が経過したと無人機制御装置12が判定した場合(ステップS108:YES)、処理がステップS101へ戻る。これにより、無人機制御装置12は、ステップS101からS107の一連の処理を定期的に行う。
 次に無人機制御装置12が自機の位置を計算して制御する処理の具体例について説明する。
 通信強度マップ情報およびエリア状況マップ情報のデータ構造の例として、対象エリアがグリッドで小エリアに区切られ、小エリア毎にスカラ値が設定される構造が挙げられる。
 通信強度の情報としては、例えば特許文献1に記載されているQ値を用いるようにしてもよい。Q値は、橋渡しをする2つの対象からの通信強度および通信速度によって求められる値であり、中継ポイントとして良好であるほど値が高くなる。また、通信強度は時間経過によって変化するので、各グリッドの値を時間経過とともに衰退させていくようにしてもよい。
 エリア状況算出部102が出力する、自機にとってのエリアの状況の認識結果の情報は、例えば、自機の進行方向にある障害物等の認識情報であってもよい。また、エリア状況算出部102が、認識がうまくできないエリアを安全性が不確実なエリアと判断するようにしてもよい。この場合、エリア状況算出部102が、このエリアの状況を示す数値として、予め定められている比較的高い危険性を示す数値を算出するようにしてもよい。
 エリア状況算出部102は、状況の認識結果に基づいて、エリア状況マップ情報を更新する。例えば、エリア状況算出部102が、エリア状況マップ情報に設定されている小エリア単位で、小エリアにおける自機の安全性を数値化し、エリア状況マップ情報の該当小エリアの数値を更新するようにしてもよい。
 位置計算部106が、通信強度マップ情報とエリア状況マップ情報とを使って位置を計算する方法の例としては、まず2つの情報の値から1つの評価値を算出し、その評価値が最も高い位置を次の移動先位置にする方法が挙げられる。例えば、位置計算部106が、通信強度マップ情報から読み取った数値とエリア状況マップ情報から読み取った数値との平均をとることで、これら2つの数値を1つの評価値にするようにしてもよい。また、安全性が不確実な場所への移動を確実に避けるために、位置計算部106が、ある値以上に不確実さが高い場所の評価値を0(最低評価)にするようにしてもよい。
 以上のように、エリア状況算出部102は、少なくとも2か所以上の場所の各々について、通信機器としての無人機制御装置12を搭載した無人機10にとってのその場所の安全性を示すエリア状況マップ情報を取得する。通信強度測定部104は、上記の少なくとも2か所以上の場所の各々について、その場所での通信状況を示す通信強度マップ情報を取得する。位置計算部106は、エリア状況マップ情報と、通信強度マップ情報とに基づいて、上記の少なくとも2か所以上の場所のうち何れかの場所を選択する。制御部108は、選択された場所に無人機10が位置するよう、無人機10を制御する。
 無人機制御装置12によれば、危険な場所、または、安全性が不明確な場所が存在するエリアであっても、より安定した通信路を維持できる。例えば、無人機制御装置12によれば、危険な場所、または、安全性が不明確な場所が存在するエリア内で、複数の無人機が通信路のブリッジを構成する際、より確実かつ持続性の高い通信路を維持できる。
 その理由は、無人機制御装置12が、エリア内の他の機器との通信強度の情報に加えて、エリア内の状況の情報に基づいて、自機が安全に通信経路を維持できる位置を計算し、自機をその位置に移動させるからである。
<第2実施形態>
 複数の無人機が、あるいは1つ以上の無人機と、人が所持する端末装置とが、エリア状況マップ情報を共有するようにしてもよい。第2実施形態では、この点について説明する。
 図3は、第2実施形態に係る通信システムの構成の例を示す概略構成図である。図3に示す構成で、通信システム2は、複数の無人機40と、通信網20と、端末装置30とを備える。無人機40は、センシング機器11と、無人機制御装置42と、駆動部13とを備える。無人機制御装置42は、周辺センシング部100と、無人機側通信部401と、エリア状況算出部102と、現在位置情報取得部103と、通信強度測定部104と、無人機側エリア状況マップ記憶部405と、位置計算部106と、通信強度マップ記憶部107と、制御部108と、無人機側エリア状況マップ共有部409とを備える。端末装置30は、端末側通信部300と、端末側エリア状況マップ共有部301と、端末側エリア状況マップ記憶部302と、エリア状況入力部303とを備える。
 通信システム2の各部のうち、通信網20は、通信システム1(図1)の場合と同様であり、同一の符号を付して、ここでは説明を省略する。無人機40の各部のうち、センシング機器11と、駆動部13とは、無人機10(図1)の場合と同様であり、同一の符号を付して、ここでは説明を省略する。また、無人機制御装置42の各部のうち、周辺センシング部100と、エリア状況算出部102と、現在位置情報取得部103と、通信強度測定部104と、位置計算部106と、通信強度マップ記憶部107と、制御部108とは、無人機制御装置12(図1)の場合と同様であり、同一の符号を付して、ここでは説明を省略する。
