WO2020113507A1 - 一种用于超高压器件的液态浇注树脂组合物 - Google Patents

一种用于超高压器件的液态浇注树脂组合物 Download PDF

Info

Publication number
WO2020113507A1
WO2020113507A1 PCT/CN2018/119501 CN2018119501W WO2020113507A1 WO 2020113507 A1 WO2020113507 A1 WO 2020113507A1 CN 2018119501 W CN2018119501 W CN 2018119501W WO 2020113507 A1 WO2020113507 A1 WO 2020113507A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
group
filler
liquid
fine powder
Prior art date
Application number
PCT/CN2018/119501
Other languages
English (en)
French (fr)
Inventor
邱佳浩
敖洲
郑月仓
Original Assignee
浙江华飞电子基材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华飞电子基材有限公司 filed Critical 浙江华飞电子基材有限公司
Priority to CN201880086418.5A priority Critical patent/CN111684010B/zh
Priority to PCT/CN2018/119501 priority patent/WO2020113507A1/zh
Publication of WO2020113507A1 publication Critical patent/WO2020113507A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins

Definitions

  • the present invention relates to the field of composite materials, and more particularly to a liquid cast resin composition for ultra-high pressure devices.
  • the solid-sealed pole is to embed the vacuum arc extinguishing chamber, circuit breaker and other related conductive parts into the cast resin composition at the same time to form the pole, so that the entire circuit breaker pole becomes a whole component.
  • the solid sealed pole has the following two advantages: one is the modular design, the structure is simple, there are few detachable parts, and the reliability is high; the second is the extremely high insulation capacity, which turns the surface insulation into volume insulation, compared with air insulation Reduced the environmental impact and greatly improved the insulation strength.
  • Existing casting resin compositions for solid-sealed poles mainly include natural crystalline silica fine powder (commonly known as angular silicon fine powder) added as a filler in the resin system, and the easily cured insulating resin and filler in the casting process
  • the thermal expansion coefficient of the resin after curing is large, reaching 50ppm-80ppm, the thermal expansion system of the angular silicon fine powder is relatively low, about 9ppm, due to the low filling amount of the angular silicon fine powder in the resin system, such as bisphenol A resin
  • the filling mass fraction in the system is generally between 50% and 70%. If it is filled into the bisphenol A resin containing rubber material particles, the filling mass fraction will be lower, so the thermal expansion of the traditional casting resin composition after curing and molding
  • the coefficient is usually between 40-50ppm.
  • the conductive parts in the solid-sealed pole are metal inserts, the material is mainly copper, and its thermal conductivity is about 18 ppm.
  • the temperature of the casting process during solid sealing of the pole is very high.
  • the material expands and shrinks due to heat.
  • the greater the difference in thermal expansion coefficient between different materials the interface between the two materials will be stressed due to peeling.
  • the insert and the cast resin composition in the cast solid-sealed pole will produce micro-cracks, severe cracking may even occur, and the insulation performance of the material will not meet the requirements of high voltage resistance.
  • the present invention aims to provide a liquid cast resin composition for ultra-high pressure devices.
  • the liquid cast resin composition for ultra-high pressure devices includes a resin and a filler, wherein the filler is spherical silicon fine powder, and the filler accounts for 71%-80% of the mass of the liquid cast resin composition %, the specific surface area of the spherical silicon fine powder is between 0.4-2.5m 2 /g, the spherical silicon fine powder includes activated spherical silica powder whose surface is treated with a silane coupling agent, and the activated spherical silica The mass percentage of the powder in the spherical silicon fine powder is not less than 79%, and the silane coupling agent is a polar silane coupling agent.
  • the linear thermal expansion coefficient of the liquid cast resin composition after curing and molding is between 13-25 ppm. Studies have shown that the liquid cast resin composition with the above specific expansion coefficient can be applied to ultra-high voltage devices with voltage levels of 220 kV and above.
  • the liquid casting resin composition is suitable for epoxy casting process, including automatic pressure gel process and vacuum casting and other epoxy casting processes. It is aimed at complex metal structure with multiple metal and ceramic parts, and the pressure resistance is above 220kv Epoxy casting parts.
  • the viscosity of the liquid casting resin composition at 50°C is between 8000-38000cp, and the thixotropic index of the liquid casting resin composition is between 1.0-5.0.
  • the temperature is maintained at 50° C., and the test is performed with a rotary viscometer at 12 rpm to obtain the viscosity value and the thixotropic index value.
  • the present invention adjusts the proportion of spherical silicon micropowder to the epoxy resin composition, such as 71%, 72%, 74%, 76%, and determines the viscosity and thixotropic index, the viscosity range is 8000-38000cp, the thixotropic index The range is 1.0-5.0, which is suitable for the electrician casting process.
