WO2020102936A1 - 共价有机框架材料的制备方法和缺陷修复方法 - Google Patents

共价有机框架材料的制备方法和缺陷修复方法

Info

Publication number
WO2020102936A1
WO2020102936A1 PCT/CN2018/116174 CN2018116174W WO2020102936A1 WO 2020102936 A1 WO2020102936 A1 WO 2020102936A1 CN 2018116174 W CN2018116174 W CN 2018116174W WO 2020102936 A1 WO2020102936 A1 WO 2020102936A1
Authority
WO
WIPO (PCT)
Prior art keywords
derivatives
acid
control agent
cof
tert
Prior art date
Application number
PCT/CN2018/116174
Other languages
English (en)
French (fr)
Inventor
王文俊
王崧
刘平伟
李伯耿
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US17/292,485 priority Critical patent/US20220153904A1/en
Priority to PCT/CN2018/116174 priority patent/WO2020102936A1/zh
Priority to CN201880096737.4A priority patent/CN112654599B/zh
Priority to EP18940484.1A priority patent/EP3862341A4/en
Publication of WO2020102936A1 publication Critical patent/WO2020102936A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/06Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/06Amines
    • C08G12/08Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08G12/30Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with substituted triazines

Definitions

  • the invention relates to a method for preparing a covalent organic framework (COF) material-reversible polycondensation / termination polymerization method.
  • the COF material prepared by the method has high crystallinity, high specific surface area, regular and controllable morphology.
  • the invention also relates to a method for repairing the defects of the COF material—reversible depolymerization and reorganization, which can eliminate the defects of the existing COF material, thereby improving the crystallinity and specific surface area of the COF material and improving its morphological characteristics.
  • COF materials are a kind of well-known porous materials. They have the advantages of high specific surface area, precise pore structure, high stability and rich variety. They are widely used in separation, catalysis, gas storage, sensors, drug release and other fields.
  • EP2832767A1 discloses a method for preparing COF by acetic acid at room temperature, but the COF material obtained by this method has low crystallinity, and is only suitable for Schiff base COF materials
  • CN105214340A discloses a method for preparing COF materials, by introducing polydopamine COF crystals are prepared in layers. This method has low yield and complicated process, and is only suitable for borate COF materials.
  • CN106083909A discloses a method for preparing a single crystal COF material.
  • the nucleating inhibitor aniline is used to prepare a single crystal COF material, but this method is only applicable to 3D Schiff base COF materials.
  • the prevailing method of preparing material suitable for COF narrow range, complex process, defects and poor morphology controlled, grain size is typically less than 50 nm, the specific surface area is usually 100-1500m 2 / g. Therefore, there is a need in the art for an improved method for preparing COF materials that can produce COF materials with high specific surface area and crystallinity, as well as improved morphological characteristics.
  • the present inventors found that by introducing a control agent in the preparation process of the COF material, it is possible to solve the deficiencies of the prior art and obtain a COF material with improved performance.
  • the present invention relates to the use of the control agents AP and BP in the preparation of COF materials, wherein the control agents AP and BP are described in detail below.
  • the present invention provides a new method for preparing COF materials—Reversible Polycondensation-Termination (RPT) method. Specifically, the present invention relates to a method for preparing COF material by RPT, which includes the following steps:
  • Monomers A are those known in the art for preparing COF materials.
  • it may be selected from aromatic amines and their derivatives, aromatic hydrazides and their derivatives, aromatic boric acids and their derivatives, and aromatic nitriles and their derivatives.
  • Examples of monomer A include but are not limited to 1,4-phenylenediamine, 2,5-dimethyl-1,4-phenylenediamine, tetramethyl-p-phenylenediamine, benzidine, 3,3 ', 5 , 5'-Tetramethylbiphenyl-4,4'-diamine, 3,3'-dinitrobenzidine, 4,4'-diaminotriphenyl, 4,4'-diaminostilbene , P-diaminoazobenzene, 2,6 anthracene diamine, 3,4-diaminotetrahydrofuran, hydrazine, 1,2-cyclohexanediamine, 1,2,4,5-bis (dihydrazide) benzene, 1,3,5-tris (4-aminophenyl) benzene, 2,4,6-tris (4-aminophenyl) -1,3,5-triazine, melamine, 5,10,15,20- Tetra (4-amin
  • Preferred monomers A include 1,4-phenylenediamine, 1,3,5-tris (4-aminophenyl) benzene, 2,4,6-tris (4-aminophenyl) -1,3,5 -Triazine, 5,10,15,20-tetrakis (4-aminophenyl) porphyrin, 1,4-benzenediboronic acid, phenyltriboronic acid, 5,10,15,20-tetrakis (4-boronic acid Phenyl) porphyrin, terephthaloyl hydrazide, and combinations thereof.
  • the above monomers are commercially available or can be prepared by known methods.
  • Monomer B are those known in the art for preparing COF materials.
  • it may be selected from aromatic aldehydes and their derivatives, aromatic boric acids and their derivatives, phenols and their derivatives, alcohols and their derivatives, and aromatic nitriles and their derivatives.
  • Examples of monomer B include, but are not limited to, terephthalaldehyde, biphenyl dialdehyde, 2,5-dihydroxy terephthalaldehyde, 2,5-dimethoxy terephthalaldehyde, 2,3-dihydroxy para Phthalaldehyde, 2,3-dimethoxyterephthalaldehyde, 2,5-diynyloxyterephthalaldehyde, glyoxal, pyromaldehyde, 2,4,6-trihydroxypyrylene Formaldehyde, 1,3,5-tris (4-aldehydephenyl) benzene, 2,4,6-tris (4-aldehydephenyl) -1,3,5-triazine, cyclohexanone, 1 , 4-benzenediboronic acid, pyromellitic acid, 1,4-benzenediboronic acid dipinacolate, 4,7-bisboronic acid-2,1,3-benzo
  • Preferred monomers B include terephthalaldehyde, biphenyldialdehyde, 2,4,6-trihydroxypyrroldaldehyde, 1,2,4,5-pyrogallol, 3,6,7,10,11 -Hexahydroxytriphenylene, 1,4-benzenediboronic acid, phenyltriboric acid, and combinations thereof.
  • the above monomers are commercially available or can be prepared by known methods.
  • Solvent 1 and solvent 2 and their amounts are known in the art.
  • Solvent 1 and solvent 2 may be the same or different, and may include but are not limited to alkanes, aromatic hydrocarbons, alcohols, ethers, ketones, esters, amides, Solvents such as sulfoxides, water, and their derivatives.
