WO2020100190A1 - 排ガス除害装置 - Google Patents
排ガス除害装置 Download PDFInfo
- Publication number
- WO2020100190A1 WO2020100190A1 PCT/JP2018/041828 JP2018041828W WO2020100190A1 WO 2020100190 A1 WO2020100190 A1 WO 2020100190A1 JP 2018041828 W JP2018041828 W JP 2018041828W WO 2020100190 A1 WO2020100190 A1 WO 2020100190A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- heat storage
- exhaust
- gas
- combustion chamber
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G7/00—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
- F23G7/06—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L15/00—Heating of air supplied for combustion
- F23L15/02—Arrangements of regenerators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Definitions
- the present invention mainly relates to an exhaust gas abatement device suitable for abatement treatment of hardly decomposable exhaust gas such as PFCs (perfluoro compounds).
- a heat storage type exhaust gas detoxifying device as described in Patent Document 1 below is known. ..
- This heat storage-type exhaust gas abatement device is provided with a plurality of heat storage chambers having a honeycomb ceramic heat storage body, one end of the heat storage chambers is connected to a combustion chamber having a heating means, and the other end is connected to an exhaust gas supply duct and a treated gas.
- the exhaust duct communicates with each other through an on-off valve, the exhaust gas is supplied to the heat storage chamber, and the exhaust gas of the treated exhaust gas obtained by thermally decomposing the harmful components in the combustion chamber is exhausted in each heat storage chamber by driving the on-off valve. Carry out while switching sequentially.
- the conventional abatement device of this type is also used for the abatement process of exhaust gas discharged from the semiconductor manufacturing process mainly composed of PFCs, and a large amount of exhaust gas that can be thermally decomposed at a relatively low temperature.
- the conventional abatement device of this type is also used for the abatement process of exhaust gas discharged from the semiconductor manufacturing process mainly composed of PFCs, and a large amount of exhaust gas that can be thermally decomposed at a relatively low temperature.
- the exhaust gas to be treated is not directly heated and decomposed by the heat source, but the entire space of the combustion chamber having a certain extent is heated by the heat source and the exhaust gas is heated.
- thermal decomposition temperature as CF 4 It decomposes by being heated when passing through the open space. Therefore, when the abating of thermal decomposition temperature as CF 4 is high, it is necessary to raise the temperature so that the temperature of the entire combustion chamber is equal to or higher than the thermal decomposition temperature of the CF 4, Then, the combustion chamber The heat resistance of the constituent members must be enhanced, and more fuel will be consumed. Further, depending on the type of heat source, it may not be so good at uniformly raising the temperature of the entire combustion chamber to the thermal decomposition temperature of CF 4 , such as non-transferred atmospheric pressure plasma.
- the main object of the present invention is, regardless of the type of heat source, a heat storage type exhaust gas capable of efficiently thermally decomposing harmful components in the exhaust gas, particularly hard-to-decompose components such as high temperature decomposable PFCs, with less fuel consumption. It is to provide an abatement device.
- the present invention configures the exhaust gas abatement device 10 as follows, for example, as shown in FIGS. 1 to 3. It has a heat storage body 16 and has three or more heat storage chambers 18 through which gas flows vertically, and a combustion chamber 22 provided with a heat source 24 for communicating the upper ends of the heat storage chambers 18 and heating the inside thereof.
- the pyrolysis furnace 12 and the exhaust gas E supplied through the exhaust gas supply duct 30 are sequentially supplied to the heat storage chamber 18 at regular time intervals, and after being thermally decomposed in the combustion chamber 22,
- the exhaust gas supply / exhaust mechanism 14 is provided for sending the processed exhaust gas E discharged from the thermal decomposition furnace 12 through the exhaust-side heat storage chamber 18 to which the exhaust gas E is not supplied to the processed gas exhaust duct 32. ..
- the heat storage bodies 16 in each of the heat storage chambers 18 are arranged such that their central axes in the gas flow direction are aligned on a concentric circle, and the top surface of the combustion chamber 22 corresponding to the center of the concentric circles.
- the heat source 24 is arranged at the position.
- each of the heat storage chambers 18 is controlled so that the exhaust side becomes a plurality of chambers with respect to the intake side one chamber to the combustion chamber 22, and the gas flow paths in plan view are as described above.
- the combustion chamber 22 is formed so as to be symmetrical within the concentric circles.
- the heat storage bodies 16 are arranged such that the central axes in the gas flow direction are aligned on a concentric circle, and the heat source 24 is arranged on the top surface of the combustion chamber 22 corresponding to the center of the concentric circle.
- the gas flow path in each heat storage chamber 18 is controlled so that the intake side to the combustion chamber 22 is one chamber and the exhaust side is a plurality of chambers. Since the inner surface of the combustion chamber 22 is formed so as to be symmetrical within the concentric circles described above, most of the exhaust gas E to be treated taken into the combustion chamber 22 via the heat storage chamber 18 on the intake side is It always passes near the heat source 24. Therefore, the heat-decomposable components in the exhaust gas E can be thermally decomposed very efficiently without raising the temperature of the entire combustion chamber to the thermal decomposition temperature of the exhaust gas as in the conventional heat storage type exhaust gas abatement device. be able to.
- the heat source 24 is a non-transfer type plasma torch, and the plasma introduction hole 40 provided on the top surface of the combustion chamber 22 is formed in a tapered shape whose inner diameter increases downward. Is preferred.
- the exhaust gas E passing through the inside of the combustion chamber 22 from the heat storage chamber 18 on the intake side toward the heat storage chamber 18 on the exhaust side is further further discharged from the non-transfer type plasma torch via the plasma introduction hole 40. It passes near the plasma arc 24a supplied into the interior. Since the plasma arc 24a has a very high temperature, the efficiency of removing the exhaust gas E can be further improved.
- a heat storage type exhaust gas abatement apparatus capable of efficiently thermally decomposing toxic components in exhaust gas, particularly difficult-to-decompose components such as high temperature decomposable PFCs, with less fuel consumption regardless of the type of heat source. Can be provided.
- FIG. 1A is a partial cross section figure
- FIG. 1B is the arrow A view in the state which removed the top plate of FIG. 1A.
- FIG. 3 is a diagram showing a three-stage (FIGS. 3A to 3C) exhaust gas flow sequence in the exhaust gas abatement device of one embodiment of the present invention, the upper stage being a perspective view of the combustion chamber in plan view, and the lower stage being a flow chart of the exhaust gas of the entire device.
- FIG. 3 is a diagram showing a three-stage (FIGS. 3A to 3C) exhaust gas flow sequence in the exhaust gas abatement device of one embodiment of the present invention, the upper stage being a perspective view of the combustion chamber in plan view, and the lower stage being a flow chart of the exhaust gas of the entire device.
- FIG. 3 is a diagram showing a three-stage (FIGS. 3A to 3C) exhaust gas flow sequence in the exhaust gas abatement device of one embodiment of the present invention, the upper stage being a perspective view of the combustion chamber in plan
- 1A and 1B show an outline of an exhaust gas abatement apparatus 10 of the present invention
- FIG. 1A is a partial cross-sectional view
- FIG. 1B is a view taken in the direction of arrow A with the top plate of FIG. 1A removed.