  • the filler does not include angular silicon fine powder. If the filler contains angular silicon fine powder, even if the viscosity and thixotropic index of the resin composition are adjusted to the above-specified range by technical means, the resin mixture cannot completely fill the mold, and other problems will still occur, such as casting Dimples appear on the surface of the piece.
  • the spherical silicon fine powder further includes unactivated spherical silica powder without surface treatment, and the mass percentage of the unactivated spherical silica powder in the spherical silicon fine powder is not higher than 21%.
  • the spherical silicon fine powder is composed of activated spherical silica powder and unactivated spherical silica powder.
  • the resin is a bisphenol A epoxy resin containing fine particles of rubber material.
  • the resin is a bisphenol A epoxy resin containing nano rubber material particles.
  • the mass percentage of the resin in the liquid casting resin composition is 10%-17%. In a preferred embodiment, the mass percentage of the resin in the liquid casting resin composition is 11.4%-16.1%.
  • the liquid casting resin composition further includes an acid anhydride curing agent.
  • the acid anhydride curing agent is a modified acid anhydride curing agent.
  • the mass percentage of the acid anhydride curing agent in the liquid casting resin composition is 8%-13%. In a preferred embodiment, the mass percentage of the acid anhydride curing agent in the liquid casting resin composition is 9.1%-12.9%.
  • the silane coupling agent is YR-Si-X 3 , where X is a hydrolyzable group (for example, a hydrocarbon group of 1 to 18 carbon atoms or a halogen atom), and R is an alkylene group (for example, a carbon atom 1 To 18), Y is at least one selected from the group consisting of the following polar organic functional groups: epoxy group, aliphatic amino group, aromatic amino group, methacryloxypropyl group, acryloyloxypropyl group , Ureidopropyl, mercaptopropyl, isocyanate propyl.
  • X is a hydrolyzable group (for example, a hydrocarbon group of 1 to 18 carbon atoms or a halogen atom)
  • R is an alkylene group (for example, a carbon atom 1 To 18)
  • Y is at least one selected from the group consisting of the following polar organic functional groups: epoxy group, aliphatic amino group, aromatic amino group,
  • the treatment with the above-mentioned polar organic functional group silane coupling agent can make the resin (such as bisphenol A epoxy resin containing rubber material particles) easily deaerated, without processing the spherical dioxide Silicone powder, or fillers treated with a silane coupling agent having a non-polar organic functional group (such as a phenyl silane coupling agent, or a long-chain hydrocarbon silane coupling agent) have difficulty in defoaming and cannot be practically used The problem.
  • a silane coupling agent having a non-polar organic functional group such as a phenyl silane coupling agent, or a long-chain hydrocarbon silane coupling agent
  • the activated spherical silica powder is subjected to surface treatment by adding a silicon powder to be treated and an epoxy-based silane coupling agent in a high-speed mixer and stirring for 15-30 minutes, and then being sealed and placed at room temperature for 12-24 hours.
  • surface treatment is not limited to the above-mentioned dry treatment, and wet treatment is also feasible.
  • the invention uses spherical silicon fine powder as a filler to increase its filling amount in the resin system.
  • the filling mass fraction of spherical silicon fine powder in the bisphenol A resin containing rubber material particles can be more than 70%.
  • the thermal expansion coefficient of the fine powder is only 0.5 ppm, which can greatly reduce the thermal expansion coefficient of the liquid casting resin composition after curing.
  • the thermal expansion coefficient of the liquid casting resin composition after curing and molding is expected to be between 12-40 ppm, close to that in the solid sealing pole
  • the thermal conductivity of the metal insert is 18ppm, thus fundamentally solving the cracking problem during the casting process.
  • the higher the filler fraction in the resin the greater the viscosity of the composition. After the viscosity increases to a certain value, it will seriously affect the casting process. Therefore, the problem of increasing the viscosity of the composition should be solved while increasing the filler fraction. .
  • the invention has a specific specific surface area, that is, between 0.4-2.5m 2 /g, and is surface-treated by a polar silane coupling agent, so that the filler with a low thermal expansion coefficient reaches a higher proportion in the composition At the same time, the viscosity of the composition is still suitable for the casting process to ensure the smooth implementation of the casting process. Moreover, the mass percentage of the filler in the composition should not be too high. For example, when the volume fraction of the filler is greater than 90%, the thermal expansion coefficient of the composition after curing is too low, which is much lower than the thermal expansion coefficient of the metal insert. Will cause cracking.
