WO2020107942A1 - 利用氯化铵制备氯化氢和氨气的制备系统及方法 - Google Patents

利用氯化铵制备氯化氢和氨气的制备系统及方法 Download PDF

Info

Publication number
WO2020107942A1
WO2020107942A1 PCT/CN2019/100144 CN2019100144W WO2020107942A1 WO 2020107942 A1 WO2020107942 A1 WO 2020107942A1 CN 2019100144 W CN2019100144 W CN 2019100144W WO 2020107942 A1 WO2020107942 A1 WO 2020107942A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
decomposition
regeneration
reaction
ammonium chloride
Prior art date
Application number
PCT/CN2019/100144
Other languages
English (en)
French (fr)
Inventor
于常军
王麒
Original Assignee
原初科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 原初科技(北京)有限公司 filed Critical 原初科技(北京)有限公司
Priority to EP19888341.5A priority Critical patent/EP3889108A4/en
Priority to US17/297,081 priority patent/US20220024762A1/en
Publication of WO2020107942A1 publication Critical patent/WO2020107942A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/05Preparation from ammonium chloride
    • C01B7/055Preparation of hydrogen chloride from ammonium chloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/026Preparation of ammonia from inorganic compounds

Definitions

  • This application relates to the field of inorganic salts and soda ash chemicals, and in particular to the technology for preparing hydrogen chloride and ammonia gas using ammonium chloride.
  • ammonium chloride is decomposed into NH 3 and HCl with higher economic value, NH 3 can be recycled in the soda industry, and HCl can also be applied in many fields such as organic chlorination.
  • NH 4 Cl can be decomposed into NH 3 and HCl when heated, but at the same time, a large amount of NH 4 Cl sublimates, and the generated NH 3 and HCl are difficult to separate, and it is easy to regenerate small NH 4 Cl particles, so the use of ammonium chloride decomposition Preparation of hydrogen chloride and ammonia gas has not yet achieved large-scale industrial application in the world.
  • a feasible method is to add an acidic (or basic) of the circulating medium can be reused in the reaction NH 4 Cl, NH 3 generated so that the heating (or HCl) is first reacted into an intermediate product, so that HCl (or NH 3 ) is released first, and then NH 3 (or HCl) is released by further pyrolysis of the intermediate product.
  • the patent US1718420 proposes a chemical route using NH 4 HSO 4 as a circulating medium to obtain HCl and NH 3 in steps; the patent US2787524 uses NaHSO 4 /NH 4 HSO 4 and a circulating medium to obtain HCl and NH 3 in steps, and US4293532 is based on the above Route, further proposed the reaction temperature of each part and the stoichiometric ratio of the reactants.
  • none of the published documents propose a complete preparation system and corresponding operation method that are convenient for industrial implementation.
  • the present invention provides a system and method for preparing hydrogen chloride and ammonia gas using ammonium chloride in view of the above problems existing in the prior art.
  • An aspect of the present invention provides a preparation system for preparing hydrogen chloride and ammonia gas using ammonium chloride.
  • the preparation system includes at least one reactor in which ammonium chloride and molten ammonium bisulfate occur. Decomposition reaction to output hydrogen chloride gas and obtain intermediate materials; intermediate material regenerate reaction to output ammonia gas and obtain ammonia hydrogen sulfate; the decomposition reaction and the regeneration reaction occur in different working stages of the same reactor, Or it can happen in multiple reactors that can communicate.
  • a feature of the preparation system of the present invention is that the ammonium chloride is continuously added to the reactor in the form of solid particles. Therefore, the reactor includes at least one continuously-feedable solid particle feeding device for removing chlorine Ammonium chloride particles are added to the reactor.
  • the solid particle feeding device includes a quantitative conveying device, a feeding tube located on the decomposition reactor, and a section of pipeline communicating with the conveying device and the feeding tube; one end of the feeding tube is located on the reactor wall , One end is in the reactor and below the liquid level of the liquid material.
  • the decomposition reaction and the regeneration reaction occur in a plurality of reactors that can be connected.
  • the at least one reactor includes: a decomposition reactor for decomposition reaction, which has a solid particle feeding device, a liquid inlet, a liquid outlet, and an exhaust port; at least one regeneration reactor, and The decomposition reactor is connected for regeneration reaction, and has a liquid inlet, a liquid outlet and an exhaust port; the system further includes at least one desorption device connected to the decomposition reactor.
  • the hydrogen chloride gas dissolved in the reaction material is precipitated from it.
  • the desorption device includes a liquid inlet, a carrier gas inlet, a liquid outlet, and an exhaust port; the liquid inlet of the desorption device is connected to the liquid outlet of the decomposition reactor, and the liquid outlet of the desorption device
  • the feed port is connected to the liquid feed port of the regeneration reactor.
  • Both the decomposition reactor and the regeneration reactor have a heating device and a temperature control device.
  • One of the situations in which the decomposition reaction and the regeneration reaction occur in a plurality of reactors that can be connected is that the number of the decomposition reactor and the regeneration reactor is one.
  • the second situation is: the number of the decomposition reactor is plural, and the number of the regeneration reactor is one.
  • the third situation is: the number of the decomposition reactor is one, and the number of the regeneration reactor is plural.
  • the fourth situation is that the number of the decomposition reactor and the regeneration reactor are multiple.
  • the preparation system further includes at least one molten salt pump, located at the liquid outlet of the decomposition reactor and the regeneration reactor Where the liquid inlet of the liquid is connected and/or where the liquid inlet of the decomposition reactor is connected to the liquid outlet of the regeneration reactor.
  • the preparation system further includes: a heat preservation device located at a connection between a plurality of the reactors.
  • the multiple decomposition reactors are connected in series, that is, the liquid outlet of the previous decomposition reactor is connected to the liquid inlet of the latter reactor; the last decomposition reaction The liquid outlet of the reactor is connected to the inlet of the desorption device; at this time, at least the first decomposition reactor has a solid particle feeding device and a heating device; all decomposition reactors have temperature control devices.
  • the reaction temperature of the latter decomposition reactor is not higher than the reaction temperature of the previous decomposition reactor;
  • each of the plurality of decomposition reactors connected in series has a solid particle feeding device.
  • the number of the multiple series of decomposition reactors is 2 to 3.
  • the multiple regeneration reactors are connected in series, that is, the liquid outlet of the former regeneration reactor is connected to the liquid inlet of the latter regeneration reactor ;
  • the liquid outlet of the last regeneration reactor is at least connected to the liquid inlet of the first decomposition reactor.
  • connection mode of the multiple regeneration reactors may also be parallel, that is, the liquid outlet of each regeneration reactor and the liquid feed of the decomposition reactor The liquid inlet of each regeneration reactor is connected to the liquid outlet of the decomposition reactor.
  • the decomposition reactor includes a stirred tank reactor and/or a rotating drum reactor;
  • the regeneration reactor includes a tubular reactor, a stirred tank reactor and/or a rotating drum reactor.
  • the reactor is a stirred reactor or a drum reactor.
  • Another aspect of the present invention provides a method for preparing hydrogen chloride gas and ammonia gas using ammonium chloride as a raw material based on the above preparation system: ammonia hydrogen sulfate from the regeneration reactor is added to a decomposition reactor through a liquid inlet ; Ammonium chloride particles are continuously fed into the decomposition reactor through a solid particle feeding device, and ammonium chloride in the decomposition reactor reacts with molten ammonium bisulfate, and the generated hydrogen chloride gas is continuously discharged through the exhaust port.
  • the material is discharged through the liquid discharge port; the intermediate material is flowed into the desorption device inlet through a high level difference or a molten salt pump, and an inert carrier gas is passed into the desorption device to make the dissolved hydrogen chloride gas enter the carrier gas; desorption After the intermediate material is discharged from the liquid outlet of the desorption device, it enters the regeneration reactor; the desorbed intermediate material is heated and decomposed in the regeneration reactor to form ammonia hydrogen sulfate and ammonia gas; the generated ammonia gas is continuously discharged through the exhaust port The generated ammonia bisulfate is discharged through the liquid discharge port and returned to the decomposition reactor using a molten salt pump or high head.
  • the reaction temperature range of the decomposition reaction is 150°C to 280°C, and the reaction temperature range of the regeneration reaction is 280°C to 380°C.
  • the inert carrier gas is hot air, and the temperature is 240°C-280°C.
  • a method for preparing hydrogen chloride and ammonia gas using ammonium chloride as a raw material when the decomposition reaction and the regeneration reaction take place in a plurality of reactors that can be connected, a preferred mode of operation is continuous Operation:
  • the ammonium chloride particles are fed into the decomposition reactor at a constant rate through a solid particle feeding device, and molten ammonia hydrogen sulfate from the regeneration reactor flows into the decomposition reactor through the liquid inlet;
  • the decomposition reactor Ammonium chloride reacts with ammonia hydrogen sulfate, the generated hydrogen chloride gas is discharged through the exhaust port, and the generated intermediate material is continuously discharged through the liquid discharge port;
  • the intermediate material is flowed into the desorption device using a high level difference or a molten salt pump Feeding port, inert carrier gas is introduced into the desorption device to make the dissolved hydrogen chloride gas enter the carrier gas;
  • the desorbed intermediate material is continuously discharged from the liquid discharge port of
  • the flow ratio of ammonium bisulfate to ammonium chloride is 1.5:1 to 3:1, and the flow rate is measured by the amount of substance.
  • a method for preparing hydrogen chloride and ammonia gas using ammonium chloride as a raw material when the decomposition reaction and the regeneration reaction occur in different working stages of the same reactor, the operation mode is as follows: sulfuric acid The ammonia hydrogen is heated to a molten state in the reactor; the ammonium chloride particles are continuously fed into the reactor at a certain rate through the solid particle feeding device.
  • the ratio of the amount of ammonium chloride added to the amount of ammonium bisulfate present in the system is 2:3 to 2:5.
  • the temperature range of the decomposition reaction is 150°C to 280°C
  • the temperature range of the regeneration reaction is 280°C to 380°C.
  • a method for preparing hydrogen chloride gas and ammonia gas with ammonium chloride preferably, the mesh number of the ammonium chloride particles is not less than 20 mesh, and the mesh number is based on Taylor standard sieve.
  • the system and method for preparing hydrogen chloride and ammonia gas using ammonium chloride of the present invention provide a detailed system design, device and preparation method, and presents the industrial feasibility of continuous decomposition of ammonium chloride.