  • Specific examples thereof include, but are not limited to, isopentane, n-pentane, petroleum ether, hexane, cyclohexane, isooctane, trifluoroacetic acid, heptane, carbon tetrachloride, benzene, toluene, xylene, trimethylbenzene , Chlorobenzene, dichlorobenzene, ether, isobutanol, n-butanol, propanol, ethanol, methanol, methylene chloride, chloroform, ethyl acetate, tetrahydrofuran, dioxane, acetone, pyridine, acetonitrile, dimethyl Sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, acetic acid, formic acid, water, and combinations thereof.
  • the control agent AP is selected from monoaldehydes and their derivatives, monoboric acids and their derivatives, phenols and their derivatives, alcohols and their derivatives, and mononitriles and their derivatives.
  • Examples of the control agent AP include but are not limited to benzaldehyde, 2-chlorobenzaldehyde, 3-chlorobenzaldehyde, 4-chlorobenzaldehyde, 2-nitrobenzaldehyde, 3-nitrobenzaldehyde, 4-nitrobenzaldehyde , 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, 4-tert-butylbenzaldehyde, 4-fluorobenzaldehyde, 1-naphthaldehyde, 2-naphthaldehyde, formaldehyde, acetaldehyde , Propionaldehyde, butyraldehyde, valeraldehyde, hexanal, h
  • control agents AP include benzaldehyde, 4-tert-butylbenzaldehyde, butyraldehyde, phenylboronic acid, catechol, ethylene glycol, benzonitrile, and combinations thereof.
  • the control agent AP can be obtained commercially or prepared by a known method.
  • the control agent BP is selected from monoamines and their derivatives, monohydrazides and their derivatives, monoboric acids and their derivatives, and mononitriles and their derivatives.
  • Examples of the control agent BP include, but are not limited to, aniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline, 1,3-benzothiazol-5-amine, 2-nitroaniline, 3-nitroaniline , 4-nitroaniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, 4-tert-butylaniline, 4-fluoroaniline, 1-naphthylamine, 2-naphthylamine, methylamine, Ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, cyclohexylamine, phenylboronic acid, 4-tert-butylphenylboronic acid, n-propylboronic
  • control agents BP include aniline, 4-tert-butylaniline, butylamine, phenylboronic acid, benzonitrile, benzohydrazide, and combinations thereof.
  • the control agents are all commercially available or can be prepared by known methods.
  • Catalyst CA and catalyst CB are those known in the art for preparing COF materials, which may be the same or different, and may be selected from carboxylic acids and their salts, sulfonic acids and their salts, and their derivatives. Examples include, but are not limited to, formic acid, acetic acid, trifluoroacetic acid, benzenesulfonic acid, toluenesulfonic acid, scandium triflate, europium triflate, indium triflate, triflic acid Ytterbium, yttrium triflate, zinc triflate, and combinations thereof.
  • the concentration of the catalyst CA in the solution A and the concentration of the catalyst CB in the solution B are generally 0-20M, preferably 0-18M.
  • the concentration of monomer A in solution A and the concentration of monomer B in solution B are respectively 0.01-100 mM, preferably 0.1-50 mM, more preferably 0.2-25 mM.
  • the molar ratio of the control agent AP to the monomer A and the molar ratio of the control agent BP to the monomer B are respectively 0.01-200: 1, preferably 0.1-100: 1, more preferably 0.5-50: 1.
  • the molar ratio of monomer A to monomer B is 0.05-20: 1, preferably 0.1-10: 1, more preferably 0.25-4: 1.
  • the temperature and time of the reaction are known in the art.
  • the reaction is carried out at a temperature of 0-200 ° C, preferably 0-150 ° C; and the reaction time is usually 0.01-100 hours, preferably 0.05-80 hours, more preferably 0.1-70 hours.
  • the present invention also relates to a COF material obtainable by the above preparation method, which has a high crystallinity and a high specific surface area and an improved morphological feature.
  • the grain size of the COF material is typically 50 to 170 nm, preferably 60 to 150 nm; specific surface area is generally 1000-2500m 2 / g, preferably 1100-2200m 2 / g; and / or a particle size of 100-100, 000 nm, preferably 150-30,000 nm, and the particle size distribution is 1-8, preferably 1-3.
  • the COF material obtained by the preparation method of the present invention is usually in the form of spherical, granular, rod-shaped, hollow fiber, or flake, etc., which can be controlled according to actual needs, for example, the spherical COF with a small particle size required for supporting the catalyst , Rod-shaped COF required for drug release, etc.
  • the present invention provides a method for repairing defects of existing COF materials—Reversible Degradation-Recombination (RDR). Specifically, the present invention provides a method for repairing defects of a COF material through RDR, which includes the following steps:
  • the precipitate obtained is separated and dried to obtain a COF material.
  • the COF-A material is any kind of COF material prepared by any existing method, which generally has a crystal grain size of 1-50 nm and a specific surface area of 100-1500 m 2 / g.
  • Methods for preparing COF materials including, for example, the methods described in the background section above, and “Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications” by Segura, JL et al. , Chemical Society Reviews, 2016, 45: 5635-5671, and Jiang, J. et al. "Covalent Chemistry beyond Molecules", Journal of the American Chemical Society, 2016, 138, 3255-3265.
  • control agents AP and BP, the catalyst and the solvent are as described above.
  • the concentration of COF-A in the dispersion is 0.01-100: 1 mg / ml, preferably 0.1-50: 1, more preferably 0.2-30: 1.
  • the concentrations of the control agents AP and BP in the dispersion liquid are 0.01-1000 mM, preferably 0.05-800 mM, more preferably 0.1-500 mM.
  • the concentration of the catalyst in the dispersion is 0-20M, preferably 0-18M;
  • the reaction is usually carried out at a temperature of 0-200 ° C, preferably 0-150 ° C.
  • the reaction time is usually 0.01 to 200 hours, preferably 0.1 to 150 hours, and more preferably 0.2 to 100 hours.
  • the repair method of the present invention can repair the performance defects of the COF material prepared by the known method or existing, such as low crystallinity and low specific surface area, increase its grain size and specific surface area, and improve its morphological characteristics.
