WO2020103139A1 - 一种富缺陷的钠离子电池负极材料及其制备方法与应用 - Google Patents

一种富缺陷的钠离子电池负极材料及其制备方法与应用

Info

Publication number
WO2020103139A1
WO2020103139A1 PCT/CN2018/117243 CN2018117243W WO2020103139A1 WO 2020103139 A1 WO2020103139 A1 WO 2020103139A1 CN 2018117243 W CN2018117243 W CN 2018117243W WO 2020103139 A1 WO2020103139 A1 WO 2020103139A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium ion
ion battery
defect
negative electrode
carbon
Prior art date
Application number
PCT/CN2018/117243
Other languages
English (en)
French (fr)
Inventor
侴术雷
张睿琦
李春生
刚勇
李用成
曹余良
李东祥
李亚书
Original Assignee
辽宁星空钠电电池有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辽宁星空钠电电池有限公司 filed Critical 辽宁星空钠电电池有限公司
Priority to CN201880036322.8A priority Critical patent/CN110809558A/zh
Priority to PCT/CN2018/117243 priority patent/WO2020103139A1/zh
Publication of WO2020103139A1 publication Critical patent/WO2020103139A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of anode materials for sodium ion batteries, and more specifically, relates to a defect-rich anode material for sodium ion batteries, and a preparation method and application thereof.
  • lithium-ion batteries have gradually become an important direction for the development of secondary batteries due to their own characteristics such as light weight, high capacity, long life, environmental friendliness and no memory effect.
  • Lithium ion batteries have become the most concerned energy storage battery system and are widely used in various portable energy storage devices.
  • the cost of lithium-ion batteries has increased, so it is necessary to find an alternative technology to reduce their costs.
  • Sodium ion batteries which are widely distributed and inexpensive, have received more and more attention from researchers, and are gradually called an important choice for future high-performance secondary batteries.
  • the purpose of the present invention is to provide a method for preparing defect-rich sodium ion battery anode materials by using carbon-based materials in order to overcome the deficiencies of the prior art.
  • the present invention obtains a negative electrode material for sodium ion batteries with excellent electrochemical performance by precisely controlling the preparation conditions such as carbonization temperature, carbonization time, and sintering atmosphere.
  • the invention has a wide range of materials, simple and easy operation process, low cost, high energy density, good rate performance, and heat preservation sintering in a reducing atmosphere, which increases the defects of carbon-based materials.
  • the negative electrode material of sodium ion battery obtained according to this method It can meet various indexes as the anode material of sodium ion battery. In addition, it also has important significance for the recycling of agricultural waste.
  • the first aspect of the present invention provides a method for preparing a defect-rich sodium ion battery anode material, including the following steps:
  • step (1) The carbon-based material obtained in step (1) is sintered at 100-1200 ° C for 1-24 hours under a reducing atmosphere to obtain a preliminary pyrolyzed carbon precursor;
  • step (3) The carbon precursor powder obtained in step (2) is sintered at 1200-2500 ° C for 0.5-48 hours under an inert atmosphere to obtain a carbon material;
  • step (3) The carbon material obtained in step (3) is crushed and sieved to obtain the final negative electrode material.
  • the carbon-based material in step (1) is biological agricultural waste or artificial organic matter.
  • the carbon-based material is selected from rice, sugar cane, rape, cotton, wheat, corn, reed, sisal, bamboo, peanut, seaweed, loofah, pumpkin, date wood, oak, peach wood, machine-made wood, glucose, sucrose , Polyacrylic acid, epoxy resin, asphalt, coal tar, polythiophene, polypyridine, polyamide, polyoxymethylene, polycarbonate, polypyrrole, polyethylene, polystyrene, polyaniline, polyurethane, melamine and phenolic resin At least one of them, as a carbon source. Specific examples include corn stover, phenolic resin, and straw.
  • the drying temperature in the step (1) is 80-300 ° C., and the drying time is 4-48 hours; the drying is completed in an oven, kiln, muffle furnace, or tube furnace.
  • the sintering time is 1 hour, 2 hours, 3 hours, 4 hours, 6 hours, 8 hours, 10 hours, 12 hours, 20 hours, 24 hours, 30 hours , 40 hours or 48 hours.