 また、無人機側通信部401は、通信部101(図1)と同様であり、説明を省略する。無人機側通信部401は、端末側通信部300と区別するために、通信部101から名称および符号を変更したものである。
 無人機側エリア状況マップ記憶部405は、エリア状況マップ記憶部105(図1)と同様であり、説明を省略する。無人機側エリア状況マップ記憶部405は、端末側エリア状況マップ記憶部302と区別するために、エリア状況マップ記憶部105から名称および符号を変更したものである。
 通信システム2は、端末装置30およびその各部を備える点、および、無人機40の無人機制御装置42が、無人機側エリア状況マップ共有部409を備える点で、通信システム1と異なる。それ以外の点では、通信システム2は、通信システム1と同様である。
 無人機側エリア状況マップ共有部409は、通信可能な他の無人機40および端末装置30と、無人機側通信部401および通信網20を介して通信し、それぞれが有しているエリア状況マップ情報を交換し、共有する。無人機側エリア状況マップ共有部409は、情報共有部の例に該当する。
 端末装置30は、人が所持して使用する装置である。端末装置30を所持して使用する人を、端末装置30のユーザ、あるいは単にユーザと称する。
 端末装置30は、ユーザが判断したエリアの状況の入力を受け付け、入力されたエリア状況の情報を無人機40に送信する。図3では、通信システム2が1つの端末装置30を備える場合の例を示しているが、通信システム2が備える端末装置30の個数は、特定の個数に限定されない。通信システム2が、複数の端末装置30を備えていてもよい。あるいは、通信システム2が端末装置30を備えていなくてもよい。通信システム2が複数の端末装置30を備えている場合、個々の端末装置30が、無人機40に加えて他の端末装置30ともエリア状況マップ情報を共有するようにしてもよい。
 端末側通信部300は、通信網20を介して無人機40と通信し、情報をやりとりする。端末側エリア状況マップ共有部301は、通信可能な無人機40と、端末側通信部300および通信網20を介して通信し、それぞれが有しているエリア状況マップ情報を交換し、共有する。端末側エリア状況マップ記憶部302は、ユーザがこれまでに判断したエリアの状況を示す情報を、エリア状況マップ情報にて記憶する。端末側エリア状況マップ記憶部302が記憶するエリア状況マップ情報には、端末側エリア状況マップ共有部301が無人機40から取得したエリア状況マップ情報も反映される。
 エリア状況入力部303は、例えばタッチパネルまたはキーボード等の入力デバイスを備え、人が判断したエリアの状況を示す情報の入力を受け付ける。
 次に図4を参照して、無人機制御装置42が自機の位置を計算して自機を制御する処理フローについて説明する。
 図4は、無人機制御装置42が自機の位置を計算して自機を制御する処理手順の例を示す図である。図4のステップS201からS204の処理は、図2のステップS101からS104の処理と同様である。ステップS201からS204で無人機制御装置42が自機の周辺のセンシング情報を基にエリア状況マップ情報を更新する。その後、無人機側エリア状況マップ共有部409が、通信可能な他の無人機40および端末装置30と、エリア状況マップ情報を共有する(ステップS205)。その後のステップS206からS209の処理は、図2のステップS105からS108の処理と同様である。
 次に、無人機側エリア状況マップ共有部409が、通信可能な他の無人機40および端末装置30とエリア状況マップ情報を共有する具体例について説明する。
 無人機40の各々および端末装置30の何れも、エリア状況マップ情報として、対象エリアをグリッドで区切った小エリア毎に、その小エリアの状況を示す値を記憶しているものとする。そして、無人機側エリア状況マップ共有部409が、他の装置から1つ以上のエリア状況マップ情報を取得したとする。無人機側エリア状況マップ記憶部405が記憶しているエリア状況マップ情報と併せて複数のエリア状況マップ情報が得られている。
 この場合、無人機側エリア状況マップ共有部409が、小エリア毎に、複数のエリア状況マップ情報の各々からその小エリアの値を読み出して平均値を算出するようにしてもよい。そして、無人機側エリア状況マップ共有部409が、小エリア毎の平均値を組み合わせた新たなエリア状況マップ情報を生成し、無人機側エリア状況マップ記憶部405に記憶させるようにしてもよい。
 あるいは、無人機側エリア状況マップ共有部409が、小エリア毎の平均値の算出に代えて、その小エリアにおける最大値(最も高い安全性を示す値)を取得するようにしてもよい。あるいは、無人機側エリア状況マップ共有部409が、小エリア毎の平均値の算出に代えて、その小エリアにおける最小値(最も高い危険性を示す値)を取得するようにしてもよい。
 端末側エリア状況マップ共有部301によるエリア状況マップ情報の共有についても同様である。
 次に図5を参照して、端末装置30が、エリアの状況のユーザ入力を受け付ける処理フローについて説明する。
 図5は、端末装置30が、エリアの状況のユーザ入力を受け付ける処理手順の例を示す図である。
