WO2020110247A1 - 制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラム - Google Patents

制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラム Download PDF

Info

Publication number
WO2020110247A1
WO2020110247A1 PCT/JP2018/043889 JP2018043889W WO2020110247A1 WO 2020110247 A1 WO2020110247 A1 WO 2020110247A1 JP 2018043889 W JP2018043889 W JP 2018043889W WO 2020110247 A1 WO2020110247 A1 WO 2020110247A1
Authority
WO
WIPO (PCT)
Prior art keywords
work machine
autonomous
autonomous work
charging
work
Prior art date
Application number
PCT/JP2018/043889
Other languages
English (en)
French (fr)
Inventor
寛人 ▲高▼橋
誠 山村
貴正 宇田川
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to EP18941660.5A priority Critical patent/EP3861846B1/en
Priority to PCT/JP2018/043889 priority patent/WO2020110247A1/ja
Priority to JP2020557473A priority patent/JP7203120B2/ja
Publication of WO2020110247A1 publication Critical patent/WO2020110247A1/ja
Priority to US17/326,882 priority patent/US12093059B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0297Fleet control by controlling means in a control room
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/22Command input arrangements
    • G05D1/221Remote-control arrangements
    • G05D1/227Handing over between remote control and on-board control; Handing over between remote control arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/69Coordinated control of the position or course of two or more vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a control system, a control device, an autonomous work machine, a control device operating method, an autonomous work machine control method, and a program.
  • Patent Document 1 discloses that the work machine automatically returns to the charging station to charge the on-board battery of the work machine when the remaining amount of power of the work machine decreases.
  • An object of the present invention is to provide a technique for avoiding occurrence of a charging standby state of an autonomous work machine and improving work efficiency.
  • a control system comprising a charging station, a plurality of autonomous work machines, and a control device for controlling the plurality of autonomous work machines,
  • the control device is An acquisition means for acquiring electric power information of each autonomous work machine, Based on the power information, control means for controlling each autonomous work machine so that the charging timing of each autonomous work machine at the charging station does not match each other, It is characterized by including.
  • 1 is an external view of a work machine capable of autonomous traveling according to an embodiment of the present invention. It is the figure which observed the working machine concerning one embodiment of the present invention from the side. It is a figure showing an example of composition of a control system concerning one embodiment of the present invention.
  • 3 is a flowchart showing a processing procedure executed by the control device according to the embodiment of the present invention. 6 is a flowchart showing a detailed procedure of a control process according to the first embodiment. 9 is a flowchart showing a detailed procedure of control processing according to the second embodiment. It is an explanatory view of control concerning one embodiment of the present invention. It is an explanatory view of control concerning one embodiment of the present invention. It is an explanatory view of control concerning one embodiment of the present invention. It is an explanatory view of control concerning one embodiment of the present invention. It is an explanatory view of control concerning one embodiment of the present invention.
  • FIG. 1 is an external view of an autonomous working machine capable of autonomous traveling according to an embodiment of the present invention.
  • the traveling direction of the autonomous working machine in the side view (vehicle length direction), the lateral direction orthogonal to the traveling direction (vehicle width direction), and the vertical direction orthogonal to the traveling direction are the front-rear direction and the left-right direction, respectively.
  • Direction and vertical direction, and the configuration of each part will be described accordingly.
  • reference numeral 10 indicates an autonomous work machine (hereinafter referred to as “work vehicle”).
  • the work vehicle 10 specifically functions as a lawnmower that autonomously travels.
  • the lawn mower is an example, and the present invention can be applied to other types of work machines.
  • the work vehicle 10 includes a camera unit 11 including a plurality of cameras (first camera 11a and second camera 11b), and images captured by the first camera 11a and the second camera 11b having parallax. Using, the distance information between the object existing in front and the work vehicle 10 is calculated and acquired. Then, the operation of the work vehicle 10 is controlled based on the captured image and the object recognition model held in advance.
  • FIG. 2 is a view of the work vehicle 10 observed from the lateral direction (vehicle width direction).
  • the work vehicle 10 includes a camera unit 11, a vehicle body 12, a stay 13, a front wheel 14, a rear wheel 16, a blade 20, a work motor 22, a motor holding member 23, a blade height adjusting motor 100, and The translation mechanism 101 is provided.
  • the work vehicle 10 includes a traveling motor 26, various sensor groups S, an electronic control unit (ECU: Electronic Control Unit) 44, a charging unit 30, a battery (battery) 32, a charging terminal 34, and a communication unit 35.
  • ECU Electronic Control Unit
  • the body 12 of the work vehicle 10 has a chassis 12a and a frame 12b attached to the chassis 12a.
  • the front wheels 14 are two left and right wheels of small diameter fixed to the front side of the chassis 12a via stays 13 in the front-rear direction.
  • the rear wheels 16 are two large-diameter left and right wheels attached to the rear side of the chassis 12a.
  • the blade 20 is a rotary blade for lawn mowing work which is attached near the central position of the chassis 12a.
  • the work motor 22 is an electric motor arranged above the blade 20.
  • the blade 20 is connected to the work motor 22 and is rotationally driven by the work motor 22.
  • the motor holding member 23 holds the work motor 22.
  • the motor holding member 23 is restricted from rotating with respect to the chassis 12a, and is allowed to move in the vertical direction by, for example, a combination of a guide rail and a slider that is guided by the guide rail and can move up and down. ..
  • the blade height adjusting motor 100 is a motor for adjusting the vertical height of the blade 20 with respect to the ground surface GR.
  • the translation mechanism 101 is connected to the blade height adjustment motor 100, and is a mechanism for converting rotation of the blade height adjustment motor 100 into translational movement in the vertical direction.
  • the translation mechanism 101 is also connected to a motor holding member 23 that holds the work motor 22.
  • the rotation of the blade height adjusting motor 100 is converted into translational movement (movement in the vertical direction) by the translational mechanism 101, and the translational movement is transmitted to the motor holding member 23.
  • the motor holding member 23 By the translational movement of the motor holding member 23 (movement in the vertical direction), the work motor 22 held by the motor holding member 23 also translates (moves in the vertical direction).
  • the height of the blade 20 with respect to the ground surface GR can be adjusted.
  • the traveling motor 26 is two electric motors (motors) attached to the chassis 12a of the work vehicle 10.
  • the two electric motors are connected to the left and right rear wheels 16, respectively.
  • the work vehicle 10 is moved in various directions by independently rotating the left and right wheels forward (rotation in the forward direction) or reversely (rotation in the reverse direction) using the front wheels 14 as the driven wheels and the rear wheels 16 as the driving wheels. Can be made
  • the charging terminal 34 is a charging terminal provided at a front end position in the front-rear direction of the frame 12b, and by connecting to a corresponding terminal of a charging station (charging station 300 described later with reference to FIG. 3), Can be supplied with electricity.
  • the charging terminal 34 is connected to the charging unit 30 via wiring, and the charging unit 30 is connected to the battery (battery) 32.
  • the work motor 22, the traveling motor 26, and the blade height adjusting motor 100 are also connected to the battery 32, and are configured to be supplied with power from the battery 32.
  • the ECU 44 is an electronic control unit that includes a microcomputer configured on a circuit board and controls the operation of the work vehicle 10. Details of the ECU 44 will be described later.
  • the communication unit 35 can send and receive information to and from an external device (for example, another work vehicle, a control device, a charging station, etc. described later) connected to the work vehicle 10 in a wired or wireless manner.
  • FIG. 3 is a diagram showing a configuration example of a control system according to an embodiment of the present invention.
  • the control system 1 includes a plurality of work vehicles (one work vehicle 10 is illustrated in FIG. 3 ), a control device (server) 200, and a charging station 300.
  • the other work vehicles have the same configuration as the work vehicle 10.
  • the ECU 44 included in the work vehicle 10 includes a CPU 44a, an I/O 44b, and a memory 44c.
  • the I/O 44b inputs and outputs various information.
  • the memory 44c is a ROM (Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory), a RAM (Random Access Memory), or the like.
  • the memory 44c stores the work schedule of the work vehicle 10, information about the work area, and various programs for controlling the operation of the work vehicle 10.
  • the ECU 44 can operate as each processing unit for implementing the present invention by reading and executing the program stored in the memory 44c.
  • the ECU 44 is connected to various sensor groups S.
  • the sensor group S includes an orientation sensor 46, a GPS sensor 48, a wheel speed sensor 50, an angular velocity sensor 52, an acceleration sensor 54, a current sensor 62, and a blade height sensor 64.
  • the direction sensor 46 and the GPS sensor 48 are sensors for acquiring information on the position and orientation of the work vehicle 10.
  • the azimuth sensor 46 detects an azimuth according to the geomagnetism.
  • the GPS sensor 48 receives radio waves from GPS satellites and detects information indicating the current position (latitude, longitude) of the work vehicle 10.
  • the wheel speed sensor 50, the angular velocity sensor 52, and the acceleration sensor 54 are sensors for acquiring information regarding the moving state of the work vehicle 10.
  • the wheel speed sensor 50 detects the wheel speed of the left and right rear wheels 16.
  • the angular velocity sensor 52 detects an angular velocity around the vertical axis (vertical z axis) of the center of gravity of the work vehicle 10.
  • the acceleration sensor 54 detects the acceleration acting on the work vehicle 10 in the directions of three orthogonal x, y, and z axes.
  • the current sensor 62 detects the current consumption (power consumption) of the battery 32.
  • the detection result of the current consumption (power consumption) is stored in the memory 44c of the ECU 44.
  • the ECU 44 performs feedback control for returning the work vehicle 10 to the charging station 300 for charging.
  • the blade height sensor 64 detects the height of the blade 20 with respect to the ground plane GR.
  • the detection result of the blade height sensor 64 is output to the ECU 44.
