WO2020111141A1 - 硬化性ポリオルガノシロキサン組成物、およびポリオルガノシロキサン硬化物 - Google Patents

硬化性ポリオルガノシロキサン組成物、およびポリオルガノシロキサン硬化物 Download PDF

Info

Publication number
WO2020111141A1
WO2020111141A1 PCT/JP2019/046424 JP2019046424W WO2020111141A1 WO 2020111141 A1 WO2020111141 A1 WO 2020111141A1 JP 2019046424 W JP2019046424 W JP 2019046424W WO 2020111141 A1 WO2020111141 A1 WO 2020111141A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyorganosiloxane
component
cured product
less
mass
Prior art date
Application number
PCT/JP2019/046424
Other languages
English (en)
French (fr)
Inventor
紀久夫 望月
雅大 藤田
Original Assignee
モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 filed Critical モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority to JP2020507706A priority Critical patent/JP6831038B2/ja
Priority to EP19890453.4A priority patent/EP3889221A4/en
Priority to CN201980078756.9A priority patent/CN113242885B/zh
Publication of WO2020111141A1 publication Critical patent/WO2020111141A1/ja
Priority to US17/328,101 priority patent/US20210277241A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to a curable polyorganosiloxane composition and a cured product. More specifically, the present invention relates to a polyorganosiloxane composition having a low hardness, a high strength, a transparent cured product having a low surface tackiness, and a composition thereof. A cured product obtained by curing a product.
  • polyorganosiloxane compositions that cure into silicone rubber are well known, and by utilizing their excellent properties such as weather resistance, heat resistance, electrical insulation, hardness, mechanical strength, and elongation, It is widely used as potting materials, coating materials, molding materials such as molding and injection molding, and coating materials in various fields such as electrical/electronic fields, optical/optoelectronics, sensors, and construction.
  • the polyorganosiloxane composition that is cured by an addition reaction is rapidly cured by appropriate heating or UV irradiation, and does not release a corrosive substance or the like during curing, so that its application in various fields is expanding.
  • Japanese Patent No. 5449336 Japanese Patent No. 5013507 JP, 2009-52038, A Japanese Patent Laid-Open No. 2018-48214 Japanese Patent No. 6243567
  • the present invention has been made to solve these problems, and provides a polyorganosiloxane composition capable of obtaining a cured product having low hardness, high transparency, and high strength such as tensile strength. With the goal.
  • the curable polyorganosiloxane composition of the present invention is (A) an alkenyl group-containing polyorganosiloxane having at least one alkenyl group bonded to a silicon atom in the molecule, (B) a polyorganohydrogensiloxane having two or more hydrogen atoms bonded to silicon atoms in the molecule, (C) A hydrosilylation reaction catalyst is contained in an effective amount.
  • the curable polyorganosiloxane composition of the present invention (A) (A1) A linear chain having a viscosity of 1,000 to 1,000,000 mPa ⁇ s at 23° C. measured according to JIS K6249 and having alkenyl groups bonded to silicon atoms at both ends of the molecular chain. 61 mass% or more and 95 mass% or less of the polyorganosiloxane of, and (A2) the viscosity at 23° C. measured according to JIS K6249 is 10 to 50,000 mPa ⁇ s, and one molecule of alkenyl group bonded to a silicon atom is used.
  • a linear polyorganosiloxane consisting of 5% by mass or more and 39% by mass or less of the linear polyorganosiloxane having an average of 0.6 or more and less than 2 therein, and a (A3) formula: SiO 4 Containing a tetrafunctional siloxane unit represented by /2 , and containing a polyorganosiloxane having a resin structure having an average of two or more alkenyl groups bonded to silicon atoms in one molecule, An alkenyl group-containing polyorganosiloxane in which the content ratio of the component (A3) to the total of the component (A1), the component (A2) and the component (A3) is 6% by mass or more and 25% by mass or less, (B) (B1) A straight chain having a viscosity at 23° C.
  • Amount of the total amount of hydrogen atoms in the above (B2) and hydrogen atoms in the component (B2) with respect to the total of alkenyl groups in the above component (A) is 0.9 or more and 2.1 or less, and (C) hydrosilylation It is characterized by containing an effective amount of each reaction catalyst.
  • the polyorganosiloxane cured product of the present invention is a cured product obtained by curing the curable polyorganosiloxane composition of the present invention described above, and is selected from an optical sensor, an optical tactile sensor, a pressure sensor, an optical member, and artificial skin. It is characterized in that it is used for at least one of
  • an "alkenyl group bonded to a silicon atom” may be simply referred to as an “alkenyl group”.
  • a hydrogen atom bonded to a silicon atom may be simply referred to as “hydrogen atom” or "Si-H”.
  • a cured product having low hardness, high transparency, and high mechanical strength such as tensile strength can be obtained. No bleeding and low surface tackiness.
  • the curable polyorganosiloxane composition of one embodiment of the present invention comprises: (A) (A1) 61% by mass or more and 95% by mass or less of a linear polyorganosiloxane having alkenyl groups at both ends of the molecular chain, (A2) A linear polyorganosiloxane comprising 5% by mass or more and 39% by mass or less of a linear polyorganosiloxane having an average of 0.6 or more and less than 2 alkenyl groups in one molecule.
  • alkenyl group-containing polyorganosiloxane containing a resin-structured polyorganosiloxane having an average of two or more alkenyl groups in one molecule, and (B) (B1) hydrogen atoms at both ends of the molecular chain.
  • a polyorganohydrogensiloxane comprising a linear polyorganosiloxane having 2 in each molecule and (B2) a polyorganosiloxane having 3 or more hydrogen atoms in each molecule, and (C) hydrosilylation
  • Each contains an effective amount of reaction catalyst.
  • the component (A) used in the present embodiment is a main component (base polymer) of the curable polyorganosiloxane composition, and (A1) a linear polyorganosiloxane having alkenyl groups at both ends of the molecular chain (hereinafter, And (A2) a linear polyorganosiloxane having an average of 0.6 or more and less than 2 alkenyl groups (hereinafter, containing less than 2 alkenyl groups). And (A3) an alkenyl group-containing polyorganosiloxane having a resin structure.
  • the content ratio of the (A1) component in the total 100 mass% of the (A1) component and the (A2) component is 61 mass% or more and 95 mass% or less, and the content ratio of the (A2) component is It is 5% by mass or more and 39% by mass or less.
  • the content ratio of the component (A3) in the total 100 mass% of the component (A1), the component (A2) and the component (A3) is 6% by mass or more and 25% by mass or less.
  • the viscosity of the component (A1) at 23° C. (hereinafter, simply referred to as viscosity) is 1,000 to 1,000,000 mPa ⁇ s, and the viscosity of the component (A2) is 10 to 50,000 mPa ⁇ s. is there.
  • the viscosity in this specification is a value measured according to JIS K6249 unless otherwise specified.
  • the component (A1) is a linear polyorganosiloxane having a viscosity at 23° C. of 1,000 to 1,000,000 mPa ⁇ s and having alkenyl groups at both ends of the molecular chain.
  • the polyorganosiloxane is linear means the formula: R 1 SiO 3/2 (R 1 represents an unsubstituted or substituted aliphatic unsaturated bond based on the total amount of all siloxane units).
  • a monovalent hydrocarbon group and examples thereof include a hydrocarbon group other than an alkenyl group.) and a tetrafunctional siloxane unit represented by the formula: SiO 4/2 . It means that the total amount is 5% or less in terms of mole fraction.
  • alkenyl group bonded to the silicon atom in the component (A1) examples include an unsubstituted alkyl group having 2 to 6 carbon atoms such as vinyl group, allyl group, butenyl group, pentenyl group and hexenyl group. Of these, vinyl groups are preferred.
  • the component (A1) preferably has two alkenyl groups, and two alkenyl groups are bonded to silicon atoms at both ends of a linear molecular chain.
  • the two alkenyl groups may be the same or different, but are preferably the same from the viewpoint of ease of synthesis.
  • examples of the organic group other than the alkenyl group bonded to the silicon atom include an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Is mentioned. A methyl group is preferable because it is easily synthesized. Specific preferred examples of the component (A1) include polydimethylsiloxane capped with dimethylvinylsiloxy groups at both molecular chain ends.
  • the viscosity of the component (A1) is 1,000 to 1,000,000 mPa ⁇ s. When the viscosity is in this range, the resulting cured product has good mechanical properties, which is preferable.
  • the viscosity of the component (A1) is preferably 3,500 to 200,000 mPa ⁇ s, and particularly preferably 5,000 to 150,000 mPa ⁇ s.
  • the component (A2) is a linear polyorganosiloxane having an average (hereinafter simply referred to as “average”) of 0.6 or more and less than 2 alkenyl groups in one molecule, and has a crosslinking density of It serves to lower the hardness of the cured product.
  • the alkenyl group of the component (A2) may be bonded to either the intermediate silicon atom of the molecular skeleton or the terminal silicon atom, but from the viewpoint of the reaction rate and the point of forming a low-hardness rubber cured product after the reaction, It is preferably bonded to a silicon atom at the terminal of the molecule.
  • a polyorganosiloxane having an average of 0.6 or more and less than 2 alkenyl groups as the component (A2) for example, a polyorganosiloxane having an alkenyl group at both ends and a straight chain not containing an alkenyl group Or a branched polyorganosiloxane is blended so as to satisfy the above-mentioned average number of alkenyl groups and have an average molecular weight that realizes the above-mentioned viscosity range, and an acid catalyst such as sulfuric acid, hydrochloric acid or activated clay, Alternatively, siloxane is cleaved and equilibrated by a conventional method in the presence of an alkali catalyst such as potassium hydroxide or tetramethylammonium hydroxide. In this case, a cyclic polysiloxane, particularly a cyclic polysiloxane not containing a vinyl group, may be used in combination as a part of the raw material.
  • the catalyst is removed by a conventional method and heated under reduced pressure to remove by-produced low-molecular polyorganosiloxane or unreacted low-molecular polyorganosiloxane for purification.
  • the polyorganosiloxane obtained by this method is obtained as a mixture of a polyorganosiloxane having an alkenyl group at each end, a polyorganosiloxane having an alkenyl group at one end, and a polyorganosiloxane not containing an alkenyl group.
  • the polyorganosiloxane containing an alkenyl group at one end is about 50 mol %
  • the polyorganosiloxane containing an alkenyl group at both ends is about 25 mol %
  • the alkenyl group is The free polyorganosiloxane is obtained as a mixture of about 25 mol %.
  • the component (A2) comprises a polyorganosiloxane having less than 1 (for example, 0.5) alkenyl groups in one molecule and a polyorganosiloxane having alkenyl groups at both ends, which are obtained by the above method. You may mix and prepare. Further, in order to obtain an alkenyl group having an average number of 1 or more and less than 2, simply mixing a polyorganosiloxane having an alkenyl group at one end and a polyorganosiloxane having an alkenyl group at both ends is simply mixed. Good. That is, plural kinds of alkenyl groups having different numbers of alkenyl groups can be mixed so that one molecule has an average of 0.6 or more and less than 2 alkenyl groups.
  • the polyorganosiloxane having an alkenyl group at one terminal can also be synthesized by a strong base living polymerization reaction.
  • the strong base living polymerization reaction is a reaction in which a cyclic polyorganosiloxane is subjected to ring-opening polymerization using an organic alkali metal compound as an initiator, and then the end is blocked with chloroalkenylsilane.
