WO2020100939A1 - 可変バルブタイミング機構の制御装置及びその制御方法 - Google Patents
可変バルブタイミング機構の制御装置及びその制御方法 Download PDFInfo
- Publication number
- WO2020100939A1 WO2020100939A1 PCT/JP2019/044516 JP2019044516W WO2020100939A1 WO 2020100939 A1 WO2020100939 A1 WO 2020100939A1 JP 2019044516 W JP2019044516 W JP 2019044516W WO 2020100939 A1 WO2020100939 A1 WO 2020100939A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- phase angle
- valve timing
- variable valve
- timing mechanism
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 74
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 claims abstract description 28
- 238000001514 detection method Methods 0.000 claims description 21
- 230000033001 locomotion Effects 0.000 claims description 14
- 230000006870 function Effects 0.000 claims description 11
- 230000001052 transient effect Effects 0.000 claims description 11
- 239000010705 motor oil Substances 0.000 claims description 4
- 239000003921 oil Substances 0.000 description 29
- 230000002093 peripheral effect Effects 0.000 description 28
- 230000008859 change Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 22
- 238000002485 combustion reaction Methods 0.000 description 21
- 239000000446 fuel Substances 0.000 description 10
- 239000003638 chemical reducing agent Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 238000012937 correction Methods 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000010687 lubricating oil Substances 0.000 description 6
- 230000004044 response Effects 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/352—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0223—Variable control of the intake valves only
- F02D13/0234—Variable control of the intake valves only changing the valve timing only
- F02D13/0238—Variable control of the intake valves only changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/02—Valve drive
- F01L1/04—Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
- F01L1/047—Camshafts
- F01L2001/0476—Camshaft bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
- F01L2001/3445—Details relating to the hydraulic means for changing the angular relationship
- F01L2001/34479—Sealing of phaser devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2201/00—Electronic control systems; Apparatus or methods therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2250/00—Camshaft drives characterised by their transmission means
- F01L2250/02—Camshaft drives characterised by their transmission means the camshaft being driven by chains
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2301/00—Using particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2800/00—Methods of operation using a variable valve timing mechanism
- F01L2800/05—Timing control under consideration of oil condition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2810/00—Arrangements solving specific problems in relation with valve gears
- F01L2810/02—Lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2820/00—Details on specific features characterising valve gear arrangements
- F01L2820/03—Auxiliary actuators
- F01L2820/032—Electric motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2820/00—Details on specific features characterising valve gear arrangements
- F01L2820/04—Sensors
- F01L2820/041—Camshafts position or phase sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2820/00—Details on specific features characterising valve gear arrangements
- F01L2820/04—Sensors
- F01L2820/044—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/20—Output circuits, e.g. for controlling currents in command coils
- F02D2041/202—Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
- F02D2041/2058—Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a variable valve timing mechanism that uses a DC motor with a brush and applies a voltage to the motor only when phase conversion is performed to rotate the motor shaft portion with respect to the sprocket portion to convert the phase of the cam shaft portion. And a control method thereof.
- Patent Document 1 describes an electric valve timing adjusting device that adjusts the valve timing of an engine by utilizing the rotational torque of a motor.
- the phase of the cam shaft (cam shaft phase) with respect to the actual crank shaft is calculated based on the cam shaft angle, the crank shaft angle, the temperature of the lubricating oil, the temperature of the cooling water, and the rotation angle of the motor shaft.
- the target camshaft phase is calculated according to the engine operating conditions. Since the camshaft phase is calculated in synchronization with the engine rotation angle, the update becomes slow when the rotation speed is low. Therefore, the rotation angle of the motor shaft is detected using the motor rotation angle sensor, and the phase angle of the variable valve timing (VTC: Variable Valve Timing Control) mechanism is interpolated.
- VTC Variable Valve Timing Control
- a control device for a variable valve timing mechanism is a control device for a variable valve timing mechanism, which detects a phase angle of a cam based on a cam signal and controls the phase angle of the cam using an electric motor.
- the motor torque is calculated from the motor current based on the motor characteristics
- the motor rotation angle is calculated based on at least the motor torque and the engine operating state
- the cam phase angle of the variable valve timing mechanism is interpolated from the motor rotation angle. It is characterized by comprising a controller configured to.
- a control method of a variable valve timing mechanism detects a phase angle of a cam based on a cam signal and controls the phase angle of the cam using an electric motor. In order to calculate the motor torque from the motor current based on the motor characteristics, to calculate the motor rotation angle based on at least the motor torque and the engine operating state, and to calculate the cam phase of the variable valve timing mechanism from the motor rotation angle. Performing angle interpolation.
- the motor torque is estimated from the motor current based on the motor characteristic, and the motor rotation angle is determined based on the equation of motion using the motor torque and the engine operating state. Since the estimation is performed and the interpolation is performed, the cam phase angle interpolation can be performed with high accuracy without using the motor rotation angle sensor. Since the cam phase angle interpolation can be performed without using the motor rotation angle sensor, the cost of the VTC system can be reduced.
- FIG. 1 is a system configuration diagram of an internal combustion engine to which a control device for a variable valve timing mechanism according to an embodiment of the present invention is applied. It is sectional drawing which shows the variable valve timing mechanism in FIG.
- FIG. 3 is a sectional view taken along line AA of FIG. 2.
- FIG. 3 is a sectional view taken along line BB of FIG. 2.
- FIG. 3 is a block diagram showing extracted main parts related to control of a variable valve timing mechanism in the control device shown in FIG. 1.
- FIG. 6 is a functional block diagram of the electric VTC controller shown in FIG. 5 for explaining an outline of the present invention. It is a characteristic view which shows the motor current at the time of applying the phase angle interpolation of this invention to a VTC phase step response.
- FIG. 11 is a characteristic diagram showing a phase angle calibration amount when the phase angle interpolation of the present invention is applied to a VTC phase step response, compared with a conventional one. It is a characteristic view which expands and shows the time change of the one part area
- FIG. 8 is a flowchart for explaining a modified example of the control device for the variable valve timing mechanism and the control method therefor according to the second embodiment of the present invention. It is a waveform diagram for explaining the control device and the control method of the variable valve timing mechanism according to the third embodiment of the present invention. It is a waveform diagram for explaining the control device and the control method of the variable valve timing mechanism according to the third embodiment of the present invention.
- FIG. 13 is a characteristic diagram for explaining correction of the DC motor characteristic in FIGS. 12A and 12B. It is a wave form diagram for explaining the control device and control method of the variable valve timing mechanism concerning a 4th embodiment of the present invention.
- FIG. 6 is a characteristic diagram for explaining estimation and interpolation of a VTC phase angle based on the TI characteristic and the TN characteristic when there is no inertia torque.
- FIG. 6 is a characteristic diagram for explaining estimation and interpolation of a VTC phase angle based on the TI characteristic and the TN characteristic when there is no inertia torque.
- FIG. 9 is a characteristic diagram for explaining estimation and interpolation of a VTC phase angle based on TI characteristics and TN characteristics when inertial torque is taken into consideration. It is a characteristic view which shows the relationship between motor rotation speed and friction torque.
- the intake duct 102 of the internal combustion engine 100 is provided with an intake air amount sensor 103 for detecting the intake air flow rate QA of the internal combustion engine 100.
- the intake valve 105 opens and closes the intake port of the combustion chamber 104 of each cylinder.
- a fuel injection valve 106 is arranged for each cylinder at an intake port 102a upstream of the intake valve 105.
- the fuel injection valve 106 injects fuel into the intake duct 102 is taken as an example, a cylinder direct injection internal combustion engine in which fuel is directly injected into the combustion chamber 104 may be used.
- the fuel injected from the fuel injection valve 106 is sucked together with air into the combustion chamber 104 via the intake valve 105, and is ignited and burned by spark ignition by the spark plug 107, and the pressure due to the combustion causes the piston 108 to move to the crankshaft 109.
- the crankshaft 109 is rotationally driven by pushing it down.
- the exhaust valve 110 opens and closes the exhaust port of the combustion chamber 104, and the exhaust valve 110 is opened, so that the exhaust gas in the combustion chamber 104 is discharged to the exhaust pipe 111.
- a catalytic converter 112 provided with a three-way catalyst or the like is installed in the exhaust pipe 111, and the catalytic converter 112 purifies exhaust gas.
- the intake valve 105 opens with the rotation of the intake camshaft 115a that is rotationally driven by the crankshaft 109.
- the exhaust valve 110 opens with the rotation of the exhaust camshaft 115b that is rotationally driven by the crankshaft 109.
- the VTC mechanism 114 changes the relative rotational phase angle of the intake camshaft 115a with respect to the crankshaft 109 by using an electric motor (brush DC motor) as an actuator, and thus the phase of the valve operating angle of the intake valve 105, that is, the intake air
- This is an electric VTC mechanism that continuously changes the valve timing of the valve 105 in the advance direction and the retard direction.
- An ignition module 116 that supplies ignition energy to the ignition plug 107 is directly attached to the ignition plug 107 provided for each cylinder.
- the ignition module 116 includes an ignition coil and a power transistor that controls energization of the ignition coil.
- the control device (electronic control unit) 201 includes an electric VTC controller 201a that drives and controls the VTC mechanism 114, and an engine control module (hereinafter referred to as ECM) 201b that controls the fuel injection valve 106, the ignition module 116, and the like.
- the electric VTC controller 201a and the ECM 201b each include a microcomputer including a CPU, a RAM, a ROM, etc., and perform operation processing according to a program stored in advance in a memory such as a ROM to calculate and output operation amounts of various devices. To do.
- the electric VTC controller 201a includes a drive circuit such as an inverter that drives the motor of the VTC mechanism 114.
- the electric VTC controller 201a and the ECM 201b are configured to be able to mutually transfer data via a CAN (Controller Area Network) 201c.
- a CAN Controller Area Network
- an AT controller for controlling an automatic transmission combined with an internal combustion engine for example, is connected to the CAN 201c as a communication circuit network.
- An air-fuel ratio sensor 209 which is installed in the exhaust pipe 111 on the upstream side and detects the air-fuel ratio AF based on the oxygen concentration in the exhaust gas, detects the oil temperature TO of the engine oil in the oil pan (or the engine oil circulation path).
- An output signal from the oil temperature sensor 210 or the like is input, and further, a signal IGNSW from an ignition switch (engine switch) 205 which is a main switch for operating and stopping the internal combustion engine 100 is input.
- the rotation angle signal POS output by the crank angle sensor 203 is a pulse signal for each unit crank angle (for example, 10 deg. CA), and corresponds to a stroke phase difference (ignition interval) between cylinders (a four-cylinder engine). Therefore, one or a plurality of pulses are omitted for each crank angle of 180 deg. Further, the crank angle sensor 203 outputs a rotation angle signal POS (unit crank angle signal) for each unit crank angle and a reference crank angle signal for each crank angle corresponding to a stroke phase difference (ignition interval) between cylinders.
- POS unit crank angle signal
- a reference crank angle signal for each crank angle corresponding to a stroke phase difference (ignition interval) between cylinders.
- the missing portion of the rotation angle signal POS for each unit crank angle or the output position of the reference crank angle signal represents the reference piston position of each cylinder.
- the VTC mechanism 114 is rotatable with a timing sprocket (cam sprocket) 1 which is a driving rotating body rotatably driven by a crankshaft 109 of the internal combustion engine 100 and a bearing 44 on a cylinder head.
- the intake camshaft 115a that is supported and rotates by the rotational force transmitted from the timing sprocket 1, the cover member 3 that is disposed at the front position of the timing sprocket 1 and is fixed to the chain cover 40 by bolts, and the timing sprocket 1.
- the phase changing mechanism 4 is provided between the intake camshafts 115a and changes the relative rotational phase angle of the intake camshaft 115a with respect to the timing sprocket 1.
- annular protrusion 1e is integrally formed on the outer peripheral edge of the front end portion of the sprocket body 1a.
- annular member 19 is coaxially positioned on the inner peripheral side of the annular protrusion 1e, and inner teeth 19a that are wavy meshing portions are formed on the inner periphery, and an annular plate 6.
- bolts 7 are fixed together by bolts 7 in the axial direction.
- a stopper protrusion 1d which is an arc-shaped engaging portion, is formed along a circumferential direction up to a predetermined length range on a part of the inner peripheral surface of the sprocket body 1a.
- a cylindrical housing 5 is fixed to the outer periphery of the plate 6 on the front end side by a bolt 11 so as to protrude forward in a state of covering each constituent member of the phase change mechanism 4 which will be described later, such as a speed reducer 8 and an electric motor 12.
