WO2022126615A1 - 显示装置及显示装置的制备方法 - Google Patents

显示装置及显示装置的制备方法 Download PDF

Info

Publication number
WO2022126615A1
WO2022126615A1 PCT/CN2020/137658 CN2020137658W WO2022126615A1 WO 2022126615 A1 WO2022126615 A1 WO 2022126615A1 CN 2020137658 W CN2020137658 W CN 2020137658W WO 2022126615 A1 WO2022126615 A1 WO 2022126615A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display
display panel
interference layer
reflection interference
Prior art date
Application number
PCT/CN2020/137658
Other languages
English (en)
French (fr)
Inventor
石博
黄炜赟
于池
龙跃
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080003422.8A priority Critical patent/CN115210676A/zh
Priority to US17/611,867 priority patent/US20230305114A1/en
Priority to PCT/CN2020/137658 priority patent/WO2022126615A1/zh
Publication of WO2022126615A1 publication Critical patent/WO2022126615A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display device and a manufacturing method of the display device.
  • the front camera is hidden directly below the display screen to present a full-screen display effect, achieving a perfect combination of full-screen display and photography, which has become the current development trend of display devices.
  • facial recognition technology has also become a basic structural function of current display devices.
  • facial recognition technologies include 3D structured light and Time of Flight (TOF) ranging methods.
  • TOF Time of Flight
  • the TOF ranging method has the advantages of long detection distance, simple structure, and small spacing. It can effectively reduce the screen ratio and other advantages, and is widely used in full-screen display devices.
  • the light emitter of the TOF ranging structure since the light emitter of the TOF ranging structure has an air gap layer with a thin center and a thick edge between the lens and the display panel, the light emitted by the light emitter will pass through the display panel. After reflection and refraction inside the lens and the display panel, the reflected light on both sides of the air gap layer forms coherent light, and the optical path difference between the two beams is related to the thickness of the air layer at the location. Dark streaks appear in the destructive place, and bright streaks appear in the place where the interference is constructive, which will cause the Newton's ring phenomenon, which will affect the imaging accuracy of TOF.
  • the purpose of the embodiments of the present disclosure is to provide a display device and a manufacturing method of the display device, so as to solve the problem that in a display device using a TOF ranging structure, a Newton's ring phenomenon occurs in an image of a facial recognition part, which affects the imaging accuracy.
  • One embodiment of the present disclosure provides a display device, including:
  • a display panel and a time-of-flight TOF sensor disposed on the side of the display panel away from the display surface;
  • the detection light received by the TOF sensor can pass through the target light transmission area of the display panel
  • a light reflection interference layer is provided on the surface facing the TOF sensor;
  • the light reflection interference layer is used to adjust the transmission direction of the reflected light reflected by the detection light between the display panel and the lens of the TOF sensor.
  • the light reflection interference layer is used to directly transmit the received reflected light.
  • the light reflection interference layer is used to scatter the received reflected light.
  • a transparent substrate is provided on a side of the display panel away from the display surface, and the light reflection and interference layer is provided on the transparent substrate;
  • the second refractive index n2 of the light reflection interference layer is smaller than the first refractive index n1 of the transparent substrate.
  • n2 (n1*n) ⁇ (1/2);
  • n is the refractive index of air.
  • the thickness dimension of the light reflection interference layer is between 1/5 and 2/5 of the wavelength of the detection light.
  • the material of the light reflection interference layer is MgF2 or SiO2.
  • the light reflection interference layer is formed as a rough surface layer.
  • the light reflection interference layer covers the entire surface of the display panel on the side away from the display surface.
  • a pixel unit is provided on the target light-transmitting area, and the arrangement structure of the pixel unit set on the target light-transmitting area and the pixel unit set in other display areas on the target light-transmitting area satisfies at least one of the following: A relationship:
  • the pixel units arranged in other display areas on the target light-transmitting area include stacked light-emitting units and driving circuits, and the pixel units arranged on the target light-transmitting area only include light-emitting units;
  • the distribution density of the pixel units set on the target light-transmitting area is smaller than the distribution density of the pixel units set in other display areas on the target light-transmitting area;
  • the area occupied by each pixel unit set on the target light-transmitting area is smaller than the area occupied by each pixel unit set in other display areas on the target light-transmitting area.
  • the display device further includes:
  • a camera disposed on the side of the display panel away from the display surface
  • the orthographic projection of the camera on the display panel is located in the target light-transmitting area.
  • An embodiment of the present disclosure further provides a method for manufacturing the display device according to any one of the above, wherein the method includes:
  • a TOF sensor is provided on the side of the display panel away from the display panel, and the detection light of the TOF sensor can be transmitted through the target light-transmitting area of the display panel.
  • the light reflection interference layer is produced by means of vacuum coating or plasma enhanced chemical vapor deposition.
  • the light reflection interference layer is formed as a rough surface layer
  • the light reflection interference layer is fabricated by surface fogging or applying an anti-glare scattering film.
  • FIG. 1 is a schematic diagram of the working principle of the TOF sensor
  • Figure 2 is a schematic diagram of the principle of using a TOF sensor to generate Newton's rings
  • FIG. 3 is a schematic cross-sectional structure diagram of a display device according to one embodiment of the disclosure.
  • FIG. 4 is a schematic plan view of the display device according to one embodiment of the disclosure.
  • FIG. 5 is a schematic diagram illustrating a comparison between the light transmission of the display device according to one of the embodiments of the present disclosure and the prior art
  • FIG. 6 is a schematic diagram illustrating a comparison between the light transmission of the display device according to another embodiment and the prior art
  • FIG. 7 is a schematic flowchart of a method for manufacturing a display device according to an embodiment of the disclosure.
  • Embodiments of the present disclosure provide a display device that uses a TOF sensor to perform face recognition and/or image acquisition.
  • the TOF sensor 10 may include a transmitter TX 11 and a receiver RX 12.
  • the transmitter 11 emits the modulated detection light
  • the receiver 12 receives the detection light, and uses the difference in the flight time between the emitted detection light and the received detection light to measure the distance D from the object to be measured to the TOF sensor, and then draw the measured object.
  • the three-dimensional shape of an object may be used to measure the distance D from the object to be measured to the TOF sensor, and then draw the measured object.
  • the detection light can be, but not limited to, only infrared light with a wavelength of 940 nm.