- the exhaust gas abatement device 10 is a device that removes the exhaust gas E discharged from an exhaust source (not shown), and is roughly configured by a thermal decomposition furnace 12 and an exhaust gas supply / discharge mechanism 14.
- the exhaust gas abatement device 10 does not limit the type of the exhaust gas E to be treated, but PFCs (perfluoro compound), monosilane (SiH 4 ), chlorine-based gas, etc.
- the thermal decomposition furnace 12 is a device for thermally decomposing the exhaust gas E, and specifically, a high heat resistant material such as metal such as steel (SS), stainless steel (SUS), or Hastelloy (registered trademark of Haynes Co.).
- a high heat resistant material such as metal such as steel (SS), stainless steel (SUS), or Hastelloy (registered trademark of Haynes Co.).
- Has a main body casing 26 formed in a rectangular tube shape or a cylindrical shape (in the illustrated embodiment, an irregular hexagonal tube shape).
- the main body casing 26 is erected so that its axis is oriented in the vertical direction (vertical direction), and a lower heat storage portion 12a and an upper combustion portion 12b are provided inside thereof.
- the heat storage section 12a is divided into a plurality of heat storage chambers 18 (in the illustrated embodiment, three heat storage chambers 18A to 18C; see FIG. 1B) by a plurality of partition walls 28 extending in the vertical direction. To be done.
- a heat storage body 16 is disposed inside the heat storage chamber 18, and the heat storage body 16 serves as a passage for the exhaust gas E.
- the heat storage body 16 is a solid heat storage material of a honeycomb structure formed of a ceramic such as alumina or cordierite, and is formed in a regular square pole shape.
- the central axes in the gas flow direction are arranged in a concentric circle (see FIG. 1B).
- the heat storage body 16 is a solid heat storage body having a honeycomb structure formed of ceramics and formed into a regular square pole shape.
- the heat storage body 16 is thermally decomposed in the pyrolysis furnace 12. If the exhaust gas E to be treated is preheated by absorbing heat from the treated exhaust gas E and storing the heat, the heat and accumulated heat has any shape and structure. However, it is not limited to the above.
- the heat storage bodies 16 that are disposed in the heat storage chambers 18 and serve as the flow passages for the exhaust gas E need to be disposed such that the central axes of the gas flow directions thereof are arranged concentrically.
- the heat storage chamber 18 may be filled with a heat insulating material or the like, if necessary, in a portion other than the flow passage of the exhaust gas E constituted by the heat storage body 16.
- a chamber 54 is connected to a lower portion of the heat storage section 12a, the chamber 54 forming a part of an exhaust gas supply / exhaust mechanism 14 that will be individually communicated with each flow path of the exhaust gas E in each heat storage chamber 18.
- the heat insulating material 34 and the fireproof material 36 are laminated on the inner wall of the main body casing 26 to form the combustion chamber 22 having a predetermined shape.
- the flow of the exhaust gas E in each heat storage chamber 18 is such that one chamber on the intake side to the combustion chamber 22 has a plurality of chambers on the exhaust side (two chambers in the illustrated embodiment).
- the flow path of the exhaust gas E in the combustion chamber 22 in plan view at the time of being formed is formed into an inner surface shape that is symmetrical within a concentric circle passing through the central axis of the gas flow direction of each heat storage body 16 (Fig. 1B and FIG. 2). Therefore, the exhaust gas E flowing through the combustion chamber 22 in plan view always passes near the center of the concentric circle.
- a top plate 38 which is formed by integrally bonding a refractory material 38a inside a metal plate, is bolted to a flange 26a formed at the upper end of the main body casing 26. ..
- the heat source 24 is arranged at a central portion of the top plate 38, that is, at a position corresponding to a central portion (a dotted circle in FIG. 1B) of a concentric circle that passes through the central axes of the heat storage bodies 16 in the gas flow direction in a plan view. Therefore, in combination with the shape of the combustion chamber 22, most of the exhaust gas E flowing through the combustion chamber 22 always passes near the heat source 24.
- the heat source 24 is means for heating the temperature in the combustion chamber 22 to the thermal decomposition temperature of the exhaust gas E to be removed.
- the temperature inside the combustion chamber 22 can be raised up to about 1500 ° C.
- a heater, flame burner, non-transfer type or transfer type plasma torch and the like can be preferably used.
- the plasma introduction hole 40 is formed at the plasma torch installation position on the top plate 38.
- the plasma introduction hole 40 is formed in a tapered shape whose inner diameter expands downward (see FIG.
- the exhaust gas E passing through the combustion chamber 22 from the intake-side heat storage chamber 18 toward the exhaust-side heat storage chamber 18 is further supplied from the plasma torch into the combustion chamber 22 through the plasma introduction hole 40. It passes near the plasma arc 24a.
- Reference numeral 42 in FIG. 1A is a nozzle for introducing a decomposition / reaction auxiliary agent such as water into the combustion chamber 22 as necessary, and reference numeral 44 is a temperature measurement for measuring the temperature in the combustion chamber 22. It is a means.
- the exhaust gas supply / exhaust mechanism 14 sequentially supplies the exhaust gas E supplied through the exhaust gas supply duct 30 to the plurality of heat storage chambers 18A to 18C at regular time intervals and, after being thermally decomposed in the combustion chamber 22,
- the exhaust gas E is a piping system that sends the treated exhaust gas E discharged from the thermal decomposition furnace 12 through the heat storage chamber 18 to which the exhaust gas E is not supplied to the treated gas exhaust duct 32, and in addition to the chamber 54 described above.
- the first to third gas introduction pipes 46A to 46C communicating with the exhaust gas supply duct 30, the corresponding first to third gas introduction on-off valves 48A to 48C, and the processing gas exhaust duct 32. It has first to third gas discharge pipes 50A to 50C and corresponding first to third gas discharge on-off valves 52A to 52C.
- the downstream end of the first gas introduction pipe 46A and the upstream end of the first gas discharge pipe 50A are connected to a chamber 54A that communicates with the passage of the exhaust gas E of the heat storage chamber 18A.
- the downstream end of the second gas introduction pipe 46B and the upstream end of the second gas discharge pipe 50B are communicatively connected to a chamber 54B that communicates with a passage of the exhaust gas E of the heat storage chamber 18B.
- the downstream end of the third gas introduction pipe 46C and the upstream end of the third gas discharge pipe 50C are communicatively connected to a chamber 54C that communicates with a flow passage of the exhaust gas E of the heat storage chamber 18C (FIGS. 1A and 3). reference).
- An exhaust fan (not shown) is connected to the process gas exhaust duct 32, and the inside of the exhaust gas abatement device 10 is always maintained at a pressure (negative pressure) lower than atmospheric pressure by operating this exhaust fan. Be drunk Therefore, the exhaust gas E before the thermal decomposition treatment or the exhaust gas E that has been treated does not accidentally leak out from the exhaust gas abatement device 10.