  • FIG. 1 is a schematic diagram of the preparation system of the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a preparation system according to a second embodiment of the invention.
  • FIG. 3 is a schematic diagram of a preparation system according to a third embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a preparation system according to a fourth embodiment of the invention.
  • FIG. 5 is a schematic diagram of a preparation system according to a fifth embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a preparation system according to a sixth embodiment of the invention.
  • the solid raw materials of NH 4 Cl and NH 4 HSO 4 used in the present invention are commercially available industrial-grade chemical raw materials.
  • the particle size of NH 4 Cl is 50 mesh (made by Taylor standard sieve), NH 4
  • the HSO 4 melt is obtained by heating the NH 4 HSO 4 solid .
  • the present invention utilizes the concept of chemical circulation and introduces the circulation medium ammonia hydrogen sulfate (NH 4 HSO 4 ) to achieve the decomposition of ammonium chloride and the separation of NH 3 and HCl.
  • the chemical reactions involved in the present invention are as follows:
  • the preparation system of the first embodiment includes a decomposition reactor 110, a regeneration reactor 120, a desorption device 130, a molten salt pump 140, and a connecting pipe 150.
  • the decomposition reactor 110 is a stirred tank reactor, and includes a liquid inlet 111, an exhaust outlet 112, a liquid outlet 113, and a solid particle feeding device 114.
  • the solid particle feeding device 114 includes: a feeding pipe 101 and a quantitative conveying device.
  • the feed pipe 101 extends from the wall of the decomposition reactor 110 to below the liquid surface of the internal liquid material, and the quantitative delivery device communicates with the feed pipe 101 through a pipeline.
  • the regeneration reactor 120 is a kettle reactor, and includes a liquid inlet 121, an exhaust 122, and a liquid outlet 123.
  • the desorption device 130 is a bubble column, and includes a liquid inlet 131, a carrier gas inlet 132, an exhaust 133, and a liquid outlet 134.
  • the number of the decomposition reactor 110 and the regeneration reactor 120 are both one.
  • the liquid outlet 113 of the decomposition reactor communicates with the liquid inlet 131 of the desorption device through a connecting pipe 150.
  • the liquid outlet 134 of the desorption device communicates with the liquid inlet 121 of the regeneration reactor through a connecting pipe 150.
  • the liquid outlet 123 of the regeneration reactor communicates with the liquid inlet 111 of the decomposition reactor through a connecting line 150.
  • the working process of the preparation system of the first embodiment of the present invention is: using continuous operation, the ammonium chloride particles are continuously fed into the decomposition reactor 110 through the solid particle feeding device 114 at a certain flow rate, and react with molten hydrogen bisulfate.
  • the HCl gas generated by the decomposition reaction overflows from the melt and is discharged through the exhaust port 112 and sent to the subsequent process outside the system.
  • the intermediate material (mixed liquid of ammonia hydrogen sulfate and ammonium sulfate) is discharged into the desorption device 130 through the liquid outlet 113 of the decomposition reactor, the connecting pipe 150, and the liquid inlet 131.
  • Hot air (with an inlet temperature of 240°C to 280°C) is used as a carrier gas to be transported to the inside of the desorption device 130 through a carrier gas port 132 to remove hydrogen chloride gas dissolved in the intermediate material, and the hydrogen chloride gas is discharged through the exhaust port 133.
  • the intermediate material from which the hydrogen chloride gas has been removed enters the regeneration reactor 120 through the liquid outlet 134, the connecting pipe 150, and the liquid inlet 121 of the regeneration reactor.
  • the intermediate material may be conveyed through a high head (the decomposition reactor 120 is positioned higher than the desorption device 130 and the desorption device 130 is positioned higher than the regeneration reactor 120) or by providing a molten salt pump 140 on the connecting line 150.
  • the intermediate material from the decomposition reactor 110 is heated to regenerate ammonia bisulfate and emit NH 3 gas.
  • the NH 3 gas overflows from the melt and is discharged through the exhaust port 122, while the ammonia bisulfate melt is
  • the liquid outlet 123 of the regeneration reactor and the liquid inlet 111 of the decomposition reactor are returned to the decomposition reactor.
  • the specific conveying method is the same as the above method for conveying the intermediate material after the decomposition reaction, and will not be repeated here.
  • the decomposition reactor 110 in this embodiment is a stirred reactor.
  • ammonia hydrogen sulfate is excessive in stoichiometric ratio.
  • the ratio of the flow rate of ammonia hydrogen sulfate to ammonium chloride ranges from 1.5:1 to 3:1. Since the regeneration reaction is a homogeneous reaction and the reaction rate is relatively slow, in principle, no mixing device is required, and a kettle reactor can also be used.
  • the decomposition reaction and the regeneration reaction are both endothermic reactions, and heat exchange can be performed by providing a jacket on the outer wall of the kettle and a coil in the kettle.
  • Heat medium can be used as heating medium. It can also be heated by infrared, electromagnetic and other methods.
  • the range of the reaction temperature in the decomposition reactor includes 150°C to 280°C.
  • the reaction temperature of the regeneration reactor ranges from 280°C to 380°C.
  • the decomposition reactor 110 has a volume of 4 m 3 , a diameter of 1.5 m, and a height of 2.25 m, a filling factor of 0.7, and a volume of the regeneration reactor 120 of 2.5 m 3 , a diameter of 1.25 m, and a height It is 2m and the filling factor is 0.7.
  • the ratio of the fixed ammonium bisulfate to ammonium chloride flow rate is 2:1, that is, the ammonium chloride flow rate is 8.23 kmol/h, and the ammonium hydrogen sulfate flow rate is 16.46 kmol/h.
  • the decomposition reactor 110 is set at temperatures of 150°C, 180°C, 200°C, 220°C, 240°C, 260°C, and 280°C, respectively, and the regeneration reactor 120 is set at 350°C.
  • the content of generated hydrogen chloride and ammonia gas was measured, and the conversion rate was calculated. The measurement results are shown in Table 1, wherein the regeneration conversion rate was the decomposition conversion rate of the ammonia gas phase to the generated ammonium sulfate.
  • the flow ratio of fixed ammonium bisulfate to ammonium chloride is 2:1, that is, the ammonium chloride flow rate is 8.23 kmol/h, and the ammonium bisulfate flow rate is 16.46 kmol/h.
  • the decomposition reactor 110 is set at a temperature of 240°C
  • the regeneration reactor 120 is set at a temperature of 280°C, 300°C, 325°C, 350°C, and 380°C, respectively.
  • the content of generated hydrogen chloride and ammonia gas was measured, and the conversion rate was calculated.
  • the measurement results are shown in Table 2, wherein the regeneration conversion rate was the decomposition conversion rate of the ammonia gas phase to the generated ammonium sulfate.
  • the process conditions of the decomposition reactor 110 with a setting temperature of 240°C and the regeneration reactor 120 with a setting temperature of 325°C are selected, and the material balance and heat balance data obtained by Aspen simulation are shown in Table 3.
  • the reactor 110 in the decomposition of unreacted NH 4 Cl all volatiles entering the regeneration reactor 120 (actually converted to NH 3, and HCl, NH 3, and HCl in these NH 4 Cl crystals are actually formed after the other processes outside the system are cooled, resulting in waste of raw materials and blockage of equipment pipes, which shows that it is very necessary to improve the conversion rate of NH 4 Cl through the technical solution of the present invention.
  • the decomposition reactor 110 is set at a temperature of 240°C, and the regeneration reactor is set at a temperature of 300°C.
  • the content of generated hydrogen chloride and ammonia gas was measured, and the conversion rate was calculated.
  • the measurement results are shown in Table 4. It can be seen that the decomposition conversion rate of ammonium chloride when ammonium chloride particles are added at one time is significantly lower than the result when continuously added. Among them, the regeneration conversion rate is the decomposition conversion rate of the ammonia gas phase to the generated ammonium sulfate.
  • the preparation system of the second embodiment includes: decomposition reactors 110 (1) and 110 (2), regeneration reactor 120, desorption device 130, molten salt pump 140, ⁇ 150 ⁇ And the connection pipe 150.
  • the decomposition reactor 110 is a stirred tank reactor, and includes a liquid inlet 111, an exhaust outlet 112, a liquid outlet 113, and a solid particle feeding device 114.
  • the solid particle feeding device 114 includes a feeding pipe 101 and a quantitative conveying device.
  • the feeding pipe 101 extends from the wall of the decomposition reactor 110 to below the liquid level of the internal liquid material.
  • the quantitative conveying device passes through the pipeline and the feeding pipe 101 Connected.
  • the regeneration reactor 120 is a kettle reactor, and includes a liquid inlet 121, an exhaust 122, and a liquid outlet 123.
  • the desorption device 130 is a bubble column, and includes a liquid inlet 131, a carrier gas inlet 132, an exhaust 133, and a liquid outlet 134.
  • the number of decomposition reactors is plural, and the number of regeneration reactors is one.
  • the multiple decomposition reactors are connected in series, that is, the liquid outlet 113 of the previous decomposition reactor and the liquid inlet 111 of the latter decomposition reactor are connected through a connecting pipe 150.
  • the liquid outlet 113 of the last decomposition reactor communicates with the inlet 131 of the desorption device through a connecting pipe 150.
  • the liquid outlet 134 of the desorption device communicates with the liquid inlet 121 of the regeneration reactor through a connecting pipe 150.
  • the liquid outlet 123 of the regeneration reactor communicates with the liquid inlet 111 of the decomposition reactor through a connecting line 150.
  • the preparation device of the second embodiment of the present invention has the same working principle and process as the first embodiment, and the difference is that.
  • the operation mode of multiple decomposition reactors in series is adopted.
  • the regeneration reactor can also adopt the operation mode of multiple reactors connected in series or in parallel, which will not be repeated here.
  • each decomposition reactor 110 has a volume of 1.25 m 3 , a diameter of 1 m, a height of 1.5 m, and a filling factor of 0.7.
  • the regeneration reactor 120 has a volume of 2.5 m 3 , a diameter of 1.25 m, a height of 2 m, and a filling factor of 0.7.
  • the ratio of the fixed ammonium bisulfate and the total flow of ammonium chloride is 2:1, that is, the total flow of ammonium chloride is 8.23 kmol/h.
  • the decomposition reactor 110 (1) in the flow rate of NH 4 Cl 4.92kmol / h, NH 4 Cl flow (2) of the decomposition reactor of 110 3.31kmol / h, the flow rate of ammonium bisulfate 16.46kmol / h.
  • the temperature of both decomposition reactors is 240°C
  • the regeneration reactor is set at 300°C
  • the content of hydrogen chloride and ammonia gas is measured, and the conversion rate is calculated.
  • the measurement results are shown in Table 5, where: the flow rate of hydrogen chloride is two The sum of hydrogen chloride flow rate in the reactor.
  • the regeneration conversion rate is the decomposition conversion rate of the ammonia gas phase to the generated ammonium sulfate.