  • the TOF sensor 10 When applied to a display device, as shown in FIG. 1 , the TOF sensor 10 is disposed on one side of the display panel 100 , and the detection light emitted by the transmitter TX 11 passes through the display panel 100 and is transmitted to the other side of the display panel 100 The measured object on the side is reflected by the measured object and transmitted to the receiver RX 12 through the display panel 100 .
  • the transmitter TX 11 and the receiver RX 12 need to be synchronized, and the receiver RX 12 can detect the transmission time of the detection light emitted by the transmitter TX 11.
  • the display device The processor of the device can analyze and obtain the three-dimensional topography of the measured object within the preset distance range from the display panel 100 according to the transmission time detected by the receiver RX 12.
  • the lens of the receiver RX 12 is usually a curved structure, as shown in FIG. 2, an air gap layer with a thin center and a thick edge is formed between the receiver RX 12 and the display panel 100.
  • the reflected light incident inside the lens forms coherent light.
  • dark streaks appear where the interference cancels.
  • bright fringes appear where the interference constructs, that is, Newton's ring phenomenon, which affects the accuracy of TOF imaging.
  • an embodiment of the present disclosure provides a display device.
  • the light reflection interference layer is used to adjust the display panel and the TOF sensor 10.
  • the transmission direction of the reflected light between the lenses is to prevent the TOF sensor 10 from receiving coherent light and appearing the Newton's ring phenomenon.
  • the display device includes:
  • the detection light received by the TOF sensor 10 can pass through the target light transmission area 120 of the display panel 100;
  • a light reflection interference layer 130 is provided on the surface 121 facing the TOF sensor 10;
  • the light reflection interference layer 130 is used to adjust the transmission direction of the reflected light reflected by the detection light between the display panel 100 and the lens of the TOF sensor 10, so that the reflectivity of the reflected light on the light reflection interference layer 130 is within the set range, so as to ensure the TOF The reflected light received by the sensor is not coherent.
  • the light reflection interference layer 130 is used to reduce the interference light generated by the reflected light reflected between the display panel 100 and the lens of the TOF sensor 10.
  • the TOF sensor 10 The reflectivity of the received reflected light decreases.
  • the above setting range is the numerical range of the reflectivity of the detected reflected light under the condition that the reflected light received by the TOF sensor 10 does not include interfering light, so that the TOF sensor does not produce Newton's rings phenomenon. Obtained from experimental tests.
  • the reflectivity of the incident light incident on the light reflection interference layer 130 can be detected by a reflectivity test tool, and the reflectivity is the ratio of the reflected light intensity to the incident light intensity.
  • the reflectivity of the reflected light on the light reflection interference layer 130 should be less than or equal to 1%, that is, the setting range is greater than zero and less than or equal to 1%. is equal to 1%.
  • the display device provided with the TOF sensor 10, after the detection light emitted by the emitter of the TOF sensor 10 is reflected by the object to be measured, the reflected detection light passes through the target of the display panel 100. The light area 120 is then transmitted to the receiver RX 12 of the TOF sensor 10.
  • the reflected part of the detection light is reflected between the display panel 100 and the first lens 101 of the TOF sensor 10, forming a first The reflected light a
  • the first reflected light a is received by the receiver of the TOF sensor 10 after passing through the first lens 101 and the second lens 102 of the TOF sensor 10 in sequence
  • the reflection between the lens 101 and the second lens 102 forms a second reflected light b
  • the second reflected light b is received by the receiver of the TOF sensor 10 after passing through the second lens 102 .
  • the A reflected ray a and a second reflected ray b form coherent light, and the optical path difference of the two beams is related to the thickness of the air gap layer at the location.
  • the light reflection interference layer 130 is formed as an anti-reflection and anti-reflection film layer, which is used to make the received reflected light directly through.
  • the incident light reflection interference layer 130 is caused by the isometric interference between the film layers.
  • the interference of the reflected light of 130 cancels out, and the anti-reaction effect is realized, as shown in Figure 5.
  • the side of the display panel 100 away from the display surface 110 is provided with a transparent substrate, and the light reflection interference layer 130 is provided on the transparent substrate;
  • the second refractive index n2 of the light reflection interference layer 130 is smaller than the first refractive index n1 of the transparent substrate.
  • the reflected light incident on the light reflection interference layer 130 can interfere Cancellation, to achieve the effect of subtraction.
  • the refractive index of the optical film layer disposed on the glass substrate is smaller than that of the glass substrate, and the reflection ratio of the optical film layer is smaller than that of the glass substrate, it can reduce the reflection and increase the reflection. Effect.
  • n2 (n1*n) ⁇ (1/2);
  • n is the refractive index of air.
  • the reflection ratio of the glass substrate on which the light reflection interference layer 130 is provided is zero, which plays the role of total antireflection.
  • the thickness dimension of the light reflection interference layer 130 is between 1/5 and 2/5 of the wavelength of the detection light.
  • the thickness of the light reflection interference layer 130 is 1/4 of the wavelength of the detection light, so that when the reflected light is reflected and transmitted inside the glass substrate on which the light reflection interference layer 130 is arranged, the optical path difference after reflection is shifted. One-half wavelength to achieve interference cancellation of reflections.
  • the detection light emitted by the TOF sensor 10 is infrared light with a wavelength of 940 nm. Therefore, in the embodiment of the present disclosure, the thickness of the light reflection interference layer 130 may be 235 nm.
  • the first refractive index n1 of the glass substrate as 1.945 and the refractive index n of air as 1.00027
  • the second refractive index n2 of the light reflection interference layer 130 is 1.395
  • the thickness of the light-reflecting light-interference layer 130 is 235 nm
  • the material used to make the light reflection interference layer 130 may be MgF 2 ,
  • the refractive index of the used MgF 2 is 1.374.
  • the refractive index is closer to the second refractive index n2 calculated by the above relationship, that is, 1.395, so the maximum anti-reflection and anti-reflection effect is achieved. .
  • the light reflection interference layer 130 when the material used to make the light reflection interference layer 130 is MgF 2 , optionally, the light reflection interference layer 130 can be fabricated by vacuum coating on the side of the display panel 100 facing the TOF sensor 10 . on the glass substrate.
  • the material used to make the light reflection interference layer 130 may be SiO 2 .
  • the light reflection interference layer 130 The thickness is 235nm.
  • the refractive index of SiO 2 is 1.452.
  • the first refractive index n1 of the glass substrate provided with the light reflection interference layer 130 is 1.945