  • the blade height adjusting motor 100 is driven, and the blade 20 moves up and down in the vertical direction to adjust the height from the ground contact surface GR.
  • Outputs of the various sensor groups S are input to the ECU 44 via the I/O 44b.
  • the ECU 44 supplies electric power from the battery 32 to the traveling motor 26, the work motor 22, and the height adjusting motor 100 based on the outputs of the various sensor groups S.
  • the ECU 44 controls the traveling of the work vehicle 10 by outputting a control value via the I/O 44b and controlling the traveling motor 26. Further, the height of the blade 20 is adjusted by outputting a control value via the I/O 44b and controlling the height adjustment motor 100. Furthermore, the rotation of the blade 20 is controlled by outputting a control value via the I/O 44b to control the work motor 22.
  • the I/O 44b can function as a communication interface, and can be connected to the control device 200 or another device by wire or wirelessly via the network 150.
  • the control device 200 functions as a server for controlling each work vehicle.
  • the control device 200 includes a CPU 200a, an I/O 200b, a memory 200c, and a communication unit 200d.
  • the memory 200c is a ROM (Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory), a RAM (Random Access Memory), or the like.
  • the I/O 200b inputs and outputs various information.
  • the memory 200c stores a work schedule of each work vehicle, information about a work area, power information such as the remaining battery level of each work vehicle, and various programs for controlling the operation of each work vehicle.
  • the memory 200c may also store information on the work load for each work area.
  • the CPU 200a can operate as each processing unit for implementing the present invention by reading and executing the program stored in the memory 200c.
  • the communication unit 200d communicates with a device existing outside the control device 200 (for example, the work vehicle 10 or the charging station 300) to send and receive various information.
  • the charging station 300 functions as a charging device for charging the battery (battery 32) of the work vehicle 10. Installed in the work area, the work vehicle 10 can be charged by returning to the charging station 300 and connecting the charging terminal 34 to the charging station 300. It is assumed that the charging station 300 can charge only one work vehicle at a time.
  • step S401 the CPU 200a controls the communication unit 200d to communicate with each work vehicle and acquire power information of each work vehicle.
  • the electric power information is, for example, information on the remaining battery level of each work vehicle.
  • FIG. 7 is a schematic diagram showing the work vehicles 10a and 10b in the work area 700, the battery information 701 of the work vehicle 10a, and the battery information 702 of the work vehicle 10b.
  • the configurations of the work vehicle 10a and the work vehicle 10b are the same as those of the work vehicle 10 described with reference to FIG.
  • the work area 700 is an area for performing lawn mowing work on, for example, a lawn.
  • the work vehicles 10a and 10b perform work while autonomously traveling in the work area 700.
  • the control device 200 wirelessly communicates with the work vehicles 10a and 10b to acquire information on the remaining battery level of the work vehicles 10a and 10b. Although two work vehicles are depicted in the example of FIG. 7, three or more work vehicles may be present.
  • step S402 the CPU 200a controls each work vehicle based on the electric power information acquired in step S401 so that the charging timings of the respective work vehicles in the charging station 300 do not match. Details of this processing will be described later. With this, the series of processing in FIG. 4 is completed.
  • step S501 the CPU 200a estimates the arrival of the charging timing of each work vehicle based on the electric power information acquired in step S401. For example, it is estimated that the charge timing of the work vehicle 10a arrives at 14:00 and the charge timing of the work vehicle 10b arrives at 14:30. It should be noted that each of the work vehicles 10a and 10b determines whether or not the remaining battery level of the own vehicle is less than or equal to a threshold value, and when the remaining battery level is determined to be less than or equal to the threshold value, the charging timing at the charging station 300 is determined. It is assumed that it is configured to determine that the arrival has occurred. Then, when it is determined that the charging timing has arrived, the host vehicle is configured to be returned to the charging station 300.
  • step S502 the CPU 200a determines whether the estimated charging timings of the work vehicles match.
  • the state in which the charging timings match is, for example, another work vehicle is being charged in the charging station 300, and the charging is performed. Including a state in which the charging standby state occurs until the end of.
  • the work vehicle requires a certain period of time from the start of charging to the completion of charging and leaving the charging station 300. For example, if it is estimated that the charge timing of the work vehicle 10a arrives at 14:00 and the charge timing of the work vehicle 10b arrives at 14:30 when the full charge takes one hour, the work vehicle 10a charges at 14:00.
  • the work vehicle 10b Since the charging is started until 15:00 when the start is started, the work vehicle 10b cannot charge at the charging station 300 from 14:30 to 15:00, and a charging standby state occurs. Become. Even in such a case, it can be determined that the charging timings match. Therefore, when the difference between the battery remaining amounts is within the predetermined range, it can be determined that the charging timings match. When the difference between the remaining battery amounts is zero, the battery is returned to the charging station 300 at the same charging timing.
  • step S503 If it is determined that the charging timings of the work vehicles match, the process proceeds to step S503. On the other hand, if it is determined that the charging timings of the work vehicles do not match, the process ends. In the example of FIG. 7, the remaining battery level 701 of the work vehicle 10a is 100% and the remaining battery level 702 of the work vehicle 10b is 100%, and the charging of the work vehicle 10a and the work vehicle 10b decreases at the same time. , The charging timings will match.
  • step S503 the CPU 200a controls each work vehicle by changing the threshold value set for each work vehicle to a different value for each work vehicle so that the charging timings do not coincide with each other.
  • the threshold of the battery remaining amount is changed from 20% of the initial value to 50%
  • the threshold of the battery remaining amount is changed from 20% of the initial value to 10%. Good.
  • electric power information is acquired from each work vehicle, and control is performed based on the acquired electric power information so that the charging timings at the charging stations of each work vehicle do not match. As a result, it becomes possible to avoid the occurrence of the charging standby state of the work vehicle and improve the work efficiency.
  • the configuration of the control system according to the present embodiment is the same as the configuration of the control system 1 described in the first embodiment, and thus the description thereof is omitted.
  • the processing of this embodiment is different from that of the first embodiment in the details of the processing in step S402 in FIG.
  • the details of the process of S402 of FIG. 4 according to the present embodiment will be described with reference to the flowchart of FIG.
  • the processes of step S601 and step S602 are the same as those of step S501 and step S502 of FIG. 5, respectively, and thus description thereof will be omitted.
  • step S603 the CPU 200a controls the communication unit 200d to communicate with each work vehicle and change the power consumption of each work vehicle to control each work vehicle so that the charging timings do not coincide with each other.
  • the rate of decrease in the remaining battery level of each work vehicle changes, so that it is possible to avoid matching the charging timing.
  • the CPU 200a can change the power consumption of each work vehicle by controlling the running motor 26 of each work vehicle to change the running speed.
  • the traveling speed of each work vehicle may be changed by selecting and setting the traveling speed from three patterns of 0.55 m/s, 0.45 m/s, and 0.35 m/s.
  • the CPU 200a can change the power consumption of each work vehicle by controlling the blade height adjustment motor 100 of each work vehicle and changing the height of the blade 20 provided in each work vehicle.
  • the blade height of each work vehicle may be changed by selecting and setting the blade height from three patterns of 8 cm, 7 cm, and 6 cm.
  • the CPU 200a can change the power consumption of each work vehicle by controlling the work motor 22 included in each work vehicle and changing the rotation speed of the blade 20 included in each work vehicle. Since the power consumption is increased by increasing the rotation speed of the blade 20, it is possible to accelerate the decrease in the battery remaining amount. On the other hand, since the power consumption is reduced by decreasing the rotation speed of the blade 20, it is possible to delay the decrease in the battery remaining amount.
  • FIG. 8 is a schematic diagram showing work vehicles 10a, 10b, and 10c in the work area 800, battery information 801 of the work vehicle 10a, battery information 802 of the work vehicle 10b, and battery information 803 of the work vehicle 10c. It is a figure.
  • the configurations of the work vehicle 10a, the work vehicle 10b, and the work vehicle 10c are the same as those of the work vehicle 10 described with reference to FIG.
  • the work area 800 is an area for performing lawn mowing work on, for example, a lawn.
  • Each work vehicle 10a, 10b, 10c works while autonomously traveling in the work area 800.
  • the remaining battery level 801 of the work vehicle 10a is 90% of full charge
  • the remaining battery level 802 of the work vehicle 10b is 60% of full charge
  • the remaining battery level of the work vehicle 10c is 60%.
  • the power consumption of each work vehicle may be changed so that the ratio of the amount 803 is 30% of full charge, that is, the ratio of the remaining battery amount is 30% at equal intervals.
  • the remaining battery level of the work vehicle 10a is 95%
  • the remaining battery level of the working vehicle 10b is 92%
  • the remaining battery level of the working vehicle 10c is 90%
  • the CPU 200a reduces the power consumption of the work vehicle 10a, increases the power consumption of the work vehicle 10b, and further increases the power consumption of the work vehicle 10c more than that of the work vehicle 10b.
  • the control is performed so that the remaining battery ratio is 90%, 60%, 30% at equal intervals.
  • the interval is not limited to 30%, and it goes without saying that another interval (20%, 40%, etc.) may be used as long as the matching of the charging timing can be avoided. Further, the intervals are not limited to equal intervals, and the intervals between the work vehicle 10a and the work vehicle 10b are set to 30%, and the intervals between the work vehicle 10b and the work vehicle 10c are controlled to be 35%, so that different intervals are controlled. Good.
  • the CPU 200a can change the power consumption of each work vehicle by changing the work area assigned to each work vehicle to a different area for each work vehicle. For example, a wide work area is assigned to a work vehicle whose power consumption is to be increased, and a narrow work area is assigned to a work vehicle whose power consumption is to be reduced.
