WO2020103120A1 - 一种智能驾驶汽车自动进出站台的控制方法及系统 - Google Patents

一种智能驾驶汽车自动进出站台的控制方法及系统

Info

Publication number
WO2020103120A1
WO2020103120A1 PCT/CN2018/117124 CN2018117124W WO2020103120A1 WO 2020103120 A1 WO2020103120 A1 WO 2020103120A1 CN 2018117124 W CN2018117124 W CN 2018117124W WO 2020103120 A1 WO2020103120 A1 WO 2020103120A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
platform
car
real
time
Prior art date
Application number
PCT/CN2018/117124
Other languages
English (en)
French (fr)
Inventor
彭之川
谢勇波
王文明
朱田
易慧斌
赵平安
刘修扬
张智腾
郑志敏
Original Assignee
湖南中车时代电动汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南中车时代电动汽车股份有限公司 filed Critical 湖南中车时代电动汽车股份有限公司
Priority to PCT/CN2018/117124 priority Critical patent/WO2020103120A1/zh
Priority to EP18941089.7A priority patent/EP3885865A4/en
Publication of WO2020103120A1 publication Critical patent/WO2020103120A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0025Planning or execution of driving tasks specially adapted for specific operations
    • B60W60/00253Taxi operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/10Buses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/05Type of road, e.g. motorways, local streets, paved or unpaved roads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/20Static objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle

