WO2020108067A1 - 一种木质素的纯化方法 - Google Patents

一种木质素的纯化方法 Download PDF

Info

Publication number
WO2020108067A1
WO2020108067A1 PCT/CN2019/108188 CN2019108188W WO2020108067A1 WO 2020108067 A1 WO2020108067 A1 WO 2020108067A1 CN 2019108188 W CN2019108188 W CN 2019108188W WO 2020108067 A1 WO2020108067 A1 WO 2020108067A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
optionally
product
purified
solvent
Prior art date
Application number
PCT/CN2019/108188
Other languages
English (en)
French (fr)
Inventor
刘运思
闵渝
张睿哲
甘梓峰
Original Assignee
广州楹鼎生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州楹鼎生物科技有限公司 filed Critical 广州楹鼎生物科技有限公司
Priority to JP2021502991A priority Critical patent/JP7233774B2/ja
Priority to US17/052,646 priority patent/US11440998B2/en
Publication of WO2020108067A1 publication Critical patent/WO2020108067A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids

Definitions

  • the present application belongs to the technical field of lignin preparation, and relates to a method for purifying lignin.
  • lignin is generally obtained by further processing the black liquor obtained by alkaline pulping.
  • Alkaline pulping processes raw materials under high temperature and high pressure conditions.
  • the lignin is dissolved in the cooking liquor, which causes serious pollution in the pulping process and high reagent cost.
  • its low lignin content, low purity, small relative molecular weight, high dispersion, complex composition, soluble in water, and poor thermoplastic properties also hinder its downstream application.
  • the use of organic solvents to extract lignin from plant fiber raw materials is an environmentally friendly technology.
  • organic solvents can degrade lignin in plant raw materials to achieve the purpose of efficient separation of lignin and cellulose;
  • the lignin prepared by the solvent method is easy to separate and has good reactivity, but during the separation process, the lignin will adhere to a part of hemicellulose, various ions and impurities, and there are certain influences.
  • Lignin is a natural polymer product whose output is second only to cellulose. It is estimated that 150 billion tons of lignin can be produced every year from plant growth in the world; but crude lignin contains a large amount of lignin in addition to the lignin component. Sugar and ash, the presence of these substances will have an adverse effect on the storage and use of lignin. Such as the presence of sugar, crude lignin is easy to absorb moisture when stored; used as a concrete additive, the early strength is lower due to retardation; in synthetic adhesives, it has varying degrees of influence on the adhesive strength and curing time of the adhesive. In order to improve the performance of lignin, crude lignin needs to be purified.
  • the related lignin products contain a variety of impurities such as inorganic salts, hemicellulose, oligosaccharides, etc., and the color is darker, and these impurities also have various effects on the performance of industrial lignin-derived products. Without scientific purification, To increase product purity, applications will be limited.
  • CN101845064A discloses a method for purifying industrial lignin. First, silica gel is filled in a chromatography column, then the industrial lignin to be purified is dissolved in water, and the industrial lignin solution is poured on the top layer of silica gel in the chromatography column. After it invades into the silica gel, place a layer of silica gel on the top of the silica gel and add deionized water to elute. The elution solutions are received according to the color distribution. The brown eluent is received in the second container.
  • the brown eluent is light-colored before Partially received in the first container, then add acid to the silica gel column to wash until the silica gel in the column is white, the acid eluent is received in the third container, and the brown part of the eluent in the second container is evaporated to dryness It is the purified lignin product.
  • CN103910766A discloses a method for preparing poplar acetate lignin by separation and purification.
  • the method uses acetic acid and hydrochloric acid as cooking reagents, cooks poplar wood powder under normal pressure and 109°C, and then recovers the dissolved lignin by precipitation in water
  • the crude lignin obtained was washed with ether, then treated with an alkaline solution, and separated by membrane to obtain poplar acetate lignin.
  • CN103497295B relates to an in-situ ultrasonic polymerization preparation method of industrial alkali lignin-modified phenolic resin.
  • the steps are: dissolving an industrial alkali lignin solution with a mass fraction of 5-10% through alkali dissolution, acid precipitation, centrifugation, washing, and drying And other processes to obtain purified alkali lignin.
  • the above-mentioned related technical steps are cumbersome and complicated, which is not conducive to popularization and application, and the yield and purity need to be further improved; and, the above patents mainly use industrial lignin as a raw material for purification, and the method is not suitable for solvent-based lignin.
  • the purpose of this application includes providing a method for purifying lignin.
  • the method is based on the physical and chemical characteristics and impurity components of lignin, and is matched with each other to gradually purify. It is concise and efficient, and the yield and purity are significantly improved. Great market value.
  • the present application provides a method for purifying lignin.
  • the method includes the following steps:
  • the crude lignin is extracted from plant fiber raw materials using organic solvents, including but not limited to organic acid lignin, alcohol lignin, ether lignin, phenol lignin , Ester lignin or ketone lignin, which can be any one or a combination of at least two of ethanol lignin, organic acid lignin, acetone lignin or high boiling alcohol lignin.
  • organic solvents including but not limited to organic acid lignin, alcohol lignin, ether lignin, phenol lignin , Ester lignin or ketone lignin, which can be any one or a combination of at least two of ethanol lignin, organic acid lignin, acetone lignin or high boiling alcohol lignin.
  • the organic acid lignin is lignin acetate.
  • the high boiling alcohol lignin is ethylene glycol lignin and/or 1,4-butanediol lignin.
  • the inventors deeply investigated the advantages and disadvantages of the lignin extraction and purification process in related technologies, using lignin extracted from plant fiber raw materials by using organic solvents as raw materials, and extensively screening and purifying solvents.
  • the steps of ultrasonic vibration, centrifugal filtration, constant temperature water stirring and membrane filtration and drying are gradually purified in sequence. Each step is indispensable and the order cannot be reversed.
  • the steps are efficiently matched and synergized to remove impurities in the lignin strongly, keeping The higher purification yield also significantly improves the purity of lignin, and has broad application prospects and huge market value.
  • the purification solvent is an organic solvent, including any one of organic acids, alcohols, ethers, esters or dioxane.
  • the mass concentration of the purification solvent is 30-100%, for example, it may be 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100%, optionally 100%.