  • an appropriate filler ratio can be set according to the difference in the thermal expansion coefficient of the insert in the device to be cast to obtain a resin composition with a specific expansion coefficient, so that the electrical engineering after the casting is completed Devices, such as solid sealed poles, have excellent resistance to cracking.
  • the special properties of the filler due to the special properties of the filler, it still has excellent manufacturability when the filling fraction is extremely high.
  • KH-560 ( ⁇ -glycidyloxypropyltrimethoxysilane), KH-591 ( ⁇ -mercaptopropyltrimethoxysilane), and KH-221 (phenyltrimethoxy) produced by Hangzhou Boiling Point Chemical Industry, Zhejiang, China Silane).
  • test standards for the performance of the liquid casting resin composition used in ultra-high pressure devices in the following examples are as follows:
  • test temperature is 50 ⁇ 1°C, test twice, and take the average value.
  • the viscosity value is the thixotropic index when compared with the viscosity value at high speed.
  • a spline of 4 mm ⁇ 4 mm ⁇ 20 mm was made, and the linear thermal expansion coefficient below the glass transition temperature was measured with a TMA-60/60L thermomechanical analyzer manufactured by Shimadzu Corporation.
  • the test was carried out with F-sorb2400 produced by Beijing Jinep Technology Co., Ltd.
  • the test method was nitrogen adsorption multi-point BET method.
  • the preparation method of the liquid casting resin composition for ultra-high pressure devices includes: uniformly mixing the components of the formulation amount through a high-speed mixer to form an epoxy casting formulation, vacuum degassing and pouring into a mold for curing and molding.
  • the mixing temperature is normal temperature, and the mixing time is 30-60 min.
  • the curing is two-stage curing, the first stage curing temperature is 80-100°C, the curing time is 2-4h, the second stage curing temperature is 130°C-150°C, and the curing time is 8-16h.
  • liquid cast resin composition thus obtained include the following Examples 1 to 6.
  • comparative examples carried out simultaneously include the following comparative examples 1-comparative example 7.
  • the components of the formula amount are selected and mixed by the Shanghai Meixiang Instrument Co., Ltd. JJ-1AS digital display booster electric stirrer at room temperature, and then a part is used to test the viscosity and The thixotropy index (the results are shown in Table 2 below).
  • the remaining part forms a casting formula. After vacuum degassing, it is poured into a preheated mold. The curing conditions are 80°C for 4 hours and then 130°C for 10 hours. After curing and molding, the composite was obtained, and the coefficient of thermal expansion was tested (the results are shown in Table 2 below).
  • Example 1 Example 3, Example 6, Comparative Example 1, and Comparative Example 2
  • fillers with different specific surface areas will cause the liquid casting resin composition to have different viscosity and thixotropic index.
  • the specific surface area of the filler increases, the viscosity of the composition increases and the thixotropic index increases, which ultimately makes the composition difficult to vacuum degassing, which is difficult to meet the requirements of the casting process.
  • the specific surface area of the filler is too low, it will also cause sedimentation of the cured product (the filler is layered in the resin) and cannot be used in actual production. Therefore, the present invention selects fillers with a specific surface area between 0.4-2.5 m 2 /g to be added to the resin system.
  • Example 2 Example 3, Example 5, Comparative Example 4, and Comparative Example 7 that when the traditional angular silicon fine powder is filled to 350 parts, the viscosity is already relatively large, close to the upper limit of the casting process, after curing
  • the thermal expansion coefficient of the composite is much larger than the examples.
  • the higher the proportion of filler in the composition the lower the thermal expansion coefficient of the cured compound.
  • the proportion of filler in the composition is too high, the viscosity of the composition is too large, which seriously affects the casting process, so it cannot be applied to the composition. Actual Production.
  • the filler selected in the present invention includes at least spherical silica powder whose surface is treated with a silane coupling agent, and the mass percentage of the spherical silica powder whose surface is treated with a silane coupling agent in the filler should not be less than 79 %.
  • Example 3 Example 5 and Comparative Example 5 that when the Rb group in the silane coupling agent RaRbSi(M)4-ab is a polar functional group, it can be used for the surface treatment of the filler, but when Rb In the case of non-polar functional groups, it is difficult to degas the composition by surface treatment, and the epoxy casting process cannot be performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

