WO2020095869A1 - インホイールモータ駆動装置用ストラット式サスペンション装置 - Google Patents

インホイールモータ駆動装置用ストラット式サスペンション装置 Download PDF

Info

Publication number
WO2020095869A1
WO2020095869A1 PCT/JP2019/043194 JP2019043194W WO2020095869A1 WO 2020095869 A1 WO2020095869 A1 WO 2020095869A1 JP 2019043194 W JP2019043194 W JP 2019043194W WO 2020095869 A1 WO2020095869 A1 WO 2020095869A1
Authority
WO
WIPO (PCT)
Prior art keywords
damper
vehicle
motor drive
strut
drive device
Prior art date
Application number
PCT/JP2019/043194
Other languages
English (en)
French (fr)
Inventor
早織 杉浦
四郎 田村
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2020095869A1 publication Critical patent/WO2020095869A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/18Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram
    • B60G3/28Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram at least one of the arms itself being resilient, e.g. leaf spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel

Definitions

  • the present invention relates to a strut type suspension device that connects an in-wheel motor drive device to a vehicle body side member.
  • FIG. 7 is a schematic view showing a general strut suspension device as viewed in the vehicle width direction.
  • a general strut suspension device includes a damper D and a coil spring S that are coaxially arranged as a strut.
  • the upper end of the damper D is connected to a vehicle body side member (not shown).
  • the lower end of the damper D is connected to a knuckle (also referred to as a wheel support member) (not shown) that rotatably supports the wheel R.
  • a horizontal line Nh and a vertical line Nv that intersect the axis O of the wheel R are shown.
  • the lower end of the knuckle is connected to the outer end of the lower link L extending in the vehicle width direction at the connection point Hp.
  • the inner end of the lower link L is connected to the vehicle body-side member via the pivot Lx.
  • the lower link L swings vertically with the pivot Lx as a fulcrum, and the damper D expands and contracts vertically, so that the wheels R bounce upward or rebound downward when the vehicle is traveling.
  • a straight line passing through the connecting point Hp and the upper end of the damper D constitutes the steering axis K.
  • the axis of the damper D extends so as to substantially coincide with the steering axis K, and is inclined so that the lower end is located in the front of the vehicle and the upper end is located in the rear of the vehicle.
  • the strut suspension device has a center of rotation Cr (also referred to as a center of swing or an instantaneous center of rotation) behind the vehicle as shown in FIG.
  • the intersection of a straight line N1 passing through the upper end of the damper D and orthogonal to the axis of the damper D and a straight line N2 passing through the connecting point Hp of the lower link L and the knuckle and parallel to the pivot axis Lx is the rotation center Cr.
  • the in-wheel motor drive device drives the wheels
  • the wheels R receive a forward driving force Fd parallel to the road surface U at the ground contact point Ru.
  • upward force Fd ⁇ tan ⁇ u is input to the strut suspension device from the wheels, and the strut suspension device swings in the vertical direction. If this happens, the vehicle body will shake up and down, and the riding comfort will deteriorate. This is the same as when the in-wheel motor drive device regenerates by utilizing the rotation of the wheels, and the reverse (downward) force Fd ⁇ tan ⁇ u is input from the wheels to the strut suspension device.
  • the yaw moment of the electric vehicle can be controlled by independently controlling the driving force of the left and right wheels.
  • the above-described vertical force Fd ⁇ tan ⁇ u rolls the electric vehicle. The angle changes and the vehicle attitude becomes unstable.
  • the present invention is to provide a technique of suppressing the vertical force of the wheels associated with the in-wheel motor drive device.
  • a strut suspension device for an in-wheel motor drive device includes a damper that extends in a vertically expandable and contractible manner, has an upper end attached to a vehicle body side member, and a lower end connected to the in-wheel motor drive device. And a spring disposed along the vehicle, and extending in the vehicle width direction below the damper, and an inner end in the vehicle width direction connected to a member on the vehicle body side through a pivot extending in the vehicle front-rear direction, and an outer end in the vehicle width direction.
  • the rotation center of the strut suspension device is moved farther rearward of the vehicle as compared with the conventional case. Is set. Then, when the electric motor of the in-wheel motor drive device is running and regenerating power, the vertical force that the wheel receives at the ground contact point is significantly reduced. As a result, the vertical force that acts on the strut suspension device from the wheels is significantly reduced, and it is possible to prevent the vehicle body from shaking vertically.
  • the pivot of the lower arm is inclined so that it becomes lower toward the rear of the vehicle. According to this aspect, since the pivot is inclined so as to descend rearward, the rotation center of the strut suspension device is set so as to move away from the vehicle rearward as compared with the related art. As another aspect, the pivot may extend horizontally or substantially horizontally in the vehicle front-rear direction.
  • the damper includes a cylinder arranged on the upper side and a piston rod arranged on the lower side and moving forward and backward with respect to the cylinder.
  • the piston rod can be thickened, and the rigidity of the damper is improved.
  • a normal damper may be adopted for the strut.
  • a damper that extends in the vertical direction and has an upper end attached to a vehicle body side member and a lower end coupled to an in-wheel motor drive device, a spring arranged along the damper, and a damper arranged below the damper are provided.
  • a lower arm that extends in the vehicle width direction, an inner end in the vehicle width direction is connected to a vehicle body side member via a pivot that extends in the vehicle front-rear direction, and an outer end in the vehicle width direction is connected to an in-wheel motor drive device via a ball joint;
  • the damper and the spring constitute a strut, and the pivot of the lower arm is inclined so that it becomes lower toward the rear of the vehicle.
  • the rotation center of the strut suspension device is closer to the road surface or coincides with the road surface, as compared with the related art. Then, when the electric motor of the in-wheel motor drive device is running and regenerating power, the vertical force that the wheel receives at the ground contact point is significantly reduced. As a result, the vertical force that acts on the strut suspension device from the wheels is significantly reduced, and it is possible to prevent the vehicle body from shaking vertically.
  • the strut type suspension device of the present invention it is possible to suppress the generation of the vertical force of the wheels due to the in-wheel motor drive device. Therefore, deterioration of riding comfort can be suppressed. Further, when controlling the yaw moment of the electric vehicle by the left and right wheel independent drive control, the roll angle of the electric vehicle is less likely to change, and the vehicle posture can be stabilized.
  • FIG. 1 is an overall view showing a strut type suspension device for an in-wheel motor drive device according to an embodiment of the present invention, showing a state viewed from the vehicle width direction inner side (inboard side).
  • FIG. 2 is a schematic diagram showing the same embodiment and corresponds to FIG.
  • the in-wheel motor drive device 10 is arranged in an inner space of the road wheel W and is drivingly coupled to the road wheel W.