  • the mass concentration of the primary product is 0.1-90%, for example, it can be 0.1%, 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40% , 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% or 90%, optional 30-90%, optional 80-90%.
  • the organic acid includes propionic acid, butyric acid, formic acid or acetic acid.
  • the alcohol includes methanol, propanol, glycerin, isobutanol, ethanol, or n-butanol, which may be methanol or ethanol.
  • the ethers include ether.
  • the esters include ethyl acetate or butyl acetate.
  • the lignin acetate is purified with acetic acid.
  • the ethanol lignin is purified with methanol.
  • the acetone lignin is purified with ether.
  • the ethylene glycol lignin is purified with ethyl acetate.
  • the 1,4-butanediol lignin is purified with ethanol.
  • the temperature of the ultrasonic vibration in step (1) is 20-80°C, for example, 20°C, 30°C, 40°C, 50°C, 60°C, 70°C or 80°C, optionally 40-60 °C.
  • the ultrasonic vibration time in step (1) is 10-200min, for example, 10min, 20min, 50min, 70min, 90min, 110min, 130min, 150min, 170min, 190min or 200min, optionally 50-150min .
  • the rotation speed of the centrifugation in step (2) is 6000-20000r/min, for example, 6000r/min, 7000r/min, 8000r/min, 9000r/min, 10000r/min, 11000r/min, 12000r/min , 13000r/min, 14000r/min, 15000r/min, 16000r/min, 17000r/min, 18000r/min, 19000r/min or 20000r/min, can be selected from 8000-15000r/min.
  • the temperature of the constant temperature water in step (3) is 20-80°C, for example, 20°C, 30°C, 40°C, 50°C, 60°C, 70°C or 80°C, optionally 40-60 °C.
  • the stirring time in step (3) is 10-300 min, for example, 10 min, 30 min, 50 min, 70 min, 90 min, 110 min, 130 min, 150 min, 170 min, 190 min, 210 min, 230 min, 250 min, 270 min, 290 min Or 300min, optional 50-200min.
  • the stirring in step (3) refers to stirring at a certain rotation speed under the environment of constant temperature water, the rotation speed is 10-1000s -1 , which can be achieved by a stirrer or a high-speed disperser.
  • the solid-liquid ratio of the tertiary product and distilled water in step (4) is 1: (1-10), for example, it can be 1:1, 1:2, 1:3, 1:4, 1:5 , 1:6, 1:7, 1:8, 1:9 or 1:10, you can choose 1:(3-7).
  • the molecular weight cutoff of the filter membrane in step (4) is greater than 1,000.
  • This application does not limit the filtration equipment, it can be ultrafiltration equipment or ordinary filtration equipment, the main purpose is to trap some impurities, to achieve the role of purification, the filter membrane can choose to intercept the filter membrane with molecular weight above 1000, can be selected from 1000-10000 Cut off molecular weight filter.
  • the washing detergent in step (5) is water, and the ratio is not limited, and washing is the result.
  • a lignin purification method specifically includes the following steps:
  • the purification solvent includes any one of organic acids, alcohols, ethers, esters or dioxane.
  • the crude lignin is extracted from plant fiber raw materials using organic solvents, including But not limited to any one or a combination of at least two of organic acid lignin, alcohol lignin, ether lignin, phenol lignin, ester lignin or ketone lignin;
  • the primary product is centrifuged at a speed of 6000-20000r/min to obtain a supernatant and a solid precipitate.
  • the solid precipitate is washed and filtered with a purified solvent, and the filtrate and the supernatant are mixed to obtain a secondary product;
  • the present application provides a lignin, wherein the lignin is purified by the method described in the first aspect.
  • the purification method provided in this application is simple and efficient, effectively removes hemicellulose, various ions and impurities in lignin extracted by organic solvents, maintains a higher purification yield and significantly improves the purity of lignin, and the yield reaches more than 80%.
  • the ash content is low, the purity reaches more than 90%, the operation steps are simple, the cost is saved, the environmental pollution is small, and it has great application and promotion value.
  • the primary product is centrifuged at a speed of 8000r/min to obtain a supernatant and a solid precipitate.
  • the solid precipitate is washed and filtered with methanol having a mass concentration of 90%, and the filtrate and the supernatant are mixed to obtain a secondary product;
  • the primary product is centrifuged at a speed of 15000r/min to obtain a supernatant and a solid precipitate.
  • the solid precipitate is washed and filtered with 95% ethanol by mass concentration, and the filtrate and the supernatant are mixed to obtain a secondary product;
  • the primary product is centrifuged at 6000r/min to obtain a supernatant and a solid precipitate.
  • the solid precipitate is washed and filtered with 100% mass concentration of ether, and the filtrate and the supernatant are mixed to obtain a secondary product;
  • the primary product is centrifuged at a speed of 20,000 r/min to obtain a supernatant and a solid precipitate.
  • the solid precipitate is washed and filtered with ethyl acetate at a mass concentration of 100%, and the filtrate and the supernatant are mixed to obtain a secondary product;
  • Example 1 Compared with Example 1, except for the step of not using ultrasonic oscillation, the other conditions are the same as in Example 1.
  • Example 2 Compared with Example 2, except for the step of not using constant temperature water stirring, the other conditions are the same as in Example 2.
  • Example 3 Compared with Example 3, the conditions are the same as Example 3 except that the step of centrifugal filtration is not used.
  • Example 1 Compared with Example 1, except that acetic acid was replaced with formaldehyde, the other conditions were the same as in Example 1.
  • Example 4 Compared with Example 4, except that the membrane is not used for filtration, the other conditions are the same as in Example 4.
  • Example 5 Compared with Example 5, after preparing the solution in step (1), the conditions are the same as in Example 5 except that the constant temperature water in step (3) is stirred and changed to before the ultrasonic vibration in step (1).
  • the yield is obtained by the absolute dry mass before and after purification.
  • the purity is detected by ultraviolet spectrophotometry or infrared spectroscopy.
  • Ash detection method calcination at 800 °C for 3h to calculate ash;
  • Example 1 82 0.3 92
  • Example 2 85 0.8 95
  • Example 3 81 0.4 93
  • Example 4 82 0.5 91 Example 5 84 0.7 94 Comparative Example 1 71 1.5 75 Comparative Example 2 70 1.8 62 Comparative Example 3 51 1.9 53 Comparative Example 4 75 1.6 41 Comparative Example 5 70 2.0 45 Comparative Example 6 65 1.8 43
  • the present application provides a method for purifying lignin by adding lignin extracted from plant fiber raw materials using an organic solvent method to a specific solvent, combined with ultrasonic vibration, centrifugal filtration, constant temperature water stirring and membrane
  • the steps of filtration and drying are purified step by step.
  • the steps are indispensable and the order cannot be reversed.
  • Each step is efficiently matched and synergistically synergistic, which can strongly remove impurities in lignin, maintain a high purification yield, and significantly improve lignin purity , With broad application prospects and huge market value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本文公开了一种木质素的纯化方法,所述方法包括溶剂溶解、超声震荡、离心过滤、恒温水搅拌和膜过滤干燥的步骤,本申请通过将利用有机溶剂从植物纤维原料中提取得到的木质素加入特定溶剂中,配合超声震荡、离心过滤、恒温水搅拌和膜过滤干燥的步骤,按序逐步纯化,步骤缺一不可且顺序不可颠倒,各步骤高效搭配,协同增效,能够强力去除木质素中的杂质,保有较高纯化得率的同时显著提高木质素的纯度,具有广阔的应用前景和巨大的市场价值。