  • the grain size of the COF material obtained by the repair method of the present invention is usually 50-150 nm, preferably 60-120 nm; the specific surface area is usually 800-2500 m 2 / g, preferably 900-2000 m 2 / g.
  • the specific surface area is obtained by testing the nitrogen adsorption with a specific surface area analyzer.
  • the grain size is tested by X-ray diffraction method.
  • the particle size and particle size distribution are measured by a scanning electron microscope.
  • Solution A and solution B were mixed and reacted at 25 ° C for 5 minutes.
  • the COF1 obtained by the reaction was filtered out, rinsed with acetone 3 times, and dried in a vacuum oven at 50 ° C for 1 day to obtain the product. Its specific surface area was 1520 m 2 / g, grain size was 83 nm, particle size was 1200 nm and particle size distribution Spherical particles of 1.9.
  • the COF2 obtained by the reaction was filtered out, rinsed with dioxane 3 times, and dried in a vacuum oven at 70 ° C for 1 day to obtain the product. Its specific surface area was 1310 m 2 / g, grain size was 63 nm, and its diameter was 890 ⁇ Hollow fiber of 100nm, length 21300 ⁇ 1400nm, wall thickness 50 ⁇ 8nm.
  • Dissolve 150 ⁇ mol of terephthalaldehyde in 100 mL of dioxane / mesitylene (4/1, v / v) add 0.5 mmol of butylamine and 100 ⁇ mol of scandium triflate to prepare solution B .
  • Solution A and solution B were mixed and reacted at 35 ° C for 40 hours.
  • the COF3 obtained by the reaction was filtered out, rinsed with tetrahydrofuran three times, and dried in a vacuum oven at 60 ° C for 1 day to obtain the product. Its specific surface area was 1713m 2 / g, grain size was 113nm, and it was 40 ⁇ 9nm thick. A sheet structure with a diameter of 21000 ⁇ 2000nm.
  • the COF4 obtained by the reaction was filtered out, rinsed with ethanol three times, and dried in a vacuum oven at 65 ° C for 1 day to obtain the product. Its specific surface area was 1669m 2 / g, grain size was 105nm, length was 880 ⁇ 80nm, diameter It is a rod-shaped structure of 340 ⁇ 30nm.
  • Solution A and solution B were mixed and reacted at 120 ° C for 20 hours.
  • the COF5 obtained by the reaction was filtered out, rinsed with ethanol three times, and dried in a vacuum oven at 70 ° C for 1 day to obtain the product. Its specific surface area was 1123 m 2 / g, its crystal grain size was 90 nm, its diameter was 177 nm, and its particle size distribution was 2.7 spherical particles.
  • Solution A and solution B were mixed and reacted at 100 ° C for 40 hours.
  • the COF6 obtained by the reaction was filtered out, rinsed with ethanol 3 times, and dried in a vacuum oven at 70 ° C for 1 day to obtain the product. Its specific surface area was 2156m 2 / g, grain size was 146nm, and thickness was 100 ⁇ 30nm.
  • Solution A and solution B were mixed and reacted at 130 ° C for 60 hours.
  • the COF7 obtained by the reaction was filtered out, rinsed with ethanol three times, and dried in a vacuum oven at 60 ° C for 1 day to obtain the product.
  • Its specific surface area was 1478 m 2 / g
  • grain size was 138 nm
  • diameter was 25000 nm
  • particle size distribution Spherical particles of 1.4 was 1478 m 2 / g
  • Solution A and solution B were mixed and reacted at 150 ° C for 60 hours.
  • the COF8 obtained by the reaction was filtered out, rinsed with ethanol 3 times, and dried in a vacuum oven at 60 ° C for 1 day to obtain the product. Its specific surface area was 1058 m 2 / g, grain size was 108 nm, diameter was 8000 nm, and particle size distribution Spherical particles of 1.2.
  • Solution A and solution B were mixed and reacted at 90 ° C for 40 hours.
  • the COF10 obtained by the reaction was filtered out, rinsed with acetone three times, and dried in a vacuum oven at 70 ° C for 1 day to obtain the product. Its specific surface area was 1453 m 2 / g, the crystal grain size was 83 nm, and it was a sphere with a diameter of 1500 ⁇ 40 nm. Particles.
  • Solution A and solution B were mixed and reacted at 30 ° C for 90 hours.
  • the COF11 obtained by the reaction was filtered out, rinsed with acetone 3 times, and dried in a vacuum oven at 40 ° C for 1 day to obtain the product. Its specific surface area was 1753m 2 / g, grain size was 93nm, and it was spherical with a diameter of 2500 ⁇ 100nm. Particles.
  • COF-A1 prepared from 1,3,5-tris (4-aminophenyl) benzene and terephthalaldehyde under the reported conditions (catalyzed by acetic acid at room temperature) has a specific surface area of 651m 2 / g and grain size 8nm. Disperse 10 mg of the COF-A1 in 100 mL of dioxane containing 0.01 mmol of benzaldehyde, 0.01 mmol of aniline and 300 mmol of acetic acid, and react at 10 ° C for 200 hours. The resulting COF-1 is filtered out and rinsed with acetone 3 Next, it was dried in a vacuum oven at 50 ° C. for 1 day to obtain a product with a specific surface area of 1387 m 2 / g and a crystal grain size of 81 nm.
  • COF-A2 prepared from p-phenylenediamine and 3-methylbenzaldehyde under the reported conditions (catalyzed by acetic acid at room temperature) has a specific surface area of 518 m 2 / g and a grain size of 12 nm.
  • COF-A3 prepared from pyromellitic acid and 1,2,4,5-pyrogallol under the reported conditions (catalyzed by acetic acid at 120 ° C) has a specific surface area of 721 m 2 / g and a grain size of 19 nm.
  • COF-A4 prepared from homophenyltriboric acid and 3,6,7,10,11-hexahydroxytriphenylene under reported conditions (catalyzed by benzenesulfonic acid at room temperature) has a specific surface area of 619m 2 / g, grains The size is 16nm. Disperse 3000 mg of the COF-A4 in 100 mL of N, N-dimethylformamide containing 50 mmol of 4-tert-butylbenzeneboronic acid and 50 mmol of catechol, and react at 150 ° C for 70 hours.
  • the resulting COF -4 was filtered out, rinsed with acetone three times, and dried in a vacuum oven at 45 ° C for 1 day to obtain a product with a specific surface area of 1585 m 2 / g and a grain size of 98 nm.
  • COF-A5 prepared from terephthalonitrile under the reported conditions (catalyzed by acetic acid at 120 ° C) has a specific surface area of 347 m 2 / g and a grain size of 6 nm.
  • COF-A6 prepared from terephthaloyl hydrazide and pyromellidaldehyde under the reported conditions (catalyzed by acetic acid at room temperature) has a specific surface area of 413 m 2 / g and a grain size of 10 nm.
  • COF-A7 has a specific surface area of 536 m 2 / g and a grain size of 8 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种制备共价有机框架(COF)材料的方法—可逆缩聚/终止聚合方法,通过该方法制备的COF材料具有高结晶性、高比表面积、规整且可控的形貌。此外还涉及一种修复COF材料的缺陷的方法—可逆解聚重组,该方法可消除已有COF材料的缺陷,从而提高COF材料的结晶性和比表面积以及改善其形貌特征。

