WO2020100650A1 - 透光性導電膜 - Google Patents

透光性導電膜 Download PDF

Info

Publication number
WO2020100650A1
WO2020100650A1 PCT/JP2019/043233 JP2019043233W WO2020100650A1 WO 2020100650 A1 WO2020100650 A1 WO 2020100650A1 JP 2019043233 W JP2019043233 W JP 2019043233W WO 2020100650 A1 WO2020100650 A1 WO 2020100650A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
conductive material
comparative example
additive
conductive film
Prior art date
Application number
PCT/JP2019/043233
Other languages
English (en)
French (fr)
Inventor
王高 佐藤
翼 福家
征司 中山
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Publication of WO2020100650A1 publication Critical patent/WO2020100650A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Definitions

  • the present invention relates to a translucent conductive film using silver nanowires as a conductive filler.
  • a fine metal wire having a thickness of about 200 nm or less is referred to as a “nanowire (s).”
  • a silver nanowire is regarded as a promising conductive material for forming a transparent conductive circuit. ..
  • -Transparent conductive circuits using silver nanowires are generally manufactured by the following procedure.
  • a coating solution containing silver nanowires (hereinafter referred to as “silver nanowire ink”) is applied on a transparent substrate represented by PET (polyethylene terephthalate), PC (polycarbonate), etc., and then silver nanowire ink
  • the liquid medium component is volatilized and removed to form a “silver nanowire conductive structure” in which the silver nanowires are integrated to form a conductive network.
  • the solvent component of the coating material is volatilized and removed, and a silver nanowire conductive structure and a non-conductive material mainly composed of a resin.
  • a translucent conductive film To form a "translucent conductive film".
  • An ultraviolet curable resin may be applied as the transparent resin. In that case, ultraviolet curing treatment is performed in addition to volatilization removal of the solvent component. After that, a circuit pattern is formed by the above-mentioned transparent conductive film by a photoresist method or the like, and a transparent conductive circuit is obtained.
  • a translucent conductive film using silver nanowires as a conductive filler has a problem that when irradiated with light in a wavelength range including ultraviolet rays and visible light, such as sunlight, its conductivity easily deteriorates due to deterioration over time.
  • the main cause of the deterioration over time is that the movement of silver atoms that make up the wire into the surrounding resin (migration) is promoted by the energy of light in the ultraviolet and visible light regions, and the wire becomes thinner and thinner. Is considered to be. Eventually, the wire may break and the continuity may not be obtained.
  • light durability the property that the conductive film is less likely to deteriorate over time caused by light irradiation is referred to as “light durability”. Improvement of light durability is strongly demanded for a conductive film using silver nanowires.
  • Patent Document 1 discloses a technique for improving light durability by including a metal complex compound in a resin layer in contact with metal fibers such as silver nanowires. Further, it is said that the use of an amine additive or an ultraviolet absorber is also effective in improving the light durability.
  • amine additives include amine additives 0095 to 0098 of Patent Document 1).
  • Benzophenone compounds, benzotriazole compounds, and the like are listed as the ultraviolet absorber (paragraph 0102).
  • the fiber diameter of the conductive fiber is preferably 1 to 50 nm (paragraph 0039), it is confirmed that the effect of improving the light durability of the silver nanowire is 40 nm in diameter (paragraph 0039). 0149).
  • Patent Document 2 describes that a silver nanowire composition (ink) for coating can contain a silane coupling agent. This improves the adhesion to the substrate, the abrasion resistance of the coating film, the water resistance, and the alcohol resistance.
  • a silane coupling agent include epoxy group, vinyl group, acryl group, amino group, and mercapto group (paragraph 0049).
  • a corrosion inhibitor such as benzotriazole may be contained (paragraph 0056).
  • the silane coupling agent having a functional group as described above is mixed in the resin of the translucent conductive film using silver nanowires as the conductive filler, or benzotriazole is mixed.
  • such a method is not an effective means for improving light durability.
  • the present invention can impart a remarkable effect of improving the light durability to a conductive film using silver nanowires without using a metal complex compound, and particularly excellent light durability can be achieved even for silver nanowires having a small diameter.
  • the purpose is to provide a technology that can improve the durability.
  • a translucent conductive film including a conductive structure of silver nanowires and a non-conductive material containing a silane coupling agent and a resin composed of a silicon compound having a benzotriazole group.
  • a silane coupling agent composed of a silicon compound having a benzotriazole group will be referred to as a “benzotriazole group-containing silane coupling agent”.
  • the average length, the average diameter, and the average aspect ratio of the silver nanowires follow the definitions below.
  • Average length The trace length from one end to the other end of one silver nanowire on an image observed by a field emission scanning electron microscope (FE-SEM) is defined as the length of the wire. A value obtained by averaging the lengths of the individual silver nanowires present on the microscope image is defined as the average length. In order to calculate the average length, the total number of wires to be measured is 100 or more.
  • the distance between the contours of one silver nanowire on both sides in the thickness direction is defined as the diameter of the wire.
  • Each wire can be considered to have a substantially uniform thickness over its entire length. Therefore, the thickness can be measured by selecting a portion that does not overlap with other wires.
  • the diameters of all the silver nanowires observed in the image are measured, except for the wires whose diameters are difficult to measure because they completely overlap with other wires.
  • the operation is performed on a plurality of randomly selected fields of view, the diameters of 100 or more different silver nanowires are obtained in total, the average value of the diameters of the individual silver nanowires is calculated, and the value is defined as the average diameter.
  • the present invention it is possible to impart “light durability” to visible light and ultraviolet rays to a translucent conductive film using silver nanowires.
  • it is also effective for thin silver nanowires having an average diameter of, for example, less than 30 nm, and thus is advantageous in constructing a conductive film having excellent “conductivity-haze balance”.
  • the excellent effect of improving the light durability can be obtained without using the metal complex compound, it is possible to avoid the problems of the transparency and coloring of the conductive film.
  • Structural formula of the vinylpyrrolidone structural unit The figure which showed typically the pipe line structure used for cross flow circulation washing.
  • FIG. 1 schematically shows an example of a laminated structure of a transparent conductive panel using the translucent conductive film of the present invention.
  • a conductive structure 201 including silver nanowires is present on the surface of a transparent substrate 100 typified by PET (polyethylene terephthalate), PC (polycarbonate) and the like.
  • the transparent substrate 100 in contact with the conductive structure 201 may be a transparent organic or inorganic material layer coated on a transparent plate such as PET.
  • the conductive structure 201 can be formed by applying the silver nanowire ink to the surface of the transparent substrate 100 and then volatilizing the liquid medium component of the ink.
  • the silver nanowires, which are constituent elements of the conductive structure 201 form a “conductive network” by contacting the individual silver nanowires.
  • the conductive structure 201 is integrated with the non-conductive material 202, and these form the translucent conductive film 200.
  • the non-conductive material 202 is mainly composed of a transparent resin such as an acrylic resin. Conventionally, additives such as a rust preventive agent, an ultraviolet absorber, and a metal complex compound are appropriately added to this transparent resin as needed. However, it is difficult to achieve the above-mentioned object even if a conventional additive is used. Therefore, in the present invention, as the non-conductive material 202, a benzotriazole group-containing silane coupling agent and a material having a resin as a constituent element are applied.
  • the transparent conductive film 200 is obtained by applying a coating material containing a benzotriazole group-containing silane coupling agent and a transparent resin from the upper surface side (the side opposite to the transparent base material 100) of the conductive structure 201, and then applying the coating material in the coating material. It can be formed by volatilizing and removing the solvent component of. When the transparent resin is an ultraviolet curable resin, it is further cured.
  • the boundary between the conductive structure 201 and the non-conductive material 202 is drawn linearly for the sake of convenience.
  • the non-conductive material 202 enters the gaps of the conductive network, and the silver nanowires and the non-conductive material are tightly joined.
  • the amount of the non-conductive material 202 supplied by paint
  • Adjusting the amount of the non-conductive material is rational for ensuring continuity with the lead wire using a conductive paste or the like.
  • the thickness of the transparent conductive film 200 can be set in the range of 50 to 500 nm.
  • An appropriate protective material 300 is attached to the upper surface of the translucent conductive film 200 (the surface opposite to the transparent base material 100) according to the application of the panel.
  • the protective material 300 is constructed by bonding a transparent plate-shaped body 302 made of a highly protective material such as glass via a transparent adhesive 301. Note that the thickness of the transparent conductive film 200 is exaggerated in FIG. 1.
  • the non-conductive material forming the translucent conductive film of the present invention contains a transparent resin as a main component.
  • a transparent resin for example, an acrylic resin formed by mixing an acrylic monomer or an acrylic oligomer containing one or more (meth) acrylate groups, or a polyol and a compound containing an isocyanate group are made to react with each other. Urethane resin can be applied.
  • an acrylic monomer containing one or more (meth) acrylate groups constituting the acrylic resin an esterified product of polyhydric alcohol and (meth) acrylic acid [eg, di (meth) acrylate of glycol, diglycerin of glycerin] (Meth) acrylate, dimethylolpropane di (meth) acrylate, 3-hydroxy-1,5-pentanediol di (meth) acrylate and 2-hydroxy-2-ethyl-1,3-propanediol di (meth) acrylate.
  • an esterified product of polyhydric alcohol and (meth) acrylic acid eg, di (meth) acrylate of glycol, diglycerin of glycerin] (Meth) acrylate, dimethylolpropane di (meth) acrylate, 3-hydroxy-1,5-pentanediol di (meth) acrylate and 2-hydroxy-2-ethyl-1,3-propanediol di
  • alkylene oxide adduct of polyhydric alcohol and ester of (meth) acrylic acid [eg di (meth) acrylate of ethylene oxide adduct of trimethylolpropane and di (meth) acrylate of ethylene oxide adduct of glycerin] ]
  • Epoxy acrylate having hydroxyl groups at both ends Esterified product of polyhydric alcohol, (meth) acrylic acid and hydroxycarboxylic acid [eg, hydroxypivalic acid neopentyl glycol di (meth) acrylate], tri (meth) acrylate of glycerin, trimethylol Tri (meth) acrylate of propane, tri (meth) acrylate of pentaerythritol, tri (meth) acrylate of ethylene oxide adduct of trimethylolpropane, tetra (meth) acrylate of pentaerythritol, penta (meth) acrylate
  • an acrylic oligomer containing one or more (meth) acrylate groups constituting the acrylic resin an oligomer obtained by radically polymerizing (meth) acrylic acid and a (meth) acrylic acid ester has an epoxy group.
  • examples thereof include an oligomer produced by reacting an acrylic monomer and an oligomer produced by reacting an oligomer having an epoxy group in the molecule with (meth) acrylic acid.
  • polyol examples include trifunctional or higher functional groups such as glycerin, trimethylolpropane, trimethylolethane, 1,2,6-hexanetriol, 1,2,4-butanetriol, erythritol, sorbitol, pentaerythritol and dipentaerythritol.
  • trifunctional or higher functional groups such as glycerin, trimethylolpropane, trimethylolethane, 1,2,6-hexanetriol, 1,2,4-butanetriol, erythritol, sorbitol, pentaerythritol and dipentaerythritol.
  • Polyhydric alcohols and monomer glycols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2, 3-butanediol, 2-methyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2-butyl-2- Ethyl-1,3-propanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol, 1,6-hexanediol, 2-ethyl-1 , 3-Hexanediol, neopentyl glycol, 1,3,5-trimethyl-1,3-pentaned
  • Examples of the compound containing an isocyanate group include hexamethylene diisocyanate, toluene diisocyanate, isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylene-1,4-diisocyanate, xylene-1, 3-diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, m-phenylene diisocyanate, p- Examples thereof include phenylene diisocyanate and naphthylene-1,4-diisocyanate.
  • the non-conductive material forming the translucent conductive film of the present invention contains a benzotriazole group-containing silane coupling agent in addition to the above transparent resin.
  • the “benzotriazole group-containing silane coupling agent” is a silane coupling agent composed of a silicon compound having a benzotriazole group as a functional group.
  • FIG. 2 illustrates the structural formula of a silicon compound that constitutes the benzotriazole group-containing silane coupling agent.
  • the one shown in FIG. 2 is a trimethoxy type silane coupling agent.
  • "Me-" is a methyl group
  • “-R-” is an organic group.
  • “—R—” includes, for example, an alkylene group and an amide bond in the structure. It has a benzotriazole group on the side opposite to Si with "-R-" sandwiched therebetween.
  • Benzotriazole is a substance that is used as a rust preventive for metals such as copper and has an ultraviolet absorbing effect.