 図5の処理で、端末装置30のユーザは、ユーザ自らの周囲の状況を把握し、把握した状況を、エリアの状況として端末装置30に入力する。端末装置30では、エリア状況入力部303が、エリアの状況を入力するユーザ操作を受け付ける(ステップS301)。
 そして、エリア状況入力部303は、入力された情報を、端末側エリア状況マップ記憶部302が記憶するエリア状況マップ情報に反映させる(ステップS302)。
 そして、端末側エリア状況マップ共有部301が、更新されたエリア状況マップ情報を、端末側通信部300および通信網20を介して通信可能な無人機40と共有する(ステップS303)。
 ステップS303の後、端末装置30は、図5の処理を終了する。
 次に、ユーザが端末装置30にエリアの状況を入力する具体例について説明する。例えば、端末装置30が、対象エリアがグリッドで区切られたエリア状況マップ情報またはその一部を表示し、グリッドの値を更新するユーザ操作を受け付けるようにしてもよい。
 図6は、端末装置30が表示するエリアの状況の入力画面の例を示す図である。図6の例で、端末装置30は、対象エリアがグリッドで小エリアに区切られたエリア状況マップ情報501を表示し、現在地(端末装置30自らの位置)を星印のアイコン502でマップ上に示している。端末装置30は、不確実度合いまたは危険性が高い小エリアほど、すなわち、安全性が低い小エリアほど、暗く表示している。
 また、端末装置30は、不確実度合いまたは危険性を指定するインジケータ511を表示している。ユーザは、インジケータ511に示されるスライダ512をタッチ操作で左右にスライドさせることで、不確実度合いまたは危険度を指定する。この状態で、ユーザが、エリア状況マップ情報の何れかの小エリアにタッチすると、タッチされている小エリアの値が、インジケータ511で指定されている値に設定される。ここで小エリアに設定される値は、その小エリアの不確実度合いまたは危険性を示す値である。
 以上のように、無人機側エリア状況マップ共有部409は、エリア状況マップ情報を他の無人機40と共有する。
 無人機制御装置42によれば、危険な場所、または、安全性が不明確な場所が存在するエリアであっても、さらに安定した通信路を維持できる。例えば、無人機制御装置42によれば、危険な場所、または、安全性が不明確な場所が存在するエリア内で、複数の無人機が通信路のブリッジを構成する際、無人機制御装置12の場合よりもさらに確実かつ持続性の高い通信路を維持できる。
 その理由は、無人機40および人が判断したエリアの状況を、無人機40間で共有することで、無人機制御装置42が、より正確かつ多くのエリア状況情報を基に自機の位置を計算することができるからである。エリア状況マップ情報を共有することで、エリア状況マップ情報の精度がより高まることが期待される。エリア状況マップ情報の精度が高まることで、無人機40が、危険な場所、または、安全性が不明確な場所をより確実に回避できるようになる。
 また、無人機側エリア状況マップ共有部409は、通信可能な他の無人機制御装置42とエリア状況マップ情報を共有する。
 無人機制御装置42の各々が、共通のフォーマットでエリア状況マップ情報を記憶しておくことで、特定の無人機制御装置42に限らず、通信可能な無人機制御装置42とエリア状況マップ情報を共有できる。例えば、上述したように無人機40の各々および端末装置30の何れも、エリア状況マップ情報として、対象エリアをグリッドで区切った小エリア毎に、その小エリアの状況を示す値を記憶しておく。
 このように、無人機制御装置42によれば、エリア状況マップ情報を共有できる機会が比較的多い。無人機制御装置42によれば、この点で、危険な場所、または、安全性が不明確な場所が存在するエリアであっても、さらに安定した通信路を維持できる。
 また、無人機側エリア状況マップ共有部409は、エリア状況マップ情報を入力するユーザ操作を受け付けてエリア状況マップ情報を更新または生成する端末装置30のエリア状況マップ情報を共有する。
 無人機制御装置42によれば、人の判断で更新または生成されたエリア状況マップ情報を共有することで、危険な場所、または、安全性が不明確な場所が存在するエリアであっても、さらに安定した通信路を維持できる。
 次に、図7を参照して本発明の実施形態の構成について説明する。
 図7は、実施形態に係る移動体制御装置の構成の例を示す図である。図7に示す移動体制御装置600は、安全性情報取得部601と、通信状況情報取得部602と、場所選択部603と、移動体制御部604とを備える。
 かかる構成で、安全性情報取得部601は、少なくとも2か所以上の場所の各々について、通信機器を搭載した移動体にとってのその場所の安全性を示す安全性情報を取得する。通信状況情報取得部602は、前記した少なくとも2か所以上の場所の各々について、その場所での通信状況を示す通信状況情報を取得する。場所選択部603は、安全性情報と通信状況情報とに基づいて、前記した少なくとも2か所以上の場所のうち何れかの場所を選択する。移動体制御部604は、選択された場所に移動体が位置するよう、移動体を制御する。
 移動体制御装置600によれば、危険な場所、または、安全性が不明確な場所が存在するエリアであっても、より安定した通信路を維持できる。