  • FIG. 3 is a schematic diagram of a preparation system according to a third embodiment of the present invention.
  • This system contains only one reactor. The decomposition and regeneration reactions are completed in this reactor, but the working period and conditions are different.
  • the reactor 210 of the third embodiment includes a liquid inlet 211, an exhaust 212, a liquid outlet 113, and a solid particle feeding device 214.
  • the solid particle feeding device 214 includes: a feeding tube 201 and a quantitative conveying device, the feeding tube 201 extends from the wall of the decomposition reactor 210 to below the liquid level of the internal liquid material, and the quantitative conveying device passes through the pipeline and the feeding tube 201 connected.
  • the working process of the preparation system of the third embodiment of the present invention is: using batch operation to heat ammonia bisulfate in the reactor 210 to a molten state.
  • the solid particle feeding device 214 continuously feeds the ammonium chloride particles into the reactor 210 at a certain flow rate, and ammonium chloride and ammonia hydrogen sulfate generate hydrogen chloride gas and intermediate materials in the reactor 210.
  • the hydrogen chloride gas is discharged through the exhaust port 212 of the reactor.
  • the intermediate material is thermally decomposed in the reactor 210 to form ammonia bisulfate and ammonia gas, and the ammonia gas is discharged through the exhaust port 212 of the reactor.
  • the above operation can follow the operation of a general batch reactor, add ammonium chloride and ammonium bisulfate in the above optimal ratio, and raise the temperature to the decomposition preferred temperature (the first preset temperature).
  • the hydrogen chloride gas is sent to the subsequent process outside the system.
  • the temperature is raised to the preferred regeneration temperature (second preset temperature), and the ammonia gas is sent to the subsequent process outside the system.
  • the second predetermined time the temperature is reduced to the preferred decomposition temperature, and the above operation is repeated.
  • the reactor 210 is a stirred tank reactor, with a volume of 4 m 3 , a diameter of 1.5 m, a height of 2.25 m, a filling factor of 0.7, and a fixed amount of substances added by ammonium bisulfate and ammonium chloride.
  • the ratio is 2:1.
  • the content of gas is calculated, and the conversion rate is calculated.
  • Table 6 where the regeneration conversion rate is the decomposition conversion rate of the ammonia gas phase to the generated ammonium sulfate.
  • the preparation system of the fourth embodiment includes: decomposition reactors 110(1) and 110(2), regeneration reactors 120(1) and 120(2), desorption device 130, molten salt pump 140, and connection piping 150.
  • the decomposition reactors 110(1) and 110(2) are stirred tank reactors, each including a liquid inlet 111, an exhaust 112, a liquid outlet 113, and a solid particle feeding device 114.
  • the solid particle feeding device 114 includes: a feeding pipe 101 and a quantitative conveying device.
  • the feeding pipe 101 extends from the wall of the decomposition reactor to below the liquid level of the internal liquid material.
  • the regeneration reactors 120(1) and 120(2) are tubular reactors, and each includes a liquid inlet 121, an exhaust 122, a liquid outlet 123, and a thermally conductive oil outlet/inlet 124.
  • the desorption device 130 is a bubble column, and includes a liquid inlet 131, a carrier gas inlet 132, an exhaust 133, and a liquid outlet 134.
  • the number of decomposition reactors and regeneration reactors are both multiple.
  • the multiple decomposition reactors are connected in series, that is, the liquid outlet 113 of the previous decomposition reactor and the liquid inlet 111 of the latter decomposition reactor are connected through a connecting pipe 150.
  • the liquid outlet 113 of the last decomposition reactor communicates with the inlet 131 of the desorption device through a connecting pipe 150.
  • the multiple regeneration reactors are connected in series, that is, the liquid outlet 123 of the previous regeneration reactor and the liquid inlet 121 of the latter regeneration reactor are connected through the connecting pipe 125, and the liquid inlet of the first regeneration reactor
  • the feed port 121 communicates with the discharge port 134 of the desorption device through the connecting line 150, and finally the liquid discharge port 123 of the first regeneration reactor passes through the connecting line 150 and the liquid feed port 111 of the first decomposition reactor Connected.
  • the preparation system of the fourth embodiment of the present invention is generally consistent with the working principle and process of the first embodiment, except that, considering the long reaction time and large reaction heat load, in order to increase the heat transfer area and extend the residence time, the The operation mode of multiple tube reactors in series, wherein the heating mode is heating using a heating medium outside the tubes.
  • the regeneration reactor can also adopt the operation mode of multiple reactors in parallel, which will not be repeated here.
  • the decomposition reactor is the same as that in Embodiment 3, or the solid particle feeding device 114 may be provided only in the first decomposition reactor 110(1).
  • the regeneration reactor adopts two sections of tubular reactors connected in series, each section of tubular reactor has a volume of 1.25m 3 , a diameter of 0.5m and a length of 6.37m.
  • the molar ratio of fixed ammonium bisulfate to ammonium chloride is 2:1, that is, the molar flow rate of ammonium chloride is 8.233kmol/h, and the addition amount of ammonium bisulfate is 16.466kmol.
  • the reaction temperatures of the two decomposition reactors 110(1) and 110(2) are both 240°C, and the reaction temperatures of the two regeneration reactors 120(1) and 120(2) are 300°C.
  • the content of generated hydrogen chloride and ammonia gas is determined Calculate the conversion rate.
  • the measurement results are shown in Table 7.
  • the regeneration conversion rate is the decomposition conversion rate of the ammonia gas phase to the generated ammonium sulfate.
  • the preparation system of the fifth embodiment includes a decomposition reactor 110, regeneration reactors 120(1) and 120(2), a desorption device 130, a molten salt pump 140, and a connecting pipe 150.
  • the decomposition reactor 110 is a stirred tank reactor, and each includes a liquid inlet 111, an exhaust outlet 112, a liquid outlet 113, and a solid particle feeding device 114.
  • the solid particle feeding device 114 includes: a feeding pipe 101 and a quantitative conveying device.
  • the feeding pipe 101 extends from the wall of the decomposition reactor to below the liquid level of the internal liquid material.
  • the regeneration reactors 120(1) and 120(2) are tubular reactors, and each includes a liquid inlet 121, an exhaust 122, a liquid outlet 123, and a thermally conductive oil outlet/inlet 124.
  • the desorption device 130 is a bubble column, and includes a liquid inlet 131, a carrier gas inlet 132, an exhaust 133, and a liquid outlet 134.
  • the number of decomposition reactors is one, and the number of regeneration reactors is plural.
  • the liquid outlet 113 of the decomposition reactor communicates with the inlet 131 of the desorption device through a connecting pipe 150.
  • the multiple regeneration reactors are connected in series, that is, the liquid outlet 123 of the previous regeneration reactor and the liquid inlet 121 of the latter regeneration reactor are connected through the connecting pipe 125, and the liquid inlet of the first regeneration reactor.
  • the feed port 121 communicates with the discharge port 134 of the desorption device through a connecting pipe 150, and finally the liquid discharge port 123 of the first regeneration reactor communicates with the liquid feed port 111 of the decomposition reactor through the connecting pipe 150.
  • the preparation system of the fifth embodiment of the present invention is substantially the same in principle and process as the fourth embodiment, except that the number of decomposition reactors is one.
  • the decomposition reactor 110 has a volume of 4 m 3 , a diameter of 1.5 m, a height of 2.25 m, and a filling factor of 0.7.
  • the regeneration reactor adopts two stages of tubular reactors connected in series, and each stage of tubular reaction
  • the volume of the device is 1.25m 3 , the diameter is 0.5m, and the length is 6.37m.
  • the molar ratio of fixed ammonium bisulfate to ammonium chloride is 2:1, that is, the molar flow rate of ammonium chloride is 8.233kmol/h, and the addition amount of ammonium bisulfate is 16.466kmol.
  • the reaction temperature of the decomposition reactor is 240°C
  • the reaction temperature of the two regeneration reactors 120(1) and 120(2) is 300°C
  • the content of hydrogen chloride and ammonia gas is measured
  • the conversion rate is calculated, and the measurement results are shown in Table 8.
  • the regeneration conversion rate is the decomposition conversion rate of the ammonia gas phase to the generated ammonium sulfate.
  • the preparation system of the sixth embodiment includes a decomposition reactor 110, regeneration reactors 120(1) and 120(2), a desorption device 130, a molten salt pump 140, and a connecting pipe 150.
  • the decomposition reactor 110 is a stirred tank reactor, and each includes a liquid inlet 111, an exhaust outlet 112, a liquid outlet 113, and a solid particle feeding device 114.
  • the solid particle feeding device 114 includes: a feeding pipe 101 and a quantitative conveying device, the feeding pipe 101 extends from the wall of the decomposition reactor to below the liquid level of the internal liquid material, and the quantitative conveying device passes through the pipeline and the feeding pipe 101 Connected.
  • the regeneration reactors 120(1) and 120(2) are stirred tank reactors, and each includes a liquid inlet 121, an exhaust 122, and a liquid outlet 123.
  • the desorption device 130 is a bubble column, and includes a liquid inlet 131, a carrier gas inlet 132, an exhaust 133, and a liquid outlet 134.
  • the number of decomposition reactors is one, and the number of regeneration reactors is plural.
  • the liquid outlet 113 of the decomposition reactor communicates with the inlet 131 of the desorption device through a connecting pipe 150.
  • the connection mode of multiple regeneration reactors is parallel, that is, the liquid inlet 121 of each regeneration reactor communicates with the outlet 134 of the desorption device through the connecting pipe 150, and the liquid outlet 123 of each regeneration reactor.
  • the liquid inlet 111 of the decomposition reactor communicates with the connecting pipe 150.
  • the preparation system of the sixth embodiment of the present invention is substantially the same as the working principle and process of the fifth embodiment, except that the regeneration reactor is a kettle reactor.
  • the decomposition reactor 110 has a volume of 4 m 3 , a diameter of 1.5 m, a height of 2.25 m, and a filling factor of 0.7.
  • the regeneration reactor adopts two kettle reactors connected in parallel.
  • the volume is 1.25m 3
  • the diameter is 0.84m
  • the height is 1.26m
  • the filling factor is 0.7.
  • the molar ratio of fixed ammonium bisulfate to ammonium chloride is 2:1, that is, the molar flow rate of ammonium chloride is 8.233kmol/h, and the addition amount of ammonium bisulfate is 16.466kmol.
  • the reaction temperature of the decomposition reactor is 240°C
  • the reaction temperature of the two regeneration reactors 120(1) and 120(2) is 300°C
  • the content of hydrogen chloride and ammonia gas is measured
  • the conversion rate is calculated, and the measurement results are shown in Table 9 ,
  • the regeneration conversion rate is the decomposition conversion rate of the ammonia gas phase to the generated ammonium sulfate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fuel Cell (AREA)
  • Treating Waste Gases (AREA)