  • the light reflection interference layer 130 has a first refractive index n1 of 1.945.
  • It has a refractive index that is also relatively close to the second refractive index n2 calculated by the above relationship, that is, 1.395, so as to achieve interference cancellation to a greater extent, reduce infrared light reflection, and improve Newton's ring phenomenon.
  • the light reflection interference layer 130 when the material used to form the light reflection interference layer 130 is SiO 2 , optionally, the light reflection interference layer 130 may be formed by plasma enhanced chemical vapor deposition (PECVD) on the TOF of the display panel 100 . on the glass substrate on one side of the sensor 10 .
  • PECVD plasma enhanced chemical vapor deposition
  • the light reflection interference layer 130 can also be used to adjust the detection light between the display panel 100 and the lens of the TOF sensor 10 by scattering the received reflected light The transmission direction of the reflected reflected light, as shown in FIG. 6 , makes the reflected light received by the TOF sensor 10 not coherent.
  • the light reflection interference layer 130 is formed as a rough surface layer, and by forming a rough surface layer including a plurality of concave-convex structures, incident reflected light is scattered, that is, diffuse reflection is formed.
  • a rough surface layer may be fabricated on the glass substrate on the side of the display panel 100 facing the TOF sensor 10 by means of atomization to form the light reflection interference layer 130 .
  • the light reflection and interference layer 130 may only be fabricated in the target light transmission area 120 , as long as the set
  • the light reflection interference layer can adjust the transmission direction of the reflected light between the display panel 100 and the lens of the TOF sensor 10 to eliminate or reduce the equal thickness interference on the surface of the lens to improve the effect of Newton's ring phenomenon.
  • the light reflection interference layer 130 covers the entire surface of the display panel 100 on the side away from the display surface, that is, on the glass substrate on the side of the display panel 100 facing the TOF sensor 10, the entire surface The light reflection interference layer 130 is fabricated.
  • the target light-transmitting area 120 is provided with pixel units to form a light-transmitting display area.
  • the display device further includes:
  • a camera 20 disposed on the side of the display panel 100 away from the display surface
  • the orthographic projection of the camera 20 on the display panel 100 is located in the target light-transmitting area 120 .
  • the display device has a full-screen display effect, and the TOF sensor 10 can collect the detection light of the three-dimensional topography of the measured object through a part of the display area of the display screen (that is, the target light-transmitting area), so as to carry out Face recognition and/or image capture.
  • the camera 20 is also arranged at a position just below the target light-transmitting area, and through the target light-transmitting area, the camera 20 is used to collect image information.
  • the target light-transmitting area 120 of the display panel 100 is formed as a first display area, and the display panel 100 further includes a second display area surrounding the target light-transmitting area 120, and the second display area is the same as the first display area.
  • a display area is combined to form the entire display area of the display panel 100 .
  • the target light-transmitting area 120 is disposed close to the upper edge of the display panel 100 .
  • the display panel 100 may be an OLED display panel, and the pixel units disposed on the target light-transmitting area 120 are made of light-transmitting materials.
  • the pixel units set in the target light-transmitting area 120 can be compatible with the normal display area (that is, the normal display area other than the target light-transmitting area 120) on the display area.
  • the pixel units set on the second display area are different.
  • the arrangement structure of the pixel units arranged in the first area and the pixel units arranged in the second area satisfies at least one of the following rules:
  • the pixel units arranged in the second display area include light-emitting units and driving circuits arranged in layers, and the pixel units arranged in the first display area only include light-emitting units;
  • the distribution density of the pixel units set on the first display area is less than the distribution density of the pixel units set in other display areas on the second display area;
  • the area occupied by each pixel unit set on the first display area is smaller than the area occupied by each pixel unit set on the second display area.
  • the pixel units provided on the second display area include stacked OLED light-emitting units and driving circuits; and the pixel units provided on the first display area may include only OLED light-emitting units, but not OLED light-emitting units.
  • the driving circuit can be disposed in the edge area of the display panel 100 and connected to the corresponding OLED light-emitting unit through connecting leads.
  • the pixel units arranged on the first display area and the pixel units arranged on the second display area may both include OLED light-emitting units and driving circuits, but the first display area is also the pixel unit of the target light-transmitting area 120 .
  • the distribution density of is smaller than the distribution density of pixel units in the second display area.
  • the pixel units arranged on the first display area and the pixel units arranged on the second display area may both include an OLED light-emitting unit and a driving circuit, and the first display area is also the pixel unit of the target light-transmitting area 120 .
  • the distribution density is equal to the distribution density of the pixel units in the second display area, but the occupation area of each pixel unit in the first display area is smaller than the occupation area of each pixel unit in the second display area.
  • a light reflection interference layer is provided on the surface of the display panel on the side away from the display surface, and the light reflection interference layer can be used to adjust the relationship between the display panel and the display surface.
  • the transmission direction of the reflected light between the lenses of the TOF sensor eliminates or alleviates the equal-thickness interference that occurs on the surface of the lens, so as to improve the Newton's ring phenomenon.
  • An embodiment of the present disclosure further provides a method for fabricating the display device according to any one of the above, as shown in FIG. 7 , in conjunction with FIG. 1 to FIG. 6 , the method includes:
  • a TOF sensor is provided on the side of the display panel away from the display panel, and the detected light of the TOF sensor can be transmitted through the target light-transmitting area of the display panel.
  • the light reflection interference layer is used to adjust the transmission direction of the reflected light reflected by the detection light between the display panel and the lens of the TOF sensor, so as to eliminate or reduce the occurrence of the light on the surface of the lens.
  • Equal thickness interference to improve Newton's ring phenomenon.
  • the light reflection interference layer is made of MgF 2 or SiO 2
  • the light reflection interference layer is fabricated by vacuum coating or plasma enhanced chemical vapor deposition.
  • the light reflection interference layer when the light reflection interference layer is formed as a rough surface layer, the light reflection can be made by surface atomization or by applying an anti-glare (Anti Glare, AG) scattering film. interference layer.
  • Anti Glare Anti Glare, AG