Definitions

  • the present invention relates to an intelligent driving car, and more particularly, to a control method and system for an automatic entrance and exit platform for an intelligent driving car.
  • Intelligent driving technology or autonomous driving technology applied to automobiles is gradually becoming the research and development trend of the automobile industry.
  • the development of intelligent driving technology enables cars to provide drivers with more and more driving assistance.
  • the ultimate goal is to achieve fully autonomous driving.
  • Intelligent driving technology can be applied not only to small passenger cars, but also to various types of cars such as passenger cars (such as buses), trucks, and logistics vehicles.
  • the intelligent driving passenger car referred to in this article refers to the passenger car equipped with the intelligent driving system through the transformation of the traditional passenger car.
  • the scene is complex and changeable, and the intelligent driving system must achieve the coordination of "people-vehicle-road" to ensure that the intelligent driving bus can accurately enter, stop, get on and off passengers, and exit. During this period The control must be precise, otherwise it will cause hidden dangers to the safety of passengers and vehicles.
  • auxiliary technologies currently used in passenger cars mainly include door opening and closing assistance and platform early warning systems.
  • the Chinese patent application (CN201810202194.1) describes a door control device for autonomous vehicles, which can detect whether there is a person at the door after the vehicle arrives at the station, and then open the door. After a delay, detect whether it is satisfied Close request.
  • the Chinese patent application (CN201220343048.9) describes a bus passenger door reminder system that uses a camera to identify passengers at the door.
  • the Chinese patent application (CN207790477U) describes an early warning control system for roadside collision prevention when a bus arrives at a station, which can alert the driver of the current operation by detecting the distance between the vehicle and the platform.
  • a method for controlling an automatic pit stop of an automobile comprising: determining a distance of the automobile relative to a platform; and comparing the distance with a preset threshold distance For comparison; in response to the distance being less than a preset threshold distance for pit stop, determining whether a pit stop condition is met, wherein determining whether the pit stop condition is met includes first environment information based on the car's perception system and The fusion of the second environmental information provided by the platform to determine whether there is a physical object that hinders the car from entering the station; and in response to determining that a stop condition is present, based on the real-time first positioning provided by the vehicle's perception system Fusion of both information and real-time second positioning information provided by the platform, and based on both real-time first environmental information sensed by the vehicle's perception system and real-time second environmental information provided by the platform Fusion, automatically control the car to enter the platform and stop in the designated parking area.
  • a method for controlling the automatic outbound of a car comprising: based on the real-time first positioning information provided by the car's perception system and the real-time first provided by the platform Two positioning information both get the fused real-time vehicle position; both the real-time first environment information sensed by the car's perception system and the real-time second environment information provided by the platform both get the experience around the car Fused real-time environmental information; determining whether outbound conditions are available, including determining whether there is a physical object that prevents the car from exiting based on the fused real-time environmental information; and in response to determining that outbound conditions are available, based on the economic conditions Both the fused real-time vehicle position and the fused real-time environmental information automatically control the car to drive out of the platform.
  • an intelligent driving car capable of automatically entering and exiting a station, the car including: a sensing system composed of one or more sensors, the sensing system is configured to provide real-time The first positioning information and the first real-time environment information around the car; a vehicle vehicle controller, the vehicle vehicle controller is configured to control at least the car door control module, electronically controlled drive module, electronically controlled A braking module and an electronically controlled steering module to realize corresponding door switches, vehicle driving, vehicle braking, and vehicle steering; and a vehicle intelligent driving system, the vehicle intelligent driving system includes: a perception system controller, the perception system The controller is configured to receive the first positioning information and the first environment information provided from the perception system; a wireless communication device, the wireless communication device is configured to receive a second from the station regarding the car Positioning information and real-time second environment information around the station; and a decision controller configured to: receive the first positioning information and the first environment information from the perception system controller; from all The wireless communication device receives the second positioning information and the second environment information; determines whether
  • a platform intelligent control system includes: a sensor system, the sensor system includes at least a millimeter wave radar, an intelligent camera, and a plurality of infrared signal detectors, Among them: the signals sensed by the millimeter-wave radar and the smart camera are subjected to target-level fusion to generate environmental information around the station, and the plurality of infrared signal detectors are installed at different positions on the platform, and Configured to provide distance information indicating the distance between the vehicle and the platform for the vehicle to be entered and exited from the platform; and a platform intelligent controller communicatively coupled with the sensor system, the platform intelligent controller configured to : Wirelessly communicate with the smart driving system of the car to send the environmental information, the distance information, and the platform status information of the platform to the car; and wirelessly receive the car from the smart driving system of the car Vehicle status information.
  • an intelligent driving car control system includes the vehicle intelligent driving system as described in the present invention installed on the car;
  • the platform intelligent control system described in the present invention, the vehicle intelligent driving system and the platform intelligent control system are configured to work in cooperation with each other to control the vehicle automatic entry and exit by performing the method of controlling the vehicle automatic entry and exit station as described in the present invention Platform
  • the intelligent driving system of the present invention solves at least the following problems:
  • the intelligent driving system of the present invention can make a judgment based on the current road conditions, and formulate the best position, speed, driving path, etc. to enter the platform;
  • the intelligent driving system of the present invention can adjust itself, accurately stop at the platform position, and achieve horizontal and vertical errors within a certain range;
  • the intelligent driving system of the present invention can detect the surrounding environment and open and close the doors when allowed, without affecting the safety of vehicles and people;
  • the intelligent driving system of the present invention can make a judgment according to the current road conditions, formulate the optimal exit platform position, vehicle speed, driving path, etc., and restore the normal operating state.
  • FIG. 1 is a structural block diagram of an intelligent driving car control system according to an embodiment of the present invention.
  • FIG. 2 is a structural block diagram of a station intelligent control system according to an embodiment of the present invention.
  • FIG. 3 shows an architectural diagram of a vehicle intelligent driving system according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for controlling a car to automatically enter a station according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for controlling the automatic exit of a car according to an embodiment of the present invention.
  • car generally refers to any type of powered non-rail-borne vehicles, including small passenger cars (sedans), passenger cars, trucks, trucks, and so on.
  • passenger car generally refers to a commercial vehicle that takes multiple people (usually more than 9 people, including the driver's seat), generally has a square compartment, and is used to carry passengers and their carry-on luggage. This type of vehicle is mainly used for public transportation And group transportation. Passenger cars used for public transportation are also called "buses”.
  • passenger bus also includes vehicles other than “bus”, such as touring buses, school buses, etc., and has nothing to do with the actual size of the vehicle, the number of passengers, and the operating status. Therefore, unless otherwise specified, the features described in conjunction with “bus” in this specification can be generally applied to any type of passenger car.
  • the smart driving car is sometimes simply referred to as “car” or “vehicle” in this specification.
  • the intelligent driving car automatic entry and exit platform technology of the present invention is not only applicable to passenger cars, but also applicable to any other types of vehicles.
  • the "platform” includes both the traditional bus and bus platforms, as well as cargo loading and unloading areas, parking spaces and other facilities that can be set up in designated parking areas.
  • FIG. 1 is a structural block diagram of a smart driving car control system 100 according to an embodiment of the present invention.
  • the intelligent driving vehicle control system 100 of the present invention can be divided into two parts, namely a platform intelligent control system 102 and a vehicle intelligent driving system 104.
  • the platform intelligent control system 102 may be installed on the platform, and the vehicle intelligent driving system 104 may be installed on the automobile.
  • the platform intelligent control system 102 and the vehicle intelligent driving system 104 can communicate through various wireless communication methods.
  • Wireless communication methods may include but are not limited to cellular signal communication (GSM, GPRS, CDMA, 4G, LTE, etc.), short-range wireless radio frequency communication (2.4G, 5G, etc.), and any other existing or future applicable wireless communication Wireless communication technology.
  • platform intelligent control system 102 and the vehicle intelligent driving system 104 can also perform wireless / wired communication with a remote vehicle information management center / dispatch center (not shown), and can communicate indirectly via the vehicle information management center / dispatch center .
  • a remote vehicle information management center / dispatch center not shown
  • the specific structures and working modes of the platform intelligent control system 102 and the vehicle intelligent driving system 104 will be explained in more detail in the following description.
  • FIG. 2 is a structural block diagram of the station intelligent control system 102 according to an embodiment of the present invention.
  • the platform intelligent control system 102 can be installed on any existing platform. Stations equipped with all or part of the station intelligent control system of the present invention can therefore also be referred to as "intelligent stations". Those skilled in the art can understand that non-intelligent bus vehicles can also use such intelligent platforms.
  • the difference between the intelligent platform and the existing platform is that the intelligent platform is equipped with a platform intelligent control system 102.
  • the platform intelligent control system 102 includes a platform intelligent controller 202 and a sensor system 204.
  • the sensor system 204 includes multiple sensors, and the sensors include, but are not limited to, millimeter wave radar 206, smart camera 208, infrared signal detector 210, and the like.
  • the platform intelligent controller 202 can receive sensor information from various sensors in a wired or wireless manner.
  • Both the millimeter wave radar 206 and the smart camera 208 can detect obstacles.
  • the millimeter wave radar 206 has recognition advantages for stationary targets and objects such as metals, while the smart camera 208 has recognition advantages for targets such as moving and nearby pedestrians.
  • the platform intelligent controller 202 can perform target-level fusion of the millimeter wave radar 206 and the smart camera 208, thereby greatly improving the accuracy of detecting solid objects and having a low missed detection rate.
  • the millimeter wave radar 206 and the smart camera 208 are mainly used to detect the following information:
  • the infrared detection signal can be used to measure the distance between the vehicle and the platform.
  • a plurality of infrared signal detectors 210 may be installed on the platform.
  • an infrared signal detector 210 may be installed on the platform at a predetermined distance along a straight line.
  • the infrared detection signal can be fused and redundantly processed with GPS information and the information of the millimeter wave radar 206 and the smart camera 208 in the platform, so that the vehicle enters, stops, and exits the platform More precise control of the position of the vehicle to ensure the safety of vehicles entering and exiting the platform.
  • the platform intelligent controller 202 can communicate with the vehicle intelligent driving system 104 through wireless signals, and send the platform condition information to the vehicle intelligent driving system 104 for vehicle decision control.
  • the platform status information may include, but is not limited to, additional physical object information of the platform, door opening conditions, dangerous conditions, vehicle positioning information, and so on.
  • the platform intelligent controller 202 may also receive vehicle status information fed back from the vehicle intelligent driving system 104.
  • the vehicle condition information may include, but is not limited to, the vehicle's door opening status, vehicle entry reminder, vehicle start reminder, vehicle exit reminder, and so on.
  • the platform may also be provided with a platform door 212 that can be automatically opened and closed in a controlled manner.
  • the platform intelligent controller 202 may control the opening and closing of the platform door 212 based on the sensor information and the information received from the vehicle intelligent driving system 104.
  • the platform intelligent controller 202 can decide whether to open or close the door based on the platform status information and the vehicle status information, and send corresponding instructions to the platform door 212 to perform the opening and closing operation of the platform door, for example:
  • FIG. 3 shows an architectural diagram of a vehicle intelligent driving system 104 according to an embodiment of the present invention.
  • the vehicle intelligent driving system 104 includes a perception system controller 302, a wireless communication device 304 and a decision controller 306.
  • the perception system controller 302 receives sensor information provided by sensors of the perception system 318 of the automobile.