Abstract

提供一种利用氯化铵制备氯化氢和氨气的系统和方法。该系统包括至少一个分解反应器和至少一个再生反应器,或者包括一个既可作为分解反应器又可作为再生反应器的反应器。该方法包括将氯化铵颗粒通过反应器上的固体颗粒进料装置连续加入分解反应器中,并与熔融态的硫酸氢铵反应,生成氯化氢气体和中间物料;中间物料排入再生反应器,在其中受热分解形成硫酸氢铵和氨气;硫酸氢铵返回分解反应器循环使用;或者当采用单一反应器时,则在加料完成后,先加热到分解反应温度,等到氯化氢气体产生完全后,将反应器进一步升温至再生反应温度,产生氨气,直至反应完全。该方法通过将氯化铵固体颗粒连续缓慢加入,降低了氯化铵的挥发性,提高了氯化铵的利用率。

Description

利用氯化铵制备氯化氢和氨气的制备系统及方法
本申请要求了2018年11月27日提交的、申请号为201811423327.4、发明名称为“利用氯化铵制备氯化氢和氨气的制备系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无机盐及纯碱化工领域,尤其涉及利用氯化铵制备氯化氢和氨气的技术。
背景技术
近年来,纯碱的需求量快速增长,而其副产品氯化铵由于在化肥应用方面有限,亟需找到合适的利用方式。如果将氯化铵分解成经济价值较高的NH 3和HCl,NH 3可在纯碱工业中循环利用,HCl也可以在有机氯化工等诸多领域得到应用。
NH 4Cl受热可分解成NH 3和HCl,但同时有大量的NH 4Cl升华,而且生成的NH 3和HCl难以分离,极易重新生成很小的NH 4Cl颗粒,因而利用氯化铵分解制备氯化氢和氨气,在世界上还没有实现大规模工业化应用。
为了得到NH 4Cl的分解产物NH 3和HCl,一种可行的方法是在反应物NH 4Cl中加入可重复使用的酸性(或碱性)循环介质,使其与加热产生的NH 3(或HCl)先反应成中间产物,从而使HCl(或NH 3)先释放出来,然后在通在进一步热解中间产物而释放NH 3(或HCl)。一些专利和文献基于上述路线提出了一些化学路线或概念工艺。例如专利US1718420提出以NH 4HSO 4为循环介质,分步得到HCl和NH 3的化学路线;专利US2787524以NaHSO 4/NH 4HSO 4及为循环介质,分步得到HCl和NH 3,US4293532基于上述路线,进一步提出了各部反应的温度和反应物的化学计量比。但公开的文献均未能提出一个便于工业实施的完整制备系统及相应的操作方法。
发明内容
有鉴于此,本发明针对现有技术中所存在的上述问题提供了利用氯化铵制备氯化氢和氨气的系统和方法。
本发明的一方面,提供了一种利用氯化铵制备氯化氢和氨气的制备系统,所述制备系统包括至少一个反应器,在所述反应器内,氯化铵和熔融态硫酸氢氨发生分解反应,以输出氯化氢气体并获得中间物料;中间物料发生再生反应,以输出氨气并获得硫酸氢氨;所述分解反应和所述再生反应发生于同一个所述反应器的不同工作阶段,或者发生于可连通的多个反应器内。本发明制 备系统的一个特征是,所述氯化铵是以固体颗粒的形式连续加入反应器的,因此,所述反应器至少包含一个可连续进料的固体颗粒进料装置,用以将氯化铵颗粒加入反应器。
所述固体颗粒进料装置包括一个定量输送装置、一个位于所述分解反应器上的入料管、一段与输送装置及入料管连通的管道;所述入料管一端位于反应器器壁上,一端在反应器内并位于液体物料液面以下。
本发明制备系统的一种形式是所述分解反应和所述再生反应发生于可连通的多个反应器。此时,所述至少一个反应器包括:分解反应器,用于发生分解反应,其具有固体颗粒进料装置、液体入料口、液体出料口以及排气口;至少一个再生反应器,与所述分解反应器相连,用于发生再生反应,其具有液体入料口、液体出料口以及排气口;所述系统还包括至少一个与分解反应器相连的解吸装置,在所述解吸装置内,溶解在反应物料中的氯化氢气体从中析出。解吸装置包括一个液体入料口,一个载气入口,一个液体出料口以及一个排气口;所述解吸装置的液体入料口与分解反应器的液体出料口相连,解吸装置的液体出料口与再生反应器的液体入料口相连。再生反应器和分解反应器之间还包括液体物料由再生反应器返回分解反应器的连接管路。
所述分解反应器和再生反应器均具有加热装置与温控装置。
所述分解反应和再生反应发生于可连通的多个所述反应器的情形之一是:所述分解反应器和再生反应器的数量均为1个。
情形之二是:所述分解反应器的数量为多个,所述再生反应器的数量为1个。
情形之三是:所述分解反应器的数量为1个,所述再生反应器的数量为多个。
情形之四是:所述分解反应器和再生反应器的数量均为多个。
当所述分解反应和再生反应发生于可连通的多个所述反应器时,所述制备系统还包括至少一个熔盐泵,位于所述分解反应器的液体出料口与所述再生反应器的液体入料口相连处和/或位于所述分解反应器的液体入料口与所述再生反应器的液体出料口相连处。所述制备系统中还包括:保温装置,位于多个所述反应器之间的连接处。
所述分解反应器的数量为多个时,多个分解反应器的连接方式为串联,即前一个分解反应器的液体出料口与后一个反应器的液体入料口相连;最后一个分解反应器的液体出料口与解吸装置的入料口相连;此时,至少第一个分解反应器具有固体颗粒进料装置和加热装置;所有分解反应器均具有温控装置。
优选地,所述多个串联的分解反应器,后一个分解反应器的反应温度不高于前一个分解反应器的反应温度;
优选地,所述多个串联的分解反应器,每个分解反应器均具有固体颗粒进料装置。
优选地,所述多个串联的分解反应器的数量为2~3个。
当所述再生解反应器的数量为多个时,多个所述再生反应器的连接方式为串联,即前一个再生反应器的液体出料口与后一个再生反应器的液体入料口相连;最后一个再生反应器的液体出料口至少与所述第一个分解反应器的液体入料口相连。
当所述至少一个再生反应器的数量为多个,多个所述再生反应器的连接方式还可以为并联,即每个再生反应器的液体出料口与所述分解反应器的液体入料口相连,每个再生反应器的液体入料口与所述分解反应器的液体出料口相连。
优选地,所述分解反应器包括搅拌釜反应器和/或转筒式反应器;所述再生反应器包括管式反应器、搅拌釜反应器和/或转筒式反应器。
本发明的制备系统的另一种形式是:所述分解反应和再生反应发生于同一个所述反应器的不同工作阶段。此时,反应器为搅拌反应器或转筒式反应器。
本发明的另一方面,提供了一种基于上述制备系统,以氯化铵为原料制备氯化氢气体和氨气的方法:来自所述再生反应器的硫酸氢氨通过液体入料口加入分解反应器;氯化铵颗粒通过固体颗粒进料装置连续加入所述分解反应器,分解反应器中氯化铵与熔融态硫酸氢氨反应,生成的氯化氢气体通过排气口持续排出,生成的所述中间物料通过液体出料口排出;利用高位差或熔盐泵使所述中间物料流入所述解吸装置入料口,在解吸装置中通入惰性载气,以使溶解的氯化氢气体进入载气;解吸后的中间物料自解吸装置液体出料口排出,进入再生反应器;所述解吸后的中间物料在再生反应器中受热分解形成硫酸氢氨与氨气;生成的氨气通过排气口持续排出,生成的硫酸氢氨通过液体出料口排出,利用熔盐泵或高位差返回分解反应器。
所述分解反应的反应温度范围为150℃~280℃,所述再生反应的反应温度范围为280℃~380℃。
所述的惰性载气为热空气,温度为240℃~280℃。
基于本发明的制备系统,以氯化铵为原料制备氯化氢和氨气的方法,当所述分解反应和再生反应发生于可连通的多个所述反应器时,一种优选的操作方式是连续操作:所述氯化铵颗粒通过固体颗粒进料装置以恒定速率加入所述分解反应器,来自所述再生反应器的熔融态硫酸氢氨通过液体入料口流入分解反应器;分解反应器中氯化铵与硫酸氢氨反应,生成的氯化氢气体通过排气口排出,生成的所述中间物料通过液体排料口持续排出;利用高位差或熔盐泵使所述中间物料流入所述解吸装置入料口,在解吸装置中通入惰性载气,以使溶解的氯化氢气体进入载气;解吸后的中间物料自解吸装置液体出料口持续排出,进入再生反应器;所述解吸后的中间物料在再生反应器中受热分解形成硫酸氢氨与氨气;生成的氨气通过排气口持续排出,生成的硫酸氢氨通过液体出料口持续排出,利用熔盐泵或高位差返回分解反应器。
优选地,所述分解反应器中,硫酸氢氨与氯化铵的流量之比为1.5:1~3:1,所述流量是以物质的量计量的。
基于本发明的制备系统,以氯化铵为原料制备氯化氢和氨气的方法,当所述分解反应和所述再生反应发生于同一个所述反应器的不同工作阶段时,操作方式如下:硫酸氢氨在所述反应器中加热至熔融状态;将氯化铵颗粒通过固体颗粒进料装置以一定速率连续加入反应器,在所述分解反应温度下,氯化铵与所述硫酸氢氨在反应器中生成所述氯化氢气体与中间物料;氯化氢气体通过排气口持续排出;待氯化铵反应完全后,将反应器温度升高至所述再生反应温度,所述中间物料在反应器中受热分解形成硫酸氢氨与氨气;氨气通过排气口排出;待中间物料反应完全后,将反应器温度降低至分解反应温度,以进入下一个操作批次。
优选地,所述反应器中,一个操作批次中,加入的氯化铵与系统中存在的硫酸氢氨的物质的量之比为2:3~2:5。
优选地,当分解反应和所述再生反应发生于同一个所述反应器的不同工作阶段时,所述分解反应的温度范围为150℃~280℃,所述再生反应的温度范围为280℃~380℃。
基于本发明的制备系统,以氯化铵制备氯化氢气体和氨气的方法,优选的,所述氯化铵颗粒的目数不小于20目,所述目数基于泰勒标准筛制。
本发明的利用氯化铵制备氯化氢和氨气的系统及方法,与现有技术相比,本发明提供了详细的系统设计,装置以及制备方法,给出了连续化分解氯化铵工业可行的具体实施方案,而且通过氯化铵固体颗粒的连续缓慢加入,降低了氯化铵的挥发性,提高了氯化铵的转化率和利用率。
附图说明
通过以下参照附图对本发明实施例进行描述,本发明的上述以及其他目的、特征和优点将更为清楚。
图1为本发明第一实施例的制备系统示意图。
图2为本发明第二实施例的制备系统示意图。
图3为本发明第三实施例的制备系统示意图。
图4为本发明第四实施例的制备系统示意图。