本发明涉及一种用于超高压器件的液态浇注树脂组合物,其包括树脂和填料,其中,所述填料为球形硅微粉,所述填料占液态浇注树脂组合物的质量百分比为71%-80%,所述球形硅微粉的比表面积介于0.4-2.5m 2/g之间,所述球形硅微粉包括表面通过硅烷偶联剂处理的活化球形二氧化硅粉末,所述活化球形二氧化硅粉末在所述球形硅微粉中的质量百分比不低于79%,所述硅烷偶联剂为极性硅烷偶联剂。根据本发明的液态浇注树脂组合物,可以根据被浇注器件中的嵌件的热膨胀系数的不同,设定合适的填料占比,得到特定膨胀系数的树脂组合物,使得浇注完成后的电工器件,如固封极柱,具有优异的耐开裂性能。

Description

一种用于超高压器件的液态浇注树脂组合物 技术领域
本发明涉及复合材料领域,更具体地涉及一种用于超高压器件的液态浇注树脂组合物。
背景技术
固封极柱是将真空灭弧室和断路器等相关的导电零件同时嵌入到浇注树脂组合物中形成极柱,使整个断路器极柱成为一个整体的部件。固封极柱有以下两个优势:一是模块化设计,结构简单,可拆卸零件少,可靠性高;二是极高的绝缘能力,它将表面绝缘变成体积绝缘,相比空气绝缘,减少了环境的影响,大大提高了绝缘强度。
现有的用于固封极柱的浇注树脂组合物主要包括在树脂体系中加入作为填料的天然的结晶二氧硅微粉(俗称角形硅微粉),容易固化的绝缘材料树脂在浇注工艺中和填料复合形成复合物,该复合物的热膨胀系数α可由下式近似计算:α=V1×α1+V2×α2,其中,V1为树脂的体积分数;α1为树脂的热膨胀系数;V2为填料的体积分数;α2为填料的热膨胀系数。树脂固化后的热膨胀系数较大,达到50ppm-80ppm之间,角形硅微粉的热膨胀系相对较低,为9ppm左右,由于角形硅微粉在树脂体系中的填充量较低,例如在双酚A树脂体系中的填充质量分数一般在50%-70%之间,若是填充到含橡胶材料颗粒的双酚A树脂中,填充质量分数将更低,因此传统的浇注树脂组合物在固化成型后的热膨胀系数通常介于40-50ppm之间。
但是,固封极柱中的导电零件为金属嵌件,材料以铜为主,其导热系数为18ppm左右。固封极柱时的浇注工艺的温度很高,材料受热膨胀,冷却收缩,不同材料间的热膨胀系数差异越大,两材料间的界面就会因剥离而产生应力,在这个力的作用下,浇注好的固封极柱中的嵌件与浇注树脂组合物就会产生微裂纹,严重的甚至会发生开裂的现象,材料的绝缘性能就会达不到耐高压的要求。
发明内容
为了解决现有技术中的固封极柱容易开裂的问题,本发明旨在提供一种用于超高压器件的液态浇注树脂组合物。
本发明所述的用于超高压器件的液态浇注树脂组合物,其包括树脂和填料,其中,所述填料为球形硅微粉,所述填料占液态浇注树脂组合物的质量百分比为71%-80%,所述球形硅微粉的比表面积介于0.4-2.5m 2/g之间,所述球形硅微粉包括表面通过硅烷偶联剂处理的活化球形二氧化硅粉末,所述活化球形二氧化硅粉末在所述球形硅微粉中的质量百分比不低于79%,所述硅烷偶联剂为极性硅烷偶联剂。
所述液态浇注树脂组合物在固化成型后的线性热膨胀系数介于13-25ppm之间。研究表明,具有上述特定膨胀系数的液态浇注树脂组合物能够适用于220kV及以上电压等级的超高压器件中。具体地,所述液态浇注树脂组合物适用于环氧浇注工艺,包括自动压力凝胶工艺和真空浇注等环氧浇注工艺,针对内部含有多个金属和陶瓷部件的、结构复杂、耐压220kv以上的环氧浇注制件。
优选地,所述液态浇注树脂组合物在50℃下的粘度介于8000-38000cp之间,所述液态浇注树脂组合物的触变指数介于1.0-5.0之间。在所述液态浇注树脂组合物均匀混合后恒温50℃,用旋转粘度仪在12rpm的条件下进行测试,得到粘度值和触变指数值。特别地,本发明调节球形硅微粉占环氧树脂组合物的占比,如71%、72%、74%、76%,测定其粘度和触变指数,粘度范围为8000-38000cp,触变指数范围为1.0-5.0,得到适合电工浇注工艺的配比。