- the angular range in which the stopper convex portion 1d can move within the stopper concave groove 2b is the variable range of the relative rotational phase angle of the intake camshaft 115a with respect to the crankshaft 109, in other words, the variable range of the valve timing.
- a flange-shaped seating surface portion 10c is integrally formed on an end edge of the head portion 10a of the cam bolt 10 on the shaft portion 10b side, and is formed on an outer periphery of the shaft portion 10b from an end portion of the intake camshaft 115a in an inner axial direction.
- a male screw portion that is screwed to the formed female screw portion is formed.
- the cover member 3 is made of a synthetic resin material and includes a cover body 3a that bulges like a cup and a bracket 3b that is integrally provided on the outer periphery of the rear end portion of the cover body 3a.
- the cover body 3a is arranged so as to cover the front end side of the phase changing mechanism 4, that is, almost the entire portion of the housing 5 in the axial direction from the holding portion 5b to the rear end side with a predetermined gap.
- the bracket 3b is formed in a substantially annular shape, and bolt insertion holes 3f are formed through the six boss portions, respectively.
- the motor shaft 13 is formed in a tubular shape and functions as an armature.
- An iron core rotor 17 having a plurality of poles is fixed to the outer periphery of the axial center, and an electromagnetic coil 18 is provided on the outer periphery of the iron core rotor 17. It is wound.
- a commutator 20 is press-fitted and fixed to the outer periphery of the front end portion of the motor shaft 13, and the commutator 20 is connected with an electromagnetic coil 18 in each segment divided into the same number as the number of poles of the iron core rotor 17.
- the rollers 34 are fitted in the inner teeth 19a of the annular member 19 while moving in the radial direction due to the eccentric movement of the second ball bearing 33, and are also guided in the circumferential direction by the protrusions 41a of the retainer 41 in the radial direction. It is designed to swing. Lubricating oil is supplied to the inside of the speed reducer 8 from a lubricating oil supply mechanism.
- the rotational force of the annular member 19 is transmitted from the roller 34 to the intake camshaft 115a via the retainer 41 and the driven member 9.
- the cam of the intake camshaft 115a opens and closes the intake valve 105.
- the control device 201 energizes the electromagnetic coil 18 of the electric motor 12 when changing the relative rotational phase angle of the intake camshaft 115a with respect to the crankshaft 109, that is, the valve timing of the intake valve 105 by the VTC mechanism 114, The electric motor 12 is driven.
- this motor rotational force is transmitted to the intake camshaft 115a via the speed reducer 8.
- the CPU 212 calculates, for example, a target value (target phase angle) TGVTC (deg. CA) of the rotational phase adjusted by the VTC mechanism 114 based on the engine operating state, and the rotational angle signal POS from the crank angle sensor 203 and the intake air.
- the rotation phase ANG_CAMec (deg.CA) is calculated based on the rotation angle signal CAM of the camshaft 115a. Further, it has a function of transmitting the calculated target value TGVTC and the calculated rotation phase ANG_CAMec to the electric VTC controller 201a by CAN communication.
- the rotation angle signal CAM from the cam angle sensor 204 and the rotation angle signal POS from the crank angle sensor 203 are input to the input circuit 216 via the input circuit 211 of the ECM 201b, and these rotation angle signals CAM and POS are input. Input to the CPU 213.
- the CAN driver circuit 217 is for performing CAN communication between the electric VTC controller 201a and the ECM 201b, transmits the transmission information CAN_TX from the CPU 213 to the ECM 201b, and receives the reception information CAN_RX from the ECM 201b at the CPU 213.
- FIG. 9 is for explaining the control device and the control method of the variable valve timing mechanism according to the first embodiment of the present invention, and is a more detailed description of the functional block that performs interpolation during phase angle detection in FIG. FIG.
- the electric VTC controller 201a includes a motor torque estimation unit 230, a motor rotation angle estimation unit 231, a conversion unit 232, a feedback control unit 233, and the like.
- FIG. 10 is a flowchart for explaining a control device for a variable valve timing mechanism and a control method therefor according to the second embodiment of the present invention.
- the phase angle interpolation is performed when the phase angle control is in transition, and the phase angle interpolation is not performed when the phase angle control is stationary. That is, first, it is determined whether or not it is a transient state (step S1), and when it is determined that the phase angle changes, a VTC phase angle interpolation is performed (step S2). The determination of the transient state is made based on the difference between the current phase angle and the target phase angle and / or the degree of change of the current phase angle.
- FIG. 11 is a flowchart for explaining a modification of the above-described second embodiment of the present invention.
- this modification in addition to whether or not the phase angle control is in a transient state, it is determined whether or not the engine speed is equal to or lower than a predetermined value. When it is large, the phase angle interpolation is not performed. That is, first, it is determined whether the engine is in the transient state (step S11), and if it is determined that the engine is in the transient state, it is determined whether the engine speed is equal to or lower than a predetermined rotation speed (step S12). The determination of the transient state is made based on the difference between the current phase angle and the target phase angle and / or the degree of change of the current phase angle.
- FIG. 16 is a waveform diagram for explaining the control device for the variable valve timing mechanism and the control method therefor according to the fifth embodiment of the present invention.
- the phase angle is obtained in consideration of the influencing factors that are considered in advance in the motor characteristics.
- the inclination is corrected by the amount by which the interpolated value deviates from the detected value by the cam. That is, the calculation of the motor torque and / or the motor rotation angle is corrected according to the difference between the interpolated value and the detected value when the phase angle is calibrated.
