WO2020094040A1 - 一种基于芯片引物表面萃取的基因高通量合成方法 - Google Patents

一种基于芯片引物表面萃取的基因高通量合成方法 Download PDF

Info

Publication number
WO2020094040A1
WO2020094040A1 PCT/CN2019/115911 CN2019115911W WO2020094040A1 WO 2020094040 A1 WO2020094040 A1 WO 2020094040A1 CN 2019115911 W CN2019115911 W CN 2019115911W WO 2020094040 A1 WO2020094040 A1 WO 2020094040A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
chip
clusters
primers
cluster
Prior art date
Application number
PCT/CN2019/115911
Other languages
English (en)
French (fr)
Inventor
王建鹏
范玉峰
吴政宪
Original Assignee
南京金斯瑞生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京金斯瑞生物科技有限公司 filed Critical 南京金斯瑞生物科技有限公司
Priority to CN201980072942.1A priority Critical patent/CN113166803B/zh
Publication of WO2020094040A1 publication Critical patent/WO2020094040A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the invention relates to the field of gene synthesis, in particular to chip primer synthesis and a gene high-throughput automated synthesis method based on the chip primer.
  • Gene synthesis is usually based on polymerase chain assembly (PCA) and polymerase chain reaction (PCR), and the pre-designed primer sequences are spliced into the target gene sequence according to the method of complementary pairing of the two heads and tails.
  • the primers in conventional gene synthesis are synthesized by column, and the primers are mixed one by one. Because the scale of primer synthesis (25nmol) is much larger than the amount of primers required for gene synthesis (50pmol), conventional gene synthesis has the disadvantages of low throughput, high cost, and complicated operations.
  • a high-throughput gene synthesis method has been developed, which relies on a high-throughput primer synthesis platform, which can synthesize tens of thousands or even millions of primers in an area of only a few square centimeters to tens of On a square centimeter chip, the synthesis scale of each primer is at the fmol level, which greatly reduces the cost of primer synthesis.
  • the primers are divided into several libraries by methods such as specific PCR, and each library contains all the primer sequences required to synthesize a target gene. After removing the tag sequence on the primers by means such as enzyme digestion, the primer library Assemble the corresponding target genes one by one (Nature, 2004, 1050-1054).
  • One aspect of the present invention provides a gene high-throughput synthesis method based on surface extraction of chip primers.
  • the method includes classifying primers into clusters and synthesizing them in different regions of the chip.
  • the aminolysis method cuts the primer clusters on the chip and then uses The transfer workstation dissolves the primers of different clusters, and transfers the dissolved primer clusters to a separate reaction vessel suitable for gene synthesis, and performs a gene synthesis reaction under conditions suitable for gene synthesis to harvest the synthesized target gene fragments .
  • the primers classified by clusters are primer clusters encoding multiple gene fragments of interest, wherein each primer cluster contains all primers encoding the same gene fragment of interest.
  • the different primer clusters are synthesized in different areas of the chip, with blank areas left between the different areas. In some embodiments, multiple hydrophobic groups are synthesized on the blank area.
  • At the time of synthesizing primers on the chip at least one additional linker that can be cleaved by aminolysis and at least 3 dT are added as protective bases at the 3 'end of each primer.
  • an additional 2, 3, 4, or 5 connecting arms and 3, 4, 5 can be added to the 3 'end of the primer which can be cleaved by ammonolysis Or 6 dT as protective bases.
  • an additional 2 linking arms cleavable by aminolysis and 5 dT are added to the 3 'end of the primer as protective bases.
  • the linking arm is selected from any structure that allows the primer to generate a 3 'free hydroxyl group after aminolysis, preferably a structure based on a phosphoramidite structure and capable of providing a 3' free hydroxyl group, and more preferably a succinylhexylamine phosphoramidite.
  • the primer cleaved by the aminolysis method contains a 3 'free hydroxyl group.
  • the ammonolysis method is ammonolysis with a water-free aminating agent; preferably, the aminating agent is selected from ammonia gas, monomethylamine, and more preferably monomethylamine.
  • the ammonolysis is performed in a high-pressure reaction vessel filled with an aminating agent.
  • the ammonolysis is ammonolysis at 25 ° C-120 ° C and 20-120 psi for 15 minutes to 4 hours; preferably, the ammonolysis is at 60 ° C-90 ° C and 20-60 psi Aminolysis under conditions of 1-4 hours; more preferably, the ammonolysis is ammonolysis under conditions of 80 ° C and 40 psi for 3 hours.
  • the liquid transfer workstation in the gene high-throughput synthesis method is a sampler. In some embodiments, the liquid transfer workstation is a Biodot AD1500 sample stage. In one embodiment, the ammolyzed chip is placed on a sampling platform, and after position correction, the solvent that dissolves the primer is transferred.
  • the solvent used for primer dissolution is selected from solvents that can perform PCR reactions, preferably TE solution or distilled water, and more preferably distilled water.
  • the primer dissolution includes using a sampler to add 10-1000 nL of a solvent, such as distilled water, to each primer cluster dropwise, and let it dissolve by blowing with a needle after standing for 0.5-3 minutes.
  • the primer dissolution includes adding 50 nL of distilled water dropwise to each primer cluster using a sampling machine, and after standing for 1 minute, it is dissolved by blowing with a needle.
  • the independent reaction vessel suitable for gene synthesis is a well of a multi-well plate, and may be selected from 96-well plates, 24-well plates, and 384-well plates.
  • the step of transferring to a separate reaction vessel suitable for gene synthesis includes adjusting the height of the needle of the liquid transfer workstation to the surface of the chip and sucking the dissolution liquid from the chip into a multi-well plate.
  • the sampling needle is further washed by a cleaning procedure, and then the primer dissolution and transfer steps are repeated until all primer clusters are completely transferred.
  • the gene synthesis step includes adding a gene synthesis reaction solution and / or F / R primers of the gene fragment of interest to each independent reaction vessel to perform a synthesis reaction.
  • the gene synthesis reaction solution is selected from PCA reaction solution and PCR reaction solution.
  • the gene synthesis step includes adding a PCA reaction solution to each reaction vessel, allowing the primer cluster to perform an assembly reaction, and then adding a PCR reaction solution and F / R primers of the target gene fragment to perform a PCR reaction.
  • Another aspect of the present invention provides a gene high-throughput synthesis method based on chip primer surface extraction, including the following steps:
  • primer clusters Synthesize primer clusters encoding multiple target gene fragments on the chip, where each primer cluster contains all primers encoding the same target gene fragment, and primer clusters encoding different target gene fragments are synthesized in different regions of the chip;
  • a blank area is left between the different areas of step 1).
  • multiple hydrophobic groups are synthesized on the blank area.
  • step 1) when the primers are synthesized on the chip, at least one connecting arm cleavable by aminolysis and at least three dTs are added as protective bases at the 3 'end of each primer. In some embodiments, an additional 2, 3, 4, or 5 linking arms cleavable by aminolysis and 3, 4, 5, or 6 dT are added as protective bases at the 3 'end of each primer base. In some embodiments, when synthesizing the primer on the chip, an additional 2 linking arms cleavable by ammonolysis and 5 dT are added as protective bases at the 3 'end of the primer.
  • the linking arm is selected from any group that allows the primer to generate a 3 'free hydroxyl group, preferably a structure based on a phosphoramidite structure and capable of providing a 3' free hydroxyl group, and more preferably a succinylhexylamine phosphoramidite.
  • the primer cleaved by the aminolysis method contains a 3 'free hydroxyl group.
  • the step 2) includes ammonolysis with a water-free aminating agent; preferably, the aminating agent is selected from ammonia gas, monomethylamine; more preferably monomethylamine.
  • the ammonolysis is performed in a high-pressure reaction vessel filled with an aminating agent.
  • the ammonolysis is ammonolysis at 25 ° C-120 ° C and 20-120 psi for 15 minutes to 4 hours; preferably, the ammonolysis is at 60 ° C-90 ° C and 20-60 psi Aminolysis under conditions of 1-4 hours; more preferably, the ammonolysis is ammonolysis under conditions of 80 ° C and 40 psi for 3 hours.
  • the solvent in which the primer is dissolved in step 3) is selected from solvents that can perform PCR reactions; preferably TE solution or distilled water; more preferably distilled water.
  • the primer dissolution includes using a sampler to add 10-1000 nL of distilled water dropwise to each primer cluster, and after standing for 0.5-3 minutes, use a needle to blow to dissolve.
  • the primer dissolution includes adding 50 nL of distilled water dropwise to each primer cluster using a sampling machine, and after standing for 1 minute, it is dissolved by blowing with a needle.
  • the independent reaction vessel in step 3) is a well that is a multi-well plate, and the multi-well plate may be selected from 96-well plates, 24-well plates, and 384-well plates.
  • the step of transferring to a separate reaction vessel includes adjusting the height of the needle of a liquid transfer workstation, such as a sampler, to the surface of the chip and sucking the dissolving liquid from the chip into a multi-well plate.
  • the method further includes washing the sampling needle using a washing procedure and repeating the operation of step 3) until all primer clusters are completely transferred.
  • the gene synthesis reaction solution in step 4) is selected from PCA reaction solution and PCR reaction solution.
  • the solvent in the reaction vessel is drained before adding the gene reaction solution.