  • a work vehicle assigned a large work area has a longer straight-running distance and less deceleration control and turning motion around the work area, reducing time loss due to deceleration and turning. Therefore, the amount of work per unit time (for example, the amount of grass or grass that can be cut) increases, and the load increases, resulting in an increase in power consumption.
  • a work vehicle assigned a work area with a small area has a shorter straight-running distance, and more deceleration control and turning movements occur around the work area, resulting in more time loss due to deceleration and turning.
  • the traveling speed is slow or during the turning operation, the work load on the grass and grass by the blade 20 is reduced. That is, even if the blade 20 is rotated, grass and grass cannot be cut. Therefore, the work amount per unit time (for example, the amount of turf or grass that can be cut) is reduced, and the load is reduced. As a result, the power consumption is reduced.
  • FIG. 9 is a schematic diagram showing work vehicles 10a, 10b, and 10c in the work area 900, battery information 901 of the work vehicle 10a, battery information 902 of the work vehicle 10b, and battery information 903 of the work vehicle 10c.
  • the work area 900 is an area for performing lawn mowing work on a lawn, for example.
  • the work area 951 is assigned to the work vehicle 10a
  • the work area 952 is assigned to the work vehicle 10b
  • the work area 953 is assigned to the work vehicle 10c.
  • the work areas of different areas are assigned to each work vehicle to make the power consumption of each work vehicle different. You can Therefore, it is possible to avoid matching the charging timing.
  • the CPU 200a changes the work area assigned to each work vehicle according to the work load information for each work area stored in advance in the memory 200c, thereby changing the power consumption of each work vehicle.
  • Good For example, in areas where the work load is large (where there are large differences in unevenness, where grass is overgrown, etc.), use the fact that power consumption is large. The power consumption can be adjusted by allocating to.
  • the control device 200 has been described as performing the process of the present invention.
  • the charging station 300 has the function of the control device 200, and the charging station 300 performs the process of the present invention. It may be configured to be implemented. As a result, it is possible to avoid the matching of the charging timings without providing the control device 200, so that the product cost can be reduced.
  • the control device 200 has been described as performing the process of the present invention.
  • one of the work vehicles is provided with the function of the control device 200, and the work vehicle is provided with the function of the present invention.
  • the ECU 44 communicates with another work vehicle using the communication unit 35, and acquires power information of the other work vehicle. Then, based on the electric power information of the own vehicle and the acquired electric power information of the other work vehicle, the own vehicle and the other work vehicles are set so that the charging timings at the charging stations 300 of the respective work vehicles do not coincide with each other. Control. As a result, it is possible to avoid the matching of the charging timings without providing the control device 200, so that the product cost can be reduced.
  • the lawn mower is described as an example of the autonomous work machine, but the invention is not limited to the lawn mower.
  • the present invention can be applied to other types of autonomous working machines such as an autonomous snow remover and a golf ball collecting machine.
  • an example in which the working machine is autonomously controlled based on images acquired from a plurality of cameras has been described, but the working machine to which the present invention can be applied is not limited to the case of using camera images. Absent.
  • the present invention can be applied to a work machine that performs autonomous control using an obstacle sensor (distance measuring sensor) such as an ultrasonic sensor or an infrared sensor.
  • an obstacle sensor distance measuring sensor
  • the control system (for example, 1) of the above embodiment is A control system (for example, 1) including a charging station (for example, 300), a plurality of autonomous work machines (for example, 10a, 10b, and 10c), and a control device (for example, 200) that controls the plurality of autonomous work machines.
  • the control device eg 200
  • An acquisition unit for example, 200a) for acquiring electric power information of each autonomous work machine (for example, 10a, 10b, 10c)
  • Control means for example, 200a) that controls each autonomous work machine based on the power information so that charging timings at the charging stations (for example, 300) of the autonomous work machines do not coincide with each other; Equipped with.
  • Each autonomous work machine for example, 10a, 10b, 10c
  • Determination means for example, 44 for determining whether or not the remaining battery capacity is equal to or less than a threshold value
  • Timing determining means for example, 44
  • Feedback control means for example, 44
  • the control device eg 200
  • estimating means for example, 200a
  • the control unit changes the threshold value to a different value for each autonomous working machine so that the charging timings do not match each other.
  • the matching of charging timing can be easily realized.
  • the control device eg 200
  • the control unit for example, 200a
  • changes the power consumption of the autonomous working machines to control the autonomous working machines so that the charging timings do not match each other. ..
  • the control means changes the power consumption of each autonomous work machine (for example, 10a, 10b, 10c) by changing the traveling speed of each autonomous work machine.
  • Each autonomous working machine for example, 10a, 10b, 10c
  • the control means for example, 200a
  • the contact between the blade and the lawn is increased, the load is increased, and the reduction of the remaining battery amount is accelerated.
  • by increasing the height of the blade it is possible to reduce the contact between the blade and the turf, reduce the load, and delay the decrease in the battery remaining amount. This makes it possible to easily prevent the charging timings from matching.
  • Each autonomous working machine for example, 10a, 10b, 10c
  • the control unit for example, 200a
  • the control means changes the power consumption of each autonomous work machine so that the remaining battery level of each autonomous work machine is evenly spaced.
  • the control unit changes the power consumption of each autonomous work machine by changing the work area assigned to each autonomous work machine to a different area for each autonomous work machine.
  • the deceleration control and the turning operation are less likely to occur, so that the work amount per unit time is increased, the load is increased, and the power consumption is increased. To do.
  • the work area is small, the work volume per unit time is reduced and the load is reduced due to the idling of the blades while the traveling speed is slow or during the turning operation, which reduces the power consumption. .. As a result, it is possible to prevent the charging timings from matching.
  • the control device eg 200
  • a storage means for example, 200c for storing information on the work load for each work area
  • the control unit for example, 200a
  • changes the power consumption of each autonomous work machine by changing the work area assigned to each autonomous work machine according to the work load.
  • the power consumption can be adjusted by utilizing the fact that the power consumption is large in a region where the work load is large (a place where the difference in the unevenness is large, a place where grass is overgrown, etc.). ..
  • the control device (for example, 200) of the above embodiment is A control device for controlling a plurality of autonomous working machines, An acquisition means for acquiring electric power information of each autonomous work machine, Based on the power information, control means for controlling each autonomous work machine so that the charging timing at the charging station of each autonomous work machine does not match each other, Equipped with.
  • control device functioning as a server can avoid occurrence of a charging standby state of the autonomous work machine and improve work efficiency.
  • the autonomous work machine (for example, 10a, 10b, 10c) of the above embodiment is An autonomous work machine capable of communicating with another autonomous work machine, An acquisition unit (for example, 44) that acquires the power information of the autonomous work machine and the power information of the other autonomous work machine, Based on the power information of the autonomous work machine and the power information of the other autonomous work machine, the autonomous work machine and the other autonomous work such that charging timings at charging stations of the autonomous work machines do not match each other.
  • the autonomous work machine itself communicates with other autonomous work machines, whereby it is possible to avoid the occurrence of the charging standby state of the autonomous work machine and improve the work efficiency. Therefore, another device such as a server becomes unnecessary.
  • the operation method of the control device (for example, 200) of the above embodiment is A method of operating a control device for controlling a plurality of autonomous work machines, comprising: An acquisition process for acquiring power information of each autonomous work machine, Based on the power information, a control step of controlling each autonomous work machine so that the charging timings at the charging stations of each autonomous work machine do not match each other, Have.
  • the control method of the autonomous work machine (for example, 10a, 10b, 10c) of the above embodiment is A method of controlling an autonomous work machine capable of communicating with another autonomous work machine, An acquisition step of acquiring power information of the autonomous work machine and power information of the other autonomous work machine; Based on the power information of the autonomous work machine and the power information of the other autonomous work machine, the autonomous work machine and the other autonomous work such that charging timings at charging stations of the autonomous work machines do not match each other. Control process to control the machine, Have.
  • the method in which the autonomous work machine itself communicates with another autonomous work machine it is possible to avoid the occurrence of the charging standby state of the autonomous work machine and improve the work efficiency.
  • the program of the above embodiment is It is a program for causing a computer to function as the control device according to the present invention.
  • control device can be realized by a computer.
  • the program of the above embodiment is It is a program for causing a computer to function as an autonomous working machine according to the present invention.
  • the autonomous work machine according to the present invention can be realized by a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Environmental Sciences (AREA)
  • Medical Informatics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Soil Sciences (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Harvester Elements (AREA)
  • Guiding Agricultural Machines (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