 図8は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 図8に示す構成で、コンピュータ700は、CPU(Central Processing Unit)710と、主記憶装置720と、補助記憶装置730と、インタフェース740とを備える。
 上記の無人機制御装置12、無人機制御装置42、移動体制御装置600、および、端末装置30のうち何れか1つ以上が、コンピュータ700に実装されてもよい。その場合、上述した各処理部の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。また、CPU710は、プログラムに従って、上述した各記憶部に対応する記憶領域を主記憶装置720に確保する。無人機制御装置または移動体制御装置と他の装置との通信は、インタフェース740が通信機能を有し、CPU710の制御に従って通信を行うことで実行される。
 無人機制御装置12がコンピュータ700に実装される場合、周辺センシング部100と、エリア状況算出部102と、現在位置情報取得部103と、通信強度測定部104と、位置計算部106と、制御部108との動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。
 また、CPU710は、プログラムに従って、エリア状況マップ記憶部105と、通信強度マップ記憶部107とに対応する記憶領域を主記憶装置720に確保する。
 通信部101による無人機制御装置12と他の無人機制御装置12との通信は、インタフェース740が通信機能を有し、CPU710の制御に従って通信を行うことで実行される。
 無人機制御装置42がコンピュータ700に実装される場合、周辺センシング部100と、エリア状況算出部102と、現在位置情報取得部103と、通信強度測定部104と、位置計算部106と、制御部108と、無人機側エリア状況マップ共有部409との動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。
 また、CPU710は、プログラムに従って、無人機側エリア状況マップ記憶部405と、通信強度マップ記憶部107とに対応する記憶領域を主記憶装置720に確保する。
 無人機側通信部401による無人機制御装置42と他の無人機制御装置42または端末装置30との通信は、インタフェース740が通信機能を有し、CPU710の制御に従って通信を行うことで実行される。
 移動体制御装置600がコンピュータ700に実装される場合、安全性情報取得部601と、通信状況情報取得部602と、場所選択部603と、移動体制御部604との動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。
 移動体制御装置600と他の装置との通信は、インタフェース740が通信機能を有し、CPU710の制御に従って通信を行うことで実行される。
 端末装置30がコンピュータ700に実装される場合、端末側エリア状況マップ共有部301と、エリア状況入力部303との動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。
 また、CPU710は、プログラムに従って、端末側エリア状況マップ記憶部302に対応する記憶領域を主記憶装置720に確保する。
 端末側通信部300による端末装置30と無人機制御装置42または他の端末装置30との通信は、インタフェース740が通信機能を有し、CPU710の制御に従って通信を行うことで実行される。
 なお、無人機制御装置12および42の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。ここでいう「コンピュータシステム」とは、OS(オペレーティングシステム)や周辺機器等のハードウェアを含む。
 「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD-ROM(Compact Disc Read Only Memory)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 本発明の実施形態は、移動体制御装置、移動体、移動体制御方法およびプログラムに適用してもよい。
 1、2 通信システム
 10、40 無人機
 11 センシング機器
 12、42 無人機制御装置
 13 駆動部
 20 通信網
 30 端末装置
 100 周辺センシング部
 101 通信部
 102 エリア状況算出部
 103 現在位置情報取得部
 104 通信強度測定部
 105 エリア状況マップ記憶部
 106 位置計算部
 107 通信強度マップ記憶部
 108 制御部
 300 端末側通信部
 301 端末側エリア状況マップ共有部
 302 端末側エリア状況マップ記憶部
 303 エリア状況入力部
 401 無人機側通信部
 405 無人機側エリア状況マップ記憶部
 409 無人機側エリア状況マップ共有部
 600 移動体制御装置
 601 安全性情報取得部
 602 通信状況情報取得部
 603 場所選択部
 604 移動体制御部