- the interpolation value is calibrated when the cam detection angle is updated.
- the DC motor characteristics, the coefficient of the equation of motion, and the constant are corrected according to the difference between the interpolation value and the detected value at the time of calibration.
- the gain of the TI characteristic is corrected so that the motor torque (motor rotation angle) becomes small. That is, as shown in FIG. 17, when the state before correction, which is the base, is shown by the broken line, it becomes as shown by the solid line after the correction.
- this correction corrects the inclination of the motor characteristic to be small.
- the inclination may be largely corrected depending on the difference between the interpolated value and the detected value.
- FIG. 19 is for explaining the actuator side torque and the engine side torque related to the phase conversion of the electric VTC shown in FIG. 18, where (A) motor torque, (B) inertia torque and (C) friction torque are VTC.
- the actuator side, (D) cam torque, inertia torque, and (F) friction torque are on the engine side.
- the motor torque increases as the motor current increases.
- the relationship between the motor current and the motor torque is as shown by the broken line L15.
- the relationship between the motor current and the motor torque is as shown by the broken line L16. In this way, the TI characteristic changes depending on whether the motor temperature is low or high.
- various types such as motor torque, inertia torque (VTC actuator side), friction torque (VTC actuator side), cam torque, inertia torque (engine side), friction torque (engine side), etc.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Valve Device For Special Equipments (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
モータ回転角センサを用いることなく、カム位相角補間を高精度に行うことができる可変バルブタイミング機構の制御装置及びその制御方法を提供する。 可変バルブタイミング機構の制御装置は、カム信号に基づいてカムの位相角を検出し、電動モータを用いてカムの位相角を制御するコントローラを備える。このコントローラは、モータ特性に基づいてモータトルク推定部でモータ電流からモータトルクを演算し、少なくともモータトルク及びエンジン運転状態に基づいてモータ回転角推定部でモータ回転角を演算し、変換部とフィードバック制御部でモータ回転角から可変バルブタイミング機構のカム位相角の補間を行うように構成されている。
Description
本発明は、ブラシ付DCモータを使用し、このモータに位相変換時のみ電圧を印加して、スプロケット部に対してモータシャフト部を回転させてカムシャフト部の位相を変換する、可変バルブタイミング機構の制御装置及びその制御方法に関する。
特許文献1には、モータの回転トルクを利用してエンジンのバルブタイミングを調整する電動式のバルブタイミング調整装置が記載されている。この特許文献1では、カム軸角度、クランク軸角度、潤滑油の温度、冷却水の温度、及びモータ軸の回転角度に基づいて実際のクランク軸に対するカム軸の位相(カム軸位相)を算出するとともに、エンジン運転条件に応じて目標とするカム軸位相を算出している。カム軸位相の算出は、エンジン回転角に同期して行われるため低回転時は更新が遅くなる。そこで、モータ回転角センサを用いてモータ軸の回転角度を検出し、可変バルブタイミング(VTC:Variable valve Timing Control)機構の位相角を補間している。
ところで、VTCシステムのコスト削減のため、モータ回転角センサの非搭載化が検討されている。このためには、例えばDCモータのトルク-電流(T-I)特性とトルク-回転数(T-N)特性を用いて、モータ電流から位相角補間を行うことが考えられる。
しかしながら、T-I特性とT-N特性に基づくモータ電流による位相角補間は、精度が低い、という課題がある。精度が低下する第1の要因は、T-I特性とT-N特性は定常特性であるのに対し、VTCはモータの正転/逆転による位相進角-遅角を繰り返し、モータ電流の変化に依存して位相角が急変するためである。第2の要因は、T-I特性とT-N特性はモータ単体の特性であるのに対し、VTCにはモータトルク以外に様々な因子が影響し、位相角の変化が実際より大きくなるためである。
本発明は上記のような事情に鑑みてなされたもので、その目的とするところは、モータ回転角センサを用いることなく、カム位相角補間の精度を向上できる可変バルブタイミング機構の制御装置及びその制御方法を提供することにある。
本発明の一態様に係る可変バルブタイミング機構の制御装置は、カム信号に基づいてカムの位相角を検出し、電動モータを用いてカムの位相角を制御する可変バルブタイミング機構の制御装置において、モータ特性に基づいてモータ電流からモータトルクを演算し、少なくともモータトルク及びエンジン運転状態に基づいてモータ回転角を演算し、前記モータ回転角から前記可変バルブタイミング機構のカム位相角の補間を行うように構成されたコントローラを備えることを特徴とする。
また、本発明の一態様に係る可変バルブタイミング機構の制御方法は、カム信号に基づいてカムの位相角を検出し、電動モータを用いてカムの位相角を制御する可変バルブタイミング機構の制御装置において、モータ特性に基づいてモータ電流からモータトルクを演算することと、少なくともモータトルク及びエンジン運転状態に基づいてモータ回転角を演算することと、前記モータ回転角から前記可変バルブタイミング機構のカム位相角の補間を行うことと、を具備することを特徴とする。
また、本発明の一態様に係る可変バルブタイミング機構の制御方法は、カム信号に基づいてカムの位相角を検出し、電動モータを用いてカムの位相角を制御する可変バルブタイミング機構の制御装置において、モータ特性に基づいてモータ電流からモータトルクを演算することと、少なくともモータトルク及びエンジン運転状態に基づいてモータ回転角を演算することと、前記モータ回転角から前記可変バルブタイミング機構のカム位相角の補間を行うことと、を具備することを特徴とする。
本発明によれば、カム信号による位相角検出の間の補間において、モータ特性に基づいてモータ電流からモータトルクを推定し、モータトルクとエンジン運転状態を用いた運動方程式に基づいてモータ回転角を推定して補間を行うので、モータ回転角センサを用いることなく、カム位相角補間を高精度に行うことができる。モータ回転角センサを使用せずにカム位相角補間が行えることから、VTCシステムのコストを削減できる。
以下、本発明の実施形態について図面を参照して説明する。
図1は、本発明の実施形態に係る可変バルブタイミング機構の制御装置が適用される内燃機関のシステム構成図である。
内燃機関(エンジン)100は、車両に搭載されて動力源として用いられる。この内燃機関100は、図示する直列型の他、V型あるいは水平対向型などの様々な形式とすることができる。
図1は、本発明の実施形態に係る可変バルブタイミング機構の制御装置が適用される内燃機関のシステム構成図である。
内燃機関(エンジン)100は、車両に搭載されて動力源として用いられる。この内燃機関100は、図示する直列型の他、V型あるいは水平対向型などの様々な形式とすることができる。
内燃機関100の吸気ダクト102には、内燃機関100の吸入空気流量QAを検出する吸入空気量センサ103を設けている。
吸気バルブ105は、各気筒の燃焼室104の吸気口を開閉する。この吸気バルブ105の上流側の吸気ポート102aには、気筒毎に燃料噴射弁106を配置している。ここでは、燃料噴射弁106が吸気ダクト102内に燃料を噴射するものを例に取るが、燃焼室104内に直接燃料を噴射する筒内直接噴射式内燃機関であっても良い。
吸気バルブ105は、各気筒の燃焼室104の吸気口を開閉する。この吸気バルブ105の上流側の吸気ポート102aには、気筒毎に燃料噴射弁106を配置している。ここでは、燃料噴射弁106が吸気ダクト102内に燃料を噴射するものを例に取るが、燃焼室104内に直接燃料を噴射する筒内直接噴射式内燃機関であっても良い。
燃料噴射弁106から噴射された燃料は、吸気バルブ105を介して燃焼室104内に空気と共に吸引され、点火プラグ107による火花点火によって着火燃焼し、該燃焼による圧力がピストン108をクランクシャフト109に向けて押し下げることで、クランクシャフト109を回転駆動する。
また、排気バルブ110は、燃焼室104の排気口を開閉し、排気バルブ110が開くことで燃焼室104内の排ガスが排気管111に排出される。
また、排気バルブ110は、燃焼室104の排気口を開閉し、排気バルブ110が開くことで燃焼室104内の排ガスが排気管111に排出される。
排気管111には三元触媒等を備えた触媒コンバータ112が設置され、触媒コンバータ112によって排気が浄化される。
吸気バルブ105は、クランクシャフト109によって回転駆動される吸気カムシャフト115aの回転に伴って開動作する。また、排気バルブ110は、クランクシャフト109によって回転駆動される排気カムシャフト115bの回転に伴って開動作する。
吸気バルブ105は、クランクシャフト109によって回転駆動される吸気カムシャフト115aの回転に伴って開動作する。また、排気バルブ110は、クランクシャフト109によって回転駆動される排気カムシャフト115bの回転に伴って開動作する。
VTC機構114は、アクチュエータとしての電動モータ(ブラシ付DCモータ)によって、クランクシャフト109に対する吸気カムシャフト115aの相対回転位相角を変化させることで、吸気バルブ105のバルブ作動角の位相、つまり、吸気バルブ105のバルブタイミングを連続的に進角方向及び遅角方向に変化させる、電動式のVTC機構である。
また、気筒毎に設けた点火プラグ107には、点火プラグ107に対して点火エネルギを供給する点火モジュール116がそれぞれ直付けされている。点火モジュール116は、点火コイル及び点火コイルへの通電を制御するパワートランジスタを備えている。
また、気筒毎に設けた点火プラグ107には、点火プラグ107に対して点火エネルギを供給する点火モジュール116がそれぞれ直付けされている。点火モジュール116は、点火コイル及び点火コイルへの通電を制御するパワートランジスタを備えている。
制御装置(電子制御ユニット)201は、VTC機構114を駆動制御する電動VTCコントローラ201aと、燃料噴射弁106や点火モジュール116などを制御するエンジンコントロールモジュール(以下、ECMと称する)201bとを備えている。電動VTCコントローラ201a及びECM201bは、それぞれがCPU,RAM,ROMなどを含むマイクロコンピュータを備え、ROMなどのメモリに予め格納されたプログラムに従って演算処理を行うことで各種デバイスの操作量を演算して出力する。また、電動VTCコントローラ201aは、VTC機構114のモータを駆動するインバータなどの駆動回路を備えている。
これら電動VTCコントローラ201aとECM201bは、CAN(Controller Area Network)201cを介して相互にデータ転送を行えるように構成されている。
なお、通信回路網としてのCAN201cには、電動VTCコントローラ201a,ECM201bの他、例えば内燃機関と組み合わされる自動変速機を制御するATコントローラなどが接続される。
なお、通信回路網としてのCAN201cには、電動VTCコントローラ201a,ECM201bの他、例えば内燃機関と組み合わされる自動変速機を制御するATコントローラなどが接続される。
制御装置201には、吸入空気量センサ103から出力される吸入空気流量QAを入力する他、クランクシャフト109の回転角信号POSを出力するクランク角センサ203、アクセルペダル207の踏込み量、換言すればアクセル開度ACCを検出するアクセル開度センサ206、吸気カムシャフト115aの回転角信号CAMを出力するカム角センサ204、内燃機関100の冷却水の温度TWを検出する水温センサ208、触媒コンバータ112の上流側の排気管111に設置され、排気中の酸素濃度に基づいて空燃比AFを検出する空燃比センサ209、オイルパン内(またはエンジンオイルの循環経路)におけるエンジンオイルの油温TOを検出する油温センサ210などからの出力信号を入力し、更に、内燃機関100の運転及び停止のメインスイッチであるイグニッションスイッチ(エンジンスイッチ)205からの信号IGNSWを入力する。
クランク角センサ203が出力する回転角信号POSは、単位クランク角(例えば、10deg.CA)毎のパルス信号であって、気筒間の行程位相差(点火間隔)に相当するクランク角(4気筒機関でクランク角180deg)毎に、1個若しくは複数のパルスが欠落するように構成される。