  • the component (A2) in order to reduce the tackiness of the cured product, it is more preferable to reduce the content of free oil or low-molecular siloxane that does not contribute to the curing reaction.
  • the viscosity of the component (A2) is 10 to 50,000 mPa ⁇ s. When the viscosity is in this range, the resulting cured product has good mechanical properties, which is preferable.
  • the viscosity of the component (A2) is more preferably 10 to 10,000 mPa ⁇ s, and particularly preferably 100 to 5,000 mPa ⁇ s.
  • the content ratio of the (A1) component is 61% by mass or more and 95% by mass or more.
  • the content of the component (A2) is 5% by mass or more and 39% by mass or less.
  • the content ratio of the component (A1) is 65% by mass or more and 95% by mass or less, and the content ratio of the component (A2) is preferably 5% by mass or more and 35% by mass or less.
  • the content ratio of the component (A1) can be expressed as W A1 /(W A1 +W A2 ), and the content ratio of the component (A2) can be expressed as W A2 /(W A1 +W A2 ), it is as follows.
  • W A1 is the mass of the (A1) component
  • W A2 is the mass of the (A2) component. 0.61 ⁇ W A1 /(W A1 +W A2 ) ⁇ 0.95 0.05 ⁇ W A2 /(W A1 +W A2 ) ⁇ 0.39
  • a cured product having a desired low hardness for example, hardness by a type E durometer is 50 or less. Can't get When the content of the component (A2) exceeds 39% by mass and the content of the component (A1) is less than 61% by mass, oil bleeding occurs in the cured product.
  • a more preferable content ratio of the component (A1) and the component (A2) is 70% by mass or more and 90% by mass or less of the component (A1) in the total 100% by mass of the component (A1) and the component (A2),
  • the component A2) is 10% by mass or more and 30% by mass or less.
  • the component (A3) includes a tetrafunctional siloxane unit represented by the formula: SiO 4/2 (hereinafter, referred to as Q unit), and has a resin structure (having an average of two or more alkenyl groups in one molecule ( It is a polyorganosiloxane having a three-dimensional network structure).
  • Q unit tetrafunctional siloxane unit represented by the formula: SiO 4/2
  • Q unit has a resin structure (having an average of two or more alkenyl groups in one molecule ( It is a polyorganosiloxane having a three-dimensional network structure).
  • “having a resin structure” is also referred to as “resin-like”.
  • the more preferable range of the number of alkenyl groups contained in the component (A3) is 2 or more on average in one molecule.
  • the resinous polyorganosiloxane as the component (A3) is represented by a monofunctional siloxane unit represented by the formula: R 2 3 SiO 1/2 and a formula: R 2 2 SiO 2/2 in addition to the Q unit.
  • the bifunctional siloxane unit is preferably contained.
  • R 2 is each independently an alkenyl group or an unsubstituted alkyl group. At least one of a plurality of R 2 existing in one molecule of the resin-like polyorganosiloxane is an alkenyl group.
  • alkenyl group examples include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group and a heptenyl group. Vinyl groups are preferred.
  • Examples of the unsubstituted alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group and a heptyl group.
  • a methyl group is preferred as the unsubstituted alkyl group.
  • the siloxane unit is a monofunctional siloxane unit represented by the formula: R 3 3 SiO 1/2 (R 3 is an unsubstituted alkyl group, and a plurality of R 3 may be different. The same applies hereinafter). (Hereinafter, also referred to as R 3 3 SiO 1/2 unit) and the formula: R 3 2 R 4 SiO 1/2 (R 3 is an unsubstituted alkyl group, and R 4 is an alkenyl group.
  • R 3 2 R 4 SiO 1/2 unit a monofunctional siloxane unit
  • R 3 2 SiO 2/2 a bifunctional siloxane unit represented by the formula: R 3 2 SiO 2/2. hereinafter also referred to as R 3 2 SiO 2/2 units.
  • R 3 2 SiO 2/2 units consists of a Q unit copolymer, A copolymer composed of R 3 3 SiO 1/2 units, R 3 2 R 4 SiO 1/2 units, and Q units, And R 3 2 R 4 SiO 1/2 units, and R 3 2 SiO 2/2 units, copolymers thereof comprising a Q unit.
  • These copolymers can be used alone or in combination of two or more.
  • a copolymer in which the siloxane unit is composed of R 3 3 SiO 1/2 unit, R 3 2 R 4 SiO 1/2 unit and Q unit is preferable.
  • the siloxane unit is a monofunctional siloxane unit represented by the formula: (CH 3 ) 2 (CH 2 ⁇ CH)SiO 1/2 (hereinafter referred to as the M vi unit), and the formula: A copolymer composed of a monofunctional siloxane unit represented by (CH 3 ) 3 SiO 1/2 (hereinafter referred to as M unit) and a Q unit is preferable.
  • M unit monofunctional siloxane unit represented by (CH 3 ) 3 SiO 1/2
  • Q unit Q unit
  • the ratio of M vi units to M units to Q units is preferably in the range of 0.5 to 2.0 mol in total of M vi units and M units per 1 mol of Q units.
  • the method for obtaining the resin-like polyorganosiloxane that is the component (A3) is not particularly limited, but it can be obtained, for example, by adding water to chlorosilane and alkoxysilane having an alkenyl group and hydrolyzing them.
  • a suitable weight average molecular weight Mw of the (A3) resin-like polyorganosiloxane is 500 to 8,000, and a range of 1,000 to 5,000 is more preferable.
  • Mw is a polystyrene conversion value by gel permeation chromatography (hereinafter, referred to as GPC).
  • GPC gel permeation chromatography
  • the resinous polyorganosiloxane which is the component (A3) serves as a polymer component of the composition of the present embodiment together with the above-mentioned linear component (A1) and component (A2).
  • the content ratio of the component (A3) to the entire component (A) is 6% by mass or more and 25% by mass or less.
  • the content ratio of the component (A3) can be expressed by W A3 /(W A1 +W A2 +W A3 ), and thus is as follows.
  • W A1 is the mass of the (A1) component
  • W A2 is the mass of the (A2) component
  • W A3 is the mass of the (A3) component. 0.06 ⁇ W A3 /(W A1 +W A2 +W A3 ) ⁇ 0.25
  • the content of the component (A3) is less than 6% by mass of the total amount of the component (A), a cured product having high strength cannot be obtained. In addition, the tackiness of the cured product becomes high. Further, if the content ratio of the component (A3) exceeds 25% by mass, the hardness of the cured product becomes too high, which is not preferable.
  • a more preferable content ratio of the component (A3) is 10% by mass or more and 20% by mass or less, and particularly preferably 10% by mass or more and 15% by mass or less, based on the entire component (A).
  • the component (B) used in the present embodiment is (B1) a linear polyorganohydrogensiloxane having two hydrogen atoms bonded to silicon atoms at both ends of the molecular chain in one molecule (hereinafter, linear polyorganohydrogensiloxane).
  • Polyorganohydrogensiloxane) and (B2) polyorganohydrogensiloxane having 3 or more hydrogen atoms bonded to silicon atoms in one molecule hereinafter referred to as crosslinkable polyorganohydrogensiloxane.
  • the component (B) reacts with the component (A) and acts as a crosslinking agent.
  • the linear polyorganohydrogensiloxane that is the component (B1) has a hydrocarbon group bonded to a silicon atom, in addition to the hydrogen atom bonded to the silicon atom.
  • the hydrocarbon group contained in the component (B1) is an unsubstituted monovalent hydrocarbon group containing no aliphatic unsaturated bond, such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group or a hexyl group. And an alkyl group having 1 to 6 carbon atoms. A methyl group is preferable because it is easily synthesized.
  • Specific preferred examples of the component (B1) include polydimethylsiloxane capped with dimethylhydrogensilyl groups at both molecular chain ends.
  • the viscosity of component (B1) is 0.1 to 200 mPa ⁇ s. When the viscosity is within this range, the obtained cured product has low hardness and good mechanical properties.
  • the viscosity of the component (B1) is more preferably in the range of 1 to 50 mPa ⁇ s. As the component (B1), one type may be used alone, or two or more types may be used in combination.
  • the component (B2) is a polyorganohydrogensiloxane having an average of three or more hydrogen atoms (Si—H) bonded to silicon atoms in one molecule.
  • the molecular structure of the component (B2) is not particularly limited, and for example, various polyorganohydrogensiloxanes such as linear, cyclic, branched, and three-dimensional network (resin) can be used. Is preferably a resin-like polyorganohydrogensiloxane having a tetrafunctional siloxane unit (Q unit) represented by SiO 4/2 .
  • this resin-like polyorganohydrogensiloxane preferably has monofunctional siloxane units together with Q units.
  • the method for obtaining the resin-like polyorganohydrogensiloxane that is the component (B2) is not particularly limited, but for example, chlorosilane having a hydrogen atom and tetraalkoxysilane and/or polysilicate (for example, ethylpolysilicate) are used. Co-hydrolyze and condense in an organic solvent such as toluene, xylene. Instead of using chlorosilane as a starting material, a method of charging 1,1,3,3-tetramethyldisiloxane together with hydrochloric acid and decomposing the disiloxane under acidic conditions can also be adopted.
  • (B2) The resin-like polyorganohydrogensiloxane a component, siloxane units, R 5 3 SiO 1/2 units, R 5 2 HSiO consisting 1/2 units and Q units copolymers, R 5 3 SiO Copolymer consisting of 1/2 unit, R 5 2 HSiO 1/2 unit, R 5 2 SiO 2/2 unit and Q unit, R 5 3 SiO 1/2 unit, R 5 2 HSiO 1/2 unit, R Examples thereof include copolymers composed of 5 2 SiO 2/2 units, R 5 HSiO 2/2 units and Q units, and copolymers composed of R 5 2 HSiO 1/2 units and Q units.
  • each R 5 is independently an unsubstituted alkyl group.
  • the unsubstituted alkyl group include alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group, propyl group, butyl group, pentyl group and hexyl group.
  • a methyl group is preferable because it is easily synthesized.
  • the siloxane unit is a monofunctional siloxane unit represented by the formula: (CH 3 ) 2 HSiO 1/2 (hereinafter referred to as MH unit).
  • MH unit a monofunctional siloxane unit represented by the formula: (CH 3 ) 2 HSiO 1/2 (hereinafter referred to as MH unit).
  • M unit a monofunctional siloxane unit represented by the formula: (CH 3 ) 3 SiO 1/2 (M unit)
  • Q unit or from a M H unit and a Q unit.
  • Copolymers composed are preferred, and copolymers composed of MH units and Q units are particularly preferred.
  • the ratio of each unit is preferably 1.5 to 2.2 moles of MH units to 1 mole of Q units, and 1.8 to 2. 1 mol is more preferred.
  • (B2) component, unit formula: [(CH 3) 2 HSiO 1/2] 8 [SiO 4/2] 4 or unit formula,: [(CH 3) 2 HSiO 1/2] 10 [SiO 4/2 ] 5 has a structure in which 4 to 5 Q units form a cyclic siloxane skeleton, and 2 MH units are bonded to each Q unit. Particularly preferred.
  • the resin-like polyorganohydrogensiloxane component preferably has a viscosity of 0.1 to 200 mPa ⁇ s. When the viscosity is within this range, the compounding is easy and the resulting cured product has good mechanical properties.
  • the viscosity of the component (A2) is more preferably 1 to 100 mPa ⁇ s.
  • the blending amount of the component (B2) and the component (B1) is such that the molar ratio of the hydrogen atoms in the component (B1) to the total of the hydrogen atoms and the hydrogen atoms in the component (B2) is 0. 2 and 0.75 or less, and the molar ratio of the total of hydrogen atoms in the component (B1) and the total of hydrogen atoms in the component (B2) to the total of alkenyl groups in the component (A) is 0.
  • the amount is 9 or more and 2.1 or less.
  • H B1 /(H B1 +H B2 ), H/Vi The content ratios described here can be expressed as H B1 /(H B1 +H B2 ), H/Vi, respectively, where H B1 is the number of moles of hydrogen atoms in the component (B1), H B2 Is the number of moles of hydrogen atoms in component (B2), H is the total number of moles of hydrogen atoms in component (B1) and hydrogen atoms in component (B2), and Vi is the number of moles of alkenyl groups in component (A). Is. ) 0.2 ⁇ H B1 /(H B1 +H B2 ) ⁇ 0.75 0.9 ⁇ H/Vi ⁇ 2.1