  • Tires T are attached to the outer periphery of the road wheel W.
  • the road wheel W and the tire T form a wheel.
  • the wheels are steered wheels that are steered in the left-right direction by a steering device (not shown) together with the in-wheel motor drive device 10.
  • the in-wheel motor drive device 10 is attached to the strut suspension device 40.
  • the strut type suspension device 40 is arranged on each of a pair of front wheels of the four wheels arranged on the front, rear, left and right of the electric vehicle.
  • the in-wheel motor drive device 10 includes a wheel hub bearing portion 11, a motor portion 21, and a speed reduction portion 31.
  • the wheel hub bearing portion 11 is a rolling bearing that has a rotating wheel, a fixed wheel, and a plurality of rolling elements and supports the vehicle weight, and its axis O extends in the vehicle width direction.
  • the rotating wheel of the wheel hub bearing portion 11 is attached and fixed to the road wheel W.
  • the wheel hub bearing portion 11 is arranged on one side in the axis O direction (outer side in the vehicle width direction / outboard side), and the motor portion 21 is arranged on the other side in the axis O direction (inner side in the vehicle width direction / inboard side) to reduce the speed.
  • the portion 31 is arranged in the central portion in the direction of the axis O.
  • the motor unit 21 is an electric motor and drives the rotating wheel of the wheel hub bearing unit 11.
  • the motor portion 21 is arranged so as to be deviated from the axis O of the wheel hub bearing portion 11 in the vehicle front-rear direction.
  • the motor unit 21 of the present embodiment is arranged so as to be biased toward the vehicle front side of the in-wheel motor drive device 10.
  • the motor rotation shaft of the motor unit extends parallel to the axis O.
  • the speed reducer 31 is a parallel shaft gear reducer, and an input shaft connected to the motor rotation shaft of the motor unit 21, a single or a plurality of intermediate shafts, and an output shaft connected to the rotary wheel are provided on these shafts, respectively. It has a plurality of gears and decelerates the rotation of the input shaft and transmits it to the output shaft.
  • the strut type suspension device 40 has a strut 41 and a lower arm 48.
  • the struts 41 extend in the vertical direction
  • the strut lower ends (damper lower ends) 42 are coupled to the in-wheel motor drive device 10 for the steered wheels
  • the strut upper ends (damper upper ends) 43 are attached to a vehicle body (not shown).
  • the vehicle body is a vehicle body side member when viewed from the strut 41.
  • the vehicle body side member refers to a member that is connected to the vehicle body side when viewed from the members to be described.
  • the strut 41 is a shock absorber, and has a nestable damper 44 and a coil spring 45 surrounding the upper end region of the damper 44.
  • the upper end of the coil spring 45 supports an unillustrated upper coil spring seat provided on the strut upper end 43 (damper upper end).
  • the lower end of the coil spring 45 is supported by the lower coil spring seat 46.
  • the lower coil spring seat 46 is fixed to the damper outer cylinder 44s that occupies the lower end region of the strut 41.
  • the lower end of the damper outer cylinder 44s corresponds to the strut lower end 42.
  • the lower end 42 of the strut is connected to the upper end of the carrier member 60 below the uppermost part of the in-wheel motor drive device 10.
  • the carrier member 60 extends in the vertical direction, the central portion in the vertical direction is connected and fixed to the wheel hub bearing portion 11 of the in-wheel motor drive device 10, and the vehicle weight is transmitted to the wheel hub bearing portion 11.
  • the lower end of the carrier member 60 is rotatably connected to the vehicle width direction outer end 48a of the lower arm 48 via a ball joint 49.
  • the ball joint 49 is arranged below the in-wheel motor drive device 10.
  • the ball joint 49 is arranged in the inner space of the road wheel W.
  • the ball joint 49 is a connection point between the in-wheel motor drive device 10 and the lower arm 48.
  • the lower end of the carrier member 60 is arranged in front of the axis O of the vehicle.
  • the upper end of the carrier member 60 is arranged rearward of the vehicle with respect to the axis O.
  • the center portion of the carrier member 60 may or may not intersect the axis O, but the carrier member 60 is arranged rearward of the vehicle as viewed from the axis O.
  • An arm portion 61 is formed at the center of the carrier member 60 in the vertical direction.
  • the arm portion 61 projects from the carrier member 60 in the vehicle front-rear direction.
  • the arm portion 61 projects rearward of the vehicle.
  • the tip of the arm portion 61 is rotatably connected to a steering device (not shown).
  • the steering device pushes and pulls the arm portion 61 in the vehicle width direction, whereby the in-wheel motor drive device 10 steers left and right.
  • the wheels are steered around the steered axis K together with the in-wheel motor drive device 10, and the electric vehicle turns.
  • the driving force of the left and right in-wheel motor drive devices 10 is controlled independently. This controls the yaw moment of the electric vehicle.
  • the steering axis K is a straight line passing through the strut upper end 43 and the ball joint 49. Since the ball joint 49 is arranged in front of the vehicle with respect to the strut upper end 43, the strut suspension device 40 forms a caster angle ⁇ k.
  • the lower arm 48 is rotatably connected to a subframe (not shown) at two vehicle width direction inner ends 48b and 48c.
  • a straight line passing through the vehicle width direction inner ends 48b, 48c extends in the vehicle front-rear direction and constitutes a pivot Lx.
  • the subframe and the vehicle body are members on the vehicle body side when viewed from the lower arm 48.
  • the lower arm 48 is vertically swingable with the vehicle width direction inner ends 48b and 48c as base ends and the vehicle width direction outer end 48a as a free end.
  • the axis Lx is the swing center. As the lower arm 48 swings in the vertical direction, the struts 41 expand and contract in the vertical direction.
  • the axis line Xs of the coil spring 45 is a straight line passing through the strut upper end 43 and the display point of the axis line O in the vehicle width direction.
  • the lower coil spring seat 46 is arranged so as to be biased toward the front of the vehicle with respect to the axis line Xd of the damper 44.
  • the axis Xs of the coil spring 45 is inclined at an inclination angle ⁇ s with respect to the vertical line Nv intersecting the axis O.
  • the inclination angle ⁇ s of the coil spring 45 and the caster angle ⁇ k satisfy the relationship of Expression 1.
  • the axis line Xs of the coil spring 45 and the steering axis line K match or substantially match.
  • the vehicle weight supported by the struts 41 of the strut suspension device 40 is input along the axis Xs of the coil spring 45 by the intersection of the axis Xs and the axis O or the extension of the axis Xs in the vicinity of the axis O. It is handled by the spring 45. Further, no moment acts on the coil spring 45.
  • the axis line Xs of the coil spring 45 of the present embodiment is arranged in front of the steering axis line K.
  • the axis Xs of the coil spring 45 is arranged rearward of the vehicle with respect to the axis O and coincides with the steered axis K.
  • the lower end 42 of the strut (lower end of the damper 44) is arranged behind the axis O and at the rear end of the in-wheel motor drive device 10. Further, the strut lower end 42 is arranged in front of the vehicle than the strut upper end 43 (upper end of the damper 44). However, the lower end 42 of the strut (lower end of the damper 44) is disposed rearward of the vehicle with respect to the axis Xs of the coil spring 45 and the steering axis K. That is, the axis Xd of the damper 44 is closer to the standing posture than the axis Xs of the coil spring 45 and the steering axis K.