  • Sensors included in the perception system 318 may include, but are not limited to, satellite positioning equipment 320 (such as GPS, Beidou, GALILEO, GLONASS, etc.), forward millimeter wave radar 322, smart camera 324, laser radar (SLAM) 326, lateral millimeter wave Radar 328 and so on. Not only can sensors output raw sensing data, some sensors can output processed information.
  • satellite positioning equipment 320 such as GPS, Beidou, GALILEO, GLONASS, etc.
  • SLAM laser radar
  • the smart camera 324 may identify objects, such as vehicles, pedestrians, etc., that have been recognized by the smart camera 324 in the captured image it outputs.
  • both millimeter wave radar 322 and lidar 324 may have certain object recognition capabilities.
  • the perception system controller 302 can thus fuse the information provided by the sensors and send the fused data to the decision controller 306 to inform the vehicle of the current state, the physical objects in front of and around the vehicle, and through lidar SLAM obtains the current environment position of the vehicle.
  • the wireless communication device 304 may be responsible for wireless communication with stations and / or remote vehicle information management centers / dispatch centers. For example, as previously mentioned, the wireless communication device 304 may receive platform condition information from the platform intelligent control system 102 and feed back vehicle condition information to it. The station status information may then be provided to the decision controller 306.
  • the decision controller 306 receives the information provided by the perception system controller 302 and the wireless communication device 304, and integrates the two aspects of information to plan a route for the vehicle. Based on the planned route, the decision controller 306 can then send the corresponding target vehicle speed, target steering wheel angle, target deceleration size, and action information that the door needs to perform to the vehicle vehicle controller (VCU) 308.
  • the executing agency sends instructions.
  • the actuators may include, but are not limited to, the door control module 310, the electronically controlled drive module 312, the electrically controlled dynamic module 314, the electrically controlled steering module 316, and other actuators used to control other hardware devices on the vehicle.
  • VCU308 can send corresponding instructions to these actuators, so as to realize actions such as electronically controlled driving, braking, steering and opening and closing doors.
  • the decision controller 306 can also detect the running status and fault status provided by the perception system and the station intelligent control system in real time. When a fault occurs, the decision controller 306 can promptly inform the safety officer in the vehicle (driver or other personnel who are specifically responsible for the safety of the driving process), and control the parking of the vehicle, and the safety officer performs manual intervention.
  • FIG. 4 is a flowchart of a method 400 for controlling the automatic pit stop of an automobile according to an embodiment of the present invention.
  • the method 400 starts at step 402 where the vehicle determines its distance relative to the platform.
  • the decision controller 306 may receive positioning information provided by the perception system 318 (eg, position coordinates provided by the satellite positioning device 320). Subsequently, the decision controller 306 may calculate the distance of the current vehicle relative to the platform based on this positioning information and the platform position (eg, position coordinates) known in advance or received from the platform.
  • the perception system 318 eg, position coordinates provided by the satellite positioning device 320
  • the decision controller 306 may calculate the distance of the current vehicle relative to the platform based on this positioning information and the platform position (eg, position coordinates) known in advance or received from the platform.
  • the decision controller 306 may compare the current distance with a preset threshold distance for pit stop.
  • the pit stop threshold distance may be set to 10 meters from the set longitudinal distance of the pit stop.
  • the decision controller may determine whether a pit stop condition is met. More specifically, the vehicle can fuse the environmental information detected and recognized by the vehicle's perception system with the information received from the platform intelligent control system to more accurately determine whether there is an entity near the vehicle (especially between the vehicle and the station) Objects (entity objects include but are not limited to other motor vehicles, non-motor vehicles, pedestrians, animals, static obstacles, etc.), and determine whether these objects will cause the vehicle to be unable to enter the station.
  • entity objects include but are not limited to other motor vehicles, non-motor vehicles, pedestrians, animals, static obstacles, etc.
  • the entry conditions may also include any other conditions or factors used to determine whether the vehicle needs or is allowed to enter the station, such as the station / dispatch center's instruction to prohibit vehicle entry, the vehicle and There are no passengers waiting to get on and off the platform.
  • the process proceeds to step 408.
  • the vehicle starts to perform an automatic pit stop procedure to control the vehicle to automatically stop and stop in a designated area.
  • the automatic pit stop process may include the decision controller 306 determining the target parking area based on the station status information received from the platform intelligent control system, and calculating the vehicle pit stop path in real time based on the current vehicle position planning.
  • the real-time position of the vehicle at this time may be based on the positioning information provided by the vehicle's perception system 318 (for example, the position coordinates provided by the satellite positioning device 320) and the positioning information received from the platform intelligent control system through the wireless communication device 304 (for example, infrared Distance information) to more accurately determine both.
  • the path planning includes the driving route of the vehicle from the current position to the target parking position, the speed status of the whole journey of the route, and the corresponding driving actions of the vehicle (including driving, braking and steering, etc.).
  • the decision controller sends the determined driving, braking and steering to the vehicle vehicle controller 308 in the form of instructions, and the vehicle controller 308 then controls the electronically controlled steering module 312, the electrically controlled drive module 314 and the electric
  • the actuation module 316 performs corresponding driving actions of the vehicle.
  • the decision controller 306 continues to perform the previously mentioned information fusion to accurately locate the real-time position of the vehicle and identify physical objects near the vehicle, and adjust the driving route and vehicle control in real time as needed until it stops accurately Within the designated parking area.
  • platforms can generally be divided into ordinary platforms and harbor-type platforms, so the corresponding driving routes can be set for these two platforms.
  • the vehicle may be in the lane near the platform before entering the station, so the planned route may only need to adjust the speed and braking force to ensure that the vehicle can stop in the designated area.
  • the planned route also includes controlling the vehicle to turn into the bay, and finally parallel to the platform and stopping at the designated location. Subsequently, the flow advances to step 412.
  • step 410 the decision controller may issue an instruction to the vehicle controller 308 to control the vehicle to decelerate or stop, and remind the safety officer in the vehicle (eg, via a voice system and / or dashboard system) of the current road surface condition, and the safety The officer decides whether to wait for the physical object causing the obstruction to leave or to manually intervene to control the vehicle into the station. If it is decided to wait for the physical object that caused the obstacle to leave and continue to perform automatic pitting, the flow returns to step 406, and the real-time determination is made whether the vehicle meets the pitting conditions. If it is decided to intervene manually, the system switches to manual driving until the vehicle stops in the designated parking area, and the flow proceeds to step 412.
  • the vehicle can intelligently control the opening of the door.
  • the perception system 318 can detect object information within a certain range of the car door in real time, and inform the decision controller 306 whether there is a passenger in the current door area ready to get off, or whether there is a situation that is not conducive to opening the door , For example, a passenger leans on the door.
  • the decision controller 306 also receives real-time station status information from the intelligent station control system, including whether there are passengers on the platform waiting to board the vehicle or whether there is a situation that is not conducive to opening the door on the platform side.
  • the decision controller 306 may send a door opening instruction to the vehicle controller 308, which in turn commands the door control module 310 Open the door.
  • the decision controller 306 may instruct the vehicle controller 308 to open the door regardless of whether passengers get on or off the vehicle.
  • FIG. 5 is a flowchart of a method 500 for controlling the automatic exit of a car according to an embodiment of the present invention.
  • the method 500 starts at step 502, where the vehicle can intelligently control closing the door.
  • the perception system 318 can detect and inform whether there are passengers within a certain range of the car door, for example, there are passengers who want to get off or the passengers who have just got on the car have not fully entered the car, and the platform intelligent control system
  • the sensor system 204 of 102 can detect whether there are passengers on the platform and outside of the door.
  • the decision controller 306 determines based on the information from the vehicle's perception system 318 and the information from the sensor system 204 of the platform intelligent control system 102 that no passengers are ready to get off and no passengers on the platform are ready to board, and there are no passengers near the door for a predetermined time Or when the planned outbound time is reached, the decision controller 306 may instruct the vehicle controller 308 to close the doors. Subsequently, the flow advances to step 504.
  • the decision controller 306 may obtain a fused real-time vehicle position based on both the real-time positioning information of the vehicle's perception system 402 and the real-time second positioning information provided by the platform, and may be based on the vehicle's Both the real-time environmental information sensed by the perception system 402 and the real-time environmental information provided by the platform obtain the fused real-time environmental information around the car, thereby detecting the physical object information around the vehicle and the platform. Subsequently, in step 506, the decision controller 306 may determine whether the outbound condition is met. For example, the decision controller 306 may determine whether there is a physical object that prevents the car from going out. When the outbound condition is met, the flow proceeds to step 508.
  • the order of the step 502 of intelligently closing the vehicle door and the step 504 of acquiring real-time positioning information and environmental information are arbitrary, and may also be performed synchronously.
  • the operation of acquiring real-time positioning information and environmental information can be continued from the moment the car enters the station.
  • the step 502 of closing the door intelligently can be skipped, and the previous process of opening the door intelligently can be maintained, that is, always detect Passengers have to get on and off to open the door.
  • the decision controller 306 may automatically control the car to exit the station based on both the fused real-time vehicle position and the fused real-time environmental information. For example, the decision controller 306 may calculate the outbound path plan based on real-time vehicle location and environmental information, and control the vehicle to travel outbound accordingly.
  • the vehicle outbound path may include going straight for a certain distance (for example, going straight to a predetermined outbound stop), and then changing lanes outward, and then entering the normal driving state of the vehicle after the lane change is completed.
  • the vehicle determines the physical object information in front of the vehicle from the fusion perception system and the platform intelligent controller. Whether the outbound station is outbound.
  • step 506 when it is determined that there is no outbound condition, for example, when it is determined that there is a physical object obstruction that prevents the vehicle from going out, the flow proceeds to step 510.
  • the decision controller 306 may control the vehicle to stop before exiting the station, and remind the safety officer in the vehicle of the current road surface condition, and the safety officer decides whether to wait for the obstructed entity to leave or manually intervene to control the vehicle out of the station. After completing the outbound process, the vehicle enters a normal driving state.
  • the above describes the control method and system of the intelligent driving car automatic entry and exit station related to the present invention.
  • the control method works through the intelligent control system of both the platform and the vehicle to realize the automatic entry and exit of the car and ensure the entire entry and exit process Reliability, precision and safety.
  • the platform intelligent control system may include an intelligent controller, a millimeter wave radar, an infrared detector, and an intelligent camera, which can provide vehicle decision controllers with information on physical objects near the platform and passenger position information in front of the platform door , And provide the relative position information of physical objects and platforms for intelligent driving cars.
  • an intelligent controller a millimeter wave radar, an infrared detector, and an intelligent camera, which can provide vehicle decision controllers with information on physical objects near the platform and passenger position information in front of the platform door , And provide the relative position information of physical objects and platforms for intelligent driving cars.
  • the automobile intelligent driving system provided by the present invention can receive and fuse the sensor information on the vehicle and the information of the platform intelligent control system to perform intelligent driving vehicle intelligent entry and exit stations, intelligent door opening and closing and fault diagnosis functions to ensure that the vehicle and the vehicle Passenger safety.
  • the automatic entry and exit platform technology of the intelligent driving car of the present invention can also be applied to any other type of car.
  • the system of the present invention can be applied to the logistics transportation of trucks and trucks and loading and unloading cargo scenarios.
  • Vehicle intelligent driving system can be installed on trucks or trucks, and platform intelligent control system can be installed on warehouses, cargo loading and unloading areas, etc., so as to achieve similar control of trucks or trucks automatically entering and leaving cargo loading and unloading areas.
  • the detection of passengers getting on and off the vehicle and the opening and closing control of the doors can be similarly applied to the detection of cargo handling and the opening and closing of the cargo door.
  • the vehicle intelligent driving system of the present invention can also be installed on small passenger cars such as cars, and the platform intelligent control system can be installed in garages, on-street parking spaces, etc., so as to realize automatic driving of cars into and out of parking spaces .

