WO2020103430A1 - 移动终端 - Google Patents

移动终端

Info

Publication number
WO2020103430A1
WO2020103430A1 PCT/CN2019/090833 CN2019090833W WO2020103430A1 WO 2020103430 A1 WO2020103430 A1 WO 2020103430A1 CN 2019090833 W CN2019090833 W CN 2019090833W WO 2020103430 A1 WO2020103430 A1 WO 2020103430A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
mobile terminal
display screen
film
optical
Prior art date
Application number
PCT/CN2019/090833
Other languages
English (en)
French (fr)
Inventor
张林涛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to JP2019542426A priority Critical patent/JP7013476B2/ja
Priority to RU2019133675A priority patent/RU2735570C1/ru
Priority to KR1020197023313A priority patent/KR102211733B1/ko
Publication of WO2020103430A1 publication Critical patent/WO2020103430A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2383/00Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0147Head-up displays characterised by optical features comprising a device modifying the resolution of the displayed image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present disclosure relates to the technical field of terminals, and particularly to a mobile terminal.
  • optical devices such as cameras or ambient light sensors may need to be placed below the display screen in the future.
  • the input signal of these optical devices is external light. Therefore, the energy and quality of external light passing through the display screen to reach these optical devices may directly affect the performance of the optical devices. Therefore, how to improve the performance of the optical device located under the display screen is a technical problem that needs to be solved.
  • the embodiments of the present disclosure provide a mobile terminal for improving the performance of the optical device located under the display module.
  • a mobile terminal including: an optical device, a display module, and an optical antireflection film;
  • the display module is located above the optical device; the optical antireflection film is located on the display module and corresponds to the optical device.
  • the display module includes a display screen and a protective layer
  • the display screen is located above the optical device, and the protective layer is located above the display screen.
  • the light-reflecting film is located on the surface of the protective layer facing away from the display screen.
  • the optical antireflection film is located on the surface of the display screen facing the optical device.
  • the display module may further include a transparent adhesive layer
  • the transparent adhesive layer is located between the display screen and the protective layer.
  • the difference between the refractive index of the transparent adhesive layer and the refractive index of the protective layer may be greater than 0.1, and the optical antireflection film is provided between the protective layer and the transparent adhesive layer.
  • the difference between the refractive index of the transparent adhesive layer and the refractive index of the display screen may be greater than 0.1, and the light-reflecting film is provided between the display screen and the transparent adhesive layer.
  • the display screen may include at least two dielectric layers
  • the optical antireflection film is provided between two adjacent dielectric layers with a refractive index difference greater than 0.1.
  • the area of the AR coating may be greater than or equal to the projection area of the optical device on the display module.
  • the optical antireflection film may include at least two sub-film layers, and the at least two sub-film layers respectively enhance light in different wavelength ranges.
  • the material of the optical antireflection film may include calcium fluoride, titanium oxide, lead sulfide, lead selenide, ceramic infrared antireflection film, or vinyl silsesquioxane hybrid film.
  • the protective layer may be a glass cover or a flexible cover film.
  • the flexible cover film may include a polyimide film.
  • the technical solutions provided by the embodiments of the present disclosure may include the following beneficial effects: by providing an optical antireflection film on the display module located above the optical device, it is possible to increase the incidence of the optical device located below the display module through the display module.
  • the energy and quality of the light can also improve the energy and quality of the light emitted by the optical device through the display module. Therefore, the technical solutions of the embodiments of the present disclosure can improve the performance of the optical device located under the display module.
  • FIG. 1 is a schematic structural diagram of a mobile terminal according to related art.
  • FIG. 2 is a schematic diagram of an optical path according to the related art.
  • Fig. 3 is a schematic structural diagram of a mobile terminal according to an exemplary embodiment.
  • Fig. 4 is a schematic diagram showing a cross section of a mobile terminal according to an exemplary embodiment.
  • Fig. 5 is a schematic diagram showing a cross section of a mobile terminal according to another exemplary embodiment.
  • Fig. 6 is a schematic diagram showing a cross section of a mobile terminal according to another exemplary embodiment.
  • Fig. 7 is a schematic diagram showing a cross section of a mobile terminal according to another exemplary embodiment.
  • optical devices 11 such as cameras or ambient light sensors need to be placed under the display screen 12, as shown in FIG. 1.
  • a protective layer 13 may be provided above the display screen 12, and the protective layer 13 may be a glass cover or a protective film.
  • the input signal of these optical devices 11 is external light. Therefore, the energy and quality of external light passing through the display screen 12 to reach these optical devices 11 directly affect the performance of the optical device 11.
  • the path of the incident light Q into the optical device 11 is shown in FIG. 2.
  • the incident light Q will be reflected on the upper and lower surfaces of the protective layer 13, and the energy of the reflected light P will be lost and cannot enter the optical device 11.
  • the reflected light is composed of the refraction / reflection of air and the protective layer 13.
  • Embodiments of the present disclosure provide a mobile terminal, which is used to solve the above technical problems and can improve the performance of the optical device located under the display module.
  • Fig. 3 is a schematic structural diagram of a mobile terminal 100 according to an exemplary embodiment.
  • the mobile terminal 100 includes a housing 14 and a display module 17.
  • the display module 17 is located in the housing 14.
  • the display module 17 includes a transparent protective layer 13 and a display screen 12 located below the protective layer 13.
  • the light emitted by the display screen 12 can pass through the protective layer 13.
  • the display screen 12 can be seen through the transparent protective layer 13.
  • the display screen 12 may be, for example, an OLED display screen, but it is not limited thereto.
  • the protective layer 13 may be a glass cover.
  • the protective layer 13 may be a flexible cover film.
  • the flexible cover film may include a polyimide (PI) film.
  • FIGS. 4 to 7 are schematic diagrams of cross sections of mobile terminals according to embodiments of the present disclosure.