优选地,所述填料不包括角形硅微粉。若填料中含有角形硅微粉,即使通过技术手段将树脂组合物的粘度和触变指数调整至上述指定的范围内,但是,由于树脂混合物无法完全填充模具,仍会出现其他问题,如会使浇注件表面出现凹坑。
优选地,所述球形硅微粉还包括表面不处理的未活化球形二氧化硅粉末,所述未活化球形二氧化硅粉末在所述球形硅微粉中的质量百分比不高于21%。在一个实施例中,所述球形硅微粉由活化球形二氧化硅粉末和未活化球形二氧化硅粉末组成。
优选地,所述树脂为含有橡胶材料微粒的双酚A环氧树脂。在优选的实 施例中,所述树脂为含有纳米橡胶材料颗粒的双酚A环氧树脂。优选地,所述树脂占液态浇注树脂组合物的质量百分比为10%-17%。在优选的实施例中,所述树脂占液态浇注树脂组合物的质量百分比为11.4%-16.1%。
优选地,所述液态浇注树脂组合物还包括酸酐固化剂。优选地,所述酸酐固化剂为改性酸酐固化剂。在优选的实施例中,所述酸酐固化剂占液态浇注树脂组合物的质量百分比为8%-13%。在优选的实施例中,所述酸酐固化剂占液态浇注树脂组合物的质量百分比为9.1%-12.9%。
优选地,所述硅烷偶联剂为Y-R-Si-X 3,其中,X为水解基团(例如碳原子1至18的烃氧基或卤素原子),R为亚烷基(例如碳原子1至18的烃基),Y为选自由以下极性有机官能基组成的组中的至少一种:环氧基、脂肪族氨基、芳香族氨基、甲基丙烯酰氧丙基、丙烯酰氧丙基、脲基丙基、巯基丙基、异氰酸酯丙基。令人意想不到的是,通过上述具有极性有机官能基的硅烷偶联剂进行处理,可以使得树脂(例如含有橡胶材料微粒的双酚A环氧树脂)容易脱泡,而不处理的球形二氧化硅粉末、或者通过具有非极性有机官能基的硅烷偶联剂(例如苯基硅烷偶联剂、或长链烃基硅烷偶联剂)进行处理后的填料则存在脱泡困难以至于无法实际使用的问题。
优选地,所述活化球形二氧化硅粉末通过在高速搅拌机中加入待处理硅微粉和环氧类硅烷偶联剂搅拌15-30min后常温密封放置12-24h进行表面处理。应该理解,该表面处理并不局限于上述干法处理,湿法处理同样可行。
本发明通过球形硅微粉作为填料,提高其在树脂体系中的填充量,例如,球形硅微粉在含橡胶材料颗粒的双酚A树脂中的填充质量分数可以在70%以上,同时,由于球形硅微粉(例如熔融石英粉)的热膨胀系数仅为0.5ppm,由此可以极大地降低液态浇注树脂组合物在固化后的热膨胀系数。例如,当球形硅微粉在液态浇注树脂组合物中的体积份数达到50-75%时,液态浇注树脂组合物在固化成型后的热膨胀系数预计在12-40ppm之间,接近固封极柱中的金属嵌件的导热系数18ppm,从而从根本上解决浇注工艺时的开裂问题。另外,树脂中的填料份数越高,组合物的粘度就越大,粘度增大到一定值后会严重影响浇注工艺,因此在提高填料份数的同时要解决组合物的粘度增大的问题。本发明通过具备特定比表面积,即介于0.4-2.5m 2/g之间,并通过极性硅烷偶联剂进行表面处理来使得:热膨胀系数低的填料在组合物中达到较 高占比的同时,组合物的粘度仍适用于浇注工艺,确保浇注工艺顺利实施。而且,填料在组合物中的质量百分比也不得过高,例如填料的体积份数>90%时,组合物固化后的热膨胀系数过低,远低于金属嵌件的热膨胀系数,材料之间也会产生开裂。总之,根据本发明的液态浇注树脂组合物,可以根据被浇注器件中的嵌件的热膨胀系数的不同,设定合适的填料占比,得到特定膨胀系数的树脂组合物,使得浇注完成后的电工器件,如固封极柱,具有优异的耐开裂性能。同时,由于填料的特殊性能,使其在填充分数极高时仍有优异的工艺性。
具体实施方式
下面给出本发明的较佳实施例,并予以详细描述。
下述实施例中所用原料如下:
美国亨斯迈集团生产的爱牢达CY 5897 CI型双酚A环氧树脂;
美国亨斯迈集团生产的爱牢达HY 5897 CI型改性酸酐固化剂;
中国浙江华飞电子基材有限公司生产的球形硅微粉和角形硅微粉;