また、クランク角センサ203が、単位クランク角毎の回転角信号POS(単位クランク角信号)と、気筒間の行程位相差(点火間隔)に相当するクランク角毎の基準クランク角信号とを出力するよう構成することができる。ここで、単位クランク角毎の回転角信号POSの欠落箇所若しくは基準クランク角信号の出力位置は、各気筒の基準ピストン位置を表すことになる。
また、クランク角センサ203が、単位クランク角毎の回転角信号POS(単位クランク角信号)と、気筒間の行程位相差(点火間隔)に相当するクランク角毎の基準クランク角信号とを出力するよう構成することができる。ここで、単位クランク角毎の回転角信号POSの欠落箇所若しくは基準クランク角信号の出力位置は、各気筒の基準ピストン位置を表すことになる。
カム角センサ204は、気筒間の行程位相差(点火間隔)に相当するクランク角毎に回転角信号CAMを出力する。
ここで、吸気カムシャフト115aは、クランクシャフト109の回転速度の半分の速度で回転するから、内燃機関100が4気筒機関で、気筒間の行程位相差(点火間隔)に相当するクランク角が180deg.CAであれば、クランク角180deg.CAは吸気カムシャフト115aの回転角90degに相当する。つまり、カム角センサ204は、吸気カムシャフト115aが90deg回転する毎に、回転角信号CAMを出力する。
ここで、吸気カムシャフト115aは、クランクシャフト109の回転速度の半分の速度で回転するから、内燃機関100が4気筒機関で、気筒間の行程位相差(点火間隔)に相当するクランク角が180deg.CAであれば、クランク角180deg.CAは吸気カムシャフト115aの回転角90degに相当する。つまり、カム角センサ204は、吸気カムシャフト115aが90deg回転する毎に、回転角信号CAMを出力する。
回転角信号CAMは、基準ピストン位置に位置している気筒を判別させるための信号(気筒判別信号)であり、気筒間の行程位相差(点火間隔)に相当するクランク角毎に気筒番号を表す特性のパルスとして出力される。
例えば、4気筒機関であって点火順を第1気筒、第3気筒、第4気筒、第2気筒とする場合、カム角センサ204は、クランク角180deg毎に1個のパルス信号、3個のパルス信号、4個のパルス信号、2個のパルス信号を出力することで、基準ピストン位置に位置している気筒をパルス数に基づき特定することができる。また、回転角信号CAMは、パルス数で気筒番号を表す代わりに、パルス幅や振幅に基づき気筒番号を表すことができる。
例えば、4気筒機関であって点火順を第1気筒、第3気筒、第4気筒、第2気筒とする場合、カム角センサ204は、クランク角180deg毎に1個のパルス信号、3個のパルス信号、4個のパルス信号、2個のパルス信号を出力することで、基準ピストン位置に位置している気筒をパルス数に基づき特定することができる。また、回転角信号CAMは、パルス数で気筒番号を表す代わりに、パルス幅や振幅に基づき気筒番号を表すことができる。
図2~図4はそれぞれ、図1におけるVTC機構114の構造の一例を示す。
なお、VTC機構114の構造は、図2~図4に例示したものに限定されるものではなく、ブラシ付DCモータに位相変換時のみ電圧を印加して、スプロケット部に対してモータシャフト部を回転させてカムシャフト部の位相を変換するものであれば採用できる。
なお、VTC機構114の構造は、図2~図4に例示したものに限定されるものではなく、ブラシ付DCモータに位相変換時のみ電圧を印加して、スプロケット部に対してモータシャフト部を回転させてカムシャフト部の位相を変換するものであれば採用できる。
VTC機構114は、図2に示すように、内燃機関100のクランクシャフト109によって回転駆動される駆動回転体であるタイミングスプロケット(カムスプロケット)1と、シリンダヘッド上に軸受44を介して回転自在に支持され、タイミングスプロケット1から伝達された回転力によって回転する吸気カムシャフト115aと、タイミングスプロケット1の前方位置に配置されて、チェーンカバー40にボルトによって固定されたカバー部材3と、タイミングスプロケット1と吸気カムシャフト115aの間に配置されて、タイミングスプロケット1に対する吸気カムシャフト115aの相対回転位相角を変更する位相変更機構4と、を備える。
タイミングスプロケット1は、スプロケット本体1aと、スプロケット本体1aの外周に一体に設けられて、巻回されたタイミングチェーン42を介してクランクシャフト109からの回転力を受けるギア部1bと、から構成される。
また、タイミングスプロケット1は、スプロケット本体1aの内周側に形成された円形溝1cと吸気カムシャフト115aの前端部に一体に設けられたフランジ部2aの外周との間に介装された第3ボールベアリング43によって、吸気カムシャフト115aに回転自在に支持されている。
また、タイミングスプロケット1は、スプロケット本体1aの内周側に形成された円形溝1cと吸気カムシャフト115aの前端部に一体に設けられたフランジ部2aの外周との間に介装された第3ボールベアリング43によって、吸気カムシャフト115aに回転自在に支持されている。
スプロケット本体1aの前端部外周縁には、環状突起1eが一体に形成されている。
スプロケット本体1aの前端部には、環状突起1eの内周側に同軸に位置決めされ、内周に波形状の噛み合い部である内歯19aが形成された環状部材19と、円環状のプレート6とがボルト7によって軸方向から共締め固定されている。
スプロケット本体1aの前端部には、環状突起1eの内周側に同軸に位置決めされ、内周に波形状の噛み合い部である内歯19aが形成された環状部材19と、円環状のプレート6とがボルト7によって軸方向から共締め固定されている。
また、スプロケット本体1aの内周面の一部には、図4に示すように、円弧状の係合部であるストッパ凸部1dが周方向に沿って所定長さ範囲まで形成されている。
プレート6の前端側外周には、位相変更機構4の後述する減速機8や電動モータ12の各構成部材を覆う状態で前方に突出した円筒状のハウジング5がボルト11によって固定されている。
プレート6の前端側外周には、位相変更機構4の後述する減速機8や電動モータ12の各構成部材を覆う状態で前方に突出した円筒状のハウジング5がボルト11によって固定されている。
ハウジング5は、鉄系金属によって形成されてヨークとして機能し、前端側に円環プレート状の保持部5aを一体に有していると共に、保持部5aを含めた外周側全体がカバー部材3によって所定の隙間をもって覆われた形で配置されている。
吸気カムシャフト115aは、外周に吸気バルブ105を開作動させる駆動カム(図示省略)を有すると共に、前端部に従動回転体である従動部材9がカムボルト10によって軸方向から結合されている。
吸気カムシャフト115aは、外周に吸気バルブ105を開作動させる駆動カム(図示省略)を有すると共に、前端部に従動回転体である従動部材9がカムボルト10によって軸方向から結合されている。
また、吸気カムシャフト115aのフランジ部2aには、図4に示すように、スプロケット本体1aのストッパ凸部1dが係入する係止部であるストッパ凹溝2bが円周方向に沿って形成されている。
このストッパ凹溝2bは、円周方向へ所定長さの円弧状に形成され、この長さ範囲で回動したストッパ凸部1dの両端縁が周方向の対向縁2c,2dにそれぞれ当接することによって、タイミングスプロケット1に対する吸気カムシャフト115aの最大進角側、最大遅角側の相対回転位置を規制するようになっている。
このストッパ凹溝2bは、円周方向へ所定長さの円弧状に形成され、この長さ範囲で回動したストッパ凸部1dの両端縁が周方向の対向縁2c,2dにそれぞれ当接することによって、タイミングスプロケット1に対する吸気カムシャフト115aの最大進角側、最大遅角側の相対回転位置を規制するようになっている。
つまり、ストッパ凸部1dがストッパ凹溝2b内で移動できる角度範囲が、クランクシャフト109に対する吸気カムシャフト115aの相対回転位相角の可変範囲、換言すれば、バルブタイミングの可変範囲となる。
カムボルト10の頭部10aの軸部10b側の端縁には、フランジ状の座面部10cが一体に形成され、軸部10bの外周には、吸気カムシャフト115aの端部から内部軸方向に形成された雌ねじ部に螺着する雄ねじ部が形成されている。
カムボルト10の頭部10aの軸部10b側の端縁には、フランジ状の座面部10cが一体に形成され、軸部10bの外周には、吸気カムシャフト115aの端部から内部軸方向に形成された雌ねじ部に螺着する雄ねじ部が形成されている。
従動部材9は、鉄系金属材によって形成され、図3に示すように、前端側に形成された円板部9aと、後端側に一体に形成された円筒状の円筒部9bとから構成されている。
円板部9aには、後端面の径方向ほぼ中央位置に吸気カムシャフト115aのフランジ部2aとほぼ同外径の環状段差突起9cが一体に設けられる。
円板部9aには、後端面の径方向ほぼ中央位置に吸気カムシャフト115aのフランジ部2aとほぼ同外径の環状段差突起9cが一体に設けられる。
そして、環状段差突起9cの外周面とフランジ部2aの外周面が第3ボールベアリング43の内輪43aの内周に挿通配置されている。第3ボールベアリング43の外輪43bは、スプロケット本体1aの円形溝1cの内周面に圧入固定されている。
また、円板部9aの外周部には、複数のローラ34を保持する保持器41が一体に設けられている。
また、円板部9aの外周部には、複数のローラ34を保持する保持器41が一体に設けられている。
保持器41は、円板部9aの外周部から円筒部9bと同じ方向へ突出して形成され、円周方向へほぼ等間隔の位置に所定の隙間をもった複数の細長い突起部41aによって形成されている。
円筒部9bは、中央にカムボルト10の軸部10bが挿通される挿通孔9dが貫通形成され、円筒部9bの外周側に第1ニードルベアリング28が設けられている。
円筒部9bは、中央にカムボルト10の軸部10bが挿通される挿通孔9dが貫通形成され、円筒部9bの外周側に第1ニードルベアリング28が設けられている。
カバー部材3は、合成樹脂材によって形成され、カップ状に膨出したカバー本体3aと、該カバー本体3aの後端部外周に一体に設けたブラケット3bとから構成される。
カバー本体3aは、位相変更機構4の前端側、つまりハウジング5の軸方向の保持部5bから後端部側のほぼ全体を、所定隙間をもって覆うように配置されている。一方、ブラケット3bは、ほぼ円環状に形成され、6つのボス部にそれぞれボルト挿通孔3fが貫通形成されている。
カバー本体3aは、位相変更機構4の前端側、つまりハウジング5の軸方向の保持部5bから後端部側のほぼ全体を、所定隙間をもって覆うように配置されている。一方、ブラケット3bは、ほぼ円環状に形成され、6つのボス部にそれぞれボルト挿通孔3fが貫通形成されている。
また、カバー部材3には、ブラケット3bがチェーンカバー40に複数のボルト47を介して固定され、カバー本体3aの前端部3cの内周面に、内外2重のスリップリング48a,48bが各内端面を露出した状態で埋設固定されている。
さらに、カバー部材3の上端部には、内部にスリップリング48a,48bと導電部材を介して接続されたコネクタ端子49aが固定されたコネクタ部49を設けてある。
さらに、カバー部材3の上端部には、内部にスリップリング48a,48bと導電部材を介して接続されたコネクタ端子49aが固定されたコネクタ部49を設けてある。
なお、コネクタ端子49aには、制御装置201を介して図外のバッテリー電源からの電力が供給されるようになっている。
カバー本体3aの後端部側の内周面とハウジング5の外周面との間には、シール部材である大径な第1オイルシール50が介装されている。
カバー本体3aの後端部側の内周面とハウジング5の外周面との間には、シール部材である大径な第1オイルシール50が介装されている。
第1オイルシール50は、横断面ほぼコ字形状に形成され、合成ゴムの基材の内部に芯金が埋設されていると共に、外周側の円環状基部50aがカバー本体3a後端部の内周面に形成された円形溝3d内に嵌着固定されている。
また、第1オイルシール50の円環状基部50aの内周側には、ハウジング5の外周面に当接するシール面50bが一体に形成されている。
また、第1オイルシール50の円環状基部50aの内周側には、ハウジング5の外周面に当接するシール面50bが一体に形成されている。
位相変更機構4は、吸気カムシャフト115aのほぼ同軸上前端側に配置された電動モータ12と、電動モータ12の回転速度を減速して吸気カムシャフト115aに伝達する減速機8と、から構成されている。
電動モータ12は、ブラシ付きのDCモータであって、タイミングスプロケット1と一体に回転するヨークであるハウジング5と、ハウジング5の内部に回転自在に設けられた出力軸であるモータ軸13と、ハウジング5の内周面に固定された半円弧状の一対の永久磁石14,15と、保持部5aの内底面側に固定された固定子16と、を備えている。
電動モータ12は、ブラシ付きのDCモータであって、タイミングスプロケット1と一体に回転するヨークであるハウジング5と、ハウジング5の内部に回転自在に設けられた出力軸であるモータ軸13と、ハウジング5の内周面に固定された半円弧状の一対の永久磁石14,15と、保持部5aの内底面側に固定された固定子16と、を備えている。
モータ軸13は、筒状に形成されてアーマチュアとして機能し、軸方向のほぼ中央位置の外周に複数の極を持つ鉄心ロータ17が固定されると共に、鉄心ロータ17の外周には電磁コイル18が巻回されている。
また、モータ軸13の前端部外周には、コミュテータ20が圧入固定されており、コミュテータ20には、鉄心ロータ17の極数と同数に分割された各セグメントに電磁コイル18が接続されている。
また、モータ軸13の前端部外周には、コミュテータ20が圧入固定されており、コミュテータ20には、鉄心ロータ17の極数と同数に分割された各セグメントに電磁コイル18が接続されている。
モータ軸13は、カムボルト10の頭部10a側の軸部10bの外周面に、第1軸受であるニードルベアリング28と該ニードルベアリング28の軸方向の側部に配置された軸受である第4ボールベアリング35を介して回転自在に支持されている。
また、モータ軸13の吸気カムシャフト115a側の後端部には、減速機8の一部を構成する円筒状の偏心軸部30が一体に設けられている。
また、モータ軸13の吸気カムシャフト115a側の後端部には、減速機8の一部を構成する円筒状の偏心軸部30が一体に設けられている。
また、モータ軸13の外周面とプレート6の内周面との間には、減速機8内部から電動モータ12内への潤滑油のリークを阻止するフリクション部材である第2オイルシール32が設けられている。
第2オイルシール32は、内周部がモータ軸13の外周面に弾接することによって、モータ軸13の回転に対して摩擦抵抗を付与する。
第2オイルシール32は、内周部がモータ軸13の外周面に弾接することによって、モータ軸13の回転に対して摩擦抵抗を付与する。
減速機8は、偏心回転運動を行う偏心軸部30と、偏心軸部30の外周に設けられた第2軸受である第2ボールベアリング33と、第2ボールベアリング33の外周に設けられたローラ34と、ローラ34を転動方向に保持しつつ径方向の移動を許容する保持器41と、保持器41と一体の従動部材9とで主に構成されている。
偏心軸部30の外周面に形成されたカム面の軸心が、モータ軸13の軸心Xから径方向へ僅かに偏心している。なお、第2ボールベアリング33とローラ34などが遊星噛み合い部として構成されている。