Description

一种木质素的纯化方法 技术领域
本申请属于木质素制备技术领域,涉及一种木质素的纯化方法。
背景技术
传统的木质素一般是通过对碱法制浆得到的黑液进一步处理得到的,碱法制浆在高温高压条件下处理原料,木质素溶解于蒸煮药液,制浆过程污染严重,试剂成本高昂,制备得到的工业木质素中除了杂质较多,其木质素含量低、纯度低、相对分子质量小、分散度高,成分复杂、溶于水,热塑特性很差等特点也阻碍了其下游应用。而利用有机溶剂的方法从植物纤维原料中提取木质素是一种对环境友好的技术,在一定条件下,有机溶剂可以降解植物原料中的木素,达到木素、纤维素高效分离的目的;通过溶剂法制备得到的木质素易于分离且反应活性好,但得到的粗木质素在分离过程中,木质素会都附着一部分的半纤维素、各种离子和杂质,对其下游应用存在一定的影响。
木质素是一种产量仅次于纤维素的天然高分子产物,估计全世界每年由植物生长可产生1500亿吨的木质素;但粗提木质素中,除了木质素成分外,还含有大量的糖类及灰分,这些物质的存在对木质素的存放及使用都会产生不良影响。如其中糖的存在,粗木质素存放时易吸潮;用作混凝土添加剂,由于缓凝使早期强度偏低;在合成胶粘剂中,对胶粘剂粘结强度及固化时间均有不同程度的影响。为了提高木质素的性能,需对粗提木质素进行纯化。而且相关的木质素产品里含有多种无机盐、半纤维素、低聚糖等杂质,颜色也较深,并且这些杂质对工业木质素衍生产品的性能也有各种影响,若不进行科学纯化,提高产品纯度,应用会受到限制。
CN101845064A公开了一种工业木质素的纯化方法,先称取硅胶填充在层析柱中,再将待纯化的工业木质素溶解于水中,将工业木质素溶液淋在层析柱中硅胶的顶层,待其侵入硅胶中后,在硅胶顶部垫上一层硅胶,加入去离子水洗脱,洗脱溶液按照颜色分布分别接收,将褐色洗脱液接收在第二容器中,褐色洗脱液之前浅色部分接收在第一容器中,然后向硅胶柱中加入酸液洗至柱内硅胶呈白色,将酸液洗脱液接收在第三容器中,将第二容器中的褐色部分洗脱液蒸干即为纯化后的木质素制品。CN103910766A公开了一种通过分离及纯化制备杨木乙酸木质素的方法,该方法采用乙酸和盐酸为蒸煮试剂,在常压及109℃条件下蒸煮杨木木粉,然后采用水中沉淀的方法回收溶出木质素,所得粗木质素采用乙醚洗涤,之后采用碱溶液处理,并采用膜分离得到杨木乙酸木质素。CN103497295B涉及一种工业碱木质素改性酚醛树脂的原位超声聚合制备方法,其步骤是将质量分数为5-10%的工业碱木素溶液,通过碱溶、酸沉、离心、洗涤、干燥等过程,得到纯化碱木质素。但上述相关技术步骤繁琐,操作复杂,不利于推广应用,且得率和纯度有待进一步提高;并且,上述专利主要以工业木质素为原料进行纯化,其方法并不适用于溶剂型木质素,而相关技术中对新兴的有机溶剂型木质素的纯化方法罕有报道。
因此,提供一种简洁高效的木质素纯化方法,去除杂质,拓宽木质素的下游应用范围,具有广阔的应用前景和巨大的市场价值。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的包括提供一种木质素的纯化方法,所述方法从木质素的理化 特性及杂质成分出发,相互搭配,逐步纯化,简洁高效,显著提高得率和纯度,具有广阔的应用前景和巨大的市场价值。
为达此目的,本申请采用以下技术方案:
第一方面,本申请提供一种木质素的纯化方法,所述方法包括如下步骤:
(1)将粗提的木质素加入纯化溶剂中,超声波振荡得到一级产物;
(2)将一级产物通过离心处理,得到上清液和固体沉淀,将固体沉淀用纯化溶剂洗涤过滤,滤液与上清液混合,得到二级产物;
(3)将二级产物置于恒温水中搅拌处理,得到三级产物;
(4)向三级产物中加入蒸馏水,搅拌后通过滤膜过滤,得到截流沉淀;
(5)将截流沉淀洗涤干燥得到纯化后的木质素。
可选地,所述粗提的木质素为利用有机溶剂从植物纤维原料中提取得到的木质素,包括但不限于有机酸类木质素、醇类木质素、醚类木质素、酚类木质素、酯类木质素或酮类木质素,可选为乙醇木质素、有机酸类木质素、丙酮木质素或高沸醇木质素中的任意一种或至少两种的组合。
可选地,所述有机酸类木质素为乙酸木质素。
可选地,所述高沸醇木质素为乙二醇木质素和/或1,4-丁二醇木质素。
本申请中,发明人在长期生产时间过程中,深入调研相关技术中木质素提取纯化工艺的优缺点,以利用有机溶剂从植物纤维原料中提取得到的木质素为原料,广泛筛选纯化溶剂,搭配超声振荡、离心过滤、恒温水搅拌和膜过滤干燥的步骤,按序逐步纯化,各步骤缺一不可且顺序不可颠倒,各步骤高效搭配,协同增效,能够强力去除木质素中的杂质,保有较高的纯化得率同时显著提高木质素的纯度,具有广阔的应用前景和巨大的市场价值。
可选地,所述纯化溶剂为有机溶剂,包括有机酸、醇类、醚类、酯类或二氧六环中的任意一种。
可选地,所述纯化溶剂的质量浓度为30-100%,例如可以是30%、40%、50%、60%、70%、80%、90%或100%,可选为100%。
可选地,所述一级产物的质量浓度为0.1-90%,例如可以是0.1%、1%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%或90%,可选为30-90%,可选为80-90%。
可选地,所述有机酸包括丙酸、丁酸、甲酸或乙酸。