Claims (7)

  1.  少なくとも2か所以上の場所の各々について、通信機器を搭載した移動体にとってのその場所の安全性を示す安全性情報を取得する安全性情報取得部と、
     前記少なくとも2か所以上の場所の各々について、その場所での通信状況を示す通信状況情報を取得する通信状況情報取得部と、
     前記安全性情報と前記通信状況情報とに基づいて、前記少なくとも2か所以上の場所のうち何れかの場所を選択する場所選択部と、
     選択された前記場所に前記移動体が位置するよう、前記移動体を制御する移動体制御部と、
     を備える移動体制御装置。
  2.  前記安全性情報を他の移動体制御装置と共有する情報共有部
     をさらに備える、請求項1に記載の移動体制御装置。
  3.  前記情報共有部は、通信可能な他の前記移動体制御装置と前記安全性情報を共有する、
     請求項2に記載の移動体制御装置。
  4.  前記情報共有部は、前記安全性情報を入力するユーザ操作を受け付けて前記安全性情報を更新または生成する端末装置の安全情報を共有する、
     請求項2または請求項3に記載の移動体制御装置。
  5.  請求項1から4の何れか一項に記載の移動体制御装置を備える移動体。
  6.  少なくとも2か所以上の場所の各々について、通信機器を搭載した移動体にとってのその場所の安全性を示す安全性情報を取得する工程と、
     前記少なくとも2か所以上の場所の各々について、その場所での通信状況を示す通信状況情報を取得する工程と、
     前記安全性情報と前記通信状況情報とに基づいて、前記少なくとも2か所以上の場所のうち何れかの場所を選択する工程と、
     選択された前記場所に前記移動体が位置するよう、前記移動体を制御する工程と、
     を含む移動体制御方法。
  7.  コンピュータに、
     少なくとも2か所以上の場所の各々について、通信機器を搭載した移動体にとってのその場所の安全性を示す安全性情報を取得する工程と、
     前記少なくとも2か所以上の場所の各々について、その場所での通信状況を示す通信状況情報を取得する工程と、
     前記安全性情報と前記通信状況情報とに基づいて、前記少なくとも2か所以上の場所のうち何れかの場所を選択する工程と、
     選択された前記場所に前記移動体が位置するよう、前記移動体を制御する工程と、
     を実行させるためのプログラム。
PCT/JP2018/044750 2018-12-05 2018-12-05 移動体制御装置、移動体、移動体制御方法およびプログラム WO2020115842A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/297,149 US20220026900A1 (en) 2018-12-05 2018-12-05 Movable body control device, movable body, movable body control method, and program
PCT/JP2018/044750 WO2020115842A1 (ja) 2018-12-05 2018-12-05 移動体制御装置、移動体、移動体制御方法およびプログラム
JP2020558732A JP7188451B2 (ja) 2018-12-05 2018-12-05 移動体制御装置、移動体、移動体制御方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044750 WO2020115842A1 (ja) 2018-12-05 2018-12-05 移動体制御装置、移動体、移動体制御方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2020115842A1 true WO2020115842A1 (ja) 2020-06-11