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种用于控制汽车自动进出站台的智能控制系统和方法。智能控制系统包括安装在汽车上的汽车智能驾驶系统(104),以及安装在站台上的站台智能控制系统(102)。汽车智能驾驶系统(104)可融合安装汽车上的感知系统(318)和安装在站台上的传感器系统(204)所提供的定位信息和环境信息,通过与站台智能控制系统(102)协同工作来实现汽车自动进出站台。

Description

一种智能驾驶汽车自动进出站台的控制方法及系统 技术领域
本发明涉及智能驾驶汽车,更具体地,涉及用于智能驾驶汽车的自动进出站台的控制方法和系统。
背景技术
近年来,应用于汽车上的智能驾驶技术或自动驾驶技术正逐渐称为汽车行业的研究和发展趋势。智能驾驶技术的发展使得汽车能够为驾驶员提供越来越多的驾驶辅助,最终的目的是实现完全自动驾驶。智能驾驶技术不仅可以运用在小型乘用车上,也同样可以运用在客车(诸如公交车)、卡车、物流车等各种类型的汽车上。
以客车为例,客车在运营中,必然会经历出入站台,智能驾驶客车在运营期间也是一样。本文所涉及的智能驾驶客车指的是在传统的客车上通过改造加装了智能驾驶系统的客车。作为站台这样的特定环境,其场景复杂多变,智能驾驶系统必须做到“人-车-路”的协同,以保证智能驾驶客车能够准确进站、停车、上下乘客、出站,在这期间的控制必须精确,否则会对乘客和车辆的安全造成隐患。
目前的客车上运用的一些辅助技术,主要包括车门开关辅助和站台预警系统。例如,中国专利申请(CN201810202194.1)描述了一种用于自动驾驶车辆的车门控制装置,其能够在车辆到站后检测车门处是否有人,然后开门,延时一段时间后,再检测是否满足关门要求。
中国专利申请(CN201220343048.9)描述了一种公交车乘客门提醒系统,其通过摄像头对车门处的乘客进行识别。
中国专利申请(CN207790477U)描述了一种公交车到站停靠时防路沿碰撞预警控制系统,其能够通过检测车辆与站台的距离来提醒司机当前应执行的操作。
然而,上述现有技术都只能单一地执行某个特定功能,并不能够实现控制汽车自动进出站台或者自动进出任何指定停车区域。
发明内容
提供本发明内容以便以简化形式介绍将在以下具体实施方式中进一步描述的一些概念。本发明内容并非旨在标识所要求保护的主题的关键特征或必要特征,也不旨在用于帮助确定所要求保护的主题的范围。
根据本发明的一个实施例,提供了一种用于控制汽车自动进站的方法,所述方法包括:确定所述汽车相对于站台的距离;将所述距离与预先设定的进站阈值距离作比较;响应于所述距离小于预先设定的进站阈值距离,确定是否具备进站条件,其中确定是否具备所述进站条件包括基于所述汽车的感知系统感测的第一环境信息和所述站台提供的第二环境信息两者的融合来判断是否存在妨碍所述汽车进站的实体对象;以及响应于确定具备进站条件,基于所述汽车的感知系统提供的实时的第一定位信息和所述站台提供的实时的第二定位信息两者的融合,并且基于所述汽车的感知系统感测的实时的第一环境信息和所述站台提供的实时的第二环境信息两者的融合,自动控制所述汽车驶入站台并停在指定停车区域内。
根据本发明的又一实施例,提供了一种用于控制汽车自动出站的方法,所述方法包括:基于所述汽车的感知系统提供的实时的第一定位信息和站台提供的实时的第二定位信息两者得到经融合的实时车辆位置;基于所述汽车的感知系统感测的实时的第一环境信息和所述站台提供的实时的第二环境信息两者得到所述汽车周围的经融合的实时环境信息;确定是否具备出站条件,包括基于所述经融合的实时环境信息来判断是否存在妨碍所述汽车出站的实体对象;以及响应于确定具备出站条件,基于所述经融合的实时车辆位置和所述经融合的实时环境信息两者来自动控制所述汽车驶出站台。
根据本发明的又一实施例,提供了一种能够自动进出站台的智能驾驶汽车,所述汽车包括:由一个或多个传感器组成的感知系统,所述感知系统被配置成提供所述汽车实时的第一定位信息和所述汽车周围实时的第一环境信息;车辆整车控制器,所述车辆整车控制器被配置成至少控制所述汽车的车门控制模块、电控驱动模块、电控制动模块、以及电控转向模块以实现相应的车门开关、车辆驱动、车辆制动、以及车辆转向;以及车辆智能驾驶系统,所述车辆智能驾驶系统包括:感知系统控制器,所述感知系统控制器被配置成接收来自所述感知系统提供的所述第一定位信息和所述第一环境信息;无线通信设备,所述无线通信设备被配置成接收来自车站的关于所述汽车的第二定位信息和车站周围实时的第二环境信息;以及决策控制器,所述决策控制器被配置成:从所述感知系统控制器接收所述第一定位信息和所述第一环境信息;从所述无线通信设备接收所述第二定位信息和所述第二环境信息;基于所述第一定位信息、 所述第二定位信息、所述第一环境信息、以及所述第二环境信息决定是否具备进站条件或出站条件;响应于具备所述进站条件或出站条件,向所述车辆整车控制器发送相应指令以自动控制所述汽车进站或出站。
根据本发明的又一实施例,提供了一种站台智能控制系统,所述站台智能控制系统包括:传感器系统,所述传感器系统至少包括毫米波雷达、智能摄像头、以及多个红外信号探测器,其中:所述毫米波雷达和所述智能摄像头感测的信号被进行目标级融合以生成车站周围的环境信息,并且所述多个红外信号探测器被安装在所述站台上的不同位置,并被配置成针对待进出站台的汽车提供指示所述汽车与所述站台之间的距离的距离信息;以及与所述传感器系统通信地耦合的站台智能控制器,所述站台智能控制器被配置成:与汽车的智能驾驶系统无线地通信以将所述环境信息、所述距离信息以及所述站台的站台状况信息发送给所述汽车;以及从所述汽车的智能驾驶系统无线地接收所述汽车的车辆状况信息。
根据本发明的又一实施例,还提供了一种智能驾驶汽车控制系统,智能驾驶汽车控制系统包括安装在汽车上的如本发明所描述的车辆智能驾驶系统;以及安装在站台上的如本发明所描述的站台智能控制系统,所述车辆智能驾驶系统和所述站台智能控制系统被配置成彼此协同工作以通过执行如本发明所描述的控制汽车自动进出站台的方法控制所述汽车自动进出站台
本发明的智能驾驶系统至少解决了以下几方面问题:
1、当公交车靠近站台时,本发明的智能驾驶系统能够根据当前路况作出判断,制定出最佳进入站台的位置、车速、行驶路径等;
2、当公交车即将到达停车点附近时,本发明的智能驾驶系统能够自行进行调整,准确的停在站台位置,并实现横、纵向误差在一定范围内;
3、公交车到达站台后,本发明的智能驾驶系统能够检测周围环境,在允许的情况下开关车门,不会影响车辆和人的安全;
4、当公交车出站时,本发明的智能驾驶系统能够根据当前路况作出判断,制定最佳出站台的位置、车速、行驶路径等,恢复正常运营状态。
通过阅读下面的详细描述并参考相关联的附图,这些及其他特点和优点将变得显而易见。应该理解,前面的概括说明和下面的详细描述只是说明性的,不会对所要求保护的各方面形成限制。
附图说明
为了能详细地理解本发明的上述特征所用的方式,可以参照各实施例来对以上简要概述的内容进行更具体的描述,其中一些方面在附图中示出。然而应该注意,附图仅示出了本发明的某些典型方面,故不应被认为限定其范围,因为该描述可以允许有其它等同有效的方面。
图1是根据本发明的一个实施例的智能驾驶汽车控制系统的结构框图。
图2是根据本发明的一个实施例的站台智能控制系统的结构框图。
图3示出了根据本发明的一个实施例的车辆智能驾驶系统的架构图。
图4是根据本发明的一个实施例的用于控制汽车自动进站的方法的流程图。
图5是根据本发明的一个实施例的用于控制汽车自动出站的方法的流程图。
具体实施方式
下面结合附图详细描述本发明,本发明的特点将在以下的具体描述中得到进一步的显现。