  • the mobile terminal 100 of the embodiment of the present disclosure further includes: an optical device 11 and an optical antireflection film 15.
  • the display module 17 is located above the optical device 11.
  • the AR coating 15 is located on the display module 17 and corresponds to the optical device 11.
  • the light-reflecting film 15 is located on the display module 17 including the following cases: the light-reflecting film 15 is located on the surface of the display module 17 facing away from the optical device 11, and the light-reflecting film 15 is located on the display module 17 facing the optical device 11
  • the surface and the AR coating 15 are located inside the display module 17.
  • the optical device 11 may be an image sensor (camera), an ambient optical device, a 3D distance sensor, or a fingerprint sensor.
  • the 3D distance sensor may be a 3D structured optical device
  • the 3D structured optical device may be an infrared lens (infrared emitter), a floodlight sensing element, or a dot matrix projector.
  • the number of optical devices 11 may be multiple.
  • the above “above” refers to the direction in which the optical device 11 points to the display module 17.
  • the energy and quality of light incident through the display module to the optical device located below the display module can be improved.
  • the energy and quality of the light emitted by the optical device through the display module can be improved. Therefore, the technical solutions of the embodiments of the present disclosure can improve the performance of the optical device located under the display module.
  • the display module 17 may include a display screen 12 and a protective layer 13.
  • the display screen 12 is located above the optical device 11, and the protective layer 13 is located above the display screen 12.
  • the light-reflecting film 15 is located on the surface of the protective layer 13 facing away from the display screen 12.
  • the surface of the light-reflecting film 15 facing away from the protective layer 13 (upper surface) interferes with light reflected from the surface facing the protective layer 13 (lower surface), thereby Mutually cancel each other, and look over the upper surface of the light-reflecting coating 15 without seeing the reflected light, because according to the conservation of energy, the incident light has all passed through the protective layer 13.
  • providing the light-reflecting film 15 on the upper surface of the protective layer 13 can improve the energy and quality of the light transmitted through the protective layer 13, and further, can improve the incidence of the optical device that is incident on the display module through the display module The energy and quality of light.
  • the optical antireflection film 15 is located on the surface of the display screen 12 facing the optical device 11.
  • the AR coating 15 faces away from the surface (lower surface) of the display screen 12 and the surface (upper surface) facing the display screen 12 )
  • the reflected light interferes with each other and cancels each other.
  • no reflected light can be seen, because according to the conservation of energy, the light emitted by the optical device 11 has all passed through the display screen 12. Therefore, providing the light-reflecting film 15 on the lower surface of the display screen 12 can improve the energy and quality of the light emitted by the optical device through the display screen 12.
  • the light-reflecting film 15 has wavelength selectivity for light-reflecting. Specifically, the thickness of the light-reflecting film 15 is different, and the wavelength of the light-reflecting light is also different. For example, when the thickness of the AR coating 15 is an odd multiple of a quarter of the wavelength of red light, then the red light reflected back from the two surfaces of the AR coating will interfere, thereby canceling each other and facing the light The upper surface of the anti-reflection coating 15 can't see the reflected red light, because according to the conservation of energy, the red light in the incident light has all passed through the protective layer 13. However, when the thickness of the light-reflecting film 15 is an odd multiple of a quarter of the wavelength of red light, it is not necessarily possible to enhance the transmission of violet light.
  • the light antireflection film 15 may include at least two sub-film layers, and at least two sub-film layers may respectively enhance light in different wavelength ranges. In this way, light in more wavelength bands can be enhanced.
  • the wavelength range of visible light is 380-700 nm
  • the optical antireflection film 15 includes three sub-film layers as an example for illustration.
  • the optical antireflection film 15 may include a stacked first sub-film layer, a second sub-film layer, and a third sub-film layer.
  • the first sub-film layer can enhance the transmission of light with a wavelength of 380-450nm
  • the second sub-film layer can enhance the transmission of light with a wavelength of 451-550nm
  • the third sub-film layer enhances the transmission of light with a wavelength of 551 to 700 nm.
  • the display module 17 may further include a transparent adhesive layer 16.
  • the transparent adhesive layer 16 is located between the display screen 12 and the protective layer 13.
  • the material of the transparent adhesive layer 16 may be OCA (Optically Clear Adhesive, optical adhesive), which may be used to bond the protective layer 13 and the display screen 12.
  • the difference between the refractive index of the transparent adhesive layer 16 and the refractive index of the protective layer 13 when the difference between the refractive index of the transparent adhesive layer 16 and the refractive index of the protective layer 13 is greater than 0.1, light transmission enhancement may be provided between the protective layer 13 and the transparent adhesive layer 16 ⁇ 15. Film 15.
  • the difference between the refractive index of the protective layer 13 and the light-reflecting film 15 may be greater than 0.1, and the difference between the refractive index of the transparent adhesive layer 16 and the light-reflecting film 15 may be greater than 0.1.
  • the transparent adhesive layer 16 Arranging the light-reflecting film 15 between the protective layer 13 can improve the performance of the optical device located under the display module.
  • the protective layer 13 is a flexible cover film
  • the flexible cover film includes a polyimide (PI) film
  • the material of the transparent adhesive layer 16 is OCA. Since the refractive index of the PI film is greater than 1.68 and the refractive index of the OCA is 1.48, the difference between the refractive index of the transparent adhesive layer 16 and the refractive index of the protective layer 13 is greater than 0.2 and also greater than 0.1. The incident light will be reflected at the interface between the transparent adhesive layer 16 and the protective layer 13. Therefore, the optical antireflection film 15 between the transparent adhesive layer 16 and the protective layer 13 can enhance the optical performance under the display module Device performance.
  • PI polyimide
  • the protective layer 13 is a glass cover plate and the material of the transparent adhesive layer 16 is OCA
  • the refractive index of the glass cover plate is 1.5
  • the refractive index of the OCA is approximately 1.48
  • the refraction of the transparent adhesive layer 16 The difference between the ratio and the refractive index of the protective layer 13 is 0.02, which is less than 0.1.