  • benzotriazole was mixed with the resin in contact with the conductive structure of the silver nanowires, the sufficient effect of improving the light durability could not be obtained.
  • silane coupling agent having a benzotriazole group is applied, a remarkable effect of improving the light durability can be obtained.
  • it is extremely effective for a conductive structure using a very thin silver nanowire having an average diameter of less than 30 nm. The reason for this is not clear at this point, but the following can be considered.
  • the silane coupling agent in the non-conductive material that comes into contact with the silver nanowire attaches to the surface of the silver nanowire preferentially over the resin component, so that the benzotriazole group is abundantly present near the surface of the silver nanowire.
  • the rust-preventing action and ultraviolet absorbing action of the benzotriazole group suppress alteration of the silver nanowires.
  • the silane coupling agent attached to the surface of the silver nanowires hinders direct contact with the resin component, and also has an effect of suppressing migration.
  • the content of the benzotriazole group-containing silane coupling agent in the non-conductive material can be in the range of 0.01 to 5.0 in mass ratio in the content ratio of the silane coupling agent / the resin, It is more preferable to set it in the range of 0.03 to 4.0. The effect can be obtained even when the silane coupling agent is considerably larger than the resin.
  • [2-hydroxy-4-n-octyloxybenzophenone] A sufficient effect of improving the light durability cannot be obtained by simply mixing the ultraviolet absorber with the resin in contact with the conductive structure of the silver nanowires.
  • 2-hydroxy-4-n-octyloxybenzophenone is contained among the ultraviolet absorbers, it has good light durability even for a conductive structure using a very thin silver nanowire with an average diameter of less than 30 nm. It turned out to be effective. Therefore, as the non-conductive material, 2-hydroxy-4-n-octyloxybenzophenone may be contained in addition to the transparent resin and the benzotriazole group-containing silane coupling agent.
  • FIG. 3 shows the structural formula of 2-hydroxy-4-n-octyloxybenzophenone.
  • the content of 2-hydroxy-4-n-octyloxybenzophenone in the non-conductive material is 0.01 to 1 in mass ratio in the content ratio of 2-hydroxy-4-n-octyloxybenzophenone / the resin.
  • the range should be 0.0.
  • the silver nanowire is preferably as thin and long as possible.
  • the average diameter may be usually set in the range of 15 nm or more, and may be controlled to 20 nm or more.
  • the average aspect ratio is preferably 200 or more, more preferably 450 or more.
  • Such thin and long silver nanowires are synthesized by a known method (alcohol solvent reduction method) in which silver is deposited on the wire by utilizing the reducing power of alcohol, which is a solvent, in an alcohol solvent in the presence of an organic protective agent. It can be obtained by improving the conditions. You may obtain and use the silver nanowire or its dispersion liquid which is distributed as an industrial product.
  • the organic protective agent one having a vinylpyrrolidone structural unit can be applied.
  • Figure 4 shows the vinylpyrrolidone structural unit. Specifically, PVP or a copolymer of vinylpyrrolidone and another monomer can be used.
  • An organic protective agent used at the time of synthesis is usually attached to the surface of the silver nanowire, and the organic protective agent is responsible for the dispersibility in the liquid.
  • the above-mentioned copolymer of vinylpyrrolidone and another monomer can improve the dispersibility in an alcohol-added aqueous solvent as compared with PVP. It is important that such a copolymer has a structural unit of a hydrophilic monomer.
  • the hydrophilic monomer means a monomer having a property of dissolving 1 g or more in 1000 g of water at 25 ° C. Specific examples thereof include a diallyldimethylammonium salt monomer, an acrylate-based or methacrylate-based monomer, and a maleimide-based monomer.
  • Examples of the acrylate-based or methacrylate-based monomer include ethyl acrylate, 2-hydroxyethyl acrylate, and 2-hydroxyethyl methacrylate.
  • Examples of maleimide-based monomers include 4-hydroxybutyl acrylate, N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide and N-tert-butylmaleimide.
  • the content of the silver nanowires in the transparent conductive film is preferably adjusted within the range of 1 to 100% by mass in the mass ratio of metallic silver in the total mass of the transparent conductive film. You may control in the range of 2-50 mass%.
  • Example 1 (Silver nanowire synthesis) Propylene glycol (1,2-propanediol) as alcohol solvent, silver nitrate as silver compound, lithium chloride as chloride, potassium bromide as bromide, aluminum nitrate nonahydrate as aluminum salt, lithium hydroxide as alkali metal hydroxide.
  • organic protective agent a copolymer of vinylpyrrolidone and diallyldimethylammonium nitrate (99% by mass of vinylpyrrolidone, 1% by mass of diallyldimethylammonium nitrate was prepared, and a weight average molecular weight of 75,000) was prepared.
  • propylene glycol made by Wako Pure Chemical Industries, Ltd., special grade 8016 g has a lithium chloride (made by Aldrich) content of 10 mass% in a propylene glycol solution 4.84 g, potassium bromide (Wako Pure Chemical Industries, Ltd.). 0.10 g, manufactured by Aldrich Co., 0.52 g, aluminum nitrate nonahydrate (manufactured by Kishida Kasei) 5.40 g propylene glycol solution containing 20% by mass, vinylpyrrolidone and diallyl. 83.87 g of a dimethylammonium nitrate copolymer was added and dissolved to prepare a solution A.
  • solution B In an alcohol solvent of propylene glycol 89.74 g, pure water 13.73 g and silver nitrate 67.96 g were added and dissolved by stirring at 27 ° C. to obtain a silver-containing liquid (solution B).
  • the above solution A was placed in a reaction vessel, heated from room temperature to 85 ° C. with stirring, and then the whole amount of the solution B was added into the solution A over 1 minute. After the addition of the solution B was completed, the stirring state was further maintained and maintained at 85 ° C. for 24 hours. Then, the reaction solution was cooled to room temperature to synthesize silver nanowires.
  • a redispersion treatment was performed using a water solvent in which PVP (polyvinylpyrrolidone) having a weight average molecular weight of 55,000 was dissolved in pure water. That is, a water solvent having a PVP concentration of 0.5 mass% was prepared, and about 8 kg of this water solvent was mixed with 200 g of the above-mentioned concentrated product after washing to obtain a metal silver concentration (containing silver nanowires and silver nanoparticles as impurities). A silver nanowire dispersion liquid having a silver concentration in the liquid of 0.53% by mass was prepared. The PVP concentration of this solution is 0.49% by mass.
  • the obtained silver nanowire dispersion liquid was diluted with pure water so that the silver concentration was 0.08% by mass to obtain about 52 kg of the silver nanowire dispersion liquid.
  • This dispersion is called a "crossflow original liquid”.
  • Each of the above operations was performed in a glass container coated with a fluororesin.
  • the cross-flow original liquid subjected to the above-mentioned pretreatment was stored in a tank of an apparatus having a pipeline structure shown in FIG. 5, and then subjected to cross-flow filtration by a method of continuously circulating the pipeline.
  • nine tubular filters were arranged in parallel at the position indicated by reference numeral 3 in FIG. 5, and the liquid was branched into each tubular filter for processing.
  • the tubular filter used as the cross-flow filtration filter has a tube wall made of porous ceramic, and has dimensions of 500 mm in length, 12 mm in outer diameter, and 9 mm in inner diameter.
  • the material of the ceramic was SiC (silicon carbide), and the average pore diameter measured by a mercury porosimeter made by Micromeritics Co. was 3.5 ⁇ m.
  • the detailed conditions for the pore distribution measurement by the mercury porosimetry method are as follows. ⁇ Measuring device: Autopore IV9510 type ⁇ Measurement range: ⁇ 100-0.01 ⁇ m, ⁇ Mercury contact angle: 130 ° ⁇ Mercury surface tension: 485 dyne / cm, ⁇ Pretreatment: 300 °C ⁇ 1h (in air) ⁇ Measurement sample mass: 3.5g In order to ensure sufficient measurement accuracy, 105 measurement data were collected in the measurement range of 0.1 to 40 ⁇ m. The average pore diameter here is the median diameter.
  • the initial PVP concentration of the liquid medium to be circulated (mass ratio of PVP in the water solvent that constitutes the cross flow source liquid) is 770 ppm. Circulation was performed while replenishing the tank with fresh liquid medium.
  • the above-mentioned 9 tubular filters were installed in parallel in the circulation channel.
  • the flow rate of the liquid introduced per one tubular filter was 13 L / min and circulation was performed.
  • the flow rate of the liquid introduced into the tubular filter was 3495 mm / s.
  • the pressure in the conduit on the inlet side of the tubular filter (the pressure measured by the upstream pressure gauge 4 in FIG. 5) was 0.025 MPa.
  • the liquid medium to be replenished is a water solvent in which PVP (polyvinylpyrrolidone) having a weight average molecular weight of 55,000 is dissolved in pure water, and the PVP concentration in the water solvent to be replenished (mass ratio of PVP in the water solvent) is 50 ppm.
  • the tank was a tank with a jacket, and cooling water was caused to flow through the jacket to suppress an increase in the liquid temperature during circulation. Further, the pure water to be replenished was cooled and used at a temperature of 10 to 15 ° C. As a result, the liquid temperature during circulation was in the range of 20 to 30 ° C. In this way, cross flow circulation cleaning was performed for 5 hours.
  • the total amount of liquid medium replenished during circulation was 214L.
  • the average amount of filtrate per tubular filter was 79 mL / min.
  • the average length L M was measured as follows.
  • the nanowire dispersion liquid was diluted with isopropyl alcohol to a silver concentration of 0.002%, placed on a Si substrate in an amount of 6 ⁇ L, and dried at 160 ° C. for 1 minute to obtain an SEM observation sample.
  • the obtained sample was observed with a scanning electron microscope (JSM-IT100 InTouchScope, manufactured by JEOL Ltd.) at an acceleration voltage of 5 kV and a magnification of 1,000 times.
  • the average length L M was calculated according to the above definition using software (doctor canvas) with all the wires whose entire lengths could be confirmed in the field of view as measurement targets.
  • the average diameter D M was measured as follows. Place the nanowire dispersion liquid on a TEM observation table and observe a bright field image with a transmission electron microscope (JEM-1011 manufactured by JEOL Ltd.) at an acceleration voltage of 100 kV and a magnification of 40,000 times to collect an observation image. Then, the original image taken to accurately measure the diameter was magnified to twice the size, and the average diameter D M was determined according to the above definition using software (Motic Image Plus 2.1S). As a result of the measurement, the average length L M was 16 ⁇ m and the D M was 23.4 nm.
  • JEM-1011 manufactured by JEOL Ltd.
  • thickener hot water treatment As a thickener, HPMC (manufactured by a chemical manufacturer, weight average molecular weight: 840,000) adjusted to a methoxy group of 21.5 mass% and a hydroxypropoxy group of 30.0 mass% was used.
  • the container used was a 15 L SUS tank, and disk turbine blades with a diameter of 135 mm were used.
  • the thickening agent was sieved using a sieve having an opening of 200 ⁇ m, 150 g of the thickening agent after sieving was added to 6000 g of pure water heated to 98 ° C., and the mixture was stirred at 600 rpm for 30 minutes.
  • the thickener After warming the PFA mesh with boiling pure water, the thickener after stirring was collected by filtration through the warm mesh. Then, 8000 g of boiled pure water was applied to the thickener on the mesh and then dried at 70 ° C. to obtain 120 g of hot water-treated thickener. This thickener hot water treatment step was performed twice, and a total of 240 g of hot water treated thickener was obtained.
  • Thickener dissolution A 20 L SUS tank was used to dissolve the thickener, and a disk turbine blade with a diameter of 150 mm was used. 150 g of hot water-treated thickener was added to 9850 g of pure water heated to 95 ° C., the mixture was allowed to cool to 40 ° C. with stirring at 475 rpm, and then cooled by flowing cooling water cooled by a chiller into the jacket of the tank, Stir for 12 hours. The temperature at the end of stirring was 9 ° C.
  • the obtained aqueous solution was pressure-filtered (set pressure: 0.2 MPa) with a filter (L1P030, filtration accuracy 3.0 ⁇ m, manufactured by Roki Techno Co., Ltd.) to remove insoluble components, and thus a thickener-containing liquid was obtained.
  • This liquid is called "thickener base liquid A”.
  • the concentration of the thickener in the thickener base liquid A was 1.24% by mass.
  • non-conductive material coating liquid A A solvent for dilution was prepared by mixing butyl acetate and methyl isobutyl ketone in a mass ratio of 7: 3. The dilution solvent was diluted to a content of the non-conductive material base liquid A of 0.8% by mass. This diluted solution is referred to as "non-conductive material coating liquid A".
  • a PET film base material (Lumirror U40 manufactured by Toray Industries, Inc.) having a thickness of 100 ⁇ m and dimensions of 150 mm ⁇ 200 mm was prepared.
  • the above silver nanowire coating liquid A was applied onto a PET film substrate by a die coater coating machine (manufactured by Daimon Co., New Takudai S-100) to form a coating film having an area of 100 mm ⁇ 100 mm.
  • the coating conditions were: wet thickness: 12 ⁇ m, gap: 40 ⁇ m, speed: 10 mm / s, timer: 1.5 s, coating length: 100 mm. After the coating, it was dried at 120 ° C. for 1 minute to form a silver nanowire conductive structure.
  • This conductive structure is referred to as “silver nanowire conductive structure A”.
  • the above non-conductive material coating liquid A was applied by a die coater coating machine (Daimon Co., Ltd., New Desk Die S-100).
  • a coating film having an area of 100 mm ⁇ 130 mm was formed on the transparent conductive film by coating.
  • the coating conditions were: wet thickness: 13 ⁇ m, gap: 80 ⁇ m, speed: 50 mm / s, timer: 1.5 s, coating length: 130 mm.
  • the coating was dried at 120 ° C. for 1 minute to form a dry coating film in which the non-conductive material coating liquid A was coated on the silver nanowire conductive structure A.