  • H/Vi When H/Vi is less than 0.9, tackiness on the surface of the cured product increases, which is not preferable. Further, when H/Vi exceeds 2.1, a large amount of unreacted Si—H remains in the cured product, and thus the properties of the cured product may change over time.
  • a more preferable range of H/Vi is 1.0 or more and 1.8 or less.
  • H/Vi is 0.9 or more and 2.1 or less
  • H B1 /(H B1 +H B2 ) is 0.2 or less
  • the cured product becomes too hard and has a low hardness.
  • a cured product cannot be obtained.
  • H B1 /(H B1 +H B2 ) exceeds 0.75, the degree of cross-linking decreases and a cured product having high strength cannot be obtained.
  • the component (C) is a catalyst that promotes the addition reaction (hydrosilylation reaction) between the alkenyl group of the component (A) and the hydrogen atom of the component (B).
  • Examples of the component (C) include platinum-based catalysts, palladium-based catalysts, rhodium-based catalysts, and the like, but platinum-based catalysts (platinum or platinum-based compounds) are preferred from the economical point of view.
  • platinum-based catalyst known catalysts can be used.
  • a platinum-based catalyst that is activated by heat hereinafter, also referred to as a hot platinum-based catalyst
  • a platinum-based catalyst that is activated by ultraviolet rays hereinafter, UV platinum-based catalyst.
  • the hot platinum-based catalyst include platinum black; chloroplatinic acid; alcohol modified products such as chloroplatinic acid; complexes of chloroplatinic acid with olefins, aldehydes, vinyl group-containing siloxanes, acetylene alcohols, and the like.
  • the UV platinum-based catalyst is a UV-active catalyst designed as a compound containing a platinum-based catalyst so that the catalytic activity is expressed by the irradiation of ultraviolet rays.
  • a photoactivatable catalyst containing an ( ⁇ -diolefin)-( ⁇ -aryl)-platinum complex, an ⁇ 5 cyclopentadienyl platinum complex compound or a ⁇ -bonded ligand (preferably Are suitable with optionally substituted cyclopentadienyl ligands having ⁇ -bonded alkyl or aryl ligands).
  • Photoactivatable platinum catalysts that can be used include those which additionally have a ligand selected from diketones.
  • the compounding amount of the component (C) may be an effective amount and can be appropriately increased or decreased depending on the desired curing rate.
  • the content ratio with respect to the entire composition is 0.5 to 10 mass ppm in terms of platinum element.
  • the amount is more preferably 1 to 5 mass ppm, still more preferably 1 to 3 mass ppm.
  • the amount of the platinum-based catalyst is less than 0.5 ppm, the curability is significantly reduced, and when it exceeds 10 ppm, the transparency of the cured product is reduced.
  • the amount of the platinum-based catalyst compounded is in the range of 0.5 to 10 mass ppm, a cured product having good characteristics can be obtained, and it is economically advantageous.
  • the curable polyorganosiloxane composition of the present embodiment may contain, in addition to the components (A), (B), and (C), optional components within a range that does not impair the object of the present invention. ..
  • the optional component include a reaction inhibitor, an adhesiveness-imparting agent, a non-crosslinking polyorganosiloxane that does not contain a hydrogen atom bonded to a silicon atom and an alkenyl group, a heat resistance-imparting agent, a flame retardant-imparting agent, and thixo.
  • examples include a property imparting agent, a pigment and a dye.
  • the reaction inhibitor is a component for suppressing the reaction of the composition, and is, for example, an acetylene-based, amine-based, carboxylic acid ester-based, phosphorous acid ester-based reaction inhibitor, specifically, 1 -Ethynyl-cyclohexanol, 3,5-dimethyl-1-hexyn-3-ol, triallyl isocyanurate, vinyl group-containing cyclic siloxane tetramer, methylbis(1,1-dimethyl-2-propynyloxy)silane, etc. Can be mentioned. From the viewpoint of ensuring a sufficient mixing time and preventing the variation of the crosslink density of the cured product, it is preferable to add the reaction inhibitor.
  • the curing can be stored by dividing it into two liquids so that the curing does not proceed, and curing can be performed by mixing the two liquids at the time of use.
  • the two-liquid mixed type it is necessary to avoid packing the component (B) polyorganohydrogensiloxane and the component (C) hydrosilylation reaction catalyst in the same bag from the viewpoint of the risk of dehydrogenation reaction.
  • the viscosity of the curable polyorganosiloxane composition of this embodiment is preferably in the range of 500 to 500,000 mPa ⁇ s as a value measured by a rotational viscometer at 23° C. from the viewpoint of moldability and handleability. A more preferable range is 1,000 to 150,000 mPa ⁇ s.
  • the curable polyorganosiloxane composition of the present embodiment preferably contains no inorganic filler. Even with a composition containing no inorganic filler, a cured product having good mechanical properties (tensile strength, elongation, etc.) can be obtained. Further, by using a composition containing no inorganic filler, a cured product having a high light (eg, visible light) transmittance can be obtained.
  • a composition containing no inorganic filler a cured product having a high light (eg, visible light) transmittance can be obtained.
  • the curable polyorganosiloxane composition of the present embodiment is cured by heating if necessary.
  • the curing conditions are not particularly limited, but the curing is usually carried out by maintaining the temperature at 40 to 200° C., preferably 60 to 170° C. for 0.5 minutes to 10 hours, preferably 1 minute to 6 hours.
  • the cured product of this embodiment is obtained by curing the above polyorganosiloxane composition.
  • This cured product has low hardness, high mechanical strength, and high transparency. Further, there is no bleeding of the liquid substance, and the surface has low tackiness.
  • the preferred cured product of this embodiment has the following specific properties.
  • the cured product of this embodiment has a hardness of 50 or less as measured by a type E durometer specified in JIS K6249. A more preferable hardness is 20 to 45.
  • the cured product of the present embodiment has a tensile strength defined by JIS K6249 of 0.5 MPa or more. A more preferable tensile strength is 0.6 MPa or more.
  • the cured product of this embodiment has a transmittance of light having a wavelength of 400 nm of a sample having a thickness of 2 mm of 90% or more. A more preferable transmittance is 92% or more.
  • peeling force peeling speed 500 mm/min
  • peeling speed 500 mm/min peeling speed 500 mm/min
  • a more preferable peeling force is less than 10 mN/mm.
  • the polyorganosiloxane cured product of the present embodiment has the above-mentioned characteristics, it is used for applications such as an optical sensor, an optical contact sensor, a pressure sensor, an optical member, and artificial skin.
  • an optical tactile sensation for a robot hand is used. It is suitable as a constituent material of the grip of the sensor.
  • a grid-shaped dot pattern formed on the surface of the gripping portion is deformed by a hemispherical gripping portion (touch pad) that grips the object coming into contact with the object. Then, the deformation is taken by an internal CCD camera and the image is analyzed to obtain the added tactile information. Therefore, the material forming the grip portion is required to have high strength, high transparency, not too hard, and low surface tackiness so that the gripped object can be released easily.
  • the polyorganosiloxane cured product of the present embodiment has the above-mentioned characteristics, has low hardness and high strength, is highly transparent, and has low surface tackiness, so that when the grip portion of the optical tactile sensor is configured, it does not damage the object. Accurate tactile information can be obtained without giving, and stable gripping and releasing can be achieved.
  • the polyorganosiloxane cured product of the present embodiment can also be suitably used as a material forming an image display device, specifically, a filler between a display portion and a protective portion of the image display device. When used as such a filler, it is sandwiched between the display section and the protective section without being too hard, and a stable image display device can be obtained.
  • the mixture was heated to 150° C. to remove xylene and used as a mixture of (A1) and (A3).
  • Examples 1-8, Comparative Examples 1-7 The components shown in Tables 1 and 2 were blended and kneaded in the proportions shown in the table to prepare polyorganosiloxane compositions.
  • ⁇ Surface adhesiveness> The polyorganosiloxane compositions obtained in Examples 1 to 8 and Comparative Examples 1 to 7 were heated in a mold at 100° C. for 10 minutes to be cured to prepare a sheet-shaped cured product having a thickness of 2 mm. At this time, a PET film (thickness: 50 ⁇ m) was attached to the inner peripheral surface of the die, and two PET films were attached to both sides of the cured product to obtain a test piece. Then, in the obtained test piece, the peeling force required to peel the film from the cured product was measured. The peeling force was measured by using an autograph and by pulling the film vertically at a speed of 500 mm/min to peel it from the cured product.
  • the peeling force measured by the above method is preferably less than 15 mN/mm.
  • each of the components (A1), (A2), (A3), (B1), (B2), and (C) was blended in the predetermined composition specified in the present embodiment to obtain the poly of Examples 1 to 8.
  • the cured product obtained from the organosiloxane composition has a low hardness of 50 or less as measured by a type E durometer, and has a high transparency of 90% or more in the transmittance of light having a wavelength of 400 nm (thickness 2 mm).
  • the mechanical strength is high with a tensile strength of 0.5 MPa or more.
  • this cured product has no bleeding of a liquid substance, has a small peeling force (less than 15 mN/mm), and has low surface tackiness.
  • the (A1) both-end alkenyl group polyorganosiloxane relative to the total of the linear alkenyl group polyorganosiloxane composed of the (A1) component and the (A2) component Content of less than 61% by mass and the content ratio of the component (A2) (W A2 /(W A1 +W A2 )) exceeds 39% by mass, not only the tensile strength of the cured product is small, but also Oil bleed occurs.
  • W A3 /(W A1 +W A2 +W A3 ) was less than 6% by mass, and thus the cured products had low tensile strength.
  • the polyorganosiloxane composition of Comparative Example 2 has a large peeling force (15 mN/mm or more) and a large surface tackiness.
  • oil bleed occurs in the cured product.
  • the polyorganosiloxane composition of Comparative Example 3 has a low H/Vi ratio of less than 0.9, not only the tensile strength of the cured product is small, but also the peeling force is large at 15 mN/mm or more, and Highly sticky.
  • H B1 /(H B1 +H B2 ) was more than 0.75, not only the tensile strength of the cured product was small, but also the peeling force was 15 mN/mm or more. It is large, and the tackiness of the cured product surface is great.
  • the polyorganosiloxane composition of Comparative Example 6 had an H B1 /(H B1 +H B2 ) value of 0.2 or less, so that the hardness of the cured product measured with a type E durometer was more than 50, and A cured product with low hardness cannot be obtained.
  • the polyorganosiloxane composition of Comparative Example 7 since W A3 /(W A1 +W A2 +W A3 ) exceeds 25% by mass, the hardness of the cured product is large (greater than 50), which is not preferable.
  • a cured product having low hardness, high transparency, and high mechanical strength such as tensile strength can be obtained. Further, this cured product has no bleeding of a liquid substance and has low surface tackiness. Therefore, a cured product obtained from this polyorganosiloxane composition can be used as a constituent material for an optical sensor, an optical contact sensor, a pressure sensor, an optical member, artificial skin, an image display device, etc. It is suitable as a material for forming the grip portion of the optical tactile sensor for use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