  • the sintering temperature is 100 ° C, 200 ° C, 300 ° C, 400 ° C, 500 ° C, 600 ° C, 700 ° C, 800 ° C, 900 ° C, 1000 ° C, 1100 ° C, 1200 ° C.
  • step (2) the heating is completed in an instrument including an oven, a kiln, a muffle furnace, a tube furnace, and the like.
  • the reducing atmosphere is an atmosphere containing at least one of carbon monoxide, hydrogen, methane, methanol, ammonia, ethanol, propanol, ethane, propane, or hydrogen sulfide, and is heated
  • the ratio of the amount of these gaseous substances in the space to the total gaseous substance is not less than 1%, preferably greater than 30%, more preferably greater than 60%, further preferably greater than 80%, the remaining gas is inert gas, and most preferably all is carbon monoxide , Hydrogen, methane, methanol, ammonia, ethanol, propanol, ethane, propane, or hydrogen sulfide.
  • the inert gas is selected from at least one of nitrogen, helium, neon, argon, krypton, and xenon.
  • the sintering time is 0.5 hours, 2 hours, 4 hours, 12 hours, 6 hours, 10 hours, 8 hours, 12 hours, 16 hours, 20 hours, 24 hours , 30 hours, 40 hours or 48 hours.
  • the sintering temperature is 1200 °C, 1300 °C, 1400 °C, 1500 °C, 1600 °C, 1700 °C, 1800 °C, 1900 °C, 2000 °C, 2100 °C, 2200 °C, 2300 °C, 2400 °C, 2500 °C .
  • step (3) the sintering is completed in an instrument including an oven, a kiln, a muffle furnace, a tube furnace, and the like.
  • the machinery used for crushing in the step (4) may be selected from ball mills, jaw crushers, cone crushers, roller crushers, hammer crushers, wheel mills, impact crushers, One or more of suspended roller ring roller mill, colloid mill, vibration mill, jet mill.
  • the particle size after pulverization in the step (4) is between 1-50 microns.
  • the sieve mesh number in the step (4) is 50-1000 mesh, preferably 100-400 mesh.
  • the second aspect of the present invention provides a defect-rich sodium ion battery negative electrode material prepared by the above method.
  • the third aspect of this aspect provides the application of the above-mentioned defect-rich anode material in the anode material of sodium ion batteries.
  • the present invention provides a sodium ion battery negative electrode prepared by using the defect-rich sodium ion battery negative electrode material as a raw material.
  • the present invention provides a battery including the negative electrode of the sodium ion battery of the present invention.
  • the invention provides a defect-rich sodium ion battery negative electrode material and a preparation method thereof.
  • the invention first performs carbonization of a carbon-based material in a reducing atmosphere to increase the defect of the material, and then performs secondary sintering in an inert atmosphere.
  • a defect-rich sodium ion battery negative electrode material is prepared, in which the temperature of the second sintering is higher than that of the first sintering.
  • the invention prepares a negative electrode material of sodium ion battery by adopting a reducing atmosphere-secondary sintering method, the raw material cost is low and the obtained material has excellent electrochemical performance.
  • FIG. 1 is a schematic diagram of XRD of the anode material of a defect-rich sodium ion battery in Example 1.
  • FIG. 1 is a schematic diagram of XRD of the anode material of a defect-rich sodium ion battery in Example 1.
  • FIG. 2 is a schematic diagram of SEM of a defect-rich sodium ion battery anode material in Example 1.
  • FIG. 3 is a graph of the first charge-discharge curve of the defect-rich sodium ion battery anode material at 20 mA / g in Example 1.
  • FIG. 4 is a graph comparing the cycle performance of the defect-rich sodium ion battery anode material at 50 mA / g in Example 1.
  • FIG. 4 is a graph comparing the cycle performance of the defect-rich sodium ion battery anode material at 50 mA / g in Example 1.
  • FIG. 5 is a schematic diagram of XRD of a defect-rich sodium ion battery anode material in Example 2.
  • FIG. 6 is a schematic diagram of SEM of a defect-rich sodium ion battery anode material in Example 2.
  • FIG. 7 is a graph of the first charge-discharge curve of the defect-rich sodium ion battery anode material at 20 mA / g in Example 2.
  • FIG. 8 is a graph comparing the cycle performance of the defect-rich sodium ion battery anode material at 50 mA / g in Example 2.