可选地,所述醇类包括甲醇、丙醇、丙三醇、异丁醇、乙醇或正丁醇,可选为甲醇或乙醇。
可选地,所述醚类包括乙醚。
可选地,所述酯类包括乙酸乙酯或乙酸丁酯。
可选地,所述乙酸木质素采用乙酸纯化。
可选地,所述乙醇木质素采用甲醇纯化。
可选地,所述丙酮木质素采用乙醚纯化。
可选地,所述乙二醇木质素采用乙酸乙酯纯化。
可选地,所述1,4-丁二醇木质素采用乙醇纯化。
可选地,步骤(1)所述超声波震荡的温度为20-80℃,例如可以是20℃、30℃、40℃、50℃、60℃、70℃或80℃,可选为40-60℃。
可选地,步骤(1)所述超声波震荡的时间为10-200min,例如可以是10min、20min、50min、70min、90min、110min、130min、150min、170min、190min或200min,可选为50-150min。
可选地,步骤(2)所述离心的转速为6000-20000r/min,例如可以是6000r/min、7000r/min、8000r/min、9000r/min、10000r/min、11000r/min、12000r/min、13000r/min、14000r/min、15000r/min、16000r/min、17000r/min、18000r/min、19000r/min或20000r/min,可选为8000-15000r/min。
可选地,步骤(3)所述恒温水的温度为20-80℃,例如可以是20℃、30℃、40℃、50℃、60℃、70℃或80℃,可选为40-60℃。
可选地,步骤(3)所述搅拌的时间为10-300min,例如可以是10min、30min、50min、70min、90min、110min、130min、150min、170min、190min、210min、230min、250min、270min、290min或300min,可选为50-200min。
可选地,步骤(3)所述搅拌指在恒温水的环境下以一定转速进行搅拌,转速为10-1000s -1,可通过搅拌器或高速分散机达到。
可选地,步骤(4)所述三级产物与蒸馏水的固液比为1:(1-10),例如可以是1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9或1:10,可选为1:(3-7)。
可选地,步骤(4)所述滤膜的截留分子量大于1000。
本申请不对过滤设备进行限定,可为超滤设备或普通的过滤设备,主要目的是截留住部分杂质,达到提纯的作用,滤膜可选截留分子量1000以上的滤膜,可可选为1000-10000截流分子量的滤膜。
可选地,步骤(5)所述洗涤的洗涤剂为水,不做比例限定,以洗涤干净为结果。
作为可选技术方案,一种木质素的纯化方法,具体包括如下步骤:
(1)将粗提的木质素加入质量浓度为30-100%的纯化溶剂中,20-80℃超声波振荡10-200min,得到浓度为0.1-90%的一级产物;
其中,纯化溶剂包括有机酸、醇类、醚类、酯类或二氧六环中的任意一种,所述粗提的木质素为利用有机溶剂从植物纤维原料中提取得到的木质素,包括但不限于有机酸类木质素、醇类木质素、醚类木质素、酚类木质素、酯类木质素或酮类木质素中的任意一种或至少两种的组合;
(2)将一级产物通过6000-20000r/min的转速离心处理,得到上清液和固体沉淀,将固体沉淀用纯化溶剂洗涤过滤,滤液与上清液混合,得到二级产物;
(3)将二级产物置于20-80℃的恒温水中以10-1000s -1的剪切速度搅拌处理10-300min,得到三级产物;
(4)按照固液比为1:(1-10)的比例向三级产物中加入蒸馏水,搅拌1-10min后通过截流分子量大于1000的滤膜过滤,得到截流沉淀;
(5)将截流沉淀洗涤干燥得到纯化后的木质素。
第二方面,本申请提供一种木质素,其中,所述木质素采用如第一方面所述方法纯化得到。
与相关技术相比,本申请至少具有如下有益效果:
本申请提供的纯化方法简洁高效,有效去除有机溶剂提取得到的木质素中的半纤维素、各种离子和杂质,保有较高纯化得率同时显著提高木质素纯度,得率达到80%以上,灰分低,纯度达到90%以上,操作步骤简单,节省成本,对环境污染小,极具应用和推广价值。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
为更进一步阐述本申请所采取的技术手段及其效果,以下通过具体实施方式来进一步说明本申请的技术方案,但本申请并非局限在实施例范围内。
实施例1
(1)将采用乙酸粗提的木质素加入质量浓度为60%的乙酸中,配置成溶液,60℃超声波振荡100min,得到木质素质量浓度为80%的一级产物;
(2)将一级产物10000r/min的转速离心处理,得到上清液和固体沉淀,将固体沉淀用质量浓度为60%的乙酸洗涤过滤,滤液与上清液混合,得到二级产物;
(3)将二级产物置于60℃的恒温水中,在800s -1的剪切速度下搅拌处理150min,得到三级产物;
(4)按照固液比为1:5的比例向三级产物中加入蒸馏水,搅拌5min,使得木质素沉淀出来,将包含沉淀的混合液加入到滤膜设备中,通过截流分子量为2000的滤膜过滤,得到截流沉淀;
(5)将截流沉淀洗涤后置于真空干燥箱干燥后得到固含量为85%以上的木质素产品。
实施例2