图5为本发明第五实施例的制备系统示意图。
图6为本发明第六实施例的制备系统示意图。
具体实施方式
以下将参照附图更详细地描述本发明。在各个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。此外,可能未示出某些公知的部分。
在下文中描述了本发明的许多特定的细节,以便更清楚地理解本发明。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本发明。
下面结合附图和具体实施例说明本发明的原理和具体实施方案。如无特殊说明,本发明中所采用的NH 4Cl、NH 4HSO 4的固体原料均为市售的工业级的化学原料,NH 4Cl的粒度为50目(泰勒标准筛制),NH 4HSO 4熔融液是通过加热NH 4HSO 4固体得到的
本发明利用化学循环的概念,引入循环介质硫酸氢氨(NH 4HSO 4),实现氯化铵分解以及NH 3和HCl的分离。本发明所涉及的化学反应如下:
NH 4Cl分解反应:
NH 4Cl+NH 4HSO 4→(NH 4) 2SO 4+HCl↑ΔH=68.3kJ/mol
NH 4HSO 4再生反应:
(NH 4) 2SO 4→NH 4HSO 4+NH 3↑ΔH=108.0kJ/mol
图1为本发明第一实施例的制备系统示意图,第一实施例的制备系统包括:分解反应器110、再生反应器120、解吸装置130、熔盐泵140、以及连接管路150。
在本实施例中,分解反应器110为搅拌釜反应器,包括:液体入料口111、排气口112、液体出料口113、以及固体颗粒进料装置114。其中,固体颗粒进料装置114包括:入料管101与定量输送装置。入料管101自分解反应器110的器壁延伸至内部的液体物料液面以下,定量输送装置通过管道与入料管101连通。再生反应器120为釜式反应器,包括:液体入料口121、排气口122、以及液体出料口123。解吸装置130为鼓泡塔,包括:液体入料口131、载气入口132、排气口133,以及液体出料口134。
在本实施例中,分解反应器110与再生反应器120的数量均为1个。分解反应器的液体出料口113通过连接管路150与解吸装置的液体入料口131连通。解吸装置的液体出料口134通过连接管路150与再生反应器的液体入料口121连通。再生反应器的液体出料口123通过连接管路150与分解反应器的液体入料口111连通。
本发明第一实施例的制备系统的工作过程为:采用连续操作,将氯化铵颗粒通过固体颗粒进料装置114以一定流量连续加入分解反应器110,与熔融态的硫酸氢氨反应。分解反应生成的HCl 气体自熔融液溢出后经排气口112排出,送至本系统外后续工艺。反应后的中间物料(硫酸氢氨与硫酸铵的混合液)经分解反应器的液体出料口113、连接管路150以及液体入料口131排入解吸装置130。以热空气(入口温度为240℃~280℃)为载气,经由载气口132输送至解吸装置130内部,除去溶解在中间物料中的氯化氢气体,氯化氢气体通过排气口133排出。去除了氯化氢气体的中间物料再经液体出料口134、连接管路150以及再生反应器的液体入料口121进入再生反应器120。具体地,可以通过高位差(分解反应器120的位置高于解吸装置130,解吸装置130的位置高于再生反应器120)或者通过在连接管路150上设置熔盐泵140来输送中间物料。在再生反应器120中,来自分解反应器110的中间物料受热重新生成硫酸氢氨并放出NH 3气体,NH 3气体自熔融液中溢出后经排气口122排出,而硫酸氢氨熔融液则从再生反应器的液体出料口123以及分解反应器的液体入料口111返回分解反应器。具体的输送方法和上面输送分解反应后中间物料的方法是相同的,不再赘述。
由于分解反应为两相反应(氯化铵是以固体颗粒加入反应器),需要采用混合装置以使固体颗粒分布和受热反应均匀,因此,本实施例中的分解反应器110为搅拌反应器。当然,本领域内一般技术人员,根据常识和经验,选择其他形式具有混合装置的反应器,理应包含在本发明的保护范围中。为保证氯化铵较高的转化率,硫酸氢氨按化学计量比是过量的。在一些优选地实施例中,硫酸氢氨与氯化铵的流量(基于物质的量,下同)之比的范围包括1.5:1~3:1。由于再生反应为均相反应,且反应速率较慢,原则上无需混合装置,也可采用釜式反应器。
此外,分解反应和再生反应均为吸热反应,可通过在釜外壁设置夹套以及在釜内设置盘管进行换热。加热介质可采用导热油。也可采用红外、电磁等方式加热。其中,分解反应器中的反应温度的范围包括150℃~280℃。再生反应器的反应温度的范围包括280℃~380℃。
作为一种具体的实施例,分解反应器110的体积为4m 3,直径为1.5m,高为2.25m,装填系数为0.7、再生反应器120的体积为2.5m 3,直径为1.25m,高为2m,装填系数为0.7。
作为一种具体的实施例,固定硫酸氢氨与氯化铵加入的流量之比为2:1,即氯化铵的流量为8.23kmol/h,硫酸氢铵的流量为16.46kmol/h。分解反应器110分别设置温度分别为150℃、180℃、200℃、220℃、240℃、260℃、280℃,再生反应器120设置温度为350℃。测定生成氯化氢和氨气的含量,计算转化率,测定结果如表1所示,其中再生转化率为氨气相对于生成的硫酸铵的分解转化率。
表1不同分解温度下的反应结果
Figure PCTCN2019100144-appb-000001
Figure PCTCN2019100144-appb-000002
作为一种具体的实施例,固定硫酸氢氨与氯化铵的流量之比为2:1,即氯化铵的流量为8.23kmol/h,硫酸氢铵的流量为16.46kmol/h。分解反应器110设置温度为240℃,再生反应器120设置温度分别为280℃、300℃、325℃、350℃、380℃。测定生成氯化氢和氨气的含量,计算转化率,测定结果如表2所示,其中再生转化率为氨气相对于生成的硫酸铵的分解转化率。
表2不同再生温度下的反应结果
Figure PCTCN2019100144-appb-000003
作为一种具体的实施例,选择上述分解反应器110设置温度为240℃、再生反应器120设置温度为325℃的工艺条件,采用Aspen模拟得到的物料平衡和热量平衡数据见表3。需要说明的,由于再生反应器120的温度较高,在分解反应器110中未反应的NH 4Cl进入再生反应器120后全部挥发(实际是转化为NH 3和HCl,这些NH 3和HCl在系统外其他工序降温后实际又形成NH 4Cl结晶),从而造成原料的浪费和设备管道阻塞,这说明通过本发明的技术方案,提高NH 4Cl的转化率是非常必要的。
表3物料平衡及热量平衡数据
Figure PCTCN2019100144-appb-000004
Figure PCTCN2019100144-appb-000005
作为本发明的一个对比,采用间歇操作,并将8.23kmol的氯化铵颗粒一次性加入16.46kmol硫酸氢铵中(硫酸氢氨与氯化铵流量之比为2:1)。分解反应器110设置温度为240℃、再生反应器设置温度为300℃。测定生成氯化氢和氨气的含量,计算转化率,测定结果如表4所示。可见将氯化铵颗粒一次性加入时的氯化铵的分解转化率明显低于连续加入时的结果。其中,再生转化率为氨气相对于生成的硫酸铵的分解转化率。
表4氯化铵颗粒一次性加入操作的结果
类别 HCl/kmol/h NH3/kmol/h 分解转化率/% 再生转化率/%
结果 6.5 6.0 79.0 92.3
图2为本发明第二实施例的制备系统示意图,第二实施例的制备系统包括:分解反应器110(1)和110(2)、再生反应器120、解吸装置130、熔盐泵140、以及连接管路150。
在本实施例中,分解反应器110为搅拌釜反应器,包括:液体入料口111、排气口112、液体出料口113、以及固体颗粒进料装置114。其中,固体颗粒进料装置114包括:入料管101与定量输送装置,入料管101自分解反应器110的器壁延伸至内部的液体物料液面以下,定量输送装置通过管道与入料管101连通。再生反应器120为釜式反应器,包括:液体入料口121、排气口122、以及液体出料口123。解吸装置130为鼓泡塔,包括:液体入料口131、载气入口132、排气口133,以及液体出料口134。
在本实施例中,分解反应器的数量为多个,再生反应器的数量为1个。多个分解反应器的连接方式为串联,即前一个分解反应器的液体出料口113与后一个分解反应器的液体入料口111通过连接管路150连通。最后一个分解反应器的液体出料口113与解吸装置的入料口131通过连接管路150连通。解吸装置的液体出料口134通过连接管路150与再生反应器的液体入料口121连通。再生反应器的液体出料口123通过连接管路150与分解反应器的液体入料口111连通。
本发明第二实施例的制备装置与第一实施例的工作原理、过程大体一致,不同之处在于。为控制反应的深度,因此采用多个分解反应器串联的操作方式,当然,再生反应器也可以采取多个反应器串联或并列的操作方式,在此不再赘述。
作为一种具体的实施例,每个分解反应器110的体积为1.25m 3,直径为1m,高为1.5m,装填系数为0.7。再生反应器120的体积为2.5m 3,直径为1.25m,高为2m,装填系数为0.7。固定硫酸氢氨与氯化铵总流量之比为2:1,即氯化铵的总流量为8.23kmol/h。其中,分解反应器110(1)中NH 4Cl流量为4.92kmol/h,分解反应器110(2)中的NH 4Cl流量为3.31kmol/h,硫酸氢铵的流量为16.46kmol/h。两个分解反应器的温度均为240℃,再生反应器设置温度为300℃,测定生成氯化氢和氨气的含量,计算转化率,测定结果如表5所示,其中:氯化氢的流量为两个反应器氯化氢流量的和。再生转化率为氨气相对于生成的硫酸铵的分解转化率。
表5分解反应器采取两个相同反应釜串联的结果
类别 HCl/kmol/h NH 3/kmol/h 分解转化率/% 再生转化率/%