低硬度で透明性が高く、引張り強さが大きく表面粘着性が低い硬化物が得られるポリオルガノシロキサン組成物を提供する。 (A)(A1)所定の粘度を有する両末端アルケニル基ポリオルガノシロキサンと、(A2)所定の粘度を有する平均して0.6個以上2個未満のアルケニル基を有するポリオルガノシロキサンとからなる直鎖状のポリオルガノシロキサンと、(A3)レジン状ポリオルガノシロキサン、を有するアルケニル基含有ポリオルガノシロキサンと、(B)(B1)両末端Si-H含有直鎖状ポリオルガノシロキサンと、(B2)Si-Hを3個以上有するポリオルガノシロキサンからなるポリオルガノハイドロジェンシロキサンと、(C)ヒドロシリル化反応触媒とを、それぞれ所定の関係を満たす量となるように含有する硬化性ポリオルガノシロキサン組成物。

Description

硬化性ポリオルガノシロキサン組成物、およびポリオルガノシロキサン硬化物
 本発明は、硬化性ポリオルガノシロキサン組成物および硬化物に係り、さらに詳述すると、低硬度で強度が高く、透明で表面粘着性の低い硬化物が得られるポリオルガノシロキサン組成物と、その組成物を硬化してなる硬化物に関する。
 従来から、硬化してシリコーンゴムとなるポリオルガノシロキサン組成物はよく知られており、その耐候性、耐熱性、電気絶縁性、硬度、機械的強度、伸び等の優れた性質を利用して、電気・電子分野、光学・オプトエレクトロニクス、センサ、建築などの各分野で、ポッティング材やコーティング材、型取り、射出成形等の成形材料、被覆材料などに広く用いられている。なかでも付加反応によって硬化するポリオルガノシロキサン組成物は、適切な加熱またはUV照射により速やかに硬化し、硬化時に腐蝕性物質等の放出がないことから、各分野における用途が拡大している。
 近年、ロボットハンド用の触覚センサとして、物体との接触部に複雑な配線を持たず、構造が簡単で小型化が容易な光学式触覚センサが提案されている。そして、物体を把持するタッチパッドの構成材料として、高弾性で透明なシリコーンゴムの使用が考えられている(例えば、特許文献1、特許文献2参照。)。
 従来から、透明性の高い硬化物を与え、レンズなどの光学的用途に用いられる組成物として、レジン構造を有するアルケニル基含有ポリオルガノシロキサンを含み、フィラーを含有しない付加反応硬化性のシリコーン組成物が提案されている(例えば、特許文献3、特許文献4参照。)。
 しかしながら、特許文献3および特許文献4に記載された組成物はいずれも、得られる硬化物の硬さがタイプAデュロメータ測定で60以上と硬いため、これらの硬化物で光学式触覚センサの把持部を構成した場合、把持される物体が柔らかいものであると、物体に損傷を与えるおそれがあった。また、把持部のひずみを認識するタイプの触覚センサに用いる場合、硬い硬化物では、把持したときのシリコーンゴムのわずかなひずみを認識することができないという問題があった。
 さらに従来から、レジン構造を有するアルケニル基含有ポリオルガノシロキサンの含有量をゼロあるいは少なくすることで、低硬度の硬化物を得ることも提案されている(例えば、特許文献5参照。)が、前記した把持部の構成材料として十分な強度を有する硬化物を得ることが困難であった。
特許第5449336号公報 特許第5013507号公報 特開2009-52038号公報 特開2018-48214号公報 特許第6243567号公報
 本発明は、これらの問題を解決するためになされたもので、低硬度で透明性が高く、かつ引張り強さ等の強度が高い硬化物を得ることができるポリオルガノシロキサン組成物を提供することを目的とする。
 本発明の硬化性ポリオルガノシロキサン組成物は、
 (A)分子中にケイ素原子に結合したアルケニル基を1個以上有するアルケニル基含有ポリオルガノシロキサンと、
 (B)分子中にケイ素原子に結合した水素原子を2個以上有するポリオルガノハイドロジェンシロキサンと、
 (C)ヒドロシリル化反応触媒の有効量
 をそれぞれ含有してなることを特徴とする。
 また、本発明の硬化性ポリオルガノシロキサン組成物は、
 (A)(A1)JIS K6249に準じて測定された23℃における粘度が1,000~1,000,000mPa・sで、分子鎖両末端のケイ素原子にそれぞれ結合したアルケニル基を有する直鎖状のポリオルガノシロキサンの61質量%以上95質量%以下と、(A2)JIS K6249に準じて測定された23℃における粘度が10~50,000mPa・sで、ケイ素原子に結合したアルケニル基を1分子中に平均して0.6個以上2個未満有する直鎖状のポリオルガノシロキサンの5質量%以上39質量%以下と、からなる直鎖状のポリオルガノシロキサンと、(A3)式:SiO4/2で表される4官能型シロキサン単位を有し、ケイ素原子に結合したアルケニル基を1分子中に平均して2個以上有するレジン構造を有するポリオルガノシロキサンを含有し、
 前記(A1)成分と前記(A2)成分と前記(A3)成分の合計に対する(A3)成分の含有割合が、6質量%以上25質量%以下であるアルケニル基含有ポリオルガノシロキサンと、
 (B)(B1)JIS K6249に準じて測定された23℃における粘度が0.1~200mPa・sで、分子鎖両末端のケイ素原子に結合した水素原子を1分子中に2個有する直鎖状のポリオルガノシロキサンと、(B2)ケイ素原子に結合した水素原子を1分子中に3個以上有するポリオルガノシロキサンと、からなるポリオルガノハイドロジェンシロキサンを、
 前記(B1)成分中の前記水素原子の、該水素原子と前記(B2)成分中の水素原子との合計に対するモル比が0.2を超え0.75以下となり、かつ前記(B1)成分中の水素原子と前記(B2)成分中の水素原子の合計の、前記(A)成分中のアルケニル基の合計に対するモル比が0.9以上2.1以下となる量、および
 (C)ヒドロシリル化反応触媒の有効量
 をそれぞれ含有してなることを特徴とする。
 本発明のポリオルガノシロキサン硬化物は、前記した本発明の硬化性ポリオルガノシロキサン組成物を硬化してなる硬化物であり、光学センサ、光学式触覚センサ、圧力センサ、光学部材、人工皮膚から選ばれる少なくとも1種に用いられることを特徴とする。
 なお、以下の記載においては、「ケイ素原子に結合したアルケニル基」を単に「アルケニル基」と示すことがある。また、「ケイ素原子に結合した水素原子」を、単に「水素原子」または「Si-H」と示すことがある。
 本発明の硬化性ポリオルガノシロキサン組成物によれば、低硬度で透明性が高く、引張り強さ等の機械的強度が高い硬化物を得ることができる、また、この硬化物は、液状物質のブリードがなく、表面の粘着性が低い。
 以下、本発明の実施の形態について説明する。
[硬化性ポリオルガノシロキサン組成物]
 本発明の一実施形態の硬化性ポリオルガノシロキサン組成物は、(A)(A1)分子鎖両末端にそれぞれアルケニル基を有する直鎖状のポリオルガノシロキサンの61質量%以上95質量%以下と、(A2)1分子中に平均して0.6個以上2個未満のアルケニル基を有する直鎖状のポリオルガノシロキサンの5質量%以上39質量%以下と、からなる直鎖状のポリオルガノシロキサンと、(A3)アルケニル基を1分子中に平均して2個以上有するレジン構造を有するポリオルガノシロキサンを含有するアルケニル基含有ポリオルガノシロキサンと、(B)(B1)分子鎖両末端に水素原子を1分子中に2個有する直鎖状のポリオルガノシロキサンと、(B2)水素原子を1分子中に3個以上有するポリオルガノシロキサンと、からなるポリオルガノハイドロジェンシロキサン、および(C)ヒドロシリル化反応触媒の有効量をそれぞれ含有する。
 以下、実施形態の組成物の有する各成分について説明する。
<(A)アルケニル基含有ポリオルガノシロキサン>
 本実施形態で用いられる(A)成分は、硬化性ポリオルガノシロキサン組成物の主剤(ベースポリマー)であり、(A1)分子鎖両末端にアルケニル基を有する直鎖状のポリオルガノシロキサン(以下、両末端アルケニル基含有ポリオルガノシロキサンと示す。)と、(A2)平均して0.6個以上2個未満のアルケニル基を有する直鎖状のポリオルガノシロキサン(以下、2個未満のアルケニル基含有オルガノシロキサンと示す。)と、(A3)レジン構造を有するアルケニル基含有ポリオルガノシロキサンとを含有する。
 (A)成分において、(A1)成分と(A2)成分の合計100質量%中の(A1)成分の含有割合は、61質量%以上95質量%以下であり、(A2)成分の含有割合は5質量%以上39質量%以下である。また、(A1)成分と(A2)成分と(A3)成分の合計100質量%中の(A3)成分の含有割合は、6質量%以上25質量%以下である。さらに、(A1)成分の23℃における粘度(以下、単に粘度と示す。)は1,000~1,000,000mPa・sであり、(A2)成分の粘度は10~50,000mPa・sである。なお、本明細書における粘度は、特に説明している場合を除き、JIS K6249に準じて測定された値である。
<(A1)両末端アルケニル基含有ポリオルガノシロキサン>
 (A1)成分は、23℃における粘度が1,000~1,000,000mPa・sで、分子鎖両末端にそれぞれアルケニル基を有する直鎖状のポリオルガノシロキサンである。
 なお、「ポリオルガノシロキサンが直鎖状である」とは、全シロキサン単位の合計量に対する、式:RSiO3/2(Rは、脂肪族不飽和結合を含まない非置換または置換の1価炭化水素基であり、アルケニル基以外の炭化水素基を例示することができる。)で表される3官能型シロキサン単位と、式:SiO4/2で表される4官能型シロキサン単位の合計量が、モル分率で5%以下であることをいう。
 (A1)成分中のケイ素原子に結合したアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基のような、炭素原子数が2~6の非置換のアルキル基が挙げられる、これらの中でも、ビニル基が好ましい。(A1)成分としては、2個のアルケニル基を有し、かつ2個のアルケニル基が直鎖状の分子鎖の両末端のケイ素原子にそれぞれ1個ずつ結合しているものが好ましい。なお、2個のアルケニル基は、同じであってもよいし異なっていてもよいが、合成の容易さの観点から同じであることが好ましい。
 (A1)成分において、ケイ素原子に結合したアルケニル基以外の有機基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基のような、炭素原子数1~6のアルキル基が挙げられる。合成が容易であることから、メチル基が好ましい。
 (A1)成分の好ましい具体例としては、分子鎖両末端ジメチルビニルシロキシ基封鎖ポリジメチルシロキサンが挙げられる。
 (A1)成分の粘度は1,000~1,000,000mPa・sである。粘度がこの範囲にある場合には、得られる硬化物の機械的特性が良好となり好ましい。(A1)成分の粘度は、3,500~200,000mPa・sが好ましく、5,000~150,000mPa・sが特に好ましい。