  • the gene synthesis includes draining the solvent in the reaction vessel, adding a PCA reaction solution to each reaction vessel, allowing the primer cluster to perform an assembly reaction, and then adding the PCR reaction solution and the F / R primer, PCR reaction.
  • Another aspect of the present invention provides a method for synthesizing primer clusters for high-throughput gene synthesis.
  • the method includes classifying primers into clusters, synthesizing different primer clusters in different regions of the chip, and cutting the Primer clusters, and then use a liquid transfer workstation to dissolve the primers of different clusters, and collect each dissolved primer cluster.
  • each of the primer clusters contains all primers encoding the same target gene segment
  • the chip includes primer clusters encoding multiple target gene segments
  • the primer clusters encoding different target gene segments are on the chip respectively
  • the different areas of the are combined, with blank areas left between the different areas.
  • multiple hydrophobic groups are synthesized on the blank area.
  • At the time of synthesizing primers on the chip at least one additional linking arm cleavable by aminolysis and at least three dTs are added as protective bases at the 3 'end of each primer.
  • an additional 2, 3, 4, or 5 linking arms cleavable by aminolysis and 3, 4, 5, or 6 dT are added as protective bases at the 3 'end of each primer base.
  • an additional 2 linking arms cleavable by ammonolysis and 5 dT are added as protective bases at the 3 'end of the primer.
  • the linking arm is selected from any structure that allows the primer to generate a 3 'free hydroxyl group, preferably a structure based on a phosphoramidite structure and capable of providing a 3' free hydroxyl group, and more preferably a succinylhexylamine phosphoramidite.
  • the primer cleaved by the aminolysis method contains a 3 'free hydroxyl group.
  • the ammonolysis method includes ammonolysis with a water-free aminating agent; preferably, the aminating agent is selected from ammonia gas, monomethylamine; more preferably monomethylamine.
  • the ammonolysis is performed in a high-pressure reaction vessel filled with an aminating agent.
  • the ammonolysis is ammonolysis at 25 ° C-120 ° C and 20-120 psi for 15 minutes to 4 hours; preferably, the ammonolysis is at 60 ° C-90 ° C and 20-60 psi Aminolysis under conditions of 1-4 hours; more preferably, the ammonolysis is ammonolysis under conditions of 80 ° C and 40 psi for 3 hours.
  • the liquid transfer workstation in the method of synthesizing primer clusters, is a sampler. In some embodiments, the liquid transfer workstation is a Biodot AD1500 sample stage. In some embodiments, the chip after the aminolysis is placed on the Biodot AD 1500 platform, and after position correction, the solvent that dissolves the primer is transferred.
  • the solvent in which the primer is dissolved is selected from solvents that can perform PCR reactions; preferably TE solution or distilled water; more preferably distilled water.
  • the primer dissolution includes using a sampler to add 10-1000 nL of distilled water dropwise to each primer cluster, and after standing for 0.5-3 minutes, it is dissolved by blowing with a needle.
  • the primer dissolution includes adding 50 nL of distilled water dropwise to each primer cluster using a sampling machine, and after standing for 1 minute, it is dissolved by blowing with a needle.
  • the method of synthesizing primer clusters further includes transferring each dissolved primer cluster to a separate reaction vessel, which is a well of a multi-well plate, which may be selected from 96-well plates , 24-well plate, 384-well plate.
  • the step of transferring to a separate reaction vessel includes adjusting the height of the sampler needle to the surface of the chip and sucking the dissolution liquid from the chip into a multi-well plate.
  • the step of transferring to a separate reaction vessel further includes washing the sampling needle using a washing procedure and repeating the primer dissolution and transfer operations until all primer clusters are completely transferred.
  • the present invention provides a method for synthesizing primer clusters for high-throughput gene synthesis, including the following steps:
  • step 1) when synthesizing the primer on the chip, at least one additional linking arm cleavable by aminolysis and at least 3 dT are added as protective bases at the 3 'end of the primer.
  • an additional 2, 3, 4, or 5 linking arms cleavable by aminolysis and 3, 4, 5, or 6 dT are added as protective bases at the 3 'end of each primer base.
  • an additional 2 linking arms cleavable by ammonolysis and 5 dT are added as protective bases at the 3 'end of the primer.
  • the linking arm is selected from any structure that allows the primer to generate a 3 'free hydroxyl group, preferably a structure based on a phosphoramidite structure and capable of providing a 3' free hydroxyl group; more preferably a succinylhexylamine phosphoramidite.
  • the step 2) includes ammonolysis with a water-free aminating agent; preferably, the aminating agent is selected from ammonia gas, monomethylamine; more preferably monomethylamine.
  • the ammonolysis is performed in a high-pressure reaction vessel filled with an aminating agent.
  • the ammonolysis is ammonolysis at 25 ° C-120 ° C and 20-120 psi for 15 minutes to 4 hours; preferably, the ammonolysis is at 60 ° C-90 ° C and 20-60 psi Aminolysis under conditions of 1-4 hours; more preferably, the ammonolysis is ammonolysis under conditions of 80 ° C and 40 psi for 3 hours.
  • the solvent of step 3) is selected from solvents that can perform PCR reaction; preferably TE solution or distilled water; more preferably distilled water.
  • the primer dissolution includes using a sampler to add 10-1000 nL of distilled water dropwise to each primer cluster, and after standing for 0.5-3 minutes, use a needle to blow to dissolve.
  • the primer dissolution includes adding 50 nL of distilled water dropwise to each primer cluster using a sampling machine, and after standing for 1 minute, it is dissolved by blowing with a needle.
  • the method of synthesizing primer clusters further includes transferring each dissolved primer cluster to a separate reaction vessel, which is a well of a multi-well plate, which may be selected from 96-well plates , 24-well plate, 384-well plate.
  • the step of transferring to a separate reaction vessel includes adjusting the height of the sampler needle to the surface of the chip and sucking the dissolving liquid from the chip into a multi-well plate.
  • the step of transferring to a separate reaction vessel further includes washing the sampling needle using a washing procedure and repeating the dissolution and transfer operations until all primer clusters have been transferred.
  • the primer cluster synthesized by the above method can be used for high-throughput synthesis of genes, including transferring the synthesized primer cluster to an independent reaction vessel, performing gene synthesis under conditions suitable for gene synthesis, and harvesting the synthesized gene fragments.
  • the present invention can greatly shorten the length of the chip primers to be synthesized. This aspect shortens the cycle of gene synthesis, and on the other hand also reduces the mutation rate of gene synthesis.
  • the invention completely changes the scheme of first mixing and then grouping in gene-throughput synthesis based on chip primers, which simplifies the process and improves the feasibility of automation.
  • the present invention improves specificity and reduces the possibility of cross-contamination.
  • Figure 1 is a schematic diagram of the arrangement of primers in the chip synthesis area
  • 2 is a schematic diagram of primer extraction on the chip surface
  • Figure 6 is the electrophoresis gel of the target gene after gene synthesis.
  • a cleavable linking arm and a protective base are added to the 3 'end of all primers to ensure that the primer after aminolysis has a 3' free hydroxyl group.
  • the primers grouped by the target gene are synthesized in a specific area on the chip, and a certain blank area is left between the areas to avoid cross-contamination during extraction (see Figure 1).
  • a series of hydrophobic groups can be synthesized in the blank area to increase the surface energy.
  • the synthesized chip needs to use the method of gas ammonolysis to cut the primer off the surface of the chip and keep it in the corresponding synthesis position.
  • a primer cluster refers to a collection of all primers encoding the same target gene fragment, and different primer clusters encode different target gene fragments.
  • Primers here can also be called short nucleic acid fragments, which refers to single-stranded short nucleic acid fragments that partially overlap each other and cover the entire target gene fragment. These short nucleic acid fragments are primers and templates for each other, and can be used in the presence of a polymerase Through multiple rounds of denaturation, annealing, and extension cycles, the target gene is finally obtained.
  • all primers in one primer cluster can synthesize the gene fragment of interest by, for example, polymerase chain assembly (PCA).
  • PCA polymerase chain assembly
  • each primer can be synthesized multiple times in the area to which it belongs, for example, 3-8 times.
  • the meaning of "synthesized multiple times" means that the primer is synthesized at multiple positions in the region.
  • the target gene fragment may be a gene fragment synthesized for any purpose.
  • the target gene fragment may be a complete short gene with a length of several hundred bp.
  • the target gene fragment may also be a part of a longer gene, for example, for a long gene, it may be split into multiple short gene fragments during synthesis, and these short gene fragments may be the target gene fragments of the present invention Then, each short gene fragment is split into multiple primers, and each short gene fragment is synthesized by the method of the present invention, and then these short gene fragments are assembled into a complete long gene.
  • different primer clusters are synthesized in different regions of the chip.
  • the different areas of the chip can be divided in any suitable way, for example, the rows and columns of each area can be determined.
  • the shape and size of each area can be determined according to specific needs. Blank areas can be left between each area, this is to avoid cross contamination during extraction, the size of the blank area can be determined by those skilled in the art according to the situation.