结果 7.9 7.4 96.0 93.7
图3为本发明第三实施例的制备系统示意图。此系统仅包含一台反应器,分解和再生反应均在此反应器中完成,但工作时段和条件不同。第三实施例的反应器210包括:液体入料口211、排气口212、液体出料口113、以及固体颗粒进料装置214。其中,固体颗粒进料装置214包括:入料管201与定量输送装置,入料管201自分解反应器210的器壁延伸至内部的液体物料液面以下,定量输送装置通过管道与入料管201连通。
本发明第三实施例的制备系统的工作过程为:采用间歇操作,将硫酸氢氨在反应器210中加热至熔融状态。在第一预设温度下,用固体颗粒进料装置214以一定流量持续将氯化铵颗粒加入到反应器210中,氯化铵与硫酸氢氨在反应器210中生成氯化氢气体与中间物料,通过反应器的排气口212将氯化氢气体排出。间隔第一预定时间后,在第二预设温度下,中间物料在反应器210中受热分解形成硫酸氢氨与氨气,通过反应器的排气口212将氨气排出。
上述操作可遵循一般间歇反应釜的操作,按上述最优比例加入氯化铵和硫酸氢氨,升温至分解优选温度(第一预设温度),氯化氢气体送至本系统外后续工艺,第一预定时间后,升温至再生优选温度(第二预设温度),氨气气体送至本系统外后续工艺,第二预定时间后,降温至优选分解温度,重复上述操作。
作为一种具体的实施例,反应器210为搅拌釜反应器,体积为4m 3,直径为1.5m,高为2.25m,装填系数为0.7,固定硫酸氢氨与氯化铵加入的物质的量之比为2:1。采取间歇操作,以一定量速 率(220kg/h)加入氯化铵,预先在反应器熔融16.46kmol的硫酸氢铵,分解温度设定为240℃,再生温度设置为300℃,测定生成氯化氢和氨气的含量,计算转化率,测定结果如表6所示,其中:再生转化率为氨气相对于生成的硫酸铵的分解转化率。
表6采用一个反应器操作的结果
类别 HCl/kmol/h NH 3/kmol/h 分解转化率/% 再生转化率/%
结果 6.3 5.7 76.5 90.5
图4为本发明第四实施例的制备系统示意图。第四实施例的制备系统包括:分解反应器110(1)和110(2)、再生反应器120(1)和120(2)、解吸装置130、熔盐泵140、以及连接管路150。
在本实施例中,分解反应器110(1)和110(2)为搅拌釜反应器,均包括:液体入料口111、排气口112、液体出料口113、以及固体颗粒进料装置114。其中,固体颗粒进料装置114包括:入料管101与定量输送装置,入料管101自分解反应器的器壁延伸至内部的液体物料液面以下,定量输送装置通过管道与入料管101连通。再生反应器120(1)和120(2)为管式反应器,均包括:液体入料口121、排气口122、液体出料口123、热导油出/入口124。解吸装置130为鼓泡塔,包括:液体入料口131、载气入口132、排气口133,以及液体出料口134。
在本实施例中,分解反应器与再生反应器的数量均为多个。多个分解反应器的连接方式为串联,即前一个分解反应器的液体出料口113与后一个分解反应器的液体入料口111通过连接管路150连通。最后一个分解反应器的液体出料口113与解吸装置的入料口131通过连接管路150连通。多个再生反应器的连接方式为串联,即前一个再生反应器的液体出料口123与后一个再生反应器的液体入料口121通过连接管125连通,第一个再生反应器的液体入料口121通过连接管路150与解吸装置的出料口134连通,最后第一个再生反应器的的液体出料口123通过连接管路150与第一个分解反应器的液体入料口111连通。
本发明第四实施例的制备系统与第一实施例的工作原理、过程大体一致,不同之处在于,考虑到反应时间长,反应热负荷大,为增大传热面积,延长停留时间,采用多个管式反应器串联的操作方式,其中,加热方式为在管外采用加热介质进行加热,当然,再生反应器也可以采取多个反应器并列的操作方式,在此不再赘述。
作为一种具体的实施例,分解反应器同实施例三,或者也可以仅在第一个分解反应器110(1)设置固体颗粒进料装置114。再生反应器采取两段管式反应器串联,每段管式反应器的体积为1.25m 3,直径为0.5m,长为6.37m。固定硫酸氢氨与氯化铵加入的摩尔比为2:1,即氯化铵的摩尔流量为8.233kmol/h,硫酸氢铵的加入量为16.466kmol。两个分解反应器110(1)和110(2)的反应温 均为240℃,两个再生反应器120(1)和120(2)反应温度为300℃,测定生成氯化氢和氨气的含量,计算转化率,测定结果如表7所示,其中:再生转化率为氨气相对于生成的硫酸铵的分解转化率。
表7再生反应器采取两段管式反应器串联的结果
类别 HCl/kmol/h NH 3/kmol/h 分解转化率/% 再生转化率/%
结果 7.9 7.6 96 96.2
图5为本发明第五实施例的制备系统示意图。第五实施例的制备系统包括:分解反应器110、再生反应器120(1)和120(2)、解吸装置130、熔盐泵140、以及连接管路150。
在本实施例中,分解反应器110为搅拌釜反应器,均包括:液体入料口111、排气口112、液体出料口113、以及固体颗粒进料装置114。其中,固体颗粒进料装置114包括:入料管101与定量输送装置,入料管101自分解反应器的器壁延伸至内部的液体物料液面以下,定量输送装置通过管道与入料管101连通。再生反应器120(1)和120(2)为管式反应器,均包括:液体入料口121、排气口122、液体出料口123、热导油出/入口124。解吸装置130为鼓泡塔,包括:液体入料口131、载气入口132、排气口133,以及液体出料口134。
在本实施例中,分解反应器的数量为1个,再生反应器的数量为多个。分解反应器的液体出料口113与解吸装置的入料口131通过连接管路150连通。多个再生反应器的连接方式为串联,即前一个再生反应器的液体出料口123与后一个再生反应器的液体入料口121通过连接管125连通,第一个再生反应器的液体入料口121通过连接管路150与解吸装置的出料口134连通,最后第一个再生反应器的的液体出料口123通过连接管路150与分解反应器的液体入料口111连通。
本发明第五实施例的制备系统与第四实施例的工作原理、过程大体一致,不同之处在于,分解反应器的数量为1个。
作为一种具体的实施例,分解反应器110的体积为4m 3,直径为1.5m,高为2.25m,装填系数为0.7,再生反应器采取两段管式反应器串联,每段管式反应器的体积为1.25m 3,直径为0.5m,长为6.37m。固定硫酸氢氨与氯化铵加入的摩尔比为2:1,即氯化铵的摩尔流量为8.233kmol/h,硫酸氢铵的加入量为16.466kmol。分解反应器的反应温为240℃,两个再生反应器120(1)和120(2)反应温度为300℃,测定生成氯化氢和氨气的含量,计算转化率,测定结果如表8所示,其中:再生转化率为氨气相对于生成的硫酸铵的分解转化率。
表8分解反应釜为1个,再生反应器采取两段管式反应器串联的结果
类别 HCl/kmol/h NH 3/kmol/h 分解转化率/% 再生转化率/%
结果 7.6 7.2 92.3 94.7
图6为本发明第六实施例的制备系统示意图。第六实施例的制备系统包括:分解反应器110、再生反应器120(1)和120(2)、解吸装置130、熔盐泵140、以及连接管路150。
在本实施例中,分解反应器110为搅拌釜反应器,均包括:液体入料口111、排气口112、液体出料口113、以及固体颗粒进料装置114。其中,固体颗粒进料装置114包括:入料管101与定量输送装置,入料管101自分解反应器的器壁延伸至内部的液体物料液面以下,定量输送装置通过管道与入料管101连通。再生反应器120(1)和120(2)为搅拌釜反应器,均包括:液体入料口121、排气口122、液体出料口123。解吸装置130为鼓泡塔,包括:液体入料口131、载气入口132、排气口133,以及液体出料口134。
在本实施例中,分解反应器的数量为1个,再生反应器的数量为多个。分解反应器的液体出料口113与解吸装置的入料口131通过连接管路150连通。多个再生反应器的连接方式为并联,即每一个再生反应器的液体入料口121通过连接管路150与解吸装置的出料口134连通,每个再生反应器的的液体出料口123通过连接管路150与分解反应器的液体入料口111连通。
本发明第六实施例的制备系统与第五实施例的工作原理、过程大体一致,不同之处在于,再生反应器为釜式反应器。
作为一种具体的实施例,分解反应器110的体积为4m 3,直径为1.5m,高为2.25m,装填系数为0.7,再生反应器采取两个釜式反应器并联,每个反应器的体积为1.25m 3,直径为0.84m,高为1.26m,装填系数为0.7。固定硫酸氢氨与氯化铵加入的摩尔比为2:1,即氯化铵的摩尔流量为8.233kmol/h,硫酸氢铵的加入量为16.466kmol。分解反应器的反应温为240℃,两个再生反应器120(1)和120(2)反应温度为300℃,测定生成氯化氢和氨气的含量,计算转化率,测定结果如表9所示,其中:再生转化率为氨气相对于生成的硫酸铵的分解转化率。
表9再生反应器采取两个釜式反应器并联的结果
类别 HCl/kmol/h NH 3/kmol/h 分解转化率/% 再生转化率/%
结果 7.7 7.4 93.5 96.1
需要说明的是,根据本领域一般技术人员的常识,分解反应器和再生反应器上还会设置相应的温度、液位等测量,控制系统以及相应的阀门,附图中并没有一一表明,这并不表明本发明工艺中不包含这些常规的设计。根据转化率以及物料衡算调整本发明中原料的进料速率,也是本领域一般技术人员的常识的常规设计,在本发明中也没有一一说明,这也并不表明本发明工艺中不 包含这种常规的设计。
依照本发明的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地利用本发明以及在本发明基础上的修改使用。