偏心軸部30の外周面に形成されたカム面の軸心が、モータ軸13の軸心Xから径方向へ僅かに偏心している。なお、第2ボールベアリング33とローラ34などが遊星噛み合い部として構成されている。
第2ボールベアリング33は、大径状に形成されて、第1ニードルベアリング28の径方向位置で全体がほぼオーバラップする状態に配置され、第2ボールベアリング33の内輪33aが偏心軸部30の外周面に圧入固定されていると共に、第2ボールベアリング33の外輪33bの外周面にはローラ34が常時当接している。
また、外輪33bの外周側には円環状の隙間Cが形成され、この隙間Cによって第2ボールベアリング33全体が偏心軸部30の偏心回転に伴って径方向へ移動可能、つまり偏心動可能になっている。
また、外輪33bの外周側には円環状の隙間Cが形成され、この隙間Cによって第2ボールベアリング33全体が偏心軸部30の偏心回転に伴って径方向へ移動可能、つまり偏心動可能になっている。
各ローラ34は、第2ボールベアリング33の偏心動に伴って径方向へ移動しつつ環状部材19の内歯19aに嵌入すると共に、保持器41の突起部41aによって周方向にガイドされつつ径方向に揺動運動させるようになっている。
減速機8の内部には、潤滑油供給機構から潤滑油が供給される。
減速機8の内部には、潤滑油供給機構から潤滑油が供給される。
潤滑油供給機構は、シリンダヘッドの軸受44の内部に形成されて図外のメインオイルギャラリーから潤滑油が供給される油供給通路44aと、吸気カムシャフト115aの内部軸方向に形成されて油供給通路44aにグルーブ溝を介して連通した油供給孔48と、従動部材9の内部軸方向に貫通形成されて一端が油供給孔48に開口し他端が第1ニードルベアリング28と第2ボールベアリング33の付近に開口した小径なオイル供給孔45と、同じく従動部材9に貫通形成された大径な3つのオイル排出孔(図示省略)と、から構成されている。
次に、上述したVTC機構114の作動について説明する。
まず、内燃機関100のクランクシャフト109が回転駆動するとタイミングチェーン42を介してタイミングスプロケット1が回転し、その回転力によりハウジング5と環状部材19とプレート6を介して電動モータ12が同期回転する。
まず、内燃機関100のクランクシャフト109が回転駆動するとタイミングチェーン42を介してタイミングスプロケット1が回転し、その回転力によりハウジング5と環状部材19とプレート6を介して電動モータ12が同期回転する。
一方、環状部材19の回転力が、ローラ34から保持器41及び従動部材9を経由して吸気カムシャフト115aに伝達される。これによって、吸気カムシャフト115aのカムが吸気バルブ105を開閉作動させる。
そして、制御装置201は、VTC機構114によってクランクシャフト109に対する吸気カムシャフト115aの相対回転位相角、つまり、吸気バルブ105のバルブタイミングを変更するときは、電動モータ12の電磁コイル18に通電し、電動モータ12を駆動させる。電動モータ12が回転駆動されると、このモータ回転力が減速機8を介して吸気カムシャフト115aに伝達される。
そして、制御装置201は、VTC機構114によってクランクシャフト109に対する吸気カムシャフト115aの相対回転位相角、つまり、吸気バルブ105のバルブタイミングを変更するときは、電動モータ12の電磁コイル18に通電し、電動モータ12を駆動させる。電動モータ12が回転駆動されると、このモータ回転力が減速機8を介して吸気カムシャフト115aに伝達される。
すなわち、モータ軸13の回転に伴い偏心軸部30が偏心回転すると、各ローラ34がモータ軸13の1回転毎に保持器41の突起部41aに径方向へガイドされながら環状部材19の1つの内歯19aを乗り越えて隣接する他の内歯19aに転動しながら移動し、これを順次繰り返しながら円周方向へ転接する。
この各ローラ34の転接によってモータ軸13の回転が減速されつつ従動部材9に回転力が伝達される。なお、モータ軸13の回転が従動部材9に伝達されるときの減速比は、ローラ34の個数などによって任意に設定することが可能である。
この各ローラ34の転接によってモータ軸13の回転が減速されつつ従動部材9に回転力が伝達される。なお、モータ軸13の回転が従動部材9に伝達されるときの減速比は、ローラ34の個数などによって任意に設定することが可能である。
これにより、吸気カムシャフト115aがタイミングスプロケット1に対して正逆相対回転して相対回転位相角が変換されて、吸気バルブ105の開閉タイミングが進角側あるいは遅角側に変更される。
ここで、タイミングスプロケット1に対する吸気カムシャフト115aの正逆相対回転は、ストッパ凸部1dの各側面がストッパ凹溝2bの各対向縁2c,2dのいずれか一方に当接することによって規制される。
ここで、タイミングスプロケット1に対する吸気カムシャフト115aの正逆相対回転は、ストッパ凸部1dの各側面がストッパ凹溝2bの各対向縁2c,2dのいずれか一方に当接することによって規制される。
すなわち、従動部材9が、偏心軸部30の偏心回動に伴ってタイミングスプロケット1の回転方向と同方向に回転することによって、ストッパ凸部1dの一側面がストッパ凹溝2bの一方側の対向縁2cに当接してそれ以上の同方向の回転が規制される。これにより、吸気カムシャフト115aは、タイミングスプロケット1に対する相対回転位相角が進角側へ最大に変更される。
一方、従動部材9が、タイミングスプロケット1の回転方向と逆方向に回転することによって、ストッパ凸部1dの他側面がストッパ凹溝2bの他方側の対向縁2dに当接してそれ以上の同方向の回転が規制される。これにより、吸気カムシャフト115aは、タイミングスプロケット1に対する相対回転位相が遅角側へ最大に変更される。
このように、制御装置201は、VTC機構114の電動モータ12の通電を制御することによってクランクシャフト109に対する吸気カムシャフト115aの相対回転位相角、つまり、吸気バルブ105のバルブタイミングを可変に制御する。
このように、制御装置201は、VTC機構114の電動モータ12の通電を制御することによってクランクシャフト109に対する吸気カムシャフト115aの相対回転位相角、つまり、吸気バルブ105のバルブタイミングを可変に制御する。
制御装置201は、内燃機関100の運転状態、例えば、機関負荷、機関回転速度、機関温度、始動状態などに基づいて目標位相角(換言すれば、目標進角量、目標バルブタイミング、目標変換角)を演算する一方、クランクシャフト109に対する吸気カムシャフト115aの実際の相対回転位相角を検出する。
そして、制御装置201は、目標位相角に実際の相対回転位相角が近づくように電動モータ12の操作量を演算して出力する、回転位相のフィードバック制御を実施する。上記フィードバック制御において、制御装置201は、例えば目標位相角と実際の相対回転位相角との偏差に基づく比例積分制御などによって、電動モータ12の操作量を演算する。
そして、制御装置201は、目標位相角に実際の相対回転位相角が近づくように電動モータ12の操作量を演算して出力する、回転位相のフィードバック制御を実施する。上記フィードバック制御において、制御装置201は、例えば目標位相角と実際の相対回転位相角との偏差に基づく比例積分制御などによって、電動モータ12の操作量を演算する。
図5は、図1に示した制御装置201における、VTC機構114の制御に関係する要部を抽出して示している。バッテリーVBATに接続されたイグニッションスイッチ205からの信号IGNSWを、ECM201bと電動VTCコントローラ201aにそれぞれ入力してイグニッションオンにより起動する。ECM201bは、入力回路211とCPU212を備えている。カム角センサ204からの回転角信号CAM、及びクランク角センサ203からの回転角信号POSをそれぞれ入力回路211とCPU212に入力する。ECM201bは、これらの信号に基づいて燃料噴射弁106や点火モジュール116などを制御する。
CPU212は、例えばVTC機構114で調整される回転位相の目標値(目標位相角)TGVTC(deg.CA)を機関運転状態に基づいて演算し、クランク角センサ203からの回転角信号POS、及び吸気カムシャフト115aの回転角信号CAMに基づき回転位相ANG_CAMec(deg.CA)を算出する。更に、演算した目標値TGVTCや算出した回転位相ANG_CAMecなどを、CAN通信により電動VTCコントローラ201aに向けて送信する機能を有する。
一方、電動VTCコントローラ201aは、CPU213、駆動回路214a,214b、内部電源回路215、入力回路216及びCANドライバ回路217などを備えている。この電動VTCコントローラ201aの電源端子とグランド(GND)端子を、バッテリーVBATに接続する。これによって、駆動回路214a,214bと内部電源回路215にヒュージブルリンク219を介して電源が供給される。内部電源回路215は、バッテリーVBATの電圧を降圧して、例えば5Vの内部電源電圧を生成し、CPU213を含む電動VTCコントローラ201a内の各回路に供給する。
入力回路216には、ECM201bの入力回路211を介して、カム角センサ204からの回転角信号CAMと、クランク角センサ203からの回転角信号POSを入力し、これらの回転角信号CAM,POSをCPU213に入力する。
CANドライバ回路217は、電動VTCコントローラ201aとECM201bとの間でCAN通信を行うためのものであり、CPU213からの送信情報CAN_TXをECM201bに送信し、ECM201bからの受信情報CAN_RXをCPU213で受信する。
CANドライバ回路217は、電動VTCコントローラ201aとECM201bとの間でCAN通信を行うためのものであり、CPU213からの送信情報CAN_TXをECM201bに送信し、ECM201bからの受信情報CAN_RXをCPU213で受信する。
駆動回路214a,214bはそれぞれ、CPU213から出力されるPWM(Pulse Width Modulation)信号PWM-P,PWP-Nに基づいて、VTC機構114の電動モータ12への通電を制御する。これら駆動回路214a,214bはそれぞれ、電流センサ218a,218bを備えており、電動モータ12の巻線に流れる電流を検知してCPU213に入力するようになっている。
次に、図6の機能ブロック図を参照して、本発明の概要について説明する。電動VTCコントローラ201aは、モータトルク推定機能(モータトルク推定部230)、モータ回転角推定機能(モータ回転角推定部231)、VTC変換角算出機能(変換部232)及びフィードバック制御機能(フィードバック制御部233)などを有する。そして、カム信号による位相角検出の間の補間において、モータ特性に基づいてモータ電流からモータトルクを推定し、モータトルクとエンジン運転状態を用いた運動方程式に基づいてモータ回転角を推定して補間を行う。
すなわち、モータトルク推定部230にモータ電流[A]が入力されると、DCモータのT-I特性によりモータトルクTmot[N・m]が算出されてモータ回転角推定部231に入力される。モータ回転角推定部231では、このモータトルクTmotと影響因子がモータ回転の運動方程式に入力され、モータ回転角[deg]が算出される。モータトルクTmotは、VTCアクチュエータの慣性、VTCアクチュエータ側の影響因子、及びカム側の影響因子の和で表され、下式のようになる。
ここで、Jは慣性モーメント[kg・m2]、Dは摩擦係数[N・m・sec/deg]、θはモータ回転角[deg.CA]である。
ここで、Jは慣性モーメント[kg・m2]、Dは摩擦係数[N・m・sec/deg]、θはモータ回転角[deg.CA]である。
上記モータ回転の運動方程式に基づきモータ回転角θを推定し、このモータ回転角θを変換部232でVTC変換角[deg.CA]に変換する。変換部232では、モータ回転角推定部231で算出したモータ回転角θを、減速機8の減速比などに基づきVTC変換角に変換する。このVTC変換角をフィードバック制御部233に入力し、フィードバック制御によって、カムによる位相角検出値の補間を行う。そして、このフィードバック制御部233からVTC位相角[deg.CA]を出力する。
カムによる位相角検出が行われたときには、この検出値が選択され、フィードバック制御部233から位相角検出値に基づくVTC位相角[deg.CA]を出力する。
電動VTCコントローラ201aの上述したトルク推定機能、モータ回転角推定機能及びVTC変換角算出機能は、CPU213によって実現され、VTC位相角[deg.CA]に対応するPWM信号を出力してVTC機構114の電動モータ12を制御する。
カムによる位相角検出が行われたときには、この検出値が選択され、フィードバック制御部233から位相角検出値に基づくVTC位相角[deg.CA]を出力する。
電動VTCコントローラ201aの上述したトルク推定機能、モータ回転角推定機能及びVTC変換角算出機能は、CPU213によって実現され、VTC位相角[deg.CA]に対応するPWM信号を出力してVTC機構114の電動モータ12を制御する。
図7A~図7Cはそれぞれ、VTC位相ステップ応答に、本発明の位相角補間を適用した場合のモータ電流、位相角、位相角校正量を従来と比較して示す特性図である。また、図8は、図7Cの位相角校正量の時間変化における一部の領域ΔAを拡大して示す特性図である。
従来の概略的な制御の流れは、まずECM201bで目標角(図7Bに細い破線L1で示す)を演算し、電動VTCコントローラ201aへ送信する。電動VTCコントローラ201aは、受信した目標角と、VTC位相角(細い実線L2で示す階段状のカム検出角)との偏差から、電動モータ12の操作量(太い破線L3で示す)を演算する。この操作量(駆動電圧)に応じてモータ電流(図7A)が変化し、このモータ電流に応じてVTC位相角が変化することになる。
これに対し、本発明では、VTCアクチュエータ(モータ+減速機)の慣性を考慮しているため、モータ回転角センサを用いることなく、図7Bに太い実線L4で示すように過渡の滑らかなVTC位相角を再現できる。また、影響因子を考慮するため、実際により近い変化(傾き)を再現できる。
これによって、図7Cに示すように、従来に比べて位相角校正量を小さくできる。また、図8に示すように、位相角校正量は、モータ回転角センサを用いた場合(実線MAS)と同等であり、十分に小さな位相角校正量となる。
従来の概略的な制御の流れは、まずECM201bで目標角(図7Bに細い破線L1で示す)を演算し、電動VTCコントローラ201aへ送信する。電動VTCコントローラ201aは、受信した目標角と、VTC位相角(細い実線L2で示す階段状のカム検出角)との偏差から、電動モータ12の操作量(太い破線L3で示す)を演算する。この操作量(駆動電圧)に応じてモータ電流(図7A)が変化し、このモータ電流に応じてVTC位相角が変化することになる。
これに対し、本発明では、VTCアクチュエータ(モータ+減速機)の慣性を考慮しているため、モータ回転角センサを用いることなく、図7Bに太い実線L4で示すように過渡の滑らかなVTC位相角を再現できる。また、影響因子を考慮するため、実際により近い変化(傾き)を再現できる。