在本说明书中,“汽车”泛指任何类型的由动力驱动的非轨道承载的车辆,包括小型乘用车(轿车)、客车、卡车、货车等等。为了便于说明,本说明书以“客车”(更具体地,以“公交车”)为上下文来描述本发明的智能驾驶汽车自动进出站台技术。“客车”一般指的是乘坐多人(通常为9人以上,包括驾驶员座位在内)、一般具有方形车厢、用于载运乘客及其随身行李的商用车,这类车型主要用于公共交通和团体运输使用。被用作公共交通的客车也被称为“公交车”。然而,本领域技术人员应当理解,“客车”也包括除“公交车”以外的其它车辆,例如旅行客车、校车等,并且与车辆的实际尺寸、载客人数、运营状态无关。因此,除非特别指出,在本说明书中,结合“公交车”来描述的特征可被普遍地适用于任何类型的客车。另外,为了便于说明,本说明书中有时也将智能驾驶汽车简称为“汽车”或“车辆”。此外,在阅读本发明之后,本领域技术人员也应当理解,本发明的智能驾驶汽车自动进出站台技术不仅适用于客车,也可以适用于其他任何类型的车辆。相应地,“站台”既包括传统意义的公交车、大巴车站台,也包括货物装卸区、停车位等任何可设置指定停车区域的设施。
图1是根据本发明的一个实施例的智能驾驶汽车控制系统100的结构框图。如图1中所示,本发明的智能驾驶汽车控制系统100可分为两部分,分别是站台智能控制系统102和车辆智能驾驶系统104。站台智能控制系统102可被安装在站台上,而车辆智能驾 驶系统104可被安装在汽车上。站台智能控制系统102和车辆智能驾驶系统104可通过各种无线通信方式进行通信。无线通信方式可包括但不限于蜂窝信号通信(GSM、GPRS、CDMA、4G LTE等等)、短距离无线射频通信(2.4G、5G等等)、以及任何其它现有或将来可应用于无线通信的无线通信技术。另外,站台智能控制系统102和车辆智能驾驶系统104还可分别与远程的车辆信息管理中心/调度中心(未示出)进行无线/有线通信,并可经由车辆信息管理中心/调度中心间接地通信。站台智能控制系统102和车辆智能驾驶系统104的具体结构和工作方式将在以下的描述中更详细地阐述。
图2是根据本发明的一个实施例的站台智能控制系统102的结构框图。站台智能控制系统102可被安装在任何一个现有的站台上。加装了本发明的站台智能控制系统的全部或其部分的站台因而也可被称为“智能站台”。本领域技术人员可以理解的是,非智能公交车辆也能够使用这类智能站台。智能站台与现有站台的不同之处即在于智能站台加装了站台智能控制系统102。如图2中所示,站台智能控制系统102包括站台智能控制器202以及传感器系统204。传感器系统204包括多个传感器,传感器包括但不限于毫米波雷达206、智能摄像头208、红外信号探测器210等。站台智能控制器202可通过有线或无线的方式接收来自各个传感器的传感器信息。
毫米波雷达206和智能摄像头208均能检测障碍物。毫米波雷达206对静止的目标和金属等物体具有识别优势,而智能摄像头208对移动和近处行人等目标具有识别优势。根据本发明的一个实施例,站台智能控制器202可对毫米波雷达206和智能摄像头208进行目标级别融合,从而使得检测实体对象的准确率大大提高,并且漏检率较小。根据本发明的一个实施例,毫米波雷达206和智能摄像头208主要可用于检测以下信息:
1)车辆驶入前,站台外是否存在其他实体对象影响车辆驶入,如行人、车辆、静态障碍物等;
2)车辆停在站台后,检测站台上的乘客是否已经上下完毕,是否存在实体对象影响车辆重新起步;
3)车辆准备驶出站台前,检测车辆周围的路况,如是否存在造成妨碍的实体对象,以及车辆是否具有驶出站台的条件;以及
4)在车辆从驶入站台到驶出站台的整个过程期间,为车辆提供定位信息,确保车辆能够被精确控制。
红外探测信号主要可被用来测量车辆与站台之间的距离。为了更准确地定位车辆的位置,可在站台上安装多个红外信号探测器210,例如可在站台上沿一条直线每隔一 定的距离安装一个红外信号探测器210。通过将安装在不同位置的红外探测信号检测到的车辆与站台的距离信息发送给车辆智能驾驶系统104,车辆智能驾驶系统104能够计算出车辆与站台之间的夹角。
为了进一步准确地定位车辆相对于车站的位置,红外探测信号可与GPS信息以及站台中的毫米波雷达206和智能摄像头208的信息进行融合及冗余处理,从而对车辆进入、停车、驶出站台的位置进行更精确的控制,保证车辆进出站台的安全性。
站台智能控制器202可通过无线信号与车辆智能驾驶系统104进行通信,将站台状况信息发送给车辆智能驾驶系统104以作车辆决策控制用。站台状况信息可包括但不限于站台附加的实体对象信息、开门条件、危险情况、车辆定位信息等等。站台智能控制器202也可从车辆智能驾驶系统104处接收其反馈的车辆状况信息。车辆状况信息可包括但不限于车辆的开门状态、车辆进站提醒、车辆起步提醒、车辆出站提醒等等。
另外,作为一个非限制性示例,站台还可以设置有能够受控地自动开关的站台门212。在设置有站台门212的情况下,站台智能控制器202可基于各传感器信息以及从车辆智能驾驶系统104接收的信息来控制站台门212的打开和关闭。
在站台设置有站台门212的情况下,站台智能控制器202可基于站台状况信息和车辆状况信息来决定是否开关门,并发送相应的指令给站台门212以进行站台门的开关操作,例如:
1、在汽车进站过程中,当汽车在指定位置停稳后,并检测安全后(例如,确定站台门前的禁止站立区无乘客)方打开门,并将站台门的开闭状态发送给汽车;
2、在汽车出站过程中,待汽车车门关闭后,检测站台门处无乘客或其它障碍物,此时再关闭站台门。
图3示出了根据本发明的一个实施例的车辆智能驾驶系统104的架构图。如图3中所示,车辆智能驾驶系统104包括感知系统控制器302、无线通信设备304以及决策控制器306。感知系统控制器302接收汽车的感知系统318的各传感器提供的传感器信息。感知系统318所包含的传感器可包括但不限于卫星定位设备320(诸如GPS、北斗、GALILEO、GLONASS等)、前向毫米波雷达322、智能摄像头324、激光雷达(SLAM)326、侧向毫米波雷达328等等。传感器不仅可输出原始感测数据,一些传感器可以输出经处理的信息。例如,智能摄像头324在其输出的拍摄图像中可标识已经由智能摄像头324所识别出的对象,例如车辆、行人等等。类似地,毫米波雷达322和激光雷达324可都具备一定的对象识别能力。感知系统控制器302因而可对各传感器提供的信息进行融合,并 将融合后的数据发送给决策控制器306,以告知车辆当前所处的状态、前方及车辆周边的实体对象、以及通过激光雷达SLAM得到的车辆所处当前环境的位置。
无线通信设备304可负责与车站和/或远程的车辆信息管理中心/调度中心的无线通信。例如,如之前提到的,无线通信设备304可从站台智能控制系统102接收站台状况信息,并向其反馈车辆状况信息。站台状况信息随后可被提供给决策控制器306。
决策控制器306接收感知系统控制器302和无线通信设备304所提供的信息,综合这两方面信息来对车辆进行规划线路。决策控制器306随后可基于规划的线路将相应的目标车速、目标方向盘转角、目标减速大小以及车门需要执行的动作信息发送给车辆整车控制器(VCU)308,由VCU 308对车辆上的各执行机构发送指令。执行机构可包括但不限于车门控制模块310、电控驱动模块312、电控制动模块314、电控转向模块316、以及其它的用于控制车辆上的其它硬件设备的执行机构。VCU 308可向这些执行机构发送相应的指令,从而相应地实现诸如电控驱动、制动、转向以及开关车门等动作。
决策控制器306还可以实时检测感知系统以及站台智能控制系统提供的运行状态及故障状态。在出现故障时,决策控制器306可及时告知车内安全员(驾驶员或者其他专门负责驾驶过程安全的人员),并控制车辆停车,由安全员进行人工介入操作。
图4是根据本发明的一个实施例的用于控制汽车自动进站的方法400的流程图。方法400开始于步骤402,在步骤402,车辆确定自己相对于站台的距离。如之前提到的,决策控制器306可接收感知系统318所提供的定位信息(例如,卫星定位设备320提供的位置坐标)。随后,决策控制器306可基于这一定位信息与事先知晓的或者从站台接收的站台位置(例如位置坐标)来计算出当前车辆相对于站台的距离。
随后,在步骤404,决策控制器306可将当前距离与预先设定的进站阈值距离作比较。例如,进站阈值距离可设置为距离设定的进站点的纵向距离10米。当当前距离小于或等于进站阈值时,流程前进至步骤406,否则,流程返回至步骤402。