Claims (27)

  1. 一种利用氯化铵制备氯化氢气体和氨气的制备系统,其特征在于,
    所述制备系统包括至少一个反应器;
    在所述反应器内,所述氯化铵和硫酸氢氨发生分解反应,以输出所述氯化氢气体并获得中间物料;
    所述中间物料发生再生反应,以输出所述氨气并获得所述硫酸氢氨;
    其中,所述分解反应和所述再生反应发生于同一个所述反应器的不同工作阶段,或者发生于可连通的多个反应器内,所述氯化铵以固体颗粒的形式连续加入至少一个所述反应器中。
  2. 根据权利要求1所述的制备系统,其特征在于,所述硫酸氢氨为熔融态。
  3. 根据权利要求2所述的制备系统,其特征在于,至少一个所述反应器包括固体颗粒进料装置,用于将所述氯化铵连续地加入所述反应器。
  4. 根据权利要求3所述的制备系统,其特征在于,所述固体颗粒进料装置包括:
    入料管,自所述反应器的器壁延伸至所述反应器内的液体物料液面以下;以及
    定量输送装置,通过管道与所述入料管连通。
  5. 根据权利要求4所述的制备系统,其特征在于,当所述分解反应和所述再生反应发生于可连通的多个所述反应器内时,所述至少一个反应器包括:
    至少一个分解反应器,用于发生分解反应,至少一个所述分解反应器包括:固体颗粒进料装置、液体入料口、液体出料口以及排气口;
    至少一个再生反应器,用于发生再生反应,至少一个所述再生反应器包括:液体入料口、液体出料口以及排气口;
    其中,至少一个所述分解反应器的液体出料口通过连接管路与至少一个所述再生反应器的液体入料口连通,至少一个所述分解反应器的液体入料口通过连接管路与至少一个所述再生反应器的液体出料口连通。
  6. 根据权利要求5所述的制备系统,其特征在于,所述制备系统还包括至少一个解吸装置,与至少一个分解反应器相连,
    所述解吸装置包括:液体入料口、载气入口、液体出料口以及排气口,
    所述解吸装置的液体入料口与至少一个所述分解反应器的液体出料口相连,所述解吸装置的液体出料口与至少一个所述再生反应器的液体入料口相连,
    在所述解吸装置内,溶解在所述中间物料中的氯化氢气体析出,并通过所述解吸装置的排气口排出。
  7. 根据权利要求6所述的制备系统,其特征在于,所述分解反应器和所述再生反应器还包括加热装置与温控装置。
  8. 根据权利要求7所述的制备系统,其特征在于,所述制备系统还包括:
    至少一个熔盐泵,位于所述分解反应器的液体出料口与所述再生反应器的液体入料口相连处和/或位于所述分解反应器的液体入料口与所述再生反应器的液体出料口相连处;以及
    保温装置,位于多个所述反应器之间的连接处。
  9. 根据权利要求5至8任一所述的制备系统,其特征在于,所述分解反应器和所述再生反应器的数量均为1个。
  10. 根据权利要求5至8任一所述的制备系统,其特征在于,所述至少一个分解反应器的数量为多个,多个所述分解反应器的连接方式为串联,
    即前一个分解反应器的液体出料口与后一个分解反应器的液体入料口相连;
    最后一个分解反应器的液体出料口与所述解吸装置的入料口相连;
    至少第一个分解反应器包括所述固体颗粒进料装置;
    至少所述第一个分解反应器包括加热装置;
    每个所述分解反应器均包括温控装置。
  11. 根据权利要求10所述的制备系统,其特征在于,后一个分解反应器的反应温度不高于前一个分解反应器的反应温度。
  12. 根据权利要求10所述的制备系统,其特征在于,每个所述分解反应器均包括所述固体颗粒进料装置。
  13. 根据权利要求10所述的制备系统,其特征在于,所述分解反应器的数量范围包括2~3个。
  14. 根据权利要求10所述的制备系统,其特征在于,所述至少一个再生反应器的数量为1个,所述再生反应器的液体出料口至少与所述第一个分解反应器的液体入料口连通。
  15. 根据权利要求10所述的制备系统,其特征在于,所述至少一个再生反应器的数量为多个,多个所述再生反应器的连接方式为串联,
    即前一个再生反应器的液体出料口与后一个再生反应器的液体入料口相连;
    第一个再生反应器的液体入料口与至少一个所述分解反应器的液体出料口相连;
    最后一个再生反应器的液体出料口至少与所述第一个分解反应器的液体入料口相连。
  16. 根据权利要求5至8任一所述的制备系统,其特征在于,所述至少一个分解反应器的数量为1个,所述至少一个再生反应器的数量为多个,多个所述再生反应器的连接方式为串联,
    即前一个再生反应器的液体出料口与后一个再生反应器的液体入料口相连;
    第一个再生反应器的液体入料口与所述分解反应器的液体出料口相连;
    最后一个再生反应器的液体出料口与所述分解反应器的液体入料口相连。
  17. 根据权利要求5至8任一所述的制备系统,其特征在于,所述至少一个分解反应器的数量为1个,所述至少一个再生反应器的数量为多个,多个所述再生反应器的连接方式为并联,
    即每个再生反应器的液体出料口与所述分解反应器的液体入料口相连,
    每个再生反应器的液体入料口与所述分解反应器的液体出料口相连。
  18. 根据权利要求5至8任一所述的制备系统,其特征在于,所述分解反应器包括搅拌釜反应器和/或转筒式反应器;
    所述再生反应器包括管式反应器、搅拌釜反应器和/或转筒式反应器。
  19. 根据权利要求1至4任一所述的制备系统,其特征在于,当所述分解反应和所述再生反应发生于同一个所述反应器的不同工作阶段时,反应器为搅拌反应器或转筒式反应器。
  20. 一种利用氯化铵制备氯化氢气体和氨气的制备方法,其特征在于,基于权利要求1至19任一所述的制备装置,所述制备方法包括:
    所述氯化铵以固体颗粒的形式连续加入至少一个反应器中;
    所述氯化铵和硫酸氢氨发生分解反应,输出所述氯化氢气体并获得中间物料;
    所述中间物料发生再生反应,输出所述氨气并获得所述硫酸氢氨。
  21. 根据权利要求20所述的制备方法,其特征在于,当所述分解反应和所述再生反应发生于可连通的多个所述反应器内时,所述制备方法采用连续操作,包括:
    氯化铵颗粒通过固体颗粒进料装置以恒定速率连续加入分解反应器;
    熔融态的硫酸氢氨通过再生反应器的液体出料口与所述分解反应器的液体入料口流入所述分解反应器;
    所述分解反应器中氯化铵颗粒与硫酸氢氨反应,生成的氯化氢气体通过所述分解反应器的排气口排出,生成的中间物料通过所述分解反应器的液体出料口持续排出;
    所述中间物料流入解吸装置的入料口,在所述解吸装置中通入惰性载气,使溶解的氯化氢气体进入惰性载气;
    解吸后的中间物料自所述解吸装置的液体出料口持续排出,进入所述再生反应器;
    所述解吸后的中间物料在所述再生反应器中受热分解形成硫酸氢氨与氨气;
    生成的氨气通过所述再生反应器的排气口持续排出,生成的硫酸氢氨通过所述再生反应器的液体出料口持续排出并返回所述分解反应器。
  22. 根据权利要求21所述的制备方法,其特征在于,所述的惰性载气为热空气,所述热空气 的温度范围包括240℃~280℃。
  23. 根据权利要求21或22所述的制备方法,其特征在于,流入所述分解反应器中的硫酸氢氨与氯化铵的流量之比的范围包括1.5:1~3:1,所述流量通过物质的量计量。
  24. 根据权利要求20所述的制备方法,其特征在于,当所述分解反应和所述再生反应发生于同一个所述反应器的不同工作阶段时,所述制备方法采用间歇操作,包括:
    硫酸氢氨在所述反应器中加热至熔融状态;
    氯化铵颗粒通过固体颗粒进料装置以一定速率连续加入反应器;
    在所述分解反应温度下,氯化铵与所述硫酸氢氨在反应器中生成所述氯化氢气体与中间物料;
    氯化氢气通过所述反应器的排气口持续排出;
    当氯化铵颗粒反应完全后,将所述反应器的温度升高至再生反应温度,所述中间物料在所述反应器中受热分解形成硫酸氢氨与氨气;
    氨气通过所述反应器的排气口排出;
    当所述中间物料反应完全后,将所述反应器温度降低至所述分解反应温度,以进入下一个操作循环。
  25. 根据权利要求24所述的制备方法,其特征在于,加入的硫酸氢氨与氯化铵的物质的量之比的范围包括3:2~5:2。
  26. 根据权利要求20至25任一所述的制备方法,其特征在于,所述分解反应的反应温度范围包括150℃~280℃,所述再生反应的反应温度范围包括280℃~380℃。
  27. 根据权利要求20至25任一所述的制备方法,其特征在于,所述氯化铵颗粒的粒径范围为颗粒的目数不小于20目,所述目数基于泰勒标准筛制。
PCT/CN2019/100144 2018-11-27 2019-08-12 利用氯化铵制备氯化氢和氨气的制备系统及方法 WO2020107942A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19888341.5A EP3889108A4 (en) 2018-11-27 2019-08-12 SYSTEM AND PROCESS FOR THE PRODUCTION OF HYDROGEN CHLORIDE AND AMMONIA GAS USING AMMONIUM CHLORIDE
US17/297,081 US20220024762A1 (en) 2018-11-27 2019-08-12 Method and system for preparing hydrogen chloride and ammonia gas by using ammonium chloride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811423327.4A CN109354039A (zh) 2018-11-27 2018-11-27 利用氯化铵制备氯化氢和氨气的制备系统及方法
CN201811423327.4 2018-11-27