  • a portion of the PET film base material (size 150 mm ⁇ 200 mm) on which nothing was coated was cut off to obtain a PET film base material having a size 110 mm ⁇ 210 mm having the above dry coating film in the center.
  • the dried coating film on this PET film substrate was subjected to UV curing treatment to cure the resin.
  • the above PET film substrate was put in an inert box (ETC-QN-G) manufactured by Heraeus, and N 2 substitution was performed under conditions of 10 kPa and 2 minutes, and a UV irradiation device (LC6B) manufactured by Heraeus.
  • the irradiation intensity was 500 mW / cm 2 and the integrated intensity was 400 mJ / cm 2 .
  • a light-transmitting conductive film in which the conductive structure of silver nanowires and the non-conductive material containing the above-mentioned additive and resin were integrated was formed.
  • a light resistance tester (table xenon light resistance tester, Atlas Suntest XLS +, Toyo Seiki Seisakusho Co., Ltd.) was used for the above light-transmitting conductive film formed on the PET film base material by a xenon lamp. Light irradiation was performed. A daylight filter is used, and the control range of irradiance is 250 to 765 W / m 2 in the range of 300 to 800 nm.
  • the test conditions were a black panel temperature of 60 ° C., an irradiation intensity of 550 W / m 2 (integrated value of spectral irradiance of wavelength 300 to 800 nm), and an irradiation time of four levels of 250 hours, 500 hours, 750 hours, and 1000 hours.
  • the sheet resistance change rate A (t) (%) determined by the following equation (2) was determined from the sheet resistance measurement values before the light irradiation test and after the irradiation time t (h).
  • the sheet resistance (surface resistance) of this silver nanowire conductive film is opposite to that of the silver nanowire conductive film and the transparent resin layer forming surface of the PET film base material by an eddy current resistivity meter (EC-80P manufactured by Napson).
  • Example 1 A test was performed under the same conditions as in Example 1 except that no additive was added in the preparation of the non-conductive material base liquid. That is, the additive / resin content ratio is 0 in terms of mass ratio. The results are shown in Table 1A. The sheet resistance change rate exceeded 100% at the irradiation time of 750 hours.
  • Example 2 In the preparation of the non-conductive material base liquid, a test was performed under the same conditions as in Example 1 except that the additive / resin content ratio was set to 0.10 in mass ratio. The results are shown in Table 1A. Even when the irradiation time was 1000 hours, the sheet resistance change rate was maintained at 100% or less.
  • Example 3 In the preparation of the non-conductive material base liquid, a test was performed under the same conditions as in Example 1 except that the additive / resin content ratio was set to 1.87 by mass. The results are shown in Table 1A. The sheet resistance change rate was maintained at 100% or less even after irradiation for 1000 hours.
  • Example 4 In the preparation of the non-conductive material base liquid, a test was performed under the same conditions as in Example 1 except that the additive / resin content ratio was set to 3.75 by mass ratio. The results are shown in Table 1A. Even when the irradiation time was 1000 hours, the sheet resistance change rate was maintained at 100% or less. It can be seen that even if the content of the benzotriazole group-containing silane coupling agent is considerably higher than that of the resin component, an excellent effect of improving the light durability can be obtained.
  • Comparative Example 3 In the preparation of the non-conductive material base liquid, a test was performed under the same conditions as in Comparative Example 2 except that the additive / resin content ratio was 1.00 in mass ratio. The results are shown in Table 1. The rate of change in sheet resistance exceeded 100% after irradiation for 1000 hours.
  • Comparative Example 5 In the preparation of the non-conductive material base liquid, a test was conducted under the same conditions as in Comparative Example 4 except that the additive / resin content ratio was 1.00 in mass ratio. The results are shown in Table 1A. The rate of change in sheet resistance exceeded 100% after irradiation for 1000 hours.
  • Comparative Example 7 In the preparation of the non-conductive material base liquid, a test was conducted under the same conditions as in Comparative Example 6 except that the additive / resin content ratio was 1.00 in mass ratio. The results are shown in Table 1A. The rate of change in sheet resistance exceeded 100% after irradiation for 1000 hours.
  • Comparative Example 9 In the preparation of the non-conductive material base liquid, a test was conducted under the same conditions as in Comparative Example 8 except that the additive / resin content ratio was 1.00 in mass ratio. The results are shown in Table 1A. The sheet resistance change rate exceeded 100% at the irradiation time of 500 hours.
  • Comparative Example 11 In the preparation of the non-conductive material base liquid, a test was conducted under the same conditions as in Comparative Example 10 except that the additive / resin content ratio was 1.00 in mass ratio. The results are shown in Table 1A. The rate of change in sheet resistance exceeded 100% after irradiation for 1000 hours.
  • Comparative Example 13 In the preparation of the non-conductive material base liquid, a test was performed under the same conditions as in Comparative Example 12 except that the additive / resin content ratio was 1.00 in mass ratio. The results are shown in Table 1A. When the irradiation time was 500 hours, the rate of change in sheet resistance exceeded 100%.
  • Comparative Example 15 In the preparation of the non-conductive material base liquid, a test was conducted under the same conditions as in Comparative Example 14 except that the additive / resin content ratio was 1.00 in mass ratio. The results are shown in Table 1. When the irradiation time was 500 hours, the rate of change in sheet resistance exceeded 100%.
  • Comparative Example 17 In the preparation of the non-conductive material base liquid, a test was conducted under the same conditions as in Comparative Example 16 except that the additive / resin content ratio was 1.00 in mass ratio. The results are shown in Table 1B. The sheet resistance change rate exceeded 100% at the irradiation time of 750 hours.
  • Comparative Example 19 In the preparation of the non-conductive material base liquid, a test was performed under the same conditions as in Comparative Example 18 except that the additive / resin content ratio was 1.00 in mass ratio. The results are shown in Table 1B. When the irradiation time was 500 hours, the rate of change in sheet resistance exceeded 100%.
  • Comparative Example 21 In the preparation of the non-conductive material base liquid, a test was conducted under the same conditions as in Comparative Example 20 except that the additive / resin content ratio was 1.00 in mass ratio. The results are shown in Table 1B. The sheet resistance change rate exceeded 100% after irradiation for 250 hours.
  • Example 5 In the preparation of the non-conductive material original liquid, in addition to the additive benzotriazole group-containing silane coupling agent: X-12-1214A, 2-hydroxy-4-n-octyloxybenzophenone (chemipro The test was carried out under the same conditions as in Example 1 except that (Chemicals Co., Ltd.) was mixed. The content ratio of the second additive / resin was set to 0.05 in terms of mass ratio. The results are shown in Table 1B. The sheet resistance change rate was maintained at 100% or less even after the irradiation time of 1000 hours. The effect of improving the light durability superior to that of Example 1 was obtained.
  • Example 6 In the preparation of the non-conductive material base liquid, a test was conducted under the same conditions as in Example 5 except that the content ratio of the second additive / resin was set to 0.10. The results are shown in Table 1B. Even when the irradiation time was 1000 hours, the sheet resistance change rate was maintained at 100% or less.
  • Example 7 A test was conducted under the same conditions as in Comparative Example 22 except that a benzotriazole group-containing silane coupling agent: X-12-1214A (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed as an additive in the preparation of the non-conductive material base liquid. went. The additive / resin content ratio was set to 0.10. The results are shown in Table 2A. As compared with Comparative Example 22, a remarkable effect of improving the light durability was recognized.
  • Example 8 A test was conducted under the same conditions as in Comparative Example 23 except that a benzotriazole group-containing silane coupling agent: X-12-1214A (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed as an additive in the preparation of the non-conductive material base liquid. went. The additive / resin content ratio was set to 0.10. The results are shown in Table 2A. As compared with Comparative Example 23, a remarkable effect of improving the light durability was recognized.
  • Example 9 A test was conducted under the same conditions as in Comparative Example 24 except that a benzotriazole group-containing silane coupling agent: X-12-1214A (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed as an additive in the preparation of the non-conductive material base liquid. went. The additive / resin content ratio was set to 0.10. The results are shown in Table 2A. As compared with Comparative Example 24, a remarkable effect of improving the light durability was recognized.
  • Example 10 A test was conducted under the same conditions as in Comparative Example 25 except that a benzotriazole group-containing silane coupling agent: X-12-1214A (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed as an additive in the preparation of the non-conductive material base liquid. went. The additive / resin content ratio was set to 0.10. The results are shown in Table 2A. As compared with Comparative Example 25, a remarkable effect of improving the light durability was recognized.
  • the test was conducted under the same conditions as in Comparative Example 1 except that the temperature was set to 1 level for 250 hours. That is, no additive is added in this example.
  • the results are shown in Table 2A.
  • the sheet resistance change rate was 6000% or more after irradiation for 250 hours.
  • Example 11 A test was conducted under the same conditions as in Comparative Example 26 except that a benzotriazole group-containing silane coupling agent: X-12-1214A (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed as an additive in the preparation of the non-conductive material base liquid. went. The additive / resin content ratio was set to 0.10. The results are shown in Table 2A. As compared with Comparative Example 26, a remarkable effect of improving the light durability was recognized.
  • Example 12 A test was conducted under the same conditions as in Comparative Example 27 except that a benzotriazole group-containing silane coupling agent: X-12-1214A (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed as an additive in the preparation of the non-conductive material base liquid. went. The additive / resin content ratio was set to 0.10. The results are shown in Table 2A. As compared with Comparative Example 27, a remarkable effect of improving the light durability was recognized.
  • Example 13 A test was conducted under the same conditions as in Comparative Example 28 except that a benzotriazole group-containing silane coupling agent: X-12-1214A (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed as an additive in the preparation of the non-conductive material base liquid. went. The additive / resin content ratio was set to 0.10. The results are shown in Table 2B. As compared with Comparative Example 28, a remarkable effect of improving the light durability was recognized.
  • Example 14 A test was conducted under the same conditions as in Comparative Example 29 except that a benzotriazole group-containing silane coupling agent: X-12-1214A (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed as an additive in the preparation of the non-conductive material base liquid. went. The additive / resin content ratio was set to 0.10. The results are shown in Table 2B. As compared with Comparative Example 29, a remarkable effect of improving the light durability was recognized.
  • Example 15 A test was conducted under the same conditions as in Comparative Example 30 except that a benzotriazole group-containing silane coupling agent: X-12-1214A (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed as an additive in the preparation of the non-conductive material base liquid. went. The additive / resin content ratio was set to 0.10. The results are shown in Table 2B. As compared with Comparative Example 30, a remarkable effect of improving light durability was recognized.
  • Example 16 A test was conducted under the same conditions as in Comparative Example 31 except that a benzotriazole group-containing silane coupling agent: X-12-1214A (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed as an additive in the preparation of the non-conductive material base liquid. went. The additive / resin content ratio was set to 0.10. The results are shown in Table 2B. As compared with Comparative Example 31, a remarkable effect of improving the light durability was recognized.
  • Example 17 A test was conducted under the same conditions as in Comparative Example 32, except that a benzotriazole group-containing silane coupling agent: X-12-1214A (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed as an additive in the preparation of the non-conductive material base liquid. went. The additive / resin content ratio was set to 0.10. The results are shown in Table 2B. As compared with Comparative Example 32, a remarkable effect of improving the light durability was recognized.
  • Example 18 A test was conducted under the same conditions as in Comparative Example 33 except that a benzotriazole group-containing silane coupling agent: X-12-1214A (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed as an additive in the preparation of the non-conductive material base liquid. went. The additive / resin content ratio was set to 0.10. The results are shown in Table 2B. As compared with Comparative Example 33, a remarkable effect of improving the light durability was recognized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Powder Metallurgy (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】金属錯体化合物を使用しなくても銀ナノワイヤを用いた導電膜に光耐久性の顕著な改善効果を付与することができ、特に、直径の細い銀ナノワイヤに対しても優れた光耐久性の改善効果が得られる技術を提供する。 【解決手段】銀ナノワイヤの導電構造体と、ベンゾトリアゾール基を持つケイ素化合物で構成されるシランカップリング剤および樹脂を含む非導電材料と、からなる透光性導電膜。前記非導電材料は、さらに2-ヒドロキシ-4-n-オクチルオキシベンゾフェノンを含むものであってもよい。前記シランカップリング剤/前記樹脂の含有量比が質量割合で例えば0.01~5.0である。前記銀ナノワイヤは、平均直径が30nm未満、平均長さが6.0μm以上のものである。