<(A2)2個未満のアルケニル基含有ポリオルガノシロキサン>
 (A2)成分は、1分子中に平均(以下、単に「平均」と示す。)して0.6個以上2個未満のアルケニル基を有する直鎖状のポリオルガノシロキサンであり、架橋密度を低下させ、硬化物の硬度を下げる役割を果たす。
 (A2)成分のアルケニル基は、分子骨格の中間のケイ素原子と末端のケイ素原子のいずれかに結合していてもよいが、反応速度や反応後に低硬度のゴム硬化物を形成する点から、分子末端のケイ素原子に結合していることが好ましい。
 (A2)成分であるアルケニル基を平均で0.6個以上2個未満有するポリオルガノシロキサンを得るには、例えば、両末端にアルケニル基を有するポリオルガノシロキサンと、アルケニル基を含有しない直鎖状ないし分岐状のポリオルガノシロキサンを、前記したアルケニル基の平均個数を満足させるように、かつ前述の粘度範囲を実現する平均分子量となるように配合し、硫酸、塩酸、活性白土等の酸触媒、または水酸化カリウム、水酸化テトラメチルアンモニウム等のアルカリ触媒の存在下に、常法によりシロキサンの切断、平衡化を行う。この場合、原料の一部として、環状ポリシロキサン、特にビニル基を含有しない環状ポリシロキサンを併用してもよい。
 平衡化の後、常法により触媒を除去し、減圧下で加熱し、副生する低分子ポリオルガノシロキサンないし未反応の低分子ポリオルガノシロキサンを除去することにより、精製される。この手法により得られたポリオルガノシロキサンは、両末端にそれぞれアルケニル基を有するポリオルガノシロキサンと、片末端にアルケニル基を有するポリオルガノシロキサンと、アルケニル基を含有しないポリオルガノシロキサンの混合物として得られる。例えば、平均して1個のアルケニル基を有するポリオルガノシロキサンの調製では、片末端アルケニル基含有ポリオルガノシロキサンが約50モル%、両末端アルケニル基含有ポリオルガノシロキサンが約25モル%、アルケニル基を含有しないポリオルガノシロキサンが約25モル%の混合物として得られる。
 さらに、(A2)成分は、前記方法により得られた1分子中に1個未満(例えば0.5個)のアルケニル基を有するポリオルガノシロキサンと、両末端にアルケニル基を有するポリオルガノシロキサンとを混合し調製しても良い。またさらに、アルケニル基数が平均で1個以上2個未満のものを得るには、片側末端にアルケニル基を有するポリオルガノシロキサンと、両末端にアルケニル基を有するポリオルガノシロキサンとを単に混合してもよい。すなわち、アルケニル基含有数の異なる複数種類のものを混合し、1分子当り平均して0.6個以上2個未満のアルケニル基を有するようにすることができる。
 さらに、片側末端にアルケニル基を有するポリオルガノシロキサンは、強塩基リビング重合反応によっても合成することができる。なお、強塩基リビング重合反応は、開始剤として有機アルカリ金属化合物を用いて、環状ポリオルガノシロキサンを開環重合させた後、クロロアルケニルシランで末端を封止する反応である。
 なお、(A2)成分において、硬化物のタック性低減には、硬化反応に寄与しないフリーオイルや低分子シロキサンの含有量を少なくすることがより好ましい。
 (A2)成分の粘度は、10~50,000mPa・sである。粘度がこの範囲である場合には、得られる硬化物の機械的特性が良好となり好ましい。(A2)成分の粘度は、10~10,000mPa・sがさらに好ましく、100~5,000mPa・sが特に好ましい。
 以下に示すように、(A1)成分と(A2)成分とからなる直鎖状のアルケニル基含有ポリオルガノシロキサンの合計100質量%中で、(A1)成分の含有割合は、61質量%以上95質量%以下であり、(A2)成分の含有割合は5質量%以上39質量%以下である。(A1)成分の含有割合は、65質量%以上95質量%以下であり、(A2)成分の含有割合は5質量%以上35質量%以下が好ましい。ここで説明した含有割合を数式で表すと、(A1)成分の含有割合は、WA1/(WA1+WA2)で表せ、(A2)成分の含有割合は、WA2/(WA1+WA2)で表せるため、以下の通りとなる。ここで、WA1は(A1)成分の質量、WA2は(A2)成分の質量である。
 0.61≦WA1/(WA1+WA2)≦0.95
 0.05≦WA2/(WA1+WA2)≦0.39
 (A2)成分の含有割合が5質量%未満で(A1)成分の含有割合が95質量%を超える場合には、所望の低硬度(例えば、タイプEデュロメータによる硬さが50以下)の硬化物が得られない。また、(A2)成分の含有割合が39質量%を超え(A1)成分の含有割合が61質量%未満の場合には、硬化物にオイルブリードが生じる。
 (A1)成分および(A2)成分のより好ましい含有割合は、(A1)成分と(A2)成分の合計100質量%中で、(A1)成分が70質量%以上90質量%以下であり、(A2)成分が10質量%以上30質量%以下である。
<(A3)レジン構造を有するアルケニル基含有ポリオルガノシロキサン>
 (A3)成分は、式:SiO4/2で表される4官能型シロキサン単位(以下、Q単位という。)を含み、1分子中に平均して2個以上のアルケニル基を有するレジン構造(三次元網目構造)を有するポリオルガノシロキサンである。以下、「レジン構造を有する」ことを「レジン状」ともいう。(A3)成分の有するアルケニル基数のより好ましい範囲は、1分子中に平均2個以上である。
 (A3)成分であるレジン状ポリオルガノシロキサンは、Q単位の他に、式:R SiO1/2で表される1官能型シロキサン単位と、式:R SiO2/2で表される2官能型シロキサン単位を含有するものであることが好ましい。このようなポリオルガノシロキサンを使用することにより、強度が高く粘着性の低い硬化物が得られる。
 上記単位式において、Rは、それぞれ独立に、アルケニル基または非置換のアルキル基である。レジン状ポリオルガノシロキサンの1分子中に存在する複数のRのうちで、少なくとも1個はアルケニル基である。アルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、へプテニル基等が挙げられる。ビニル基が好ましい。非置換のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等が挙げられる。非置換のアルキル基としては、メチル基が好ましい。
 (A3)成分であるレジン状ポリオルガノシロキサンの例としては、
 シロキサン単位が、式:R SiO1/2(Rは、非置換のアルキル基であり、複数のRは異なっていてもよい。以下同じ。)で表される1官能型シロキサン単位(以下、R SiO1/2単位ともいう。)と、式:R SiO1/2(Rは、非置換のアルキル基であり、Rはアルケニル基である。以下同じ。)で表される1官能型シロキサン単位(以下、R SiO1/2単位ともいう。)と、式:R SiO2/2で表される2官能型シロキサン単位(以下、R SiO2/2単位ともいう。)と、Q単位とからなる共重合体、
 R SiO1/2単位と、R SiO1/2単位と、Q単位とからなる共重合体、
 R SiO1/2単位と、R SiO2/2単位と、Q単位とからなる共重合体等が挙げられる。これらの共重合体は、1種を単独であるいは2種以上を組み合わせて使用することができる。
 前記共重合体の中でも、シロキサン単位が、R SiO1/2単位とR SiO1/2単位とQ単位とからなる共重合体が好ましい。
 より具体的には、シロキサン単位が、式:(CH(CH=CH)SiO1/2で表される1官能型シロキサン単位(以下、Mvi単位と示す。)と、式:(CHSiO1/2で表される1官能型シロキサン単位(以下、M単位と示す。)と、Q単位とから構成される共重合体が好ましい。さらに、Mvi単位とM単位とQ単位との比率は、Q単位1モルに対して、Mvi単位とM単位が合計で0.5~2.0モルの範囲が好ましい。
 (A3)成分であるレジン状ポリオルガノシロキサンを得る方法は、特に限定されないが、例えば、アルケニル基を有するクロロシランとアルコキシシランに水を加えて加水分解するなどの方法で得ることができる。
 (A3)レジン状ポリオルガノシロキサンの好適な重量平均分子量Mwは、500~8,000であり、1,000~5,000の範囲がより好ましい。なお、Mwは、ゲルパーミエーションクロマトグラフィー(以下、GPCと示す。)によるポリスチレン換算の値である。(B)レジン状ポリオルガノシロキサンのMwが500未満の場合は、硬化物の機械的強度が安定して得られず、8,000を超える場合は、組成物の粘度が高くなり、好ましくない。
 (A3)成分であるレジン状ポリオルガノシロキサンは、前記した直鎖状の(A1)成分および(A2)成分とともに、本実施形態の組成物のポリマー成分となる。
 以下に示すように、(A)成分全体((A1)成分と(A2)成分と(A3)成分の合計)に対する(A3)成分の含有割合は、6質量%以上25質量%以下とする。ここで説明した含有割合を数式で表すと、(A3)成分の含有割合は、WA3/(WA1+WA2+WA3)で表せるため、以下の通りとなる。ここで、WA1は(A1)成分の質量、WA2は(A2)成分の質量、WA3は(A3)成分の質量である。
 0.06≦WA3/(WA1+WA2+WA3)≦0.25
 (A3)成分の含有割合が(A)成分全体の6質量%未満の場合には、強度が高い硬化物が得られない。また、硬化物の粘着性が高くなる。また、(A3)成分の含有割合が25質量%を超えると、硬化物の硬さが高くなりすぎて好ましくない。
 (A3)成分のより好ましい含有割合は、(A)成分全体に対して10質量%以上20質量%以下であり、10質量%以上15質量%以下が特に好ましい。
<(B)ポリオルガノハイドロジェンシロキサン>
 本実施形態で用いられる(B)成分は、(B1)分子鎖両末端のケイ素原子に結合した水素原子を1分子中に2個有する直鎖状のポリオルガノハイドロジェンシロキサン(以下、直鎖状ポリオルガノハイドロジェンシロキサンという。)と、(B2)ケイ素原子に結合した水素原子を1分子中に3個以上有するポリオルガノハイドロジェンシロキサン(以下、架橋性ポリオルガノハイドロジェンシロキサンという。)と、からなる。(B)成分は、前記(A)成分と反応し、架橋剤として作用する。
<(B1)直鎖状ポリオルガノハイドロジェンシロキサン>
 (B1)成分において、ケイ素原子に結合した水素原子の数は1分子中に2個であり、2個の水素原子が分子の両末端のケイ素原子に1個ずつ結合している。
 (B1)成分である直鎖状のポリオルガノハイドロジェンシロキサンは、ケイ素原子に結合した水素原子以外に、ケイ素原子に結合した炭化水素基を有する。(B1)成分が有する炭化水素基は、脂肪族不飽和結合を含まない非置換の1価炭化水素基であり、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基のような、炭素原子数1~6のアルキル基が挙げられる。合成が容易であることから、メチル基が好ましい。