  • a series of hydrophobic groups can also be synthesized on the blank area to increase the surface energy, thereby further avoiding cross-contamination during extraction.
  • the primer cluster in order to carry out subsequent gene synthesis, it is necessary to make the primer cluster have 3 'free hydroxyl groups after being cut off from the chip, and the cut primers can be made to contain 3' free hydroxyl groups through various possible methods, some of which are The method is known in the art, for example, the method of ammonia hydrolysis.
  • the method is known in the art, for example, the method of ammonia hydrolysis.
  • at least one connecting arm that can be cleaved by aminolysis and at least 3 dT can be added to the 3 'end of the primer as a protective base, and the connecting arm and dT can be cleaved when performing aminolysis. Free hydroxyl groups are formed at the 3 'end of the primer.
  • an additional 2, 3, 4, or 5 linking arms cleavable by aminolysis and 3, 4, 5, or 6 dTs are added as protective bases at the 3 'end of the primer .
  • an additional 2 linking arms cleavable by aminolysis and 5 dT are added to the 3 'end of the primer as protective bases.
  • the linking arm may be any structure that can generate a 3 'free hydroxyl group of the primer after aminolysis, and is preferably a structure based on a phosphoramidite structure and can provide a 3' free hydroxyl group, such as succinylhexylamine phosphoramidite.
  • the purpose of the "linking arm" is to form a free hydroxyl group at the primer 3 'by aminolysis.
  • the purpose of adding at least 3 dT at the 3 'end of the primer outside the linking arm is to protect the base.
  • the method of ammonolysis is well known in the art, and particularly suitable for the present invention may be, for example, an aminating agent that does not contain water, such as ammonia gas and monomethylamine.
  • Aminolysis can be carried out, for example, in a high-pressure reaction vessel filled with an aminating agent.
  • the aminolysis is under the conditions of 25 ° C.-120 ° C. and 20-120 psi for 15 minutes-4 hours; preferably, the aminolysis is under the conditions of 60 ° C.-90 ° C. and 20-60 psi
  • the aminolysis is performed for 1-4 hours; more preferably, the aminolysis is performed at 80 ° C and 40 psi for 3 hours.
  • any liquid transfer station that can dissolve and transfer the primers synthesized on the chip can be used, for example, a sampler can be used.
  • the liquid transfer workstation is a Biodot AD1500 sample stage.
  • the ammonolysis chip may be placed on a sampling platform, and after position correction, the solvent used to dissolve the primer may be transferred.
  • the solvent used to dissolve the primer may be any solvent that can be used to carry out the PCR reaction, such as TE solution or distilled water, preferably distilled water.
  • the process of dissolving the primers includes using a liquid transfer workstation (such as a sampler) to add 10-1000 nL of solvent (such as distilled water) dropwise to each primer cluster, and letting it stand for 0.5-3 minutes using a needle to suck It dissolves.
  • solvent such as distilled water
  • 50 nL of distilled water is added dropwise to each primer cluster, and after standing for 1 minute, it is dissolved by blowing with a needle.
  • the primers on the chip can be sufficiently dissolved by a method well known in the art, for example, using a needle to puff 1-3 times (for example, 2 times) to fully dissolve the primers.
  • a Biodot sampler may be used to add distilled water to each primer cluster, and then stand for a period of time (for example, 1 minute), and then puff with a needle 1-3 times (for example, 2 times).
  • the independent reaction vessel suitable for gene synthesis may be a well of a multi-well plate or any other suitable independent reaction vessel.
  • the multi-well plate can be selected from 96-well plate, 24-well plate, 384-well plate.
  • the step of transferring the dissolved primer cluster to a separate reaction vessel includes adjusting the height of the needle of the liquid transfer workstation to the surface of the chip and sucking the dissolved solution from the chip into the well of the multi-well plate.
  • part of the primer clusters can be transferred first, and then the sampling needle can be washed and then the remaining primer clusters can be transferred repeatedly. For example, part of the primer clusters can be transferred first, and then the sampling needle can be washed using a washing program and then the transfer operation is repeated until all primer clusters Was transferred completely.
  • the gene synthesis reaction may include adding the gene synthesis reaction solution and / or the F / R primer of the target gene fragment to each well to perform a PCR reaction.
  • the gene synthesis reaction solution may be selected from PCA reaction solution and PCR reaction solution.
  • the PCA reaction solution can be added first to allow the primer cluster to perform the assembly reaction, and then the PCR reaction solution and the F / R primer of the target gene fragment can be added to perform the PCR reaction.
  • the solvent in the reaction vessel may be drained, and then the gene synthesis reaction solution and / or the F / R primer of the target gene fragment may be added, or the gene synthesis reaction solution and / Or the F / R primer of the gene fragment of interest.
  • PCA polymerase chain assembly
  • PCR polymerase chain reaction
  • Strand oligonucleotides are primers and templates for each other.
  • the target gene is finally obtained.
  • the product obtained by polymerase chain assembly can be amplified using primers that can bind to both ends of the product sequence, for example, by PCR reaction.
  • the F / R primer of the target gene segment refers to the forward and reverse primers used to amplify the entire target gene segment.
  • draining refers to the operation of removing the solvent in the reaction vessel while retaining the solute, ie, the primer cluster.
  • the solvent can be dried by various methods well known in the art, for example, the solvent in the reaction vessel can be dried by drying under reduced pressure.
  • the platform will be used to synthesize 19 target genes, the length of which is shown in Table 1 below:
  • Gene_Frag1 480bp Gene_Frag 2 618bp Gene_Frag3 411bp Gene_Frag 4 732bp Gene_Frag5 585bp Gene_Frag 6 813bp Gene_Frag 7 367bp Gene_Frag 8 667bp Gene_Frag9 877bp Gene_Frag10 904bp Gene_Frag11 613bp Gene_Frag12 812bp Gene_Frag13 500bp Gene_Frag14 545bp Gene_Frag15 500bp Gene_Frag16 500bp Gene_Frag17 729bp Gene_Frag18 812bp Gene_Frag19 763bp
  • the target gene sequence (SEQ ID NO.1) of Gene_Frag 4 is as follows:
  • CustomArray's B3P synthesizer perform primer synthesis of Gene_Frag 4_1 to Gene_Frag 4_16 on the chip according to the preset position.
  • the arrangement of the chip is shown in the enlarged view in Figure 3.
  • the arrangement of the primers synthesized on the microarray scanner (8 * 11) is shown in Table 3.
  • the chip is placed in a high-pressure gas-phase ammonolysis instrument, using monomethylamine as the ammonolysis gas, and the ammonolysis is performed at 80 ° C and 40 psi for 3 hours. After the chip is cooled, it is taken out and transferred to Biodot AD 1500 sampler standard slide holder.
  • PCA reaction After the solvent in the sample in the 96-well plate was vacuum-dried by vacuum centrifugal concentrator (Concentrator plus, manufacturer eppendorf), 2.5 ⁇ L of PCA reaction mixture was added to each well containing the primer cluster and transferred to 384 wells.
  • PCA reaction the reaction conditions are: 98 °C 3min, 35 cycles (98 °C 10s, 58 °C 10s, 72 °C 20s), 72 °C 5min.
  • 2.5 ⁇ LPCA product was transferred to 7.5 ⁇ L PCR reaction system for PCR reaction, the reaction conditions were: 98 °C 3min, 40 cycles (98 °C 10s, 64 °C 10s, 72 °C 35s), 72 °C 5min.
  • the above reaction solution (ie, PCR product) was transformed into Top10 competent cells, and the operation was carried out according to the steps of chemically competent cell transformation. After resuscitation, 100 ⁇ L of the bacterial solution was applied to Kan-resistant color development plate. Place in a 37 ° C incubator overnight.
  • the target gene sequence (SEQ ID NO.20) of Gene_Frag 13 is as follows:
  • CustomArray's B3P synthesizer perform primer sequence synthesis of Gene_Frag 13_1 to Gene_Frag 13_12 on the chip according to the preset position.
  • the arrangement of the chip is shown in the enlarged view in Figure 3.
  • the arrangement of the primers synthesized on the microarray scanner (8 * 11) is shown in Table 5.
  • the chip is placed in a high-pressure gas-phase ammonolysis instrument, using monomethylamine as the ammonolysis gas, and the ammonolysis is performed at 80 ° C and 40 psi for 3 hours. After the chip is cooled, it is taken out and transferred to Biodot 1500 sampler on standard slide holder.
  • PCA reaction After the solvent in the sample in the 96-well plate was vacuum-dried by vacuum centrifugal concentrator (Concentrator plus, manufacturer eppendorf), 2.5 ⁇ L of PCA reaction mixture was added to each well containing the primer cluster and transferred to 384 wells.
  • PCA reaction the reaction conditions are: 98 °C 3min, 35 cycles (98 °C 10s, 58 °C 10s, 72 °C 20s), 72 °C 5min.
  • 2.5 ⁇ LPCA product was transferred to 7.5 ⁇ L PCR reaction system for PCR reaction, the reaction conditions were: 98 °C 3min, 40 cycles (98 °C 10s, 64 °C 10s, 72 °C 35s), 72 °C 5min.
  • the above reaction solution (ie, PCR product) was transformed into Top10 competent cells, and the operation was carried out according to the steps of chemically competent cell transformation. After resuscitation, 100 ⁇ L of the bacterial solution was applied to Kan-resistant color development plate. Place in a 37 ° C incubator overnight.
  • the traditional method uses the CustomArray synthesizer for high-throughput gene synthesis.
  • the specific steps of the conventional method and the method of Example 1 are compared, as shown in Table 6:
  • a Traditional method Chip primer surface extraction method Synthesis time * 50hrs 24hrs Aminolysis, purification time * 10.5hrs 2hrs Extraction time 0 2.5hrs Amplification time 30hrs 8.5hrs total 90.5hrs 37hrs
  • the time here refers to the time used for synthesis using the CustomArray B3P synthesizer. There are slight differences between different platforms, but the difference in synthesis time between the two methods is obvious.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