Description

透光性導電膜
 本発明は、銀ナノワイヤを導電フィラーに使用した透光性導電膜に関する。
 本明細書では、太さが200nm程度以下の微細な金属ワイヤを「ナノワイヤ(nanowire(s)」と呼ぶ。なかでも銀ナノワイヤは、透明導電回路を形成するための導電材料として有望視されている。
 銀ナノワイヤを用いた透明導電回路は以下のような手順で作製することが一般的である。まず、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)などに代表される透明基材の上に銀ナノワイヤを含有する塗工液(以下「銀ナノワイヤインク」という。)を塗布したのち、銀ナノワイヤインクの液状媒体成分を揮発除去させ、銀ナノワイヤが集積して導電ネットワークを構成している「銀ナノワイヤ導電構造体」を形成させる。次に、前記の銀ナノワイヤ導電構造体の上から透明樹脂を含有する塗料を塗布したのち、その塗料の溶剤成分を揮発除去させ、銀ナノワイヤ導電構造体と、樹脂を主体とする非導電材料とが積層した「透光性導電膜」を形成させる。上記透明樹脂として紫外線硬化型樹脂が適用されることもある。その場合は溶剤成分の揮発除去に加えて、紫外線硬化処理が行われる。その後、フォトレジスト法などにより前記の透光性導電膜による回路パターンが形成され、透明導電回路が得られる。
 銀ナノワイヤを導電フィラーに用いた透光性導電膜は、太陽光など、紫外線や可視光を含む波長域の光を照射すると経時劣化により導電性が低下しやすいという問題を有している。ワイヤを構成している銀原子が周囲の樹脂中へ移動する現象(マイグレーション)が紫外線や可視光域の光のエネルギーによって促進され、ワイヤが次第に痩せ細っていくことが、上記経時劣化の主要因であると考えられる。最終的にはワイヤが断裂して導通が得られなくなる場合もある。光の照射によって引き起こされる導電膜の経時劣化が起こりにくい性質を、本明細書では「光耐久性」と呼ぶ。銀ナノワイヤを用いた導電膜には、光耐久性の改善が強く求められている。
 特許文献1には、銀ナノワイヤ等の金属繊維が接触する樹脂層に金属錯体化合物を含有させることによって、光耐久性を改善させる技術が開示されている。また、アミン添加剤や紫外線吸収剤の使用も光耐久性の向上に有効であるとされる。アミン添加物として種々のアミノ基含有シラン化合物が列挙されている(特許文献1の段落0095~0098)。紫外線吸収剤としてベンゾフェノン化合物やベンゾトリアゾール化合物などが挙げられている(同段落0102)。導電性繊維の繊維径は1~50nmが好ましいとの記載があるが(段落0039)、銀ナノワイヤに関して実際に光耐久性の改善効果が確認されているのは、直径40nmのものである(段落0149)。
 特許文献2には、塗工用の銀ナノワイヤ組成物(インク)に、シランカップリング剤を含有させることができると記載されている。これにより、基板との密着性、塗膜の耐摩耗性、耐水性、耐アルコール性が向上するという。シランカップリング剤の反応性官能基の具体例としてエポキシ基、ビニル基、アクリル基、アミノ基、メルカプト基が挙げられている(段落0049)。また、ベンゾトリアゾールなどの腐食防止剤を含有させてもよいことが記載されている(段落0056)。しかし、発明者らの調査によれば、銀ナノワイヤを導電フィラーに用いた透光性導電膜の樹脂中に上記のような官能基を有するシランカップリング剤を混合したり、ベンゾトリアゾールを混合したりする手法は、光耐久性を改善するための有効な手段とはならない。
特許第5858197号公報 国際公開第2014/196354号
 特許文献1に開示の技術によれば、銀ナノワイヤを含む導電膜と、金属錯体化合物等を含有する樹脂層の積層によって、光耐久性が向上するという。しかし発明者らの調査によれば、この手法では直径が例えば30nm未満といった細い銀ナノワイヤに対して、光耐久性の安定した改善効果が十分に得られない。また、樹脂中に金属錯体化合物を含有させると透明性が低下しやすく、着色の問題も生じやすい。特に、銀ナノワイヤの直径が30nm未満と細い場合は、光耐久性を改善するために必要な金属錯体化合物の添加量が多くなり、透明性低下や着色の問題がより顕著となる。使用環境や樹脂の種類によっては、金属錯体の反応性や触媒作用によって樹脂層の経時劣化が進行することも懸念される。
 最近では、平均直径が30nm未満の細い銀ナノワイヤを安定して製造する技術も確立されつつある。直径が細い銀ナノワイヤをフィラーに使用すると、導電膜の「導電性-ヘイズバランス」を調整するための自由度が拡大し、よりクリアで優れた導電性を呈する透明導電膜を得る上で有利となる。本発明は、金属錯体化合物を使用しなくても銀ナノワイヤを用いた導電膜に光耐久性の顕著な改善効果を付与することができ、特に、直径の細い銀ナノワイヤに対しても優れた光耐久性の改善効果が得られる技術を提供しようというものである。
 上記課題は以下の発明によって達成される。
 [1]銀ナノワイヤの導電構造体と、ベンゾトリアゾール基を持つケイ素化合物で構成されるシランカップリング剤および樹脂を含む非導電材料と、からなる透光性導電膜。
 [2]前記シランカップリング剤/前記樹脂の含有量比が質量割合で0.01~5.0である、上記[1]に記載の透光性導電膜。
 [3]前記銀ナノワイヤは、平均直径が30nm未満、平均長さが6.0μm以上のものである、上記[1]または[2]に記載の透光性導電膜。
 [4]前記銀ナノワイヤは、ビニルピロリドン構造単位を有する有機保護剤が表面に付着しているものである、上記[1]~[3]のいずれかに記載の透光性導電膜。
 [5]前記非導電材料は、さらに2-ヒドロキシ-4-n-オクチルオキシベンゾフェノンを含むものである上記[1]~[4]のいずれかに記載の透光性導電膜。
 [6]前記2-ヒドロキシ-4-n-オクチルオキシベンゾフェノン/前記樹脂の含有量比が質量割合で0.01~1.0である上記[5]に記載の透光性導電膜。
 以下において、ベンゾトリアゾール基を持つケイ素化合物で構成されるシランカップリング剤を「ベンゾトリアゾール基含有シランカップリング剤」と呼ぶ。
 本明細書において、銀ナノワイヤの平均長さ、平均直径、平均アスペクト比は、以下の定義に従う。
〔平均長さ〕
 電界放出形走査電子顕微鏡(FE-SEM)による観察画像上で、ある1本の銀ナノワイヤの一端から他端までのトレース長さを、そのワイヤの長さと定義する。顕微鏡画像上に存在する個々の銀ナノワイヤの長さを平均した値を、平均長さと定義する。平均長さを算出するためには、測定対象のワイヤの総数を100以上とする。
〔平均直径〕
 透過型電子顕微鏡(TEM)による明視野観察画像上で、ある1本の銀ナノワイヤにおける太さ方向両側の輪郭間距離を、そのワイヤの直径と定義する。各ワイヤは全長にわたってほぼ均等な太さを有しているとみなすことができる。したがって、太さの計測は他のワイヤと重なっていない部分を選択して行うことができる。1つの視野を写したTEM画像において、その画像内に観察される銀ナノワイヤのうち、他のワイヤと完全に重なって直径の計測が困難であるワイヤを除く全てのワイヤの直径を測定する、という操作を無作為に選んだ複数の視野について行い、合計100本以上の異なる銀ナノワイヤの直径を求め、個々の銀ナノワイヤの直径の平均値を算出し、その値を平均直径と定義する。
〔平均アスペクト比〕
 上記の平均直径をD、平均長さをLとして下記(1)式により平均アスペクト比Aを算出することができる。ただし、(1)式に代入するD、Lはいずれもnmの単位で表された値とする。
 A=L/D …(1)
 本発明によれば、銀ナノワイヤを用いた透光性導電膜に可視光や紫外線に対する「光耐久性」を付与することができる。特に、平均直径が例えば30nm未満といった細い銀ナノワイヤにも有効であるので、「導電性-ヘイズバランス」に優れる導電膜の構築に有利である。また、金属錯体化合物を使用しなくても光耐久性の優れた改善効果が得られるので、導電膜の透明性低下や着色の問題も回避できる。
本発明の透光性導電膜を用いた透明導電パネルの積層構造の一例を模式的に示した図。 ベンゾトリアゾール基含有シランカップリング剤を構成するケイ素化合物の構造式。 2-ヒドロキシ-4-n-オクチルオキシベンゾフェノンの構造式。 ビニルピロリドン構造単位の構造式。 クロスフロー循環洗浄に用いる管路構成を模式的に示した図。
 図1に、本発明の透光性導電膜を用いた透明導電パネルの積層構造の一例を模式的に示す。PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)などに代表される透明基材100の表面上に銀ナノワイヤを含む導電構造体201が存在する。導電構造体201が接する透明基材100は、PETなどの透明板上にコーティングされた透明の有機または無機材料層であっても構わない。導電構造体201は、銀ナノワイヤインクを透明基材100の表面に塗布したのち、インクの液状媒体成分を揮発させることによって形成することができる。導電構造体201の構成要素である銀ナノワイヤは、個々の銀ナノワイヤが接触することによる「導電ネットワーク」を構成している。
 導電構造体201は、非導電材料202と一体化して、これらが透光性導電膜200を構築している。非導電材料202はアクリル系樹脂などの透明樹脂を主成分とするものである。従来、この透明樹脂には防錆剤、紫外線吸収剤、金属錯体化合物などの添加剤が必要に応じて適宜添加されている。しかし、従来の添加剤を使用しても上述の課題を達成することは困難である。そこで本発明では、非導電材料202として、ベンゾトリアゾール基含有シランカップリング剤、および樹脂を構成要素とする材料を適用する。透光性導電膜200は、導電構造体201の上面側(透明基材100と反対側)から、ベンゾトリアゾール基含有シランカップリング剤、および透明樹脂を含有する塗料を塗布したのち、その塗料中の溶媒成分を揮発除去させることによって形成することができる。透明樹脂が紫外線硬化樹脂の場合は、さらに硬化処理が施される。
 図1では便宜上、導電構造体201と非導電材料202の境界を直線的に描いてあるが、実際には両層が分離して存在するのではなく、導電構造体201を構成する銀ナノワイヤの導電ネットワークの隙間に非導電材料202が入り込んで、銀ナノワイヤと前記非導電材料とがタイトに接合した状態となっている。導電ネットワークを構成している銀ナノワイヤの一部が、透光性導電膜200の上面(透明基材100と反対側の面)に露出するように非導電材料202の存在量(塗料によって供給する非導電材料の量)を調整すれば、導電ペーストなどを用いたリード線との導通を確保する上で合理的である。一般的に、透光性導電膜200の厚さは50~500nmの範囲で設定することができる。
 透光性導電膜200の上面(透明基材100と反対側の面)には、パネルの用途に応じて適切な保護材300が取り付けられる。例えば透明接着剤301を介してガラスなど保護性の高い材料からなる透明板状体302を接合することによって保護材300が構築される。なお、図1において、透光性導電膜200の厚さは、誇張して描いてある。
〔透明樹脂〕
 本発明の透光性導電膜を構成する非導電材料は、透明樹脂を主成分として含有する。透明樹脂としては、例えば(メタ)アクリレート基を1つまたは複数含有するアクリルモノマーやアクリルオリゴマーを混合して構成されたアクリル系樹脂、あるいはポリオールとイソシアネート基を含有する化合物を反応させて作成されたウレタン系樹脂等が適用できる。
 上記アクリル系樹脂を構成する(メタ)アクリレート基を1つまたは複数含有するアクリルモノマーの例として、多価アルコールと(メタ)アクリル酸のエステル化物[例えばグリコールのジ(メタ)アクリレート、グリセリンのジ(メタ)アクリレート、トリメチロールプロパンのジ(メタ)アクリレート、3-ヒドロキシ-1,5-ペンタンジオールのジ(メタ)アクリレート及び2-ヒドロキシ-2-エチル-1,3-プロパンジオールのジ(メタ)アクリレート];多価アルコールのアルキレンオキサイド付加物と(メタ)アクリル酸のエステル化物[例えばトリメチロールプロパンのエチレンオキサイド付加物のジ(メタ)アクリレート及びグリセリンのエチレンオキサイド付加物のジ(メタ)アクリレート];水酸基含有両末端エポキシアクリレート;多価アルコールと(メタ)アクリル酸とヒドロキシカルボン酸のエステル化物[例えばヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート]、グリセリンのトリ(メタ)アクリレート、トリメチロールプロパンのトリ(メタ)アクリレート、ペンタエリスリトールのトリ(メタ)アクリレート及びトリメチロールプロパンのエチレンオキサイド付加物のトリ(メタ)アクリレート、ペンタエリスリトールのテトラ(メタ)アクリレート、ジペンタエリスリトールのペンタ(メタ)アクリレート及びジペンタエリスリトールのヘキサ(メタ)アクリレート、ジペンタエリスリトールのエチレンオキサイド付加物のテトラ(メタ)アクリレート、ジペンタエリスリトールのエチレンオキサイド付加物のペンタ(メタ)アクリレート及びジペンタエリスリトールのプロピレンオキサイド付加物のペンタ(メタ)アクリレート等が挙げられる。
 上記アクリル系樹脂を構成する(メタ)アクリレート基を1つまたは複数含有するアクリルオリゴマーの例としては、(メタ)アクリル酸及び(メタ)アクリル酸エステルをラジカル重合させたオリゴマーに、エポキシ基を有するアクリルモノマーを反応させることで製造したオリゴマーや、分子中にエポキシ基を有するオリゴマーに(メタ)アクリル酸を反応させて製造したオリゴマー等が挙げられる。