- the operation switch (not shown) of the exhaust gas detoxifying device 10 is turned on. Then, the heat source 24 of the thermal decomposition furnace 12 is activated to start heating inside the thermal decomposition furnace 12. Subsequently, when the temperature in the combustion chamber 22 reaches the thermal decomposition temperature of the components to be removed contained in the exhaust gas E and a certain amount of heat is accumulated in the heat storage body 16, the exhaust fan is operated to remove the exhaust gas. The introduction of the exhaust gas E into the harm device 10 is started.
- the exhaust gas supply / discharge mechanism 14 is in the state of FIG. 3A, that is, the first gas introduction opening / closing valve 48A, the second gas discharging opening / closing valve 52B, and the third gas discharging opening / closing.
- the valve 52C is opened, and the second gas introduction opening / closing valve 48B, the third gas introduction opening / closing valve 48C, and the first gas discharge opening / closing valve 52A are closed.
- the exhaust gas E supplied through the exhaust gas supply duct 30 is first introduced from the first gas introduction pipe 46A through the chamber 54A into the heat storage chamber 18A, where it is given heat from the heat storage body 16 and is preheated.
- the exhaust gas E which has been subjected to thermal decomposition of a predetermined component to be treated in the combustion chamber 22 and has been treated is distributed between the heat storage chamber 18B and the heat storage chamber 18C, passes through these, and exchanges heat with the heat storage body 16.
- the gas is supplied from the chambers 54B and 54C to the process gas exhaust duct 32 through the second gas exhaust pipe 50B and the third gas exhaust pipe 50C. Then, it is discharged into the atmosphere through an exhaust fan.
- the exhaust gas supply / discharge mechanism 14 switches to the state of FIG. 3B. That is, the second gas introduction opening / closing valve 48B, the first gas discharging opening / closing valve 52A, and the third gas discharging opening / closing valve 52C are opened, and the first gas introduction opening / closing valve 48A, the third gas introduction opening / closing valve 48C, and the second gas are opened.
- the discharge on-off valve 52B is switched to the closed state.
- the exhaust gas E supplied through the exhaust gas supply duct 30 is introduced from the second gas introduction pipe 46B through the chamber 54B into the heat storage chamber 18B, where it is given heat from the heat storage body 16 to be preheated and then burned. It is sent to the chamber 22.
- the exhaust gas E which has been subjected to thermal decomposition of a predetermined component to be treated in the combustion chamber 22 and has been treated is distributed between the heat storage chamber 18A and the heat storage chamber 18C, passes through these, and exchanges heat with the heat storage body 16.
- the gas is supplied from the chambers 54A and 54C to the process gas exhaust duct 32 through the first gas exhaust pipe 50A and the third gas exhaust pipe 50C.
- the exhaust gas supply / discharge mechanism 14 switches to the state of FIG. 3C. That is, the third gas introduction opening / closing valve 48C, the first gas discharging opening / closing valve 52A, and the second gas discharging opening / closing valve 52B are opened, and the first gas introduction opening / closing valve 48A, the second gas introduction opening / closing valve 48B, and the third gas are opened.
- the discharge on-off valve 52C is switched to a closed state.
- the exhaust gas E supplied through the exhaust gas supply duct 30 is introduced from the third gas introduction pipe 46C through the chamber 54C into the heat storage chamber 18C, where heat is given from the heat storage body 16 to be preheated, and then burned. It is sent to the chamber 22.
- the exhaust gas E which has been subjected to thermal decomposition of a predetermined component to be treated in the combustion chamber 22 and has been treated, is distributed between the heat storage chamber 18A and the heat storage chamber 18B, passes through these, and exchanges heat with the heat storage body 16.
- the gas is supplied from the chambers 54A and 54B to the processing gas exhaust duct 32 through the first gas exhaust pipe 50A and the second gas exhaust pipe 50B.
- the exhaust gas supply / discharge mechanism 14 is activated again to switch to the state of FIG. 3A, and during the subsequent operation of the exhaust gas abatement device 10, the above operation is performed at a predetermined time interval. Repeated.
- thermal storage chambers 18 are provided in the thermal decomposition furnace 12, and the gas flow path in each thermal storage chamber 18 is exhausted with respect to one chamber on the intake side to the combustion chamber 22.
- the side is controlled to have two chambers.
- the flow velocity is high in the central portion of the passage and slow in the periphery. From this fact, when the heat storage chamber 18 that has been the flow path on the intake side is switched to the flow path on the exhaust side, the untreated exhaust gas E in the intake air is not pushed to the exhaust side at once, but in the combustion chamber 22. It is exhausted while being mixed with the exhaust gas E after treatment.
- the heat storage chamber 18 is made into one chamber on the intake side and two chambers on the exhaust side, so that the cross-sectional area of the flow path of the exhaust gas E is closer to that on the exhaust side. Will grow. For this reason, the flow velocity of the gas on the exhaust side, which is thermally expanded at the high temperature of the combustion chamber 22, becomes slow, and the exhaust gas E before treatment and the treated exhaust gas E after thermal decomposition are easily mixed. In addition, since heat is applied to the untreated exhaust gas E from the heat storage body 16 in the heat storage chamber 18, a certain amount of the untreated exhaust gas E is thermally decomposed.
- the thermal decomposition furnace 12 is formed of three heat storage chambers 18A to 18C has been shown, but the heat storage chambers 18 are provided in three or more chambers around the axis of the main body casing 26. It is sufficient if it is provided, and although not shown, four, five, or eight chambers may be provided. However, in any of these cases, the heat storage bodies 16 in the heat storage chamber 18 need to be arranged such that their central axes in the gas flow direction are aligned on a concentric circle.
- the exhaust gas E from the exhaust gas supply duct 30 is directly supplied to the thermal decomposition furnace 12, and the exhaust gas E detoxified in the thermal decomposition furnace 12 is directly discharged to the processed gas exhaust duct 32.
- a wet type scrubber for washing the exhaust gas E is provided in at least one of the exhaust gas supply duct 30 and the thermal decomposition furnace 12 or between the thermal decomposition furnace 12 and the treated gas exhaust duct 32. You may do it.
- Exhaust gas abatement device 10: Exhaust gas abatement device, 12: Pyrolysis furnace, 14: Exhaust gas supply / discharge mechanism, 16: Heat storage body, 18: Heat storage chamber, 22: Combustion chamber, 24: Heat source, 30: Exhaust gas supply duct, 32: Process gas exhaust gas Duct, 40: Plasma introduction hole, E: Exhaust gas.