 (B1)成分の好ましい具体例としては、分子鎖両末端ジメチルハイドロジェンシリル基封鎖ポリジメチルシロキサンが挙げられる。
 (B1)成分の粘度は0.1~200mPa・sである。粘度がこの範囲にある場合には、得られる硬化物が低硬度で機械的特性が良好となる。(B1)成分の粘度は、1~50mPa・sの範囲がより好ましい。(B1)成分は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
<(B2)架橋性ポリオルガノハイドロジェンシロキサン>
 (B2)成分は、ケイ素原子に結合した水素原子(Si-H)を1分子中に平均して3個以上有するポリオルガノハイドロジェンシロキサンである。(B2)成分の分子構造に特に限定はなく、例えば、直鎖状、環状、分岐状、三次元網目状(レジン状)などの各種のポリオルガノハイドロジェンシロキサンを使用することができるが、式:SiO4/2で表される4官能型シロキサン単位(Q単位)を有するレジン状のポリオルガノハイドロジェンシロキサンであることが好ましい。さらに、このレジン状のポリオルガノハイドロジェンシロキサンは、Q単位とともに1官能型シロキサン単位を有することが好ましい。(B2)成分は、前記(B1)成分とともに、そのSi-Hが(A)成分のアルケニル基と反応することで、架橋剤として作用する。
 (B2)成分であるレジン状のポリオルガノハイドロジェンシロキサンを得る方法は、特に限定されないが、例えば、水素原子を有するクロロシランと、テトラアルコキシシランおよび/またはポリシリケート(例えば、エチルポリシリケート)とを、トルエン、キシレン等の有機溶媒中で共加水分解および縮合させる。出発物質として、クロロシランを用いる代わりに、1,1,3,3-テトラメチルジシロキサンを塩酸とともに仕込み、ジシロキサンを酸性条件で分解する方法を採ることもできる。
 (B2)成分であるレジン状ポリオルガノハイドロジェンシロキサンとしては、シロキサン単位が、R SiO1/2単位、R HSiO1/2単位およびQ単位からなる共重合体、R SiO1/2単位、R HSiO1/2単位、R SiO2/2単位およびQ単位からなる共重合体、R SiO1/2単位、R HSiO1/2単位、R SiO2/2単位、RHSiO2/2単位およびQ単位からなる共重合体、R HSiO1/2単位およびQ単位からなる共重合体等が挙げられる。
 上記単位において、Rは、それぞれ独立に非置換のアルキル基である。非置換のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基のような、炭素原子数1~6のアルキル基が挙げられる。合成が容易であることから、メチル基が好ましい。
 (B2)レジン状ポリオルガノハイドロジェンシロキサンとして、より具体的には、シロキサン単位が、式:(CHHSiO1/2で表される1官能型シロキサン単位(以下、M単位と示す。)と、式:(CHSiO1/2で表される1官能型シロキサン単位(M単位)と、Q単位とから構成される共重合体、またはM単位とQ単位とから構成される共重合体が好ましく、M単位とQ単位とから構成される共重合体が特に好ましい。
 M単位とQ単位とから構成される共重合体において、各単位の比率は、Q単位1モルに対してM単位が1.5~2.2モルが好ましく、1.8~2.1モルがさらに好ましい。より具体的には、(B2)成分は、単位式:[(CHHSiO1/2[SiO4/2、または単位式:[(CHHSiO1/210[SiO4/2で表されるように、4~5個のQ単位が環状シロキサン骨格を形成し、各Q単位に2個ずつのM単位が結合している構造のものが特に好ましい。
 (B2)レジン状ポリオルガノハイドロジェンシロキサン成分の粘度は、0.1~200mPa・sであることが好ましい。粘度がこの範囲にある場合には、配合が容易であるうえに、得られる硬化物の機械的特性が良好となる。(A2)成分の粘度は、1~100mPa・sがより好ましい。
 このような(B2)成分および前記(B1)成分の配合量は、(B1)成分中の水素原子の、該水素原子と(B2)成分中の水素原子との合計に対するモル比が、0.2を超え0.75以下となり、かつ(B1)成分中の水素原子と(B2)成分中の水素原子の合計の、前記した(A)成分中のアルケニル基の合計に対するモル比が、0.9以上2.1以下となる量である。ここで説明した含有割合を数式で表すと、それぞれ、HB1/(HB1+HB2)、H/Viと示すことができ、HB1は(B1)成分中の水素原子のモル数、HB2は(B2)成分中の水素原子のモル数、Hは(B1)成分中の水素原子と(B2)成分中の水素原子の合計モル数、Viは(A)成分中のアルケニル基のモル数である。)
 0.2<HB1/(HB1+HB2)≦0.75
 0.9≦H/Vi≦2.1
 H/Viが0.9未満である場合には、硬化物表面の粘着性が増大するため、好ましくない。また、H/Viが2.1を超えると、未反応のSi-Hが硬化物中に多量に残存するため、硬化物の特性が経時的に変化するおそれがある。H/Viのより好ましい範囲は、1.0以上1.8以下である。
 また、H/Viが0.9以上2.1以下であっても、HB1/(HB1+HB2)が0.2以下である場合には、硬化物の硬くなりすぎて、低硬度の硬化物が得られない。さらに、HB1/(HB1+HB2)が0.75を超えると、架橋度が低下し、強度の高い硬化物が得られない。
<(C)ヒドロシリル化反応触媒>
 (C)成分は、前記(A)成分のアルケニル基と、前記(B)成分の水素原子との付加反応(ヒドロシリル化反応)を促進する触媒である。(C)成分としては、白金系触媒、パラジウム系触媒、ロジウム系触媒等が挙げられるが、経済性の点から白金系触媒(白金または白金系化合物)が好ましい。白金系触媒としては、公知のものを使用することができ、熱で活性化する白金系触媒(以下、熱白金系触媒ともいう。)と紫外線で活性化する白金系触媒(以下、UV白金系触媒ともいう。)がある。熱白金系触媒の具体例としては、白金ブラック;塩化白金酸;塩化白金酸等のアルコール変性物;塩化白金酸とオレフィン、アルデヒド、ビニル基含有シロキサンまたはアセチレンアルコール類等との錯体などが例示される。
 また、UV白金系触媒は、紫外線が照射されることにより触媒活性が表出されるように、白金系触媒を含む化合物として設計された紫外線活性の触媒である。UV白金系触媒としては、(η-ジオレフィン)-(σ-アリール)-白金錯体を含む光活性化可能触媒や、η5シクロペンタジエニル白金錯体化合物またはσ結合している配位子(好ましくは、σ結合しているアルキルまたはアリール配位子)を有する任意選択で置換されていてもよいシクロペンタジエニル配位子を有する錯体が適している。使用されうる光活性化されることが可能な白金触媒として、さらにジケトンから選択される配位子を有するものがある。
 (C)成分の配合量は有効量でよく、所望の硬化速度により適宜増減することができる。通常、組成物全体に対する含有割合が、白金元素に換算して0.5~10質量ppmとなる量である。より好ましくは1~5質量ppm、さらに好ましくは1~3質量ppmである。白金系触媒の配合量が0.5ppm未満では、硬化性が著しく低下し、10ppmを超える場合には、硬化物の透明性が低下する。白金系触媒の配合量が0.5~10質量ppmの範囲にある場合には、特性の良好な硬化物が得られ、また経済的にも有利である。
<その他の任意成分>
 本実施形態の硬化性ポリオルガノシロキサン組成物には、前記(A)成分、(B)成分および(C)成分以外にも、本発明の目的を損なわない範囲で任意成分を配合することができる。この任意成分としては、例えば、反応抑制剤、接着性付与剤、ケイ素原子に結合した水素原子およびアルケニル基を含有しない非架橋性のポリオルガノシロキサン、耐熱性付与剤、難燃性付与剤、チクソ性付与剤、顔料、染料等が挙げられる。
 反応抑制剤は、前記組成物の反応を抑制するための成分であって、例えば、アセチレン系、アミン系、カルボン酸エステル系、亜リン酸エステル系等の反応抑制剤、具体的には、1-エチニル-シクロヘキサノール、3,5-ジメチル-1-ヘキシン-3-オール、トリアリルイソシアヌレート、ビニル基含有環状シロキサン4量体、メチルビス(1,1-ジメチル-2-プロピニルオキシ)シラン等が挙げられる。
 十分な混合時間を確保し、硬化物の架橋密度のばらつきを防止するなどの点からは、前記反応抑制剤を配合することが好ましい。
 また、硬化が進行しないように2液に分けて保存し、使用時に2液を混合して硬化を行うこともできる。2液混合タイプでは、脱水素反応の危険性の点から、(B)成分であるポリオルガノハイドロジェンシロキサンと(C)ヒドロシリル化反応触媒を同一の包袋とすることは避ける必要がある。
 本実施形態の硬化性ポリオルガノシロキサン組成物の粘度は、成形性や取扱いやすさの観点から、23℃において回転粘度計で測定した値として、500~500,000mPa・sの範囲が好ましい。さらに好ましい範囲は1,000~150,000mPa・sである。
 本実施形態の硬化性ポリオルガノシロキサン組成物は、無機充填剤を含有しないことが好ましい。無機充填剤を含有しない組成としても、機械的特性(引張り強さ、伸び等)が良好な硬化物を得ることができる。また、無機充填剤を含有しない組成物とすることにより、光(例えば、可視光)の透過率の高い硬化物を得ることができる。
 本実施形態の硬化性ポリオルガノシロキサン組成物は、必要に応じて加熱することで硬化する。硬化条件は特に限定されるものではないが、通常40~200℃、好ましくは60~170℃の温度に、0.5分~10時間好ましくは1分~6時間程度保持することで硬化する。
[硬化物]
 本実施形態の硬化物は、前記したポリオルガノシロキサン組成物を硬化してなるものである。この硬化物は、低硬度で機械的強度が高く、透明性が高い。また、液状物質のブリードがなく、表面の粘着性が低い。
 本実施形態の好ましい硬化物としては、具体的に以下の特性を有する。
<硬さ>
 本実施形態の硬化物は、JIS K6249に規定されたタイプEデュロメータで測定された硬さが、50以下である。より好ましい硬さは、20~45である。
<引張り強さ>
 本実施形態の硬化物は、JIS K6249に規定された引張り強さが0.5MPa以上である。より好ましい引張り強さは、0.6MPa以上である。
<透明性>
 本実施形態の硬化物は、厚さ2mmの試料の波長400nmの光の透過率が、90%以上である。より好ましい透過率は、92%以上である。
<表面粘着性>