(1)将乙醇粗提的木质素加入质量浓度为90%的甲醇中,20℃超声波振荡200min,得到木质素质量浓度为60%的一级产物;
(2)将一级产物通过8000r/min的转速离心处理,得到上清液和固体沉淀,将固体沉淀用质量浓度为90%的甲醇洗涤过滤,滤液与上清液混合,得到二级产物;
(3)将二级产物置于20℃的恒温水中,在10 -1的剪切速度下搅拌处理300min,得到三级产物;
(4)按照固液比为1:1的比例向三级产物中加入蒸馏水,搅拌10min,使 得木质素沉淀出来,将包含沉淀的混合液加入滤膜设备中,通过截流分子量为1000的滤膜过滤,得到截流沉淀;
(5)将截流沉淀洗涤后置于真空干燥箱中干燥后得到固含量为85%以上的木质素产品。
实施例3
(1)将高沸醇(1,4-丁二醇)粗提的木质素加入质量浓度为95%的乙醇中,80℃超声波振荡10min,得到木质素质量浓度为30%的一级产物;
(2)将一级产物通过15000r/min的转速离心处理,得到上清液和固体沉淀,将固体沉淀用质量浓度为95%的乙醇洗涤过滤,滤液与上清液混合,得到二级产物;
(3)将二级产物置于80℃的恒温水中,在1000 -1的剪切速度下搅拌处理10min,得到三级产物;
(4)按照固液比为1:10的比例向三级产物中加入蒸馏水,搅拌1min,使得木质素沉淀出来,通过截流分子量为5000的滤膜过滤,得到截流沉淀;
(5)将截流沉淀洗涤后置于真空干燥箱中干燥后得到固含量为85%以上的木质素产品。
实施例4
(1)将丙酮粗提的木质素加入质量浓度为100%的乙醚中,20-80℃超声波振荡80min,得到木质素质量浓度为90%的一级产物;
(2)将一级产物通过6000r/min的转速离心处理,得到上清液和固体沉淀,将固体沉淀用质量浓度为100%的乙醚洗涤过滤,滤液与上清液混合,得到二级产物;
(3)将二级产物置于40℃的恒温水中,在500 -1的剪切速度下搅拌处理100min,得到三级产物;
(4)按照固液比为1:3的比例向三级产物中加入蒸馏水,搅拌8min,使得木质素沉淀出来,通过截流分子量为8000的滤膜过滤,得到截流沉淀;
(5)将截流沉淀洗涤后置于真空干燥箱中干燥后得到固含量为85%以上的木质素产品。
实施例5
(1)将乙二醇粗提的木质素加入质量浓度为100%的乙酸乙酯中,60℃超声波振荡100min,得到木质素质量浓度为80%的一级产物;
(2)将一级产物通过20000r/min的转速离心处理,得到上清液和固体沉淀,将固体沉淀用质量浓度为100%的乙酸乙酯洗涤过滤,滤液与上清液混合,得到二级产物;
(3)将二级产物置于60℃的恒温水中,在500 -1的剪切速度下搅拌处理100min,得到三级产物;
(4)按照固液比为1:8的比例向三级产物中加入蒸馏水,搅拌5min,通过截流分子量大于1000的滤膜过滤,得到截流沉淀;
(5)将截流沉淀洗涤后置于真空干燥箱中干燥后得到固含量为85%以上的木质素产品。
对比例1
与实施例1相比,除了不采用超声振荡的步骤外,其他条件与实施例1相同。
对比例2
与实施例2相比,除了不采用恒温水搅拌的步骤外,其他条件与实施例2相同。
对比例3
与实施例3相比,除了不采用离心过滤的步骤外,其他条件与实施例3相同。
对比例4
与实施例1相比,除了将乙酸替换为甲醛外,其他条件与实施例1相同。
对比例5
与实施例4相比,除了不采用滤膜过滤外,其他条件与实施例4相同。
对比例6
与实施例5相比,在步骤(1)配制成溶液后,除了将步骤(3)的恒温水搅拌,改到步骤(1)的超声震荡之前外,其他条件与实施例5相同。
实验检测
检测实施例和对比例纯化得到的木质素的纯度、得率和灰分;
得率通过纯化前后绝干质量求得,纯度利用紫外分光光度法或红外光谱法检测,灰分检测方法:800℃下煅烧3h,计算灰分;
结果见表1;
表1
样品 得率% 灰分% 纯度%
实施例1 82 0.3 92
实施例2 85 0.8 95
实施例3 81 0.4 93
实施例4 82 0.5 91
实施例5 84 0.7 94
对比例1 71 1.5 75
对比例2 70 1.8 62
对比例3 51 1.9 53
对比例4 75 1.6 41
对比例5 70 2.0 45
对比例6 65 1.8 43
由表1可知,实施例1-5按照本申请提供的技术方案对有机溶剂提取得到的粗提木质素进行纯化,得率均高于80%,产物纯度均高于90%,灰分低,而对比例1、2、3和5的方案缺少任一步骤,对比例4不采用本申请提供的纯化溶剂,对比例6的纯化步骤颠倒顺序,产物的纯度、得率均明显降低,灰分增加,不适宜下游的应用,无法达到纯化的目的,因此,本申请提供的纯化方法各步骤缺一不可,顺序不可颠倒,相互配合,协同实现高效纯化。
综上所述,本申请提供了一种木质素的纯化方法,通过将采用有机溶剂方法从植物纤维原料中提取得到的木质素加入特定溶剂中,配合超声震荡、离心过滤、恒温水搅拌和膜过滤干燥的步骤,按序逐步纯化,步骤缺一不可且顺序不可颠倒,各步骤高效搭配,协同增效,能够强力去除木质素中的杂质,保有较高的纯化得率同时显著提高木质素纯度,具有广阔的应用前景和巨大的市场价值。
申请人声明,本申请通过上述实施例来说明本申请的详细方法,但本申请并不局限于上述详细方法,即不意味着本申请必须依赖上述详细方法才能实施。