  • the caster angle ⁇ k and the inclination angle ⁇ d of the damper 44 satisfy the relationship of Expression 2.
  • the rotation center Cs of the present embodiment is an intersection of a straight line Ne passing through the strut upper end 43 and perpendicular to the damper axis Xd, and a straight line N2 passing through the ball joint 49 and parallel to the substantially horizontal pivot Lx. ..
  • a straight line passing through the ground contact point Ru and the rotation center Cs forms an inclination angle ⁇ v with respect to the road surface U.
  • the inclination angle ⁇ v is made smaller than the general inclination angle ⁇ u ( ⁇ u> ⁇ v).
  • FIG. 2 additionally shows a general rotation center Cr in addition to the rotation center Cs of the present embodiment.
  • the damper axis of the strut is made substantially equal to the caster angle of the steered axis K, that is, the damper axis of the strut is inclined, so that the rotation center Cr is greater than the rotation center Cs of the present embodiment.
  • the rotation center Cs of the present embodiment is set far behind the general rotation center Cr.
  • the inclination angle ⁇ v of the straight line passing through the ground contact point Ru and the rotation center Cs with respect to the road surface U is made smaller than the general inclination angle ⁇ u ( ⁇ u> ⁇ v).
  • FIG. 3 is an overall view showing a strut type suspension device for an in-wheel motor drive device according to another embodiment of the present invention, showing a state viewed from the vehicle width direction inner side (inboard side).
  • FIG. 4 is a schematic diagram showing the same embodiment and corresponds to FIG. With respect to the other embodiments, configurations common to the above-described embodiments are denoted by the same reference numerals and description thereof will be omitted, and different configurations will be described below.
  • the pivot Lx of the lower arm 48 is horizontal or substantially horizontal, whereas in other embodiments, the pivot Lw of the lower arm 48 is inclined so as to decrease toward the rear of the vehicle. That is, with respect to the vertical positions of the vehicle width direction inner ends 48b, 48c that form the connection point with the vehicle body side member, the vehicle width direction inner end 48c at the rear of the vehicle is lower than the vehicle width direction inner end 48b at the front of the vehicle. Is located in.
  • the lower end 42 of the strut (lower end of the damper 44) is arranged substantially above the axis O and above the in-wheel motor drive device 10.
  • the inclination angle of the damper 44 is equal to the inclination angle ⁇ s of the spring 45.
  • the axis line Xs of the spring 45 coincides with the axis line Xd of the damper 44. Further, these axes Xs and Xd are arranged in the vicinity of the steered axis K, and the above-mentioned formula 2 is established.
  • the center of rotation Ct of the present embodiment is the intersection of the straight line N1 and the straight line Nf that passes through the ball joint 49 and is parallel to the pivot axis Lw.
  • the rotation center Ct is closer to the road surface U than the general rotation center Cr, or coincides with the road surface U. Therefore, even when the motor portion 21 of the in-wheel motor drive device 10 is in power running and the driving force Fd acts on the ground contact point Ru of the tire T, the vertical force acting on the tire T at the ground contact point Ru is substantially reduced. It can be zero. Therefore, the vertical swing of the strut suspension device 40 can be alleviated, and the vertical vibration of the vehicle body side member can be eliminated.
  • FIG. 5 is a schematic vertical sectional view showing the damper 44 taken out, which is common to the embodiments shown in FIGS. 1 and 3.
  • the lower end region of the damper 44 constitutes the outer cylinder 44s.
  • the upper end region of the damper 44 constitutes a cylinder 44c.
  • the cylinder 44c is inserted into the upper end opening of the outer cylinder 44s and moves in and out of the inside of the outer cylinder 44s.
  • the upper end of the cylinder 44c constitutes the strut upper end 43 and is connected to the vehicle body 72 via the cylindrical bush 71.
  • the cylindrical bush 71 includes an outer cylinder, an inner cylinder, and a cylindrical elastic member interposed between these cylinders.
  • the inner cylinder of the cylindrical bush 71 is coaxially fixed to the strut upper end 43 with a bolt.
  • the outer cylinder of the cylindrical bush 71 is fixed to the vehicle body 72 with a bolt.
  • the elastic member of the cylindrical bush 71 is supported from below by an annular thrust bearing 73.
  • the upper coil spring seat 47 supported on the upper end of the coil spring 45 supports the thrust bearing 73 from below.
  • the upper coil spring seat 47 and the thrust bearing 73 are arranged coaxially.
  • a free piston 44p and a piston valve 44v are slidably arranged inside the cylinder 44c.
  • the internal space of the cylinder 44c is partitioned by a free piston 44p into an upper gas chamber G and a lower liquid chamber Q.
  • the liquid chamber Q is filled with damper oil.
  • the piston valve 44v is arranged in the liquid chamber Q and can slide in the vertical direction.
  • the piston valve 44v partitions the liquid chamber Q into an upper chamber and a lower chamber.
  • the piston valve 44v is provided with a port that connects the upper chamber and the lower chamber, and a valve that opens and closes this port.
  • the piston valve 44v is connected to the upper end of the piston rod 44r.
  • the piston rod 44r penetrates the lower end of the cylinder 44c and extends downward.
  • the lower end of the piston rod 44r is fixed to the lower end of the outer cylinder 44s.
  • the gas chamber G and the liquid chamber Q are partitioned by a single-walled cylinder 44c, so the damper 44 is a monotube (single cylinder) damper.
  • the damper 44 is an inverted damper because the cylinder 44c is on the upper side and the piston rod 44r is on the lower side.
  • the outer diameter of the piston rod 44r can be made larger than that of the piston rod of the later-described proportionality, so that the strength of the damper 44 can be increased.
  • FIG. 6 is a vertical cross-sectional view showing a damper in comparison.
  • the proportional damper 51 is not an inverted damper but a normal damper because it has a cylinder 52 on the lower side and a piston rod 53 on the upper side.
  • the cylinder 52 has an inner cylinder 54 and an outer cylinder 56.
  • a piston valve 44v is slidably arranged inside the inner cylinder 54.
  • the inside of the inner cylinder 54 is partitioned into an upper chamber and a lower chamber by a piston valve 44v.
  • the upper and lower chambers are filled with damper oil.
  • the piston valve 44v is connected to the lower end of the piston rod 53.
  • the piston rod 53 projects upward from the upper end of the cylinder 52.
  • the upper end of the piston rod 53 constitutes the upper end of the strut, and is connected to the vehicle body 72 via the cylindrical bush 71.
  • damper oil is stored on the lower side and gas is stored on the upper side.
  • a bottom valve 55 that connects the inside of the inner cylinder 54 and the annular space P is provided at the lower end of the inner cylinder 54.
  • the outer diameter of the piston rod 53 is smaller than the outer diameter of the piston rod 44r as compared with the inverted damper shown in FIG. Therefore, it is difficult to increase the strength of the damper.
  • the present invention is advantageously used in electric vehicles and hybrid vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Vehicle Body Suspensions (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