提供一种基于芯片引物表面萃取的基因高通量合成方法,该方法将引物按簇分类后合成在芯片的固定区域并进行切割,随后使用取样机将不同簇的引物溶解并转移至96孔板中进行基因合成。

Description

一种基于芯片引物表面萃取的基因高通量合成方法 技术领域
本发明涉及基因合成领域,具体涉及芯片引物合成以及基于该芯片引物的基因高通量自动化合成方法。
背景技术
基因合成通常是基于聚合酶链式组装(PCA)以及聚合酶链式反应(PCR),将预先设计好的引物序列按照两两首尾互补配对的方法拼接成目的基因序列。常规基因合成中的引物是通过柱合成的方式,并将引物逐条混合。由于引物的合成规模(25nmol)远大于基因合成时所需引物的量(50pmol),因此常规基因合成具有通量低、成本高、操作复杂等缺点。为了克服上述缺点而发展出了高通量基因合成方法,该方法依赖于高通量引物合成平台,该平台可将上万条甚至上百万条引物合成在面积仅为几平方厘米至几十平方厘米的芯片上,每条引物的合成规模在fmol级别,极大地降低了引物的合成成本。随后利用诸如特异性PCR等方式将引物分成若干个文库,每个文库中包含合成某一目的基因所需的所有引物序列,在利用诸如酶切的方式除去引物上的标签序列后,将引物文库逐个组装成相应的目的基因(Nature,2004,1050-1054)。该高通量基因合成方法,虽然极大地提升了通量和降低了成本,仍然存在以下问题:1)整体操作流程较为复杂,需要将引物先合并再分组,并经过繁琐的酶切、纯化等操作,自动化程度较低。2)引物利用率低,突变率高。由于需在每条引物两端加上PCR结合位点及酶切位点等序列,因此用于基因合成的引物序列通常仅占引物全长的50%甚至更低,另一方面引物合成长度越长则突变率越高,导致最终基因合成的突变率较高。3)特异性低以及交叉污染风险。所有的引物在经过切割后均混在一起,不同PCR引物序列之间的特异性差别将会极大地影响PCR效率,因此存在较大的交叉污染的可能。
发明内容
本发明一方面提供一种基于芯片引物表面萃取的基因高通量合成方法,所述方法包括将引物按簇分类后合成在芯片的不同区域,氨解方法切割芯片上的引物簇,随后使用液体转移工作站将不同簇的引物溶解,并将溶解后的各引物簇分别转移至适于基因合成的独立的反应容器中,在适于基因合成的条件下进行基因合成反应,收获合成的目的基因片段。
在一些实施方案中,所述按簇分类的引物为编码多个目的基因片段的引物簇,其中每个引物簇包含编码同一个目的基因片段的全部引物。在一些实施方案中,所述不同引 物簇分别在芯片的不同区域内合成,所述不同区域之间留有空白区域。在一些实施方案中,所述空白区域上合成多个疏水基团。
在一些实施方案中,在芯片上合成引物时使每个引物的3’端额外添加至少1个可通过氨解切割的连接臂和至少3个dT作为保护碱基。在一些实施方案中,在所述芯片上合成引物时使引物的3’端额外添加2个、3个、4个或5个可通过氨解切割的连接臂和3个、4个、5个或6个dT作为保护碱基。在一些更优选的实施方案中,在所述芯片上合成引物时使引物的3’端额外添加2个可通过氨解切割的连接臂和5个dT作为保护碱基。所述连接臂选自任何氨解后可以使引物产生3’自由羟基的结构,优选为基于亚磷酰胺结构并能提供3’端自由羟基的结构,更优选为琥珀酰己胺亚磷酰胺。在一些实施方案中,所述氨解方法切割的引物含有3'自由羟基。
在一些实施方案中,所述氨解方法是用不含水的胺化剂氨解;优选地,所述胺化剂选自氨气、一甲胺,更优选为一甲胺。在一些实施方案中,所述氨解在充满胺化剂的高压反应容器中进行。在一些实施方案中,所述氨解是在25℃-120℃以及20-120psi的条件下氨解15分钟-4小时;优选地,所述氨解是在60℃-90℃以及20-60psi的条件下氨解1-4小时;更优选地,所述氨解是在80℃以及40psi的条件下氨解3小时。
在一些实施方案中,所述基因高通量合成方法中液体转移工作站为取样机。在一些实施方案中,所述液体转移工作站为Biodot AD 1500取样品台。在一个实施方案中,将氨解后的芯片置于取样平台上,进行位置校正后,转移溶解引物的溶剂。
在一些实施方案中,引物溶解使用的溶剂选自可进行PCR反应的溶剂,优选为TE溶液或蒸馏水,更优选为蒸馏水。在一些实施方案中,所述引物溶解包括利用取样机向每个引物簇中滴加10-1000nL的溶剂如蒸馏水,静置0.5-3分钟后使用针头吹吸使其溶解。优选地,所述引物溶解包括利用取样机向每个引物簇中滴加50nL的蒸馏水,静置1分钟后使用针头吹吸使其溶解。
在一些实施方案中,所述适于基因合成的独立的反应容器为多孔板的孔,可选自96孔板、24孔板、384孔板。在一些实施方案中,所述转移至适于基因合成的独立反应容器中的步骤包括将液体转移工作站针头高度调整至芯片表面并吸取芯片内溶解液转移至多孔板内。在一些实施方案中,在吸取芯片内溶解液转移至多孔板内之后,进一步通过清洗程序对取样针头进行清洗,然后重复引物溶解和转移步骤,直至所有引物簇被转移完全。
在一些实施方案中,所述基因合成步骤包括向每个独立反应容器中加入基因合成反应液和/或目的基因片段的F/R引物,进行合成反应。在一些实施方案中,所述基因合成反应溶液选自PCA反应液和PCR反应液。在一些实施方案中,所述基因合成步骤包括,向每个反应容器中加入PCA反应液,使引物簇进行组装反应,然后加入PCR反应液和目的基因片段的F/R引物,进行PCR反应。
本发明的另一方面提供一种基于芯片引物表面萃取的基因高通量合成方法,包括以下步骤:
1)在芯片上合成编码多个目的基因片段的引物簇,其中每个引物簇包含编码同一个目的基因片段的全部引物,编码不同目的基因片段的引物簇分别在芯片的不同区域合成;
2)将合成完成后的芯片进行氨解以将引物从芯片上切割下来,并使切割下来的引物含有3'自由羟基;
3)向每个引物簇滴加溶剂,使该引物簇中的引物充分溶解,收集每个溶解的引物簇并分别转移至独立的反应容器中;
4)向反应容器中加入基因合成反应液,进行基因合成;
5)回收反应产物,得到多个目的基因片段。
在一些实施方案中,所述步骤1)的所述不同区域之间留有空白区域。在另一实施方案中,在所述空白区域上合成多个疏水基团。
在一些实施方案中,所述步骤1)在芯片上合成引物时,各引物的3’端额外添加至少1个可通过氨解切割的连接臂和至少3个dT作为保护碱基。在一些实施方案中,使各引物的3’端额外添加2个、3个、4个或5个可通过氨解切割的连接臂和3个、4个、5个或6个dT作为保护碱基。在一些实施方案中,在所述芯片上合成引物时使引物的3’端额外添加2个可通过氨解切割的连接臂和5个dT作为保护碱基。所述连接臂选自任何可以使引物产生3’自由羟基的基团,优选为基于亚磷酰胺结构并能提供3’端自由羟基的结构,更优选为琥珀酰己胺亚磷酰胺。在一些实施方案中,所述氨解方法切割的引物含有3'自由羟基。
在一些实施方案中,所述步骤2)包括用不含水的胺化剂氨解;优选地,所述胺化剂选自氨气、一甲胺;更优选为一甲胺。在一些实施方案中,所述氨解在充满胺化剂的高压反应容器中进行。在一些实施方案中,所述氨解是在25℃-120℃以及20-120psi的条件下氨解15分钟-4小时;优选地,所述氨解是在60℃-90℃以及20-60psi的条件下氨解1-4小时;更优选地,所述氨解是在80℃以及40psi的条件下氨解3小时。
在一些实施方案中,所述步骤3)中引物溶解的溶剂选自可进行PCR反应的溶剂;优选为TE溶液或蒸馏水;更优选为蒸馏水。在一些具体实施方案中,所述引物溶解包括利用取样机向每个引物簇中滴加10-1000nL的蒸馏水,静置0.5-3分钟后使用针头吹吸使其溶解。优选地,所述引物溶解包括利用取样机向每个引物簇中滴加50nL的蒸馏水,静置1分钟后使用针头吹吸使其溶解。
在一些实施方案中,所述步骤3)中独立的反应容器为为多孔板的孔,多孔板可选自96孔板、24孔板、384孔板。在一些实施方案中,所述转移至独立的反应容器的步骤包括将液体转移工作站如取样机的针头高度调整至芯片表面并吸取芯片内溶解液转移 至多孔板内。在一些实施方案中,在吸取芯片内溶解液转移至多孔板内之后,进一步包括使用清洗程序对取样针头进行清洗后重复步骤3)的操作直至所有引物簇被转移完全。
在一些实施方案中,所述步骤4)中的基因合成反应液选自PCA反应液和PCR反应液。在一些实施方案中,可选地,所述步骤4)在加入基因反应液前将反应容器中的溶剂抽干。在一些实施方案中,所述基因合成包括将反应容器中的溶剂抽干,向每个反应容器中加入PCA反应液,使引物簇进行组装反应,然后加入PCR反应液和目的基因片段的F/R引物,进行PCR反应。
本发明另一方面提供一种用于基因高通量合成的引物簇的合成方法,所述方法包括将引物按簇分类,将不同引物簇合成在芯片的不同区域,氨解方法切割芯片上的引物簇,随后使用液体转移工作站将不同簇的引物溶解,收集每个溶解的引物簇。
在一些实施方案中,所述每个引物簇包含编码同一个目的基因片段的全部引物,所述芯片上包括合成编码多个目的基因片段的引物簇,编码不同目的基因片段的引物簇分别在芯片的不同区域合成,所述不同区域之间留有空白区域。优选地,在所述空白区域上合成多个疏水基团。
在一些实施方案中,在芯片上合成引物时使各引物的3’端额外添加至少1个可通过氨解切割的连接臂和至少3个dT作为保护碱基。在一些实施方案中,使各引物的3’端额外添加2个、3个、4个或5个可通过氨解切割的连接臂和3个、4个、5个或6个dT作为保护碱基。在一些实施方案中,在所述芯片上合成引物时使引物的3’端额外添加2个可通过氨解切割的连接臂和5个dT作为保护碱基。所述连接臂选自任何可以使引物产生3’自由羟基的结构,优选为基于亚磷酰胺结构并能提供3’端自由羟基的结构,更优选为琥珀酰己胺亚磷酰胺。在一些实施方案中,所述氨解方法切割的引物含有3'自由羟基。
在一些实施方案中,氨解方法包括用不含水的胺化剂氨解;优选地,所述胺化剂选自氨气、一甲胺;更优选为一甲胺。在一些实施方案中,所述氨解在充满胺化剂的高压反应容器中进行。在一些实施方案中,所述氨解是在25℃-120℃以及20-120psi的条件下氨解15分钟-4小时;优选地,所述氨解是在60℃-90℃以及20-60psi的条件下氨解1-4小时;更优选地,所述氨解是在80℃以及40psi的条件下氨解3小时。