これによって、図7Cに示すように、従来に比べて位相角校正量を小さくできる。また、図8に示すように、位相角校正量は、モータ回転角センサを用いた場合(実線MAS)と同等であり、十分に小さな位相角校正量となる。
[第1の実施形態]
図9は、本発明の第1の実施形態に係る可変バルブタイミング機構の制御装置及びその制御方法について説明するためのもので、図6における位相角検出の間の補間を行う機能ブロックのより詳細な構成例を示している。この電動VTCコントローラ201aは、モータトルク推定部230、モータ回転角推定部231、変換部232及びフィードバック制御部233などを備えている。
モータトルク推定部230には、モータ電流[A]に加えて、考慮すべきアクチュエータ側の影響因子である電源電圧[V]、駆動デューティ[%]及びモータ温度[℃]を入力し、DCモータの特性に基づいて、モータ電流、電源電圧、駆動デューティ及びモータ温度の少なくとも1つを用いてモータトルクを推定する。モータトルクの推定は、多項式による演算、テーブルの参照、あるいはマップの参照などにより行われる。
図9は、本発明の第1の実施形態に係る可変バルブタイミング機構の制御装置及びその制御方法について説明するためのもので、図6における位相角検出の間の補間を行う機能ブロックのより詳細な構成例を示している。この電動VTCコントローラ201aは、モータトルク推定部230、モータ回転角推定部231、変換部232及びフィードバック制御部233などを備えている。
モータトルク推定部230には、モータ電流[A]に加えて、考慮すべきアクチュエータ側の影響因子である電源電圧[V]、駆動デューティ[%]及びモータ温度[℃]を入力し、DCモータの特性に基づいて、モータ電流、電源電圧、駆動デューティ及びモータ温度の少なくとも1つを用いてモータトルクを推定する。モータトルクの推定は、多項式による演算、テーブルの参照、あるいはマップの参照などにより行われる。
この推定したモータトルク[N・m]とエンジン側の影響因子、例えば油温[℃]、エンジン回転角度[deg.CA]、及びエンジン回転数[r/min]をモータ回転角推定部231に入力し、上述したモータ回転の運動方程式に基づいて、モータトルク、エンジン回転数、エンジン回転角度、及び油温などを用いてモータ回転角[deg]を推定する。
続いて、推定したモータ回転角を変換部232に入力し、モータ回転角をVTC変換角に単位変換し、VTC位相角を補間する。
単位変換によって取得したVTC変換角[deg.CA]とカム信号をフィードバック制御部233に入力し、カム信号によってVTC位相角を検出したとき、位相角補間値を検出値に校正する。そして、このフィードバック制御部233からVTC位相角[deg.CA]を出力する。
このように、VTC位相変換の影響因子を考慮した運動方程式に基づいて位相角補間を行うことで、モータ電流による位相角補間の精度を向上できる。
続いて、推定したモータ回転角を変換部232に入力し、モータ回転角をVTC変換角に単位変換し、VTC位相角を補間する。
単位変換によって取得したVTC変換角[deg.CA]とカム信号をフィードバック制御部233に入力し、カム信号によってVTC位相角を検出したとき、位相角補間値を検出値に校正する。そして、このフィードバック制御部233からVTC位相角[deg.CA]を出力する。
このように、VTC位相変換の影響因子を考慮した運動方程式に基づいて位相角補間を行うことで、モータ電流による位相角補間の精度を向上できる。
[第2の実施形態]
図10は、本発明の第2の実施形態に係る可変バルブタイミング機構の制御装置及びその制御方法について説明するためのフローチャートである。本第2の実施形態では、位相角制御が過渡のときに位相角補間を行い、定常のときに位相角補間を行わないようにしている。すなわち、まず、過渡状態か否か判定し(ステップS1)、位相角が変化する過渡状態であると判断されると、VTC位相角補間を行う(ステップS2)。過渡状態か否かの判定は、現在位相角と目標位相角との差、及び/または現在位相角の変化の度合いに基づいて判定する。ステップS2では、位相角に補間値を入力、またはカム信号入力時には位相角に検出値を入力する。
一方、ステップS1で過渡状態でないと判断されると、VTC位相角補間は行なわずに位相角を検出値(回転数)とする(ステップS3)。続いて、位相角のフィードバック(F/B)制御を行う(ステップS4)。
このように、位相角補間が不要なときに補間演算を停止させることで、演算負荷を低減できる。
図10は、本発明の第2の実施形態に係る可変バルブタイミング機構の制御装置及びその制御方法について説明するためのフローチャートである。本第2の実施形態では、位相角制御が過渡のときに位相角補間を行い、定常のときに位相角補間を行わないようにしている。すなわち、まず、過渡状態か否か判定し(ステップS1)、位相角が変化する過渡状態であると判断されると、VTC位相角補間を行う(ステップS2)。過渡状態か否かの判定は、現在位相角と目標位相角との差、及び/または現在位相角の変化の度合いに基づいて判定する。ステップS2では、位相角に補間値を入力、またはカム信号入力時には位相角に検出値を入力する。
一方、ステップS1で過渡状態でないと判断されると、VTC位相角補間は行なわずに位相角を検出値(回転数)とする(ステップS3)。続いて、位相角のフィードバック(F/B)制御を行う(ステップS4)。
このように、位相角補間が不要なときに補間演算を停止させることで、演算負荷を低減できる。
<変形例>
図11は、上述した本発明の第2の実施形態の変形例について説明するためのフローチャートである。本変形例では、位相角制御が過渡状態か否かに加えて、エンジン回転数が所定値以下か否かを判断しており、所定値以下のときに位相角補間を行い、所定値よりも大きいときに位相角補間を行わないようにしている。すなわち、まず、過渡状態か否か判定し(ステップS11)、過渡状態であると判断されると、エンジンが所定回転数以下か否か判断する(ステップS12)。過渡状態か否かの判定は、現在位相角と目標位相角との差、及び/または現在位相角の変化の度合いに基づいて判定する。
所定回転数以下であると判断されると、VTC位相角補間を行う(ステップS13)。ステップ13では、位相角に補間値を入力、またはカム信号入力時には位相角に検出値を入力する。
図11は、上述した本発明の第2の実施形態の変形例について説明するためのフローチャートである。本変形例では、位相角制御が過渡状態か否かに加えて、エンジン回転数が所定値以下か否かを判断しており、所定値以下のときに位相角補間を行い、所定値よりも大きいときに位相角補間を行わないようにしている。すなわち、まず、過渡状態か否か判定し(ステップS11)、過渡状態であると判断されると、エンジンが所定回転数以下か否か判断する(ステップS12)。過渡状態か否かの判定は、現在位相角と目標位相角との差、及び/または現在位相角の変化の度合いに基づいて判定する。
所定回転数以下であると判断されると、VTC位相角補間を行う(ステップS13)。ステップ13では、位相角に補間値を入力、またはカム信号入力時には位相角に検出値を入力する。
一方、ステップS11で過渡状態でないと判断された場合、及びステップS12でエンジンが所定回転以下でないと判断された場合には、VTC位相角補間は行なわずに位相角を検出値(回転数)とする(ステップS14)。続いて、位相角のフィードバック(F/B)制御を行う(ステップS15)。
このようにエンジン回転を考慮するのは、エンジン回転速度が高くなるほどカム検出頻度が増加し、エンジン回転速度が所定値よりも大きくなると、VTC制御周期よりカム検出周期が短くなるからである。このため、位相角補間が不要になる。従って、位相角補間が不要なときに補間演算を停止させることで演算負荷を低減できる。
このようにエンジン回転を考慮するのは、エンジン回転速度が高くなるほどカム検出頻度が増加し、エンジン回転速度が所定値よりも大きくなると、VTC制御周期よりカム検出周期が短くなるからである。このため、位相角補間が不要になる。従って、位相角補間が不要なときに補間演算を停止させることで演算負荷を低減できる。
[第3の実施形態]
図12A及び図12Bはそれぞれ、本発明の第3の実施形態に係る可変バルブタイミング機構の制御装置及びその制御方法について説明するための波形図である。本第3の実施形態は、入力(モータ電流)に対する出力(モータトルク、モータ回転角)の特性を学習するものである。学習は、例えば工場出荷前、特定のエンジン運転状態(一定エンジン回転速度、一定油温など)、チェックツールからの学習要求があったタイミングで実行する。
学習の流れとしては、まず実線L5で示すように所定のモータ電流を与え(図12Aの時刻t0参照)、続いてVTC位相角の変化特性(=モータ回転角の変化特性)を学習する。VTC位相角の変化特性は、破線L6で示すように階段状に変化するカム検出角の角部を結ぶ直線となる(図12B参照)。
このように、モータ電流に対するモータ回転角の変化特性が実機と合うように、DCモータ特性(図13のT-I特性における実線L7の傾き)や運動方程式の係数(慣性モーメントJ、摩擦係数D)を補正する。
図12A及び図12Bはそれぞれ、本発明の第3の実施形態に係る可変バルブタイミング機構の制御装置及びその制御方法について説明するための波形図である。本第3の実施形態は、入力(モータ電流)に対する出力(モータトルク、モータ回転角)の特性を学習するものである。学習は、例えば工場出荷前、特定のエンジン運転状態(一定エンジン回転速度、一定油温など)、チェックツールからの学習要求があったタイミングで実行する。
学習の流れとしては、まず実線L5で示すように所定のモータ電流を与え(図12Aの時刻t0参照)、続いてVTC位相角の変化特性(=モータ回転角の変化特性)を学習する。VTC位相角の変化特性は、破線L6で示すように階段状に変化するカム検出角の角部を結ぶ直線となる(図12B参照)。
このように、モータ電流に対するモータ回転角の変化特性が実機と合うように、DCモータ特性(図13のT-I特性における実線L7の傾き)や運動方程式の係数(慣性モーメントJ、摩擦係数D)を補正する。
[第4の実施形態]
図14A及び図14Bはそれぞれ、本発明の第4の実施形態に係る可変バルブタイミング機構の制御装置及びその制御方法について説明するための波形図である。本第4の実施形態は、VTC操作量(電動モータ12の操作量に対応する)を学習するものである。ここで、操作量とは、位相角を目標角に近づけるためにモータを制御する量であり、駆動電圧、デューティ、モータ電流の何れかで表せる。モータ電流は、センサ検出値を用いることができるが、「駆動電圧=電源電圧×デューティ」の関係があるため、駆動電圧から推定することもできる。この学習は、例えば工場出荷前、特定のエンジン運転状態(一定エンジン回転速度、一定油温など)、チェックツールからの学習要求があったタイミングで実行する。
学習の流れとしては、まず実線L8で示すように所定のVTC操作量(駆動電圧[V]、デューティ[%])を与え(図14Aの時刻t1-t2間参照)、続いて実線L9で示すようなモータ電流の検出特性を学習する(図14Bの時刻t1-t2間参照)。
その後、図15に示すように、2点のモータ電流の検出値と理論値から実線L10で示すようにゲイン、オフセット量を算出し、これらを用いて検出値を補正する。
このように、VTC操作量を学習することで、電流センサの個体ばらつきや経時変化に対応でき、位相角補間の精度を向上できる。
図14A及び図14Bはそれぞれ、本発明の第4の実施形態に係る可変バルブタイミング機構の制御装置及びその制御方法について説明するための波形図である。本第4の実施形態は、VTC操作量(電動モータ12の操作量に対応する)を学習するものである。ここで、操作量とは、位相角を目標角に近づけるためにモータを制御する量であり、駆動電圧、デューティ、モータ電流の何れかで表せる。モータ電流は、センサ検出値を用いることができるが、「駆動電圧=電源電圧×デューティ」の関係があるため、駆動電圧から推定することもできる。この学習は、例えば工場出荷前、特定のエンジン運転状態(一定エンジン回転速度、一定油温など)、チェックツールからの学習要求があったタイミングで実行する。
学習の流れとしては、まず実線L8で示すように所定のVTC操作量(駆動電圧[V]、デューティ[%])を与え(図14Aの時刻t1-t2間参照)、続いて実線L9で示すようなモータ電流の検出特性を学習する(図14Bの時刻t1-t2間参照)。
その後、図15に示すように、2点のモータ電流の検出値と理論値から実線L10で示すようにゲイン、オフセット量を算出し、これらを用いて検出値を補正する。
このように、VTC操作量を学習することで、電流センサの個体ばらつきや経時変化に対応でき、位相角補間の精度を向上できる。
[第5の実施形態]
図16は、本発明の第5の実施形態に係る可変バルブタイミング機構の制御装置及びその制御方法について説明するための波形図である。上述した第1乃至第4の実施形態では、モータ特性に予め考えられる影響因子を考慮して位相角を求めていた。これに対し、本第5の実施形態では、補間値がカムによる検出値に対してずれていた分だけ傾きを補正するものである。すなわち、位相角を校正したときの補間値と検出値との差に応じて、モータトルク及び/またはモータ回転角の演算を補正する。
図16は、本発明の第5の実施形態に係る可変バルブタイミング機構の制御装置及びその制御方法について説明するための波形図である。上述した第1乃至第4の実施形態では、モータ特性に予め考えられる影響因子を考慮して位相角を求めていた。これに対し、本第5の実施形態では、補間値がカムによる検出値に対してずれていた分だけ傾きを補正するものである。すなわち、位相角を校正したときの補間値と検出値との差に応じて、モータトルク及び/またはモータ回転角の演算を補正する。
補正の流れとしては、まず、カム検出角の更新時に補間値を校正する。続いて、校正時の補間値と検出値との差に応じて、DCモータ特性や運動方程式の係数、定数を補正する。
DCモータ特性(T-I特性)を補正する場合には、モータトルク(モータ回転角)が小さくなるように、T-I特性のゲインを補正する。すなわち、図17に示すように、ベースとなる補正前の状態を破線で示すと、補正後は実線で示すようになる。
このように、補間演算が検出値に近づくように傾きを補正することで、位相角補間の精度を向上できる。この補正は、図16のような場合には、モータ特性の傾きを小さく補正する。一方、補間値と検出値との差によっては傾きを大きく補正する場合もある。
DCモータ特性(T-I特性)を補正する場合には、モータトルク(モータ回転角)が小さくなるように、T-I特性のゲインを補正する。すなわち、図17に示すように、ベースとなる補正前の状態を破線で示すと、補正後は実線で示すようになる。
このように、補間演算が検出値に近づくように傾きを補正することで、位相角補間の精度を向上できる。この補正は、図16のような場合には、モータ特性の傾きを小さく補正する。一方、補間値と検出値との差によっては傾きを大きく補正する場合もある。
図18は、電動VTCの位相変換に関係するトルクとその影響因子をまとめて示している。トルクには、モータトルク、慣性トルク(VTCアクチュエータ側)、フリクショントルク(VTCアクチュエータ側)、カムトルク、慣性トルク(エンジン側)及びフリクショントルク(エンジン側)があり、様々な因子(1次因子、2次因子)を考慮して位相角補間を行う。