インホイールモータ駆動装置用ストラット式サスペンション装置(40)は、ストラット(41)およびロアアーム(48)を備える。ストラット(41)は、ダンパ(44)およびスプリング(45)を有する。ダンパ(44)の下端(42)はインホイールモータ駆動装置(10)と結合する。ロアアーム(48)はボールジョイント(49)でインホイールモータ駆動装置(10)と連結する。ボールジョイント(49)はダンパ(44)よりも車両前方に配置される。ダンパ(44)の上端(43)およびボールジョイント(49)を通る直線はインホイールモータ駆動装置(10)、ロードホイール(W)、およびタイヤ(T)の転舵軸線(K)を構成する。ダンパ(44)の下端(42)は転舵軸線(K)よりも車両後方に配置される。

Description

インホイールモータ駆動装置用ストラット式サスペンション装置
 本発明は、インホイールモータ駆動装置を車体側メンバに連結するストラット式サスペンション装置に関する。
 従来のストラット式サスペンション装置として特開2003-118345号公報(特許文献1)に記載されるものが知られている。特許文献1を参照しつつ一般的なストラット式サスペンション装置を図7に例示する。図7は、一般的なストラット式サスペンション装置を車幅方向にみて示す模式図である。一般的なストラット式サスペンション装置は、ストラットとして、同軸配置されるダンパDおよびコイルスプリングSを備える。ダンパDの上端は車体側メンバ(図略)に連結される。ダンパDの下端は、車輪Rを回転自在に支持する図示しないナックル(車輪支持部材ともいう)と結合する。参考のため、車輪Rの軸線Oと交差する水平線Nhおよび鉛直線Nvを示す。
 ナックルの下端は、連結点Hpで、車幅方向に延びるロアリンクLの外端と連結する。ロアリンクLの内端は、枢軸Lxを介して、車体側メンバに連結される。ロアリンクLが枢軸Lxを支点として上下方向に揺動し、ダンパDが上下方向に伸縮することにより、車両走行時に車輪Rは上方へバウンドしたり、下方へリバウンドしたりする。
 連結点HpとダンパDの上端を通る直線は、転舵軸線Kを構成する。ダンパDの軸線は、転舵軸線Kと略一致するように延び、下端が車両前方に位置し、上端が車両後方に位置するよう、傾斜する。
 特許文献1にも記載されるように、ストラット式サスペンション装置は、図7に示すように車両後方に回動中心Cr(揺動中心、あるいは瞬間回転中心ともいう)を有する。ダンパDの上端を通りダンパDの軸線と直交する直線N1と、ロアリンクLとナックルの連結点Hpを通り枢軸Lxと平行な直線N2の交点が、回動中心Crである。
 鉛直線Nvと、水平な路面Uの交点を接地点Ruとすると、図7に示すように車幅方向にみて、回動中心Crと車輪Rの接地点Ruを通る直線(破線)は、路面Uに対し、角度φuで傾斜する。
特開2003-118345号公報 段落0041 図10
 車輪のロードホイールの内空領域に配置されて当該車輪を駆動するインホイールモータ駆動装置を、図7に示す一般的なストラット式サスペンション装置で車体側に連結する場合、以下に説明するような問題が生じることを本発明者は見いだした。
 つまり、インホイールモータ駆動装置が車輪を駆動すると、車輪Rは接地点Ruで路面Uと平行な前向きの駆動力Fdを受ける。そうするとストラット式サスペンション装置には車輪から上向きの力Fd・tanφuが入力され、ストラット式サスペンション装置は上下方向に揺動する。そうすると車体が上下に揺れ、乗り心地が悪化する。インホイールモータ駆動装置が車輪の回転を利用して回生する場合の同様であり、逆方向(下向き)の力Fd・tanφuが車輪からストラット式サスペンション装置に入力される。
 特にインホイールモータ駆動装置を具備する電動車両は、左右輪の駆動力を独立に制御することによって、電動車両のヨーモーメントを制御可能であるところ、上述した上下力Fd・tanφuによって電動車両のロール角が変化してしまい、車両姿勢が不安定になってしまう。
 本発明は、上述の実情に鑑み、インホイールモータ駆動装置に伴う車輪の上下力の発生を抑制する技術を提供することである。
 この目的のため本発明によるインホイールモータ駆動装置用ストラット式サスペンション装置は、上下方向に伸縮可能に延び、上端が車体側メンバに取り付けられ、下端がインホイールモータ駆動装置と結合するダンパと、ダンパに沿って配置されるスプリングと、ダンパよりも下方に配置されて車幅方向に延び、車幅方向内側端が車両前後方向に延びる枢軸を介して車体側メンバに連結され、車幅方向外側端がボールジョイントを介してインホイールモータ駆動装置に連結されるロアアームとを備え、ダンパおよびスプリングはストラットを構成し、ボールジョイントはダンパよりも車両前方に配置され、ダンパの上端およびボールジョイントを通る直線はインホイールモータ駆動装置の転舵軸線を構成し、ダンパの下端は転舵軸線よりも車両後方に配置される。
 かかる本発明によれば、キャスタ角を伴って傾斜する転舵軸線と比較してダンパが立ち姿勢にされるため、従来と比較して、ストラット式サスペンション装置の回動中心が車両後方に遠ざかるよう設定される。そしてインホイールモータ駆動装置の電動モータが力行および回生する際、車輪が接地点で受ける上下力が、格段に小さくされる。これにより車輪からストラット式サスペンション装置に作用する上下力も格段に小さくなり、車体が上下に揺れることを解消することができる。
 本発明の一局面としてロアアームの枢軸は、車両後方に向かうほど低くなるよう傾斜する。かかる局面によれば、枢軸が後方に向かって下がるよう傾斜するため、従来と比較して、ストラット式サスペンション装置の回動中心が車両後方に遠ざかるよう設定される。他の局面として、枢軸は水平または略水平に車両前後方向へ延びていてもよい。
 本発明のさらに好ましい局面としてダンパは、上側に配置されるシリンダと、下側に配置されてシリンダに対し進退動するピストンロッドとを含む。かかる局面によればストラットに倒立式ダンパを採用することから、ピストンロッドを太くすることができ、ダンパの剛性が向上する。他の局面として、ストラットに通常ダンパを採用してもよい。