Landscapes
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Incineration Of Waste (AREA)
- Gasification And Melting Of Waste (AREA)
- Treating Waste Gases (AREA)
Abstract
熱源の種類にかかわらず、より少ない燃料消費で排ガス中の有害成分、とりわけ高温分解性のPFCsなどの難分解成分をも効率よく熱分解できる蓄熱式の排ガス除害装置を提供する。すなわち、ガス通流方向の中心軸が同心円上に並ぶように各蓄熱体(16)が配設され、且つ、その同心円の中心に対応する燃焼室(22)の天面の位置に熱源(24)が配置される。各蓄熱室(18)におけるガスの流路が、燃焼室(22)への吸気側1室に対して排気側が複数室となるように制御される。また、そのガスの流路が平面視で上記の同心円内にてシンメトリーとなるように燃焼室(22)の内面が形成される。
Description
本発明は、主としてPFCs(パーフルオロコンパウンド)などの難分解性排ガスの除害処理に好適な排ガス除害装置に関する。
より少ない燃料消費で排ガス中の有害物質を効率よく加熱分解処理(除害)することができる装置として、例えば下記の特許文献1に記載のような蓄熱式の排ガス除害装置が知られている。この蓄熱式の排ガス除害装置は、ハニカム状セラミックス製蓄熱体を有する蓄熱室を複数設け、その蓄熱室の一端を加熱手段を有する燃焼室で連通すると共に、他端を排ガス供給ダクトおよび処理ガス排気ダクトに開閉弁を介して連通し、排ガスの蓄熱室への供給と、前記燃焼室で有害成分を加熱分解した処理済みの排ガスの排気とを、前記開閉弁の駆動により前記各蓄熱室で順次切り換えながら実施する。
しかしながら、上記の従来技術には、次のような問題があった。
すなわち、従来のこの種の除害装置は、PFCsを主体とする半導体製造工程より排出される排ガスの除害処理にも利用されており、比較的低温での熱分解が可能な排ガスの大風量処理には非常に有効であるが、例えばCF4のようにその熱分解に概ね1500℃以上の高温が必要なものの除害にはあまり向いていないという問題があった。なぜなら、この種の除害装置では、処理対象の排ガスを熱源で直接加熱して分解するのではなく、ある程度の広がりを持った燃焼室という空間全体を熱源で加熱すると共に、排ガスがその加熱された空間を通過する際に加熱され分解する。このため、CF4のように熱分解温度が高いものを除害する場合、燃焼室全体の温度がCF4の熱分解温度以上となるように昇温させる必要があるが、そうすると、燃焼室を構成する部材の耐熱性を強化しなければならず、また、多くの燃料を消費することになる。さらには、熱源の種類によっては、例えば非移行型の大気圧プラズマなどのように、燃焼室全体をCF4の熱分解温度まで均一に昇温させるのがあまり得意でない場合もある。
すなわち、従来のこの種の除害装置は、PFCsを主体とする半導体製造工程より排出される排ガスの除害処理にも利用されており、比較的低温での熱分解が可能な排ガスの大風量処理には非常に有効であるが、例えばCF4のようにその熱分解に概ね1500℃以上の高温が必要なものの除害にはあまり向いていないという問題があった。なぜなら、この種の除害装置では、処理対象の排ガスを熱源で直接加熱して分解するのではなく、ある程度の広がりを持った燃焼室という空間全体を熱源で加熱すると共に、排ガスがその加熱された空間を通過する際に加熱され分解する。このため、CF4のように熱分解温度が高いものを除害する場合、燃焼室全体の温度がCF4の熱分解温度以上となるように昇温させる必要があるが、そうすると、燃焼室を構成する部材の耐熱性を強化しなければならず、また、多くの燃料を消費することになる。さらには、熱源の種類によっては、例えば非移行型の大気圧プラズマなどのように、燃焼室全体をCF4の熱分解温度まで均一に昇温させるのがあまり得意でない場合もある。
それゆえに、本発明の主たる目的は、熱源の種類にかかわらず、より少ない燃料消費で排ガス中の有害成分、とりわけ高温分解性のPFCsなどの難分解成分をも効率よく熱分解できる蓄熱式の排ガス除害装置を提供することである。
上記の目的を達成するため、本発明は、例えば、図1から図3に示すように、排ガス除害装置10を次のように構成した。
蓄熱体16を有し、上下方向にガスが通流する3室以上の蓄熱室18と、上記蓄熱室18の上端を連通すると共にその内部を加熱する熱源24が設けられた燃焼室22とで構成された熱分解炉12、及び、排ガス供給ダクト30を通じて供給される排ガスEを上記蓄熱室18に対して一定時間間隔をおいて順次供給すると共に、上記燃焼室22で加熱分解された後、上記排ガスEが供給されていない排気側の蓄熱室18を通過して熱分解炉12から排出される処理済みの排ガスEを処理ガス排気ダクト32へと送給する排ガス給排機構14を具備する。
上記の各蓄熱室18内の蓄熱体16は、それらのガス通流方向の中心軸が同心円上に並ぶよう配設されると共に、その同心円の中心に対応する上記の燃焼室22の天面の位置に熱源24が配置される。また、上記の各蓄熱室18におけるガスの流路は、燃焼室22への吸気側1室に対して排気側が複数室となるように制御されると共に、そのガスの流路が平面視で上記の同心円内にてシンメトリーとなるように上記の燃焼室22が形成される。
蓄熱体16を有し、上下方向にガスが通流する3室以上の蓄熱室18と、上記蓄熱室18の上端を連通すると共にその内部を加熱する熱源24が設けられた燃焼室22とで構成された熱分解炉12、及び、排ガス供給ダクト30を通じて供給される排ガスEを上記蓄熱室18に対して一定時間間隔をおいて順次供給すると共に、上記燃焼室22で加熱分解された後、上記排ガスEが供給されていない排気側の蓄熱室18を通過して熱分解炉12から排出される処理済みの排ガスEを処理ガス排気ダクト32へと送給する排ガス給排機構14を具備する。
上記の各蓄熱室18内の蓄熱体16は、それらのガス通流方向の中心軸が同心円上に並ぶよう配設されると共に、その同心円の中心に対応する上記の燃焼室22の天面の位置に熱源24が配置される。また、上記の各蓄熱室18におけるガスの流路は、燃焼室22への吸気側1室に対して排気側が複数室となるように制御されると共に、そのガスの流路が平面視で上記の同心円内にてシンメトリーとなるように上記の燃焼室22が形成される。