(A)モータトルクは、カムの位相角を変換させるためのトルクであり、1次因子としてはモータ電流、2次因子としては印加電圧とモータ温度がある。
(B)慣性トルク(VTCアクチュエータ側)は、モータトルクの変化に対して抵抗となるトルクであり、1次因子としてはモータ回転角加速度と慣性モーメントがある。
(C)フリクショントルク(VTCアクチュエータ側)は、モータ回転速度に比例して作用するVTCアクチュエータの摩擦抵抗トルクであり、1次因子としてはモータ回転速度と摩擦係数があり、2次因子としては油温がある。
(A)モータトルクは、カムの位相角を変換させるためのトルクであり、1次因子としてはモータ電流、2次因子としては印加電圧とモータ温度がある。
(B)慣性トルク(VTCアクチュエータ側)は、モータトルクの変化に対して抵抗となるトルクであり、1次因子としてはモータ回転角加速度と慣性モーメントがある。
(C)フリクショントルク(VTCアクチュエータ側)は、モータ回転速度に比例して作用するVTCアクチュエータの摩擦抵抗トルクであり、1次因子としてはモータ回転速度と摩擦係数があり、2次因子としては油温がある。
(D)カムトルクは、エンジン回転角度に応じてバルブから受ける交番トルクであり、1次因子としてはエンジン回転角度とエンジン回転速度がある。
(E)慣性トルク(エンジン側)は、エンジン回転の加減速に応じて作用するトルクであり、1次因子としてはエンジン回転角加速度と慣性モーメントがあり、2次因子としてはエンジン回転速度(アクチュエータ固有値)がある。
(F)フリクショントルク(エンジン側)は、カムシャフト周りの摩擦抵抗トルクであり、1次因子としてはエンジン回転速度と摩擦係数があり、2次因子としては油温がある。
(E)慣性トルク(エンジン側)は、エンジン回転の加減速に応じて作用するトルクであり、1次因子としてはエンジン回転角加速度と慣性モーメントがあり、2次因子としてはエンジン回転速度(アクチュエータ固有値)がある。
(F)フリクショントルク(エンジン側)は、カムシャフト周りの摩擦抵抗トルクであり、1次因子としてはエンジン回転速度と摩擦係数があり、2次因子としては油温がある。
図19は、図18に示した電動VTCの位相変換に関係するアクチュエータ側トルクとエンジン側トルクについて説明するためもので、(A)モータトルク、(B)慣性トルク及び(C)フリクショントルクはVTCアクチュエータ側、(D)カムトルク、慣性トルク及び(F)フリクショントルクはエンジン側である。
次に、各トルクへの影響因子について詳しく説明する。
(A)モータトルク
モータトルクは、T-I特性に基づいてモータ電流から算出する。モータトルクとモータ回転速度との関係は、図20に実線L11で示すように、モータトルクの上昇に伴ってモータ回転速度が低下する。この際、印加電圧が高い場合には破線L12で示すようなモータトルクとモータ回転速度の関係となる。一方、印加電圧が低い場合には破線L13で示すようなモータトルクとモータ回転速度の関係となる。このように、印加電圧が高い場合と低い場合でT-N特性が変化する。
また、モータ電流とモータトルクとの関係は、図21に実線L14で示すように、モータ電流の上昇に伴ってモータトルクが上昇する。この際、モータ温度が低い場合には破線L15で示すようなモータ電流とモータトルクの関係となる。一方、モータ温度が高い場合には破線L16で示すようなモータ電流とモータトルクの関係となる。このように、モータ温度が低い場合と高い場合でT-I特性が変化する。
(A)モータトルク
モータトルクは、T-I特性に基づいてモータ電流から算出する。モータトルクとモータ回転速度との関係は、図20に実線L11で示すように、モータトルクの上昇に伴ってモータ回転速度が低下する。この際、印加電圧が高い場合には破線L12で示すようなモータトルクとモータ回転速度の関係となる。一方、印加電圧が低い場合には破線L13で示すようなモータトルクとモータ回転速度の関係となる。このように、印加電圧が高い場合と低い場合でT-N特性が変化する。
また、モータ電流とモータトルクとの関係は、図21に実線L14で示すように、モータ電流の上昇に伴ってモータトルクが上昇する。この際、モータ温度が低い場合には破線L15で示すようなモータ電流とモータトルクの関係となる。一方、モータ温度が高い場合には破線L16で示すようなモータ電流とモータトルクの関係となる。このように、モータ温度が低い場合と高い場合でT-I特性が変化する。
(B)慣性トルク(VTCアクチュエータ側)
T-I特性、T-N特性によりモータ回転角を推定して補間すると(慣性トルク無し)、図22Aに示すようにモータ電流が変化したときに、位相角の推定値は図22Bに示すようになる。ここで、太い破線L17は校正無しの推定値であり、太い実線L18は校正有りの補間値である。細い破線L19は目標角、階段状に上昇する細い実線L20はカム検出角である。
一方、慣性トルクを考慮して推定値と補間値を算出すると、図23に太い破線L21で示すように校正無しの推定値は変化が緩やかになり、太い実線L22で示すように校正有りの補間値は滑らかになる。
このように、慣性トルクを考慮することで、位相角補間の際に、滑らかな位相角変化の開始と収束の過渡動作を再現できる。
T-I特性、T-N特性によりモータ回転角を推定して補間すると(慣性トルク無し)、図22Aに示すようにモータ電流が変化したときに、位相角の推定値は図22Bに示すようになる。ここで、太い破線L17は校正無しの推定値であり、太い実線L18は校正有りの補間値である。細い破線L19は目標角、階段状に上昇する細い実線L20はカム検出角である。
一方、慣性トルクを考慮して推定値と補間値を算出すると、図23に太い破線L21で示すように校正無しの推定値は変化が緩やかになり、太い実線L22で示すように校正有りの補間値は滑らかになる。
このように、慣性トルクを考慮することで、位相角補間の際に、滑らかな位相角変化の開始と収束の過渡動作を再現できる。
(C)フリクショントルク(VTCアクチュエータ側)
図24に示すように、フリクショントルクはモータ回転速度に比例して作用し、モータ回転速度の上昇に伴ってフリクショントルクが大きくなる。図25は、油温と動粘度(摩擦係数)の関係を示しており、粘度によって異なるものの、油温が低いほど動粘度は大きくなる傾向にある。すなわち、油温によって摩擦係数が変化し、摩擦係数が小さい場合にはフリクショントルクの変化が小さく、摩擦係数が大きい場合にはフリクショントルクの変化が大きくなる。
このように、モータ回転速度と摩擦係数に応じてフリクショントルクが変化する。
図24に示すように、フリクショントルクはモータ回転速度に比例して作用し、モータ回転速度の上昇に伴ってフリクショントルクが大きくなる。図25は、油温と動粘度(摩擦係数)の関係を示しており、粘度によって異なるものの、油温が低いほど動粘度は大きくなる傾向にある。すなわち、油温によって摩擦係数が変化し、摩擦係数が小さい場合にはフリクショントルクの変化が小さく、摩擦係数が大きい場合にはフリクショントルクの変化が大きくなる。
このように、モータ回転速度と摩擦係数に応じてフリクショントルクが変化する。
(C’)フリクショントルク(VTCアクチュエータ側)
図26Aに示すようにモータ電流が変化したとき、慣性トルクのみを考慮した推定値と補間値の算出を行うと、図26Bに示すようになる。ここで、太い破線L25は校正無しの推定値であり、太い実線L26は校正有りの補間値である。また、階段状に上昇する細い実線L27はカム検出角である。
これに対し、慣性トルクとフリクショントルクの両方を考慮して推定値と補間値の算出を行うと、図27に太い破線L28(校正無しの推定値)と太い実線L29(校正有りの補間値)で示すように位相角の変化(傾き)が小さくなる。
このように、油温に応じて摩擦係数が変化し、モータ回転速度と摩擦係数に応じてフリクショントルクが変化する。従って、慣性トルクとフリクショントルクを考慮して位相角補間を行うことで、位相角補間の精度を向上できる。例えば、図27の場合には、位相角の変化(傾き)が小さくなり、位相角補間の精度を向上できる。
図26Aに示すようにモータ電流が変化したとき、慣性トルクのみを考慮した推定値と補間値の算出を行うと、図26Bに示すようになる。ここで、太い破線L25は校正無しの推定値であり、太い実線L26は校正有りの補間値である。また、階段状に上昇する細い実線L27はカム検出角である。
これに対し、慣性トルクとフリクショントルクの両方を考慮して推定値と補間値の算出を行うと、図27に太い破線L28(校正無しの推定値)と太い実線L29(校正有りの補間値)で示すように位相角の変化(傾き)が小さくなる。
このように、油温に応じて摩擦係数が変化し、モータ回転速度と摩擦係数に応じてフリクショントルクが変化する。従って、慣性トルクとフリクショントルクを考慮して位相角補間を行うことで、位相角補間の精度を向上できる。例えば、図27の場合には、位相角の変化(傾き)が小さくなり、位相角補間の精度を向上できる。
(D)カムトルク
図28に示すように、エンジン回転角度に応じてカムトルクが交番して作用し、図29に示すように、交番トルクの最大値、最小値がエンジン回転速度に応じて変化する。
このように、エンジン回転角度に応じてVTC進角/遅角方向に交互にトルク作用し、位相角補間に影響を与える。
図28に示すように、エンジン回転角度に応じてカムトルクが交番して作用し、図29に示すように、交番トルクの最大値、最小値がエンジン回転速度に応じて変化する。
このように、エンジン回転角度に応じてVTC進角/遅角方向に交互にトルク作用し、位相角補間に影響を与える。
(D’)カムトルク
図26Aに示したように、モータ電流が変化したとき、慣性トルクのみを考慮した推定値と補間値の算出を行うと、校正無しの推定値(破線L25)、校正有りの補間値(太い実線L26)及びカム検出角(細い実線L27)はそれぞれ、図26Bに示したようになる。
これに対し、慣性トルクとカムトルクの両方を考慮して推定値と補間値の算出を行うと、図30に示すように位相角の変化(傾き)が小さくなる。ここで、太い破線L30は校正無しの推定値であり、太い実線L31は校正有りの補間値である。また、階段状に上昇する細い実線L27はカム検出角である。
このように、エンジン回転角度とエンジン回転速度に応じてVTC進角/遅角方向に交互にカムトルクが作用する。従って、慣性トルクとカムトルクを考慮して位相角補間を行うことで、位相角補間の精度を向上できる。例えば図30の場合には、位相角の変化(傾き)が小さくなり、位相角補間の精度を向上できる。
図26Aに示したように、モータ電流が変化したとき、慣性トルクのみを考慮した推定値と補間値の算出を行うと、校正無しの推定値(破線L25)、校正有りの補間値(太い実線L26)及びカム検出角(細い実線L27)はそれぞれ、図26Bに示したようになる。
これに対し、慣性トルクとカムトルクの両方を考慮して推定値と補間値の算出を行うと、図30に示すように位相角の変化(傾き)が小さくなる。ここで、太い破線L30は校正無しの推定値であり、太い実線L31は校正有りの補間値である。また、階段状に上昇する細い実線L27はカム検出角である。
このように、エンジン回転角度とエンジン回転速度に応じてVTC進角/遅角方向に交互にカムトルクが作用する。従って、慣性トルクとカムトルクを考慮して位相角補間を行うことで、位相角補間の精度を向上できる。例えば図30の場合には、位相角の変化(傾き)が小さくなり、位相角補間の精度を向上できる。
(E)慣性トルク(エンジン側)
エンジン回転加速時に、モータ軸には慣性によってエンジン回転方向と逆方向(進行方向)にトルクが働く。
このように、エンジン回転速度の加速時にVTC進角方向、VTC遅角方向にトルクが作用し、位相角補間に影響を与える。従って、エンジン回転の加減速に応じて作用するトルクの位相変換への影響を考慮することで、位相角補間の精度を向上できる。
エンジン回転加速時に、モータ軸には慣性によってエンジン回転方向と逆方向(進行方向)にトルクが働く。
このように、エンジン回転速度の加速時にVTC進角方向、VTC遅角方向にトルクが作用し、位相角補間に影響を与える。従って、エンジン回転の加減速に応じて作用するトルクの位相変換への影響を考慮することで、位相角補間の精度を向上できる。
(F)フリクショントルク(エンジン側)
カムシャフト周りに作用するフリクショントルクは、位相角変化の抵抗となる。フリクショントルク(カムシャフト周り)は、エンジン回転速度に応じて変化する。また、フリクショントルク(カムシャフト周り)は、油温に応じた動粘度(摩擦係数)変化によって大きさが変化する。
よって、本影響を考慮することで位相角補間の精度を向上できる。
カムシャフト周りに作用するフリクショントルクは、位相角変化の抵抗となる。フリクショントルク(カムシャフト周り)は、エンジン回転速度に応じて変化する。また、フリクショントルク(カムシャフト周り)は、油温に応じた動粘度(摩擦係数)変化によって大きさが変化する。
よって、本影響を考慮することで位相角補間の精度を向上できる。
従って、図18及び図19に示したように、モータトルク、慣性トルク(VTCアクチュエータ側)、フリクショントルク(VTCアクチュエータ側)、カムトルク、慣性トルク(エンジン側)及びフリクショントルク(エンジン側)など、様々な因子を考慮して位相角補間を行うことで、カム位相角補間の精度を向上できる。しかも、モータ回転角センサを非搭載でカム位相角補間を行うことができることから、VCTシステムのコストを削減できる。
12…電動モータ(ブラシ付DCモータ)、100…内燃機関(エンジン)、114…VTC機構、201…制御装置、201a…電動VTCコントローラ、201b…エンジンコントロールモジュール(ECM)、201c…CAN、203…クランク角センサ、204…カム角センサ、205…イグニッションスイッチ、210…油温センサ、214a,214b…駆動回路、218a,218b…電流センサ、230…モータトルク推定部、231…モータ回転角推定部、232…変換部、233…フィードバック制御部、IGNSW…イグニッションスイッチからの信号、TO…油温、CAM…吸気カムシャフトの回転角信号、POS…クランクシャフトの回転角信号
Claims (20)
- カム信号に基づいてカムの位相角を検出し、電動モータを用いてカムの位相角を制御する可変バルブタイミング機構の制御装置において、
モータ特性に基づいてモータ電流からモータトルクを演算し、少なくともモータトルク及びエンジン運転状態に基づいてモータ回転角を演算し、前記モータ回転角から前記可変バルブタイミング機構のカム位相角の補間を行うように構成されたコントローラを備えることを特徴とする、可変バルブタイミング機構の制御装置。 - 前記コントローラが、前記カム信号によりカムの位相角を検出したときに、補間値を検出値に校正することを特徴とする、請求項1に記載の可変バルブタイミング機構の制御装置。
- 前記コントローラによる前記モータ回転角の演算は、位相角変換に関係する因子を考慮した運動方程式に基づいて行うことを特徴とする、請求項1に記載の可変バルブタイミング機構の制御装置。
- 前記コントローラが、エンジン回転速度、エンジン回転角度及びエンジン油温を用いてモータ回転角の演算を補正することを特徴とする、請求項1に記載の可変バルブタイミング機構の制御装置。