  • FIG. 8 is a graph comparing the cycle performance of the defect-rich sodium ion battery anode material at 50 mA / g in Example 2.
  • FIG. 9 is a SEM schematic diagram of the negative electrode material of the defect-rich sodium ion battery in Example 3.
  • FIG. 9 is a SEM schematic diagram of the negative electrode material of the defect-rich sodium ion battery in Example 3.
  • FIG. 10 is a graph of the first charge-discharge curve of the defect-rich sodium ion battery anode material at 20 mA / g in Example 3.
  • FIG. 10 is a graph of the first charge-discharge curve of the defect-rich sodium ion battery anode material at 20 mA / g in Example 3.
  • FIG. 11 is a graph comparing the cycle performance of the defect-rich sodium ion battery anode material at 50 mA / g in Example 3.
  • FIG. 11 is a graph comparing the cycle performance of the defect-rich sodium ion battery anode material at 50 mA / g in Example 3.
  • the various reagents and raw materials used in the present invention are commercially available products or products that can be prepared by known methods.
  • This embodiment is used to illustrate a method for preparing a defect-rich sodium ion battery anode material of the present invention, which includes the following steps:
  • step 2) After heating the corn stover obtained in step 1) at 800 ° C for 4 hours under a carbon monoxide atmosphere, a carbon precursor is obtained.
  • step 3 Incubate the carbon precursor material obtained in step 2) at 1300 ° C for 25 hours under a nitrogen atmosphere.
  • step 4) The carbon precursor obtained in step 3) is crushed using a ball mill until the D50 reaches 10 microns and the particle size distribution is narrow.
  • the negative electrode material synthesized under this condition is a hard carbon material, and there is a broad peak around 23 °, which corresponds to the (100) plane of the hard carbon material. There is also a broad peak around 45 °, which corresponds to the (001) plane of the hard carbon material.
  • the absence of impurities in the figure indicates that the hard carbon material has fewer impurities.
  • the SEM image of the negative electrode material in Example 1 is shown in FIG. 2.
  • the first charge specific capacity is 335mAh g -1
  • the first Coulomb efficiency is 71.76%
  • the specific capacity of the material after charging and discharging 350 times at a current density of 50 mA / g is 245 mAh g -1
  • the capacity retention rate is 73.20%.
  • This embodiment is used to illustrate a method for preparing a defect-rich sodium ion battery anode material of the present invention, which includes the following steps:
  • step 2) The phenol resin obtained in step 1) was heated at 800 ° C for 4 hours under a hydrogen atmosphere to obtain a carbon precursor.
  • step 3 Incubate the carbon precursor material obtained in step 2) at 1500 ° C for 20 hours under an argon atmosphere.
  • step 4) The carbon precursor obtained in step 3) is crushed using a ball mill until the D50 reaches 20 microns and the particle size distribution is narrow.
  • the negative electrode material synthesized under this condition is a hard carbon material, and there is a broad peak around 23 °, which corresponds to the (100) plane of the hard carbon material. There is also a broad peak around 45 °, which corresponds to the (001) plane of the negative electrode material.
  • the absence of impurities in the figure shows that the hard carbon material has fewer impurities.
  • the SEM image of the negative electrode material is shown in FIG. 6.
  • the first charge specific capacity is 313mAh g -1
  • the first Coulomb efficiency is 76.78%.
  • the specific capacity of the material after charging and discharging 232 times at a current density of 50 mA / g is 249 mAh g -1
  • the capacity retention rate is 79.55%.
  • This embodiment is used to illustrate a method for preparing a defect-rich sodium ion battery anode material of the present invention, which includes the following steps:
  • step 2) The straw obtained in step 1) is heated at 300 ° C for 24 hours in an atmosphere of a mixed gas of hydrogen, carbon monoxide and carbon dioxide (the molar ratio of the three is 1: 1: 1) to obtain a carbon precursor.
  • step 2) The carbon precursor material obtained in step 2) was kept at 1800 ° C for 25 hours under an argon atmosphere.
  • step 4) The carbon precursor obtained in step 3) is crushed using a jaw crusher until the D50 reaches 50 microns and the particle size distribution is narrow.
  • the SEM image of the material is shown in Figure 9, and the material particles are mainly around 10-15 microns.