Claims (10)

  1. 一种木质素的纯化方法,其中,所述方法包括如下步骤:
    (1)将粗提的木质素加入纯化溶剂中,超声波振荡得到一级产物;
    (2)将一级产物通过离心处理,得到上清液和固体沉淀,将固体沉淀用纯化溶剂洗涤过滤,滤液与上清液混合,得到二级产物;
    (3)将二级产物置于恒温水中搅拌处理,得到三级产物;
    (4)向三级产物中加入蒸馏水,搅拌后通过滤膜过滤,得到截流沉淀;
    (5)将截流沉淀洗涤干燥得到纯化后的木质素。
  2. 根据权利要求1所述的方法,其中,所述粗提的木质素为利用有机溶剂从植物纤维原料中提取得到的木质素,包括有机酸类木质素、醇类木质素、醚类木质素、酚类木质素、酯类木质素或酮类木质素,可选为乙醇木质素、有机酸木质素、丙酮木质素或高沸醇木质素中的任意一种或至少两种的组合;
    可选地,所述有机酸类木质素为乙酸木质素;
    可选地,所述高沸醇木质素为乙二醇木质素和/或1,4-丁二醇木质素。
  3. 根据权利要求1或2所述的方法,其中,所述纯化溶剂为有机溶剂,包括有机酸、醇类、醚类、酯类或二氧六环中的任意一种;所述有机酸包括丙酸、丁酸、甲酸或乙酸;
    可选地,所述纯化溶剂的质量浓度为30%-100%,可选为100%;
    可选地,所述一级产物的质量浓度为0.1%-90%,可选为30-90%。
  4. 根据权利要求3所述的方法,其中,所述醇类包括甲醇、丙醇、丙三醇、异丁醇、乙醇或正丁醇,可选为甲醇或乙醇。
  5. 根据权利要求3或4所述的方法,其中,所述醚类包括乙醚;
    可选地,所述酯类包括乙酸乙酯或乙酸丁酯;
    可选地,所述乙酸木质素采用乙酸纯化;
    可选地,所述乙醇木质素采用甲醇纯化;
    可选地,所述丙酮木质素采用乙醚纯化;
    可选地,所述1,4-丁二醇木质素采用乙醇纯化;
    可选地,所述乙二醇木质素采用乙酸乙酯纯化。
  6. 根据权利要求1-5中任一项所述的方法,其中,步骤(1)所述超声波震荡的温度为20-80℃,可选为40-60℃;
    可选地,步骤(1)所述超声波震荡的时间为10-200min,可选为50-150min。
  7. 根据权利要求1-6中任一项所述的方法,其中,步骤(2)所述离心的转速为6000-20000r/min,可选为8000-15000r/min;
    可选地,步骤(3)所述恒温水的温度为20-80℃,可选为40-60℃;
    可选地,步骤(3)所述搅拌的时间为10-300min,可选为50-200min。
  8. 根据权利要求1-7中任一项所述的方法,其中,步骤(4)所述三级产物与蒸馏水的固液比为1:(1-10),可选为1:(3-7);
    可选地,步骤(4)所述滤膜的截留分子量大于1000。
  9. 根据权利要求1-8中任一项所述的方法,其中,具体包括如下步骤:
    (1)将粗提的木质素加入质量浓度为30%-100%的纯化溶剂中,20-80℃超声波振荡10-200min,得到浓度为0.1-90%的一级产物;
    其中,纯化溶剂包括有机酸、醇类、醚类、酯类或二氧六环中的任意一种,所述粗提的木质素为利用有机溶剂从植物纤维原料中提取得到的木质素,包括有机酸类木质素、醇类木质素、醚类木质素、酚类木质素、酯类木质素或酮类木质素中的任意一种或至少两种的组合;
    (2)将一级产物通过6000-20000r/min的转速离心处理,得到上清液和固体沉淀,将固体沉淀用纯化溶剂洗涤过滤,滤液与上清液混合,得到二级产物;
    (3)将二级产物置于20-80℃的恒温水中以10-1000s-1的剪切速度搅拌处理10-300min,得到三级产物;
    (4)按照固液比为1:(1-10)的比例向三级产物中加入蒸馏水,搅拌1-10min,通过截流分子量大于1000的滤膜过滤,得到截流沉淀;
    (5)将截流沉淀洗涤干燥得到纯化后的木质素。
  10. 一种木质素,其中,所述木质素采用如权利要求1-9中任一项所述方法纯化得到。
PCT/CN2019/108188 2018-11-26 2019-09-26 一种木质素的纯化方法 WO2020108067A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021502991A JP7233774B2 (ja) 2018-11-26 2019-09-26 リグニンの精製方法
US17/052,646 US11440998B2 (en) 2018-11-26 2019-09-26 Method for purifying lignin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811418239.5A CN109456496A (zh) 2018-11-26 2018-11-26 一种木质素的纯化方法
CN201811418239.5 2018-11-26