 ポリオルガノシロキサン組成物をポリエチレンテレフタレート(PET)製フィルムと一体成型して得られた硬化物(厚さ2mm)から、フィルムを剥がすときの剥離力(剥離速度500mm/分)が、15mN/mm未満である。より好ましい剥離力は、10mN/mm未満である。
 本実施形態のポリオルガノシロキサン硬化物は、前記した特性を有するので、光学センサ、光学式接触センサ、圧力センサ、光学部材、人工皮膚などの用途に用いられ、特に、ロボットハンド用の光学式触覚センサの把持部の構成材料として適している。
 すなわち、光学式触覚センサにおいては、物体を把持する例えば半球状の把持部(タッチパッド)が物体と接触することによって、把持部の表面に施された格子状のドットパターンが変形する。そして、その変形を内部のCCDカメラで撮り画像解析することによって、加えられた触覚情報を得るように構成されている。そのため、把持部を構成する材料としては、高強度で高透明であり、硬すぎることがなく、また把持した物体の解放が容易なように、表面の粘着性が低いことが求められている。
 本実施形態のポリオルガノシロキサン硬化物は、前記した特性を有し、低硬度で強度が高く、高透明で表面粘着性が低いので、光学式触覚センサの把持部を構成した場合、物体に損傷を与えることなく正確な触覚情報を得て、安定した把持および解放を達成することができる。
 また、本実施形態のポリオルガノシロキサン硬化物は、画像表示装置を形成する材料、具体的には、画像表示装置の表示部と保護部間の充填材、としても好適に用いることができる。このような充填材として用いた場合、表示部と保護部との間に硬すぎることなく挟持され、安定した画像表示装置が得られる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されない。部は質量部を示し、粘度は特に断らない限り23℃における値である。
 以下の実施例および比較例に使用した各成分は次のものである。
 (A1):両末端がそれぞれジメチルビニルシロキサン単位で閉塞され、中間がジメチルシロキサン単位からなる直鎖状ポリメチルビニルシロキサン(両末端ジメチルビニルシロキシ基封鎖ポリジメチルシロキサン)(粘度12,400mPa・s、ビニル基量0.060mmol/g)
 (A2):アルケニル基を1分子中に平均して1個有するポリメチルビニルシロキサン(片末端ビニル基含有ポリジメチルシロキサン約50モル%、両末端ビニル基含有ポリジメチルシロキサン約25モル%、アルケニル基を含有しないポリジメチルシロキサン約25モル%の混合物)(粘度750mPa・s、ビニル基量0.050mmol/g)
 (A3):単位式:M5.25vi で表されるレジン状ポリシロキサン(ビニル基量1.1mmol/g)
 (B1):両末端がそれぞれジメチルハイドロジェンシリル基で封鎖されたポリジメチルシロキサン(粘度15mPa・s、SiH量1.3mmol/g)
 (B2):単位式:M で表されるレジン状ジメチルハイドロジェンシロキサン(粘度70mPa・s、SiH量10mmol/g)
 (C):テトラメチルテトラビニルシクロテトラシロキサンを配位子として有する白金錯体溶液
 反応抑制剤:ジメチルビス(1,1-ジメチル-2-プロピニルオキシ)シラン
 なお、上記(A2)、(A3)および(B2)は、それぞれ以下の方法で得られたものである。
<(A2)の調製>
 オクタメチルシクロテトラシロキサン100部、1,1,3,3-テトラメチルジビニルジシロキサン0.43部、直鎖状ポリジメチルシロキサン(粘度5.1mPa・s)2.30部の混合溶液に、テトラメチルアンモニウムシラノレート0.04部を添加し、90~100℃で3時間撹拌した。その後、副生した低沸点化合物を、100℃/3mmHgで留去して、1分子中に平均して1個のビニル基を含有するポリジメチルシロキサン(A2)を得た。
<(A3)の調製>
 クロロジメチルビニルシラン100部、クロロトリメチルシラン480部、テトラエトキシシラン680部およびキシレン600部をフラスコに入れて撹拌し、その中に水860部を滴下した。70~80℃で1時間撹拌し、加水分解を行った後、分液しキシレン溶液を得た。次いで、キシレン300部と水酸化カリウム0.26部を加え、2時間加熱還流を行った。冷却後、リン酸を加えて中和を行い、不揮発分が60質量%になるように調整し、(A3)レジン状ポリシロキサンを得た。
 なお、実施例で組成物を調製する際には、この溶液を(A1)と混合し(混合の質量比は、不揮発分で(A1):(A3)=5:5)、減圧条件下で150℃に加熱してキシレンを除去し、(A1)と(A3)の混合物としたものを使用した。
<(B2)の調製>
 テトラエトキシシラン100部、ジメチルクロロシラン92部およびトルエン60部の混合溶液を、過剰量の水を入れた反応容器に撹拌しながら滴下し、室温で共加水分解と縮合を行った。得られた有機相を、洗浄水が中性を示すまで水で洗浄し、脱水した後、トルエンと副生した低沸点化合物を100℃/5mmHgで留去して、(B2)レジン状ジメチルハイドロジェンシロキサンを得た。
実施例1~8、比較例1~7
 表1および表2に示す各成分を、それぞれ同表に示す割合となるように配合し混練して、ポリオルガノシロキサン組成物を調製した。
 実施例1~8および比較例1~7の各組成において、WA2/(WA1+WA2)、WA3/(WA1+WA2+WA3)、H/ViおよびHB1/(HB1+HB2)の値を算出した。これらの値をそれぞれ表1および表2に示す。
 次に、実施例1~8および比較例1~7で得られたポリオルガノシロキサン組成物について、以下に示すようにして、硬化物の物性(硬さ、引張強さ、伸び、引裂き強さ、光透過性、表面粘着性およびオイルブリードの有無)を測定し、評価した。結果を表1および表2の下欄に示す。なお、表中のオイルブリードの評価においては、オイルブリードがないものを○とし、オイルブリードが見られるものを×と記した。
<硬さ、引張り強さ、伸びおよび引裂き強さ>
 実施例1~8および比較例1~7で得られたポリオルガノシロキサン組成物を、金型内で100℃で10分間加熱して硬化させ、厚さ2mmのシート状硬化物を作製した。このシートからJIS K 6249に準拠したサイズの試験片を切り出し、23℃における硬さをタイプAデュロメータおよびタイプEデュロメータによりそれぞれ測定した。
 また、試験片の引張強さ、伸びおよび引裂き強さ(クレッセント)を、それぞれJIS K 6249に規定の方法により測定した。
<光透過性>
 実施例1~8および比較例1~7で得られたポリオルガノシロキサン組成物を、金型内で100℃で10分間加熱して硬化させ、厚さ2mmのシート状硬化物を作製した。次いで、得られたシートから切り出した試験片(縦30mm×横30mm)に波長400nmの光を照射し、透過率を測定した。測定は、分光測色計(コニカミノルタ社製、装置名:CM-3500d)を使用して行った。
<表面粘着性>
 実施例1~8および比較例1~7で得られたポリオルガノシロキサン組成物を、金型内で100℃で10分間加熱して硬化させ、厚さ2mmのシート状硬化物を作製した。このとき、金型の内周面にPET製のフィルム(厚さ50μm)を貼り付けておき、硬化物の両面に2枚のPETフィルムがそれぞれ貼り合わされた試験片を得た。次いで、得られた試験片において、硬化物からフィルムを剥がすために要する剥離力を測定した。剥離力の測定は、オートグラフを使用し、フィルムを毎分500mmの速さで垂直に引き上げて硬化物から剥がす方法で行った。
 剥離力が小さいほど、硬化物表面の粘着性が低いといえる。光学式触覚センサの把持部を構成する材料として使用する場合には、上記方法で測定された剥離力が15mN/mm未満であることが好ましい。
<オイルブリードの有無>
 実施例1~8および比較例1~7で得られたポリオルガノシロキサン組成物を、金型内で100℃で10分間加熱して硬化させ、厚さ2mmのシート状硬化物を作製した。得られたシート状硬化物を紙の上に置き、1日経過後、紙に染みができているか否かで、硬化物からのオイルブリードの有無を判定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1から、以下のことがわかる。すなわち、(A1)、(A2)、(A3)、(B1)、(B2)および(C)の各成分が、本実施形態に規定する所定の組成で配合された実施例1~8のポリオルガノシロキサン組成物から得られる硬化物は、タイプEデュロメータで測定された硬さが50以下と低いうえに、波長400nmの光の透過率(厚さ2mm)が90%以上と透明性が高く、かつ引張り強さが0.5MPa以上と機械的強度が高い。また、この硬化物は、液状物質のブリードがなく、さらに剥離力が小さく(15mN/mm未満)、表面の粘着性が低い。
 これに対して、比較例1のポリオルガノシロキサン組成物は、(A1)成分と(A2)成分とからなる直鎖状のアルケニル基ポリオルガノシロキサンの合計に対する(A1)両末端アルケニル基ポリオルガノシロキサンの含有割合が61質量%未満で、(A2)成分の含有割合(WA2/(WA1+WA2))が39質量%を超えているので、硬化物の引張り強さが小さいばかりでなく、オイルブリードが生じている。
 また、比較例2および比較例5のポリオルガノシロキサン組成物は、WA3/(WA1+WA2+WA3)が、6質量%未満となっているので、硬化物の引張り強さが小さい。また、比較例2のポリオルガノシロキサン組成物は、剥離力が大きく(15mN/mm以上)、表面の粘着性が大きくなっている。さらに、硬化物にオイルブリードが生じている。
 比較例3のポリオルガノシロキサン組成物は、H/Vi比が0.9未満と低いので、硬化物の引張り強さが小さいばかりでなく、剥離力が15mN/mm以上と大きく、硬化物表面の粘着性が大きい。
 比較例4のポリオルガノシロキサン組成物は、HB1/(HB1+HB2)が0.75を超えているので、硬化物の引張り強さが小さいばかりでなく、剥離力が15mN/mm以上と大きく、硬化物表面の粘着性が大きい。
 比較例6のポリオルガノシロキサン組成物は、HB1/(HB1+HB2)が0.2以下となっているので、硬化物のタイプEデュロメータで測定された硬さが50より大きく、十分に低硬度の硬化物が得られない。
 比較例7のポリオルガノシロキサン組成物は、WA3/(WA1+WA2+WA3)が25質量%を超えているので、硬化物の硬さが大きく(50超)、好ましくない。
 本発明の硬化性ポリオルガノシロキサン組成物によれば、低硬度で透明性が高く、引張り強さ等の機械的強度が高い硬化物を得ることができる。また、この硬化物は、液状物質のブリードがなく、表面の粘着性が低い。
 したがって、このポリオルガノシロキサン組成物から得られる硬化物は、光学センサ、光学式接触センサ、圧力センサ、光学部材、人工皮膚、画像表示装置などの構成材料として使用することができ、特に、ロボットハンド用の光学式触覚センサの把持部を構成する材料として好適する。