在一些实施方案中,所述合成引物簇的方法中所述液体转移工作站为取样机。在一些实施方案中,液体转移工作站为Biodot AD 1500取样品台。在一些实施方案中,将氨解后的芯片置于Biodot AD 1500平台,进行位置校正后,转移溶解引物的溶剂。
在一些实施方案中,所述合成引物簇的方法中,所述引物溶解的溶剂为选自可进行PCR反应的溶剂;优选为TE溶液或蒸馏水;更优选为蒸馏水。在一些具体实施方案中,所述引物溶解包括利用取样机向每个引物簇中滴加10-1000nL的的蒸馏水,静置0.5-3分钟后使用针头吹吸使其溶解。优选地,所述引物溶解包括利用取样机向每个引物簇中滴加50nL的蒸馏水,静置1分钟后使用针头吹吸使其溶解。
在一些实施方案中,所述合成引物簇的方法进一步包括将每个溶解的引物簇转移至独立的反应容器内,所述独立的反应容器为多孔板的孔,多孔板可选自96孔板、24孔板、384孔板。在一些实施方案中,转移至独立的反应容器的步骤包括将取样机针头高度调整至芯片表面并吸取芯片内溶解液转移至多孔板内。在一些实施方案中,所述转移至独立的反应容器步骤进一步包括使用清洗程序对取样针头进行清洗后重复引物溶解和转移操作直至所有引物簇被转移完全。
本发明提供一种用于基因高通量合成的引物簇的合成方法,包括如下步骤:
1)在芯片上合成编码多个目的基因片段的引物簇,其中编码每个目的基因片段的引物簇包含编码该目的基因片段的全部引物,编码不同目的基因片段的引物簇分别在芯片的不同固定区域合成,所述不同区域之间留有空白区域;
2)将合成完成后的芯片进行氨解以将引物从芯片上切割下来,并使切割下来的引物含有3'自由羟基;
3)向每个引物簇滴加溶剂,使该引物簇中的引物充分溶解,收集每个溶解的引物簇。
在一些实施方案中,所述步骤1)在芯片上合成引物时使引物的3’端额外添加至少1个可通过氨解切割的连接臂和至少3个dT作为保护碱基。在一些实施方案中,使各引物的3’端额外添加2个、3个、4个或5个可通过氨解切割的连接臂和3个、4个、5个或6个dT作为保护碱基。在一些实施方案中,在所述芯片上合成引物时使引物的3’端额外添加2个可通过氨解切割的连接臂和5个dT作为保护碱基。所述连接臂选自任何可以使引物产生3’自由羟基的结构,优选为基于亚磷酰胺结构并能提供3’端自由羟基的结构;更优选为琥珀酰己胺亚磷酰胺。
在一些实施方案中,所述步骤2)包括用不含水的胺化剂氨解;优选地,所述胺化剂选自氨气、一甲胺;更优选为一甲胺。在一些实施方案中,所述氨解在充满胺化剂的高压反应容器中进行。在一些实施方案中,所述氨解是在25℃-120℃以及20-120psi的条件下氨解15分钟-4小时;优选地,所述氨解是在60℃-90℃以及20-60psi的条件下氨解1-4小时;更优选地,所述氨解是在80℃以及40psi的条件下氨解3小时。
在一些实施方案中,所述步骤3)的溶剂选自可进行PCR反应的溶剂;优选为TE溶液或蒸馏水;更优选为蒸馏水。在一些具体实施方案中,所述引物溶解包括利用取样机向每个引物簇中滴加10-1000nL的蒸馏水,静置0.5-3分钟后使用针头吹吸使其溶解。优选地,所述引物溶解包括利用取样机向每个引物簇中滴加50nL的蒸馏水,静置1分钟后使用针头吹吸使其溶解。
在一些实施方案中,所述合成引物簇的方法进一步包括将每个溶解的引物簇转移至独立的反应容器内,所述独立的反应容器为多孔板的孔,多孔板可选自96孔板、24孔板、384孔板。在一些实施方案中,所述转移至独立的反应容器的步骤包括将取样机针头高度调整至芯片表面并吸取芯片内溶解液转移至多孔板内。在一些实施方案中,所述 转移至独立的反应容器步骤进一步包括使用清洗程序对取样针头进行清洗后重复溶解和转移操作直至所有引物簇被转移完全。
上述方法合成的引物簇可用于基因的高通量合成,包括将合成的引物簇转移至独立的反应容器,在适于基因合成的条件下进行基因合成,收获合成的基因片段。
本发明的有益效果在于:
首先,由于整体策略的改进,本发明可以极大地缩短所需合成的芯片引物的长度,这一方面缩短了基因合成的周期,另一方面也降低了基因合成的突变率。其次,本发明彻底改变了基于芯片引物的基因高通量合成中先混合再分组的方案,简化了流程并提升了自动化的可行性。最后,通过避免使用PCR进行分组的方式,本发明提升了特异性,降低了交叉污染的可能。
附图说明
通过以下详细的描述并结合附图将更充分地理解本发明,其中相似的元件以相似的方式编号,其中:
图1是芯片合成区域引物排布示意图;
图2是芯片表面引物萃取示意图;
图3芯片排布及其放大图;
图4Gene_Frag 4测序结果图;
图5Gene_Frag 13测序结果图;
图6是基因合成后目的基因电泳胶图。
具体实施方式
本发明在所有引物的3’端加上了可切割的连接臂以及保护碱基以确保经过氨解后的引物有3’自由羟基。并将按目的基因分组后的引物合成在芯片上的特定区域,区域之间留有一定空白区域以避免萃取时产生交叉污染(如图1)。为了进一步降低产生交叉污染的可能,可在空白区域合成一系列疏水基团以提高表面能。合成好的芯片需使用气体氨解的方式,将引物从芯片表面切割下来,并保留在相应的合成位置。随后使用取样机往各区域的引物簇滴加适量的蒸馏水以溶解引物(如图2),并将溶解有引物的蒸馏水转移至96孔板中进行相应的基因合成。为了提高引物转移效率,可在萃取时使用反复吹吸的方式增强溶解效果。在不同引物簇转移的间隔中需对转移针头进行清洗以避免交叉污染。
在芯片上合成引物的方法是本领域已知的,例如可采用喷墨打印法或光活化的方法。
本发明中,引物簇是指编码同一个目的基因片段的全部引物的集合,不同的引物簇编码不同的目的基因片段。这里的引物也可以被称为短核酸片段,是指彼此之间部分重叠并覆盖整个目的基因片段的单链短核酸片段,这些短核酸片段互为引物和模板,在存 在聚合酶的条件下可以通过多轮变性、退火、延伸循环,最终获得目的基因。本发明中,一个引物簇中的全部引物例如可以通过聚合酶链式组装(PCA)合成目的基因片段。
在进行引物合成时,每条引物可以在其所属的区域中被合成多遍,例如被合成3-8遍。对于一条引物而言,“被合成多遍”的含义是指在该区域中的多个位置上均合成该条引物。
本发明中,目的基因片段可以是为任何目的合成的基因片段。例如,所述目的基因片段可以是一个长度为几百bp的完整的短基因。所述目的基因片段还可以是一个较长基因的一部分,例如,对于长基因,在合成时,可以将其拆分为多个短基因片段,这些短基因片段即可以是本发明的目的基因片段,将每一个短基因片段再拆分为多个引物,利用本发明的方法合成每一个短基因片段,然后再把这些短基因片段组装成完整的长基因。
本发明中,不同的引物簇在芯片的不同区域合成。芯片的不同区域可以通过任何适当的方式划分,例如可以确定每个区域的行和列。各区域的形状和大小可以根据具体需要确定。各区域之间可以留出空白区域,这是为了避免在萃取时产生交叉污染,空白区域的大小可由本领域技术人员根据情况确定。空白区域上还可以合成一系列疏水基团以提高表面能,从而进一步避免在萃取时产生交叉污染。
本发明中,为了进行后续的基因合成,需要使引物簇在从芯片上被切割下来以后具有3'自由羟基,可以通过各种可能的方法并使切割下来的引物含有3'自由羟基,一些这样的方式是本领域已知的,例如可以通过氨解的方式。优选地,可以在合成时使引物的3'端额外添加至少1个可通过氨解切割的连接臂和至少3个dT作为保护碱基,当进行氨解时可将连接臂和dT切割下来,在引物3'端形成自由羟基。在一些实施方案中,使引物的3'端额外添加2个、3个、4个或5个可通过氨解切割的连接臂和3个、4个、5个或6个dT作为保护碱基。在一些实施方案中,使引物的3'端额外添加2个可通过氨解切割的连接臂和5个dT作为保护碱基。所述连接臂可以是任何可以在氨解后使引物产生3'自由羟基的结构,优选为基于亚磷酰胺结构并可以提供3’端自由羟基的结构,如琥珀酰己胺亚磷酰胺。本发明中,所述的“连接臂”的目的是用于通过氨解在引物3'形成自由羟基。引物的3'端在连接臂外额外添加至少3个dT的目的是作为保护碱基。
本发明中,氨解的方法是本领域公知的,特别适用于本发明的例如可以是不含水的胺化剂,例如氨气、一甲胺等。氨解例如可以在充满胺化剂的高压反应容器中进行。在一些实施方案中,氨解是在25℃-120℃以及20-120psi的条件下氨解15分钟-4小时;优选地,所述氨解是在60℃-90℃以及20-60psi的条件下氨解1-4小时;更优选地,所述氨解是在80℃以及40psi的条件下氨解3小时。
psi是本领域公知的压力单位,根据本领域的公知技术,1psi=6.895kPa。
本发明中,可以使用任何可溶解并转移芯片上合成的引物的液体转移工作站,例如可以使用取样机。在一些实施方案中,所述液体转移工作站为Biodot AD 1500取样品台。在一些实施方案中,可以将所述氨解后的芯片置于取样平台上,进行位置校正后,转移用于溶解引物的溶剂。
本发明中,用于溶解引物的溶剂可以是任何可用于进行PCR反应的溶剂,例如TE溶液或蒸馏水,优选蒸馏水。在一些实施方案中,溶解引物的过程包括利用液体转移工作站(例如取样机)向每个引物簇中滴加10-1000nL的溶剂(例如蒸馏水),静置0.5-3分钟后使用针头吹吸使其溶解。优选地,向每个引物簇中滴加50nL的蒸馏水,静置1分钟后使用针头吹吸使其溶解。
可以通过本领域公知的方法使芯片上的引物充分溶解,例如使用针头吹吸1-3次(例如2次)使引物充分溶解。在一些实施方案中,例如可使用Biodot取样机向每个引物簇加入蒸馏水后静置一段时间(例如1分钟),然后用针头吹吸1-3次(例如2次)。
本发明中,适于基因合成的独立的反应容器可以是多孔板的孔或其它任何适合的独立反应容器。多孔板可选自96孔板、24孔板、384孔板。在一些体实施方案中,将溶解的引物簇转移至独立的反应容器的步骤包括将液体转移工作站针头高度调整至芯片表面并吸取芯片内溶解液转移至多孔板的孔内。在一些实施方案中,可以先转移部分引物簇,随后清洗取样针头后重复转移其余的引物簇,例如可以先转移部分引物簇,然后使用清洗程序对取样针头进行清洗后重复转移操作直至所有引物簇被转移完全。