中国浙江杭州沸点化工生产的KH-560(γ-缩水甘油醚氧丙基三甲氧基硅烷)、KH-591(γ-巯丙基三甲氧基硅烷)、和KH-221(苯基三甲氧基硅烷)。
下述实施例中对用于超高压器件的液态浇注树脂组合物性能的测试标准如下:
(1)粘度测试
根据GB/T 2794-2013中规定的方法进行测试,测试温度为50±1℃,测试2次,取平均值。
(2)触变指数测试
在50±1℃,用brookfield旋转粘度计测出2rpm和20rpm的数值(若超出量程,则用1rpm和10rpm或0.6rpm和6rmp等这些转速测试,两个转速相差10倍),用小转速的粘度值和大转速的粘度值相比即为触变指数。
(3)热膨胀系数测试
制作4mm×4mm×20mm的样条,用岛津公司生产的TMA-60/60L热机械分析仪测定玻璃化转变温度以下的线性热膨胀系数。
(4)比表面积测试
用北京金埃普科技有限公司生产的F-sorb2400进行测试,测试方法为氮吸附多点BET法。
根据本发明的用于超高压器件的液态浇注树脂组合物的制备方法包括:将配方量的各组分经过高速搅拌机均匀混合形成环氧浇注配方,真空脱气后倒入模具中固化成型。其中,混合温度为常温,混合时间为30-60min。固化为2段固化,第一段固化温度为80-100℃,固化时间为2-4h,第二段固化温度为130℃-150℃,固化时间为8-16h。
由此得到的液态浇注树脂组合物的具体实施例包括下述实施例1-实施例6。为了进一步阐述本发明的液态浇注树脂组合物的优越性,同步进行的对比例包括下述对比例1-对比例7。
根据下表1将配方量的各组分经上海梅香仪器有限公司的JJ-1AS数显增力电动搅拌器在常温选混合均匀后,取一部分用美国brookfield公司的DVESLVTJO数显粘度计测试粘度和触变指数(结果如下表2所示),剩余部分形成浇注配方,真空脱气后,倒入已预热模具中,固化条件为80℃固化4h,然后在130℃固化10h。固化成型,得到复合物,测试热膨胀系数(结果如下表2所示)。
从实施例1、实施例3、实施例6、对比例1、和对比例2可以看出,不同比表面积的填料会使得液态浇注树脂组合物具有不同的粘度和触变指数。随着填料的比表面积的升高,组合物粘度上升,触变指数增大,最终使得组合物真空脱气困难,难以满足浇注工艺的要求。但是,若填料的比表面积过低,也会造成固化成型后的产品产生沉降(填料在树脂中分层)而无法应用于实际生产。因此,本发明选择比表面积介于0.4-2.5m 2/g之间的填料加入树脂体系中。
从实施例2、实施例3、实施例5、对比例4、和对比例7可以看出,传统的角形硅微粉填充到350份时,粘度就已经比较大,接近浇注工艺的上限,固化后复合物的热膨胀系数比实施例大很多。虽然填料在组合物中占比越高,固化后复合物的热膨胀系数越低,但是,填料在组合物中占比过高时,组合物的粘度过大,严重影响浇注工艺,因此无法应用于实际生产。
Figure PCTCN2018119501-appb-000001
Figure PCTCN2018119501-appb-000002
从实施例3、实施例4和对比例6可以看出,填料中的表面不处理的球形硅微粉占比越高,组合物粘度和触变指数越高。在触变指数超过5.0后,严重影响浇注工艺,无法应用于实际生产,进一步可以得出若填料不进行表面处理,无法使用。因此,本发明选择的填料至少包括表面通过硅烷偶联剂处理的球形二氧化硅粉末,而且,该表面通过硅烷偶联剂处理的球形二氧化硅粉末在填料中的质量百分比应当不低于79%。
从实施例3、实施例5和对比例5可以看出,硅烷偶联剂RaRbSi(M)4-a-b中的Rb基团为极性官能团时,可以用于填料的表面处理,但是,当Rb为非极性官能团时,进行表面处理反而使组合物脱气困难,无法进行环氧浇注工艺。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (8)