Description

共价有机框架材料的制备方法和缺陷修复方法 技术领域
本发明涉及一种制备共价有机框架(COF)材料的方法—可逆缩聚/终止聚合方法,通过该方法制备的COF材料具有高结晶性、高比表面积、规整且可控的形貌。本发明还涉及一种修复COF材料的缺陷的方法—可逆解聚重组,该方法可消除已有COF材料的缺陷,从而提高COF材料的结晶性和比表面积以及改善其形貌特征。
背景技术
COF材料是一类众所周知的多孔材料,其具有比表面积高、孔结构精确规整、稳定性高和种类丰富等优点,在分离、催化、气体储存、传感器、药物释放等领域具有广泛应用。
传统的COF材料的制备方法通常得到低结晶度、不规则形貌的产物,这极大降低了其比表面积和孔结构的规整性,从而制约了该材料的应用。EP2832767A1公开了一种通过醋酸室温催化制备COF的方法,但该方法得到的COF材料结晶度低,且仅适用席夫碱类COF材料CN105214340A公开了一种制备COF材料的方法,通过引入聚多巴胺涂层制备COF晶体,该方法产量低、工艺复杂,且只适用于硼酸酯类COF材料。CN106083909A公开了一种制备单晶COF材料的方法,通过引入成核抑制剂苯胺制备单晶COF材料,但该方法只适用于3D的席夫碱COF材料。总之,目前的制备COF材料的方法普遍存在适用范围窄、工艺复杂、形貌可控性差等缺点,其晶粒尺寸通常小于50nm,比表面积通常为100-1500m 2/g。因此,本领域需要具有改进的制备COF材料的方法,该方法能制备得到具有高比表面积和结晶度以及改善的形貌特征的COF材 料。
发明内容
经研究,本发明人发现,通过在COF材料的制备工艺中引入控制剂,可以解决现有技术的不足,获得性能得到改进的COF材料。
因此,一方面,本发明涉及控制剂AP和BP在COF材料制备中的用途,其中控制剂AP和BP如下文详述。
另一方面,本发明提供了一种制备COF材料的新方法—可逆缩聚/终止聚合(Reversible Polycondensation-Termination,RPT)方法。具体地,本发明涉及一种通过RPT制备COF材料的方法,其包括以下步骤:
将单体A溶解在溶剂1中,加入控制剂AP,任选地加入催化剂CA,得到溶液A;
将单体B溶解在溶剂2中,加入控制剂BP,任选地加入催化剂CB,得到溶液B;
将溶液A和溶液B混合以得到混合溶液,并使之反应;和
反应结束后,将得到的沉淀分离出来,干燥,得到COF材料。
单体A是本领域已知的用于制备COF材料的那些。例如,其可选自芳香胺类及其衍生物、芳香酰肼类及其衍生物、芳香硼酸类及其衍生物、和芳香腈类及其衍生物。单体A的实例包括但不限于1,4-苯二胺、2,5-二甲基-1,4-苯二胺、四甲基对苯二胺、联苯胺、3,3’,5,5’-四甲基联苯-4,4’-二胺、3,3'-二硝基联苯胺、4,4'-二氨基三连苯、4,4'-二氨基二苯乙烯、对二氨基偶氮苯、2,6蒽二胺、3,4-二氨基四氢呋喃、肼、1,2-环己二胺、1,2,4,5-二(二酰肼)苯、1,3,5-三(4-氨苯基)苯、2,4,6-三(4-氨基苯基)-1,3,5-三嗪、三聚氰胺、5,10,15,20-四(4-氨基苯基) 卟啉、1,2,4,5-苯四胺、六氨基苯、1,6-二氨基芘、2,3,6,7,10,11-六氨基三亚苯、1,4-苯二硼酸、均苯三硼酸、1,4-苯二硼酸二频哪酯、4,7-双硼酸-2,1,3-苯并噻二唑、4,7-双(4,4,5,5-四甲基-1,3,2-二氧杂戊硼烷-2-基)-2,1,3-苯并噻二唑、2,7-双硼酸芘、2,7-双(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)芘、4,4'-联苯基二硼酸、4,4'-联苯二硼酸二频哪醇酯、5,10,15,20-四(4-硼酸基苯基)卟啉、对苯二腈、2,6蒽二腈、对苯二甲酰肼、2,5-二甲氧基对苯二甲酰肼、2,5-二乙氧基对苯二甲酰肼、及其组合。优选的单体A包括1,4-苯二胺、1,3,5-三(4-氨苯基)苯、2,4,6-三(4-氨基苯基)-1,3,5-三嗪、5,10,15,20-四(4-氨基苯基)卟啉、1,4-苯二硼酸、均苯三硼酸、5,10,15,20-四(4-硼酸基苯基)卟啉、对苯二甲酰肼、及其组合。以上单体均可商购或通过已知的方法制备得到。
单体B是本领域已知的用于制备COF材料的那些。例如,其可选自芳香醛类及其衍生物、芳香硼酸类及其衍生物、酚类及其衍生物、醇类及其衍生物、和芳香腈类及其衍生物。单体B的实例包括但不限于对苯二甲醛、联苯二甲醛、2,5-二羟基对苯二甲醛、2,5-二甲氧基对苯二甲醛、2,3-二羟基对苯二甲醛、2,3-二甲氧基对苯二甲醛、2,5-二炔氧基对苯二甲醛、乙二醛、均苯三甲醛、2,4,6-三羟基均苯三甲醛、1,3,5-三(4-醛基苯基)苯、2,4,6-三(4-醛基苯基)-1,3,5-三嗪、环己六酮、1,4-苯二硼酸、均苯三硼酸、1,4-苯二硼酸二频哪酯、4,7-双硼酸-2,1,3-苯并噻二唑、4,7-双(4,4,5,5-四甲基-1,3,2-二氧杂戊硼烷-2-基)-2,1,3-苯并噻二唑、2,7-双硼酸芘、2,7-双(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)芘、4,4'-联苯基二硼酸、4,4'-联苯二硼酸二频哪醇酯、5,10,15,20-四(4-硼酸基苯基)卟啉、1,2,4,5-苯四酚、3,6-二甲基-1,2,4,5-苯四酚、3,6-二乙基-1,2,4,5-苯 四酚、3,6-二丙基-1,2,4,5-苯四酚、2,3,6,7-萘四酚、2,3,6,7-蒽四酚、3,6,7,10,11-六羟基三亚苯、对苯二腈、2,6蒽二腈、及其组合。优选的单体B包括对苯二甲醛、联苯二甲醛、2,4,6-三羟基均苯三甲醛、1,2,4,5-苯四酚、3,6,7,10,11-六羟基三亚苯、1,4-苯二硼酸、均苯三硼酸、及其组合。以上单体均可通过商购或通过已知的方法制备得到。
溶剂1和溶剂2及其用量是本领域已知的,溶剂1和溶剂2可以相同或不同,可包括但不限于烷烃、芳香烃、醇类、醚类、酮类、酯类、酰胺类、亚砜类、水、及其衍生物等溶剂。其具体实例包括但不限于异戊烷、正戊烷、石油醚、己烷、环己烷、异辛烷、三氟乙酸、庚烷、四氯化碳、苯、甲苯、二甲苯、三甲苯、氯苯、二氯苯、乙醚、异丁醇、正丁醇、丙醇、乙醇、甲醇、二氯甲烷、氯仿、乙酸乙酯、四氢呋喃、二氧六环、丙酮、吡啶、乙腈、二甲亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、乙酸、甲酸、水、及其组合。
控制剂AP选自单醛类及其衍生物、单硼酸类及其衍生物、酚类及其衍生物、醇类及其衍生物、和单腈类及其衍生物。控制剂AP的实例包括但不限于苯甲醛、2-氯苯甲醛、3-氯苯甲醛、4-氯苯甲醛、2-硝基苯甲醛、3-硝基苯甲醛、4-硝基苯甲醛、2-甲基苯甲醛、3-甲基苯甲醛、4-甲基苯甲醛、4-叔丁基苯甲醛、4-氟苯甲醛、1-萘甲醛、2-萘甲醛、甲醛、乙醛、丙醛、丁醛、戊醛、己醛、庚醛、辛醛、苯硼酸、4-叔丁基苯硼酸、正丙基硼酸、环己基硼酸、邻苯二酚、2,3-二羟基萘、乙二醇、2,3-二甲基-2,3-丁二醇、1,2-环己二醇、苯腈、萘腈、乙腈、环己腈、及其组合。优选的控制剂AP包括苯甲醛、4-叔丁基苯甲醛、丁醛、苯硼酸、邻苯二酚、乙二醇、苯腈、及其组合。所述控制剂AP可通过商购或通过已知的方法制备得到。
控制剂BP选自单胺类及其衍生物、单酰肼类及其衍生物、单硼酸类及其衍生物、和单腈类及其衍生物。控制剂BP的实例包括但不限于自苯胺、2-氯苯胺、3-氯苯胺、4-氯苯胺、1,3-苯并噻唑-5-胺、2-硝基苯胺、3-硝基苯胺、4-硝基苯胺、2-甲基苯胺、3-甲基苯胺、4-甲基苯胺、4-叔丁基苯胺、4-氟苯胺、1-萘胺、2-萘胺、甲胺、乙胺、丙胺、丁胺、戊胺、己胺、庚胺、辛胺、环己胺、苯硼酸、4-叔丁基苯硼酸、正丙基硼酸、环己基硼酸、2,3-二羟基萘、乙二醇、2,3-二甲基-2,3-丁二醇、1,2-环己二醇、苯腈、萘腈、乙腈、环己腈、苯甲酰肼、4-氯苯甲酰肼、3-吡啶甲酰肼、甲酸酰肼、乙酸酰肼、丙酸酰肼、环己甲酰肼、及其组合。优选的控制剂BP包括苯胺、4-叔丁基苯胺、丁胺、苯硼酸、苯腈、苯甲酰肼、及其组合。所述控制剂均BP可通过商购或通过已知的方法制备得到。