本发明中,基因合成反应可以包括向每个孔中加入基因合成反应液和/或目的基因片段的F/R引物,进行PCR反应。基因合成反应溶液可以选自PCA反应液和PCR反应液。例如可以先加入PCA反应液,使引物簇进行组装反应,然后再加入PCR反应液和目的基因片段的F/R引物,进行PCR反应。再进行基因合成反应之前,可以先将反应容器中的溶剂抽干,然后加入基因合成反应液和/或目的基因片段的F/R引物,或者也可以直接向反应容器中加入基因合成反应液和/或目的基因片段的F/R引物。本发明中,聚合酶链式组装(polymerase chain assembly,PCA)是一种基于聚合酶链式反应(polymerase chain reaction,PCR)原理的方法,是指使彼此之间部分重叠并覆盖整个目的基因的单链寡核苷酸互为引物和模板,在存在聚合酶的条件下通过多轮变性、退火、延伸循环,最终获得目的基因。在一些情况下,通过聚合酶链式组装获得的产物可以使用能与该产物序列两端相结合的引物进行扩增,例如通过PCR反应进行扩增。
本发明中,目的基因片段的F/R引物是指用于扩增整个目的基因片段的正向和反向引物。
本发明中,“抽干”是指去除反应容器中的溶剂,同时保留溶质即引物簇的操作。可以通过本领域熟知的各种方式实现抽干溶剂,例如可以通过减压干燥将反应容器中的溶剂抽干。
下面通过实施例,并结合附图,对本发明的技术方案作进一步详细的说明,但本发明不限于下面的实施例。
实施例1 19个目的基因的合成
本实施例将利用该平台进行19个目的基因的合成,其长度如下表1所示:
表1 19个目的基因
Gene_Frag 1 480bp
Gene_Frag 2 618bp
Gene_Frag 3 411bp
Gene_Frag 4 732bp
Gene_Frag 5 585bp
Gene_Frag 6 813bp
Gene_Frag 7 367bp
Gene_Frag 8 667bp
Gene_Frag 9 877bp
Gene_Frag 10 904bp
Gene_Frag 11 613bp
Gene_Frag 12 812bp
Gene_Frag 13 500bp
Gene_Frag 14 545bp
Gene_Frag 15 500bp
Gene_Frag 16 500bp
Gene_Frag 17 729bp
Gene_Frag 18 812bp
Gene_Frag 19 763bp
以其中两个片段Gene_Frag 4、Gene_Frag 13为例进行详细说明。
Gene_Frag 4目的基因的合成
Gene_Frag 4的目的基因序列(SEQ ID NO.1)如下:
Figure PCTCN2019115911-appb-000001
Figure PCTCN2019115911-appb-000002
将其拆分成相应的引物,并在3’端加上可切割连接臂以及dT保护碱基后的引物序列如表2所示(其中W代表可切割连接臂,为琥珀酰己胺亚磷酰胺,其中Gene_Frag4_F以及Gene_Frag 4_R是使用25nmol合成柱合成的常规引物):
表2 Gene_Frag 4_的引物序列
Figure PCTCN2019115911-appb-000003
Figure PCTCN2019115911-appb-000004
使用CustomArray公司的B3P合成仪,按预设位置在芯片上进行Gene_Frag 4_1至Gene_Frag 4_16的引物合成。芯片的排布见图3中的放大图,对应于microarray scanner(8*11)上合成的引物排布如表3所示。
表3 Gene_Frag 4引物在microarray scanner上对应的排布
Figure PCTCN2019115911-appb-000005
待合成结束后,将芯片置于高压气相氨解仪中,使用一甲胺作为氨解气体,在80℃以及40psi的条件下氨解3小时,待芯片冷却后将其取出并转移至Biodot AD 1500取样机标准玻片支架。
利用Biodot取样机向每个引物簇滴加50nL蒸馏水,静置一分钟后将Biodot取样机针头高度调整至芯片表面并吸取60nL体积后转移至96孔板内,滴加1μL蒸馏水。使用清洗程序对取样针头进行清洗后重复上述操作直至所有引物簇被转移完全。
配制PCA反应体系:5*HF buffer 10μL,dNTPs 1μL,NEB-Phusion 0.5μL,BSA(20mg/mL)5μL,H 2O 33.5μL。以及PCR反应体系:5*HF buffer 2μL,dNTPs 0.2μL,NEB-Phusion 0.1μL,BSA(20mg/mL)1μL,Gene_Frag 4_F(10μM)以及Gene_Frag 4_R(10μM)各0.3μL,H2O 3.6μL。
将96孔板内的样品中溶剂通过真空离心浓缩仪(Concentrator plus,厂家eppendorf)减压抽干后,向每个含有引物簇的孔中加入2.5μL PCA反应混合液并转移至384孔中进行PCA反应,反应条件为:98℃ 3min,35个循环(98℃ 10s,58℃ 10s,72℃ 20s),72℃ 5min。随后将2.5μLPCA产物转移至7.5μL PCR反应体系内进行PCR反应,反应条件为:98℃ 3min,40个循环(98℃ 10s,64℃ 10s,72℃ 35s),72℃ 5min。
将上述反应液(即PCR产物)转化至Top10感受态细胞,按照化学感受态细胞转化步骤进行操作。复苏后取100μL菌液涂布在Kan抗性显色平板上。放置37℃培养箱培养过夜。
利用菌检引物对显色平板上的白斑进行菌检,挑取阳性克隆10个进行测序并分析测序结果,Gene_Frag 4测序结果如图4所示。
Gene_Frag 13目的基因合成
Gene_Frag 13的目的基因序列(SEQ ID NO.20)如下:
Figure PCTCN2019115911-appb-000006
将其拆分成相应的引物,并在3’端加上可切割连接臂以及dT保护碱基后的引物序列如表4所示(其中W代表可切割连接臂,为琥珀酰己胺亚磷酰胺,其中Gene_Frag13_F以及Gene_Frag 13_R是使用25nmol合成柱合成的常规引物):
表4 Gene_Frag 13的引物序列
Figure PCTCN2019115911-appb-000007
使用CustomArray公司的B3P合成仪,按预设位置在芯片上进行Gene_Frag 13_1至Gene_Frag 13_12的引物序列合成。芯片的排布见图3中的放大图,对应于microarray scanner(8*11)上合成的引物排布如表5所示。
表5 Gene_Frag 13引物在microarray scanner上对应的排布
Figure PCTCN2019115911-appb-000008
待合成结束后,将芯片置于高压气相氨解仪中,使用一甲胺作为氨解气体,在80℃以及40psi的条件下氨解3小时,待芯片冷却后将其取出并转移至Biodot AD 1500取样机标准玻片支架上。
利用Biodot取样机向每个引物簇滴加50nL蒸馏水,静置一分钟后将Biodot取样机针头高度调整至芯片表面并吸取60nL体积后转移至96孔板内,滴加1μL蒸馏水。使用清洗程序对取样针头进行清洗后重复上述操作直至所有引物簇被转移完全。
配制PCA反应体系:5*HF buffer 10μL,dNTPs 1μL,NEB-Phusion 0.5μL,BSA(20mg/mL)5μL,H 2O 33.5μL。以及PCR反应体系:5*HF buffer 2μL,dNTPs 0.2μL,NEB-Phusion 0.1μL,BSA(20mg/mL)1μL,Gene_Frag 13_F(10μM)以及Gene_Frag 13_R(10μM)各0.3μL,H2O 3.6μL。
将96孔板内的样品中溶剂通过真空离心浓缩仪(Concentrator plus,厂家eppendorf)减压抽干后,向每个含有引物簇的孔中加入2.5μL PCA反应混合液并转移至384孔中进行PCA反应,反应条件为:98℃ 3min,35个循环(98℃ 10s,58℃ 10s,72℃20s),72℃ 5min。随后将2.5μLPCA产物转移至7.5μL PCR反应体系内进行PCR反应,反应条件为:98℃ 3min,40个循环(98℃ 10s,64℃ 10s,72℃ 35s),72℃ 5min。
将上述反应液(即PCR产物)转化至Top10感受态细胞,按照化学感受态细胞转化步骤进行操作。复苏后取100μL菌液涂布在Kan抗性显色平板上。放置37℃培养箱培养过夜。
利用菌检引物对显色平板上的白斑进行菌检,挑取阳性克隆10个进行测序并分析测序结果,Gene_Frag 13测序结果如图5所示。
所有19个目的基因合成后进行电泳,电泳图见图6。
实施例2芯片引物表面萃取基因合成方法与传统方法的比较
传统方法利用CustomArray合成仪进行高通量基因合成,参考Eroshenko N,Kosuri S,Marblestone AH,Gene Assembly from Chip-Synthesized Oligonucleotides.Curr Protoc Chem Biol.4:1-17,March 2012中的基因合成方法,在合成步骤、氨解及纯化步骤、萃取步骤、扩增步骤上比较传统方法与实施例1方法的具体步骤的时间,如表6所示:
表6传统方法与本发明方法具体步骤的时间
  传统方法 芯片引物表面萃取方法
合成时间* 50hrs 24hrs
氨解、纯化时间* 10.5hrs 2hrs
萃取时间 0 2.5hrs
扩增时间 30hrs 8.5hrs
total 90.5hrs 37hrs
*此处时间是指利用CustomArray B3P合成仪合成时所用的时间,不同平台之间略有差别,但两种方法之间的合成时间差距均比较明显
本发明的实施方式并不限于上述实施例所述,在不偏离本发明的精神和范围的情况下,本领域普通技术人员可以在形式和细节上对本发明做出各种改变和改进,而这些均被认为落入了本发明的保护范围。