  • the incident light may not be reflected at the interface between the transparent adhesive layer 16 and the protective layer 13. Therefore, the optical antireflection film 15 may not be provided between the transparent adhesive layer 16 and the protective layer 13.
  • the difference between the refractive index of the transparent adhesive layer 16 and the refractive index of the display screen 12 when the difference between the refractive index of the transparent adhesive layer 16 and the refractive index of the display screen 12 is greater than 0.1, light transmission enhancement may be provided between the display screen 12 and the transparent adhesive layer 16 ⁇ 15. Film 15.
  • the difference between the refractive index of the transparent adhesive layer 16 and the refractive index of the AR coating 15 can be greater than 0.1, and the difference between the refractive index of the display screen 12 and the refractive index of the AR coating 15 can be greater than 0.1.
  • the transparent adhesive layer 16 Arranging the light-reflecting film 15 between the display screen 12 can improve the performance of the optical device located under the display module.
  • the refractive index of the transparent adhesive layer 16 is 1.5, and the refractive index of the display screen 12 is 1.7, then the difference between the refractive index of the transparent adhesive layer 16 and the refractive index of the display screen 12 is 0.2, Greater than 0.1.
  • the incident light will be reflected at the interface between the transparent adhesive layer 16 and the display screen 12. Therefore, the optical antireflection film 15 provided between the transparent adhesive layer 16 and the display screen 12 can enhance the optical position under the display module Device performance.
  • the display screen 12 may include at least two media layers. Light can propagate through the dielectric layer and pass through the dielectric layer. Each of the at least two dielectric layers may have the same or different refractive index for light of the same frequency.
  • an optical antireflection film 15 may be provided between two adjacent dielectric layers with a refractive index difference greater than 0.1. The incident light is reflected at the interface between two adjacent dielectric layers with a refractive index difference greater than 0.1. Therefore, an optical antireflection is provided between two adjacent dielectric layers with a refractive index difference greater than 0.1 The film 15 can improve the performance of the optical device located under the display module.
  • the display screen 12 includes a first dielectric layer 121 and a second dielectric layer 122.
  • the difference between the refractive index of the first dielectric layer 121 and the refractive index of the second dielectric layer 122 is greater than 0.1.
  • the incident light will be reflected at the interface between the first dielectric layer 121 and the second dielectric layer 122. Therefore, by providing the optical antireflection film 15 between the first dielectric layer 121 and the second dielectric layer 122, the Display the performance of the optical device under the module.
  • the area of the optical antireflection film 15 is equal to the projected area of the optical device 11 on the display module 17.
  • the area of the AR coating 15 may also be larger than the projection area of the optical device 11 on the display module 17.
  • the material of the optical antireflection film may include calcium fluoride, titanium oxide, lead sulfide, lead selenide, ceramic infrared antireflection film, or vinyl silsesquioxane hybrid film, but is not limited thereto.
  • light has a wave-particle duality, that is, from the microscopic perspective, it can be understood as a wave and a beam of high-speed particles (note that light should not be understood here Into a simple wave and a simple particle).
  • the above-mentioned waves and particles are from a microscopic perspective, and Einstein named it a photon through research.
  • the wavelength of red light is 0.750 microns
  • the wavelength of purple light is 0.400 microns.
  • the mass of a photon is 6.63E -34 kg. Therefore, the above waves and particles are far from the macro waves and particles we imagined.
  • the principle of the AR coating is to consider light as a wave, because light waves, like mechanical waves, also have the property of interference.
  • the light-reflecting film uses the principle of light interference to interfere with the light reflected on the front and back surfaces of the film, thereby changing the light intensity in the transmission area by changing the light intensity in the reflection area.
  • the reflection of the surface of the optical element not only affects the passing energy of the optical element, but also these reflected light will form stray light in the instrument, affecting the imaging quality of the optical instrument.
  • a single-layer or multi-layer film with a certain thickness is usually plated on the surface of the optical element in order to reduce the reflected light on the surface of the optical element.
  • Such a film is called an antireflection film (or antireflection film).
  • the antireflection principle of the optical antireflection film is analyzed.
  • the energy of reflected light and transmitted light is determined.
  • the total energy of reflected light and transmitted light is equal to The energy of the incident light. That is, the law of conservation of energy is satisfied.
  • the AR coating is applied on the surface of the optical element, the reflected light, the transmitted light and the incident light still meet the law of conservation of energy when other factors such as absorption and scattering of the AR coating are not considered.
  • the role of the coating is to redistribute the energy of reflected light and transmitted light.
  • the optical antireflection film As a result of the distribution, the energy of reflected light decreases and the energy of transmitted light increases. It can be seen that the effect of the optical antireflection film causes the energy of the reflected light and transmitted light on the surface of the optical element to be redistributed. As a result of the distribution, the transmitted light energy increases and the reflected light energy decreases. Therefore, the AR coating has such a characteristic that the light intensity in the transmission area can be changed by changing the light intensity in the reflection area.
  • the essence of the AR coating to increase the intensity of transmitted light is that the propagation of light waves as electromagnetic waves changes the energy distribution on the interface of different media due to different boundary conditions during the propagation process.
  • n1 and n2 are the refractive indexes of the medium 1 and the medium 2, respectively, the medium 1 and the medium 2 are the media on both sides of the optical antireflection film, and light passes through the medium 1, the optical antireflection film and the medium 2 in this order.
  • the general optical lens (medium 2) is used in air (medium 1).
  • n1 can be used 1.23, or close to 1.23, the thickness of the light-reflecting coating must also be equal to (2k + 1) times one-quarter wavelength.
  • k is a non-negative integer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Multimedia (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Telephone Set Structure (AREA)