充電ステーションと、複数の自律作業機と、前記複数の自律作業機を制御する制御装置とを備える制御システムであって、前記制御装置は、各自律作業機の電力情報を取得する取得手段と、前記電力情報に基づいて、各自律作業機の前記充電ステーションでの充電タイミングが相互に一致しないように各自律作業機を制御する制御手段とを備える。

Description

制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラム
 本発明は、制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラムに関するものである。
 従来、一台の自律作業機(例えば芝刈機、除雪機など)に対して一台の充電ステーションの組み合わせで運用されている。特許文献1は、作業機の電力残量が減少した際、作業機が充電ステーションに自動帰還して作業機の搭載バッテリに充電を行うことを開示している。
特開2017-40076号公報
 ここで、同一の作業エリアにおいて複数台の自律作業機を稼働して、一台の充電ステーションを共有する場合、充電が必要となるタイミングが重なってしまうことがある。その結果、一部の自律作業機が充電待機状態となり、作業効率が低下してしまうという課題がある。
 本発明の目的は、自律作業機の充電待機状態の発生を回避し、作業効率を向上させるための技術を提供することにある。
 上記課題を解決し、目的を達成するために、本発明に係る制御システムは、
 充電ステーションと、複数の自律作業機と、前記複数の自律作業機を制御する制御装置とを備える制御システムであって、
 前記制御装置は、
  各自律作業機の電力情報を取得する取得手段と、
  前記電力情報に基づいて、各自律作業機の前記充電ステーションでの充電タイミングが相互に一致しないように各自律作業機を制御する制御手段と、
 を備えることを特徴とする。
 本発明によれば、自律作業機の充電待機状態の発生を回避し、作業効率を向上させることが可能となる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の一実施形態に係る自律走行可能な作業機の外観図である。 本発明の一実施形態に係る作業機を側方から観察した図である。 本発明の一実施形態に係る制御システムの構成例を示す図である。 本発明の一実施形態に係る制御装置が実施する処理手順を示すフローチャート。 実施形態1に係る制御処理の詳細な手順を示すフローチャートである。 実施形態2に係る制御処理の詳細な手順を示すフローチャートである。 本発明の一実施形態に係る制御の説明図である。 本発明の一実施形態に係る制御の説明図である。 本発明の一実施形態に係る制御の説明図である。
 以下、添付の図面を参照しながら、本発明の実施形態を説明する。なお、各図面を通じて同一の構成要素に対しては同一の参照符号を付している。
 (実施形態1)
 図1は、本発明の一実施形態に係る自律走行可能な自律作業機の外観図である。以下では側面視における自律作業機の進行方向(車長方向)と、進行方向に直交する横方向(車幅方向)と、進行方向と横方向に直交する鉛直方向とを、それぞれ前後方向、左右方向、上下方向と定義し、それに従って各部の構成を説明する。
 図1において、符号10は自律作業機(以下「作業車」という)を示す。作業車10は、具体的には自律走行する芝刈機として機能する。但し、芝刈機は一例であり、他の種類の作業機械にも本発明を適用することができる。作業車10は、複数のカメラ(第1のカメラ11a、第2のカメラ11b)を含むカメラユニット11を備えており、視差がある第1のカメラ11a、第2のカメラ11bにより撮影された画像を用いて、前方に存在する物体と、作業車10との距離情報を算出して取得する。そして、撮影された画像と、予め保持されている物体認識モデルとに基づいて、作業車10の動作を制御する。
 図2は、該作業車10を横方向(車幅方向)から観察した図である。図2に示されるように、作業車10は、カメラユニット11、車体12、ステー13、前輪14、後輪16、ブレード20、作業モータ22、モータ保持部材23、ブレード高さ調節モータ100、及び並進機構101を備えている。また、作業車10は、走行モータ26、各種のセンサ群S、電子制御ユニット(ECU:Electronic Control Unit)44、充電ユニット30、電池(バッテリ)32、充電端子34、通信部35を備えている。
 作業車10の車体12は、シャーシ12aと、該シャーシ12aに取り付けられるフレーム12bとを有する。前輪14は、前後方向においてシャーシ12aの前側にステー13を介して固定される小径の左右2個の車輪である。後輪16は、シャーシ12aの後側に取り付けられる大径の左右2個の車輪である。
 ブレード20は、シャーシ12aの中央位置付近に取り付けられる芝刈り作業用のロータリブレードである。作業モータ22は、ブレード20の上方に配置された電動モータである。ブレード20は、作業モータ22と接続されており、作業モータ22によって回転駆動される。モータ保持部材23は、作業モータ22を保持する。モータ保持部材23は、シャーシ12aに対して回転が規制されると共に、例えば、ガイドレールと、ガイドレールに案内されて上下に移動可能なスライダとの組み合せにより、上下方向の移動が許容されている。
 ブレード高さ調節モータ100は、接地面GRに対するブレード20の上下方向の高さを調節するためのモータである。並進機構101は、ブレード高さ調節モータ100と接続されており、ブレード高さ調節モータ100の回転を上下方向の並進移動に変換するための機構である。当該並進機構101は、作業モータ22を保持するモータ保持部材23とも接続されている。
 ブレード高さ調節モータ100の回転が並進機構101により並進移動(上下方向の移動)に変換され、並進移動はモータ保持部材23に伝達される。モータ保持部材23の並進移動(上下方向の移動)により、モータ保持部材23に保持されている作業モータ22も並進移動(上下方向の移動)する。作業モータ22の上下方向の移動により、接地面GRに対するブレード20の高さを調節することができる。
 走行モータ26は、作業車10のシャーシ12aに取り付けられている2個の電動モータ(原動機)である。2個の電動モータは、左右の後輪16とそれぞれ接続されている。前輪14を従動輪、後輪16を駆動輪として左右の車輪を独立に正転(前進方向への回転)あるいは逆転(後進方向への回転)させることで、作業車10を種々の方向に移動させることができる。
 充電端子34は、フレーム12bの前後方向の前端位置に設けられた充電端子であり、充電ステーション(図3を参照して後述する充電ステーション300)の対応する端子と接続することで、充電ステーションからの給電を受けることができる。充電端子34は、配線を介して充電ユニット30と接続されており、当該充電ユニット30は電池(バッテリ)32と接続されている。また、作業モータ22、走行モータ26、ブレード高さ調節モータ100も電池32と接続されており、電池32から給電されるように構成されている。
 ECU44は、回路基板上に構成されたマイクロコンピュータを含む電子制御ユニットであり、作業車10の動作を制御する。ECU44の詳細は後述する。通信部35は、作業車10と有線又は無線で接続された外部機器(例えば、後述する他の作業車、制御装置、充電ステーションなど)に対して情報を送受信することができる。
 図3は、本発明の一実施形態に係る制御システムの構成例を示す図である。制御システム1は、複数台の作業車(図3では一台の作業車10を図示している)と、制御装置(サーバ)200と、充電ステーション300とを含んで構成されている。他の作業車も作業車10と同様の構成であるものとする。
 図3に示されるように、作業車10が備えるECU44は、CPU44aと、I/O44bと、メモリ44cとを備えている。I/O44bは、各種情報の入出力を行う。メモリ44cは、ROM(Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)等である。メモリ44cには、作業車10の作業日程、作業エリアに関する情報や、作業車10の動作を制御するための各種プログラムが記憶されている。ECU44は、メモリ44cに格納されているプログラムを読み出して実行することにより、本発明を実現するための各処理部として動作することができる。
 ECU44は各種のセンサ群Sと接続されている。センサ群Sは、方位センサ46、GPSセンサ48、車輪速センサ50、角速度センサ52、加速度センサ54、電流センサ62、及びブレード高さセンサ64を含んで構成されている。
 方位センサ46及びGPSセンサ48は、作業車10の位置や向きの情報を取得するためのセンサである。方位センサ46は、地磁気に応じた方位を検出する。GPSセンサ48は、GPS衛星からの電波を受信して作業車10の現在位置(緯度、経度)を示す情報を検出する。
 車輪速センサ50、角速度センサ52、及び加速度センサ54は、作業車10の移動状態に関する情報を取得するためのセンサである。車輪速センサ50は、左右の後輪16の車輪速を検出する。角速度センサ52は、作業車10の重心位置の上下方向の軸(鉛直方向のz軸)回りの角速度を検出する。加速度センサ54は、作業車10に作用するx,y,z軸の直交3軸方向の加速度を検出する。
 電流センサ62は、電池32の消費電流(消費電力量)を検出する。消費電流(消費電力量)の検出結果はECU44のメモリ44cに保存される。予め定められた電力量が消費され、電池32に蓄積されている電力量が閾値以下になった場合、ECU44は、充電のために作業車10を充電ステーション300へ帰還させる帰還制御を行う。
 ブレード高さセンサ64は、接地面GRに対するブレード20の高さを検出する。ブレード高さセンサ64の検出結果はECU44へ出力される。ECU44の制御に基づいて、ブレード高さ調節モータ100が駆動され、ブレード20が上下方向に上下して接地面GRからの高さが調節される。
 各種センサ群Sの出力は、I/O44bを介してECU44へ入力される。ECU44は、各種センサ群Sの出力に基づいて、走行モータ26、作業モータ22、高さ調節モータ100に対して電池32から電力を供給する。ECU44は、I/O44bを介して制御値を出力して走行モータ26を制御することで、作業車10の走行を制御する。また、I/O44bを介して制御値を出力して高さ調節モータ100を制御することで、ブレード20の高さを調節する。さらに、I/O44bを介して制御値を出力して作業モータ22を制御することで、ブレード20の回転を制御する。ここで、I/O44bは、通信インタフェースとして機能することができ、ネットワーク150を介して有線又は無線で制御装置200又は他の装置と接続することが可能である。
 制御装置200は、各作業車を制御するためのサーバとして機能する。制御装置200は、CPU200a、I/O200b、メモリ200c、及び通信部200dを備えている。メモリ200cは、ROM(Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)等である。I/O200bは、各種情報の入出力を行う。メモリ200cには、各作業車の作業日程、作業エリアに関する情報、各作業車のバッテリ残量などの電力情報、各作業車の動作を制御するための各種プログラムが記憶されている。また、メモリ200cは、作業エリアごとの作業負荷の情報を記憶してもよい。例えば、作業負荷が大きい作業エリア(凹凸の差が大きい場所や、草が生い茂っている場所など)では消費電力が大きくなるので、そのような作業エリアには大きな消費電力を対応付けて記憶する。CPU200aは、メモリ200cに格納されているプログラムを読み出して実行することにより、本発明を実現するための各処理部として動作することができる。通信部200dは、制御装置200の外部に存在する装置(例えば、作業車10や充電ステーション300)と通信して各種情報を送受信する。