- 前記コントローラによる前記モータトルクの演算は、DCモータのトルク-電流特性に基づいて行うことを特徴とする、請求項1に記載の可変バルブタイミング機構の制御装置。
- 前記コントローラが、電源電圧、駆動デューティ及びモータ温度のうち少なくとも1つに基づいてモータトルクの演算を補正することを特徴とする、請求項1に記載の可変バルブタイミング機構の制御装置。
- 前記モータ電流はセンサ検出値を用いる、又は前記電動モータの操作量から推定することを特徴とする、請求項1に記載の可変バルブタイミング機構の制御装置。
- 前記コントローラが、前記電動モータを用いた位相角制御が過渡のときに位相角補間を行い、定常のときに位相角補間を行わないことを特徴とする、請求項1に記載の可変バルブタイミング機構の制御装置。
- 前記コントローラが、エンジン回転速度が所定値以下のときに位相角補間を行い、エンジン回転速度が所定値より大きいときに位相角補間を行わないことを特徴とする、請求項1に記載の可変バルブタイミング機構の制御装置。
- 前記コントローラが、入力されたモータ電流に対して出力されるモータトルクとモータ回転角の特性を学習することを特徴とする、請求項1に記載の可変バルブタイミング機構の制御装置。
- 前記コントローラが、前記電動モータの操作量に対するモータ電流検出の特性を学習する機能を備えることを特徴とする、請求項1に記載の可変バルブタイミング機構の制御装置。
- 前記コントローラが、位相角を校正したときの補間値と検出値との差に応じて、モータトルク及びモータ回転角の少なくとも一方の演算を補正することを特徴とする、請求項1に記載の可変バルブタイミング機構の制御装置。
- カム信号に基づいてカムの位相角を検出し、電動モータを用いてカムの位相角を制御する可変バルブタイミング機構の制御方法において、
モータ特性に基づいてモータ電流からモータトルクを演算することと、
少なくともモータトルク及びエンジン運転状態に基づいてモータ回転角を演算することと、
前記モータ回転角から前記可変バルブタイミング機構のカム位相角の補間を行うことと、を具備することを特徴とする、可変バルブタイミング機構の制御方法。 - 前記カム信号によりカムの位相角を検出したときに、補間値を検出値に校正すること、を更に具備することを特徴とする、請求項13に記載の可変バルブタイミング機構の制御方法。
- 前記モータ回転角の演算は、位相角変換に関係する因子を考慮した運動方程式に基づいて行うことを特徴とする、請求項13に記載の可変バルブタイミング機構の制御方法。
- エンジン回転速度、エンジン回転角度及びエンジン油温を用いてモータ回転角の演算を補正すること、を更に具備することを特徴とする、請求項13に記載の可変バルブタイミング機構の制御方法。
- 前記モータトルクの演算は、DCモータのトルク-電流特性に基づいて行うことを特徴とする、請求項13に記載の可変バルブタイミング機構の制御方法。
- 電源電圧、駆動デューティ及びモータ温度のうち少なくとも1つに基づいてモータトルクの演算を補正すること、を更に具備することを特徴とする、請求項13に記載の可変バルブタイミング機構の制御方法。
- 前記電動モータを用いた位相角制御が過渡状態か否か判定することを更に具備し、前記位相角制御が過渡のときに位相角補間を行い、定常のときに位相角補間を行わないことを特徴とする、請求項13に記載の可変バルブタイミング機構の制御方法。
- エンジン回転速度が所定値以下か否かを判断することを更に具備し、所定値以下のときに位相角補間を行い、所定値より大きいときに位相角補間を行わないことを特徴とする、請求項13に記載の可変バルブタイミング機構の制御方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19884918.4A EP3882451B1 (en) | 2018-11-14 | 2019-11-13 | Control device for variable valve timing mechanism and control method thereof |
US17/284,211 US20210340887A1 (en) | 2018-11-14 | 2019-11-13 | Control Device and Control Method for Variable Valve Timing Mechanism |
CN201980063117.5A CN112996996B (zh) | 2018-11-14 | 2019-11-13 | 可变气门正时机构的控制装置及其控制方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018213400A JP7157634B2 (ja) | 2018-11-14 | 2018-11-14 | 可変バルブタイミング機構の制御装置及びその制御方法 |
JP2018-213400 | 2018-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020100939A1 true WO2020100939A1 (ja) | 2020-05-22 |
Family
ID=70732067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/044516 WO2020100939A1 (ja) | 2018-11-14 | 2019-11-13 | 可変バルブタイミング機構の制御装置及びその制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210340887A1 (ja) |
EP (1) | EP3882451B1 (ja) |
JP (1) | JP7157634B2 (ja) |
CN (1) | CN112996996B (ja) |
WO (1) | WO2020100939A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117428302A (zh) * | 2023-12-20 | 2024-01-23 | 苏芯物联技术(南京)有限公司 | 一种焊接管道供气流速智能动态控制方法及系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021011820A (ja) * | 2019-07-03 | 2021-02-04 | 日立オートモティブシステムズ株式会社 | 可変バルブタイミング機構の制御装置及びその制御方法 |
JP7461235B2 (ja) * | 2020-07-01 | 2024-04-03 | 株式会社アイシン | 弁開閉時期制御装置 |
WO2022249612A1 (ja) * | 2021-05-26 | 2022-12-01 | 日立Astemo株式会社 | 可変バルブタイミング機構の制御装置及び制御方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008051111A (ja) * | 2007-10-05 | 2008-03-06 | Toyota Motor Corp | 内燃機関の弁駆動システム |
JP2013083187A (ja) | 2011-10-07 | 2013-05-09 | Denso Corp | バルブタイミング調整装置 |
JP2015218623A (ja) * | 2014-05-15 | 2015-12-07 | 日立オートモティブシステムズ株式会社 | 内燃機関の制御装置 |
JP2018145874A (ja) * | 2017-03-06 | 2018-09-20 | 日立オートモティブシステムズ株式会社 | 内燃機関の制御装置及び制御方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4486901B2 (ja) * | 2005-02-23 | 2010-06-23 | 本田技研工業株式会社 | 制御装置 |
US7614384B2 (en) * | 2007-11-02 | 2009-11-10 | Gm Global Technology Operations, Inc. | Engine torque control with desired state estimation |
JP4934630B2 (ja) * | 2008-04-16 | 2012-05-16 | 日立オートモティブシステムズ株式会社 | 可変動弁機構の制御装置 |
JP6082215B2 (ja) * | 2012-09-19 | 2017-02-15 | 日立オートモティブシステムズ株式会社 | 可変バルブタイミング機構の制御装置 |
JP6309230B2 (ja) * | 2013-09-19 | 2018-04-11 | 日立オートモティブシステムズ株式会社 | 内燃機関の可変動弁装置のコントローラ |
JP6304003B2 (ja) | 2014-12-03 | 2018-04-04 | 株式会社デンソー | 制御装置 |
JP6716477B2 (ja) * | 2017-02-16 | 2020-07-01 | 日立オートモティブシステムズ株式会社 | 可変バルブタイミング装置の制御装置及び制御方法 |
US10883431B2 (en) * | 2018-09-21 | 2021-01-05 | GM Global Technology Operations LLC | Managing torque delivery during dynamic fuel management transitions |
-
2018
- 2018-11-14 JP JP2018213400A patent/JP7157634B2/ja active Active
-
2019
- 2019-11-13 CN CN201980063117.5A patent/CN112996996B/zh active Active
- 2019-11-13 US US17/284,211 patent/US20210340887A1/en active Pending
- 2019-11-13 EP EP19884918.4A patent/EP3882451B1/en active Active
- 2019-11-13 WO PCT/JP2019/044516 patent/WO2020100939A1/ja active Search and Examination
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008051111A (ja) * | 2007-10-05 | 2008-03-06 | Toyota Motor Corp | 内燃機関の弁駆動システム |
JP2013083187A (ja) | 2011-10-07 | 2013-05-09 | Denso Corp | バルブタイミング調整装置 |
JP2015218623A (ja) * | 2014-05-15 | 2015-12-07 | 日立オートモティブシステムズ株式会社 | 内燃機関の制御装置 |
JP2018145874A (ja) * | 2017-03-06 | 2018-09-20 | 日立オートモティブシステムズ株式会社 | 内燃機関の制御装置及び制御方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3882451A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117428302A (zh) * | 2023-12-20 | 2024-01-23 | 苏芯物联技术(南京)有限公司 | 一种焊接管道供气流速智能动态控制方法及系统 |
CN117428302B (zh) * | 2023-12-20 | 2024-02-20 | 苏芯物联技术(南京)有限公司 | 一种焊接管道供气流速智能动态控制方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3882451B1 (en) | 2024-09-18 |
EP3882451A4 (en) | 2022-08-10 |
EP3882451A1 (en) | 2021-09-22 |
JP2020079581A (ja) | 2020-05-28 |
CN112996996A (zh) | 2021-06-18 |
US20210340887A1 (en) | 2021-11-04 |
JP7157634B2 (ja) | 2022-10-20 |
CN112996996B (zh) | 2022-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020100939A1 (ja) | 可変バルブタイミング機構の制御装置及びその制御方法 | |
JP6266364B2 (ja) | 内燃機関の制御装置 | |
JP5591202B2 (ja) | 可変バルブタイミング機構の制御装置 | |
JP5591204B2 (ja) | 可変バルブタイミング機構の制御装置 | |
JP6378112B2 (ja) | 回転検出異常診断装置及び方法とそれを用いた回転位置制御装置 | |
JP4678350B2 (ja) | 可変バルブタイミング装置 | |
JP4267635B2 (ja) | 可変バルブタイミング装置 | |
JP6716477B2 (ja) | 可変バルブタイミング装置の制御装置及び制御方法 | |
JP6739377B2 (ja) | 内燃機関の制御装置及び制御方法 | |
WO2021002252A1 (ja) | 可変バルブタイミング機構の制御装置及びその制御方法 | |
US9284891B2 (en) | Control apparatus and control method for variable valve mechanism | |
WO2020162308A1 (ja) | 可変バルブタイミング装置の制御装置及び制御方法 | |
US11230988B2 (en) | Control device and control method for variable valve timing mechanism | |
JP7324378B2 (ja) | 可変バルブタイミング機構の制御装置及びその制御方法 | |
JP2018194003A (ja) | 回転検出異常診断装置及び方法とそれを用いた回転位置制御装置 | |
WO2022249612A1 (ja) | 可変バルブタイミング機構の制御装置及び制御方法 | |
JP2018123806A (ja) | 内燃機関の制御装置及び内燃機関の可変機構の制御方法 | |
JP2024054013A (ja) | 内燃機関の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19884918 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019884918 Country of ref document: EP Effective date: 20210614 |