この発明では、ガス通流方向の中心軸が同心円上に並ぶように各蓄熱体16が配設され、且つ、その同心円の中心に対応する燃焼室22の天面の位置に熱源24が配置されると共に、各蓄熱室18におけるガスの流路が、燃焼室22への吸気側1室に対して排気側が複数室となるように制御されるのに加え、そのガスの流路が平面視で上記の同心円内にてシンメトリーとなるように燃焼室22の内面が形成されるので、吸気側の蓄熱室18を経由して燃焼室22内に取り込まれた処理対象の排ガスEの大部分は、必ず熱源24付近を通過するようになる。このため、従来の蓄熱式の排ガス除害装置のように燃焼室全体が排ガスの熱分解温度となるように昇温させなくとも、排ガスE中の熱分解性成分を非常に効率よく熱分解させることができる。
本発明においては、前記の熱源24が、非移行型のプラズマトーチであり、燃焼室22の天面に設けられたプラズマ導入孔40を、下方に向けてその内径が拡大するテーパー状に形成するのが好ましい。
この場合、吸気側の蓄熱室18から排気側の蓄熱室18に向けて燃焼室22内を通過する排ガスEが、より一層、非移行型のプラズマトーチからプラズマ導入孔40を介して燃焼室22内へと供給されるプラズマアーク24a付近を通過するようになる。このプラズマアーク24aは非常に高温であるため、排ガスEの除害効率を一段と向上させることができる。
この場合、吸気側の蓄熱室18から排気側の蓄熱室18に向けて燃焼室22内を通過する排ガスEが、より一層、非移行型のプラズマトーチからプラズマ導入孔40を介して燃焼室22内へと供給されるプラズマアーク24a付近を通過するようになる。このプラズマアーク24aは非常に高温であるため、排ガスEの除害効率を一段と向上させることができる。
さらに、本発明は、後述する実施形態に記載された特有の構成を付加することが好ましい。
本発明によれば、熱源の種類にかかわらず、より少ない燃料消費で排ガス中の有害成分、とりわけ高温分解性のPFCsなどの難分解成分をも効率よく熱分解できる蓄熱式の排ガス除害装置を提供することができる。
以下、本発明の一実施形態を図1から図3によって説明する。
図1は、本発明の排ガス除害装置10の概略を示すもので、図1Aは部分断面図であり、図1Bは図1Aの天板を取り外した状態でのA矢視図である。この排ガス除害装置10は、図示しない排出源より排出される排ガスEを除害処理する装置であり、熱分解炉12,排ガス給排機構14で大略構成される。
なお、この排ガス除害装置10は、処理対象となる排ガスEの種類を限定するものではないが、半導体製造装置から排出されたPFCs(パーフルオロコンパウンド),モノシラン(SiH4),塩素系ガスなどのようにその排出基準が定められている難分解性の排ガスEを除害処理するのに特に好適である。したがって、以下では、この排ガス除害装置10について、半導体製造装置から排出された排ガスEの除害処理に用いるものを念頭に置いて説明する。
また、本明細書及び図面における各符号に関し、各部位を上位概念で示す場合にはアルファベットの枝番をつけずアラビア数字のみで示し、各部位を区別する必要がある場合(すなわち下位概念で示す場合)にはアルファベット大文字の枝番をアラビア数字に付して区別する。
図1は、本発明の排ガス除害装置10の概略を示すもので、図1Aは部分断面図であり、図1Bは図1Aの天板を取り外した状態でのA矢視図である。この排ガス除害装置10は、図示しない排出源より排出される排ガスEを除害処理する装置であり、熱分解炉12,排ガス給排機構14で大略構成される。
なお、この排ガス除害装置10は、処理対象となる排ガスEの種類を限定するものではないが、半導体製造装置から排出されたPFCs(パーフルオロコンパウンド),モノシラン(SiH4),塩素系ガスなどのようにその排出基準が定められている難分解性の排ガスEを除害処理するのに特に好適である。したがって、以下では、この排ガス除害装置10について、半導体製造装置から排出された排ガスEの除害処理に用いるものを念頭に置いて説明する。
また、本明細書及び図面における各符号に関し、各部位を上位概念で示す場合にはアルファベットの枝番をつけずアラビア数字のみで示し、各部位を区別する必要がある場合(すなわち下位概念で示す場合)にはアルファベット大文字の枝番をアラビア数字に付して区別する。
熱分解炉12は、排ガスEを加熱分解するための装置であり、具体的には、例えばスチール(SS)やステンレス(SUS)或いはハステロイ(ヘインズ社登録商標)と言った金属等の高耐熱材料を角筒形状或いは円筒形状(図示実施形態では変則六角筒状)に形成した本体ケーシング26を有する。この本体ケーシング26は、その軸が鉛直方向(上下方向)を向くように立設されており、その内部には、下側の蓄熱部12aと上側の燃焼部12bとが設けられる。このうち、蓄熱部12aは、鉛直方向に延在する複数の隔壁28によってその内部空間が複数の蓄熱室18(図示実施形態の場合は、3つの蓄熱室18A~18C;図1B参照)に区画される。
蓄熱室18の内部には、蓄熱体16が配設され、この蓄熱体16が排ガスEの通流路となる。
蓄熱体16は、アルミナやコーディエライト等と言ったセラミックからなり、正四角柱形状に形成されたハニカム構造の固体蓄熱材であり、各蓄熱室18A~18Cに配設される蓄熱体16は、それらのガス通流方向の中心軸が同心円上に並ぶよう配設される(図1B参照)。換言すれば、各蓄熱体16は、その同心円の中心を通る軸(=本体ケーシング26の軸)周りに回転対称となるように配設されている。
蓄熱体16は、アルミナやコーディエライト等と言ったセラミックからなり、正四角柱形状に形成されたハニカム構造の固体蓄熱材であり、各蓄熱室18A~18Cに配設される蓄熱体16は、それらのガス通流方向の中心軸が同心円上に並ぶよう配設される(図1B参照)。換言すれば、各蓄熱体16は、その同心円の中心を通る軸(=本体ケーシング26の軸)周りに回転対称となるように配設されている。
なお、図示実施形態では、蓄熱体16としてセラミックからなり、正四角柱形状に形成されたハニカム構造の固体蓄熱体を例示しているが、この蓄熱体16は、熱分解炉12内で熱分解された処理済の排ガスEから熱を奪って蓄熱し、蓄熱したその熱で熱分解炉12内に供給される処理対象の排ガスEを予熱できるものであれば、その形状や構造は如何なるものであってもよく、上述したものに限定されるものではない。但し、各蓄熱室18内に配設され、排ガスEの通流路となる蓄熱体16は、そのガス通流方向の中心軸が同心円上に並ぶよう配設させる必要がある。
また、図示はしないが、蓄熱室18内における蓄熱体16で構成された排ガスEの通流路以外の部分に、必要に応じて断熱材などを充填するようにしてもよい。
また、図示はしないが、蓄熱室18内における蓄熱体16で構成された排ガスEの通流路以外の部分に、必要に応じて断熱材などを充填するようにしてもよい。