催化剂CA和催化剂CB是本领域已知的用于制备COF材料的那些,其可相同或者不同,可选自羧酸及其盐、磺酸及其盐、以及它们的衍生物。其实例包括但不限于甲酸、乙酸、三氟乙酸、苯磺酸、甲基苯磺酸、三氟甲磺酸钪、三氟甲磺酸铕、三氟甲磺酸铟、三氟甲磺酸镱、三氟甲磺酸钇、三氟甲磺酸锌、及其组合。例如,参见Dichtel,W.R.等人的Rapid,Low Temperature Formation of Imine-Linked Covalent Organic Frameworks Catalyzed by Metal Triflates”,Journal of the American Chemical Society,2017,139,4999-5002以及Wang W.等人的“Covalent organic frameworks(COFs):from design to applications”,Chemical Society Reviews,2013,42,548-568中所公开的那些催化剂,所有这些文献通过参考引入本文。某些催化剂,例如甲酸,可在本发明的方法中同时充当溶剂,在这种情况下,催化剂的浓度可以是较高的。
催化剂CA在溶液A中的浓度以及催化剂CB在溶液B中的浓度通常分别为0-20M,优选0-18M。
在所述方法中,单体A在溶液A中的浓度以及单体B的在溶液B中的浓度分别为0.01-100mM,优选0.1-50mM,更优选0.2-25mM。控制剂AP与单体A的摩尔比以及控制剂BP与单体B的摩尔比分别为0.01-200:1,优选0.1-100:1,更优选0.5-50:1。单体A与单体B的摩尔比为0.05-20:1,优选0.1-10:1,更优选0.25-4:1。
所述反应的温度和时间是本领域已知的。例如,所述反应在0-200℃,优选0-150℃的温度下进行;和所述反应的时间通常为0.01-100小时,优选0.05-80小时,更优选0.1-70小时。
再一方面,本发明还涉及可通过上述制备方法获得的COF材料,其具有高的结晶度和高的比表面积以及改善的形貌特征。例如,所述COF材料的晶粒尺寸通常为50-170nm,优选60-150nm;比表面积通常为1000-2500m 2/g,优选1100-2200m 2/g;和/或粒径为100-100,000nm,优选150-30,000nm,且粒径分布为1-8,优选1-3。
此外,通过本发明的制备方法获得的COF材料通常是球形、粒状、棒状、中空纤维或者片状等形式,这可根据实际需要来控制,例如,用于负载催化剂需要的小粒径的球形COF,用于药物释放需要的棒状COF等。
又一方面,本发明提供了一种修复已有COF材料的缺陷的方法—可逆解聚重组(Reversible Degradation-Recombination,RDR)。具体地,本发明提供了一种通过RDR修复COF材料的缺陷的方法,其包括以下步骤:
将COF-A材料分散在包含控制剂AP和BP以及任选的催化剂的溶剂中,得到分散液;
使所得分散液反应;和
将得到的沉淀分离出来,干燥,得到COF材料。
在上述方法中,COF-A材料是通过已有的任意方法制备的任意种类的COF材料,其通常具有1-50nm的晶粒尺寸和100-1500m 2/g的比表面积。目前已报道的制备COF材料的方法有很多,包括例如上文背景技术部分中所述的方法,以及Segura,J.L.等人的“Covalent organic frameworks based on Schiff-base chemistry:synthesis,properties and potential applications”,Chemical Society Reviews,2016,45:5635-5671,以及Jiang,J.等人的“Covalent Chemistry beyond Molecules”,Journal of the American Chemical Society,2016,138,3255-3265。
在上述方法中,控制剂AP和BP、催化剂和溶剂均如上文所述。
COF-A在分散液中的浓度为0.01-100:1mg/ml,优选0.1-50:1,更优选0.2-30:1。控制剂AP和BP在分散液中的浓度分别为0.01-1000mM,优选0.05-800mM,更优选0.1-500mM。
催化剂在分散液中的浓度为0-20M,优选0-18M;
所述反应通常在0-200℃,优选0-150℃的温度下进行。反应时间通常为0.01-200小时,优选0.1-150小时,更优选0.2-100小时。
通过本发明的修复方法可修复通过已知方法制备的或者已有的COF材料的性能缺陷,例如低的结晶度和低的比表面积,提高其晶粒尺寸和比表面积以及改善其形貌特征。例如,通过本发明的修复方法获得的COF材料的晶粒尺寸通常为50-150nm,优选60-120nm;比表面积通常为800-2500m 2/g,优选900-2000m 2/g。
具体实施方案
通过下述实施例来说明本发明的具体实施方案,但这些实施例仅仅是示例性的,不应该解释为对本发明的限制。
在实施例中,比表面积是通过比表面积分析仪测试氮气吸附得到的。晶粒尺寸是通过X射线衍射方法测试的。粒径和粒径分布是通过扫描电子显微镜测量得到的。
实施例1:制备COF1
将10μmol的1,4-苯二胺溶解到50mL的乙酸中,加入0.5mmol的苯甲醛,配成溶液A。将7μmol的均苯三甲醛溶解到50mL的乙酸中,加入0.5mmol的苯胺,配成溶液B。将溶液A与溶液B混合,在25℃下反应5分钟。将反应得到的COF1过滤出来,并用丙酮冲洗3次,在50℃真空烘箱中干燥1天,得到产物,其比表面积为1520m 2/g,晶粒尺寸为83nm,粒径为1200nm且粒径分布为1.9的球形颗粒。
实施例2:制备COF2
将50μmol的1,3,5-三(4-氨苯基)苯溶解到10mL的二氧六环中,加入0.75mmol的4-叔丁基苯甲醛和200μmol的苯磺酸,配成溶液A。将75μmol的联苯二甲醛溶解到10mL的二氧六环中,加入0.75mmol的4-硝基苯胺和200μmol的苯磺酸,配成溶液B。将溶液A与溶液B混合,在90℃下反应20小时。将反应得到的COF2过滤出来,并用二氧六环冲洗3次,在70℃真空烘箱中干燥1天,得到产物,其比表面积为1310m 2/g,晶粒尺寸为63nm,是直径为890±100nm、长为21300±1400nm、壁厚为50±8nm的中空纤维。
实施例3:制备COF3
将100μmol的2,4,6-三(4-氨基苯基)-1,3,5-三嗪溶解到100mL的二氧六环/均三甲苯(4/1,v/v)中,加入0.5mmol的丁醛和100μmol的三氟甲磺酸钪,配成溶液A。将150μmol的对苯二甲醛溶解到100mL的二氧六环/均三甲苯(4/1,v/v)中,加入0.5mmol的丁胺和100μmol的三氟甲磺酸钪,配成溶液B。将溶液A与溶液B混合,在35℃下反应40小时。将反应得到的COF3过滤出来,并用四氢呋喃冲洗3次,在60℃真空烘箱中干燥1天,得到产物,其比表面积为1713m 2/g,晶粒尺寸为113nm,是厚40±9nm、片层直径为21000±2000nm的片状结构。
实施例4:制备COF4
将100μmol的5,10,15,20-四(4-氨基苯基)卟啉溶解到5mL的二氧六环/均三甲苯(2/1,v/v)中,加入0.05mmol的3-甲基苯甲醛,配成溶液A。将133μmol的2,4,6-三羟基均苯三甲醛溶解到5mL的二氧六环/均三甲苯(2/1,v/v)中,加入0.05mmol的2-萘胺,配成溶液B。将溶液A与溶液B混合,在150℃下反应100小时。将反应得到的COF4过滤出来,并用乙醇冲洗3次,在65℃真空烘箱中干燥1天,得到产物,其比表面积为1669m 2/g,晶粒尺寸为105nm,是长为880±80nm、直径为340±30nm的棒状结构。
实施例5:制备COF5
将500μmol的1,4-苯二硼酸溶解到100mL的乙醇中,加入5mmol的苯硼酸和300mmol乙酸,配成溶液A。将500μmol的1,4-苯二硼酸溶解到100mL的乙醇中,加入5mmol的苯硼酸和300mmol乙酸,配成溶液B。将溶液A与溶液B混合,在120℃ 下反应20小时。将反应得到的COF5过滤出来,并用乙醇冲洗3次,在70℃真空烘箱中干燥1天,得到产物,其比表面积为1123m 2/g,晶粒尺寸为90nm,是直径177nm、粒径分布为2.7的球形颗粒。
实施例6:制备COF6