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置及显示装置的制备方法。显示装置包括:显示面板(100)和设置于显示面板(100)的背离显示面(110)一侧的飞行时间TOF传感器(10);TOF传感器(10)所接收的检测光线能够透过显示面板(100)的目标透光区域(120);其中,在显示面板(100)的目标透光区域(120)上,朝向TOF传感器(10)的表面设置有光反射干扰层(130);光反射干扰层(130)用于调整检测光线在显示面板(100)与TOF传感器(10)的镜头(101)之间反射的反射光线的传输方向。

Description

显示装置及显示装置的制备方法 技术领域
本公开涉及显示技术领域,尤其是指一种显示装置及显示装置的制备方法。
背景技术
为适应市场发展需求,将前置摄像头隐藏于显示屏正下方,呈现全面屏幕显示效果,实现全屏显示和拍照的完美结合,成为显示装置的当前发展趋势。
另外,面部识别技术也成为当前显示装置的基本结构功能。其中,面部识别技术包括3D结构光和飞行时间(Time of Flight,TOF)测距方法等,相较于采用3D结构光方式,TOF测距方法具有探测距离远、结构简单、占用较小间距从而能够有效降低屏占比等优点,被广泛地应用于全屏显示装置中。
然而,在采用TOF测距结构的显示装置中,由于TOF测距结构的光发射器上,镜头与显示面板之间会形成中心薄、边缘厚的空气间隙层,光发射器所发射光在经过镜头内部和显示面板的反射和折射后,在空气间隙层两侧表面的反射光形成相干光,两束光的光程差与所在位置的空气层厚度相关,随着空气间隙厚度的变化,干涉相消的地方出现暗纹,干涉相长的地方出现亮纹,从而会出现牛顿环现象,造成TOF的成像精确性受到影响。
发明内容
本公开实施例的目的是提供一种显示装置及显示装置的制备方法,解决采用TOF测距结构的显示装置,面部识部图像会产生牛顿环现象,影响成像精确性的问题。
本公开其中一实施方式提供一种显示装置,其中,包括:
显示面板和设置于所述显示面板的背离显示面一侧的飞行时间TOF传感器;
所述TOF传感器所接收的检测光线能够透过所述显示面板的目标透光区域;
其中,在所述显示面板的目标透光区域上,朝向所述TOF传感器的表面设置有光反射干扰层;
所述光反射干扰层用于调整所述检测光线在所述显示面板与所述TOF传感器的镜头之间反射的反射光线的传输方向。
可选地,所述光反射干扰层用于使所接收的所述反射光线直接透过。
可选地,所述光反射干扰层用于使所接收的所述反射光线产生散射。
可选地,所述显示面板的背离显示面的一侧设置有透明基板,所述光反射干扰层设置于所述透明基板上;
其中,所述光反射干扰层所具有的第二折射率n2小于所述透明基板所具有的第一折射率n1。
可选地,所述第一折射率n1与所述第二折射率n2之间满足以下关系式:
n2=(n1*n)^(1/2);
其中,n为空气折射率。
可选地,述光反射干扰层的厚度尺寸位于所述检测光线的波长的1/5至2/5之间。
可选地,所述光反射干扰层的制成材料为MgF2或者SiO2。
可选地,所述光反射干扰层形成为粗糙表面层。
可选地,所述光反射干扰层覆盖所述显示面板的背离显示面一侧的整个表面。
可选地,所述目标透光区域上设置有像素单元,且所述目标透光区域上设置的像素单元与所述目标透光区域上其他显示区域设置的像素单元的设置结构满足以下至少之一关系:
所述目标透光区域上其他显示区域设置的像素单元包括层叠设置的发光单元和驱动电路,所述目标透光区域上设置的像素单元仅包括发光单元;
所述目标透光区域上设置的像素单元的分布密度小于所述目标透光区域上其他显示区域所设置像素单元的分布密度;
所述目标透光区域上设置的每一像素单元所占据面积小于所述目标透光区域上其他显示区域所设置每一像素单元所占据面积。
可选地,所述显示装置还包括:
设置于所述显示面板的背离显示面一侧的摄像头;
其中,所述摄像头在所述显示面板上的正投影位于所述目标透光区域内。
本公开其中一实施方式还提供一种用于如上任一项所述显示装置的制备方法,其中,所述方法包括:
制作显示面板;
在所述显示面板的目标透光区域的背离显示面的一侧表面上制作光反射干扰层;
在所述显示面板的背离显示面板的一侧设置TOF传感器,所述TOF传感器的检测光线能够经过所述显示面板的目标透光区域传输。
可选地,所述光反射干扰层的制成材料为MgF2或者SiO2时,采用真空镀膜或者离子体增强化学气相沉积的方式制作所述光反射干扰层。
可选地,所述光反射干扰层形成为粗糙表面层时,采用表面雾化或贴敷防眩光散射膜的方式制作所述光反射干扰层。
附图说明
为了更清楚地说明本公开文本实施例或相关技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为TOF传感器的工作原理结构示意图;
图2为采用TOF传感器产生牛顿环的原理示意图;
图3为本公开其中一实施方式所述显示装置的剖面结构示意图;
图4为本公开其中一实施方式所述显示装置的平面结构示意图;
图5为采用本公开其中一实施方式所述显示装置的光线传输与现有技术的对比示意图;
图6为采用另一实施方式所述显示装置的光线传输与现有技术的对比示意图;
图7为本公开实施方式所述显示装置的制备方法的流程示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供一种显示装置,所述显示装置采用TOF传感器进行人脸识别和/或进行图像采集。具体地,如图1所示,TOF传感器10可以包括发射器TX 11和接收器RX 12。发射器11发射经过调制的检测光线,接收器12接收该检测光线,利用所发射的检测光线和接收检测光线的飞行时间差异,测量被测物体到该TOF传感器的距离D,进而绘制出被测物体的三维形貌。
可选地,所述检测光线可以但不限于仅能够为波长为940nm的红外光。
在应用于显示装置时,如图1所示,所述TOF传感器10设置于显示面板100的一侧,发射器TX 11所发射的检测光线透过显示面板100,传输至显示面板100的另一侧的被测物体,经被测物体反射后透过显示面板100传输至接收器RX 12。其中,为实现人脸识别或图像采集,发射器TX 11和接收器RX 12需要保持同步,且接收器RX 12能够检测发射器TX 11所发射检测光线的传输时间,在此基础上,显示装置的处理器能够根据接收器RX 12所检测的传输时间,分析获得距离显示面板100预设距离范围内的被测物体的三维形貌。