在步骤406,决策控制器可确定是否具备进站条件。更具体地,车辆可将车载的感知系统所探测和识别的环境信息与从站台智能控制系统接收到的信息进行融合,以更准确地确定车辆附近(尤其是车辆与车站之间)是否存在实体对象(实体对象包括但不限于其它机动车辆、非机动车辆、行人、动物、静态障碍物等等),并且确定这些对象是否会导致车辆不能进站。可以理解,除了妨碍的实体对象以外,进站条件还可包括任何其他用于判断车辆是否需要或被允许进站的条件或因素,诸如车站/调度中心发 出禁止车辆进站的指令、车辆上和站台上没有要上下车的乘客等等。当确定具备进站条件时,过程前进至步骤408。
在步骤408,车辆开始执行自动进站流程以控制车辆自动进站并停在指定区域。更具体地,根据本发明的一个实施例,自动进站流程可包括决策控制器306根据从站台智能控制系统接收的车站状况信息确定目标停车区域,并基于当前车辆位置实时计算车辆进站的路径规划。此时的车辆实时位置可基于车辆的感知系统318所提供的定位信息(例如,卫星定位设备320提供的位置坐标)以及通过无线通信设备304从站台智能控制系统接收的定位信息(例如,红外测距信息)两者来更精确的确定。路径规划包括从当前位置到目标停车位置的车辆行驶路线、该路线全程的车速状态、以及相应的车辆驾驶动作(包括驱动、制动和转向等)。随后,决策控制器将确定的驱动、制动和转向以指令的形式发送给撤了车辆整车控制器308,车辆整车控制器308随后控制电控转向模块312、电控驱动模块314以及电控制动模块316来执行相应的车辆驾驶动作。在整个进站过程中,决策控制器306持续执行之前提及的信息融合以精确定位车辆的实时位置和识别车辆附近的实体对象,并且根据需要实时调整行驶路线和车辆控制,直至准确停稳在指定停车区域内。通过本发明的将站台的红外探测与车辆的卫星定位相结合,控制停车位置的精确程度可实现横纵向距离误差都控制在一定范围内。另外,站台一般可分为普通站台及港湾式站台,因此针对这两种站台可设定相应的行驶路线。对于普通站台,车辆可能在驶入进站点之前就已经位于靠近站台的车道内,因此规划路线可能只需要调节车速以及制动力,保证车辆能够在指定区域停稳。而对于港湾式站台,规划路线还包括控制车辆转向进入港湾,最后与站台平行并在指定位置停稳。随后,流程前进至步骤412。
返回到步骤406,当确定不具备进站条件时,过程前进至步骤410。在步骤410,决策控制器可向车辆整车控制器308发出指令以控制车辆减速或停下,并提醒车内安全员(例如经由语音系统和/或仪表盘系统)当前路面状况,并由安全员决定是等待造成妨碍的实体对象离开还是人工介入控制车辆进站。如果决定等待造成妨碍的实体对象离开后继续执行自动进站,则流程返回步骤406,重新进行实时判断车辆是否符合进站条件。如果决定人工介入,则系统切换至手动驾驶,直至车辆停稳在指定停车区域,流程前进至步骤412。
在车辆在指定停车区域停稳之后,在步骤412,车辆可智能控制开启车门。根据本发明的一个实施例,感知系统318可实时检测汽车车门内一定范围内的物体信息,并告 知决策控制器306当前车门内区域是否有乘客准备下车,或者是否有存在不利于开门的情形,例如有乘客倚靠在车门上。另外,决策控制器306还从智能车站控制系统接收实时车站状况信息,包括站台上是否有乘客等待上车或站台侧是否存在不利于开门的情形。如果有乘客准备下车或者有乘客准备上车且没有其它不利于开门的情形存在,则决策控制器306可发送开门指令给车辆整车控制器308,车辆整车控制器308进而指令车门控制模块310打开车门。作为另一实施例,在车辆停稳后,决策控制器306可指令车辆整车控制器308打开车门,而不管是否有乘客上下车。
图5是根据本发明的一个实施例的用于控制汽车自动出站的方法500的流程图。方法500开始于步骤502,在步骤502,车辆可智能控制关闭车门。根据本发明的一个实施例,感知系统318可检测并告知汽车车门内一定范围内是否有乘客,例如还有乘客要下车或者刚上车的乘客还未完全进入车内,同时站台智能控制系统102的传感器系统204可检测站台和车门外侧是否还有乘客要上车。当决策控制器306基于来自车辆的感知系统318的信息和来自站台智能控制系统102的传感器系统204的信息确定没有乘客准备下车且站台上没有乘客准备上车,并且车门附近无乘客达预定时间或者达到计划出站时间时,决策控制器306可指令车辆整车控制器308关闭车门。随后,流程前进至步骤504。
在步骤504,类似于进站过程,决策控制器306可基于车辆的感知系统402的实时定位信息和站台提供的实时的第二定位信息两者得到经融合的实时车辆位置,并且可基于汽车的感知系统402感测的实时的环境信息和站台提供的实时的环境信息两者得到汽车周围的经融合的实时环境信息,由此检测车辆和站台周围的实体对象信息。随后,在步骤506,决策控制器306可确定是否具备出站条件。例如,决策控制器306可确定是否存在妨碍汽车出站的实体对象。当具备出站条件时,流程前进至步骤508。
可以理解的是,智能关闭车门的步骤502和获取实时定位信息和环境信息的步骤504的顺序是任意的,也可以是同步进行的。例如,获取实时定位信息和环境信息的操作可从汽车进站开始就一直持续。另外,当本次进站过程中汽车因没有乘客上下车而没有开门时,智能关闭车门的步骤502可被跳过,取而代之的可以是之前的智能开启车门的过程被维持,即始终探测是否有乘客要上下车以便开门。
在步骤508,决策控制器306可基于经融合的实时车辆位置和经融合的实时环境信息两者来自动控制所述汽车驶出站台。例如,决策控制器306可基于实时车辆位置和环境信息计算出站路径规划,并相应地控制车辆行驶出站。作为一个示例,车辆出站路 径可包括先直行一段距离(例如先直行到预先设定的出站点),然后向外侧变道,在变道完成之后即可进入车辆正常行驶状态。按照这一模式出站时,当车辆行驶至距离设定的出站点一定距离内时(例如1米内),车辆通过融合感知系统与站台智能控制器传来的车辆前方的实体对象信息,决定在出站点是否出站。
回到步骤506,当确定不具备出站条件时,例如当判断有实体对象妨碍致使车辆不能出站时,流程前进至步骤510。在步骤510,决策控制器306可控制车辆在出站点前停下,并提醒车内安全员当前路面状况,由安全员决定是等待造成妨碍的实体对象离开还是人工介入控制车辆出站。在完成出站过程之后,车辆进入正常行驶状态。
以上描述了本发明涉及的智能驾驶汽车自动进出站台的控制方法和系统,该控制方法通过站台和车辆两者的智能控制系统协同工作,实现了汽车自动进出站,并确保了整个进出站过程中的可靠性、精确性和安全性。
本发明所提供的站台智能控制系统可包含有智能控制器、毫米波雷达、红外探测仪、智能摄像头,能够给车辆决策控制器提供站台附近道理上的实体物体信息,站台门前的乘客位置信息,以及为智能驾驶汽车提供实体对象及站台的相对位置信息。另外,可根据站台上站台门前的状况以及车辆位置,智能识别当前状态下能否开启和关闭站台门。
本发明所提供的汽车智能驾驶系统可接收并融合车辆上感知传感器信息以及站台智能控制系统的信息,进行智能驾驶汽车智能进出站、智能开关门以及故障诊断的功能,保证车辆进出站时车辆和乘客的安全性。
此外,如本领域技术人员可以理解的,本发明的智能驾驶汽车自动进出站台技术也可以适用于其它任何类型的汽车。例如,本发明的系统可应用于卡车、货车的物流运输及装卸货物场景。车辆智能驾驶系统可被安装在卡车或货车上,站台智能控制系统则可被安装在仓库、货物装卸区等区域,从而实现类似的控制卡车或货车自动进出货物装卸区。另外,对于乘客上下车的检测以及对车门的开关控制则可以类似地应用于对货物搬运的检测和对货箱门的开关控制。本发明的车辆智能驾驶系统也可被安装在轿车等小型乘用车上,而站台智能控制系统则可被安装在车库、路边停车位等位置,从而实现轿车的自动驶入驶出停车位。
以上所已经描述的内容包括所要求保护主题的各方面的示例。当然,出于描绘所要求保护主题的目的而描述每一个可以想到的组件或方法的组合是不可能的,但本领域内的普通技术人员应该认识到,所要求保护主题的许多进一步的组合和排列都是可 能的。从而,所公开的主题旨在涵盖落入所附权利要求书的精神和范围内的所有这样的变更、修改和变化。