 その他の発明として、上下方向に延び、上端が車体側メンバに取り付けられ、下端がインホイールモータ駆動装置と結合するダンパと、ダンパに沿って配置されるスプリングと、ダンパよりも下方に配置されて車幅方向に延び、車幅方向内側端が車両前後方向に延びる枢軸を介して車体側メンバに連結され、車幅方向外側端がボールジョイントを介してインホイールモータ駆動装置に連結されるロアアームとを備え、ダンパおよびスプリングはストラットを構成し、ロアアームの枢軸は車両後方に向かうほど低くなるよう傾斜する。かかる発明によれば、従来と比較して、ストラット式サスペンション装置の回動中心が路面に近づくか、路面に一致する。そしてインホイールモータ駆動装置の電動モータが力行および回生する際、車輪が接地点で受ける上下力が、格段に小さくされる。これにより車輪からストラット式サスペンション装置に作用する上下力も格段に小さくなり、車体が上下に揺れることを解消することができる。
 このように本発明のストラット式サスペンション装置によれば、インホイールモータ駆動装置に伴う車輪の上下力の発生を抑制することができる。したがって乗り心地の悪化を抑制することができる。また左右輪独立駆動制御によって電動車両のヨーモーメントをコントロールする際、電動車両のロール角が変化し難くなり、車両姿勢を安定させることができる。
本発明の一実施形態を示す全体図である。 同実施形態を示す模式図である。 本発明の他の実施形態を示す全体図である。 同実施形態を示す模式図である。 本発明に採用されるストラットを示す模式的な縦断面図である。 対比例のストラットを示す模式的な縦断面図である。 一般的なストラット式サスペンション装置を示す模式図である。
 以下、本発明の実施の形態を、図面に基づき詳細に説明する。図1は、本発明の一実施形態になるインホイールモータ駆動装置用ストラット式サスペンション装置を示す全体図であり、車幅方向内側(インボード側)からみた状態を表す。図2は、同実施形態を示す模式図であり、図1に対応する。図1に示すようにインホイールモータ駆動装置10は、ロードホイールWの内空領域に配置され、ロードホイールWと駆動結合する。
 ロードホイールWの外周にはタイヤTが装着される。ロードホイールWおよびタイヤTは車輪を構成する。この車輪は、インホイールモータ駆動装置10とともに、図示しない操舵装置によって左右方向に転舵する転舵輪である。インホイールモータ駆動装置10は、ストラット式サスペンション装置40に取り付けられる。ストラット式サスペンション装置40は、電動車両の前後左右に配置される4輪のうち、1対の前輪にそれぞれ配置される。
 インホイールモータ駆動装置10は、車輪ハブ軸受部11と、モータ部21と、減速部31を備える。車輪ハブ軸受部11は、回転輪と、固定輪と、複数の転動体を有し、車重を支持する転がり軸受であり、その軸線Oが車幅方向に延びる。車輪ハブ軸受部11の回転輪はロードホイールWに取付固定される。車輪ハブ軸受部11は、軸線O方向一方側(車幅方向外側・アウトボード側)に配置され、モータ部21は軸線O方向他方側(車幅方向内側・インボード側)に配置され、減速部31は軸線O方向中央部に配置される。
 モータ部21は電動モータであり、車輪ハブ軸受部11の回転輪を駆動する。モータ部21は、車輪ハブ軸受部11の軸線Oから車両前後方向に偏って配置される。本実施形態のモータ部21はインホイールモータ駆動装置10の車両前側に偏って配置される。モータ部のモータ回転軸は、軸線Oと平行に延びる。減速部31は平行軸歯車減速機であり、モータ部21のモータ回転軸と結合する入力軸と、単数あるいは複数の中間軸と、回転輪と結合する出力軸を、これらの軸にそれぞれ設けられる複数の歯車を有し、入力軸の回転を減速して出力軸に伝達する。
 ストラット式サスペンション装置40は、ストラット41およびロアアーム48を有する。ストラット41は上下方向に延び、ストラット下端(ダンパ下端)42が転舵輪のインホイールモータ駆動装置10と結合し、ストラット上端(ダンパ上端)43が図示しない車体に取り付けられる。なお車体はストラット41からみて車体側メンバである。車体側メンバとは説明する部材からみて車体側に連結される部材をいう。
 ストラット41はショックアブソーバであり、入れ子式のダンパ44と、ダンパ44の上端領域を包囲するコイルスプリング45を有する。コイルスプリング45の上端は、ストラット上端43(ダンパ上端)に設けられる図示しないアッパコイルスプリングシートを支持する。コイルスプリング45の下端はロアコイルスプリングシート46に支持される。ロアコイルスプリングシート46は、ストラット41の下端領域を占めるダンパ外筒44sに固定される。ダンパ外筒44sの下端はストラット下端42に相当する。
 ストラット下端42は、インホイールモータ駆動装置10の最上部よりも下方で、キャリア部材60の上端と結合する。キャリア部材60は上下方向に延び、上下方向中央部がインホイールモータ駆動装置10の車輪ハブ軸受部11に連結固定され、車重を車輪ハブ軸受部11に伝達する。キャリア部材60の下端は、ボールジョイント49を介して、ロアアーム48の車幅方向外側端48aと回動自在に連結する。ボールジョイント49はインホイールモータ駆動装置10よりも下方に配置される。ボールジョイント49はロードホイールWの内空領域に配置される。なおボールジョイント49は、インホイールモータ駆動装置10とロアアーム48との連結点である。
 キャリア部材60の下端は、軸線Oよりも車両前方に配置される。これに対しキャリア部材60の上端部は、軸線Oよりも車両後方に配置される。なおキャリア部材60の中央部は、軸線Oと交差してもよいし、交差しなくてもよいが、軸線Oからみて車両後方に偏って配置される。