在设置TOF传感器10的显示装置中,由于接收器RX 12的镜头通常为曲面结构,如图2所示,在接收器RX 12与显示面板100之间会形成中心薄边缘厚的空气间隙层。接收器RX 12在经过接收器RX 12的镜头内部和显示面板100的反射和折射后,入射至镜头内部的反射光形成相干光,随着空气间隙厚度的变化,干涉相消的地方出现暗纹,干涉相长的地方出现亮纹,即出现牛顿环现象,影响TOF成像精确性。
为解决上述技术问题,本公开实施例提供一种显示装置,通过在显示面板的背离显示面一侧的表面设置光反射干扰层,利用光反射干扰层调整所述显示面板与所述TOF传感器10的镜头之间的反射光线的传输方向,以避免TOF传感器10接收到相干光线,出现牛顿环现象。
具体地,本公开实施例所述显示装置,如图3和图4所示,包括:
显示面板100和设置于显示面板100的背离显示面110一侧的飞行时间TOF传感器10;
TOF传感器10所接收的检测光线能够透过显示面板100的目标透光区域120;
其中,在显示面板100的目标透光区域120上,朝向TOF传感器10的表面121设置有光反射干扰层130;
光反射干扰层130用于调整检测光线在显示面板100与TOF传感器10的镜头之间反射的反射光线的传输方向,使光反射干扰层130上反射光线的反射率位于设定范围内,保证TOF传感器所接收的反射光线不为相干光线。
其中,需要说明的是,光反射干扰层130用于减少检测光线在显示面板100与TOF传感器10的镜头之间反射的反射光线产生的干涉光线,相应的在干涉光线降低的情况下,TOF传感器10所接收反射光线的反射率降低。其中,上述的设定范围为能够保证TOF传感器10所接收的反射光线不包括干涉光线,使TOF传感器不会产生牛顿环现象的情况下,所检测到反射光线的反射率的数值范围,具体可以根据实验测试获得。可选地,可以通过反射率测试工具检测入射至光反射干扰层130的入射光的反射率,反射率为反射光强与入射光强的比值。经实验测定,在保证TOF传感器所接收的反射光线不为相干光线的情况下,光反射干扰层130上反射光线的反射率应小于或等于1%,也即设定范围为大于零且小于或等于1%。
结合图2和图3所示,在设置TOF传感器10的显示装置中,TOF传感器10的发射器所发射检测光线在经过被测物体反射后,被反射的检测光线透过显示面板100的目标透光区域120后传输至TOF传感器10的接收器RX 12。其中,经被测物体反射的检测光线在传输至TOF传感器10的接收器RX 12时,被反射的部分检测光线在显示面板100与TOF传感器10的第一镜头101之间反射,形成为第一反射光线a,第一反射光线a依次透过TOF传感器10的第一镜头101和第二镜头102后,被TOF传感器10的接收器所接收;被反射的部分检测光线在TOF传感器10的第一镜头101与第二镜头102之间反射,形成为第二反射光线b,第二反射光线b透过第二镜头102后,被TOF传感器10的接收器所接收。其中,在目标透光区域120朝向TOF传感器10的表面121未设置光反射干扰层130时,由于显示面板100与TOF传感器10的第一镜头101之间为中心薄边缘厚的空气间隙层,第一反射光线a与第二反射光线b形成相干光,且两束光的光程差与所在位置的空气间隙层的厚度相关,随着空气间隙层厚度的变化,干涉相消的地方出现暗纹,干涉相长的地方出现亮纹,即出现牛顿环现象。
针对上述牛顿环现象产生的原因,本公开实施例所述显示装置,其中一实施方式,所述光反射干扰层130形成为减反增透膜层,用于使所接收的所述反 射光线直接透过。
具体地,通过在目标透光区域120的朝向TOF传感器10的表面121设置形成为减反增透膜层的光反射干扰层130,利用膜层间的等倾干涉,使入射至光反射干扰层130的反射光干涉相消,实现减反作用,如图5所示。
其中,显示面板100的背离显示面110的一侧设置有透明基板,光反射干扰层130设置于透明基板上;
其中,光反射干扰层130所具有的第二折射率n2小于所述透明基板所具有的第一折射率n1。
该实施方式所述显示装置,通过使光反射干扰层130所具有的第二折射率n2小于所述透明基板所具有的第一折射率n1,能够使入射至光反射干扰层130的反射光干涉相消,达到减反作用。
根据单层增透膜原理,当设置于玻璃基板上的光学膜层的折射率小于玻璃基板的折射率时,光学膜层的反射比小于玻璃基板的反射比时,能够起到减反增透的效果。
具体地,所述第一折射率n1与所述第二折射率n2之间满足以下关系式:
n2=(n1*n)^(1/2);
其中,n为空气折射率。
也即,当所述第一折射率n1与所述第二折射率n2之间满足以上关系式时,设置光反射干扰层130的玻璃基板的反射比为零,起到全增透的作用。
本公开实施例中,可选地,光反射干扰层130的厚度尺寸位于所述检测光线的波长的1/5至2/5之间。
可选地,光反射干扰层130的厚度尺寸为检测光线的波长的1/4,这样使当反射光线在设置光反射干扰层130的玻璃基板的内部反射传输时,反射后光程差偏移二分之一个波长,实现反射的干涉相消。
可选地,TOF传感器10所发射的检测光线为红外光线,波长为940nm,因此本公开实施方式中,光反射干扰层130的厚度可以为235nm。
举例说明,以玻璃基板的第一折射率n1为1.945,空气折射率n为1.00027为例,根据上述关系式,在光反射干扰层130所具有的第二折射率n2为1.395的情况下,且更佳地,光反射光干扰层130的厚度为235nm时,能够实现最佳的减反增透效果,进而极大地减轻等厚干涉,消除牛顿环现象。
根据以上,可选地,在玻璃基板的第一折射率n1为1.945,TOF传感器10所发射的检测光线为红外光线的情况下,制成光反射干扰层130所采用的材料可以为MgF 2,所采用的MgF 2的折射率为1.374,相较于其他材料,所具有折射率更接近于采用上述关系式计算的第二折射率n2,也即1.395,因此达到最大程度的减反增透效果。
本公开实施方式中,当制成光反射干扰层130所采用的材料为MgF 2时,可选地,光反射干扰层130可以采用真空镀膜方式制作在显示面板100的朝向TOF传感器10一侧的玻璃基板上。