Abstract

一种移动终端(100),用以提升位于显示模组(17)下方的光学器件(11)的性能。移动终端(100)包括光学器件(11)、显示模组(17)以及光增透膜(15);显示模组(17)位于光学器件(11)的上方;光增透膜(15)位于显示模组(17)上,且与光学器件(11)相对应。

Description

移动终端
本申请基于申请号为CN201811379105.7、申请日为2018年11月19日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及终端技术领域,尤其涉及一种移动终端。
背景技术
随着全面屏技术的发展,未来摄像头或者环境光感等光学器件可能需要放置在显示屏幕下方。而这些光学器件的输入信号为外界的光。因此,外界的光穿过显示屏幕达到这些光学器件的能量和质量可能会直接影响光学器件的性能。因此,如何提升位于显示屏幕下方的光学器件的性能是需要解决的一个技术问题。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种移动终端,用以提升位于显示模组下方的光学器件的性能。
根据本公开实施例的第一方面,提供一种移动终端,包括:光学器件、显示模组以及光增透膜;
所述显示模组位于所述光学器件的上方;所述光增透膜位于所述显示模组上,且与所述光学器件相对应。
在一个实施例中,所述显示模组包括显示屏幕以及保护层;
所述显示屏幕位于所述光学器件的上方,所述保护层位于所述显示屏幕的上方。
在一个实施例中,所述光增透膜位于所述保护层背离所述显示屏幕的表面上。
在一个实施例中,所述光增透膜位于所述显示屏幕面向所述光学器件的表面上。
在一个实施例中,所述显示模组还可包括透明胶层;
所述透明胶层位于所述显示屏幕与所述保护层之间。
在一个实施例中,所述透明胶层的折射率与所述保护层的折射率的差值可大于0.1,所述保护层与所述透明胶层之间设有所述光增透膜。
在一个实施例中,所述透明胶层的折射率与所述显示屏幕的折射率的差值可大于0.1,所述显示屏幕与所述透明胶层之间设有所述光增透膜。
在一个实施例中,所述显示屏幕可包括至少两层介质层;
所述至少两层介质层中,折射率的差值大于0.1的相邻两层介质层之间设有所述光增透膜。
在一个实施例中,所述光增透膜的面积可大于或者等于所述光学器件在所述显示模组上的投影面积。
在一个实施例中,所述光增透膜可包括至少两层子膜层,所述至少两层子膜层分别对不同波长范围的光进行增透。
在一个实施例中,所述光增透膜的材料可包括氟化钙、氧化钛、硫化铅、硒化铅、陶瓷红外增透膜或者乙烯基倍半硅氧烷杂化膜。
在一个实施例中,所述保护层可为玻璃盖板或者柔性覆盖膜。
在一个实施例中,所述柔性覆盖膜可包括聚酰亚胺薄膜。
本公开的实施例提供的技术方案可以包括以下有益效果:通过在位于光学器件的上方的显示模组上设置光增透膜,可以提高透过显示模组入射到位于显示模组下方的光学器件的光的能量和质量,也可以提高光学器件发出的光透过显示模组的能量和质量。因此,本公开实施例的技术方案,可以提升位于显示模组下方的光学器件的性能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据相关技术示出的一种移动终端的结构示意图。
图2是根据相关技术示出的一种光路示意图。
图3是根据一示例性实施例示出的移动终端的结构示意图。
图4是根据一示例性实施例示出的移动终端的横截面的示意图。
图5是根据另一示例性实施例示出的移动终端的横截面的示意图。
图6是根据另一示例性实施例示出的移动终端的横截面的示意图。
图7是根据另一示例性实施例示出的移动终端的横截面的示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
相关技术中,手机全面屏的技术趋势越来越强烈,未来有摄像头或者环境光感等光学器件11需要放置在显示屏幕12下方,具体如图1所示。其中,显示屏幕12上方可设置有保护层13,保护层13可为玻璃盖板或者保护膜等。而这些光学器件11的输入信号为外界的光。因此,外界的光穿过显示屏幕12达到这些光学器件11的能量和质量直接影响 光学器件11的性能。
例如,入射光Q进入光学器件11的路径如图2所示。入射光Q在保护层13的上下表面上会发生反射,反射光P的能量会损失掉,不能进入光学器件11。而且,入射光Q中有部分能量会被保护层13与显示屏幕12吸收,也不能进入光学器件11。因此,进入光学器件11的有用光E的能量=入射光的能量-反射光的能量-保护层与显示屏幕吸收的光的能量。
其中,反射光是由于空气和保护层13的折射/反射组成的。如果保护层13为玻璃盖板,且典型的玻璃的折射率n 玻璃=1.5,反射率R 玻璃=(n 玻璃-n 空气) 2/(n 玻璃+n 空气) 2,则可得到反射率R 玻璃=4%。由于入射光Q从空气进入保护层13和从保护层13出来进入到空气,进而摄入光学器件11的过程中至少会有两次发射发生。因此,会有大约8%的入射光由于反射损失掉。
本公开实施例提供一种移动终端,用于解决上述的技术问题,可以提升位于显示模组下方的光学器件的性能。
图3是根据一示例性实施例示出的移动终端100的结构示意图。移动终端100包括外壳14以及显示模组17。显示模组17位于外壳14中。其中,显示模组17包括透明的保护层13以及位于保护层13下方的显示屏幕12。显示屏幕12发射的光可以透过保护层13。显示屏幕12可以通过透明的保护层13被看到。显示屏幕12例如可以是OLED显示屏,但不限于此。其中,当移动终端100为直立式移动终端时,保护层13可以是玻璃盖板。当移动终端100为可折叠柔性屏移动终端时,保护层13可为柔性覆盖膜。柔性覆盖膜可以包括聚酰亚胺(PI)薄膜。
图4~图7是根据本公开实施例示出的移动终端的横截面的示意图。如图4~图7所示,本公开实施例的移动终端100还包括:光学器件11以及光增透膜15。
如图4~图7所示,显示模组17位于光学器件11的上方。光增透膜15位于显示模组17上,且与光学器件11相对应。其中,光增透膜15位于显示模组17上包括如下情况:光增透膜15位于显示模组17背离光学器件11的表面上、光增透膜15位于显示模组17面向光学器件11的表面上以及光增透膜15位于显示模组17的内部。
在一个实施例中,光学器件11可以为图像传感器(摄像头)、环境光学器件、3D距离传感器或者指纹传感器。其中,3D距离传感器可以是3D结构光学器件,3D结构光学器件可以是红外线镜头(红外发射器)、泛光感应元件或点阵投影器。在一个实施例中,光学器件11的数目可为多个。
需要说明的是,在本公开实施例中,上述的“上方”是指光学器件11指向显示模组17的方向。
在本公开实施例中,通过在位于光学器件的上方的显示模组上设置光增透膜,可以提高透过显示模组入射到位于显示模组下方的光学器件的光的能量和质量,也可以提高光学器件发出的光透过显示模组的能量和质量。因此,本公开实施例的技术方案,可以提升位 于显示模组下方的光学器件的性能。
在一个实施例中,如图4所示,显示模组17可包括显示屏幕12以及保护层13。显示屏幕12位于光学器件11的上方,保护层13位于显示屏幕12的上方。
在一个实施例中,如图4所示,光增透膜15位于保护层13背离显示屏幕12的表面上。例如,当来自外界的入射光入射至光增透膜15后,光增透膜15背离保护层13的表面(上表面)与面向保护层13的表面(下表面)反射的光发生干涉,从而相互抵消,面向光增透膜15的上表面看过去,看不到反射光,因为根据能量守恒,入射光已经全部穿过保护层13了。因此,在保护层13的上表面上设置光增透膜15,可以提高透过保护层13的光的能量和质量,进而,可以提高透过显示模组入射到位于显示模组下方的光学器件的光的能量和质量。
在一个实施例中,如图4所示,光增透膜15位于显示屏幕12面向光学器件11的表面上。例如,当光学器件11发射光时,光学器件11发射的光入射至光增透膜15后,光增透膜15背离显示屏幕12的表面(下表面)与面向显示屏幕12的表面(上表面)反射的光发生干涉,从而相互抵消,面向光增透膜15的下表面看过去,看不到反射光,因为根据能量守恒,光学器件11发射的光已经全部穿过显示屏幕12了。因此,在显示屏幕12的下表面上设置光增透膜15,可以提高光学器件发出的光透过显示屏幕12的光的能量和质量。