  • the negative electrode and the negative electrode material of this embodiment as the positive electrode, assemble a button cell in a glove box filled with argon gas and strictly controlling the water oxygen index.
  • the first charge specific capacity is 317mAh g -1
  • the first Coulomb efficiency is 71.17%.
  • the specific capacity of the material after charging and discharging 13 times at a current density of 50 mA / g was 298 mAh g -1
  • the capacity retention rate was 93.71%.

Abstract

一种富缺陷的钠离子电池负极材料及其制备方法与应用,所述制备方法包括如下步骤:将碳基材料水洗干燥,通过在还原性气氛下以100-1200℃加热1-24小时增加材料的缺位缺陷,之后在惰性气氛下进行二次烧结以1200-2500℃保温0.5-48小时,得到最终的产物。操作工艺简单易行,价格低廉,能量密度较高,倍率性能良好,根据该方法得到的钠离子电池负极材料是一种优异的钠离子电池负极材料。

Description

一种富缺陷的钠离子电池负极材料及其制备方法与应用 技术领域
本发明属于钠离子电池负极材料领域,更具体地,涉及一种富缺陷的钠离子电池负极材料及其制备方法与应用。
背景技术
环境污染及能源危机的日益加重使得绿色能源的开发越来越重要。其中,锂离子电池由于其本身具有的质量轻、容量高、寿命长、环境友好且无记忆效应等特点逐渐成为了二次电池发展的重要方向。锂离子电池已经成为最受关注的储能电池体系,并在各种便携式储能设备中广泛应用。但由于锂资源有限,使得锂离子电池成本增高,因此,需要寻求一种可替代技术来降低其成本。而作为资源分布广泛、成本低廉的钠离子电池得到了研究者越来越多的关注,逐渐称为未来高性能二次电池的重要选择。当前,商品化的锂离子电池普遍采用石墨类材料作为负极材料,但是石墨材料本身较低的比容量,使得其性能提升空间不够,并且过低的电压平台使得石墨类负极材料容易出现锂金属的沉积,导致安全问题。而在钠离子电池中,传统锂离子电池中的石墨类负极材料由于碳原子层问距较小,理论上钠离子存储能力近乎为零。因此,近年来大量的研究人员集中于研发能够用于钠离子电池的新型负极材料。其中,碳基材料由于其优异的电化学性能,逐渐成为下一代高性能钠离子电池电极材料。
发明内容
本发明的目的是为了克服现有技术的不足而提供一种利用碳基材料制备富缺陷的钠离子电池负极材料的方法。本发明通过对碳化温度、碳化时 间、烧结气氛等制备条件的精确控制,得到了电化学性能优异的钠离子电池负极材料。本发明来料广泛,操作工艺简单易行,成本低廉,能量密度较高,倍率性能良好,而且通过还原性气氛保温烧结,增加了碳基材料的缺陷,根据该方法得到的钠离子电池负极材料能够满足作为钠离子电池负极材料的各项指标。此外,对于农业废弃物的循环利用也具有重要的意义。
为实现上述技术目的,本发明的第一方面提供一种富缺陷的钠离子电池负极材料的制备方法,包括如下步骤:
(1)将碳基材料水洗干燥;
(2)将步骤(1)得到的碳基材料在还原性气氛下以100-1200℃烧结1-24小时,得到初步热解的碳前体;
(3)将步骤(2)得到的碳前体粉末在惰性气氛下以1200-2500℃烧结0.5-48小时,得到碳材料;
(4)将步骤(3)得到的碳材料进行粉碎,过筛,得到最终的负极材料。
进一步地,步骤(1)中的所述碳基材料为生物类农业废弃物或人造有机物。优选地,所述碳基材料选自水稻,甘蔗,油菜,棉花,小麦,玉米,芦苇,剑麻,竹子,花生,海藻,丝瓜、南瓜,枣木,橡木,桃木、机制木材、葡萄糖、蔗糖、聚丙烯酸类、环氧树脂、沥青、煤焦油、聚噻吩、聚吡啶,聚酰胺、聚甲醛、聚碳酸酯、聚吡咯、聚乙烯、聚苯乙烯、聚苯胺、聚氨酯、三聚氰胺和酚醛树脂中的至少一种,作为碳源。具体例如为玉米秸秆、酚醛树脂、稻草秆。
进一步优选地,所述步骤(1)中的干燥的温度为80-300℃,干燥的时间为4-48小时;所述干燥在烘箱、窑、马弗炉或管式炉中完成。