将500μmol的均苯三硼酸溶解到50mL的乙醇中,加入8mmol的邻苯二酚和300mmol乙酸,配成溶液A。将500μmol的1,2,4,5-苯四酚溶解到50mL的乙醇中,加入8mmol的4-叔丁基苯硼酸和300mmol乙酸,配成溶液B。将溶液A与溶液B混合,在100℃下反应40小时。将反应得到的COF6过滤出来,并用乙醇冲洗3次,在70℃真空烘箱中干燥1天,得到产物,其比表面积为2156m 2/g,晶粒尺寸为146nm,是厚为100±30nm、片层直径为28000±8000nm的片状结构。
实施例7:制备COF7
将400μmol的5,10,15,20-四(4-硼酸基苯基)卟啉溶解到50mL的N,N-二甲基甲酰胺中,加入7mmol的2,3-二羟基萘,配成溶液A。将500μmol的3,6,7,10,11-六羟基三亚苯溶解到50mL的N,N-二甲基甲酰胺中,加入7mmol的苯硼酸,配成溶液B。将溶液A与溶液B混合,在130℃下反应60小时。将反应得到的COF7过滤出来,并用乙醇冲洗3次,在60℃真空烘箱中干燥1天,得到产物,其比表面积为1478m 2/g,晶粒尺寸为138nm,是直径为25000nm、粒径分布为1.4的球形颗粒。
实施例8:制备COF8
将200μmol的对苯二腈溶解到100mL的二甲亚砜中,加入 1mmol的苯腈,配成溶液A。将200μmol的对苯二腈溶解到100mL的二甲亚砜中,加入1mmol的苯腈,配成溶液B。将溶液A与溶液B混合,在150℃下反应60小时。将反应得到的COF8过滤出来,并用乙醇冲洗3次,在60℃真空烘箱中干燥1天,得到产物,其比表面积为1058m 2/g,晶粒尺寸为108nm,是直径为8000nm、粒径分布为1.2的球形颗粒。
实施例9:制备COF9
将1000μmol的对苯二甲酰肼溶解到100mL的氯仿中,加入6mmol的4-氟苯甲醛和200mM甲酸,配成溶液A。将667μmol的均苯三甲醛溶解到100mL的氯仿中,加入6mmol的苯甲酰肼和200mM甲酸,配成溶液B。将溶液A与溶液B混合,在60℃下反应60小时。将反应得到的COF9过滤出来,并用乙醇冲洗3次,在60℃真空烘箱中干燥1天,得到产物,其比表面积为1054m 2/g,晶粒尺寸为95nm,是直径为300±40nm、长为13000±400nm的纤维结构。
实施例10:制备COF10
将600μmol的均苯三硼酸溶解到100mL的四氢呋喃中,加入8mmol的乙二醇和50mM三氟乙酸,配成溶液A。将900μmol的均2,3,6,7-萘四酚溶解到100mL的四氢呋喃中,加入8mmol的4-叔丁基苯硼酸和50mM三氟乙酸,配成溶液B。将溶液A与溶液B混合,在90℃下反应40小时。将反应得到的COF10过滤出来,并用丙酮冲洗3次,在70℃真空烘箱中干燥1天,得到产物,其比表面积为1453m 2/g,晶粒尺寸为83nm,是直径为1500±40nm的球形颗粒。
实施例11:制备COF11
将3000μmol的肼溶解到100mL的乙腈中,加入10mmol的甲醛和1mM三氟甲磺酸锌,配成溶液A。将2000μmol的2,4,6-三羟基均苯三甲醛溶解到100mL的乙腈中,加入10mmol的环己胺和1mM三氟甲磺酸锌,配成溶液B。将溶液A与溶液B混合,在30℃下反应90小时。将反应得到的COF11过滤出来,并用丙酮冲洗3次,在40℃真空烘箱中干燥1天,得到产物,其比表面积为1753m 2/g,晶粒尺寸为93nm,是直径为2500±100nm的球形颗粒。
上述实施例1-11的结果表明,通过本发明的制备方法,可获晶粒尺寸大于70nm、比表面积大于1000m 2/g的COF材料,且可根据需要,获得想要COF材料的结构形式,例如球形、颗粒状、纤维状、片状等。
实施例12:修复已有COF-A 1的缺陷
由1,3,5-三(4-氨苯基)苯和对苯二甲醛在已报道的条件下(醋酸室温催化)制备的COF-A1,其比表面积为651m 2/g和晶粒尺寸为8nm。将10mg所述COF-A1分散在100mL含有0.01mmol苯甲醛、0.01mmol苯胺和300mmol乙酸的二氧六环中,在10℃下反应200小时,将得到的COF-1过滤出来,并用丙酮冲洗3次,在50℃真空烘箱中干燥1天,得到产物,其比表面积为1387m 2/g,晶粒尺寸为81nm。
实施例13:修复已有COF-A2的缺陷
由对苯二胺和3-甲基苯甲醛在已报道的条件下(醋酸室温催化)制备的COF-A2,其比表面积为518m 2/g,晶粒尺寸为12nm。将500mg所述COF-A2分散在100mL含有1mmol苯甲醛、1mmol 2-萘胺和1mmol三氟甲磺酸钪的二氧六环/均三甲苯(4/1,v/v)中,在25℃下反应50小时,将反应得到的COF-2过滤出来,并用丙 酮冲洗3次,在50℃真空烘箱中干燥1天,得到产物,其比表面积为957m 2/g,晶粒尺寸为65nm。
实施例14:修复已有COF-A3的缺陷
由均苯三硼酸和1,2,4,5-苯四酚在已报道的条件下(醋酸120℃催化)制备的COF-A3,其比表面积为721m 2/g,晶粒尺寸为19nm。将1000mg所述COF-A3分散在100mL含有10mmol苯硼酸、10mmol 2,3-二羟基萘和10mmol乙酸的二甲亚砜中,在100℃下反应40小时,将反应得到的COF-3过滤出来,并用乙醇冲洗3次,在50℃真空烘箱中干燥1天,得到产物,其比表面积为1867m 2/g,晶粒尺寸为115nm。
实施例15:修复已有COF-A4的缺陷
由均苯三硼酸和3,6,7,10,11-六羟基三亚苯在已报道的条件下(苯磺酸室温催化)制备的COF-A4,其比表面积为619m 2/g,晶粒尺寸为16nm。将3000mg所述COF-A4分散在100mL含有50mmol 4-叔丁基苯硼酸、50mmol邻苯二酚的N,N-二甲基甲酰胺中,在150℃下反应70小时,将反应得到的COF-4过滤出来,并用丙酮冲洗3次,在45℃真空烘箱中干燥1天,得到产物,其比表面积为1585m 2/g,晶粒尺寸为98nm。
实施例16:修复已有COF-A5的缺陷
由对苯二腈在已报道的条件下(乙酸120℃催化)制备的COF-A5,其比表面积为347m 2/g,晶粒尺寸为6nm。将1000mg所述COF-A5分散在100mL含有50mmol苯腈和300mmol乙酸的四氢呋喃中,在120℃下反应60小时,将反应得到的COF-5过滤出来,并用丙酮冲洗3次,在35℃真空烘箱中干燥1天,得到产物,其比表面积为1384m 2/g,晶粒尺寸为78nm。
实施例17:修复已有COF-A6的缺陷
由对苯二甲酰肼和均苯三甲醛在已报道的条件下(醋酸室温 催化)制备的COF-A6,其比表面积为413m 2/g,晶粒尺寸为10nm。将300mg所述COF-A6分散在100mL含有10mmol 3-氟苯甲醛、苯甲酰和1000mmol乙酸的二氧六环/均三甲苯(1/1,v/v)中,在25℃下反应65小时,将反应得到的COF-6过滤出来,并用丙酮冲洗3次,在30℃真空烘箱中干燥1天,得到产物,其比表面积为1257m 2/g,晶粒尺寸为75nm。
实施例18:修复已有COF-A7的缺陷
由3,3'-二硝基联苯胺和2,4,6-三(4-醛基苯基)-1,3,5-三嗪在已报道的条件下(醋酸120℃催化)制备的COF-A7,其比表面积为536m 2/g,晶粒尺寸为8nm。将1200mg所述COF-A7分散在100mL含有6mmol乙醛、2-萘胺和15mmol三氟甲磺酸钪的二氧六环/均三甲苯(2/1,v/v)中,在55℃下反应45小时,将反应得到的COF-7过滤出来,并用乙醇冲洗3次,在40℃真空烘箱中干燥1天,得到产物,其比表面积为1143m 2/g,晶粒尺寸为73nm。
实施例19:修复已有COF-A8的缺陷
由2,4,6-三(4-氨基苯基)-1,3,5-三嗪和联苯二甲醛在已报道的条件下(醋酸120℃催化)制备的COF-A8,其比表面积为736m 2/g,晶粒尺寸为9nm。将2500mg所述COF-A8分散在100mL含有30mmol 4-叔丁基苯甲醛、己胺和1500mmol甲酸的乙醇中,在75℃下反应40小时,将反应得到的COF-8过滤出来,并用乙醇冲洗3次,在45℃真空烘箱中干燥1天,得到产物,其比表面积为1643m 2/g,晶粒尺寸为78nm。
上述实施例12-19的结果表明,通过本发明的修复方法,可显著提高通过已知方法制备的COF材料的晶粒尺寸和比表面积。