需要说明的是,光增透膜15对光进行增透具有波长选择性。具体地,光增透膜15的厚度不同,所增透的光的波长也不同。例如,当光增透膜15的厚度为红光波长的四分之一的奇数倍时,那么,光增透膜的两个表面反射回去的红光就会发生干涉,从而相互抵消,面向光增透膜15的上表面看过去,看不到反射的红光,因为根据能量守恒,入射光中的红光已经全部穿过保护层13了。但是,当光增透膜15的厚度为红光波长的四分之一的奇数倍时,并不一定能对紫光进行增透。
在一个实施例中,光增透膜15可包括至少两层子膜层,至少两层子膜层可分别对不同波长范围的光进行增透。这样,可以对更多波段的光进行增透。下面以可见光的波长范围为380~700nm、光增透膜15包括三层子膜层为例进行举例说明。光增透膜15可包括层叠的第一子膜层、第二子膜层以及第三子膜层。本实施例中,可根据膜层厚度与波长的关系,使第一子膜层对波长为380~450nm的光进行增透,使第二子膜层对波长为451~550nm的光进行增透,使第三子膜层对波长为551~700nm的光进行增透。这样,可以对可见光全波段的光进行增透,提高可见光入射到位于显示屏幕下方的光学器件的光的能量和质量,或者提高光学器件发射的可见光透过显示屏幕的能量和质量。需要说明的是,本公开实施例中列举的上述数字不对本公开作任何限制。
在一个实施例中,如图4所示,显示模组17还可包括透明胶层16。透明胶层16位于显示屏幕12与保护层13之间。透明胶层16的材料可以是OCA(Optically Clear Adhesive,光学胶),可用于胶结保护层13与显示屏幕12。
在一个实施例中,如图5所示,当透明胶层16的折射率与保护层13的折射率的差值大于0.1时,保护层13与透明胶层16之间可设有光增透膜15。其中,保护层13的折射率与光增透膜15的折射率的差值可大于0.1,透明胶层16的折射率与光增透膜15的折射率的差值可大于0.1。由于透明胶层16的折射率与保护层13的折射率的差值大于0.1时,入射光入射至透明胶层16与保护层13之间的界面处会发生反射,因此,在透明胶层16与保护层13之间设置光增透膜15,可以提升位于显示模组下方的光学器件的性能。
在一个示例性实施例中,保护层13为柔性覆盖膜,柔性覆盖膜包括聚酰亚胺(PI)薄膜,透明胶层16的材料是OCA。由于PI薄膜的折射率大于1.68,OCA的折射率是1.48,因此,透明胶层16的折射率与保护层13的折射率的差值大于0.2,也大于0.1。入射光入射至透明胶层16与保护层13之间的界面处会发生反射,因此,在透明胶层16与保护层13之间设置光增透膜15,可以提升位于显示模组下方的光学器件的性能。
需要说明的是,当保护层13为玻璃盖板且透明胶层16的材料是OCA时,由于玻璃盖板的折射率为1.5,OCA的折射率大约是1.48,因此,透明胶层16的折射率与保护层13的折射率的差值为0.02,小于0.1。入射光入射至透明胶层16与保护层13之间的界面处可能不会发生反射,因此,在透明胶层16与保护层13之间可不设置光增透膜15。
在一个实施例中,如图6所示,当透明胶层16的折射率与显示屏幕12的折射率的差值大于0.1时,显示屏幕12与透明胶层16之间可设有光增透膜15。其中,透明胶层16的折射率与光增透膜15的折射率的差值可大于0.1,显示屏幕12的折射率与光增透膜15的折射率的差值可大于0.1。由于透明胶层16的折射率与显示屏幕12的折射率的差值大于0.1时,入射光入射至透明胶层16与显示屏幕12之间的界面处会发生反射,因此,在透明胶层16与显示屏幕12之间设置光增透膜15,可以提升位于显示模组下方的光学器件的性能。
在一个示例性实施例中,透明胶层16的折射率为1.5,显示屏幕12的折射率为1.7,则透明胶层16的折射率与显示屏幕12的折射率之间的差值为0.2,大于0.1。入射光入射至透明胶层16与显示屏幕12之间的界面处会发生反射,因此,在透明胶层16与显示屏幕12之间设置光增透膜15,可以提升位于显示模组下方的光学器件的性能。
在一个实施例中,如图7所示,显示屏幕12可包括至少两层介质层。光能够在介质层中传播且透过介质层。至少两层介质层中每层介质层对同一频率的光的折射率可相同或者不同。在至少两层介质层中,折射率的差值大于0.1的相邻两层介质层之间可设有光增透膜15。入射光入射至折射率的差值大于0.1的相邻两层介质层之间的界面处会发生反射,因此,在折射率的差值大于0.1的相邻两层介质层之间设置光增透膜15,可以提升位于显示模组下方的光学器件的性能。
下面以显示屏幕12包括两层介质层为例进行举例说明。如图7所示,显示屏幕12包括第一介质层121与第二介质层122,第一介质层121的折射率与第二介质层122的折射率之间差值大于0.1。入射光入射至第一介质层121与第二介质层122之间的界面处会发 生反射,因此,在第一介质层121与第二介质层122之间设置光增透膜15,可以提升位于显示模组下方的光学器件的性能。
在一个实施例中,光增透膜15的面积等于光学器件11在显示模组17上的投影面积。当然,光增透膜15的面积也可大于光学器件11在显示模组17上的投影面积。
在一个实施例中,光增透膜的材料可包括氟化钙、氧化钛、硫化铅、硒化铅、陶瓷红外增透膜或者乙烯基倍半硅氧烷杂化膜,但不限于此。
最后,对上述的光增透膜以及增透原理进行进一步的说明。
首先,需要说明的是,光具有波粒二象性,即从微观上,既可以把光理解成一种波,又可以把光理解成一束高速运动的粒子(注意,这里千万别把光理解成一种简单的波和一种简单的粒子)。上述的波与粒子都是从微观角度来讲的,爱因斯坦通过研究,命名为光子。红光的波长为0.750微米,紫光的波长为0.400微米。而一个光子的质量是6.63E -34千克。因此,上述的波与粒子都远远不是我们所想象的那种宏观波和粒子。光增透膜的原理是把光当成一种波来考虑的,因为光波和机械波一样也具有干涉的性质。光增透膜是利用光的干涉原理,在膜的前表面与后表面反射的光发生干涉,从而通过改变反射区的光强改变透射区的光强。
在光学仪器中,光学元件表面的反射,不仅影响光学元件的通光能量,而且这些反射光还会在仪器中形成杂散光,影响光学仪器的成像质量。为了解决这些问题,通常在光学元件的表面镀上一定厚度的单层或多层膜,目的是为了减小光学元件表面的反射光,这样的膜叫光增透膜(或减反膜)。
其次,从能量守恒的角度对光增透膜的增透原理给予分析。一般情况下,当光入射在给定的材料的光学元件的表面时,所产生的反射光与透射光能量确定,在不考虑吸收、散射等其他因素时,反射光与透射光的总能量等于入射光的能量。即满足能量守恒定律。当光学元件表面镀光增透膜后,在不考虑光增透膜的吸收及散射等其他因素时,反射光和透射光与入射光仍满足能量守恒定律。而镀膜的作用是使反射光与透射光的能量重新分配。对光增透膜而言,分配的结果使反射光的能量减小,透射光的能量增大。由此可见,光增透膜的作用使得光学元件表面反射光与透射光的能量重新分配,分配的结果是透射光能量增大,反射光能量减小。因此,光增透膜有这样的特性:通过改变反射区的光强可以改变透射区的光强。
综上所述,光增透膜增加透射光强度的实质是:作为电磁波的光波在传播的过程中,在不同介质的分界面上,由于边界条件的不同,改变了其能量的分布。对于单层光增透膜来说,当光增透膜两边介质不同时,当光增透膜厚度为1/4波长的奇数倍且光增透膜的折射率n=(n1*n2) 1/2时,才可以使入射光全部透过介质2。其中,n1、n2分别是介质1、介质2的折射率,介质1、介质2为光增透膜两边的介质,光依次经过介质1、光增透膜、介质2。例如,一般光学透镜(介质2)都是在空气(介质1)中使用,对于一般折射率在1.5左右的光学透镜,为使单层光增透膜达到100%的增透效果,可使n1=1.23,或接近 1.23,还要使光增透膜的厚度=(2k+1)倍的四分之一个波长。其中,k为非负整数。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (13)