 充電ステーション300は、作業車10のバッテリ(電池32)を充電するための充電装置として機能する。作業エリアに設置されており、作業車10は、充電ステーション300へ帰還して、充電端子34を充電ステーション300と接続することにより充電を行うことができる。なお、充電ステーション300は一度に一台の作業車しか充電できないものとする。
 <処理>
 続いて、図4のフローチャートを参照しながら、本実施形態に係る制御システム1の制御装置200が実施する処理の手順を説明する。ステップS401において、CPU200aは、通信部200dを制御して各作業車と通信し、各作業車の電力情報を取得する。電力情報は、例えば各作業車のバッテリ残量の情報である。ここで、図7は、作業エリア700内での作業車10a、10bと、作業車10aのバッテリ情報701、作業車10bのバッテリ情報702とを示した模式図である。作業車10a、作業車10bの構成は図3を参照して説明した作業車10と同様の構成である。作業エリア700は、例えば芝生において芝刈作業を実施するエリアである。各作業車10a、10bは作業エリア700内で自律走行しながら作業を行う。制御装置200は、各作業車10a、10bと無線で通信して、各作業車10a、10bのバッテリ残量の情報を取得する。なお、図7の例では2台の作業車が描写されているが、3台以上の作業車が存在していてもよい。
 ステップS402において、CPU200aは、ステップS401で取得された電力情報に基づいて、各作業車の充電ステーション300での充電タイミングが一致しないように各作業車を制御する。本処理の詳細は後述する。以上で図4の一連の処理が終了する。
 次に、図5のフローチャートを参照して、本実施形態に係る図4のS402の処理の詳細を説明する。ステップS501において、CPU200aは、ステップS401で取得された電力情報に基づいて、各作業車の充電タイミングの到来を推測する。例えば、作業車10aは14時に充電タイミングが到来し、作業車10bは14時半に充電タイミングが到来することが推測される。なお、各作業車10a、10bは、自車のバッテリ残量が閾値以下であるか否かを判定し、バッテリ残量が閾値以下であると判定された場合に、充電ステーション300での充電タイミングが到来したと判定するように構成されているものとする。そして、充電タイミングが到来したと判定された場合に、充電ステーション300へ帰還するように自車を制御するように構成されているものとする。
 ステップS502において、CPU200aは、推測された各作業車の充電タイミングが一致するか否かを判定する。ここで、充電タイミングが一致する状態とは、複数台の作業車が同時に充電ステーション300へ帰還してしまう状態に加えて、例えば、充電ステーション300において他の作業車が充電中であり、その充電が終了するまでの間、充電待機状態が生じてしまう状態を含む。作業車は充電を開始してから充電が完了して充電ステーション300を離脱するまでに一定時間が必要となる。例えば、満充電になるまで1時間かかる場合、作業車10aが14時に充電タイミングが到来し、作業車10bが14時半に充電タイミングが到来すると推測されている場合、作業車10aが14時に充電を開始すると15時までは充電中となることから、作業車10bは14時半から15時までの間、充電ステーション300で充電を行うことができず、充電待機状態が発生してしまうことになる。このような場合も、充電タイミングが一致するものと判定できる。従って、バッテリ残量の差が所定範囲内である場合に、充電タイミングが一致すると判定することができる。バッテリ残量の差がゼロである場合には、同じような充電タイミングで充電ステーション300へ帰還することになる。
 各作業車の充電タイミングが一致すると判定された場合、ステップS503へ進む。一方、各作業車の充電タイミングが一致しないと判定された場合、処理を終了する。なお、図7の例では、作業車10aのバッテリ残量701が100%、作業車10bのバッテリ残量702も100%であり、作業車10a及び作業車10bが同時に充電が減少していくため、充電タイミングが一致することになる。
 ステップS503において、CPU200aは、各作業車に設定されている閾値を作業車ごとに異なる値に変更することで、充電タイミングが相互に一致しないように各作業車を制御する。例えば、作業車10aに対してはバッテリ残量の閾値を初期値の20%から50%に変更し、作業車10bについてはバッテリ残量の閾値を初期値の20%から10%に変更してもよい。これにより、作業車10aの充電タイミングの到来を早めると共に、作業車10bの充電タイミングの到来を遅らせることが可能となり、充電タイミングの一致を回避することが可能となる。
 以上説明したように、本実施形態では、各作業車から電力情報を取得し、取得した電力情報に基づいて、各作業車の充電ステーションでの充電タイミングが一致しないように制御を行う。これにより、作業車の充電待機状態の発生を回避し、作業効率を向上させることが可能となる。
 (実施形態2)
 実施形態1では、各作業車に設定されている充電ステーションへの帰還のための閾値を、作業車ごとに異なる値に変更することで、充電タイミングが相互に一致しないように制御する例を説明した。これに対して、実施形態2では、各作業車の消費電力を変更することで、充電タイミングが相互に一致しないように制御する例を説明する。
 なお、本実施形態に係る制御システムの構成は実施形態1で説明した制御システム1の構成と同様であるため説明を省略する。本実施形態の処理は、図4のステップS402の処理の詳細が実施形態1と異なっている。以下、図6のフローチャートを参照しながら、本実施形態に係る図4のS402の処理の詳細を説明する。但し、ステップS601、ステップS602の処理は、それぞれ図5のステップS501、ステップS502と同様であるため、説明を省略する。
 ステップS603において、CPU200aは、通信部200dを制御して各作業車と通信し、各作業車の消費電力を変更することで、充電タイミングが相互に一致しないように各作業車を制御する。消費電力を異ならせることにより、各作業車のバッテリ残量の減少速度が変わるため、充電タイミングの一致を回避することができる。
 例えば、CPU200aは、各作業車の走行モータ26を制御して走行速度を変更することにより、各作業車の消費電力を変更することができる。走行速度を速くすることにより、消費電力が増大するため、バッテリ残量の減少を早めることができる。一方、走行速度を遅くすることにより、消費電力が減少するため、バッテリ残量の減少を遅くすることができる。一例として、走行速度を0.55m/s、0.45m/s、0.35m/sの3つのパターンから選択して設定することで、各作業車の走行速度を変更してもよい。
 また、CPU200aは、各作業車のブレード高さ調節モータ100を制御して、各作業車が備えるブレード20の高さを変更することにより、各作業車の消費電力を変更することができる。ブレード20の高さを低くすることにより、ブレード20と、芝や草とが接触しやすくなり、負荷が増大するため、消費電力が増大する。これにより、バッテリ残量の減少を早めることができる。一方、ブレード20の高さを高くすることにより、ブレード20と、芝や草とが接触しにくくなり、負荷が減少するため、消費電力が減少する。これにより、バッテリ残量の減少を遅くすることができる。一例として、ブレード高さを、8cm、7cm、6cmの3つのパターンから選択して設定することで、各作業車のブレード高さを変更してもよい。
 或いは、CPU200aは、各作業車が備える作業モータ22を制御して、各作業車が備えるブレード20の回転速度を変更することにより、各作業車の消費電力を変更することができる。ブレード20の回転速度を速くすることにより消費電力が増大するため、バッテリ残量の減少を早めることができる。一方、ブレード20の回転速度を遅くすることにより消費電力が減少するため、バッテリ残量の減少を遅くすることができる。
 以上で図6の処理が終了する。
 以上説明したように、本実施形態では、各作業車の消費電力を変更することで、充電タイミングが相互に一致しないように制御を行う。これにより、作業車の充電待機状態の発生を回避し、作業効率を向上させることが可能となる。
 なお、ステップS603において、CPU200aは、各作業車のバッテリ残量が等間隔になるように、各作業車の消費電力を変更してもよい。ここで、図8は、作業エリア800内での作業車10a、10b、10cと、作業車10aのバッテリ情報801、作業車10bのバッテリ情報802、作業車10cのバッテリ情報803とを示した模式図である。作業車10a、作業車10b、作業車10cの構成は図3を参照して説明した作業車10と同様の構成である。作業エリア800は、例えば芝生において芝刈作業を実施するエリアである。各作業車10a、10b、10cは作業エリア800内で自律走行しながら作業を行う。
 例えば、図8に示されるように、作業車10aのバッテリ残量801の割合が満充電の90%、作業車10bのバッテリ残量802の割合が満充電の60%、作業車10cのバッテリ残量803の割合が満充電の30%となるように、すなわち、バッテリ残量の割合が30%の等間隔となるように、各作業車の消費電力を変更してもよい。
 例えば、本発明に係る制御処理を実施する前において、作業車10aのバッテリ残量が95%、作業車10bのバッテリ残量が92%、作業車10cのバッテリ残量が90%であり、消費電力を変更しなければ、3台の作業車の充電タイミングが一致すると判定される場合を考える。その場合、例えば、CPU200aは、作業車10aの消費電力を減少させ、作業車10bの消費電力を増大させ、作業車10cの消費電力を作業車10bよりも更に増大させることで、各作業車のバッテリ残量の割合が90%、60%、30%と等間隔になるように制御する。なお、間隔は30%に限定されるものではなく、充電タイミングの一致を回避できれば他の間隔(20%や40%など)であってもよいことは言うまでもない。また、等間隔に限らず、作業車10aと作業車10bとの間隔を30%とし、作業車10bと作業車10cとの間隔を35%となるように、異なる間隔になるように制御してもよい。
 また、ステップS603において、CPU200aは、各作業車に割り当てられる作業面積を、作業車ごとに異なる面積に変更することにより、各作業車の消費電力を変更することができる。例えば、消費電力を増大させたい作業車には広い作業面積を割り当て、消費電力を減少させたい作業車には狭い作業面積を割り当てる。
 広い面積の作業エリアを割り当てられた作業車は、直進できる距離が長くなり、作業エリア周縁での減速制御や旋回動作の発生が少なくなるため、減速や旋回による時間ロスが少なくなる。従って、単位時間当たりの作業量(例えば、刈れる芝や草の量)が増えて負荷が高くなり、結果として、消費電力が増大することになる。
 一方、狭い面積の作業エリアを割り当てられた作業車は、直進できる距離が短くなり、作業エリア周縁での減速制御や旋回動作の発生が多くなるため、減速や旋回による時間ロスが多くなる。走行速度が遅い間や、旋回動作を行っている間は、芝や草に対するブレード20による作業負荷が少なくなる。すなわち、ブレード20を回転させても芝や草が刈られない。従って、単位時間当たりの作業量(例えば、刈れる芝や草の量)が減って負荷が低くなり、結果として、消費電力が減少することになる。