以上のように構成された蓄熱部12aの内部を区画する隔壁28よりも上側に形成される本体ケーシング26内の空間が、蓄熱室18A~18Cの上端を連通する燃焼室22が形成される燃焼部12bとなる。
また、蓄熱部12aの下部には、各蓄熱室18の排ガスEの通流路それぞれと個別に連通して後述する排ガス給排機構14の一部を形成するチャンバー54が連結されている。
また、蓄熱部12aの下部には、各蓄熱室18の排ガスEの通流路それぞれと個別に連通して後述する排ガス給排機構14の一部を形成するチャンバー54が連結されている。
燃焼部12bの内部では、本体ケーシング26の内壁に、断熱材34や耐火材36が積層され、所定形状の燃焼室22が形成される。具体的には、この燃焼室22は、各蓄熱室18における排ガスEの流れを燃焼室22への吸気側1室に対して排気側が複数室(図示実施形態の場合は2室)となるようにした際の平面視での燃焼室22内の排ガスEの流路が、各蓄熱体16のガス通流方向中心軸を通る同心円内にてシンメトリーとなるような内面形状に形成される(図1Bおよび図2参照)。このため、平面視での燃焼室22を通流する排ガスEは、必ず上記の同心円の中心付近を通るようになっている。
また、燃焼部12bの天面には、金属板の内側に耐火材38aを内貼りして一体化された天板38が、本体ケーシング26の上端に形成されたフランジ26aにボルト止めされている。この天板38の中央部、すなわち、平面視で各蓄熱体16のガス通流方向中心軸を通る同心円の中心部分(図1Bの点線円)に対応する位置に、熱源24が配置される。このため、燃焼室22の形状とも相俟って、燃焼室22を通流する排ガスEの大部分は、必ず熱源24付近を通過するようになる。
熱源24は、燃焼室22内の温度を除害対象の排ガスEの熱分解温度にまで加熱するための手段である。除害対象の排ガスEがPFCsを主体とする半導体製造工程より排出されるものの場合には、燃焼室22内を最大で1500℃前後位まで昇温させることができるものが好ましく、例えば、電熱式ヒーター,火炎式バーナー,非移行型或いは移行型のプラズマトーチなどを好適に用いることができる。
ここで、図示実施形態では、この熱源24としてプラズマアーク24aを噴射する非移行型のプラズマトーチを用いることから、天板38におけるプラズマトーチ設置位置には、プラズマ導入孔40が穿設される。このプラズマ導入孔40は、下方に向けてその内径が拡大するテーパー状にて形成されおり(図1A参照)、これにより、プラズマアーク24aによって天板38内側の耐火材38aが損傷するのを防止できると共に、吸気側の蓄熱室18から排気側の蓄熱室18に向けて燃焼室22内を通過する排ガスEが、より一層、プラズマトーチからプラズマ導入孔40を介して燃焼室22内へと供給されるプラズマアーク24a付近を通過するようになる。因みに、テーパー状に形成するプラズマ導入孔40のテーパー角を120°以上の広角とすることにより、上記の効果がより一層顕著となる。
ここで、図示実施形態では、この熱源24としてプラズマアーク24aを噴射する非移行型のプラズマトーチを用いることから、天板38におけるプラズマトーチ設置位置には、プラズマ導入孔40が穿設される。このプラズマ導入孔40は、下方に向けてその内径が拡大するテーパー状にて形成されおり(図1A参照)、これにより、プラズマアーク24aによって天板38内側の耐火材38aが損傷するのを防止できると共に、吸気側の蓄熱室18から排気側の蓄熱室18に向けて燃焼室22内を通過する排ガスEが、より一層、プラズマトーチからプラズマ導入孔40を介して燃焼室22内へと供給されるプラズマアーク24a付近を通過するようになる。因みに、テーパー状に形成するプラズマ導入孔40のテーパー角を120°以上の広角とすることにより、上記の効果がより一層顕著となる。
なお、図1A中における符号42は、必要に応じて燃焼室22内に水分などの分解・反応補助剤を導入するためのノズルであり、符号44は燃焼室22内の温度を計測する温度計測手段である。
排ガス給排機構14は、排ガス供給ダクト30を通じて供給される排ガスEを複数の蓄熱室18A~18Cに対して一定時間間隔をおいて順次供給すると共に、上記燃焼室22で加熱分解された後、上記排ガスEが供給されていない蓄熱室18を通過して熱分解炉12から排出される処理済みの排ガスEを処理ガス排気ダクト32へと送給する配管系であり、上述したチャンバー54に加え、排ガス供給ダクト30に連通する第1~第3のガス導入配管46A~46Cと、これに対応した第1~第3のガス導入開閉弁48A~48C、および処理ガス排気ダクト32に連通する第1~第3のガス排出配管50A~50Cと、これに対応した第1~第3のガス排出開閉弁52A~52Cとを有する。
このうち、第1ガス導入配管46Aの下流端と第1ガス排出配管50Aの上流端とは、蓄熱室18Aの排ガスEの通流路に連通するチャンバー54Aに連通接続される。また、第2ガス導入配管46Bの下流端と第2ガス排出配管50Bの上流端とは、蓄熱室18Bの排ガスEの通流路に連通するチャンバー54Bに連通接続される。さらに、第3ガス導入配管46Cの下流端と第3ガス排出配管50Cの上流端とは、蓄熱室18Cの排ガスEの通流路に連通するチャンバー54Cに連通接続される(図1Aおよび図3参照)。
上記の処理ガス排気ダクト32には、図示しない排気ファンが接続されており、この排気ファンが稼働することによって排ガス除害装置10の内部が常に大気圧よりも低い圧力(=負圧)に保たれる。このため、熱分解処理前の排ガスEや処理済みで排ガスEなどが誤って排ガス除害装置10から外部へ漏れ出すことがない。
なお、本実施形態の排ガス除害装置10における熱分解炉12内を除く他の部分には、排ガスEに含まれる、或いは排ガスEを分解することによって生じるフッ酸などの腐食性成分による腐食から各部を確実に守るため、塩化ビニル樹脂,ポリエチレン樹脂,不飽和ポリエステル樹脂及びフッ素樹脂などによる耐腐食性のライニングやコーティングを施すのが好ましい。
次に、以上のように構成された排ガス除害装置10を用いて排ガスEの除害処理を行う際には、まず始めに、排ガス除害装置10の運転スイッチ(図示せず)をオンにして熱分解炉12の熱源24を作動させ、熱分解炉12内の加熱を開始する。続いて、燃焼室22内の温度が当該排ガスEに含まれる除害対象成分の熱分解温度に達し、且つ、蓄熱体16にある程度の熱が蓄積されると、排気ファンを作動させ、排ガス除害装置10への排ガスEの導入を開始させる。