  1. 一种用于超高压器件的液态浇注树脂组合物,其包括树脂和填料,其特征在于,所述填料为球形硅微粉,所述填料占液态浇注树脂组合物的质量百分比为71%-80%,所述球形硅微粉的比表面积介于0.4-2.5m 2/g之间,所述球形硅微粉包括表面通过硅烷偶联剂处理的活化球形二氧化硅粉末,所述活化球形二氧化硅粉末在所述球形硅微粉中的质量百分比不低于79%,所述硅烷偶联剂为极性硅烷偶联剂。
  2. 根据权利要求1所述的液态浇注树脂组合物,其特征在于,所述液态浇注树脂组合物在固化成型后的线性热膨胀系数介于13-25ppm之间。
  3. 根据权利要求1所述的液态浇注树脂组合物,其特征在于,所述液态浇注树脂组合物在50℃下的粘度介于8000-38000cp之间,所述液态浇注树脂组合物的触变指数介于1.0-5.0之间。
  4. 根据权利要求1所述的液态浇注树脂组合物,其特征在于,所述填料不包括角形硅微粉。
  5. 根据权利要求1所述的液态浇注树脂组合物,其特征在于,所述球形硅微粉还包括表面不处理的未活化球形二氧化硅粉末,所述未活化球形二氧化硅粉末在所述球形硅微粉中的质量百分比不高于21%。
  6. 根据权利要求1所述的液态浇注树脂组合物,其特征在于,所述树脂为含有橡胶材料微粒的双酚A环氧树脂。
  7. 根据权利要求1所述的液态浇注树脂组合物,其特征在于,所述液态浇注树脂组合物还包括酸酐固化剂。
  8. 根据权利要求1所述的液态浇注树脂组合物,其特征在于,所述硅烷偶联剂为Y-R-Si-X 3,其中,X为水解基团,R为亚烷基,Y为选自由以下极性有机官能基组成的组中的至少一种:环氧基、脂肪族氨基、芳香族氨基、甲基丙烯酰氧丙基、丙烯酰氧丙基、脲基丙基、巯基丙基、异氰酸酯丙基。
PCT/CN2018/119501 2018-12-06 2018-12-06 一种用于超高压器件的液态浇注树脂组合物 WO2020113507A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880086418.5A CN111684010B (zh) 2018-12-06 2018-12-06 一种用于超高压器件的液态浇注树脂组合物
PCT/CN2018/119501 WO2020113507A1 (zh) 2018-12-06 2018-12-06 一种用于超高压器件的液态浇注树脂组合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/119501 WO2020113507A1 (zh) 2018-12-06 2018-12-06 一种用于超高压器件的液态浇注树脂组合物