 ここで、図9は、作業エリア900内での作業車10a、10b、10cと、作業車10aのバッテリ情報901、作業車10bのバッテリ情報902、作業車10cのバッテリ情報903とを示した模式図である。作業エリア900は、例えば芝生において芝刈作業を実施するエリアである。例えば、作業車10aに対して作業エリア951を割り当て、作業車10bに対して作業エリア952を割り当て、作業車10cに対して作業エリア953を割り当てる。当初、各作業車のバッテリ残量が同じくらいであり、充電タイミングが一致すると判定された場合に、異なる面積の作業エリアを各作業車に割り当てることで、各作業車の消費電力を異ならせることができる。そのため、充電タイミングの一致を回避することが可能となる。
 また、CPU200aは、各作業車に割り当てられる作業エリアを、メモリ200cに予め記憶されている作業エリアごとの作業負荷の情報に応じて変更することにより、各作業車の消費電力を変更してもよい。例えば作業負荷の大きい領域(凹凸の差が大きい場所や、草が生い茂っている場所など)では消費電力が大きくなることを利用して、作業負荷を増やしたい作業車を、作業負荷の大きい作業エリアに割り当てることで、消費電力を調整することができる。
 [変形例]
 上述した各実施形態では、制御装置200が本発明の処理を実施するものとして説明を行ったが、例えば、充電ステーション300に制御装置200の機能を持たせ、充電ステーション300が本発明の処理を実施するように構成してもよい。これにより、制御装置200を設けることなく充電タイミングの一致を回避することができることから、製品コストを低減することができる。
 また、上述した各実施形態では、制御装置200が本発明の処理を実施するものとして説明を行ったが、各作業車の何れかに制御装置200の機能を持たせ、作業車が本発明の処理を実施するように構成してもよい。その場合、ECU44が、他の作業車と通信部35を用いて通信し、他の作業車の電力情報を取得する。そして、自車の電力情報と、取得した他の作業車の電力情報とに基づいて、各作業車の充電ステーション300での充電タイミングが相互に一致しないように、自車及び他の作業車を制御する。これにより、制御装置200を設けることなく充電タイミングの一致を回避することができることから、製品コストを低減することができる。
 また、上述した各実施形態では、複数台の作業車と一台の充電ステーションとの組み合わせを例に説明を行ったが、複数台の作業車と、複数台の充電ステーションとの組み合わせにも本発明を適用することができる。また、上述した各実施形態では、作業車の数が2台又は3台である場合を例に説明を行ったが、4台以上の作業車がある場合にも本発明を適用することができる。
 また、上述した各実施形態では、自律作業機の一例として、芝刈機を例に説明を行ったが、芝刈機に限定されるものではない。例えば、自律型の除雪機、ゴルフボールの回収機など、他の種類の自律作業機に対しても本発明を適用することができる。また、上述した各実施形態では、複数のカメラから取得した画像に基づいて作業機を自律制御する例を説明したが、本発明を適用できる作業機はカメラ画像を用いる場合に限定されるものではない。例えば、超音波センサや赤外線センサなどの障害物センサ(距離計測センサ)を用いて自律制御を行う作業機にも本発明を適用することができる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 <実施形態のまとめ>
 1.上記実施形態の制御システム(例えば1)は、
 充電ステーション(例えば300)と、複数の自律作業機(例えば10a、10b、10c)と、前記複数の自律作業機を制御する制御装置(例えば200)とを備える制御システム(例えば1)であって、
 前記制御装置(例えば200)は、
  各自律作業機(例えば10a、10b、10c)の電力情報を取得する取得手段(例えば200a)と、
  前記電力情報に基づいて、各自律作業機の前記充電ステーション(例えば300)での充電タイミングが相互に一致しないように各自律作業機を制御する制御手段(例えば200a)と、
 を備える。
 この実施形態によれば、自律作業機の充電待機状態の発生を回避し、作業効率を向上させることが可能となる。
 2.上記実施形態の制御システム(例えば1)では、
 各自律作業機(例えば10a、10b、10c)は、
  バッテリ残量が閾値以下であるか否かを判定する判定手段(例えば44)と、
  前記バッテリ残量が前記閾値以下であると判定された場合に、前記充電ステーションでの充電タイミングが到来したと判定するタイミング判定手段(例えば44)と、
  前記充電タイミングが到来したと判定された場合に、前記充電ステーションへ帰還するように前記自律作業機を制御する帰還制御手段(例えば44)と、を備え、
 前記制御装置(例えば200)は、
  前記電力情報に基づいて、各自律作業機の充電タイミングの到来を推測する推測手段(例えば200a)をさらに備え、
  前記制御手段(例えば200a)は、前記推測された各充電タイミングが一致する場合、前記閾値を自律作業機ごとに異なる値に変更することで、充電タイミングが相互に一致しないように各自律作業機を制御する。
 この実施形態によれば、充電タイミングの一致を簡易に実現することができる。
 3.上記実施形態の制御システム(例えば1)では、
 前記制御装置(例えば200)は、
  前記電力情報に基づいて、各自律作業機の充電タイミングの到来を推測する推測手段(例えば200a)をさらに備え、
  前記制御手段(例えば200a)は、前記推測された各充電タイミングが一致する場合、各自律作業機の消費電力を変更することで、充電タイミングが相互に一致しないように各自律作業機を制御する。
 この実施形態によれば、充電タイミングの一致を簡易に防止することができる。
 4.上記実施形態の制御システム(例えば1)では、
 前記制御手段(例えば200a)は、各自律作業機の走行速度を変更することにより、各自律作業機(例えば10a、10b、10c)の消費電力を変更する。
 この実施形態によれば、消費電力を増大させたい自律作業機は走行速度を速くし、消費電力を減少させたい自律作業機は走行速度を遅くするといった簡易な制御で、充電タイミングの一致を防止することができる。
 5.上記実施形態の制御システム(例えば1)では、
 各自律作業機(例えば10a、10b、10c)は、作業用のブレード(例えば20)を備えており、
 前記制御手段(例えば200a)は、自律作業機ごとにブレードの高さを変更することにより、各自律作業機の消費電力を変更する。
 この実施形態によれば、作業用のブレード(例えば芝刈用のブレード)の高さを低くすることでブレードと芝との接触を多くして負荷を増大させて、バッテリ残量の減少を早めることができる。一方、ブレードの高さを高くすることでブレードと芝との接触を少なくして負荷を減少させて、バッテリ残量の減少を遅くすることができる。これにより、充電タイミングの一致を簡易に防止することができる。
 6.上記実施形態の制御システム(例えば1)では、
 各自律作業機(例えば10a、10b、10c)は、作業用のブレード(例えば20)を備えており、
 前記制御手段(例えば200a)は、自律作業機ごとにブレードの回転速度を変更することにより、各自律作業機の消費電力を変更する。
 この実施形態によれば、作業用のブレード(例えば芝刈用のブレード)の回転速度を速くすることでバッテリ残量の減少を早めることができる。一方、ブレードの回転速度を遅くすることでバッテリ残量の減少を遅くすることができる。これにより、充電タイミングの一致を簡易に防止することができる。
 7.上記実施形態の制御システム(例えば1)では、
 前記制御手段(例えば200a)は、各自律作業機のバッテリ残量が等間隔になるように、各自律作業機の消費電力を変更する。
 この実施形態によれば、バッテリ残量に等間隔に差を設けることで、充電タイミングに十分な差を設けることができる。これにより、充電タイミングの一致を防止することができる。
 8.上記実施形態の制御システム(例えば1)では、
 前記制御手段(例えば200a)は、各自律作業機に割り当てられる作業面積を、自律作業機ごとに異なる面積に変更することにより、各自律作業機の消費電力を変更する。
 この実施形態によれば、作業面積が広い場合、直進できる距離が長くなり、減速制御や旋回動作の発生が少なくなるため、単位時間当たりの作業量が増えて負荷が高くなり、消費電力が増大する。反対に、作業面積が狭い場合、走行速度が遅い間や、旋回動作を行っている間は、ブレードの空振りの発生により単位時間当たりの作業量が減って負荷が低くなり、消費電力が減少する。これにより、充電タイミングの一致を防止することができる。
 9.上記実施形態の制御システム(例えば1)では、
 前記制御装置(例えば200)は、
  作業エリアごとの作業負荷の情報を記憶する記憶手段(例えば200c)をさらに備え、
 前記制御手段(例えば200a)は、各自律作業機に割り当てられる作業エリアを、前記作業負荷に応じて変更することにより、各自律作業機の消費電力を変更する。
 この実施形態によれば、例えば作業負荷の大きい領域(凹凸の差が大きい場所や、草が生い茂っている場所など)では消費電力が大きくなることを利用して、消費電力を調整することができる。
 10.上記実施形態の制御装置(例えば200)は、
 複数の自律作業機を制御する制御装置であって、
 各自律作業機の電力情報を取得する取得手段と、
 前記電力情報に基づいて、各自律作業機の充電ステーションでの充電タイミングが相互に一致しないように各自律作業機を制御する制御手段と、
 を備える。
 この実施形態によれば、サーバとして機能する制御装置により、自律作業機の充電待機状態の発生を回避し、作業効率を向上させることが可能となる。
 11.上記実施形態の自律作業機(例えば10a、10b、10c)は、
 他の自律作業機と通信可能な自律作業機であって、
 前記自律作業機の電力情報及び前記他の自律作業機の電力情報を取得する取得手段(例えば44)と、
 前記自律作業機の電力情報及び前記他の自律作業機の電力情報に基づいて、各自律作業機の充電ステーションでの充電タイミングが相互に一致しないように、前記自律作業機及び前記他の自律作業機を制御する制御手段(例えば44)と、
 を備える。
 この実施形態によれば、自律作業機自身が他の自律作業機と通信することで、自律作業機の充電待機状態の発生を回避し、作業効率を向上させることが可能となる。従って、サーバなどの他の装置が不要となる。
 12.上記実施形態の制御装置(例えば200)の動作方法は、
 複数の自律作業機を制御する制御装置の動作方法であって、
 各自律作業機の電力情報を取得する取得工程と、
 前記電力情報に基づいて、各自律作業機の充電ステーションでの充電タイミングが相互に一致しないように各自律作業機を制御する制御工程と、
 を有する。
 この実施形態によれば、サーバとして機能する制御装置が実施する方法により、自律作業機の充電待機状態の発生を回避し、作業効率を向上させることが可能となる。
 13.上記実施形態の自律作業機(例えば10a、10b、10c)の制御方法は、
 他の自律作業機と通信可能な自律作業機の制御方法であって、
 前記自律作業機の電力情報及び前記他の自律作業機の電力情報を取得する取得工程と、
 前記自律作業機の電力情報及び前記他の自律作業機の電力情報に基づいて、各自律作業機の充電ステーションでの充電タイミングが相互に一致しないように、前記自律作業機及び前記他の自律作業機を制御する制御工程と、
 を有する。
 この実施形態によれば、自律作業機自身が他の自律作業機と通信する方法により、自律作業機の充電待機状態の発生を回避し、作業効率を向上させることが可能となる。
 14.上記実施形態のプログラムは、
 コンピュータを、本発明に係る制御装置として機能させるためのプログラムである。
 この実施形態によれば、本発明に係る制御装置をコンピュータにより実現することができる。
 15.上記実施形態のプログラムは、
 コンピュータを、本発明に係る自律作業機として機能させるためのプログラムである。
 この実施形態によれば、本発明に係る自律作業機をコンピュータにより実現することができる。