Claims (7)

  1.  (A)(A1)JIS K6249に準じて測定された23℃における粘度が1,000~1,000,000mPa・sで、分子鎖両末端のケイ素原子にそれぞれ結合したアルケニル基を有する直鎖状のポリオルガノシロキサンの61質量%以上95質量%以下と、(A2)JIS K6249に準じて測定された23℃における粘度が10~50,000mPa・sで、ケイ素原子に結合したアルケニル基を1分子中に平均して0.6個以上2個未満有する直鎖状のポリオルガノシロキサンの5質量%以上39質量%以下と、からなる直鎖状のポリオルガノシロキサンと、(A3)式:SiO4/2で表される4官能型シロキサン単位を有し、ケイ素原子に結合したアルケニル基を1分子中に平均して2個以上有するレジン構造を有するポリオルガノシロキサンを含有し、
     前記(A1)成分と前記(A2)成分と前記(A3)成分の合計に対する(A3)成分の含有割合が、6質量%以上25質量%以下であるアルケニル基含有ポリオルガノシロキサンと、
     (B)(B1)JIS K6249に準じて測定された23℃における粘度が0.1~200mPa・sで、分子鎖両末端のケイ素原子に結合した水素原子を1分子中に2個有する直鎖状のポリオルガノシロキサンと、(B2)ケイ素原子に結合した水素原子を1分子中に3個以上有するポリオルガノシロキサンと、からなるポリオルガノハイドロジェンシロキサンを、
     前記(B1)成分中の前記水素原子の、該水素原子と前記(B2)成分中の水素原子との合計に対するモル比が0.2を超え0.75以下となり、かつ前記(B1)成分中の水素原子と前記(B2)成分中の水素原子の合計の、前記(A)成分中のアルケニル基の合計に対するモル比が0.9以上2.1以下となる量、および
     (C)ヒドロシリル化反応触媒の有効量
     をそれぞれ含有してなることを特徴とする硬化性ポリオルガノシロキサン組成物。
  2.  前記(B2)成分が、式:SiO4/2で表される4官能型シロキサン単位を有し、ケイ素原子に結合した水素原子を1分子中に3個以上有するレジン構造を有するポリオルガノシロキサンである、請求項1記載の硬化性ポリオルガノシロキサン組成物。
  3.  前記硬化性ポリオルガノシロキサン組成物の硬化物のJIS K6249に規定されたタイプEデュロメータで測定された硬さが、50以下である請求項1又は2記載の硬化性ポリオルガノシロキサン組成物。
  4.  前記硬化性ポリオルガノシロキサン組成物の硬化物のJIS K6249に規定された引張り強さが、0.5MPa以上である請求項1~3のいずれか1項記載の硬化性ポリオルガノシロキサン組成物。
  5.  前記硬化性ポリオルガノシロキサン組成物の2mmの厚さの硬化物の、波長400nmの光の透過率が、90%以上である請求項1~4のいずれか1項記載の硬化性ポリオルガノシロキサン組成物。
  6.  ポリエチレンテレフタレート製フィルムと一体成型した、前記硬化性ポリオルガノシロキサン組成物の2mmの厚さの硬化物から、前記フィルムを500mm/の速さで剥がすときの剥離力が、15mN/mm未満である請求項1~5のいずれか1項記載の硬化性ポリオルガノシロキサン組成物。
  7.  請求項1~6のいずれか1項記載の硬化性ポリオルガノシロキサン組成物を硬化してなる硬化物であり、光学センサ、光学式触覚センサ、圧力センサ、光学部材、人工皮膚、画像表示装置から選ばれる少なくとも1種に用いられることを特徴とするポリオルガノシロキサン硬化物。
PCT/JP2019/046424 2018-11-28 2019-11-27 硬化性ポリオルガノシロキサン組成物、およびポリオルガノシロキサン硬化物 WO2020111141A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020507706A JP6831038B2 (ja) 2018-11-28 2019-11-27 硬化性ポリオルガノシロキサン組成物、およびポリオルガノシロキサン硬化物
EP19890453.4A EP3889221A4 (en) 2018-11-28 2019-11-27 COMPOSITION OF CURED POLYORGANOSILOXANE, AND CURED OBJECT IN POLYORGANOSILOXANE
CN201980078756.9A CN113242885B (zh) 2018-11-28 2019-11-27 固化性聚有机硅氧烷组合物及聚有机硅氧烷固化物
US17/328,101 US20210277241A1 (en) 2018-11-28 2021-05-24 Curable polyorganosiloxane composition and polyorganosiloxane cured product

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018221917 2018-11-28
JP2018-221917 2018-11-28
JP2019213744 2019-11-26
JP2019-213744 2019-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/328,101 Continuation US20210277241A1 (en) 2018-11-28 2021-05-24 Curable polyorganosiloxane composition and polyorganosiloxane cured product

Publications (1)

Publication Number Publication Date
WO2020111141A1 true WO2020111141A1 (ja) 2020-06-04

Family

ID=70852253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046424 WO2020111141A1 (ja) 2018-11-28 2019-11-27 硬化性ポリオルガノシロキサン組成物、およびポリオルガノシロキサン硬化物

Country Status (5)

Country Link
US (1) US20210277241A1 (ja)
EP (1) EP3889221A4 (ja)
JP (1) JP6831038B2 (ja)
CN (1) CN113242885B (ja)
WO (1) WO2020111141A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112926A1 (ja) * 2021-12-17 2023-06-22 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド 紫外線硬化性シリコーン組成物
WO2023112925A1 (ja) * 2021-12-17 2023-06-22 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 紫外線硬化性シリコーン組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268019B (zh) * 2016-12-30 2023-06-30 埃肯有机硅(上海)有限公司 可固化的硅酮组合物
CN112708278A (zh) * 2020-12-25 2021-04-27 浙江中特化工有限公司 一种用于在线固化垫圈的uv固化液态硅橡胶

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013507B1 (ja) 1970-07-27 1975-05-20
JPS6243567B2 (ja) 1980-06-19 1987-09-16 Mitsubishi Electric Corp
JPH06293862A (ja) * 1993-04-08 1994-10-21 Toshiba Silicone Co Ltd 難燃性シリコーンゲル組成物及びその硬化物
JP2005336327A (ja) * 2004-05-27 2005-12-08 Shin Etsu Chem Co Ltd 自己接着性オルガノポリシロキサン組成物
JP2009052038A (ja) 2007-07-31 2009-03-12 Dow Corning Toray Co Ltd 高透明のシリコーン硬化物を与える硬化性シリコーン組成物
JP5449336B2 (ja) 2008-06-19 2014-03-19 マサチューセッツ インスティテュート オブ テクノロジー 弾性撮像を使用する接触センサ
JP2016169331A (ja) * 2015-03-13 2016-09-23 信越化学工業株式会社 積層体の製造方法及び該方法に用いる硬化性シリコーンゲル組成物
WO2018043270A1 (ja) * 2016-09-01 2018-03-08 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および電気・電子部品の保護剤または接着剤組成物
JP2018048214A (ja) 2016-09-20 2018-03-29 信越化学工業株式会社 透明液状シリコーンゴム組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102550073B1 (ko) * 2014-12-18 2023-06-29 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 난연성 폴리오르가노실록산 조성물, 난연성 경화물, 광학용 부재, 광원용 렌즈 또는 커버, 및 성형방법
JP6789091B2 (ja) * 2016-12-16 2020-11-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 型取り用シリコーンゴム組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013507B1 (ja) 1970-07-27 1975-05-20
JPS6243567B2 (ja) 1980-06-19 1987-09-16 Mitsubishi Electric Corp
JPH06293862A (ja) * 1993-04-08 1994-10-21 Toshiba Silicone Co Ltd 難燃性シリコーンゲル組成物及びその硬化物
JP2005336327A (ja) * 2004-05-27 2005-12-08 Shin Etsu Chem Co Ltd 自己接着性オルガノポリシロキサン組成物
JP2009052038A (ja) 2007-07-31 2009-03-12 Dow Corning Toray Co Ltd 高透明のシリコーン硬化物を与える硬化性シリコーン組成物
JP5449336B2 (ja) 2008-06-19 2014-03-19 マサチューセッツ インスティテュート オブ テクノロジー 弾性撮像を使用する接触センサ
JP2016169331A (ja) * 2015-03-13 2016-09-23 信越化学工業株式会社 積層体の製造方法及び該方法に用いる硬化性シリコーンゲル組成物
WO2018043270A1 (ja) * 2016-09-01 2018-03-08 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および電気・電子部品の保護剤または接着剤組成物
JP2018048214A (ja) 2016-09-20 2018-03-29 信越化学工業株式会社 透明液状シリコーンゴム組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3889221A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112926A1 (ja) * 2021-12-17 2023-06-22 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド 紫外線硬化性シリコーン組成物
WO2023112925A1 (ja) * 2021-12-17 2023-06-22 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 紫外線硬化性シリコーン組成物
JP7310035B1 (ja) * 2021-12-17 2023-07-18 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド 紫外線硬化性シリコーン組成物
JP7337470B1 (ja) * 2021-12-17 2023-09-04 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 紫外線硬化性シリコーン組成物

Also Published As

Publication number Publication date
EP3889221A1 (en) 2021-10-06
EP3889221A4 (en) 2022-08-24
CN113242885A (zh) 2021-08-10
CN113242885B (zh) 2023-01-17
JP6831038B2 (ja) 2021-02-17
US20210277241A1 (en) 2021-09-09
JPWO2020111141A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
JP6831038B2 (ja) 硬化性ポリオルガノシロキサン組成物、およびポリオルガノシロキサン硬化物
JP5247979B2 (ja) 透明な硬化物を与えるポリオルガノシロキサン組成物
JP5956698B1 (ja) 成形用ポリオルガノシロキサン組成物、光学用部材、光源用レンズまたはカバー、および成形方法
JP5972511B2 (ja) 硬化性オルガノポリシロキサン組成物およびその硬化物
JP5105305B2 (ja) 付加硬化型シリコーン樹脂組成物及びそれを使用するシリコーン製レンズ
JP5201063B2 (ja) 付加硬化型シリコーン組成物及びその硬化物
JP4644129B2 (ja) 硬化性シリコーンゴム組成物及びその硬化物
JPWO2008047892A1 (ja) 硬化性ポリオルガノシロキサン組成物
JP2007039483A (ja) 硬化性ポリオルガノシロキサン組成物
JP4816951B2 (ja) シリコーン組成物及びその硬化物
US20210102069A1 (en) Polyorganosiloxane composition for molding, optical member, and molding method
TW202012510A (zh) 聚矽氧硬化物的製造方法、聚矽氧硬化物及光學用構件
TW201605934A (zh) 有機聚矽氧烷及其製造方法
JP5913537B2 (ja) 硬化性オルガノポリシロキサン組成物の製造方法
JP2006335845A (ja) 高い屈折率の硬化物を与えるポリオルガノシロキサン組成物
JPWO2019240123A1 (ja) 難燃性ポリオルガノシロキサン組成物、難燃性硬化物、および光学用部材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020507706

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019890453

Country of ref document: EP

Effective date: 20210628