Publications (1)

Publication Number Publication Date
WO2020107942A1 true WO2020107942A1 (zh) 2020-06-04

Family

ID=65343206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100144 WO2020107942A1 (zh) 2018-11-27 2019-08-12 利用氯化铵制备氯化氢和氨气的制备系统及方法

Country Status (4)

Country Link
US (1) US20220024762A1 (zh)
EP (1) EP3889108A4 (zh)
CN (1) CN109354039A (zh)
WO (1) WO2020107942A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109354039A (zh) * 2018-11-27 2019-02-19 原初科技(北京)有限公司 利用氯化铵制备氯化氢和氨气的制备系统及方法
CN109956481B (zh) * 2019-04-02 2020-03-10 原初科技(北京)有限公司 利用铵盐和硅酸盐制备氨气的方法
CN113233513A (zh) * 2021-03-10 2021-08-10 国家能源集团宁夏煤业有限责任公司 从煤气化灰渣中提取金属元素的方法
CN113087008A (zh) * 2021-03-31 2021-07-09 神华准能资源综合开发有限公司 一种氯化镓的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1718420A (en) 1926-05-18 1929-06-25 Kessler Jacob Process of converting ammonium chloride into ammonia and hydrochloric acid
GB765357A (en) * 1953-06-24 1957-01-09 Olin Mathieson Improvements in or relating to cyclic process for producing and recovering ammonia and hydrogen chloride from ammonium chloride
US2787524A (en) 1952-09-03 1957-04-02 Olin Mathieson Continuous cyclic process for dissociation of ammonium chloride to recover ammonia and hydrogen chloride therefrom
CA543342A (en) * 1957-07-09 Mathieson Chemical Corporation Separation of ammonia and hydrogen chloride from ammonium chloride in a bisulfate melt
US4293532A (en) 1979-06-05 1981-10-06 Central Glass Company, Limited Process for producing hydrogen chloride and ammonia
JPS58161902A (ja) * 1982-03-18 1983-09-26 Toyo Soda Mfg Co Ltd 塩化アンモニウムより塩化水素とアンモニアを製造する方法
CN101117212A (zh) * 2007-08-13 2008-02-06 刘长飞 分解氯化铵制取氨及氯化氢气体的方法
CN102009954A (zh) * 2010-11-30 2011-04-13 宜宾天原集团股份有限公司 一种氯化铵制取氯化氢和氨气的方法
CN109354039A (zh) * 2018-11-27 2019-02-19 原初科技(北京)有限公司 利用氯化铵制备氯化氢和氨气的制备系统及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2735749A (en) * 1956-02-21 The separate recovery of ammonia and hydrogen
FR1066255A (fr) * 1951-08-16 1954-06-03 Olin Mathieson Décomposition du chlorure d'ammonium
CN2766946Y (zh) * 2004-12-31 2006-03-29 湖南建长石化股份有限公司 自动密闭投料机
CN101100287A (zh) * 2007-08-23 2008-01-09 刘长飞 一种分解氯化铵制取氨及氯化氢气体的方法
CN102285641B (zh) * 2010-06-21 2013-07-10 南通星球石墨设备有限公司 一种废盐酸回收工艺
CN103145100B (zh) * 2011-09-25 2015-09-30 云南省化工研究院 一种分解氯化铵制备氯化氢和氨气的连续循环工艺
CN102642812A (zh) * 2012-04-11 2012-08-22 中国恩菲工程技术有限公司 从还原尾气中回收氯化氢的系统
RU2640552C2 (ru) * 2016-01-18 2018-01-09 Лидия Алексеевна Воропанова СПОСОБ ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ ПОЛИМЕТАЛЛИЧЕСКОГО СЫРЬЯ С РЕГЕНЕРАЦИЕЙ ОСНОВНОГО (NH3) И КИСЛОГО (HCl) РЕАГЕНТОВ
CN105753016B (zh) * 2016-02-29 2018-03-09 浙江大学 氯化铵热解分离制取氨和氯化氢的多管式移动床反应装置
CN108014731A (zh) * 2016-11-02 2018-05-11 天津瑞祥千弘科技发展有限公司 一种用于生产纳米材料的反应釜
CN209957391U (zh) * 2018-11-27 2020-01-17 原初科技(北京)有限公司 利用氯化铵制备氯化氢和氨气的制备系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA543342A (en) * 1957-07-09 Mathieson Chemical Corporation Separation of ammonia and hydrogen chloride from ammonium chloride in a bisulfate melt
US1718420A (en) 1926-05-18 1929-06-25 Kessler Jacob Process of converting ammonium chloride into ammonia and hydrochloric acid
US2787524A (en) 1952-09-03 1957-04-02 Olin Mathieson Continuous cyclic process for dissociation of ammonium chloride to recover ammonia and hydrogen chloride therefrom
GB765357A (en) * 1953-06-24 1957-01-09 Olin Mathieson Improvements in or relating to cyclic process for producing and recovering ammonia and hydrogen chloride from ammonium chloride
US4293532A (en) 1979-06-05 1981-10-06 Central Glass Company, Limited Process for producing hydrogen chloride and ammonia
JPS58161902A (ja) * 1982-03-18 1983-09-26 Toyo Soda Mfg Co Ltd 塩化アンモニウムより塩化水素とアンモニアを製造する方法
CN101117212A (zh) * 2007-08-13 2008-02-06 刘长飞 分解氯化铵制取氨及氯化氢气体的方法
CN102009954A (zh) * 2010-11-30 2011-04-13 宜宾天原集团股份有限公司 一种氯化铵制取氯化氢和氨气的方法
CN109354039A (zh) * 2018-11-27 2019-02-19 原初科技(北京)有限公司 利用氯化铵制备氯化氢和氨气的制备系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3889108A4

Also Published As

Publication number Publication date
EP3889108A4 (en) 2022-08-03
EP3889108A1 (en) 2021-10-06
CN109354039A (zh) 2019-02-19
US20220024762A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
WO2020107942A1 (zh) 利用氯化铵制备氯化氢和氨气的制备系统及方法
CN107663160B (zh) 一种4-氯苯肼盐的连续流合成工艺
CN109134231B (zh) 一种微分环流连续生产氯乙酸的装置与工艺
CN205833132U (zh) 反应器及具有其的反应系统
CN101214925A (zh) 一种无水氟化氢生产工艺及设备
CN209957391U (zh) 利用氯化铵制备氯化氢和氨气的制备系统
CN104971668B (zh) 一种连续气固相法制备氯化聚氯乙烯的设备及方法
CN108250176A (zh) 一种氟代碳酸乙烯酯的快速连续流合成工艺
CN101613229A (zh) 一种改进的硫基肥制备方法
ITMI971524A1 (it) Procedimento e apparecchiatura per la produzione di melammina
CN210559368U (zh) 氯化氢和氨气的制备装置
CN104891462B (zh) 一种微反应合成三氯氧磷的方法
CN208771389U (zh) 连续反应装置及系统
CN110272346B (zh) 一种连续化生产三氟乙酸乙酯的方法
CN103263884B (zh) 一种合成反应器和氯胺法合成甲基肼装置和方法
CN213231531U (zh) 一种连续化一氧化氮生产装置
CN101628883B (zh) 一种二次加热-降膜逆流换热的尿素中压分解工艺
CN204854420U (zh) 一种尿素溶液水解制氨反应器出口换热器
CN211329403U (zh) 一种设有文丘里管的己二酸合成己二腈的生产系统
CN103539156A (zh) 无水氟化氢铵的制备方法及其微通道反应装置
CN105004201A (zh) 一种尿素溶液水解制氨反应器出口换热器
CN109364869A (zh) 一种气液逆流法连续生产氯代物的装置
CN110790631B (zh) 一种液相法管道化连续分离生产氟化烷烃的装置
CN217568714U (zh) 一种用于制备高聚合率聚磷酸铵液体肥的装置
CN219849522U (zh) 一种丙酰氯连续化生产装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019888341

Country of ref document: EP

Effective date: 20210628