Claims (30)

  1. 一种基于芯片引物表面萃取的基因高通量合成方法,所述方法包括将引物按簇分类后合成在芯片的不同区域,氨解方法切割芯片上的引物簇,随后使用液体转移工作站将不同簇的引物溶解并将溶解后的各引物簇分别转移至适于基因合成的独立反应容器中,在适于基因合成的条件下进行基因合成反应,收获合成的目的基因片段。
  2. 根据权利要求1所述的方法,其中所述按簇分类的引物为编码多个目的基因片段的引物簇,其中每个引物簇包含编码同一个目的基因片段的全部引物。
  3. 根据权利要求1或2所述的方法,其中不同引物簇分别在芯片的不同区域内合成,所述不同区域之间留有空白区域;优选地,所述空白区域上合成多个疏水基团。
  4. 根据权利要求1-3任一项所述的方法,其中在芯片上合成引物时使每个引物的3’端额外添加至少1个可通过氨解切割的连接臂和至少3个dT作为保护碱基,优选额外添加2个可通过氨解切割的连接臂和5个dT作为保护碱基;所述连接臂选自任何氨解后可以使引物产生3’自由羟基的结构,优选为基于亚磷酰胺结构并能提供3’端自由羟基的结构,更优选为琥珀酰己胺亚磷酰胺。
  5. 根据权利要求1-4任一项所述的方法,其中所述氨解方法是用不含水的胺化剂氨解;优选地,所述胺化剂选自氨气、一甲胺,更优选为一甲胺。
  6. 根据权利要求5所述的方法,其中所述氨解在充满胺化剂的高压反应容器中进行。
  7. 根据权利要求5或6所述的方法,其中所述氨解是在25℃-120℃以及20-120psi的条件下氨解15分钟-4小时;优选地,所述氨解是在80℃以及40psi的条件下氨解3小时。
  8. 根据权利要求1-7任一项所述的方法,其中所述液体转移工作站为取样机,所述引物溶解使用的溶剂选自可进行PCR反应的溶剂,优选为TE溶液或蒸馏水,更优选为蒸馏水。
  9. 根据权利要求8所述的方法,其中所述引物溶解包括利用取样机向每个引物簇中滴加10-1000nL的溶剂,静置0.5-3分钟后使用针头吹吸使其溶解;优选地,所述引物溶解包括利用取样机向每个引物簇中滴加50nL的蒸馏水,静置1分钟后使用针头吹吸使其溶解。
  10. 根据权利要求1-9任一项所述的方法,其中所述适于基因合成的独立反应容器为多孔板的孔,优选为96孔板的孔;所述转移至适于基因合成的独立反应容器中的步骤包括将液体转移工作站的针头高度调整至芯片表面并吸取芯片内溶解液转移至多孔板内;优选地,在吸取芯片内溶解液转移至多孔板内之后,进一步通过清洗程序对取样针头进行清洗,然后重复引物溶解和转移步骤,直至所有引物簇被转移完全。
  11. 根据权利要求1-10任一项所述的方法,其中所述在适于基因合成的条件下进行基因合成反应包括向每个独立反应容器中加入基因合成反应液和/或目的基因片段的F/R引物,进行合成反应;所述基因合成反应溶液选自PCA反应液和PCR反应液。
  12. 根据权利要求1-11任一项所述的方法,所述基因合成反应包括向每个反应容器中加入PCA反应液,使引物簇进行组装反应,然后加入PCR反应液和目的基因片段的F/R引物,进行PCR反应。
  13. 一种基于芯片引物表面萃取的基因高通量合成方法,包括以下步骤:
    1)在芯片上合成编码多个目的基因片段的引物簇,其中每个引物簇包含编码同一个目的基因片段的全部引物,编码不同目的基因片段的引物簇分别在芯片的不同区域合成;
    2)将合成完成后的芯片进行氨解以将引物从芯片上切割下来,并使切割下来的引物含有3'自由羟基;
    3)向每个引物簇滴加溶剂,使该引物簇中的引物充分溶解,收集每个溶解的引物簇并分别转移至独立的反应容器中;
    4)在反应容器中加入基因合成反应液,进行基因合成;
    5)回收反应产物,得到多个目的基因片段。
  14. 根据权利要求13所述的方法,其中所述步骤1)的所述不同区域之间留有空白区域;优选地,所述在所述空白区域上合成多个疏水基团。
  15. 根据权利要求13或14所述的方法,其中所述步骤1)中在芯片上合成引物时,各引物的3’端额外添加至少1个可通过氨解切割的连接臂和至少3个dT作为保护碱基,优选额外添加2个可通过氨解切割的连接臂和5个dT作为保护碱基;所述连接臂选自任何氨解后可以使引物产生3’自由羟基的结构,优选为基于亚磷酰胺结构并能提供3’端自由羟基的结构,更优选为琥珀酰己胺亚磷酰胺。
  16. 根据权利要求13-15任一项所述的方法,其中所述步骤2)包括用不含水的胺化剂氨解;优选地,所述胺化剂选自氨气、一甲胺,更优选为一甲胺。
  17. 根据权利要求16所述的方法,其中所述氨解在充满胺化剂的高压反应容器中进行。
  18. 根据权利要求16或17所述的方法,其中所述氨解是在25℃-120℃以及20-120psi的条件下氨解15分钟-4小时;优选地,所述氨解是在80℃以及40psi的条件下氨解3小时。
  19. 根据权利要求13-18任一项所述的方法,其中所述步骤3)中溶剂选自可进行PCR反应的溶剂,优选为TE溶液或蒸馏水,更优选为蒸馏水;所述引物溶解包括利用取样机向每个引物簇中滴加10-1000nL的溶剂,静置0.5-3分钟后使用针头吹吸使其溶解;优选地,所述引物溶解包括利用取样机向每个引物簇中滴加50nL的蒸馏水,静置1分钟后使用针头吹吸使其溶解。
  20. 根据权利要求13-19任一项所述的方法,其中所述步骤3)中独立的反应容器为多孔板的孔,优选为96孔板的孔。
  21. 根据权利要求13-20任一项所述的方法,其中步骤3)中所述转移至独立的反应容器中的步骤包括将液体转移工作站的针头高度调整至芯片表面并吸取芯片内溶解液转移至多孔板内。
  22. 根据权利要求21所述的方法,其中在吸取芯片内溶解液转移至多孔板内之后,进一步通过清洗程序对取样针头进行清洗,然后重复步骤3),直至所有引物簇被转移完全。
  23. 根据权利要求13-22任一项所述的方法,其中所述步骤4)中的基因合成反应液选自PCA反应液和PCR反应液;所述基因合成包括向每个反应容器中加入配好的PCA反应液,使引物簇进行组装反应,然后加入PCR反应液和目的基因片段的F/R引物,进行PCR反应。
  24. 一种用于基因高通量合成的引物簇的合成方法,所述方法包括:将引物按簇分类,将不同引物簇合成在芯片的不同区域,氨解方法切割芯片上的引物簇,随后使用液体转移工作站将不同簇的引物溶解,收集每个溶解的引物簇。
  25. 根据权利要求24所述的方法,其中所述每个引物簇包含编码同一个目的基因片段的全部引物,所述芯片上包括合成编码多个目的基因片段的引物簇,编码不同目的基因片段的引物簇分别在芯片的不同区域合成,所述不同区域之间留有空白区域;优选地,在所述空白区域上合成多个疏水基团。
  26. 根据权利要求24或25所述的方法,其中在芯片上合成引物时使每个引物的3’端额外添加至少1个可通过氨解切割的连接臂和至少3个dT作为保护碱基,优选外添加2个可通过氨解切割的连接臂和5个dT作为保护碱基;所述连接臂选自任何氨解后可以使引物产生3’自由羟基的结构,优选为基于亚磷酰胺结构并能提供3’端自由羟基的结构,更优选为琥珀酰己胺亚磷酰胺。
  27. 根据权利要求24-26任一项所述的方法,其中所述引物溶解的溶剂为蒸馏水;所述引物溶解包括利用取样机向每个引物簇中滴加10-1000nL的蒸馏水,静置0.5-3分钟后使用针头吹吸使其溶解;优选地,所述引物溶解包括利用取样机向每个引物簇中滴加50nL的蒸馏水,静置1分钟后使用针头吹吸使其溶解。
  28. 根据权利要求24-27任一项所述的方法,其中所述合成方法进一步包括将每个溶解的引物簇转移至独立的反应容器内;优选地,所述独立的反应容器为多孔板的孔。
  29. 根据权利要求28所述的方法,其中所述转移至独立的反应容器的步骤包括将取样机针头高度调整至芯片表面并吸取芯片内溶解液转移至多孔板内;优选地,在吸取芯片内溶解液转移至多孔板内之后,进一步通过清洗程序对取样针头进行清洗,然后重复引物溶解和转移步骤,直至所有引物簇被转移完全。
  30. 一种用于基因高通量合成的引物簇的合成方法,包括如下步骤:
    1)在芯片上合成编码多个目的基因片段的引物簇,其中编码每个目的基因片段的引物簇包含编码该目的基因片段的全部引物,编码不同目的基因片段的引物簇分别在芯片的不同固定区域合成,所述不同区域之间留有空白区域;
    2)将合成完成后的芯片进行氨解以将引物从芯片上切割下来,并使切割下来的引物含有3'自由羟基;
    3)向每个引物簇滴加溶剂,使该引物簇中的引物充分溶解,收集每个溶解的引物簇。
PCT/CN2019/115911 2018-11-06 2019-11-06 一种基于芯片引物表面萃取的基因高通量合成方法 WO2020094040A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980072942.1A CN113166803B (zh) 2018-11-06 2019-11-06 一种基于芯片引物表面萃取的基因高通量合成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811313909.7 2018-11-06
CN201811313909 2018-11-06