进一步地,步骤(2)中,优选地,所述烧结的时间为1小时、2小时、3小时、4小时、6小时、8小时、10小时、12小时、20小时、24小时、30小时、40小时或48小时。优选地,所述烧结的温度为100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃、900℃、1000℃、1100℃、1200℃。
进一步地,步骤(2)中,所述加热在如下的仪器中完成,所述仪器包括烘箱、窑、马弗炉和管式炉等。
进一步地,步骤(2)中,所述还原性气氛为含有一氧化碳、氢气、甲烷、甲醇、氨气、乙醇、丙醇、乙烷、丙烷或硫化氢中的至少一种的气氛,且在加热空间中这些气体的物质的量占总气体的物质的量之比不小于1%,优选大于30%,更优选大于60%,进一步优选大于80%,剩余气体为惰性气体,最优选全部为一氧化碳、氢气、甲烷、甲醇、氨气、乙醇、丙醇、乙烷、丙烷或硫化氢中的至少一种。所述惰性气体选自氮气,氦气,氖气,氩气,氪气,氙气中的至少一种。
进一步地,步骤(3)中,优选地,所述烧结的时间为0.5小时、2小时、4小时、12小时、6小时、10小时、8小时、12小时、16小时、20小时、24小时、30小时、40小时或48小时。优选地,所述烧结的温度为1200℃、1300℃、1400℃、1500℃、1600℃、1700℃、1800℃、1900℃、2000℃、2100℃、2200℃、2300℃、2400℃、2500℃。
进一步地,步骤(3)中,所述烧结在如下的仪器中完成,所述仪器包括烘箱、窑、马弗炉和管式炉等。
进一步地,所述步骤(4)中的粉碎所使用的机械可以选自球磨机、颚式破碎机、圆锥式破碎机、辊式破碎机、锤式破碎机、轮碾机、反击式破碎机、悬辊式环辊磨机、胶体磨、振动磨、气流粉碎机中的一种或多种。
进一步地,所述步骤(4)中粉碎后的粒径在1-50微米之间。
进一步地,所述步骤(4)中的过筛目数为50-1000目,优选为100-400目。
本发明的第二方面提供由上述方法制备的富缺陷的钠离子电池负极材料。
本方面的第三方面提供上述富缺陷的负极材料在钠离子电池负极材料中的应用。具体地,本发明提供一种钠离子电池负极,以本发明所述的富 缺陷的钠离子电池负极材料为原料制备。
另一方面,本发明提供一种电池,包括本发明所述的钠离子电池负极。
本发明提供一种富缺陷的钠离子电池负极材料及其制备方法,本发明先将碳基材料在还原性气氛下进行预碳化增加材料的缺位缺陷,再在惰性气氛下进行二次烧结,从而制得富缺陷的钠离子电池负极材料,其中二次烧结的温度高于一次烧结的温度。本发明通过采用还原气氛-二次烧结的方法制备了钠离子电池负极材料,原料成本低廉且所得材料的电化学性能优异。
本发明方法的优点如下:
(1)采用两阶段碳化工艺,可以促使碳基材料中的杂质充分去除,形成碳含量较高的多孔碳材料;
(2)在还原性气氛下高温处理碳材料,可以为碳材料带来更多的缺陷位点,实现材料容量和循环性能的提升。
本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。
附图说明
通过结合附图对本发明示例性实施方式进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显。
图1为实施例1中富缺陷的钠离子电池负极材料的XRD示意图。
图2为实施例1中富缺陷的钠离子电池负极材料的SEM示意图。
图3为实施例1中富缺陷的钠离子电池负极材料在20mA/g下的首次充放电曲线图。
图4为实施例1中富缺陷的钠离子电池负极材料在50mA/g下的循环性能对比图。
图5为实施例2中富缺陷的钠离子电池负极材料的XRD示意图。
图6为实施例2中富缺陷的钠离子电池负极材料的SEM示意图。
图7为实施例2中富缺陷的钠离子电池负极材料在20mA/g下的首次充放电曲线图。
图8为实施例2中富缺陷的钠离子电池负极材料在50mA/g下的循环性能对比图。
图9为实施例3中富缺陷的钠离子电池负极材料的SEM示意图。
图10为实施例3中富缺陷的钠离子电池负极材料在20mA/g下的首次充放电曲线图。
图11为实施例3中富缺陷的钠离子电池负极材料在50mA/g下的循环性能对比图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除有特别说明,本发明中用到的各种试剂、原料均为可以从市场上购买的商品或者可以通过公知的方法制得的产品。
实施例1
本实施例用于说明本发明的一种富缺陷的钠离子电池负极材料的制备方法,包括以下步骤:
1)以1000g玉米秸秆为原料,用去离子水清洗三遍后,在马弗炉中100℃干燥5小时。