ここで、排ガス除害装置10への排ガスE導入開始時に、排ガス給排機構14を図3Aの状態、すなわち、第1ガス導入開閉弁48Aと第2ガス排出開閉弁52Bおよび第3ガス排出開閉弁52Cとを開操作し、第2ガス導入開閉弁48Bおよび第3ガス導入開閉弁48Cと第1ガス排出開閉弁52Aとを閉操作した状態にする。すると、排ガス供給ダクト30を通じて供給される排ガスEは、先ず第1ガス導入配管46Aからチャンバー54Aを通って蓄熱室18Aへと導入され、ここで蓄熱体16より熱を与えられて予熱された後、燃焼室22へと送られる。そして、燃焼室22で所定の処理対象成分が加熱分解されて処理済みと成った排ガスEは、蓄熱室18Bと蓄熱室18Cとを分配されてこれらを通り、蓄熱体16と間で熱交換して冷却された後、チャンバー54Bおよび54Cから第2ガス排出配管50Bおよび第3ガス排出配管50Cを通過して処理ガス排気ダクト32へと与えられる。その後、排気ファンを通って大気中へと放出される。
続いて、上記排ガス除害装置10の稼働開始から所定時間が経過すると、排ガス給排機構14が図3Bの状態へと切り換わる。すなわち、第2ガス導入開閉弁48Bと第1ガス排出開閉弁52Aおよび第3ガス排出開閉弁52Cとを開操作し、第1ガス導入開閉弁48Aおよび第3ガス導入開閉弁48Cと第2ガス排出開閉弁52Bとを閉操作した状態へと切り換わる。そうすると、排ガス供給ダクト30を通じて供給される排ガスEは、第2ガス導入配管46Bからチャンバー54Bを通って蓄熱室18Bへと導入され、そこで蓄熱体16より熱を与えられて予熱された後、燃焼室22へと送られる。そして、燃焼室22で所定の処理対象成分が加熱分解されて処理済みと成った排ガスEは、蓄熱室18Aと蓄熱室18Cとを分配されてこれらを通り、蓄熱体16と間で熱交換して冷却された後、チャンバー54Aおよび54Cから第1ガス排出配管50Aおよび第3ガス排出配管50Cを通過して処理ガス排気ダクト32へと与えられる。
さらに、上記排ガス除害装置10の稼働開始から所定時間が経過すると、排ガス給排機構14が図3Cの状態へと切り換わる。すなわち、第3ガス導入開閉弁48Cと第1ガス排出開閉弁52Aおよび第2ガス排出開閉弁52Bとを開操作し、第1ガス導入開閉弁48Aおよび第2ガス導入開閉弁48Bと第3ガス排出開閉弁52Cとを閉操作した状態へと切り換わる。そうすると、排ガス供給ダクト30を通じて供給される排ガスEは、第3ガス導入配管46Cからチャンバー54Cを通って蓄熱室18Cへと導入され、そこで蓄熱体16より熱を与えられて予熱された後、燃焼室22へと送られる。そして、燃焼室22で所定の処理対象成分が加熱分解されて処理済みと成った排ガスEは、蓄熱室18Aと蓄熱室18Bとを分配されてこれらを通り、蓄熱体16と間で熱交換して冷却された後、チャンバー54Aおよび54Bから第1ガス排出配管50Aおよび第2ガス排出配管50Bを通過して処理ガス排気ダクト32へと与えられる。
以下、所定時間が経過すると、再び排ガス給排機構14が作動して、図3Aの状態へと切り換わり、これ以降の排ガス除害装置10稼働中は、所定時間間隔をおいて上述の動作が繰り返される。
本実施形態の排ガス除害装置10では、熱分解炉12内に蓄熱室18が3室設けられ、各蓄熱室18におけるガスの流路が、燃焼室22への吸気側1室に対して排気側が2室となるように制御される。
一般的に通路を気体が通るとき、その流速は通路の中心部が速く、周囲が遅くなる。このことから、吸気側の流路となっていた蓄熱室18が排気側の流路に切り替わったとき、吸気中の処理前の排ガスEは一気に排気側に押し出されるのではなく、燃焼室22で処理後の排ガスEと混ざりながら排気される。ここで、上述の通り、本実施形態の排ガス除害装置10では、蓄熱室18を吸気側1室に対して排気側2室としているので、排ガスEの流路の断面積は排気側の方が大きくなる。このため、燃焼室22の高温で熱膨張している排気側のガスの流速が遅くなり、処理前の排ガスEと熱分解後の処理済の排ガスEとが混ざり易くなる。加えて、蓄熱室18では蓄熱体16から処理前の排ガスEに熱が与えられているので、その処理前の排ガスEの一定量は熱分解される。その結果、従来の吸気と排気とを切り替える方式の排ガス除害装置で必要とされているパージ処理が不要となる。ここで、吸気側の流路となっていた蓄熱室18を排気側の流路に切り替える際に、ガス導入開閉弁48を閉操作して、導入路を一定期間閉鎖する方法もある。かかる方法では、上記処理前の排ガスEの蓄熱体16による熱分解作用がより一層顕著となる。
一般的に通路を気体が通るとき、その流速は通路の中心部が速く、周囲が遅くなる。このことから、吸気側の流路となっていた蓄熱室18が排気側の流路に切り替わったとき、吸気中の処理前の排ガスEは一気に排気側に押し出されるのではなく、燃焼室22で処理後の排ガスEと混ざりながら排気される。ここで、上述の通り、本実施形態の排ガス除害装置10では、蓄熱室18を吸気側1室に対して排気側2室としているので、排ガスEの流路の断面積は排気側の方が大きくなる。このため、燃焼室22の高温で熱膨張している排気側のガスの流速が遅くなり、処理前の排ガスEと熱分解後の処理済の排ガスEとが混ざり易くなる。加えて、蓄熱室18では蓄熱体16から処理前の排ガスEに熱が与えられているので、その処理前の排ガスEの一定量は熱分解される。その結果、従来の吸気と排気とを切り替える方式の排ガス除害装置で必要とされているパージ処理が不要となる。ここで、吸気側の流路となっていた蓄熱室18を排気側の流路に切り替える際に、ガス導入開閉弁48を閉操作して、導入路を一定期間閉鎖する方法もある。かかる方法では、上記処理前の排ガスEの蓄熱体16による熱分解作用がより一層顕著となる。
なお、上述の実施形態では、熱分解炉12に3室の蓄熱室18A~18Cで形成される場合を示したが、この蓄熱室18は、本体ケーシング26の軸回りに3室以上設けられるものであれば良く、図示しないが4室や5室或いは8室設けるようにしてもよい。但し、これらの何れの場合においても、蓄熱室18内の蓄熱体16は、それらのガス通流方向の中心軸が同心円上に並ぶよう配設される必要がある。
また、上述の実施形態では、排ガス供給ダクト30からの排ガスEを直接、熱分解炉12に供給すると共に、熱分解炉12で除害処理した排ガスEを直接、処理ガス排気ダクト32に放出する場合を示しているが、排ガス供給ダクト30と熱分解炉12との間または熱分解炉12と処理ガス排気ダクト32との間の少なくとも何れか一方に排ガスEを液洗する湿式のスクラバーを設けるようにしてもよい。
その他に、当業者が想定できる範囲で種々の変更を行えることは勿論である。
10:排ガス除害装置,12:熱分解炉,14:排ガス給排機構,16:蓄熱体,18:蓄熱室,22:燃焼室,24:熱源,30:排ガス供給ダクト,32:処理ガス排気ダクト,40:プラズマ導入孔,E:排ガス.