Publications (1)

Publication Number Publication Date
WO2020094040A1 true WO2020094040A1 (zh) 2020-05-14

Family

ID=70612187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115911 WO2020094040A1 (zh) 2018-11-06 2019-11-06 一种基于芯片引物表面萃取的基因高通量合成方法

Country Status (3)

Country Link
CN (1) CN113166803B (zh)
TW (1) TW202045732A (zh)
WO (1) WO2020094040A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11014957B2 (en) 2015-12-21 2021-05-25 Realseq Biosciences, Inc. Methods of library construction for polynucleotide sequencing
US11072819B2 (en) 2011-12-22 2021-07-27 Realseq Biosciences, Inc. Methods of constructing small RNA libraries and their use for expression profiling of target RNAs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870717A (zh) * 2010-05-28 2010-10-27 中国人民解放军军事医学科学院放射与辐射医学研究所 一种寡核苷酸“直接缩合法”试剂及其用途
CN106674283A (zh) * 2016-12-15 2017-05-17 中国科学院北京基因组研究所 可完全去疤的可逆末端终止功能核苷酸及其应用
CN108395462A (zh) * 2017-12-13 2018-08-14 通用生物系统(安徽)有限公司 一种新型的y-str基因座检测用dna探针合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870717A (zh) * 2010-05-28 2010-10-27 中国人民解放军军事医学科学院放射与辐射医学研究所 一种寡核苷酸“直接缩合法”试剂及其用途
CN106674283A (zh) * 2016-12-15 2017-05-17 中国科学院北京基因组研究所 可完全去疤的可逆末端终止功能核苷酸及其应用
CN108395462A (zh) * 2017-12-13 2018-08-14 通用生物系统(安徽)有限公司 一种新型的y-str基因座检测用dna探针合成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Guidance of modern analytical instruments", DEPARTMENT OF EDUCATION OF YUNNAN, vol. 6, no. 2, 31 December 2000 (2000-12-31), pages 182 - 184 *
EROSHENKO N. ET AL.: "Gene Assembly from Chip-Synthesized Oligonucleotides", CURR PROTOC CHEM BIOL., vol. 4, 28 July 2014 (2014-07-28), pages 1 - 24, XP055336647 *
ZHENG ZHENYU ET AL.: "Target gene acquisition, section 5.1 artificail chemical synthesis of genes", GENE ENGINEERING, 31 March 2015 (2015-03-31), pages 130 - 132 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072819B2 (en) 2011-12-22 2021-07-27 Realseq Biosciences, Inc. Methods of constructing small RNA libraries and their use for expression profiling of target RNAs
US11014957B2 (en) 2015-12-21 2021-05-25 Realseq Biosciences, Inc. Methods of library construction for polynucleotide sequencing
US11964997B2 (en) 2015-12-21 2024-04-23 Realseq Biosciences, Inc. Methods of library construction for polynucleotide sequencing

Also Published As

Publication number Publication date
TW202045732A (zh) 2020-12-16
CN113166803A (zh) 2021-07-23
CN113166803B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
US20190002969A1 (en) Multiple tagging of long dna fragments
Schulman Molecular markers to assess genetic diversity
US20140057806A1 (en) Probe, probe set, probe carrier, and testing method
CN105907748B (zh) 一种基于高通量测序的线粒体基因组文库及其构建方法
CN106755292A (zh) 一种磷酸修饰荧光团的核苷酸分子测序方法
US11041203B2 (en) Methods for assessing a genomic region of a subject
WO2012068919A1 (zh) DNA文库及其制备方法、以及检测SNPs的方法和装置
WO2020094040A1 (zh) 一种基于芯片引物表面萃取的基因高通量合成方法
JP2008278871A (ja) プローブセット、プローブ担体、及び真菌の判別同定方法
ES2962223T3 (es) Métodos para unir adaptadores a ácidos nucleicos de muestra
US10456769B2 (en) Method of constructing sequencing library
CN110564831A (zh) 用于测序文库的封闭试剂及提高靶向捕获效率的方法
CA2567735A1 (en) Rapid production of double-stranded target dna molecules
CN105567681B (zh) 一种基于高通量基因测序无创活检病毒的方法及标签接头
CN102409047A (zh) 一种构建杂交测序文库的方法
CN106939342A (zh) 一种与谷子米色连锁的snp标记、引物及应用
CN104480217A (zh) 一种简化基因组测序方法
CN111041069B (zh) 一种低起始量dna样本的高通量测序文库构建方法及其应用
Azhaguvel et al. Methodological advancement in molecular markers to delimit the gene (s) for crop improvement
CN110846435B (zh) 龙须菜鲁龙1号良种的特异性snp标记及其应用
CN110468180A (zh) 血浆dna文库及其构建方法
CN114561484B (zh) 一种扩增水稻产量相关基因位点的多重pcr引物组合及其试剂盒
CN211645259U (zh) 一种dna处理器、文库构建器、杂交捕获文库的制备装置
Guo et al. Reverse Sequencing by Hybridization with Fluorescence Incorporation
CN110982932B (zh) 与小麦株高主效qtl紧密连锁的分子标记及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882770

Country of ref document: EP

Kind code of ref document: A1