Claims (15)

  1.  充電ステーションと、複数の自律作業機と、前記複数の自律作業機を制御する制御装置とを備える制御システムであって、
     前記制御装置は、
      各自律作業機の電力情報を取得する取得手段と、
      前記電力情報に基づいて、各自律作業機の前記充電ステーションでの充電タイミングが相互に一致しないように各自律作業機を制御する制御手段と、
     を備えることを特徴とする制御システム。
  2.  各自律作業機は、
      バッテリ残量が閾値以下であるか否かを判定する判定手段と、
      前記バッテリ残量が前記閾値以下であると判定された場合に、前記充電ステーションでの充電タイミングが到来したと判定するタイミング判定手段と、
      前記充電タイミングが到来したと判定された場合に、前記充電ステーションへ帰還するように前記自律作業機を制御する帰還制御手段と、を備え、
     前記制御装置は、
      前記電力情報に基づいて、各自律作業機の充電タイミングの到来を推測する推測手段をさらに備え、
      前記制御手段は、前記推測された各充電タイミングが一致する場合、前記閾値を自律作業機ごとに異なる値に変更することで、充電タイミングが相互に一致しないように各自律作業機を制御することを特徴とする請求項1に記載の制御システム。
  3.  前記制御装置は、
      前記電力情報に基づいて、各自律作業機の充電タイミングの到来を推測する推測手段をさらに備え、
     前記制御手段は、前記推測された各充電タイミングが一致する場合、各自律作業機の消費電力を変更することで、充電タイミングが相互に一致しないように各自律作業機を制御することを特徴とする請求項1に記載の制御システム。
  4.  前記制御手段は、各自律作業機の走行速度を変更することにより、各自律作業機の消費電力を変更することを特徴とする請求項3に記載の制御システム。
  5.  各自律作業機は、作業用のブレードを備えており、
     前記制御手段は、自律作業機ごとにブレードの高さを変更することにより、各自律作業機の消費電力を変更することを特徴とする請求項3又は4に記載の制御システム。
  6.  各自律作業機は、作業用のブレードを備えており、
     前記制御手段は、自律作業機ごとにブレードの回転速度を変更することにより、各自律作業機の消費電力を変更することを特徴とする請求項3乃至5の何れか1項に記載の制御システム。
  7.  前記制御手段は、各自律作業機のバッテリ残量が等間隔になるように、各自律作業機の消費電力を変更することを特徴とする請求項3乃至6の何れか1項に記載の制御システム。
  8.  前記制御手段は、各自律作業機に割り当てられる作業面積を、自律作業機ごとに異なる面積に変更することにより、各自律作業機の消費電力を変更することを特徴とする請求項3乃至7の何れか1項に記載の制御システム。
  9.  前記制御装置は、
      作業エリアごとの作業負荷の情報を記憶する記憶手段をさらに備え、
     前記制御手段は、各自律作業機に割り当てられる作業エリアを、前記作業負荷に応じて変更することにより、各自律作業機の消費電力を変更することを特徴とする請求項3乃至7の何れか1項に記載の制御システム。
  10.  複数の自律作業機を制御する制御装置であって、
     各自律作業機の電力情報を取得する取得手段と、
     前記電力情報に基づいて、各自律作業機の充電ステーションでの充電タイミングが相互に一致しないように各自律作業機を制御する制御手段と、
     を備えることを特徴とする制御装置。
  11.  他の自律作業機と通信可能な自律作業機であって、
     前記自律作業機の電力情報及び前記他の自律作業機の電力情報を取得する取得手段と、
     前記自律作業機の電力情報及び前記他の自律作業機の電力情報に基づいて、各自律作業機の充電ステーションでの充電タイミングが相互に一致しないように、前記自律作業機及び前記他の自律作業機を制御する制御手段と、
     を備えることを特徴とする自律作業機。
  12.  複数の自律作業機を制御する制御装置の動作方法であって、
     各自律作業機の電力情報を取得する取得工程と、
     前記電力情報に基づいて、各自律作業機の充電ステーションでの充電タイミングが相互に一致しないように各自律作業機を制御する制御工程と、
     を有することを特徴とする制御装置の動作方法。
  13.  他の自律作業機と通信可能な自律作業機の制御方法であって、
     前記自律作業機の電力情報及び前記他の自律作業機の電力情報を取得する取得工程と、
     前記自律作業機の電力情報及び前記他の自律作業機の電力情報に基づいて、各自律作業機の充電ステーションでの充電タイミングが相互に一致しないように、前記自律作業機及び前記他の自律作業機を制御する制御工程と、
     を有することを特徴とする自律作業機の制御方法。
  14.  コンピュータを、請求項10に記載の制御装置として機能させるためのプログラム。
  15.  コンピュータを、請求項11に記載の自律作業機として機能させるためのプログラム。
PCT/JP2018/043889 2018-11-29 2018-11-29 制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラム WO2020110247A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18941660.5A EP3861846B1 (en) 2018-11-29 2018-11-29 Control system, operation method of a control system and computer program
PCT/JP2018/043889 WO2020110247A1 (ja) 2018-11-29 2018-11-29 制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラム
JP2020557473A JP7203120B2 (ja) 2018-11-29 2018-11-29 制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラム
US17/326,882 US12093059B2 (en) 2018-11-29 2021-05-21 Control system, control apparatus, autonomous work machine, operation method of control apparatus, control method of autonomous work machine, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/043889 WO2020110247A1 (ja) 2018-11-29 2018-11-29 制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/326,882 Continuation US12093059B2 (en) 2018-11-29 2021-05-21 Control system, control apparatus, autonomous work machine, operation method of control apparatus, control method of autonomous work machine, and storage medium