 上記ポリオールの例としては、グリセリン、トリメチロールプロパン、トリメチロールエタン、1,2,6-ヘキサントリオール、1,2,4-ブタントリオール、エリスリトール、ソルビトール、ペンタエリスリトール、ジペンタエリスリトール等の3官能以上の多価アルコールや単量体グリコール、例えばエチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2-メチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、1,6-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール、ネオペンチルグリコール、1,3,5-トリメチル-1,3-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール等が挙げられる。
 上記イソシアネート基を含有する化合物の例としては、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、キシレン-1,4-ジイソシアネート、キシレン-1,3-ジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、2,4'-ジフェニルメタンジイソシアネート、4,4'-ジフェニルエーテルジイソシアネート、3,3'-ジメチルジフェニルメタン-4,4'-ジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、ナフチレン-1,4-ジイソシアネートが挙げられる。
〔ベンゾトリアゾール基含有シランカップリング剤〕
 本発明の透光性導電膜を構成する非導電材料は、上記の透明樹脂の他に、ベンゾトリアゾール基含有シランカップリング剤を含有する。ここで、「ベンゾトリアゾール基含有シランカップリング剤」は、ベンゾトリアゾール基を官能基に持つケイ素化合物で構成されるシランカップリング剤である。図2にベンゾトリアゾール基含有シランカップリング剤を構成するケイ素化合物の構造式を例示する。図2に示したものはトリメトキシ型のシランカップリング剤である。「Me-」はメチル基、「-R-」の部分は有機基である。「-R-」は例えばアルキレン基とアミド結合を構造内に含む。「-R-」を挟んでSiと反対側にはベンゾトリアゾール基を有している。
 ベンゾトリアゾールは銅などの金属の防錆剤として使用され、また紫外線吸収作用を有するとされる物質である。しかし、銀ナノワイヤの導電構造体に接する樹脂にベンゾトリアゾールを混合しても、十分な光耐久性の向上効果は得られなかった。ところが、ベンゾトリアゾール基を持つシランカップリング剤を適用すると、顕著な光耐久性の向上効果が得られるのである。特に平均直径が30nm未満といった非常に細い銀ナノワイヤを使用した導電構造体に対して極めて有効である。その理由については現時点で必ずしも明確ではないが、以下のようなことが考えられる。銀ナノワイヤと接触する非導電材料中のシランカップリング剤が樹脂成分よりも優先的に銀ナノワイヤの表面に取り付くことによって、銀ナノワイヤの表面近傍にはベンゾトリアゾール基が豊富に存在する。そのベンゾトリアゾール基の防錆作用や紫外線吸収作用が銀ナノワイヤの変質を抑制する。また、銀ナノワイヤはその表面に取り付いているシランカップリング剤によって樹脂成分との直接の接触が阻害され、マイグレーションの抑制作用も得られる。
 非導電材料中のベンゾトリアゾール基含有シランカップリング剤の含有量は、前記シランカップリング剤/前記樹脂の含有量比において、質量割合で0.01~5.0の範囲とすることができ、0.03~4.0の範囲とすることがより好ましい。シランカップリング剤の方が樹脂よりもかなり多い場合でも効果が得られる。
〔2-ヒドロキシ-4-n-オクチルオキシベンゾフェノン〕
 銀ナノワイヤの導電構造体に接する樹脂に単に紫外線吸収剤を混合するだけでは、十分な光耐久性の向上効果は得られない。しかし、紫外線吸収剤の中でも、2-ヒドロキシ-4-n-オクチルオキシベンゾフェノンを含有させると、平均直径が30nm未満といった非常に細い銀ナノワイヤを使用した導電構造体に対しても、良好な光耐久性を発揮することがわかった。したがって、非導電材料として、上記の透明樹脂、ベンゾトリアゾール基含有シランカップリング剤の他に、2-ヒドロキシ-4-n-オクチルオキシベンゾフェノンを含有させてもよい。図3に2-ヒドロキシ-4-n-オクチルオキシベンゾフェノンの構造式を示す。
 非導電材料中の2-ヒドロキシ-4-n-オクチルオキシベンゾフェノンの含有量は、前記2-ヒドロキシ-4-n-オクチルオキシベンゾフェノン/前記樹脂の含有量比において、質量割合で0.01~1.0の範囲とすればよい。
〔銀ナノワイヤ〕
 銀ナノワイヤは、導電性と視認性に優れた透光性導電膜を形成する観点から、できるだけ細くて長い形状であるものが好ましい。例えば、平均直径が30nm未満、平均長さが6.0μm以上のものを使用することが特に好ましい。平均直径があまり細いと非常に長期間の使用を考慮した光耐久性の確保には不利となる。平均直径は通常は15nm以上の範囲で設定すればよく、20nm以上に管理してもよい。平均アスペクト比は200以上であることが好ましく、450以上であることがより好ましい。
 このような細くて長い銀ナノワイヤは、有機保護剤存在下のアルコール溶媒中において溶媒であるアルコールの還元力を利用して銀をワイヤ上に析出させる公知の手法(アルコール溶媒還元法)において、合成条件に改善を加えることによって得ることができる。工業製品として流通している銀ナノワイヤあるいはその分散液を入手して、使用してもよい。有機保護剤としてはビニルピロリドン構造単位を有するものが適用できる。図4にビニルピロリドン構造単位を示す。具体的には、PVPや、ビニルピロリドンと他のモノマーとのコポリマーが使用できる。銀ナノワイヤの表面には通常、合成時に使用した有機保護剤が付着しており、その有機保護剤が液中分散性を担っている。
 上記のビニルピロリドンと他のモノマーとのコポリマーでは、アルコールを添加した水系溶媒中における分散性を、PVPよりも向上させることができる。そのようなコポリマーとしては、親水性モノマーの構造単位を有するものであることが重要である。ここで、親水性モノマーとは、25℃の水1000gに1g以上溶解する性質を持つモノマーを意味する。具体的には、ジアリルジメチルアンモニウム(Diallyldimethylammonium)塩モノマー、アクリレート系またはメタクリレート系のモノマー、マレイミド系のモノマーなどが挙げられる。例えば、アクリレート系またはメタクリレート系のモノマーは、エチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレートが挙げられる。また、マレイミド系モノマーとしては、4-ヒドロキシブチルアクリレート、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-tert-ブチルマレイミドが挙げられる。
〔透光性導電膜中の銀含有量〕
 透光性導電膜中における銀ナノワイヤの含有量は、透光性導電膜の総質量に占める金属銀の質量割合において1~100質量%の範囲で調整することが好ましい。2~50質量%の範囲に管理してもよい。
[実施例1]
(銀ナノワイヤ合成)
 アルコール溶媒としてプロピレングリコール(1,2-プロパンジオール)、銀化合物として硝酸銀、塩化物として塩化リチウム、臭化物として臭化カリウム、アルミニウム塩として硝酸アルミニウム九水和物、アルカリ金属水酸化物として水酸化リチウム、有機保護剤としてビニルピロリドンとジアリルジメチルアンモニウムナイトレイト(diallyldimethylammonium nitrate)のコポリマー(ビニルピロリドン99質量%、ジアリルジメチルアンモニウムナイトレイト1質量%でコポリマー作成、重量平均分子量75,000)を用意した。
 常温にて、プロピレングリコール(和光純薬工業社製、特級)8016g中に、塩化リチウム(アルドリッチ社製)含有量が10質量%であるプロピレングリコール溶液4.84g、臭化カリウム(和光純薬工業社製)0.10g、水酸化リチウム(アルドリッチ社製)0.52g、硝酸アルミニウム九水和物(キシダ化成社製)含有量が20質量%であるプロピレングリコール溶液5.40g、ビニルピロリドンとジアリルジメチルアンモニウムナイトレイトのコポリマー83.87gを添加して溶解させ、溶液Aとした。
 プロピレングリコール89.74gのアルコール溶媒中に、純水13.73g、硝酸銀67.96gを添加して、27℃で撹拌して溶解させ、銀含有液(溶液B)を得た。
 上記の溶液Aを反応容器に入れ、常温から85℃まで撹拌しながら昇温したのち、溶液Aの中に、溶液Bの全量を1分かけて添加した。溶液Bの添加終了後、さらに撹拌状態を維持して85℃で24時間保持した。その後、反応液を常温まで冷却することで、銀ナノワイヤを合成した。
(洗浄)
 常温まで冷却された上記反応液にアセトンを20倍量添加し15分撹拌した。その後24時間静置した。静置後、濃縮物と上澄みが観察されたため、上澄み部分を除去し、濃縮物を回収した。その濃縮物に1280gの純水を添加し、12時間撹拌後に、アセトンを、濃縮物および1280gの純水の合計質量に対し20倍量添加し、10分撹拌後に24時間静置を行った。静置後、濃縮物と上澄みが観察されたため、上澄み部分を除去し、濃縮物を回収した。上記純水分散、アセトン添加、静置、上澄み除去の操作を10回実施し、濃縮物を得た。この濃縮物を「洗浄後の濃縮物」と呼ぶ。
(前処理)
 クロスフロー循環洗浄を行うための前処理として、重量平均分子量55,000のPVP(ポリビニルピロリドン)を純水中に溶解させた水溶媒を用いて、再分散処理を施した。すなわち、上記PVP濃度が0.5質量%である水溶媒を用意し、この水溶媒約8kgと上記洗浄後の濃縮物200gを混合し、金属銀濃度(銀ナノワイヤと不純物の銀ナノ粒子を含む液中銀濃度)が0.53質量%となる銀ナノワイヤ分散液を調製した。この溶液のPVP濃度は0.49質量%である。
 得られた銀ナノワイヤ分散液を、銀濃度が0.08質量%となるように純水で希釈して、約52kgの銀ナノワイヤ分散液を得た。この分散液を「クロスフロー元液」と呼ぶ。なお、以上の各操作はフッ素樹脂でコーティングされたガラス容器で行った。
(クロスフロー循環洗浄)
 上記の前処理を受けたクロスフロー元液を、図5に示す管路構成を有する装置のタンクに収容したのち、連続的に管路を循環させる方法でクロスフローろ過に供した。ただし、本例では図5の符号3で表示される箇所に9本の管状フィルタを並列に配置し、それぞれの管状フィルタに液を分岐させて処理した。クロスフローろ過フィルタとして使用した管状フィルタは、多孔質セラミックで管壁が形成されており、寸法は長さ500mm、外径12mm、内径9mmである。セラミックの材質はSiC(炭化ケイ素)であり、Micromeritics社製、水銀ポロシメーターを用いて測定した水銀圧入法による平均細孔直径は3.5μmであった。
 水銀圧入法による細孔分布測定の詳細条件は以下の通りである。
 ・測定装置:オートポアIV9510型
 ・測定範囲:φ100~0.01μm、
 ・水銀接触角:130°
 ・水銀表面張力:485dyne/cm、
 ・前処理:300℃×1h(大気中)
 ・測定試料質量:3.5g
 測定精度を十分に確保するため、0.1~40μmの測定範囲では105点の測定データを採取した。ここでいう平均細孔直径はメディアン径である。
 循環させる液状媒体の初期PVP濃度(クロスフロー元液を構成する水溶媒中におけるPVPの質量割合)は770ppmである。タンクに新たな液状媒体を補給しながら循環を行った。上記の管状フィルタ9本を循環流路内に並列に設置した。この管状フィルタ1本あたりに導入される液の流量を13L/minとして循環させた。管状フィルタに導入される液の流速は3495mm/sであった。また、管状フィルタの入り側の管路における圧力(図5の上流側圧力計4で計測される圧力)は0.025MPaであった。補給する液状媒体は重量平均分子量55,000のPVP(ポリビニルピロリドン)を純水中に溶解させた水溶媒であり、補給する水溶媒中のPVP濃度(水溶媒中におけるPVPの質量割合)は50ppmとした。タンクは、ジャケット付タンクであり、ジャケットに冷却水を流すことにより、循環中の液温の上昇を抑制した。また、補給する純水は冷却して10~15℃の温度の冷却純水を使用した。その結果、循環中の液温は20~30℃の範囲であった。このようにして5時間のクロスフロー循環洗浄を行った。循環中に補給した液状媒体の総量は214Lであった。管状フィルタ1本当たりの平均ろ液量は79mL/minであった。
(クロスフロー濃縮)
 5時間のクロスフロー循環洗浄に引き続き、液状媒体の補給を止めた状態でクロスフローろ過による循環を行い、ろ液の排出により液量が減少していくことを利用して銀ナノワイヤ分散液の濃縮を行い、銀ナノワイヤが水溶媒中に分散している水系銀ナノワイヤ分散液を得た。この分散液中の金属銀濃度をICP発光分光分析法(装置:アジレント・テクノロジー株式会社製 ICP発光分光分析装置720-ES)によって測定したところ、銀ナノワイヤの濃度は金属銀換算で0.387質量%であった。この溶液を「分散液A」と呼ぶ。
(銀ナノワイヤの寸法形状)