 キャリア部材60の上下方向中央部にはアーム部61が形成される。アーム部61はキャリア部材60から車両前後方向に突出する。本実施形態では、アーム部61が車両後方へ突出する。アーム部61の先端は、図示しない操舵装置と回動可能に連結される。操舵装置がアーム部61を車幅方向に押し引きすることによって、インホイールモータ駆動装置10は左右に転舵する。これにより車輪がインホイールモータ駆動装置10とともに、転舵軸線K回りに転舵し、電動車両が旋回走行する。また左右のインホイールモータ駆動装置10は駆動力を独立して制御される。これにより電動車両のヨーモーメントが制御される。
 転舵軸線Kは、ストラット上端43とボールジョイント49を通る直線である。ボールジョイント49はストラット上端43よりも車両前方に配置されることから、ストラット式サスペンション装置40はキャスタ角θkを構成する。
 ロアアーム48は、2箇所の車幅方向内側端48b,48cで図示しないサブフレームに回動可能に連結する。車幅方向内側端48b,48cを通る直線は、車両前後方向に延び、枢軸Lxを構成する。サブフレームおよび車体はロアアーム48からみて車体側メンバである。ロアアーム48は、車幅方向内側端48b,48cを基端とし、車幅方向外側端48aを遊端として、上下方向に揺動可能である。枢軸Lxは揺動中心である。ロアアーム48の上下方向の揺動に伴い、ストラット41は上下方向に伸縮する。
 ここでストラット41につき補足説明すると、図1に示すように車幅方向にみて、コイルスプリング45の軸線Xsは、ストラット上端43と軸線Oの表示点付近を通る直線である。ロアコイルスプリングシート46は、ダンパ44の軸線Xdに対し車両前方に偏って配置される。軸線Oと交差する鉛直線Nvに対し、コイルスプリング45の軸線Xsは傾斜角θsで傾斜する。コイルスプリング45の傾斜角θsとキャスタ角θkは式1の関係を満足する。
[式1] θs≧θk
 本実施形態では、コイルスプリング45の軸線Xsと転舵軸線Kが一致あるいは略一致する。
[式2] 0°≦|θs-θk|≦10°
 軸線Xsと軸線Oが交差するか、あるいは軸線Xsが軸線Oの近傍を延びることにより、ストラット式サスペンション装置40のストラット41が支える車重が、コイルスプリング45の軸線Xsに沿って入力され、コイルスプリング45で受け持たれる。またコイルスプリング45にモーメントが作用しない。
 図示しない対比例として、コイルスプリングの軸線と転舵軸線が交差しないでずれている場合、スプリングはモーメントを受け持つことができず、ダンパがモーメントを受け持つことになる。そうするとダンパが伸縮する際こじられてしまい、もしモーメントが大きければダンパの伸縮に支障が生じる懸念がある。
 図1に示すように本実施形態のコイルスプリング45の軸線Xsは、転舵軸線Kよりも前方に配置される。なお図示はしなかったがθs=θkの場合、コイルスプリング45の軸線Xsは、軸線Oよりも車両後方に配置され、転舵軸線Kに一致する。
 ストラット下端42(ダンパ44下端)は、軸線Oよりも後方、インホイールモータ駆動装置10の後方端に配置される。またストラット下端42は、ストラット上端43(ダンパ44上端)よりも車両前方に配置される。ただしストラット下端42(ダンパ44下端)は、コイルスプリング45の軸線Xsおよび転舵軸線Kよりも車両後方に配置される。つまりダンパ44の軸線Xdは、コイルスプリング45の軸線Xsおよび転舵軸線Kよりも立ち姿勢に近い。キャスタ角θkとダンパ44の傾斜角θdは式2の関係を満足する。
[式3] θk>θd
 図2に示すように本実施形態の回動中心Csは、ストラット上端43を通りダンパ軸線Xdに直角な直線Neと、ボールジョイント49を通り略水平な枢軸Lxに平行な直線N2の交点である。車幅方向にみて、路面Uに対し、接地点Ruと回動中心Csを通る直線は傾斜角φvをなす。傾斜角φvは、一般的な傾斜角φuよりも小さくされる(φu>φv)。ダンパ44が立ち姿勢にされることによる作用として、ストラット式サスペンション装置40の回動中心Csが車両後方へ遠ざけられる。
 参考のため図2には、本実施形態の回動中心Csの他、一般的な回動中心Crを補足して示す。一般的には、ストラットのダンパ軸線が転舵軸線Kのキャスタ角と略等しくされ、つまりストラットのダンパ軸線が傾斜しているため、回動中心Crが本実施形態の回動中心Csよりも車両前方に位置する。本実施形態の回動中心Csは、一般的な回動中心Crよりも遥か後方に設定されることが理解される。また路面Uに対する、接地点Ruと回動中心Csを通る直線の傾斜角φvは、一般的な傾斜角φuよりも小さくされる(φu>φv)ことが理解される。
 本実施形態では、インホイールモータ駆動装置10のモータ部21が力行して、駆動力FdがタイヤTの接地点Ruに作用する場合であっても、接地点RuでタイヤTに作用する上下力Fd・tanφv(駆動力Fdの分力)を格別に小さくすることができる(Fd・tanφv<Fd・tanφu)。したがって、ストラット式サスペンション装置40の上下方向の揺動を緩和し、車体側メンバの上下方向の振動を解消することができる。
 特に左右輪の駆動力を独立して制御する場合において、左右輪の駆動力に差が生じても、電動車両の左右で上下力が異なるという状態を回避することができる。したがって電動車両のロール角の変化を防止することができる。
 次に本発明の他の実施形態を説明する。図3は本発明の他の実施形態になるインホイールモータ駆動装置用ストラット式サスペンション装置を示す全体図であり、車幅方向内側(インボード側)からみた状態を表す。図4は、同実施形態を示す模式図であり、図3に対応する。他の実施形態につき、前述した実施形態と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。
 図1に示す実施形態ではロアアーム48の枢軸Lxが水平あるいは略水平であるのに対し、他の実施形態では、ロアアーム48の枢軸Lwが、車両後方に向かうほど低くなるよう傾斜する。つまり、車体側メンバとの連結点を構成する車幅方向内側端48b,48cの上下方向位置に関し、車両後方の車幅方向内側端48cが、車両前方の車幅方向内側端48bよりも低い位置に配置される。