  1. 一种移动终端,其特征在于,包括:光学器件、显示模组以及光增透膜;
    所述显示模组位于所述光学器件的上方;所述光增透膜位于所述显示模组上,且与所述光学器件相对应。
  2. 根据权利要求1所述的移动终端,其特征在于,所述显示模组包括显示屏幕以及保护层;
    所述显示屏幕位于所述光学器件的上方,所述保护层位于所述显示屏幕的上方。
  3. 根据权利要求2所述的移动终端,其特征在于,所述光增透膜位于所述保护层背离所述显示屏幕的表面上。
  4. 根据权利要求2所述的移动终端,其特征在于,所述光增透膜位于所述显示屏幕面向所述光学器件的表面上。
  5. 根据权利要求2所述的移动终端,其特征在于,所述显示模组还包括透明胶层;
    所述透明胶层位于所述显示屏幕与所述保护层之间。
  6. 根据权利要求5所述的移动终端,其特征在于,所述透明胶层的折射率与所述保护层的折射率的差值大于0.1,所述保护层与所述透明胶层之间设有所述光增透膜。
  7. 根据权利要求5所述的移动终端,其特征在于,所述透明胶层的折射率与所述显示屏幕的折射率的差值大于0.1,所述显示屏幕与所述透明胶层之间设有所述光增透膜。
  8. 根据权利要求2所述的移动终端,其特征在于,所述显示屏幕包括至少两层介质层;
    所述至少两层介质层中,折射率的差值大于0.1的相邻两层介质层之间设有所述光增透膜。
  9. 根据权利要求1所述的移动终端,其特征在于,所述光增透膜的面积大于或者等于所述光学器件在所述显示模组上的投影面积。
  10. 根据权利要求1所述的移动终端,其特征在于,所述光增透膜包括至少两层子膜层,所述至少两层子膜层分别对不同波长范围的光进行增透。
  11. 根据权利要求1所述的移动终端,其特征在于,所述光增透膜的材料包括氟化钙、氧化钛、硫化铅、硒化铅、陶瓷红外增透膜或者乙烯基倍半硅氧烷杂化膜。
  12. 根据权利要求2所述的移动终端,其特征在于,所述保护层为玻璃盖板或者柔性覆盖膜。
  13. 根据权利要求12所述的移动终端,其特征在于,所述柔性覆盖膜包括聚酰亚胺薄膜。
PCT/CN2019/090833 2018-11-19 2019-06-12 移动终端 WO2020103430A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019542426A JP7013476B2 (ja) 2018-11-19 2019-06-12 移動端末
RU2019133675A RU2735570C1 (ru) 2018-11-19 2019-06-12 Мобильный терминал
KR1020197023313A KR102211733B1 (ko) 2018-11-19 2019-06-12 이동 단말기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811379105.7 2018-11-19
CN201811379105.7A CN111273379A (zh) 2018-11-19 2018-11-19 移动终端