Family

ID=70975027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044750 WO2020115842A1 (ja) 2018-12-05 2018-12-05 移動体制御装置、移動体、移動体制御方法およびプログラム

Country Status (3)

Country Link
US (1) US20220026900A1 (ja)
JP (1) JP7188451B2 (ja)
WO (1) WO2020115842A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022143729A (ja) * 2021-03-18 2022-10-03 コベルコ建機株式会社 遠隔操作システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502001A (ja) * 2015-03-31 2018-01-25 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd ジオフェンシング装置、及び飛行規制のセットを提供する方法
WO2018110382A1 (ja) * 2016-12-12 2018-06-21 Kddi株式会社 飛行装置、飛行制御装置及び飛行制御方法
WO2018154633A1 (ja) * 2017-02-21 2018-08-30 日本電気株式会社 制御装置、制御方法およびプログラム記録媒体
JP2018165099A (ja) * 2017-03-28 2018-10-25 パナソニックIpマネジメント株式会社 無線通信システム、制御装置、中継装置および無線通信制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6672076B2 (ja) * 2016-05-27 2020-03-25 株式会社東芝 情報処理装置及び移動体装置
CN110036648B (zh) * 2016-12-05 2021-11-05 Kddi株式会社 飞行装置、控制装置、通信控制方法以及控制方法
EP3443727A4 (en) * 2017-03-21 2019-04-24 SZ DJI Technology Co., Ltd. MONITORING PROCESS AND SYSTEM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018502001A (ja) * 2015-03-31 2018-01-25 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd ジオフェンシング装置、及び飛行規制のセットを提供する方法
WO2018110382A1 (ja) * 2016-12-12 2018-06-21 Kddi株式会社 飛行装置、飛行制御装置及び飛行制御方法
WO2018154633A1 (ja) * 2017-02-21 2018-08-30 日本電気株式会社 制御装置、制御方法およびプログラム記録媒体
JP2018165099A (ja) * 2017-03-28 2018-10-25 パナソニックIpマネジメント株式会社 無線通信システム、制御装置、中継装置および無線通信制御方法

Also Published As

Publication number Publication date
US20220026900A1 (en) 2022-01-27
JPWO2020115842A1 (ja) 2021-10-14
JP7188451B2 (ja) 2022-12-13

Similar Documents

Publication Publication Date Title
JP6462146B2 (ja) 移動体移動システム及び移動経路選択方法
EP2372306B1 (en) Method and apparatus for efficiently using a battery in a smartphone having a navigation system
CN105300510B (zh) 智能型噪音监视装置及利用其的噪音监视方法
JP4638277B2 (ja) 車両の走行制御装置
JP4886099B1 (ja) 表示制御装置、端末、表示制御システムおよび表示制御方法
JP2008065755A (ja) 移動装置
WO2019230098A1 (ja) 情報処理装置
US20190228664A1 (en) Vehicle calling system
WO2009070712A2 (en) Method and system for locating and navigating a target
JP6794093B2 (ja) 位置推定システム
KR20190088824A (ko) 로봇 청소기 및 그 제어 방법
KR20180039378A (ko) 공항용 로봇 및 그의 동작 방법
KR20170032147A (ko) 단말 및 이의 위치 측정 방법
WO2019198231A1 (ja) 移動体端末及び現在位置補正システム
JP7197973B2 (ja) 移動体端末、現在位置補正システム及びプログラム
JP5104449B2 (ja) 衝突判定装置
WO2020115842A1 (ja) 移動体制御装置、移動体、移動体制御方法およびプログラム
CN105180958A (zh) 一种导航方法、装置及系统
WO2019234858A1 (ja) 移動体端末及び現在位置補正システム
US9368032B1 (en) System and method for locating a vehicle within a parking facility
JP2020095339A (ja) 移動体、移動体の制御方法及びプログラム
JP6699034B2 (ja) 自律移動ロボット
KR101401311B1 (ko) 복수의 이동체의 경로를 계획하는 장치 및 방법
JP7074836B2 (ja) 位置推定システムおよび位置推定方法
JP6764138B2 (ja) 管理方法、管理装置、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558732

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942152

Country of ref document: EP

Kind code of ref document: A1