2)在一氧化碳氛围下将步骤1)得到的玉米秸秆在800℃下加热4 小时后得到碳前体。
3)在氮气氛围下将步骤2)得到的碳前体材料在1300℃下保温25小时。
4)将步骤3)得到的碳前体使用球磨机进行粉碎,粉碎至D50达到10微米,且粒度分布较窄。
5)将处理后的碳材料过160目筛得到最终的产物。
从图1中可以发现在该条件下合成出的负极材料为硬碳材料,23°左右有一个宽峰,对应硬碳材料的(100)面。45°左右也有一个宽峰,对应硬碳材料的(001)面,图中无杂峰说明硬碳材料杂质较少。
实施例1中负极材料的SEM图如图2所示。
如图3所示,以金属钠片为负极,以本实施例负极材料为正极,在充满氩气并严格控制水氧指数的手套箱中组装扣式电池,在0-2V电压下,以20mA/g的电流密度充放电,首次充电比容量为335mAh g -1,首次库伦效率为71.76%。如图4所示,50mA/g的电流密度下充放电350次后材料的比容量为245mAh g -1,容量保持率为73.20%。
实施例2
本实施例用于说明本发明的一种富缺陷的钠离子电池负极材料的制备方法,包括以下步骤:
1)以200g酚醛树脂为原料,用蒸馏水清洗三遍后,在鼓风烘箱中130℃干燥5小时。
2)在氢气氛围下将步骤1)得到的酚醛树脂在800℃下加热4小时后得到碳前体。
3)在氩气氛围下将步骤2)得到的碳前体材料在1500℃下保温20小时。
4)将步骤3)得到的碳前体使用球磨机进行粉碎,粉碎至D50达到 20微米,且粒度分布较窄。
5)将处理后的碳材料过300目筛得到最终的产物。
从图5中可以发现在该条件下合成出的负极材料为硬碳材料,23°左右有一个宽峰,对应硬碳材料的(100)面。45°左右也有一个宽峰,对应负极材料的(001)面,图中无杂峰说明硬碳材料杂质较少。
负极材料的SEM图如图6所示。
如图7所示,以金属钠片为负极,以本实施例负极材料为正极,在充满氩气并严格控制水氧指数的手套箱中组装扣式电池,在0-2V电压下,以20mA/g的电流密度充放电,首次充电比容量为313mAh g -1,首次库伦效率为76.78%。如图8所示,50mA/g的电流密度下充放电232次后材料的比容量为249mAh g -1,容量保持率为79.55%。
实施例3
本实施例用于说明本发明的一种富缺陷的钠离子电池负极材料的制备方法,包括以下步骤:
1)以1000g稻草秆为原料,用蒸馏水清洗三遍后,在管式炉中201℃干燥48小时。
2)在氢气、一氧化碳与二氧化碳混合气体(三者摩尔比为1:1:1)的氛围下将步骤1)得到的稻草秆在300℃下加热24小时后得到碳前体。
3)在氩气氛围下将步骤2)得到的碳前体材料在1800℃下保温25小时。
4)将步骤3)得到的碳前体使用颚式破碎机进行粉碎,粉碎至D50达到50微米,且粒度分布较窄。
5)将处理后的碳材料过100目筛得到最终的产物。
材料的SEM图如图9所示,材料颗粒主要在10-15微米左右。
如图10所示,以金属钠片为负极,以本实施例负极材料为正极,在充 满氩气并严格控制水氧指数的手套箱中组装扣式电池,在0-2V电压下,以20mA/g的电流密度充放电,首次充电比容量为317mAh g -1,首次库伦效率为71.17%。如图11所示,50mA/g的电流密度下充放电13次后材料的比容量为298mAh g -1,容量保持率为93.71%。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (10)

  1. 一种富缺陷的钠离子电池负极材料的制备方法,其特征在于,包括如下步骤:
    (1)将碳基材料水洗干燥;
    (2)将步骤(1)得到的碳基材料在还原性气氛下以100-1200℃烧结1-24小时,得到初步热解的碳前体;
    (3)将步骤(2)得到的碳前体粉末在惰性气氛下以1200-2500℃烧结0.5-48小时,得到碳材料;
    (4)将步骤(3)得到的碳材料进行粉碎,过筛,得到最终的负极材料。
  2. 根据权利要求1所述的富缺陷的钠离子电池负极材料的制备方法,其特征在于,所述碳基材料选自水稻,甘蔗,油菜,棉花,小麦,玉米,芦苇,剑麻,竹子,花生,海藻,丝瓜、南瓜,枣木,橡木,桃木、机制木材、葡萄糖、蔗糖、聚丙烯酸类、环氧树脂、沥青、煤焦油、聚噻吩、聚吡啶,聚酰胺、聚甲醛、聚碳酸酯、聚吡咯、聚乙烯、聚苯乙烯、聚苯胺、聚氨酯、三聚氰胺和酚醛树脂中的至少一种。
  3. 根据权利要求1所述的富缺陷的钠离子电池负极材料的制备方法,其特征在于,所述步骤(1)中的干燥的温度为80-300℃,干燥的时间为4-48小时;所述干燥在烘箱、窑、马弗炉或管式炉中完成。