Publications (1)

Publication Number Publication Date
WO2020108067A1 true WO2020108067A1 (zh) 2020-06-04

Family

ID=65611629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108188 WO2020108067A1 (zh) 2018-11-26 2019-09-26 一种木质素的纯化方法

Country Status (4)

Country Link
US (1) US11440998B2 (zh)
JP (1) JP7233774B2 (zh)
CN (1) CN109456496A (zh)
WO (1) WO2020108067A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109456496A (zh) * 2018-11-26 2019-03-12 广州楹鼎生物科技有限公司 一种木质素的纯化方法
CN113004537B (zh) * 2019-12-19 2022-11-01 济南圣泉集团股份有限公司 一种利用酯化木质素粗品制备高活性木质素的方法
CN111333860A (zh) * 2020-02-29 2020-06-26 华南理工大学 一种碱木素乙酰化的改良方法
CN114474449B (zh) * 2022-03-31 2022-09-13 北京林业大学 木质素/pbat复合薄膜材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101712698A (zh) * 2009-11-25 2010-05-26 大连工业大学 基于离子液体的双液相体系提取木质素的方法
CN101845064A (zh) * 2010-06-10 2010-09-29 西安石油大学 一种工业木质素的纯化方法
CN102261007A (zh) * 2010-05-26 2011-11-30 漳州伯能生物能源有限公司 一种农林纤维素生物质全组份的分级分离方法及利用分离后组份制备燃料酒精和低聚木糖
CN103275331A (zh) * 2013-05-23 2013-09-04 广西大学 一种以造纸黑液为原料的木质素纳米颗粒的制备方法
KR101521238B1 (ko) * 2014-11-04 2015-05-18 (재)울산테크노파크 흑액으로부터 고순도 리그닌을 추출하는 방법
WO2017108055A1 (en) * 2015-12-21 2017-06-29 Inbicon A/S Fluid composition comprising lignin and vinasse
CN109456496A (zh) * 2018-11-26 2019-03-12 广州楹鼎生物科技有限公司 一种木质素的纯化方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764596A (en) * 1985-11-05 1988-08-16 Repap Technologies Inc. Recovery of lignin
JP5167554B2 (ja) * 2007-04-24 2013-03-21 独立行政法人科学技術振興機構 植物資源相分離系変換装置
AT510812A1 (de) * 2010-10-29 2012-06-15 Annikki Gmbh Verfahren zur gewinnung von lignin
EP2527532A1 (en) * 2011-05-27 2012-11-28 "Efa Gryt" Ewa Gryt Method of processing of stalks of fibre crops
FI127816B (en) * 2012-06-06 2019-03-15 Upm Kymmene Corp Process for fractionating lignin
WO2014142289A1 (ja) * 2013-03-15 2014-09-18 出光興産株式会社 リグニン分解物の製造方法
CN103145999A (zh) * 2013-03-26 2013-06-12 东北林业大学 一种粒径可控纳米木质素的制备方法
CA2911484C (en) * 2013-05-03 2021-05-25 Virdia, Inc. Methods for preparing thermally stable lignin fractions
FR3013713B1 (fr) * 2013-11-27 2016-01-15 Inst Polytechnique Bordeaux Procede de depolymerisation de la lignine par des laccases
BR112016012411B1 (pt) * 2013-12-12 2021-03-30 Solenis Technologies, L.P. Método para preparação de uma dispersão aquosa de nanopartículas de lignina
EP3080353B1 (en) * 2013-12-12 2022-01-26 Annikki GmbH Process for lignin purification and isolation
JP6349518B2 (ja) * 2014-02-25 2018-07-04 国立研究開発法人産業技術総合研究所 リグニン分解物の製造方法
CN109851814B (zh) * 2014-07-09 2022-03-11 威尔迪亚有限责任公司 用于从黑液中分离和精制木质素的方法及其组合物
JP2016060813A (ja) * 2014-09-17 2016-04-25 出光興産株式会社 熱硬化性樹脂組成物
DE102014221238A1 (de) * 2014-10-20 2016-04-21 Mpg Max-Planck-Gesellschaft Zur Förderung Der Wissenschaften E.V. Verfahren zur Fällung von Lignin aus Organosolv-Kochlaugen
US10053482B2 (en) * 2014-11-19 2018-08-21 Clemson University Solvent and recovery process for lignin
JP6357189B2 (ja) * 2015-04-24 2018-07-11 花王株式会社 樹脂用添加剤
CN104927067B (zh) * 2015-06-29 2017-04-19 南京林业大学 一种从竹材制浆黑液中提取不同分子量木质素的方法
BR112018005810A2 (pt) * 2015-09-25 2018-10-16 Idemitsu Kosan Co., Ltd. método de produção de lignina purificada, lignina purificada, composição de resina e corpo moldeado
GB201520453D0 (en) * 2015-11-20 2016-01-06 Imp Innovations Ltd Process
EP3440157A1 (en) * 2016-04-07 2019-02-13 Cmblu Projekt AG Sulfonated aromatic compounds
WO2018004447A1 (en) * 2016-07-01 2018-01-04 Ren Fuel K2B Ab Ultrapure kraft lignin composition
CN106750362B (zh) * 2016-11-30 2019-06-11 海南金海浆纸业有限公司 一种木质素的分级方法
AT519535A1 (de) * 2016-12-23 2018-07-15 Univ Wien Tech Herstellungsverfahren
CN108424529A (zh) * 2017-02-15 2018-08-21 广西洋荣科技有限公司 一种从甘蔗渣中分离木质素的方法及其专用设备
WO2018169459A1 (en) * 2017-03-15 2018-09-20 Sca Forest Products Ab Method of preparing a sizing boost additive
US11524974B2 (en) * 2017-10-26 2022-12-13 Aalto University Foundation Sr Aqueous lignin dispersions and methods of preparing the same
AT521393B1 (de) * 2018-06-27 2021-02-15 Univ Wien Tech Verfahren zur Herstellung von Ligninpartikel im Rahmen eines kontinuierlichen Verfahrens