Publications (1)

Publication Number Publication Date
WO2020103430A1 true WO2020103430A1 (zh) 2020-05-28

Family

ID=68165446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090833 WO2020103430A1 (zh) 2018-11-19 2019-06-12 移动终端

Country Status (7)

Country Link
US (2) US20200158914A1 (zh)
EP (1) EP3654073A1 (zh)
JP (1) JP7013476B2 (zh)
KR (1) KR102211733B1 (zh)
CN (1) CN111273379A (zh)
RU (1) RU2735570C1 (zh)
WO (1) WO2020103430A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111754876B (zh) * 2020-06-28 2022-06-21 昆山国显光电有限公司 一种显示面板以及显示装置
CN113671742A (zh) * 2021-08-30 2021-11-19 深圳市华星光电半导体显示技术有限公司 液晶显示面板及互动式显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110001727A1 (en) * 2009-07-03 2011-01-06 Yi-Hsien Ko Optical Touch Display
CN201936054U (zh) * 2010-12-20 2011-08-17 比亚迪股份有限公司 一种摄像头模组
CN202889484U (zh) * 2012-11-28 2013-04-17 广东欧珀移动通信有限公司 摄像头模组及具有该摄像头模组的电子产品
CN107315207A (zh) * 2017-07-05 2017-11-03 业成科技(成都)有限公司 增加摄像孔透光率之面板装置及其制造方法
CN108269839A (zh) * 2018-01-31 2018-07-10 昆山国显光电有限公司 一种显示屏及带有显示屏的电子设备
CN208737020U (zh) * 2018-11-19 2019-04-12 北京小米移动软件有限公司 移动终端