  4. 根据权利要求1所述的富缺陷的钠离子电池负极材料的制备方法,其特征在于,所述步骤(2)中的烧结在烘箱、窑、马弗炉或管式炉中完成。
  5. 根据权利要求1所述的富缺陷的钠离子电池负极材料的制备方法, 其特征在于,所述步骤(2)中的还原性气氛为含有一氧化碳、氢气、甲烷、甲醇、氨气、乙醇、丙醇、乙烷、丙烷或硫化氢中的至少一种的气氛,且在加热空间中这些气体的物质的量占总气体的物质的量之比大于或等于1%,剩余气体为惰性气体,所述惰性气体选自氮气,氦气,氖气,氩气,氪气和氙气中的至少一种。
  6. 根据权利要求1所述的富缺陷的钠离子电池负极材料的制备方法,其特征在于,所述步骤(3)中的烧结在烘箱、窑、马弗炉或管式炉中完成。
  7. 根据权利要求1所述的富缺陷的钠离子电池负极材料的制备方法,其特征在于,所述步骤(4)中粉碎后的粒径在1-50微米之间。
  8. 根据权利要求1所述的富缺陷的钠离子电池负极材料的制备方法,其特征在于,所述步骤(4)中的过筛目数为50-1000目。
  9. 由权利要求1-8中任意一项所述的方法制备的富缺陷的钠离子电池负极材料。
  10. 权利要求9所述的富缺陷的负极材料在钠离子电池负极材料中的应用。
PCT/CN2018/117243 2018-11-23 2018-11-23 一种富缺陷的钠离子电池负极材料及其制备方法与应用 WO2020103139A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880036322.8A CN110809558A (zh) 2018-11-23 2018-11-23 一种富缺陷的钠离子电池负极材料及其制备方法与应用
PCT/CN2018/117243 WO2020103139A1 (zh) 2018-11-23 2018-11-23 一种富缺陷的钠离子电池负极材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117243 WO2020103139A1 (zh) 2018-11-23 2018-11-23 一种富缺陷的钠离子电池负极材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2020103139A1 true WO2020103139A1 (zh) 2020-05-28

Family

ID=69487852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117243 WO2020103139A1 (zh) 2018-11-23 2018-11-23 一种富缺陷的钠离子电池负极材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN110809558A (zh)
WO (1) WO2020103139A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044822A (zh) * 2021-02-07 2021-06-29 桂林理工大学 利用废弃海绵空间限域原位制备高导电性磷酸铁的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112537765B (zh) * 2020-11-17 2022-11-25 浙江大学自贡创新中心 一种锂离子电池碳负极材料的制备方法
CN113224372A (zh) * 2021-04-08 2021-08-06 刘迪 一种快充固态聚合物锂离子电池浆料的制备工艺
CN114890404A (zh) * 2022-05-31 2022-08-12 温州大学碳中和技术创新研究院 一种可大规模生产的竹炭制备方法及其在钠离子电池中的应用
CN116759582B (zh) * 2023-08-22 2023-10-31 大秦数字能源技术股份有限公司 一种自支撑棉花生物质碳负载红磷钠离子电池负极材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104445141A (zh) * 2014-11-07 2015-03-25 同济大学 一种高比表面积氮掺杂改性多孔碳及其制备方法
CN105932283A (zh) * 2016-06-30 2016-09-07 谢振华 锂离子电池及其负极材料以及该负极材料的制备方法
CN107244672A (zh) * 2017-06-12 2017-10-13 天津师范大学 一种以油菜花粉为原料的活性炭制备方法