Publications (1)

Publication Number Publication Date
WO2020110247A1 true WO2020110247A1 (ja) 2020-06-04

Family

ID=70853276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043889 WO2020110247A1 (ja) 2018-11-29 2018-11-29 制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラム

Country Status (4)

Country Link
US (1) US12093059B2 (ja)
EP (1) EP3861846B1 (ja)
JP (1) JP7203120B2 (ja)
WO (1) WO2020110247A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3912449A1 (en) * 2020-05-22 2021-11-24 Globe (Jiangsu) Co., Ltd. Mower fleet management device, method, and system
IT202100009023A1 (it) * 2021-04-09 2022-10-09 Stiga S P A In Breve Anche St S P A Sistema di manutenzione di terreni, in particolare configurato per attivare una modalità di risparmio energetico di un dispositivo mobile previa comparazione tra livelli di carica
IT202100009017A1 (it) * 2021-04-09 2022-10-09 Stiga S P A In Breve Anche St S P A Sistema di manutenzione di terreni, in particolare configurato per abilitare un’operazione di ricarica di un dispositivo mobile in corrispondenza di una fascia oraria preferenziale
EP4057479A3 (en) * 2021-03-10 2022-11-23 Techtronic Cordless GP Lawnmowers
US12093059B2 (en) 2018-11-29 2024-09-17 Honda Motor Co., Ltd. Control system, control apparatus, autonomous work machine, operation method of control apparatus, control method of autonomous work machine, and storage medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD1016860S1 (en) * 2020-03-27 2024-03-05 The Toro Company Lawnmower shell
CN113729583A (zh) * 2021-09-26 2021-12-03 汇智机器人科技(深圳)有限公司 一种洗地机补给方法、系统和设备
US20230142590A1 (en) * 2021-11-10 2023-05-11 Techtronic Cordless Gp Robotic lawn mowers
WO2024015909A1 (en) * 2022-07-13 2024-01-18 Hydro-Gear Limited Partnership Utility vehicle with battery management and autonomous control systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009116634A (ja) * 2007-11-07 2009-05-28 Nec Access Technica Ltd 充電制御装置、充電制御システム及びそれらに用いる充電制御方法並びにそのプログラム
WO2014021412A1 (ja) * 2012-08-02 2014-02-06 日産自動車株式会社 無人搬送車の充電管理システム
JP2017040076A (ja) 2015-08-19 2017-02-23 東洋パーツ株式会社 自走作業機
JP2018000021A (ja) * 2016-06-28 2018-01-11 日立工機株式会社 自走式作業機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931957B1 (fr) * 2008-06-02 2010-07-30 Nav On Time Dispositif de commande d'appareil(s) mobile(s) autopropulse(s)
JP2014187766A (ja) * 2013-03-22 2014-10-02 Toyota Industries Corp 充電装置
DE202013101894U1 (de) * 2013-04-30 2014-08-07 Al-Ko Kober Ag Basisstation für und Mähsystem mit mehreren Mährobotern
EP3571561B1 (en) 2017-01-19 2022-03-02 Husqvarna AB Improved work scheduling for a robotic lawnmower
EP3861846B1 (en) * 2018-11-29 2023-07-12 Honda Motor Co., Ltd. Control system, operation method of a control system and computer program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009116634A (ja) * 2007-11-07 2009-05-28 Nec Access Technica Ltd 充電制御装置、充電制御システム及びそれらに用いる充電制御方法並びにそのプログラム
WO2014021412A1 (ja) * 2012-08-02 2014-02-06 日産自動車株式会社 無人搬送車の充電管理システム
JP2017040076A (ja) 2015-08-19 2017-02-23 東洋パーツ株式会社 自走作業機
JP2018000021A (ja) * 2016-06-28 2018-01-11 日立工機株式会社 自走式作業機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3861846A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12093059B2 (en) 2018-11-29 2024-09-17 Honda Motor Co., Ltd. Control system, control apparatus, autonomous work machine, operation method of control apparatus, control method of autonomous work machine, and storage medium
EP3912449A1 (en) * 2020-05-22 2021-11-24 Globe (Jiangsu) Co., Ltd. Mower fleet management device, method, and system
EP4057479A3 (en) * 2021-03-10 2022-11-23 Techtronic Cordless GP Lawnmowers
IT202100009023A1 (it) * 2021-04-09 2022-10-09 Stiga S P A In Breve Anche St S P A Sistema di manutenzione di terreni, in particolare configurato per attivare una modalità di risparmio energetico di un dispositivo mobile previa comparazione tra livelli di carica
IT202100009017A1 (it) * 2021-04-09 2022-10-09 Stiga S P A In Breve Anche St S P A Sistema di manutenzione di terreni, in particolare configurato per abilitare un’operazione di ricarica di un dispositivo mobile in corrispondenza di una fascia oraria preferenziale
EP4082321A1 (en) * 2021-04-09 2022-11-02 Stiga S.p.A. in breve anche St. S.p.A. Land maintenance system, in particular configured to activate an energy saving mode of a mobile device subjected to a comparison between charge levels
EP4098096A1 (en) * 2021-04-09 2022-12-07 Stiga S.p.A. in breve anche St. S.p.A. Land maintenance system, in particular configured to enable a mobile device recharge operation at a preferential time slot

Also Published As

Publication number Publication date
EP3861846A1 (en) 2021-08-11
US12093059B2 (en) 2024-09-17
EP3861846B1 (en) 2023-07-12
JPWO2020110247A1 (ja) 2021-10-14
JP7203120B2 (ja) 2023-01-12
EP3861846A4 (en) 2021-10-27
US20210286376A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
WO2020110247A1 (ja) 制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラム
EP3073346B1 (en) Control apparatus for autonomously navigating utility vehicle
JP6263567B2 (ja) 自律走行作業車の制御装置
JP6243951B2 (ja) 自律走行作業車の制御装置
JP6498627B2 (ja) 自律走行作業車の制御装置
JP6212591B2 (ja) 自律走行作業車の制御装置
EP2296071A1 (en) Modular and scalable positioning and navigation system
CN109005863A (zh) 具有多个充电站的耕作系统
CN208444202U (zh) 一种改进型物流搬运agv
CN111830984B (zh) 基于无人洗车设备的多机器协同洗车系统及方法
EP3549422B1 (en) Work system and work method
CN114937258B (zh) 割草机器人的控制方法、割草机器人以及计算机存储介质
WO2020100265A1 (ja) 自律作業機、自律作業機の制御方法及びプログラム
US20210263529A1 (en) Autonomous work machine, control method of autonomous work machine, and storage medium
CN113580155A (zh) 自主移动装置及仓储物流系统
WO2020100264A1 (ja) 自律作業機、自律作業機の制御方法及びプログラム
JP2021047724A (ja) 作業システム、自律作業機、自律作業機の制御方法及びプログラム
US11625963B2 (en) Management apparatus, control method for management apparatus, and non-transitory computer-readable storage medium
EP4006681B1 (en) Autonomous work machine, method for controlling autonomous work machine
JP2022074917A (ja) 自律作業システム
WO2020105124A1 (ja) 自律作業機、自律作業機の制御方法及びプログラム
WO2020105101A1 (ja) 自律走行作業機の制御装置
CN111127677A (zh) 立体车库自动停车系统及方法
JP7168682B2 (ja) 作業機、作業機の制御方法及びプログラム
CN115562307A (zh) 巡检机器人的运动控制方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557473

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018941660

Country of ref document: EP

Effective date: 20210505

NENP Non-entry into the national phase

Ref country code: DE