本公开实施例所述显示装置,另一实施方式,制成光反射干扰层130所采用的材料可以为SiO 2,在TOF传感器10所发射的检测光线为红外光线时,光反射干扰层130的厚度为235nm。在TOF传感器10所发射的检测光线为红外光线时,SiO 2的折射率为1.452,对于光反射干扰层130所设置的玻璃基板的第一折射率n1为1.945的情况,光反射干扰层130所具有的折射率,也比较接近于采用上述关系式计算的第二折射率n2,也即1.395,从而较大程度地实现干涉相消,减少红外光反射,改善牛顿环现象。
本公开实施方式中,当制成光反射干扰层130所采用的材料为SiO 2时,可选地,光反射干扰层130可以采用等离子体增强化学气相沉积PECVD方式制作在显示面板100的朝向TOF传感器10一侧的玻璃基板上。
本公开实施例所述显示装置的另一实施方式,光反射干扰层130还可以用于通过使所接收的反射光线产生散射的方式,调整检测光线在显示面板100与TOF传感器10的镜头之间反射的反射光线的传输方向,如图6所示,使TOF传感器10所接收的反射光线不为相干光线。
具体地,采用上述实施方式时,光反射干扰层130形成为粗糙表面层,通过形成包括多个凹凸结构的粗糙表面层,使所入射的反射光线产生散射,也即形成漫反射。
具体地,可以通过雾化的方式在显示面板100的朝向TOF传感器10一侧的玻璃基板上制作粗糙表面层,形成为光反射干扰层130。
本公开实施例所述显示装置,可选地,在显示面板100朝向TOF传感器10一侧的玻璃基板上,光反射干扰层130可以仅制作于目标透光区域120内,只要能够保证所设置的光反射干扰层,能够调整显示面板100与TOF传感器10 的镜头之间的反射光线的传输方向,以达到消除或减轻镜头表面发生的等厚干涉,以改善牛顿环现象的效果即可。
可选地,为简化工艺流程和制作方式,光反射干扰层130覆盖显示面板100的背离显示面一侧的整个表面,也即在显示面板100朝向TOF传感器10一侧的玻璃基板上,整个表面制作光反射干扰层130。
本公开实施例所述显示装置,可选地,如图4所示,目标透光区域120上设置有像素单元,形成为透光显示区域。
进一步,可选地,如图4所示,所述显示装置还包括:
设置于所述显示面板100的背离显示面一侧的摄像头20;
其中,所述摄像头20在显示面板100上的正投影位于所述目标透光区域120内。
基于上述实施方式,所述显示装置呈全面屏显示效果,TOF传感器10能够透过显示屏的部分显示区域(也即为目标透光区域)采集被测物体的三维形貌的检测光线,以进行人脸识别和/或进行图像采集。
可选地,摄像头20也设置于目标透光区域的正下方位置,透过该目标透光区域,摄像头20用于采集图像信息。
可选地,如图4所示,显示面板100的目标透光区域120形成为第一显示区域,显示面板100还包括围绕目标透光区域120的第二显示区域,该第二显示区域与第一显示区域相组合形成为显示面板100的整个显示区域。
可选地,目标透光区域120靠近显示面板100的上边缘设置。
另外,为实现目标透光区域120的透光且显示,显示面板100可以为OLED显示面板,目标透光区域120上所设置的像素单元采用透光材料制作。
为保证目标透光区域120的透光功能,目标透光区域120(也即为第一显示区域)设置的像素单元可以与显示区域上除目标透光区域120之外的正常显示区域(也即为第二显示区域)上设置的像素单元不同。
第一区域上设置的像素单元与第二区域上设置的像素单元的设置结构满足以下规则至少之一:
第二显示区域设置的像素单元包括层叠设置的发光单元和驱动电路,所述第一显示区域上设置的像素单元仅包括发光单元;
第一显示区域上设置的像素单元的分布密度小于第二显示区域上其他显 示区域所设置像素单元的分布密度;
第一显示区域上设置的每一像素单元所占据面积小于第二显示区域所设置每一像素单元所占据面积。
举例说明,其中一实施方式,第二显示区域上设置的像素单元包括层叠设置的OLED发光单和驱动电路;而第一显示区域上设置的像素单元可以仅包括OLED发光单元,不包括OLED发光单元的驱动电路,该驱动电路可以设置于显示面板100的边缘区域,并通过连接引线连接至相应的OLED发光单元。
另一实施方式,第一显示区域上设置的像素单元和第二显示区域上设置的像素单元均可以包括OLED发光单和驱动电路,但第一显示区域也即为目标透光区域120的像素单元的分布密度小于第二显示区域的像素单元的分布密度。
另一实施方式,第一显示区域上设置的像素单元和第二显示区域上设置的像素单元均可以包括OLED发光单和驱动电路,第一显示区域也即为目标透光区域120的像素单元的分布密度等于第二显示区域的像素单元的分布密度,但第一显示区域的每一像素单元的占据面积小于第二显示区域的每一像素单元的占据面积。
采用该实施例所述显示装置,在设置TOF传感器的全面屏显示装置中,通过在显示面板的背离显示面一侧的表面设置光反射干扰层,利用光反射干扰层能够调整所述显示面板与所述TOF传感器的镜头之间的反射光线的传输方向,消除或减轻镜头表面发生的等厚干涉,以改善牛顿环现象。
本公开实施例还提供一种用于如上任一项所述显示装置的制备方法,如图7所示,并结合图1至图6,所述方法包括:
S710,制作显示面板;
S720,在所述显示面板的目标透光区域的背离显示面的一侧表面上制作光反射干扰层;
S730,在所述显示面板的背离显示面板的一侧设置TOF传感器,所述TOF传感器的检测光线能够经过所述显示面板的目标透光区域传输。
采用上述实施方式所述制备方法,所制作的显示装置中,光反射干扰层用于调整检测光线在显示面板与TOF传感器的镜头之间反射的反射光线的传输方向,消除或减轻镜头表面发生的等厚干涉,以改善牛顿环现象。
可选地,所述的制备方法,其中,所述光反射干扰层的制成材料为MgF 2 或者SiO 2时,采用真空镀膜或者离子体增强化学气相沉积的方式制作所述光反射干扰层。
可选地,所述的制备方法,其中,所述光反射干扰层形成为粗糙表面层时,可以采用表面雾化或贴敷防眩光(Anti Glare,AG)散射膜的方式制作所述光反射干扰层。
结合图1至图6,本领域技术人员应该能够了解本公开实施例所述显示装置的制备方法的具体过程,在此不再详细说明。
以上所述是本公开的一些实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (14)