 ストラット下端42(ダンパ44下端)は、軸線Oの略直上、インホイールモータ駆動装置10の上部に配置される。なおダンパ44の傾斜角は、スプリング45の傾斜角θsに等しい。スプリング45の軸線Xsは、ダンパ44の軸線Xdと一致する。またこれらの軸線Xs,Xdは、転舵軸線Kの近傍に配置され、前述の式2が成立する。
 図4に示すように本実施形態の回動中心Ctは、直線N1と、ボールジョイント49を通り枢軸Lwと平行な直線Nfの交点である。この回動中心Ctは、一般的な回動中心Crよりも路面Uに近いか、路面Uに一致する。このため、インホイールモータ駆動装置10のモータ部21が力行して、駆動力FdがタイヤTの接地点Ruに作用する場合であっても、接地点RuでタイヤTに作用する上下力を略0にすることができる。したがって、ストラット式サスペンション装置40の上下方向の揺動を緩和し、車体側メンバの上下方向の振動を解消することができる。
 図5は、ダンパ44を取り出して示す模式的な縦断面図であり、図1および図3に示す実施形態に共通する。ダンパ44の下端領域は、外筒44sを構成する。ダンパ44の上端領域は、シリンダ44cを構成する。シリンダ44cは外筒44sの上端開口に差し込まれ、外筒44s内部に対し進入したり退出したりする。シリンダ44cの上端は、ストラット上端43を構成し、円筒ブッシュ71を介して車体72に連結される。円筒ブッシュ71は、外筒と、内筒と、これらの筒間に介在する円筒形状の弾性部材を含む。
 円筒ブッシュ71の内筒は、ボルトでストラット上端43に同軸に固定される。円筒ブッシュ71の外筒は、ボルトで車体72に固定される。円筒ブッシュ71の弾性部材は、下方から環状のスラストベアリング73に支持される。コイルスプリング45の上端に支持されるアッパコイルスプリングシート47は、下方からスラストベアリング73を支持する。アッパコイルスプリングシート47とスラストベアリング73は同軸に配置される。
 シリンダ44cの内部には、フリーピストン44pおよびピストンバルブ44vが摺動可能に配置される。シリンダ44cの内部空間は、フリーピストン44pによって、上側のガス室Gと下側の液室Qに仕切られる。液室Qはダンパオイルで満たされる。ピストンバルブ44vは液室Q内に配置され、上下方向に摺動可能である。ピストンバルブ44vは液室Qを上室と下室に仕切る。ピストンバルブ44vには上室と下室を連通するポートと、このポートを開閉するバルブが設けられる。
 ピストンバルブ44vはピストンロッド44rの上端と結合する。ピストンロッド44rは、シリンダ44cの下端を貫通して下方へ延出する。ピストンロッド44rの下端は、外筒44sの下端部に固定される。
 図5に示すようにガス室Gおよび液室Qは一重壁のシリンダ44cによって区画されることから、ダンパ44はモノチューブ(単筒式)ダンパである。またダンパ44は、シリンダ44cを上側とし、ピストンロッド44rを下側とすることから、倒立式ダンパである。倒立式ではピストンロッド44rの外径を、後述する対比例のピストンロッドよりも大きくすることができることから、ダンパ44の強度を大きくすることができる。
 対比例として、ツインチューブ(複筒式)ダンパにつき説明する。図6は対比例のダンパを示す縦断面図である。対比例のダンパ51は、下側にシリンダ52、上側にピストンロッド53を備えるので、倒立式ダンパではなく、通常ダンパである。シリンダ52は内筒54および外筒56を有する。内筒54内部にはピストンバルブ44vが摺動可能に配置される。内筒54内部はピストンバルブ44vで上室と下室に仕切られる。上室および下室はダンパオイルで満たされる。
 ピストンバルブ44vはピストンロッド53の下端と結合する。ピストンロッド53はシリンダ52の上端から上方へ突出する。ピストンロッド53の上端は、ストラット上端を構成し、円筒ブッシュ71を介して車体72に連結される。
 シリンダ52内部は、内筒54および外筒56間の環状空間Pは、下側にダンパオイルが貯留し、上側にガスが貯留する。内筒54の下端には、内筒54内部と環状空間Pを連通するボトムバルブ55が設けられる。
 対比例の通常ダンパでは、図5に示す倒立式ダンパと比較して、ピストンロッド53の外径がピストンロッド44rの外径よりも小さい。このためダンパの強度を大きくすることが困難である。
 以上、図面を参照して本発明の実施の形態を説明したが、本発明は、図示した実施の形態のものに限定されない。図示した実施の形態に対して、本発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。例えば上述した1の実施形態から一部の構成を抜き出し、上述した他の実施形態から他の一部の構成を抜き出し、これら抜き出された構成を組み合わせてもよい。
 本発明は、電気自動車およびハイブリッド車両において有利に利用される。
 10 インホイールモータ駆動装置、11 車輪ハブ軸受部、21 モータ部、31 減速部、40 ストラット式サスペンション装置、41 ストラット、42 ストラット下端(ダンパ下端)、43 ストラット上端(ダンパ上端)、44,51 ダンパ、44c,52 シリンダ、44v ピストンバルブ、45,S コイルスプリング、46 ロアコイルスプリングシート、47 アッパコイルスプリングシート、48 ロアアーム、48b,48c 車幅方向内側端、49 ボールジョイント(連結点)、55 ボトムバルブ、60 キャリア部材、71 円筒ブッシュ、72 車体、73 スラストベアリング、Cr,Cs,Ct 回動中心、Fd 駆動力、G ガス室、K 転舵軸線、Lw,Lx 枢軸、N1,N2,Ne,Nf 直線、O,Xd,Xs 軸線、Nv 鉛直線、P 環状空間、Q 液室、Ru 接地点、T タイヤ(車輪)、U 路面、W ロードホイール。