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136973A4 (en) * 1999-09-06 2005-03-09 Seiko Epson Corp RECOVERY GLASS
JP4515161B2 (ja) 2003-06-17 2010-07-28 株式会社半導体エネルギー研究所 撮像機能付き表示装置及び双方向コミュニケーションシステム
JP2005114852A (ja) * 2003-10-03 2005-04-28 Jsr Corp プラズマディスプレイ前面板用反射防止フィルム及びその製造方法
KR101271469B1 (ko) * 2010-11-16 2013-06-05 도레이첨단소재 주식회사 터치스크린 패널용 산화방지 필름 및 이를 채용한 터치스크린 패널
KR20130076225A (ko) * 2011-12-28 2013-07-08 엘지전자 주식회사 정전용량식 터치패널 및 이를 구비한 이동단말기
CN104246544B (zh) * 2012-04-26 2017-03-22 旭硝子株式会社 光学元件
JP2014091256A (ja) * 2012-11-02 2014-05-19 Sharp Corp 保護板及び表示装置
CN203773511U (zh) * 2014-04-17 2014-08-13 宸鸿光电科技股份有限公司 触控面板与具有该触控面板的触控装置
KR20150120730A (ko) * 2014-04-18 2015-10-28 삼성전자주식회사 물리적 버튼과 이미지 센서를 내장한 디스플레이 모듈과 이의 제조 방법
EP2988153B1 (en) * 2014-08-18 2021-02-17 Essilor International Ophthalmic lens comprising an antireflective coating with a low reflection in the ultraviolet region
WO2017068789A1 (ja) * 2015-10-21 2017-04-27 富士フイルム株式会社 反射防止フィルムおよび機能性ガラス
US10102789B2 (en) * 2015-10-30 2018-10-16 Essential Products, Inc. Mobile device with display overlaid with at least a light sensor
JP6701547B2 (ja) 2015-11-19 2020-05-27 日本電気硝子株式会社 ディスプレイ用保護部材及びこれを用いた携帯端末
US10288476B2 (en) * 2015-12-21 2019-05-14 Apple Inc. Ambient light sensor window coatings for electronic devices
KR20170111827A (ko) * 2016-03-29 2017-10-12 삼성전자주식회사 디스플레이 및 카메라를 포함하는 전자 장치
KR20170133773A (ko) * 2016-05-26 2017-12-06 엘지이노텍 주식회사 터치 디스플레이 장치 및 이를 포함하는 차량용 디스플레이 유닛
CN107544178A (zh) * 2016-06-29 2018-01-05 株式会社Lg化学 光转换元件及包含它的显示装置
KR102591365B1 (ko) * 2016-09-12 2023-10-19 삼성디스플레이 주식회사 확장형 표시 장치
KR20180030376A (ko) * 2016-09-13 2018-03-22 삼성전자주식회사 광학 기반 지문 검출을 제공하기 위해 빛을 방출하는 디스플레이를 포함하는 전자 장치
KR102563743B1 (ko) * 2016-11-11 2023-08-08 삼성디스플레이 주식회사 보호 커버 및 이를 포함하는 표시 장치
CN106887412B (zh) * 2017-03-27 2020-08-21 京东方科技集团股份有限公司 一种柔性显示面板及显示装置
KR102310101B1 (ko) 2017-03-27 2021-10-08 삼성전자주식회사 무반사층을 포함하는 디스플레이 장치 및 이를 구비한 전자 장치
CN108885376A (zh) 2017-04-25 2018-11-23 华为技术有限公司 Lcd显示屏、电子设备及lcd显示屏的制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110001727A1 (en) * 2009-07-03 2011-01-06 Yi-Hsien Ko Optical Touch Display
CN201936054U (zh) * 2010-12-20 2011-08-17 比亚迪股份有限公司 一种摄像头模组
CN202889484U (zh) * 2012-11-28 2013-04-17 广东欧珀移动通信有限公司 摄像头模组及具有该摄像头模组的电子产品
CN107315207A (zh) * 2017-07-05 2017-11-03 业成科技(成都)有限公司 增加摄像孔透光率之面板装置及其制造方法
CN108269839A (zh) * 2018-01-31 2018-07-10 昆山国显光电有限公司 一种显示屏及带有显示屏的电子设备
CN208737020U (zh) * 2018-11-19 2019-04-12 北京小米移动软件有限公司 移动终端

Also Published As

Publication number Publication date
EP3654073A1 (en) 2020-05-20
US20220171097A1 (en) 2022-06-02
KR102211733B1 (ko) 2021-02-04
JP7013476B2 (ja) 2022-01-31
CN111273379A (zh) 2020-06-12
RU2735570C1 (ru) 2020-11-03
KR20200063096A (ko) 2020-06-04
US20200158914A1 (en) 2020-05-21
JP2021509964A (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
KR101970728B1 (ko) 광 터치-감지 장치에서 사용하기 위한 보강된 광 도파관
CN108983487B (zh) 一种液晶显示面板及显示装置
WO2018171178A1 (zh) 指纹识别器件及控制方法、触摸显示面板、触摸显示装置
TWI470508B (zh) 觸控面板以及具有此觸控面板之觸控式顯示裝置
US20220171097A1 (en) Mobile terminal
JP3197142U (ja) ミラー表示パネル
CN110928038A (zh) 一种背光模组、显示装置及液晶电视
TWI452554B (zh) 觸控面板、觸控顯示器及其組裝方法
WO2017219404A1 (zh) 液晶透镜和3d显示器
WO2021164084A1 (zh) 显示模组及显示装置
JP7320080B2 (ja) スクリーン指紋コンポーネント及び端末機器
CN208737020U (zh) 移动终端
WO2017156975A1 (zh) 光学指纹传感器模组
JP2016224110A (ja) 光学結合素子
CN112767841B (zh) 显示面板及显示装置
CN113324265A (zh) 无接触操控式电磁炉及操作方法和存储介质
TWM606633U (zh) 電子裝置
CN114649494A (zh) 一种光学保护基板及制备方法、显示装置
TW201535020A (zh) 鏡面顯示器
CN115731814A (zh) Led光源类型转换结构及led显示屏
US11835739B2 (en) Dark mirror thin films
CN112902539A (zh) 冰箱及操作方法和存储介质
CN218763000U (zh) 光散射组件及led显示屏
JP6097730B2 (ja) 光学レンズ
WO2022126615A1 (zh) 显示装置及显示装置的制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019542426

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: KR1020197023313

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886690

Country of ref document: EP

Kind code of ref document: A1