CN108439363A (zh) * 2018-02-26 2018-08-24 北京理工大学 基于生物质的钠离子电池硬碳负极材料
CN108717972A (zh) * 2018-05-28 2018-10-30 广东电网有限责任公司电力科学研究院 一种多孔碳复合材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104445141A (zh) * 2014-11-07 2015-03-25 同济大学 一种高比表面积氮掺杂改性多孔碳及其制备方法
CN105932283A (zh) * 2016-06-30 2016-09-07 谢振华 锂离子电池及其负极材料以及该负极材料的制备方法
CN107244672A (zh) * 2017-06-12 2017-10-13 天津师范大学 一种以油菜花粉为原料的活性炭制备方法
CN108439363A (zh) * 2018-02-26 2018-08-24 北京理工大学 基于生物质的钠离子电池硬碳负极材料
CN108717972A (zh) * 2018-05-28 2018-10-30 广东电网有限责任公司电力科学研究院 一种多孔碳复合材料及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044822A (zh) * 2021-02-07 2021-06-29 桂林理工大学 利用废弃海绵空间限域原位制备高导电性磷酸铁的方法

Also Published As

Publication number Publication date
CN110809558A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
WO2020103139A1 (zh) 一种富缺陷的钠离子电池负极材料及其制备方法与应用
CN113206246B (zh) 钠离子电池生物质硬碳负极材料及其制备方法
CN106185862B (zh) 一种热解硬碳材料及其用途
CN113651307B (zh) 基于废弃木屑制备的钠离子电池碳负极材料及其制备方法
CN102522530B (zh) 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法
CN107579249B (zh) 一种中药渣制备硬碳负极材料及其制备方法
CN110660984B (zh) 一种纳米硅碳复合材料及其制备方法和应用
WO2016201979A1 (zh) 一种硅碳复合负极材料的制备方法
WO2020103140A1 (zh) 基于生物质的钠离子电池硬碳负极材料及其制备方法和应用
WO2020103138A1 (zh) 一种基于生物质的官能团修饰的钠离子电池负极材料及其制备方法和应用
WO2016202162A1 (zh) 一种锂离子负极材料Li4Ti5O12/C的合成方法
WO2016202164A1 (zh) 一种炭/石墨/锡复合负极材料的制备方法
CN103165869A (zh) 改性中间相负极材料、锂离子二次电池及制备方法和应用
CN109360962B (zh) 一种锂电池用高稳定性硅碳负极材料及其制备方法
CN114171738A (zh) 石墨负极材料及其制备方法和锂离子电池
WO2023173772A1 (zh) 硬碳负极材料的制备方法和应用
CN116443852A (zh) 一种香榧壳基硬碳负极材料的制备方法
CN115458742A (zh) 一种硬碳材料及其制备方法
CN115714170A (zh) 一种高能量密度快充负极材料的制备方法
CN110510595B (zh) 一种用于锂硫电池的n/s共掺杂多孔碳的制备方法
CN111320161A (zh) 一种沥青基碳纳米片的制备方法及其应用
WO2022236984A1 (zh) 均匀改性的硅基锂离子电池负极材料及其制备方法和应用
CN108231423A (zh) 锂离子电容器负极材料颗粒及其制备方法
WO2020107927A1 (zh) 天然石墨及由其制备得到的改性天然石墨材料、制备方法和应用
CN103647082A (zh) 一种锂离子二次电池硬炭微球负极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940862

Country of ref document: EP

Kind code of ref document: A1