Claims (4)

  1.  上下方向に伸縮可能に延び、上端が車体側メンバに取り付けられ、下端がインホイールモータ駆動装置と結合するダンパと、
     前記ダンパに沿って配置されるスプリングと、
     前記ダンパよりも下方に配置されて車幅方向に延び、車幅方向内側端が車両前後方向に延びる枢軸を介して車体側メンバに連結され、車幅方向外側端がボールジョイントを介して前記インホイールモータ駆動装置に連結されるロアアームとを備え、
      前記ダンパおよび前記スプリングはストラットを構成し、
      前記ボールジョイントは前記ダンパよりも車両前方に配置され、
      前記ダンパの上端および前記ボールジョイントを通る直線は前記インホイールモータ駆動装置の転舵軸線を構成し、
      前記ダンパの下端は前記転舵軸線よりも車両後方に配置される、インホイールモータ駆動装置用ストラット式サスペンション装置。
  2.  前記枢軸は、車両後方に向かうほど低くなるよう傾斜する、請求項1に記載のインホイールモータ駆動装置用ストラット式サスペンション装置。
  3.  前記ダンパは、上側に配置されるシリンダと、下側に配置されて前記シリンダに対し進退動するピストンロッドとを含む、請求項1または2に記載のインホイールモータ駆動装置用ストラット式サスペンション装置。
  4.  上下方向に延び、上端が車体側メンバに取り付けられ、下端がインホイールモータ駆動装置と結合するダンパと、
     前記ダンパに沿って配置されるスプリングと、
     前記ダンパよりも下方に配置されて車幅方向に延び、車幅方向内側端が車両前後方向に延びる枢軸を介して車体側メンバに連結され、車幅方向外側端がボールジョイントを介して前記インホイールモータ駆動装置に連結されるロアアームとを備え、
     前記ダンパおよび前記スプリングはストラットを構成し、
     前記枢軸は、車両後方に向かうほど低くなるよう傾斜する、インホイールモータ駆動装置用ストラット式サスペンション装置。
PCT/JP2019/043194 2018-11-08 2019-11-05 インホイールモータ駆動装置用ストラット式サスペンション装置 WO2020095869A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018210597A JP2020075640A (ja) 2018-11-08 2018-11-08 インホイールモータ駆動装置用ストラット式サスペンション装置
JP2018-210597 2018-11-08

Publications (1)

Publication Number Publication Date
WO2020095869A1 true WO2020095869A1 (ja) 2020-05-14

Family

ID=70611109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043194 WO2020095869A1 (ja) 2018-11-08 2019-11-05 インホイールモータ駆動装置用ストラット式サスペンション装置

Country Status (2)

Country Link
JP (1) JP2020075640A (ja)
WO (1) WO2020095869A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472814A (en) * 1977-11-24 1979-06-11 Honda Motor Co Ltd Strutted suspension for drive wheel
JPS57174107U (ja) * 1981-04-28 1982-11-02
JPH01244911A (ja) * 1988-02-09 1989-09-29 Dr Ing H C F Porsche Ag 自動車の駆動前車軸用の車輪懸架装置
JPH02225116A (ja) * 1988-11-09 1990-09-07 Daihatsu Motor Co Ltd 自動車ストラット型前輪懸架装置
DE4402993A1 (de) * 1994-02-01 1995-08-03 Bayerische Motoren Werke Ag Federbein und damit versehene Radaufhängung
JP2004340240A (ja) * 2003-05-15 2004-12-02 Kayaba Ind Co Ltd ストラット型ショックアブソーバにおけるスプリングシートの溶接固定方法
JP2017171272A (ja) * 2016-03-22 2017-09-28 Ntn株式会社 インホイールモータ駆動装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472814A (en) * 1977-11-24 1979-06-11 Honda Motor Co Ltd Strutted suspension for drive wheel
JPS57174107U (ja) * 1981-04-28 1982-11-02
JPH01244911A (ja) * 1988-02-09 1989-09-29 Dr Ing H C F Porsche Ag 自動車の駆動前車軸用の車輪懸架装置
JPH02225116A (ja) * 1988-11-09 1990-09-07 Daihatsu Motor Co Ltd 自動車ストラット型前輪懸架装置
DE4402993A1 (de) * 1994-02-01 1995-08-03 Bayerische Motoren Werke Ag Federbein und damit versehene Radaufhängung
JP2004340240A (ja) * 2003-05-15 2004-12-02 Kayaba Ind Co Ltd ストラット型ショックアブソーバにおけるスプリングシートの溶接固定方法
JP2017171272A (ja) * 2016-03-22 2017-09-28 Ntn株式会社 インホイールモータ駆動装置

Also Published As

Publication number Publication date
JP2020075640A (ja) 2020-05-21

Similar Documents

Publication Publication Date Title
CN102317091B (zh) 悬架装置
JP6979500B2 (ja) 車両サスペンション
JP5435148B2 (ja) 車両のサスペンション装置
US7878511B2 (en) Wheel suspension
JP5784509B2 (ja) 自動車用サスペンション
GB2533477A (en) Suspension systems for laterally tiltable multitrack vehicles
CN103722997B (zh) 车辆的扭矩梁式悬架
CN103895785A (zh) 车辆的转向装置
JP2008183985A (ja) 車両用駆動装置の配設構造
WO2020095869A1 (ja) インホイールモータ駆動装置用ストラット式サスペンション装置
JP6061724B2 (ja) 自動三輪車とそのロール減衰装置
KR20120032340A (ko) 능동제어 서스펜션 시스템
WO2019082566A1 (ja) 小型車両
KR101316219B1 (ko) 인-링크 모터 독립현가장치
CN107848351A (zh) 车辆
JP4647279B2 (ja) リヤサスペンション
JP2007106193A (ja) 操舵輪用サスペンション装置
JP2016011044A (ja) 車両用操舵装置
JP4301874B2 (ja) サスペンション
JP2019026196A (ja) 車両のサスペンション装置
JP4236523B2 (ja) サスペンション
JP2024504415A (ja) 小型車両サスペンションシステム
KR20080109965A (ko) 멀티 링크타입 후륜 현가장치
RU2651952C1 (ru) Компенсирующий механизм подвески транспортного средства
GB2607076A (en) Vehicle wheel suspension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881904

Country of ref document: EP

Kind code of ref document: A1