 平均長さLを以下のようにして測定した。ナノワイヤ分散液をイソプロピルアルコールで銀濃度が0.002%となるように希釈し、Si製の基板上に6μL乗せた後、160℃で1分間乾燥させることにより、SEM観察用サンプルを得た。得られたサンプルを走査電子顕微鏡(日本電子株式会社製;JSM-IT100 InTouchScope)により、加速電圧5kV、倍率1,000倍で観察を行った。無作為に選んだ3以上の視野について、視野内で全長が確認できるすべてのワイヤを測定対象として、ソフトウェア(ドクターカンバス)を用いて、上述の定義に従って平均長さLを求めた。
 平均直径Dを以下のようにして測定した。ナノワイヤ分散液をTEM用の観察台にとり、透過型電子顕微鏡(日本電子株式会社製;JEM-1011)により、加速電圧100kV、倍率40,000倍で明視野像の観察を行って観察画像を採取し、正確に直径を測定するために採取された元画像を2倍のサイズに拡大した上で、ソフトウェア(Motic Image Plus2.1S)を用いて、上述の定義に従って平均直径Dを求めた。
 測定の結果、平均長さLは16μm、Dは23.4nmであった。
(増粘剤熱水処理)
 増粘剤として、メトキシ基21.5質量%、ヒドロキシプロポキシ基30.0質量%に調整されたHPMC(化学メーカーの製造によるもの、重量平均分子量:840,000)を使用した。容器は15LのSUS製槽を使用し、直径135mmのディスクタービン羽を用いた。増粘剤は目開き200μmの篩を使用して篩にかけた後、98℃に加熱した純水6000g中に篩後の増粘剤150g加え、30分間600rpmで撹拌を行った。PFAメッシュに沸騰した純水をかけて温めた後、撹拌後の増粘剤を前記の温めたメッシュにてろ過し回収した。その後、沸騰した純水8000gをメッシュ上の増粘剤にかけた後、70℃で乾燥させて熱水処理済みの増粘剤120gを得た。この増粘剤熱水処理工程を2回に分けて行い、合計240gの熱水処理済み増粘剤を合計240g得た。
(増粘剤溶解)
 増粘剤の溶解には、20LのSUS製槽を使用し、直径150mmのディスクタービン羽を用いた。95℃に加熱した純水9850gに熱水処理済み増粘剤150gを加え、475rpmで撹拌しながら40℃まで放冷したのち、槽のジャケットにチラーにより冷却した冷却水を流すことにより冷却し、12時間撹拌した。撹拌終了時の温度は9℃であった。得られた水溶液をフィルタ(L1P030、濾過精度3.0μm、ロキテクノ社製)で加圧ろ過(設定圧力0.2MPa)し、不溶性成分の除去を行い、増粘剤含有液を得た。この液を「増粘剤元液A」と呼ぶ。増粘剤元液Aにおける増粘剤の濃度は1.24質量%であった。
(銀ナノワイヤ塗工液の調製)
 上記クロスフローろ過によって得られた分散液A2000g、純水233g、増粘剤元液A347gを加え、直径170mmの6枚傾斜羽を使用して150rpmで2時間撹拌した。その後、2-プロパノールの50%水溶液を1720g加え、150rpmで12時間撹拌した。得られた溶液を「銀ナノワイヤ塗工液A」と呼ぶ。銀ナノワイヤ塗工液Aの金属銀濃度をICP発光分光分析法によって測定したところ、銀ナノワイヤ含有量は金属銀換算で0.179質量%であった
(非導電材料元液の調製)
 透光性導電膜を構成する非導電材料の調合のために、以下の樹脂塗料と添加剤を用意した。
 樹脂塗料:フォルシード307C(中国塗料株式会社製、樹脂成分比率50%)
 添加剤:ベンゾトリアゾール基含有シランカップリング剤:X-12-1214A(信越化学工業株式会社製)
 上記樹脂塗料の樹脂成分100質量部に対し、上記添加剤を5質量部混合して非導電材料の液を得た。すなわち、添加剤/樹脂の含有量比は質量割合で0.05となる。この液を「非導電材料元液A」と呼ぶ。
(非導電材料塗工液の作製)
 酢酸ブチルとメチルイソブチルケトンを質量比7:3の割合で混合した希釈用溶媒を作製した。この希釈用溶媒を用いて上記非導電材料元液Aの含有量が0.8質量%となるように希釈した。この希釈後の溶液を「非導電材料塗工液A」と呼ぶ。
(銀ナノワイヤの導電構造体の形成)
 厚さ100μm、寸法150mm×200mmのPETフィルム基材(東レ株式会社製、ルミラーU40)を用意した。上記の銀ナノワイヤ塗工液Aを、ダイコーター塗工機(ダイ門社製、New卓ダイS-100)によりPETフィルム基材上に塗布し、面積100mm×100mmの塗膜を形成した。塗工条件は、ウェット厚:12μm、ギャップ:40μm、速度:10mm/s、タイマー:1.5s、塗工長:100mmとした。塗布後、120℃で1分間乾燥させ、銀ナノワイヤの導電構造体を形成した。この導電構造体を「銀ナノワイヤ導電構造体A」と呼ぶ。
(透光性導電膜の形成)
 PETフィルム基材上に形成された銀ナノワイヤ導電構造体Aの面上に、上記の非導電材料塗工液Aを、ダイコーター塗工機(ダイ門社製、New卓ダイS-100)により塗布し、面積100mm×130mmの塗膜を透明導電膜上に形成した。塗工条件は、ウェット厚:13μm、ギャップ:80μm、速度:50mm/s、タイマー:1.5s、塗工長:130mmとした。塗布後、120℃で1分間乾燥させて、銀ナノワイヤ導電構造体Aの上に非導電材料塗工液Aが塗布された乾燥塗膜を形成させた。PETフィルム基材(寸法150mm×200mm)の、何も塗工されていない部分を切り落とし、中央部に上記乾燥塗膜を有する寸法110mm×210mmのPETフィルム基材を得た。このPETフィルム基材上の乾燥塗膜にUV硬化処理を施し、樹脂を硬化させた。UV硬化処理は、ヘレウス社製のイナートボックス(ETC-QN-G)に上記PETフィルム基材を入れ、10kPa、2分の条件でN置換を行い、ヘレウス社製のUV照射装置(LC6B)にて、照射強度500mW/cm、積算強度400mJ/cmの条件で行った。このようにして、銀ナノワイヤの導電構造体と、上記添加剤と樹脂を含む非導電材料とが一体化してなる透光性導電膜を形成した。
(光耐久性試験)
 上記のPETフィルム基材上に形成した上記の透光性導電膜に対し、耐光性試験機(卓上キセノン耐光性試験機、アトラス・サンテストXLS+、株式会社東洋精機製作所)を用いてキセノンランプによる光の照射を行った。昼光フィルタを使用しており、放射照度の制御範囲は300~800nmの範囲で250~765W/mである。試験条件は、ブラックパネル温度60℃、照射強度550W/m(波長300~800nmの分光放射照度の積算値)、照射時間は250時間、500時間、750時間、1000時間の4水準とした。光照射試験前、および照射時間時t(h)後のシート抵抗測定値から、下記(2)式により定まるシート抵抗変化率A(t)(%)を求めた。この銀ナノワイヤ導電膜のシート抵抗(表面抵抗)は、渦電流式抵抗率測定器(ナプソン社製、EC-80P)により、PETフィルム基材の銀ナノワイヤ導電膜および透明樹脂層形成面とは反対側の面から測定した。
 A(t)=(R(t)-R(0))/R(0)×100 …(2)
 ここで、
 R(0):光照射試験前のシート抵抗(Ω/sq)、
 R(t):t時間の光照射試験直後のシート抵抗(Ω/sq)、
である。
 結果を表1Aに示す。照射時間1000時間でもシート抵抗変化率は100%以下を維持していることから、この透光性導電膜は非常に優れた光耐久性を有すると評価される。
[比較例1]
 非導電材料元液の調製において、添加剤を何も加えなかったこと以外、実施例1と同様の条件で試験を行った。すなわち、添加剤/樹脂の含有量比は質量割合で0となる。結果を表1Aに示す。照射時間750時間でシート抵抗変化率は100%を超えた。
[実施例2]
 非導電材料元液の調製において、添加剤/樹脂の含有量比を質量割合で0.10としたこと以外、実施例1と同様の条件で試験を行った。結果を表1Aに示す。照射時間1000時間でもシート抵抗変化率は100%以下を維持した。
[実施例3]
 非導電材料元液の調製において、添加剤/樹脂の含有量比を質量割合で1.87としたこと以外、実施例1と同様の条件で試験を行った。結果を表1Aに示す。照射時間1000時間でもシート抵抗変化率は100%以下を維持した。
[実施例4]
 非導電材料元液の調製において、添加剤/樹脂の含有量比を質量割合で3.75としたこと以外、実施例1と同様の条件で試験を行った。結果を表1Aに示す。照射時間1000時間でもシート抵抗変化率は100%以下を維持した。ベンゾトリアゾール基含有シランカップリング剤の含有量が樹脂成分よりかなり多くても、優れた光耐久性の改善効果が得られることがわかる。
[比較例2]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214Aに代えて、3-アミノプロピルトリエトキシシラン:KBE-903(信越化学株式会社製)を使用したこと以外、実施例1と同様の条件で試験を行った。結果を表1Aに示す。照射時間1000時間でシート抵抗変化率は100%を超えた。
[比較例3]
 非導電材料元液の調製において、添加剤/樹脂の含有量比を質量割合で1.00としたこと以外、比較例2と同様の条件で試験を行った。結果を表1に示す。照射時間1000時間でシート抵抗変化率は100%を超えた。
[比較例4]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214Aに代えて、長鎖型アミノ基含有トリメトキシシラン:KBM-5783(信越化学株式会社製)を使用したこと以外、実施例1と同様の条件で試験を行った。結果を表1Aに示す。照射時間750時間でシート抵抗変化率は100%を超えた。
[比較例5]
 非導電材料元液の調製において、添加剤/樹脂の含有量比を質量割合で1.00としたこと以外、比較例4と同様の条件で試験を行った。結果を表1Aに示す。照射時間1000時間でシート抵抗変化率は100%を超えた。
[比較例6]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214Aに代えて、N-2-(アミノエチル)-8-アミノオクチルトリメトキシシラン:KBM-6803(信越化学株式会社製)を使用したこと以外、実施例1と同様の条件で試験を行った。結果を表1Aに示す。照射時間500時間でシート抵抗変化率は100%を超えた。
[比較例7]
 非導電材料元液の調製において、添加剤/樹脂の含有量比を質量割合で1.00としたこと以外、比較例6と同様の条件で試験を行った。結果を表1Aに示す。照射時間1000時間でシート抵抗変化率は100%を超えた。
[比較例8]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214Aに代えて、N-フェニル-3-アミノプロピルトリメトキシシラン:KBM-573(信越化学株式会社製)を使用したこと以外、実施例1と同様の条件で試験を行った。結果を表1Aに示す。照射時間500時間でシート抵抗変化率は100%を超えた。
[比較例9]
 非導電材料元液の調製において、添加剤/樹脂の含有量比を質量割合で1.00としたこと以外、比較例8と同様の条件で試験を行った。結果を表1Aに示す。照射時間500時間でシート抵抗変化率は100%を超えた。
[比較例10]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214Aに代えて、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン:KBM-602(信越化学株式会社製)を使用したこと以外、実施例1と同様の条件で試験を行った。結果を表1Aに示す。照射時間750時間でシート抵抗変化率は100%を超えた。
[比較例11]
 非導電材料元液の調製において、添加剤/樹脂の含有量比を質量割合で1.00としたこと以外、比較例10と同様の条件で試験を行った。結果を表1Aに示す。照射時間1000時間でシート抵抗変化率は100%を超えた。
[比較例12]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214Aに代えて、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン:KBM-603(信越化学株式会社製)を使用したこと以外、実施例1と同様の条件で試験を行った。結果を表1Aに示す。照射時間250時間でシート抵抗変化率は100%を超えた。
[比較例13]
 非導電材料元液の調製において、添加剤/樹脂の含有量比を質量割合で1.00としたこと以外、比較例12と同様の条件で試験を行った。結果を表1Aに示す。照射時間500時間でシート抵抗変化率は100%を超えた。
[比較例14]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214Aに代えて、フェニルトリメトキシシラン:KBM-103(信越化学株式会社製)を使用したこと以外、実施例1と同様の条件で試験を行った。結果を表1Bに示す。照射時間500時間でシート抵抗変化率は100%を超えた。
[比較例15]
 非導電材料元液の調製において、添加剤/樹脂の含有量比を質量割合で1.00としたこと以外、比較例14と同様の条件で試験を行った。結果を表1に示す。照射時間500時間でシート抵抗変化率は100%を超えた。
[比較例16]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214Aに代えて、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン:KBE-9103(信越化学株式会社製)を使用したこと以外、実施例1と同様の条件で試験を行った。結果を表1Bに示す。照射時間500時間でシート抵抗変化率は100%を超えた。