Claims (20)

  1. 控制剂AP和BP在制备共价有机框架(COF)材料中的用途。
  2. 根据权利要求1所述的用途,其中控制剂AP选自单醛类及其衍生物、单硼酸类及其衍生物、酚类及其衍生物、醇类及其衍生物、和单腈类及其衍生物;控制剂BP选自单胺类及其衍生物、单酰肼类及其衍生物、单硼酸类及其衍生物、和单腈类及其衍生物。
  3. 根据权利要求2所述的用途,其中控制剂AP选自苯甲醛、2-氯苯甲醛、3-氯苯甲醛、4-氯苯甲醛、2-硝基苯甲醛、3-硝基苯甲醛、4-硝基苯甲醛、2-甲基苯甲醛、3-甲基苯甲醛、4-甲基苯甲醛、4-叔丁基苯甲醛、4-氟苯甲醛、1-萘甲醛、2-萘甲醛、甲醛、乙醛、丙醛、丁醛、戊醛、己醛、庚醛、辛醛、苯硼酸、4-叔丁基苯硼酸、正丙基硼酸、环己基硼酸、邻苯二酚、2,3-二羟基萘、乙二醇、2,3-二甲基-2,3-丁二醇、1,2-环己二醇、苯腈、萘腈、乙腈、环己腈、及其组合;控制剂BP选自苯胺、2-氯苯胺、3-氯苯胺、4-氯苯胺、1,3-苯并噻唑-5-胺、2-硝基苯胺、3-硝基苯胺、4-硝基苯胺、2-甲基苯胺、3-甲基苯胺、4-甲基苯胺、4-叔丁基苯胺、4-氟苯胺、1-萘胺、2-萘胺、甲胺、乙胺、丙胺、丁胺、戊胺、己胺、庚胺、辛胺、环己胺、苯硼酸、4-叔丁基苯硼酸、正丙基硼酸、环己基硼酸、2,3-二羟基萘、乙二醇、2,3-二甲基-2,3-丁二醇、1,2-环己二醇、苯腈、萘腈、乙腈、环己腈、苯甲酰肼、4-氯苯甲酰肼、3-吡啶甲酰肼、甲酸酰肼、乙酸酰肼、丙酸酰肼、环己甲酰肼、及其组合。
  4. 根据权利要求3所述的用途,其中控制剂AP选自苯甲醛、4-叔丁基苯甲醛、丁醛、苯硼酸、邻苯二酚、乙二醇、苯腈、及其组合;控制剂BP选自苯胺、4-叔丁基苯胺、丁胺、苯硼酸、苯 腈、苯甲酰肼、及其组合。
  5. 一种通过可逆缩聚/终止聚合(RPT)制备共价有机框架(COF)材料的方法,其包括以下步骤:
    将单体A溶解在溶剂1中,加入控制剂AP,任选地加入催化剂CA,得到溶液A;
    将单体B溶解在溶剂2中,加入控制剂BP,任选地加入催化剂CB,得到溶液B;
    将溶液A和溶液B混合以得到混合溶液,并使之反应;和
    反应结束后,将得到的沉淀分离出来,干燥,得到COF材料。
  6. 根据权利要求5所述的方法,其中单体A选自芳芳香胺类及其衍生物、芳香酰肼类及其衍生物、芳香硼酸类及其衍生物、和芳香腈类及其衍生物;单体B选自芳香醛类及其衍生物、芳香硼酸类及其衍生物、酚类及其衍生物、醇类及其衍生物和芳香腈类及其衍生物。
  7. 根据权利要求5或6所述的方法,其中控制剂AP选自单醛类及其衍生物、单硼酸类及其衍生物、酚类及其衍生物、醇类及其衍生物、和单腈类及其衍生物;控制剂BP选自单胺类及其衍生物、单酰肼类及其衍生物、单硼酸类及其衍生物、和单腈类及其衍生物。
  8. 根据权利要求7所述的方法,其中控制剂AP选自苯甲醛、2-氯苯甲醛、3-氯苯甲醛、4-氯苯甲醛、2-硝基苯甲醛、3-硝基苯甲醛、4-硝基苯甲醛、2-甲基苯甲醛、3-甲基苯甲醛、4-甲基苯甲醛、4-叔丁基苯甲醛、4-氟苯甲醛、1-萘甲醛、2-萘甲醛、甲醛、乙醛、丙醛、丁醛、戊醛、己醛、庚醛、辛醛、苯硼酸、4-叔丁基苯硼酸、正丙基硼酸、环己基硼酸、邻苯二酚、2,3-二羟基萘、乙二醇、2,3-二甲基-2,3-丁二醇、1,2-环己二醇、苯腈、萘腈、乙腈、环己腈、及其组合;控制剂BP选自苯胺、2-氯苯胺、 3-氯苯胺、4-氯苯胺、1,3-苯并噻唑-5-胺、2-硝基苯胺、3-硝基苯胺、4-硝基苯胺、2-甲基苯胺、3-甲基苯胺、4-甲基苯胺、4-叔丁基苯胺、4-氟苯胺、1-萘胺、2-萘胺、甲胺、乙胺、丙胺、丁胺、戊胺、己胺、庚胺、辛胺、环己胺、苯硼酸、4-叔丁基苯硼酸、正丙基硼酸、环己基硼酸、2,3-二羟基萘、乙二醇、2,3-二甲基-2,3-丁二醇、1,2-环己二醇、苯腈、萘腈、乙腈、环己腈、苯甲酰肼、4-氯苯甲酰肼、3-吡啶甲酰肼、甲酸酰肼、乙酸酰肼、丙酸酰肼、环己甲酰肼、及其组合。
  9. 根据权利要求8所述的方法,其中控制剂AP选自苯甲醛、4-叔丁基苯甲醛、丁醛、苯硼酸、邻苯二酚、乙二醇、苯腈、及其组合;控制剂BP选自苯胺、4-叔丁基苯胺、丁胺、苯硼酸、苯腈、苯甲酰肼、及其组合。
  10. 根据权利要求5或6所述的方法,其中单体A在溶液A中的浓度以及单体B的在溶液B中的浓度分别为0.01-100mM,优选0.1-50mM,更优选0.2-25mM。
  11. 根据权利要求5或6所述的方法,其中控制剂AP与单体A的摩尔比以及控制剂BP与单体B的摩尔比分别为0.01-200:1,优选0.1-100:1,更优选0.5-50:1;单体A与单体B的摩尔比为0.05-20:1,优选0.1-10:1,更优选0.25-4:1。
  12. 可通过权利要求5-11任一项的方法获得的COF材料,其晶粒尺寸为50-170nm,优选60-150nm;和比表面积为1000-2500m 2/g,优选1100-2200m 2/g。
  13. 根据权利要求12所述的COF材料,其粒径为100-100,000nm,优选150-30,000nm,和粒径分布为1-8,优选1-3。
  14. 一种通过可逆解聚重组(RDR)修复共价有机框架(COF)材料的缺陷的方法,其包括以下步骤:
    将通过现有技术的方法制备的COF-A材料分散在包含控制剂 AP和BP以及任选的催化剂的溶剂中,得到分散液;
    使所得分散液反应;和
    将得到的沉淀分离出来,干燥,得到COF材料。
  15. 根据权利要求14所述的方法,其中控制剂AP选自单醛类及其衍生物、单硼酸类及其衍生物、酚类及其衍生物、醇类及其衍生物、和单腈类及其衍生物;控制剂BP选自单胺类及其衍生物、单酰肼类及其衍生物、单硼酸类及其衍生物、和单腈类及其衍生物。
  16. 根据权利要求15所述的方法,其中控制剂AP选自苯甲醛、2-氯苯甲醛、3-氯苯甲醛、4-氯苯甲醛、2-硝基苯甲醛、3-硝基苯甲醛、4-硝基苯甲醛、2-甲基苯甲醛、3-甲基苯甲醛、4-甲基苯甲醛、4-叔丁基苯甲醛、4-氟苯甲醛、1-萘甲醛、2-萘甲醛、甲醛、乙醛、丙醛、丁醛、戊醛、己醛、庚醛、辛醛、苯硼酸、4-叔丁基苯硼酸、正丙基硼酸、环己基硼酸、邻苯二酚、2,3-二羟基萘、乙二醇、2,3-二甲基-2,3-丁二醇、1,2-环己二醇、苯腈、萘腈、乙腈、环己腈、及其组合;控制剂BP选自苯胺、2-氯苯胺、3-氯苯胺、4-氯苯胺、1,3-苯并噻唑-5-胺、2-硝基苯胺、3-硝基苯胺、4-硝基苯胺、2-甲基苯胺、3-甲基苯胺、4-甲基苯胺、4-叔丁基苯胺、4-氟苯胺、1-萘胺、2-萘胺、甲胺、乙胺、丙胺、丁胺、戊胺、己胺、庚胺、辛胺、环己胺、苯硼酸、4-叔丁基苯硼酸、正丙基硼酸、环己基硼酸、2,3-二羟基萘、乙二醇、2,3-二甲基-2,3-丁二醇、1,2-环己二醇、苯腈、萘腈、乙腈、环己腈、苯甲酰肼、4-氯苯甲酰肼、3-吡啶甲酰肼、甲酸酰肼、乙酸酰肼、丙酸酰肼、环己甲酰肼、及其组合。
  17. 根据权利要求16所述的方法,其中控制剂AP选自苯甲醛、4-叔丁基苯甲醛、丁醛、苯硼酸、邻苯二酚、乙二醇、苯腈、及其组合;控制剂BP选自苯胺、4-叔丁基苯胺、丁胺、苯硼酸、苯 腈、苯甲酰肼、及其组合。
  18. 根据权利要求14所述的方法,其中COF-A在分散液中的浓度为0.01-100:1mg/ml,优选0.1-50:1mg/ml,更优选0.2-30:1mg/ml。
  19. 根据权利要求14-18任一项所述的方法,其中控制剂AP和BP在分散液中的浓度分别为0.01-1000mM,优选0.05-800mM,更优选0.1-500mM。
  20. 可通过权利要求14-19任一项的方法获得的COF材料,其晶粒尺寸为50-150nm,优选60-120nm;和比表面积为800-2500m 2/g,优选900-2000m 2/g。
PCT/CN2018/116174 2018-11-19 2018-11-19 共价有机框架材料的制备方法和缺陷修复方法 WO2020102936A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/292,485 US20220153904A1 (en) 2018-11-19 2018-11-19 A method for preparing and repairing covalent organic framework materials
PCT/CN2018/116174 WO2020102936A1 (zh) 2018-11-19 2018-11-19 共价有机框架材料的制备方法和缺陷修复方法
CN201880096737.4A CN112654599B (zh) 2018-11-19 2018-11-19 共价有机框架材料的制备方法和缺陷修复方法
EP18940484.1A EP3862341A4 (en) 2018-11-19 2018-11-19 METHODS OF PREPARATION AND METHODS OF REPAIRING DEFECTS OF A COVALENT ORGANIC FRAMEWORK MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/116174 WO2020102936A1 (zh) 2018-11-19 2018-11-19 共价有机框架材料的制备方法和缺陷修复方法