Claims (2)
- 蓄熱体(16)を有し、上下方向にガスが通流する3室以上の蓄熱室(18)と、上記蓄熱室(18)の上端を連通すると共にその内部を加熱する熱源(24)が設けられた燃焼室(22)とで構成された熱分解炉(12)、及び、排ガス供給ダクト(30)を通じて供給される排ガス(E)を上記蓄熱室(18)に対して一定時間間隔をおいて順次供給すると共に、上記燃焼室(22)で加熱分解された後、上記排ガス(E)が供給されていない排気側の蓄熱室(18)を通過して熱分解炉(12)から排出される処理済みの排ガス(E)を処理ガス排気ダクト(32)へと送給する排ガス給排機構(14)を具備する排ガス除害装置であって、
上記の各蓄熱室(18)内の蓄熱体(16)は、それらのガス通流方向の中心軸が同心円上に並ぶよう配設されると共に、その同心円の中心に対応する上記の燃焼室(22)の天面の位置に熱源(24)が配置されており、
上記の各蓄熱室(18)におけるガスの流路は、燃焼室(22)への吸気側1室に対して排気側が複数室となるように制御されると共に、そのガスの流路が平面視で上記の同心円内にてシンメトリーとなるように上記の燃焼室(22)が形成されている、
ことを特徴とする排ガス除害装置。 - 請求項1の排ガス除害装置において、
前記の熱源(24)が、非移行型のプラズマトーチであり、
前記の燃焼室(22)の天面に設けられたプラズマ導入孔(40)が、下方に向けてその内径が拡大するテーパー状に形成されている、ことを特徴とする排ガス除害装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019513856A JP6549344B1 (ja) | 2018-11-12 | 2018-11-12 | 排ガス除害装置 |
PCT/JP2018/041828 WO2020100190A1 (ja) | 2018-11-12 | 2018-11-12 | 排ガス除害装置 |
CN201880095967.9A CN112513528A (zh) | 2018-11-12 | 2018-11-12 | 废气除害装置 |
TW108121459A TW202018232A (zh) | 2018-11-12 | 2019-06-20 | 排廢氣除害裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/041828 WO2020100190A1 (ja) | 2018-11-12 | 2018-11-12 | 排ガス除害装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020100190A1 true WO2020100190A1 (ja) | 2020-05-22 |
Family
ID=67390301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/041828 WO2020100190A1 (ja) | 2018-11-12 | 2018-11-12 | 排ガス除害装置 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6549344B1 (ja) |
CN (1) | CN112513528A (ja) |
TW (1) | TW202018232A (ja) |
WO (1) | WO2020100190A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6814494B1 (ja) * | 2020-03-06 | 2021-01-20 | 株式会社島川製作所 | 有害成分加熱浄化装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002147735A (ja) * | 2000-11-14 | 2002-05-22 | Babcock Hitachi Kk | 蓄熱式燃焼装置 |
CN201836901U (zh) * | 2010-10-14 | 2011-05-18 | 中国石油化工股份有限公司 | 一种蓄热燃烧反应器 |
WO2012120773A1 (ja) * | 2011-03-07 | 2012-09-13 | カンケンテクノ株式会社 | アンモニア除害装置 |
JP2016121859A (ja) * | 2014-12-25 | 2016-07-07 | 株式会社島川製作所 | 有害成分加熱浄化装置 |
JP2017124345A (ja) * | 2016-01-12 | 2017-07-20 | カンケンテクノ株式会社 | 排ガス除害装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2044900A (en) * | 1979-03-28 | 1980-10-22 | Nittetsu Kakoki Kk | Incinerator and method for treating gases for removing impurities |
DE4142136C2 (de) * | 1991-12-20 | 1994-07-21 | Eisenmann Kg Maschbau | Vorrichtung zum Reiniguen schadstoffhaltiger Abluft aus Industrieanlagen durch regenerative Nachverbrennung |
DE102009007725A1 (de) * | 2009-01-28 | 2010-09-09 | Kba-Metalprint Gmbh | Verfahren zum Betreiben einer Oxidationsanlage sowie Oxidationsanlage |
JP5878587B2 (ja) * | 2014-05-20 | 2016-03-08 | 中外炉工業株式会社 | 蓄熱式脱臭装置 |
CN207610221U (zh) * | 2017-12-21 | 2018-07-13 | 上海旭康环保科技有限公司 | 蓄热式热力焚烧有机废气净化设备 |
CN108534155A (zh) * | 2018-04-28 | 2018-09-14 | 苏州华烯环保科技有限公司 | 一种尾气处理rto蓄热式高温焚烧炉结构 |
-
2018
- 2018-11-12 JP JP2019513856A patent/JP6549344B1/ja not_active Expired - Fee Related
- 2018-11-12 CN CN201880095967.9A patent/CN112513528A/zh active Pending
- 2018-11-12 WO PCT/JP2018/041828 patent/WO2020100190A1/ja active Application Filing
-
2019
- 2019-06-20 TW TW108121459A patent/TW202018232A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002147735A (ja) * | 2000-11-14 | 2002-05-22 | Babcock Hitachi Kk | 蓄熱式燃焼装置 |
CN201836901U (zh) * | 2010-10-14 | 2011-05-18 | 中国石油化工股份有限公司 | 一种蓄热燃烧反应器 |
WO2012120773A1 (ja) * | 2011-03-07 | 2012-09-13 | カンケンテクノ株式会社 | アンモニア除害装置 |
JP2016121859A (ja) * | 2014-12-25 | 2016-07-07 | 株式会社島川製作所 | 有害成分加熱浄化装置 |
JP2017124345A (ja) * | 2016-01-12 | 2017-07-20 | カンケンテクノ株式会社 | 排ガス除害装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6549344B1 (ja) | 2019-07-24 |
TW202018232A (zh) | 2020-05-16 |
JPWO2020100190A1 (ja) | 2021-02-15 |
CN112513528A (zh) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1143197B1 (en) | Exhaust gas treating device | |
JP4153942B2 (ja) | 廃ガス処理装置 | |
EP1828680B1 (en) | Reactor design to reduce particle deposition during effluent abatement process | |
KR101036734B1 (ko) | 공정 저감 반응로 | |
WO2002016830A1 (fr) | Procede et dispositif de traitement par combustion des gaz d'echappement | |
JP4579944B2 (ja) | 排ガス処理装置 | |
JP2014190684A (ja) | 除害機能付真空ポンプ | |
JP3864092B2 (ja) | 難燃性物質分解バーナ | |
WO2020100190A1 (ja) | 排ガス除害装置 | |
JP2017124345A (ja) | 排ガス除害装置 | |
WO2022009313A1 (ja) | ガス処理炉及びこれを用いた排ガス処理装置 | |
JP2008253903A (ja) | ガス処理方法およびガス処理装置 | |
WO2022208848A1 (ja) | PFCs含有排ガス処理装置 | |
WO2017068609A1 (ja) | 排ガス処理装置 | |
KR101777283B1 (ko) | 폐가스 선별분리 처리장치 | |
WO2022101981A1 (ja) | ガス処理炉及びこれを用いた排ガス処理装置 | |
KR20100009228A (ko) | 폐가스 처리장치 | |
JP4070698B2 (ja) | 排ガス供給方法とその逆火防止装置 | |
JP5010828B2 (ja) | 焼却設備のダイオキシン類抑制方法 | |
KR100840481B1 (ko) | 반도체공정장비 배기라인의 파우더 제거장치 | |
CN115654517A (zh) | 有机颗粒物废气的处理方法及处理设备 | |
KR20140069810A (ko) | 가스정화장치 | |
KR20230128229A (ko) | 가스 처리 시스템 및 이를 이용한 가스 처리 방법 | |
KR20100011589A (ko) | 폐가스 건식 처리장치 | |
JP2009063091A (ja) | 高温ガス排気部の断熱構造体および該断熱構造体の断熱施工方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019513856 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18940176 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18940176 Country of ref document: EP Kind code of ref document: A1 |