  1. 一种显示装置,其中,包括:
    显示面板和设置于所述显示面板的背离显示面一侧的飞行时间TOF传感器;
    所述TOF传感器所接收的检测光线能够透过所述显示面板的目标透光区域;
    其中,在所述显示面板的目标透光区域上,朝向所述TOF传感器的表面设置有光反射干扰层;
    所述光反射干扰层用于调整所述检测光线在所述显示面板与所述TOF传感器的镜头之间反射的反射光线的传输方向。
  2. 根据权利要求1所述的显示装置,其中,所述光反射干扰层用于使所接收的所述反射光线直接透过。
  3. 根据权利要求1所述的显示装置,其中,所述光反射干扰层用于使所接收的所述反射光线产生散射。
  4. 根据权利要求2所述的显示装置,其中,所述显示面板的背离显示面的一侧设置有透明基板,所述光反射干扰层设置于所述透明基板上;
    其中,所述光反射干扰层所具有的第二折射率n2小于所述透明基板所具有的第一折射率n1。
  5. 根据权利要求4所述的显示装置,其中,所述第一折射率n1与所述第二折射率n2之间满足以下关系式:
    n2=(n1*n)^(1/2);
    其中,n为空气折射率。
  6. 根据权利要求2、4或5所述的显示装置,其中,所述光反射干扰层的厚度尺寸位于所述检测光线的波长的1/5至2/5之间。
  7. 根据权利要求2、4或5所述的显示装置,其特征在于,所述光反射干扰层的制成材料为氟化镁MgF2或者二氧化硅SiO2。
  8. 根据权利要求3所述的显示装置,其中,所述光反射干扰层形成为粗糙表面层。
  9. 根据权利要求1所述的显示装置,其中,所述光反射干扰层覆盖所述显示面板的背离显示面一侧的整个表面。
  10. 根据权利要求1所述的显示装置,其中,所述目标透光区域上设置有 像素单元,且所述目标透光区域上设置的像素单元与所述目标透光区域上其他显示区域设置的像素单元的设置结构满足以下至少之一关系:
    所述目标透光区域上其他显示区域设置的像素单元包括层叠设置的发光单元和驱动电路,所述目标透光区域上设置的像素单元仅包括发光单元;
    所述目标透光区域上设置的像素单元的分布密度小于所述目标透光区域上其他显示区域所设置像素单元的分布密度;
    所述目标透光区域上设置的每一像素单元所占据面积小于所述目标透光区域上其他显示区域所设置每一像素单元所占据面积。
  11. 根据权利要求1所述的显示装置,其中,所述显示装置还包括:
    设置于所述显示面板的背离显示面一侧的摄像头;
    其中,所述摄像头在所述显示面板上的正投影位于所述目标透光区域内。
  12. 一种用于权利要求1至11任一项所述显示装置的制备方法,其中,所述方法包括:
    制作显示面板;
    在所述显示面板的目标透光区域的背离显示面的一侧表面上制作光反射干扰层;
    在所述显示面板的背离显示面板的一侧设置TOF传感器,所述TOF传感器的检测光线能够经过所述显示面板的目标透光区域传输。
  13. 根据权利要求12所述的制备方法,其中,所述光反射干扰层的制成材料为MgF2或者SiO2时,采用真空镀膜或者离子体增强化学气相沉积的方式制作所述光反射干扰层。
  14. 根据权利要求12所述的制备方法,其中,所述光反射干扰层形成为粗糙表面层时,采用表面雾化或贴敷防眩光散射膜的方式制作所述光反射干扰层。
PCT/CN2020/137658 2020-12-18 2020-12-18 显示装置及显示装置的制备方法 WO2022126615A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080003422.8A CN115210676A (zh) 2020-12-18 2020-12-18 显示装置及显示装置的制备方法
US17/611,867 US20230305114A1 (en) 2020-12-18 2020-12-18 Display device and manufacturing method thereof
PCT/CN2020/137658 WO2022126615A1 (zh) 2020-12-18 2020-12-18 显示装置及显示装置的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/137658 WO2022126615A1 (zh) 2020-12-18 2020-12-18 显示装置及显示装置的制备方法