[比較例17]
 非導電材料元液の調製において、添加剤/樹脂の含有量比を質量割合で1.00としたこと以外、比較例16と同様の条件で試験を行った。結果を表1Bに示す。照射時間750時間でシート抵抗変化率は100%を超えた。
[比較例18]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214Aに代えて、3-アミノプロピルトリメトキシシラン:KBM-903(信越化学株式会社製)を使用したこと以外、実施例1と同様の条件で試験を行った。結果を表1Bに示す。照射時間500時間でシート抵抗変化率は100%を超えた。
[比較例19]
 非導電材料元液の調製において、添加剤/樹脂の含有量比を質量割合で1.00としたこと以外、比較例18と同様の条件で試験を行った。結果を表1Bに示す。照射時間500時間でシート抵抗変化率は100%を超えた。
[比較例20]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214Aに代えて、メチルトリメトキシシラン:KBM-13(信越化学株式会社製)を使用したこと以外、実施例1と同様の条件で試験を行った。結果を表1Bに示す。照射時間750時間でシート抵抗変化率は100%を超えた。
[比較例21]
 非導電材料元液の調製において、添加剤/樹脂の含有量比を質量割合で1.00としたこと以外、比較例20と同様の条件で試験を行った。結果を表1Bに示す。照射時間250時間でシート抵抗変化率は100%を超えた。
[実施例5]
 非導電材料元液の調製において、添加剤のベンゾトリアゾール基含有シランカップリング剤:X-12-1214Aに加えて、さらに第2の添加剤として2-ヒドロキシ-4-n-オクチルオキシベンゾフェノン(ケミプロ化成株式会社製)を混合したこと以外、実施例1と同様の条件で試験を行った。第2の添加剤/樹脂の含有量比は質量割合で0.05とした。結果を表1Bに示す。照射時間1000時間でもシート抵抗変化率は100%以下を維持した。実施例1よりも優れた光耐久性の改善効果が得られた。
[実施例6]
 非導電材料元液の調製において、第2の添加剤/樹脂の含有量比を質量割合で0.10としたこと以外、実施例5と同様の条件で試験を行った。結果を表1Bに示す。照射時間1000時間でもシート抵抗変化率は100%以下を維持した。
[比較例22]
 非導電材料元液の調製において、樹脂塗料としてフォルシード307Cに代えて、ビームセット1461(荒川化学工業株式会社製、樹脂成分比率80%)を使用したこと、および光耐久性試験において照射時間を250時間の1水準としたこと以外、比較例1と同様の条件で試験を行った。すなわち本例では添加剤を何も加えていない。結果を表2Aに示す。照射時間250時間でシート抵抗変化率は6000%以上となった。
[実施例7]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214A(信越化学工業株式会社製)を混合したこと以外、比較例22と同様の条件で試験を行った。添加剤/樹脂の含有量比は質量割合で0.10とした。結果を表2Aに示す。比較例22に対し、顕著な光耐久性の改善効果が認められた。
[比較例23]
 非導電材料元液の調製において、樹脂塗料としてフォルシード307Cに代えて、ビームセット907L(荒川化学工業株式会社製、樹脂成分比率50%)を使用したこと、および光耐久性試験において照射時間を250時間の1水準としたこと以外、比較例1と同様の条件で試験を行った。すなわち本例では添加剤を何も加えていない。結果を表2Aに示す。照射時間250時間でシート抵抗変化率は400%以上となった。
[実施例8]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214A(信越化学工業株式会社製)を混合したこと以外、比較例23と同様の条件で試験を行った。添加剤/樹脂の含有量比は質量割合で0.10とした。結果を表2Aに示す。比較例23に対し、顕著な光耐久性の改善効果が認められた。
[比較例24]
 非導電材料元液の調製において、樹脂塗料としてビームセット575CB(荒川化学工業株式会社製、樹脂成分比率100%)を使用したこと、および光耐久性試験において照射時間を250時間の1水準としたこと以外、比較例1と同様の条件で試験を行った。すなわち本例では添加剤を何も加えていない。結果を表2Aに示す。照射時間250時間でシート抵抗変化率は1000%以上となった。
[実施例9]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214A(信越化学工業株式会社製)を混合したこと以外、比較例24と同様の条件で試験を行った。添加剤/樹脂の含有量比は質量割合で0.10とした。結果を表2Aに示す。比較例24に対し、顕著な光耐久性の改善効果が認められた。
[比較例25]
 非導電材料元液の調製において、樹脂塗料としてビームセット710(荒川化学工業株式会社製、樹脂成分比率100%)を使用し、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトンを樹脂100質量部に対して5質量部添加したこと、および光耐久性試験において照射時間を250時間の1水準としたこと以外、比較例1と同様の条件で試験を行った。すなわち本例では添加剤を何も加えていない。結果を表2Aに示す。照射時間250時間でシート抵抗変化率は6000%以上となった。
[実施例10]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214A(信越化学工業株式会社製)を混合したこと以外、比較例25と同様の条件で試験を行った。添加剤/樹脂の含有量比は質量割合で0.10とした。結果を表2Aに示す。比較例25に対し、顕著な光耐久性の改善効果が認められた。
[比較例26]
 非導電材料元液の調製において、樹脂塗料としてビームセット371(荒川化学工業株式会社製、樹脂成分比率65%)を使用し、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトンを樹脂100質量部に対して5質量部添加したこと、非導電材料塗工液の作製において、希釈用溶媒として酢酸ブチルとメチルイソブチルケトンの混合液に代えて、メチルエチルケトンを使用したこと、および光耐久性試験において照射時間を250時間の1水準としたこと以外、比較例1と同様の条件で試験を行った。すなわち本例では添加剤を何も加えていない。結果を表2Aに示す。照射時間250時間でシート抵抗変化率は6000%以上となった。
[実施例11]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214A(信越化学工業株式会社製)を混合したこと以外、比較例26と同様の条件で試験を行った。添加剤/樹脂の含有量比は質量割合で0.10とした。結果を表2Aに示す。比較例26に対し、顕著な光耐久性の改善効果が認められた。
[比較例27]
 非導電材料元液の調製において、樹脂塗料としてビームセットXSR-5N(荒川化学工業株式会社製、樹脂成分比率100%)を使用したこと、および光耐久性試験において照射時間を250時間の1水準としたこと以外、比較例1と同様の条件で試験を行った。すなわち本例では添加剤を何も加えていない。結果を表2Aに示す。照射時間250時間でシート抵抗変化率は6000%以上となった。
[実施例12]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214A(信越化学工業株式会社製)を混合したこと以外、比較例27と同様の条件で試験を行った。添加剤/樹脂の含有量比は質量割合で0.10とした。結果を表2Aに示す。比較例27に対し、顕著な光耐久性の改善効果が認められた。
[比較例28]
 非導電材料元液の調製において、樹脂塗料としてビームセットXSR-9(荒川化学工業株式会社製、樹脂成分比率70%)を使用したこと、および光耐久性試験において照射時間を250時間、500時間の2水準としたこと以外、比較例1と同様の条件で試験を行った。すなわち本例では添加剤を何も加えていない。結果を表2Bに示す。照射時間500時間でシート抵抗変化率は6000%以上となった。
[実施例13]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214A(信越化学工業株式会社製)を混合したこと以外、比較例28と同様の条件で試験を行った。添加剤/樹脂の含有量比は質量割合で0.10とした。結果を表2Bに示す。比較例28に対し、顕著な光耐久性の改善効果が認められた。
[比較例29]
 非導電材料元液の調製において、樹脂塗料としてフォルシード301C(中国塗料株式会社製、樹脂成分比率50%)を使用したこと、および光耐久性試験において照射時間を250時間の1水準としたこと以外、比較例1と同様の条件で試験を行った。すなわち本例では添加剤を何も加えていない。結果を表2Bに示す。照射時間250時間でシート抵抗変化率は6000%以上となった。
[実施例14]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214A(信越化学工業株式会社製)を混合したこと以外、比較例29と同様の条件で試験を行った。添加剤/樹脂の含有量比は質量割合で0.10とした。結果を表2Bに示す。比較例29に対し、顕著な光耐久性の改善効果が認められた。
[比較例30]
 非導電材料元液の調製において、樹脂塗料としてフォルシード460C(中国塗料株式会社製、樹脂成分比率50%)を使用したこと、および光耐久性試験において照射時間を250時間の1水準としたこと以外、比較例1と同様の条件で試験を行った。すなわち本例では添加剤を何も加えていない。結果を表2Bに示す。照射時間250時間でのシート抵抗変化率は80%以上であった。
[実施例15]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214A(信越化学工業株式会社製)を混合したこと以外、比較例30と同様の条件で試験を行った。添加剤/樹脂の含有量比は質量割合で0.10とした。結果を表2Bに示す。比較例30に対し、顕著な光耐久性の改善効果が認められた。
[比較例31]
 非導電材料元液の調製において、樹脂塗料としてフォルシード451C(中国塗料株式会社製、樹脂成分比率65%)を使用したこと、および光耐久性試験において照射時間を250時間の1水準としたこと以外、比較例1と同様の条件で試験を行った。すなわち本例では添加剤を何も加えていない。結果を表2Bに示す。照射時間250時間でシート抵抗変化率は300%以上となった。
[実施例16]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214A(信越化学工業株式会社製)を混合したこと以外、比較例31と同様の条件で試験を行った。添加剤/樹脂の含有量比は質量割合で0.10とした。結果を表2Bに示す。比較例31に対し、顕著な光耐久性の改善効果が認められた。
[比較例32]
 非導電材料元液の調製において、樹脂塗料としてフォルシード448C(中国塗料株式会社製、樹脂成分比率40%)を使用したこと、および光耐久性試験において照射時間を250時間の1水準としたこと以外、比較例1と同様の条件で試験を行った。すなわち本例では添加剤を何も加えていない。結果を表2Bに示す。照射時間250時間でシート抵抗変化率は6000%以上となった。
[実施例17]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214A(信越化学工業株式会社製)を混合したこと以外、比較例32と同様の条件で試験を行った。添加剤/樹脂の含有量比は質量割合で0.10とした。結果を表2Bに示す。比較例32に対し、顕著な光耐久性の改善効果が認められた。
[比較例33]
 非導電材料元液の調製において、樹脂塗料として14F098-1(デクセリアルズ株式会社製、樹脂成分比率50%)を使用したこと、および光耐久性試験において照射時間を250時間の1水準としたこと以外、比較例1と同様の条件で試験を行った。すなわち本例では添加剤を何も加えていない。結果を表2Bに示す。照射時間250時間でのシート抵抗変化率は80%以上であった。
[実施例18]
 非導電材料元液の調製において、添加剤としてベンゾトリアゾール基含有シランカップリング剤:X-12-1214A(信越化学工業株式会社製)を混合したこと以外、比較例33と同様の条件で試験を行った。添加剤/樹脂の含有量比は質量割合で0.10とした。結果を表2Bに示す。比較例33に対し、顕著な光耐久性の改善効果が認められた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 1  タンク
 2  ポンプ
 3  クロスフロー濾過フィルタ
 4  上流側圧力計
 5  下流側圧力計
 6  クロスフロー循環洗浄前の銀ナノワイヤ分散液
 7  補給する液状媒体
 10  循環流路
 30  濾液
 100  透明基材
 200  透光性導電膜
 201  導電構造体
 202  非導電材料
 300  保護材
 301  透明接着剤
 302  透明板状体