Claims (38)

  1. 一种用于控制汽车自动进站的方法,其特征在于,所述方法包括:
    确定所述汽车相对于站台的距离;
    将所述距离与预先设定的进站阈值距离作比较;
    响应于所述距离小于预先设定的进站阈值距离,确定是否具备进站条件,其中确定是否具备所述进站条件包括基于所述汽车的感知系统感测的第一环境信息和所述站台提供的第二环境信息两者的融合来判断是否存在妨碍所述汽车进站的实体对象;以及
    响应于确定具备进站条件,基于所述汽车的感知系统提供的实时的第一定位信息和所述站台提供的实时的第二定位信息两者的融合,并且基于所述汽车的感知系统感测的实时的第一环境信息和所述站台提供的实时的第二环境信息两者的融合,自动控制所述汽车驶入站台并停在指定停车区域内。
  2. 如权利要求1所述的方法,其特征在于,所述第一定位信息是由所述汽车的卫星定位设备提供的车辆定位信息,而所述第二定位信息是由所述站台的红外信号探测器提供的指示所述汽车与所述站台之间的距离的距离信息。
  3. 如权利要求2所述的方法,其特征在于,确定所述汽车相对于站台的距离包括基于所述第一定位信息和所述站台的位置来计算所述汽车相对于站台的距离。
  4. 如权利要求1所述的方法,其特征在于,所述实体对象包括以下的至少一个:
    机动车辆、非机动车辆、行人、动物、或静态障碍物。
  5. 如权利要求2所述的方法,其特征在于,自动控制所述汽车驶入站台进一步包括:
    基于经融合的实时车辆位置与所述站台的指定停车区域计算车辆进站的路径规划;
    根据所述路径规划执行相应的车辆驾驶动作;以及
    基于经融合的实时车辆位置与经融合的实时环境信息两者调整所述路径规划。
  6. 如权利要求5所述的方法,其特征在于,所述经融合的实时车辆位置包括利用所述第二定位信息计算得到的所述汽车与所述车站之间的夹角。
  7. 如权利要求5所述的方法,其特征在于,所述路径规划至少包括:
    从车辆的当前位置到目标停车位置的车辆行驶路线;
    与所述车辆行驶路线相关联的车速状态;以及
    与所述车辆行驶路线相关联的车辆驾驶动作,其中所述车辆驾驶动作包括车辆驱动、制动和转向中的一个或多个。
  8. 如权利要求1所述的方法,其特征在于,还包括:
    基于所述汽车的感知系统提供的实时信息和与从所述车站接收的实时信息两者来确定是否开启车门。
  9. 如权利要求8所述的方法,其特征在于,还包括:
    当基于所述汽车的感知系统提供的实时信息和与从所述车站接收的实时信息确定车上有乘客准备下车或站台上有乘客等待上车时,控制所述汽车自动开启车门;以及
    当基于所述汽车的感知系统提供的实时信息和与从所述车站接收的实时信息确定存在不利于开门的情形,控制所述汽车不开启车门。
  10. 一种用于控制汽车自动出站的方法,其特征在于,所述方法包括:
    基于所述汽车的感知系统提供的实时的第一定位信息和站台提供的实时的第二定位信息两者得到经融合的实时车辆位置;
    基于所述汽车的感知系统感测的实时的第一环境信息和所述站台提供的实时的第二环境信息两者得到所述汽车周围的经融合的实时环境信息;
    确定是否具备出站条件,包括基于所述经融合的实时环境信息来判断是否存在妨碍所述汽车出站的实体对象;以及
    响应于确定具备出站条件,基于所述经融合的实时车辆位置和所述经融合的 实时环境信息两者来自动控制所述汽车驶出站台。
  11. 如权利要求10所述的方法,其特征在于,所述第一定位信息是由所述汽车的卫星定位设备提供的车辆定位信息,而所述第二定位信息是由所述站台的红外信号探测器提供的指示所述汽车与所述站台之间的距离的距离信息。
  12. 如权利要求9所述的方法,其特征在于,所述实体对象包括以下的至少一个:
    机动车辆、非机动车辆、行人、动物、或静态障碍物。
  13. 如权利要求9所述的方法,其特征在于,自动控制所述汽车驶出站台进一步包括:
    基于经融合的实时车辆位置与所述站台的指定出站点计算车辆出站的路径规划;
    根据所述路径规划执行相应的车辆驾驶动作;以及
    基于经融合的实时车辆位置与经融合的实时环境信息两者调整所述路径规划。
  14. 如权利要求13所述的方法,其特征在于,所述路径规划至少包括:
    从车辆的当前位置到目标停车位置的车辆行驶路线;
    与所述车辆行驶路线相关联的车速状态;以及
    与所述车辆行驶路线相关联的车辆驾驶动作,其中所述车辆驾驶动作包括车辆驱动、制动和转向中的一个或多个。
  15. 如权利要求9所述的方法,其特征在于,还包括:
    在所述汽车出站起步之前,基于所述汽车的感知系统提供的实时信息和与从所述车站接收的实时信息两者来确定是否关闭车门。
  16. 如权利要求15所述的方法,其特征在于,还包括:
    当基于所述汽车的感知系统提供的实时信息和与从所述车站接收的实时信息确定车上没有乘客准备下车且站台上没有乘客准备上车,并且车门附近无乘客达 预定时间时,控制所述汽车自动关闭车门。
  17. 一种能够自动进出站台的智能驾驶汽车,其特征在于,所述汽车包括:
    由一个或多个传感器组成的感知系统,所述感知系统被配置成提供所述汽车实时的第一定位信息和所述汽车周围实时的第一环境信息;
    车辆整车控制器,所述车辆整车控制器被配置成至少控制所述汽车的车门控制模块、电控驱动模块、电控制动模块、以及电控转向模块以实现相应的车门开关、车辆驱动、车辆制动、以及车辆转向;以及
    车辆智能驾驶系统,所述车辆智能驾驶系统包括:
    感知系统控制器,所述感知系统控制器被配置成接收来自所述感知系统提供的所述第一定位信息和所述第一环境信息;
    无线通信设备,所述无线通信设备被配置成接收来自车站的关于所述汽车的第二定位信息和车站周围实时的第二环境信息;以及
    决策控制器,所述决策控制器被配置成:
    从所述感知系统控制器接收所述第一定位信息和所述第一环境信息;
    从所述无线通信设备接收所述第二定位信息和所述第二环境信息;
    基于所述第一定位信息、所述第二定位信息、所述第一环境信息、以及所述第二环境信息决定是否具备进站条件或出站条件;
    响应于具备所述进站条件或出站条件,向所述车辆整车控制器发送相应指令以自动控制所述汽车进站或出站。
  18. 如权利要求17所述的汽车,其特征在于,所述决策控制器被进一步配置成,在准备进站时:
    确定所述汽车相对于站台的距离;
    将所述距离与预先设定的进站阈值距离作比较;
    响应于所述距离小于预先设定的进站阈值距离,确定是否具备进站条件,其中确定是否具备所述进站条件包括基于所述汽车的感知系统感测的第一环境信息和所述站台提供的第二环境信息两者的融合来判断是否存在妨碍所述汽车进站的实体对象;以及
    响应于确定具备进站条件,基于所述汽车的感知系统提供的实时的第一定位 信息和所述站台提供的实时的第二定位信息两者的融合,并且基于所述汽车的感知系统感测的实时的第一环境信息和所述站台提供的实时的第二环境信息两者的融合,自动控制所述汽车驶入站台并停在指定停车区域内。
  19. 如权利要求18所述的汽车,其特征在于,自动控制所述汽车驶入站台进一步包括:
    基于经融合的实时车辆位置与所述站台的指定停车区域计算车辆进站的路径规划;
    根据所述路径规划执行相应的车辆驾驶动作;以及
    基于经融合的实时车辆位置与经融合的实时环境信息两者调整所述路径规划。
  20. 如权利要求19所述的汽车,其特征在于,所述路径规划至少包括:
    从车辆的当前位置到目标停车位置的车辆行驶路线;
    与所述车辆行驶路线相关联的车速状态;以及
    与所述车辆行驶路线相关联的车辆驾驶动作,其中所述车辆驾驶动作包括车辆驱动、制动和转向中的一个或多个。
  21. 如权利要求17所述的汽车,其特征在于,所述决策控制器还被配置成:
    基于所述汽车的感知系统提供的实时信息和与从所述车站接收的实时信息两者来确定是否开启车门。
  22. 如权利要求21所述的汽车,其特征在于,所述决策控制器还被配置成:
    当基于所述汽车的感知系统提供的实时信息和与从所述车站接收的实时信息确定车上有乘客准备下车或站台上有乘客等待上车时,指令所述车辆整车控制器自动开启车门;以及
    当基于所述汽车的感知系统提供的实时信息和与从所述车站接收的实时信息确定存在不利于开门的情形,指令所述车辆整车控制器不开启车门。
  23. 如权利要求17所述的汽车,其特征在于,所述决策控制器被进一步配置成,在准备出站时:
    基于所述汽车的感知系统提供的实时的第一定位信息和站台提供的实时的第二定位信息两者得到经融合的实时车辆位置;
    基于所述汽车的感知系统感测的实时的第一环境信息和所述站台提供的实时的第二环境信息两者得到所述汽车周围的经融合的实时环境信息;
    确定是否具备出站条件,包括基于所述经融合的实时环境信息来判断是否存在妨碍所述汽车出站的实体对象;以及
    响应于确定具备出站条件,基于所述经融合的实时车辆位置和所述经融合的实时环境信息两者来自动控制所述汽车驶出站台。
  24. 如权利要求23所述的汽车,其特征在于,自动控制所述汽车驶出站台进一步包括:
    基于经融合的实时车辆位置与所述站台的指定出站点计算车辆出站的路径规划;
    根据所述路径规划执行相应的车辆驾驶动作;以及
    基于经融合的实时车辆位置与经融合的实时环境信息两者调整所述路径规划。
  25. 如权利要求24所述的汽车,其特征在于,所述路径规划至少包括:
    从车辆的当前位置到目标停车位置的车辆行驶路线;
    与所述车辆行驶路线相关联的车速状态;以及
    与所述车辆行驶路线相关联的车辆驾驶动作,其中所述车辆驾驶动作包括车辆驱动、制动和转向中的一个或多个。
  26. 如权利要求23所述的汽车,其特征在于,所述决策控制器还被配置成:
    在所述汽车出站起步之前,基于所述汽车的感知系统提供的实时信息和与从所述车站接收的实时信息两者来确定是否关闭车门。
  27. 如权利要求26所述的汽车,其特征在于,所述决策控制器还被配置成:
    当基于所述汽车的感知系统提供的实时信息和与从所述车站接收的实时信息确定车上没有乘客准备下车且站台上没有乘客准备上车,并且车门附近无乘客达预定时间时,控制所述汽车自动关闭车门。
  28. 如权利要求18或23所述的汽车,其特征在于,所述感知系统包括卫星定位设备,并且所述第一定位信息是由所述卫星定位设备提供的车辆定位信息,而所述第二定位信息是由所述站台的红外信号探测器提供的指示所述汽车与所述站台之间的距离的距离信息。
  29. 如权利要求18所述的汽车,其特征在于,确定所述汽车相对于站台的距离包括基于所述第一定位信息和所述站台的位置来计算所述汽车相对于站台的距离。
  30. 如权利要求18或23所述的汽车,其特征在于,所述实体对象包括以下的至少一个:
    机动车辆、非机动车辆、行人、动物、或静态障碍物。
  31. 如权利要求17所述的汽车,其特征在于,所述感知系统还包括:
    前向毫米波雷达;
    智能摄像头;
    激光雷达;以及
    侧向毫米波雷达。
  32. 如权利要求31所述的汽车,其特征在于,所述第一环境信息包括所述前向毫米波雷达、所述智能摄像头、所述激光雷达、所述侧向毫米波雷达中的至少两个所提供的感测信号的目标级融合。
  33. 一种站台智能控制系统,其特征在于,所述站台智能控制系统包括:
    传感器系统,所述传感器系统至少包括毫米波雷达、智能摄像头、以及多个红外信号探测器,其中:
    所述毫米波雷达和所述智能摄像头感测的信号被进行目标级融合以生成车站周围的环境信息,并且
    所述多个红外信号探测器被安装在所述站台上的不同位置,并被配置成 针对待进出站台的汽车提供指示所述汽车与所述站台之间的距离的距离信息;以及
    与所述传感器系统通信地耦合的站台智能控制器,所述站台智能控制器被配置成:
    与汽车的智能驾驶系统无线地通信以将所述环境信息、所述距离信息以及所述站台的站台状况信息发送给所述汽车;以及
    从所述汽车的智能驾驶系统无线地接收所述汽车的车辆状况信息。
  34. 如权利要求33所述的站台智能控制系统,其特征在于,所述多个红外信号探测器被沿直线等距地安装在所述站台上。
  35. 如权利要求33所述的站台智能控制系统,其特征在于,所述站台包括站台门,并且所述站台智能控制器还被配置成基于所述站台状况信息和所述车辆状况信息决定站台门的自动开关。
  36. 如权利要求33所述的站台智能控制系统,其特征在于,所述站台状况信息包括以下信息中的至少一个:
    开门条件;
    危险情况;
    站台上乘客情况;以及
    站台故障情况。
  37. 如权利要求33所述的站台智能控制系统,其特征在于,所述车辆状况信息包括以下信息中的至少一个:
    车辆的开门状态;
    车辆进站提醒;
    车辆起步提醒;以及
    车辆出站提醒。
  38. 一种智能驾驶汽车控制系统,其特征在于,包括:
    安装在汽车上的如权利要求17-32中的任意一项所述的车辆智能驾驶系统;以及
    安装在站台上的如权利要求33-37中的任意一项所述的站台智能控制系统,
    其中所述车辆智能驾驶系统和所述站台智能控制系统被配置成彼此协同工作以通过执行如权利要求1-16中的任意一项所述的方法控制所述汽车自动进出站台。
PCT/CN2018/117124 2018-11-23 2018-11-23 一种智能驾驶汽车自动进出站台的控制方法及系统 WO2020103120A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/117124 WO2020103120A1 (zh) 2018-11-23 2018-11-23 一种智能驾驶汽车自动进出站台的控制方法及系统
EP18941089.7A EP3885865A4 (en) 2018-11-23 2018-11-23 METHOD AND CONTROL SYSTEM FOR INTELLIGENT DRIVING VEHICLE FOR AUTOMATICALLY ENTERING/EXITING A STOP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/117124 WO2020103120A1 (zh) 2018-11-23 2018-11-23 一种智能驾驶汽车自动进出站台的控制方法及系统