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101712698A (zh) * 2009-11-25 2010-05-26 大连工业大学 基于离子液体的双液相体系提取木质素的方法
CN102261007A (zh) * 2010-05-26 2011-11-30 漳州伯能生物能源有限公司 一种农林纤维素生物质全组份的分级分离方法及利用分离后组份制备燃料酒精和低聚木糖
CN101845064A (zh) * 2010-06-10 2010-09-29 西安石油大学 一种工业木质素的纯化方法
CN103275331A (zh) * 2013-05-23 2013-09-04 广西大学 一种以造纸黑液为原料的木质素纳米颗粒的制备方法
KR101521238B1 (ko) * 2014-11-04 2015-05-18 (재)울산테크노파크 흑액으로부터 고순도 리그닌을 추출하는 방법
WO2017108055A1 (en) * 2015-12-21 2017-06-29 Inbicon A/S Fluid composition comprising lignin and vinasse
CN109456496A (zh) * 2018-11-26 2019-03-12 广州楹鼎生物科技有限公司 一种木质素的纯化方法

Also Published As

Publication number Publication date
US11440998B2 (en) 2022-09-13
CN109456496A (zh) 2019-03-12
JP2022501450A (ja) 2022-01-06
US20210179787A1 (en) 2021-06-17
JP7233774B2 (ja) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2020108067A1 (zh) 一种木质素的纯化方法
Lai et al. Co-production of xylooligosaccharides and fermentable sugars from poplar through acetic acid pretreatment followed by poly (ethylene glycol) ether assisted alkali treatment
Tian et al. Liquid hot water extraction followed by mechanical extrusion as a chemical-free pretreatment approach for cellulosic ethanol production from rigid hardwood
CN113307983B (zh) 一种绿色溶剂快速、高得率分离木质素的方法
JP6344724B2 (ja) リグニン分解物の製造方法
Wang et al. Characterization and comparison of lignin derived from corncob residues to better understand its potential applications
CN112064392B (zh) 一种生物质预处理组合物及生物质预处理方法
US20060287517A1 (en) Preparation of wood pulps with caustic pretreatment for use in the manufacture of cellulose acetates and other organic esters
CN104927067B (zh) 一种从竹材制浆黑液中提取不同分子量木质素的方法
AU2020102758A4 (en) Method for preparing lignin with high yield and high aryl ether bond structure from lignocellulosic biomass
CN104861180A (zh) 一种植物纤维全组分高效溶解的方法
CN105296568A (zh) 一种碱处理木质纤维素废液回收利用的方法
US10145063B2 (en) Comprehensive process for selectively separating lignocellulosic biomass into purified components with high yield
Hassan et al. Evaluation of miscanthus pretreatment effect by Choline chloride based Deep Eutectic solvents on bioethanol production
Wang et al. Efficient fractionation of woody biomass hemicelluloses using cholinium amino acids-based deep eutectic solvents and their aqueous mixtures
CN103361392A (zh) 一种木质纤维原料降解制备可发酵糖的方法
NL2029007B1 (en) Extraction and purification method and application of plant-condensed tannin
CN112694629B (zh) 一种利用废弃木质生物质制备可生物降解透明薄膜的方法
CN105779525A (zh) 离子液体与碱液联合预处理生物质的方法
US20160273010A1 (en) Melt compounding and fractionation of lignocellulosic biomass and products produced therefrom
RU2745988C2 (ru) Способ и устройство для ферментативного гидролиза
CN104292194A (zh) 一种生物质分级处理后制备糠醛和快速变温法制备乙酰丙酸的方法
CN112458127B (zh) 一种提升生物质高固酶解率的方法
Rahman et al. Structural characterization of potassium hydroxide liquor lignin and its application in biorefinery
CN111321126A (zh) 一种生物酶制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889374

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502991

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889374

Country of ref document: EP

Kind code of ref document: A1