Publications (1)

Publication Number Publication Date
WO2022126615A1 true WO2022126615A1 (zh) 2022-06-23

Family

ID=82058869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137658 WO2022126615A1 (zh) 2020-12-18 2020-12-18 显示装置及显示装置的制备方法

Country Status (3)

Country Link
US (1) US20230305114A1 (zh)
CN (1) CN115210676A (zh)
WO (1) WO2022126615A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110227873A1 (en) * 2010-03-17 2011-09-22 Samsung Mobile Display Co., Ltd. Touch controlled display device
CN210606372U (zh) * 2019-12-04 2020-05-22 维沃移动通信有限公司 一种显示组件、显示模组及电子设备
CN210895487U (zh) * 2018-08-24 2020-06-30 深圳市汇顶科技股份有限公司 屏下光学指纹识别系统及电子装置
CN211319243U (zh) * 2020-01-21 2020-08-21 深圳市汇顶科技股份有限公司 屏下指纹识别装置以及终端设备
CN211529178U (zh) * 2020-03-31 2020-09-18 深圳市汇顶科技股份有限公司 屏下指纹识别装置、背光模组、液晶显示屏和电子设备
CN111999935A (zh) * 2020-08-27 2020-11-27 厦门天马微电子有限公司 显示模组及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110227873A1 (en) * 2010-03-17 2011-09-22 Samsung Mobile Display Co., Ltd. Touch controlled display device
CN210895487U (zh) * 2018-08-24 2020-06-30 深圳市汇顶科技股份有限公司 屏下光学指纹识别系统及电子装置
CN210606372U (zh) * 2019-12-04 2020-05-22 维沃移动通信有限公司 一种显示组件、显示模组及电子设备
CN211319243U (zh) * 2020-01-21 2020-08-21 深圳市汇顶科技股份有限公司 屏下指纹识别装置以及终端设备
CN211529178U (zh) * 2020-03-31 2020-09-18 深圳市汇顶科技股份有限公司 屏下指纹识别装置、背光模组、液晶显示屏和电子设备
CN111999935A (zh) * 2020-08-27 2020-11-27 厦门天马微电子有限公司 显示模组及显示装置

Also Published As

Publication number Publication date
US20230305114A1 (en) 2023-09-28
CN115210676A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
US9864116B2 (en) Electronic devices having infrared-transparent window coatings
WO2018045813A1 (zh) 一种纹路识别器件及电子设备
WO2020088043A1 (zh) 图像获取方法、图像获取装置、结构光组件及电子装置
WO2020088045A1 (zh) 图像获取方法、图像获取装置、结构光组件及电子装置
TW201338145A (zh) 在背側照明成像感測器中之橫向光屏蔽
WO2019144596A1 (zh) 一种光波导结构及显示装置
JP7320080B2 (ja) スクリーン指紋コンポーネント及び端末機器
WO2020088044A1 (zh) 图像获取方法、图像获取装置、结构光组件及电子装置
WO2020181447A1 (zh) 一种光学膜层结构、背光模组、显示装置及电子设备
US20220171097A1 (en) Mobile terminal
CN107239724B (zh) 指纹成像模组
WO2022126615A1 (zh) 显示装置及显示装置的制备方法
CN208737020U (zh) 移动终端
TWI573065B (zh) 觸控顯示模組
WO2022193840A1 (zh) 电子设备和电子设备的测温方法
JP2001194132A (ja) 斜入射干渉計用光学系およびこれを用いた装置
JPWO2019093146A1 (ja) 回折光学素子
US11756978B2 (en) Multi-spectral image sensor
CN112902539A (zh) 冰箱及操作方法和存储介质
CN218350606U (zh) 光学感测系统
JPH05265095A (ja) 背面投影スクリーン
CN216133218U (zh) 多层滤光结构
TWI766676B (zh) 多層濾光結構
WO2023058742A1 (ja) 透明物品
TWI407137B (zh) 具有抗反射單元的光學元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.09.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20965630

Country of ref document: EP

Kind code of ref document: A1