Publications (1)

Publication Number Publication Date
WO2020113507A1 true WO2020113507A1 (zh) 2020-06-11

Family

ID=70975250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119501 WO2020113507A1 (zh) 2018-12-06 2018-12-06 一种用于超高压器件的液态浇注树脂组合物

Country Status (2)

Country Link
CN (1) CN111684010B (zh)
WO (1) WO2020113507A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525367A (ja) * 1991-07-23 1993-02-02 Matsushita Electric Works Ltd 半導体封止用エポキシ樹脂組成物
CN101029165A (zh) * 2006-03-01 2007-09-05 广东榕泰实业股份有限公司 用于集成电路封装用的环氧树脂模塑料及其制备方法
CN101074312A (zh) * 2007-05-30 2007-11-21 哈尔滨化工研究所 耐高温三防浇注胶及其制备方法
CN101724223A (zh) * 2008-10-17 2010-06-09 河南森源电气股份有限公司 高压电流互感器浇注用环氧树脂组合物及制备和应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2702401B2 (ja) * 1994-05-09 1998-01-21 株式会社日立製作所 樹脂封止型半導体装置とその製法
JPH0834927A (ja) * 1994-07-22 1996-02-06 Siegel:Kk 封止用樹脂組成物
JP2006016433A (ja) * 2004-06-30 2006-01-19 Shin Etsu Chem Co Ltd 半導体封止用液状エポキシ樹脂組成物及びフリップチップ型半導体装置
CN101173159B (zh) * 2006-11-02 2010-12-08 比亚迪股份有限公司 一种环氧树脂封装材料组合物
CN102850988B (zh) * 2012-09-26 2014-05-07 中南大学 一种环氧树脂灌封胶及使用方法
CN103665775B (zh) * 2013-11-21 2016-04-27 无锡创达电子有限公司 一种硅微粉高填充的环氧模塑料及其制备方法
CN104672785B (zh) * 2014-06-30 2019-04-09 广东丹邦科技有限公司 一种环氧塑封料及其制备方法
JP2016033197A (ja) * 2014-07-31 2016-03-10 京セラケミカル株式会社 注形用エポキシ樹脂組成物、点火コイル及び点火コイルの製造方法
CN104558688B (zh) * 2014-12-26 2018-01-05 广东生益科技股份有限公司 一种填料组合物及其应用
CN105969277A (zh) * 2016-05-31 2016-09-28 苏州市奎克力电子科技有限公司 用于封装电子器件的散热灌封胶
CN107793703A (zh) * 2017-10-16 2018-03-13 江苏中鹏电气有限公司 新型改性环氧树脂浇注母线配方及其制备方法
CN108641645A (zh) * 2018-03-29 2018-10-12 江苏矽时代材料科技有限公司 一种半导体密封用封装胶及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525367A (ja) * 1991-07-23 1993-02-02 Matsushita Electric Works Ltd 半導体封止用エポキシ樹脂組成物
CN101029165A (zh) * 2006-03-01 2007-09-05 广东榕泰实业股份有限公司 用于集成电路封装用的环氧树脂模塑料及其制备方法
CN101074312A (zh) * 2007-05-30 2007-11-21 哈尔滨化工研究所 耐高温三防浇注胶及其制备方法
CN101724223A (zh) * 2008-10-17 2010-06-09 河南森源电气股份有限公司 高压电流互感器浇注用环氧树脂组合物及制备和应用

Also Published As

Publication number Publication date
CN111684010B (zh) 2023-08-04
CN111684010A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
JP2010523747A (ja) 硬化性エポキシ樹脂組成物
JPH02117936A (ja) 球状溶融シリカを含有する樹脂組成物の使用方法
CN109456573A (zh) 一种环氧树脂浇注绝缘材料及其制备方法
JPH07109337A (ja) エポキシ樹脂注型材料
CN114456543B (zh) 环氧树脂组合物、环氧树脂塑封料及其制备方法和应用
WO2008037545A1 (en) Electrical insulation system based on polybenzoxazine
CN105462434B (zh) 环氧浇注绝缘部件用表面涂覆材料及表面改性方法
WO2020113507A1 (zh) 一种用于超高压器件的液态浇注树脂组合物
WO2021109730A1 (zh) 一种双组份有机硅灌封胶及其应用方法
JPS6259626A (ja) エポキシ樹脂組成物
CN105295302A (zh) 一种耐高温、抗老化的电缆绝缘层
JP6366968B2 (ja) イグニッションコイル注形用エポキシ樹脂組成物及びそれを用いたイグニッションコイル
JPS6010533B2 (ja) 成形用樹脂組成物
CN113025057A (zh) 一种复合避雷器用混炼胶及其制造工艺
CN107513334B (zh) 一种低温固化绝缘环氧粉末涂料
TWI803025B (zh) 樹脂材料及金屬基板
Wang et al. Effect of silane coupling agent modified alumina filler on breakdown characteristics of epoxy composites
Yang et al. Thermal and electrical properties of BNNPs/TiO 2-Epoxy three-phase nanocomposites
Shang et al. Investigation of MQ Resin Enhanced Material Used for On-site Insulating Bare Conductors
RU2775337C1 (ru) Композиция для кремнийорганического электроизоляционного покрытия
JP2683270B2 (ja) 注型用エポキシ樹脂組成物
JP2847936B2 (ja) エポキシ樹脂組成物
CN117700937A (zh) 基于金刚石填充的高导热环氧复合绝缘材料制备方法
CN117417639A (zh) 一种htv硅橡胶材料及其应用
CN113583386A (zh) 一种封闭式组合电器用环氧树脂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942581

Country of ref document: EP

Kind code of ref document: A1