Publications (1)

Publication Number Publication Date
WO2020102936A1 true WO2020102936A1 (zh) 2020-05-28

Family

ID=70773206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116174 WO2020102936A1 (zh) 2018-11-19 2018-11-19 共价有机框架材料的制备方法和缺陷修复方法

Country Status (4)

Country Link
US (1) US20220153904A1 (zh)
EP (1) EP3862341A4 (zh)
CN (1) CN112654599B (zh)
WO (1) WO2020102936A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113214446A (zh) * 2021-03-25 2021-08-06 南昌大学 一种sp2碳共价有机框架的合成方法及在有机污染物的光催化降解中的应用
CN113336961A (zh) * 2021-06-30 2021-09-03 山西大同大学 噻唑基的富硫共价有机框架及其制备方法与应用
CN113368077A (zh) * 2021-04-27 2021-09-10 山东师范大学 一种聚多巴胺修饰的纳米共价有机框架及其制备方法与应用
CN113512162A (zh) * 2021-04-30 2021-10-19 华中科技大学 一种硫醚基共价有机框架材料及其制备方法和应用
CN113617388A (zh) * 2021-08-10 2021-11-09 河北大学 基于多孔吡啶基共价有机框架的银纳米催化剂及其制备方法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115487866B (zh) * 2021-06-18 2024-05-14 浙江大学 一种共价有机框架材料耦合纳米金属催化剂及其制备方法
CN113600137B (zh) * 2021-08-19 2023-04-07 东北师范大学 一种共价有机骨架纳米线材料的制备方法及其应用
CN114106276B (zh) * 2021-12-07 2023-05-23 中国科学院兰州化学物理研究所 一种形貌可控的共价有机框架材料的制备方法
CN115124675B (zh) * 2022-07-15 2024-04-12 江南大学 二维菱形异孔共价有机框架材料及制备方法
CN115286757B (zh) * 2022-08-04 2023-03-10 中原工学院 基于多氮烯烃连接的共价有机框架材料及其制备方法和应用
CN115521426B (zh) * 2022-09-26 2024-02-09 通化师范学院 一种亚胺连接微孔共价有机骨架材料、制备方法及其应用
CN116178646B (zh) * 2022-12-11 2024-01-16 三峡大学 一种高熵共价有机框架化合物的制备方法
CN117659325B (zh) * 2024-01-31 2024-04-12 德州学院 一种具有电化学活性的共价有机框架材料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209763A (zh) * 2010-09-13 2013-07-17 康奈尔大学 共价有机框架膜及其制备方法和用途
EP2832767A1 (en) 2013-07-31 2015-02-04 Fundación Imdea Nanociencia Method for the Synthesis of Covalent Organic Frameworks
CN105214340A (zh) 2015-09-14 2016-01-06 武汉长林医药科技有限公司 一种固定共价有机骨架材料的方法及其应用
CN105440058A (zh) * 2015-11-04 2016-03-30 兰州大学 一种基于苯并噻唑单元的共价有机框架材料的合成方法
CN106083909A (zh) 2016-06-24 2016-11-09 兰州大学 一种共价有机框架材料单晶的制备方法
CN107325113A (zh) * 2017-07-06 2017-11-07 福州大学 一种包含Salen单元的笼型共价有机框架化合物的制备方法
CN108794756A (zh) * 2018-06-28 2018-11-13 福州大学 一种镍离子修饰的共价有机框架材料的制备方法及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209763A (zh) * 2010-09-13 2013-07-17 康奈尔大学 共价有机框架膜及其制备方法和用途
EP2832767A1 (en) 2013-07-31 2015-02-04 Fundación Imdea Nanociencia Method for the Synthesis of Covalent Organic Frameworks
CN105214340A (zh) 2015-09-14 2016-01-06 武汉长林医药科技有限公司 一种固定共价有机骨架材料的方法及其应用
CN105440058A (zh) * 2015-11-04 2016-03-30 兰州大学 一种基于苯并噻唑单元的共价有机框架材料的合成方法
CN106083909A (zh) 2016-06-24 2016-11-09 兰州大学 一种共价有机框架材料单晶的制备方法
CN107325113A (zh) * 2017-07-06 2017-11-07 福州大学 一种包含Salen单元的笼型共价有机框架化合物的制备方法
CN108794756A (zh) * 2018-06-28 2018-11-13 福州大学 一种镍离子修饰的共价有机框架材料的制备方法及其应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DICHTEL , W. R. ET AL.: "Rapid, Low Temperature Formation of Imine-Linked Covalent Organic Frameworks Catalyzed by Metal Triflates", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 139, 2017, pages 4999 - 5002
JIANG, J ET AL.: "Covalent Chemistry beyond Molecules", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 138, 2016, pages 3255 - 3265
See also references of EP3862341A4
SEGURA, J. L.SEGURA, JL ET AL.: "Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications", CHEMICAL SOCIETY REVIEWS, vol. 45, 2016, pages 5635 - 5671, XP055561690, DOI: 10.1039/C5CS00878F
WANG W: "Covalent organic frameworks (COFs): from design to applications", CHEMICAL SOCIETY REVIEWS, vol. 42, 2013, pages 548 - 568

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113214446A (zh) * 2021-03-25 2021-08-06 南昌大学 一种sp2碳共价有机框架的合成方法及在有机污染物的光催化降解中的应用
CN113214446B (zh) * 2021-03-25 2022-03-18 南昌大学 一种sp2碳共价有机框架的合成方法及在有机污染物的光催化降解中的应用
CN113368077A (zh) * 2021-04-27 2021-09-10 山东师范大学 一种聚多巴胺修饰的纳米共价有机框架及其制备方法与应用
CN113368077B (zh) * 2021-04-27 2022-06-21 山东师范大学 一种聚多巴胺修饰的纳米共价有机框架及其制备方法与应用
CN113512162A (zh) * 2021-04-30 2021-10-19 华中科技大学 一种硫醚基共价有机框架材料及其制备方法和应用
CN113336961A (zh) * 2021-06-30 2021-09-03 山西大同大学 噻唑基的富硫共价有机框架及其制备方法与应用
CN113336961B (zh) * 2021-06-30 2023-03-10 山西大同大学 噻唑基的富硫共价有机框架及其制备方法与应用
CN113617388A (zh) * 2021-08-10 2021-11-09 河北大学 基于多孔吡啶基共价有机框架的银纳米催化剂及其制备方法和应用
CN113617388B (zh) * 2021-08-10 2023-06-23 河北大学 基于多孔吡啶基共价有机框架的银纳米催化剂及其制备方法和应用

Also Published As

Publication number Publication date
EP3862341A1 (en) 2021-08-11
CN112654599A (zh) 2021-04-13
US20220153904A1 (en) 2022-05-19
EP3862341A4 (en) 2022-08-10
CN112654599B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
WO2020102936A1 (zh) 共价有机框架材料的制备方法和缺陷修复方法
WO2022061666A1 (zh) 一种制备中空共价有机框架材料的方法
CN110523354B (zh) 一种含固载催化剂的微反应器的制备方法
Liu et al. Surface‐mediated construction of an ultrathin free‐standing covalent organic framework membrane for efficient proton conduction
CN110487735B (zh) 一种基于共价有机框架材料的气体传感器及其制备方法
Wang et al. Nanocages of polymeric carbon nitride from low‐temperature supramolecular preorganization for photocatalytic CO2 reduction
Qiu et al. Hierarchically porous covalent organic frameworks assembled in ionic liquids for highly effective catalysis of C–C coupling reactions
KR101906043B1 (ko) 마이크로파를 이용한 탄소-금속유기골격구조(MOFs) 복합체 제조 방법
Ghimbeu et al. Hierarchical porous nitrogen-doped carbon beads derived from biosourced chitosan polymer
KR101616868B1 (ko) 유리전이온도가 높은 폴리머를 위한 가교 화합물
Wu et al. Anisotropic polyimide aerogels fabricated by directional freezing
CN113480774B (zh) 一种超弹性的太阳能界面蒸发纤维素气凝胶及其制备方法
Wang et al. Flexible Ketone-bridged organic porous nanospheres: Promoting porosity utilizing intramolecular hydrogen-bonding effects for effective gas separation
Liu et al. Synthesis and evaluation of N, O‐doped hypercrosslinked polymers and their performance in CO2 capture
EP2368925B1 (en) Aerogel, composition for the aerogel, and method of making the aerogel
Wang et al. Novel approach to hydroxy-group-containing porous organic polymers from bisphenol A
Akbarzadeh et al. Magnetic carbon nanotube as a highly stable and retrievable support for the heterogenization of sulfonic acid and its application in the synthesis of 2‐(1H‐tetrazole‐5‐yl) acrylonitrile derivatives
CN109400874B (zh) 一种主链偶氮苯型有机多孔聚合物材料及其制备方法
Luo et al. Fabrication of melamine-based hybrid organic membrane for ethanol/water pervaporation
Hu Novel fluorescent porous hyperbranched aromatic polyamide containing 1, 3, 5‐triphenylbenzene moieties: Synthesis and characterization
Grimsdale et al. New carbon-rich materials for electronics, lithium battery, and hydrogen storage applications
CN103483590B (zh) 主客体自组装制备瓶刷状聚合物的方法
JP2006307367A (ja) 全芳香族ポリアミドと薄層カーボンナノチューブとからなるコンポジットファイバー
CN115636975B (zh) 一种聚六氢三嗪/苯并噁嗪互穿网络气凝胶及其制备方法
Guo et al. Imine-linked covalent organic frameworks with controllable morphology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018940484

Country of ref document: EP

Effective date: 20210505

NENP Non-entry into the national phase

Ref country code: DE