Publications (1)

Publication Number Publication Date
WO2020103120A1 true WO2020103120A1 (zh) 2020-05-28

Family

ID=70774304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117124 WO2020103120A1 (zh) 2018-11-23 2018-11-23 一种智能驾驶汽车自动进出站台的控制方法及系统

Country Status (2)

Country Link
EP (1) EP3885865A4 (zh)
WO (1) WO2020103120A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113467474A (zh) * 2021-07-29 2021-10-01 安徽江淮汽车集团股份有限公司 自动驾驶层次化控制系统
CN113542926A (zh) * 2021-07-07 2021-10-22 东风悦享科技有限公司 一种基于Sharing-Smart无人清扫车的5G平行驾驶系统及控制方法
CN114319187A (zh) * 2021-12-02 2022-04-12 北京国家新能源汽车技术创新中心有限公司 智能网联汽车控制出入口道闸系统
CN114889674A (zh) * 2022-03-29 2022-08-12 大连市公安局交通警察支队 智能物联有轨电车安全停靠站台的设置和控制方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6681174B1 (en) * 2000-08-17 2004-01-20 Lee Harvey Method and system for optimum bus resource allocation
TW200929101A (en) * 2007-12-27 2009-07-01 Chtv System of intelligent station name broadcasting
CN104732754A (zh) * 2013-12-19 2015-06-24 西安思创达通讯科技有限责任公司 一种智能公交系统
CN206194143U (zh) * 2016-11-29 2017-05-24 安徽农业大学 一种城市brt公交车智能引导系统
CN108205312A (zh) * 2018-03-19 2018-06-26 中南大学 基于高精度地图与红外信标的无人驾驶brt车辆自动启停实现方法
CN108363328A (zh) * 2017-12-29 2018-08-03 江苏玮创达电子科技有限公司 一种新能源无人驾驶公交车监控技术
CN207790477U (zh) 2017-12-11 2018-08-31 郑州宇通客车股份有限公司 一种公交车到站停靠时防路沿碰撞预警控制系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004007850A1 (de) * 2003-02-17 2004-09-02 Daimlerchrysler Ag Verfahren und Einrichtung zur automatischen Haltestellenanfahrt und/oder Haltestellenausfahrt für ein Fahrzeug
DE102014010461A1 (de) * 2014-07-15 2016-01-21 e-drives UG (haftungsbeschränkt) Straßen-Zug-System und Verfahren zum Betreiben des Straßen-Zug-Systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6681174B1 (en) * 2000-08-17 2004-01-20 Lee Harvey Method and system for optimum bus resource allocation
TW200929101A (en) * 2007-12-27 2009-07-01 Chtv System of intelligent station name broadcasting
CN104732754A (zh) * 2013-12-19 2015-06-24 西安思创达通讯科技有限责任公司 一种智能公交系统
CN206194143U (zh) * 2016-11-29 2017-05-24 安徽农业大学 一种城市brt公交车智能引导系统
CN207790477U (zh) 2017-12-11 2018-08-31 郑州宇通客车股份有限公司 一种公交车到站停靠时防路沿碰撞预警控制系统
CN108363328A (zh) * 2017-12-29 2018-08-03 江苏玮创达电子科技有限公司 一种新能源无人驾驶公交车监控技术
CN108205312A (zh) * 2018-03-19 2018-06-26 中南大学 基于高精度地图与红外信标的无人驾驶brt车辆自动启停实现方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3885865A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113542926A (zh) * 2021-07-07 2021-10-22 东风悦享科技有限公司 一种基于Sharing-Smart无人清扫车的5G平行驾驶系统及控制方法
CN113542926B (zh) * 2021-07-07 2023-09-19 东风悦享科技有限公司 一种基于Sharing-Smart无人清扫车的5G平行驾驶系统及控制方法
CN113467474A (zh) * 2021-07-29 2021-10-01 安徽江淮汽车集团股份有限公司 自动驾驶层次化控制系统
CN113467474B (zh) * 2021-07-29 2023-09-22 安徽江淮汽车集团股份有限公司 自动驾驶层次化控制系统
CN114319187A (zh) * 2021-12-02 2022-04-12 北京国家新能源汽车技术创新中心有限公司 智能网联汽车控制出入口道闸系统
CN114319187B (zh) * 2021-12-02 2023-05-16 北京国家新能源汽车技术创新中心有限公司 智能网联汽车控制出入口道闸系统
CN114889674A (zh) * 2022-03-29 2022-08-12 大连市公安局交通警察支队 智能物联有轨电车安全停靠站台的设置和控制方法及系统
CN114889674B (zh) * 2022-03-29 2024-05-07 大连市公安局交通警察支队 智能物联有轨电车安全停靠站台的设置和控制方法及系统

Also Published As

Publication number Publication date
EP3885865A1 (en) 2021-09-29
EP3885865A4 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
WO2020103120A1 (zh) 一种智能驾驶汽车自动进出站台的控制方法及系统
CN111216711B (zh) 一种智能驾驶汽车自动进出站台的控制方法及系统
CN110103967B (zh) 一种车辆自动变道方法及车辆控制系统、车辆
KR101511923B1 (ko) 차량 원격 조작 시스템 및 차재기
US10814865B2 (en) Parking device
CN106891887B (zh) 自动停车系统及其应用
JP5790696B2 (ja) 車両遠隔操作システム及び車載機
CN109733392B (zh) 一种避障方法及装置
US20150203111A1 (en) Method for Carrying Out a Process of Parking a Vehicle by Means of a Driver Assistance System
CN111754804A (zh) 管理装置、管理方法及存储介质
CN111376853A (zh) 车辆控制系统、车辆控制方法及存储介质
CN111667709B (zh) 车辆控制装置、信息提供装置、信息提供系统、车辆控制方法、信息提供方法及存储介质
US20200307558A1 (en) Vehicle control device, vehicle management device, vehicle control method, vehicle management method, and storage medium
CN111932927B (zh) 管理装置、管理方法及存储介质
KR20180064639A (ko) 자동차 및 그 제어 방법
US11414085B2 (en) Vehicle control device, vehicle control method, and storage medium
US11352026B2 (en) Vehicle, vehicle monitoring server, vehicle monitoring system, and vehicle monitoring method
CN111688708B (zh) 车辆控制系统、车辆控制方法及存储介质
US11385638B2 (en) Method for operating a safety system for a motor vehicle and safety system
CN115465262A (zh) 至少部分自动化地转移机动车的方法、装置和存储介质
JP2020166357A (ja) 車両制御装置、車両制御方法、およびプログラム
CN114701520A (zh) 一种工程园区内自动驾驶的安全冗余系统
US11541887B2 (en) Enabling reverse motion of a preceding vehicle at bunched traffic sites
CN113496613B (zh) 自主行驶车辆及自主行驶车辆的运行管理装置
CN115273536A (zh) 代客泊车控制方法、装置、控制终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018941089

Country of ref document: EP

Effective date: 20210623