Claims (6)

  1.  銀ナノワイヤの導電構造体と、ベンゾトリアゾール基を持つケイ素化合物で構成されるシランカップリング剤および樹脂を含む非導電材料と、からなる透光性導電膜。
  2.  前記シランカップリング剤/前記樹脂の含有量比が質量割合で0.01~5.0である、請求項1に記載の透光性導電膜。
  3.  前記銀ナノワイヤは、平均直径が30nm未満、平均長さが6.0μm以上のものである、請求項1に記載の透光性導電膜。
  4.  前記銀ナノワイヤは、ビニルピロリドン構造単位を有する有機保護剤が表面に付着しているものである、請求項1に記載の透光性導電膜。
  5.  前記非導電材料は、さらに2-ヒドロキシ-4-n-オクチルオキシベンゾフェノンを含むものである請求項1に記載の透光性導電膜。
  6.  前記2-ヒドロキシ-4-n-オクチルオキシベンゾフェノン/前記樹脂の含有量比が質量割合で0.01~1.0である請求項5に記載の透光性導電膜。
PCT/JP2019/043233 2018-11-16 2019-11-05 透光性導電膜 WO2020100650A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-216054 2018-11-16
JP2018216054A JP2020087546A (ja) 2018-11-16 2018-11-16 透光性導電膜

Publications (1)

Publication Number Publication Date
WO2020100650A1 true WO2020100650A1 (ja) 2020-05-22

Family

ID=70731562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043233 WO2020100650A1 (ja) 2018-11-16 2019-11-05 透光性導電膜

Country Status (2)

Country Link
JP (1) JP2020087546A (ja)
WO (1) WO2020100650A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7502078B2 (ja) 2020-05-07 2024-06-18 大倉工業株式会社 透明導電体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271872A (ja) * 1995-04-04 1996-10-18 Nippon Oil Co Ltd 透明導電基板
JP2012243459A (ja) * 2011-05-17 2012-12-10 Teijin Dupont Films Japan Ltd 導電性フィルム
WO2015056445A1 (ja) * 2013-10-16 2015-04-23 日立化成株式会社 導電性繊維を含む積層体、感光性導電フィルム、導電パターンの製造方法、導電パターン基板、及びタッチパネル
JP2015174922A (ja) * 2014-03-14 2015-10-05 Dowaエレクトロニクス株式会社 銀ナノワイヤインクの製造方法および銀ナノワイヤインク並びに透明導電塗膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271872A (ja) * 1995-04-04 1996-10-18 Nippon Oil Co Ltd 透明導電基板
JP2012243459A (ja) * 2011-05-17 2012-12-10 Teijin Dupont Films Japan Ltd 導電性フィルム
WO2015056445A1 (ja) * 2013-10-16 2015-04-23 日立化成株式会社 導電性繊維を含む積層体、感光性導電フィルム、導電パターンの製造方法、導電パターン基板、及びタッチパネル
JP2015174922A (ja) * 2014-03-14 2015-10-05 Dowaエレクトロニクス株式会社 銀ナノワイヤインクの製造方法および銀ナノワイヤインク並びに透明導電塗膜

Also Published As

Publication number Publication date
JP2020087546A (ja) 2020-06-04

Similar Documents

Publication Publication Date Title
JP5646510B2 (ja) ハイブリッドコーティング及び関連の塗布方法
JP5114355B2 (ja) 撥水・撥油性コーティング物品およびその製造
TWI498391B (zh) 透明被覆膜形成用塗佈液及附有透明被覆膜之基材
KR101451684B1 (ko) 도전성 잉크 및 이것을 사용한 도전성 피막 부착 기재의 제조방법
CN103992701A (zh) 一种含有纳米粒子的超疏水高分子复合涂层的制备方法及其产品
JP5090808B2 (ja) 光触媒性積層塗膜
TW201249940A (en) Electroconductive member, method for manufacturing the same, touch panel, solar cell and composition containing metal nanowire
JP2018003014A (ja) 銀ナノワイヤインクおよびその製造方法並びに導電膜
JP2009229040A (ja) 熱交換器および熱交換器の製造方法
JP6552186B2 (ja) 塗料組成物、及び超撥水フィルム
JP2019507221A (ja) 光学用途向けナノコンポジット配合物
WO2020100650A1 (ja) 透光性導電膜
KR20190129905A (ko) 은 나노와이어 잉크
CN112210281A (zh) 超亲水涂层组合物
CN106318145A (zh) 一种聚酯型水性乳液、制备方法及其应用
WO2016091104A1 (en) Electrically conductive compositions, process and applications
CN113773437A (zh) 含氟甲基丙烯酸酯聚合物、自清洁涂层及制备方法、应用
JPWO2004044063A1 (ja) 紫外線硬化型帯電防止性ハードコート樹脂組成物
WO2016038898A1 (ja) 組成物
CN107429095A (zh) 用于制备透明导电层的含有处于醇/水混合物中的银纳米线和分散的苯乙烯/(甲基)丙烯酸类共聚物的组合物
KR20100013741A (ko) 졸-겔 법에 의한 스피로피란 함유 광변색 코팅막의제조방법
KR102056972B1 (ko) 도전성 잉크
JP2020087547A (ja) 透光性導電膜
JP2020194734A (ja) 電極付き透光性導電膜
Shimura et al. Additional modification to two-dimensional polymer films of a hydroxymethylbenzene self-assembled monolayer with alkyltriethoxysilanes for enhancing the protective abilities against iron corrosion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883674

Country of ref document: EP

Kind code of ref document: A1