WO2020093985A1 - 耦合天线装置及电子设备 - Google Patents

耦合天线装置及电子设备 Download PDF

Info

Publication number
WO2020093985A1
WO2020093985A1 PCT/CN2019/115493 CN2019115493W WO2020093985A1 WO 2020093985 A1 WO2020093985 A1 WO 2020093985A1 CN 2019115493 W CN2019115493 W CN 2019115493W WO 2020093985 A1 WO2020093985 A1 WO 2020093985A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
resonance
bracket
coupled
coupling
Prior art date
Application number
PCT/CN2019/115493
Other languages
English (en)
French (fr)
Inventor
吴鹏飞
李建铭
余冬
蔡智宇
张志华
索帕蒂阿荣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19882615.8A priority Critical patent/EP3855567B1/en
Priority to AU2019376754A priority patent/AU2019376754B2/en
Priority to JP2021523624A priority patent/JP7232327B2/ja
Priority to KR1020217013557A priority patent/KR102519254B1/ko
Priority to CN201980073182.6A priority patent/CN113228412A/zh
Priority to BR112021007634-4A priority patent/BR112021007634A2/pt
Priority to US17/290,904 priority patent/US11916282B2/en
Publication of WO2020093985A1 publication Critical patent/WO2020093985A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • H01Q1/244Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas extendable from a housing along a given path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the invention relates to the technical field of antennas, in particular to a coupling antenna device applied in electronic equipment.
  • MIMO multi-input multi-output
  • ID metal industry design
  • LDS laser direct forming
  • MIMO antennas such as wireless fidelity (Wi-Fi) band MIMO antennas (also called Wi-Fi MIMO antennas)
  • Wi-Fi MIMO antennas wireless fidelity band MIMO antennas
  • the antenna design is carried out on the antenna bracket that avoids the internal metal devices and the metal frame and the height exceeds the metal frame.
  • the dotted frame area in FIG. 1 is the design area of the currently commonly used Wi-Fi MIMO antenna bracket.
  • the antenna space is further compressed and the height is limited.
  • designing an inverted-F antenna (IFA) on this antenna bracket cannot meet the bandwidth requirements of the Wi-Fi 2.4 GHz band and the Wi-Fi 5 GHz band.
  • Embodiments of the present invention provide a coupled antenna device and electronic equipment.
  • the coupled antenna device can be implemented in a limited design space, and can generate multiple resonance mode excitations, which can improve antenna bandwidth and radiation characteristics.
  • the present application provides a coupled antenna device applied to an electronic device.
  • the electronic device may include a printed circuit board PCB, a metal middle frame and a back cover, and the PCB may be located between the back cover and the metal middle frame.
  • the coupling antenna device may include: a feeding unit and a coupling unit, the feeding unit may have a feeding point, and the feeding unit may couple the coupling unit to generate resonance in multiple frequency bands.
  • the coupling unit may include one or more antenna elements disposed on the back cover.
  • the back cover can be made of glass, ceramic or plastic.
  • the feeding unit (also called a feeding antenna) may be an antenna fixed on an antenna bracket (may be called a bracket antenna), and the bracket antenna may be a different type of antenna form, such as an IFA antenna, a monopole Antenna or loop antenna.
  • the feeding unit may also be a slot antenna formed by slitting a metal middle frame.
  • the coupling unit may include a floating metal antenna disposed on the back cover. That is, the antenna element provided on the back cover may be a floating metal antenna provided on the back cover.
  • the suspended metal antenna may be provided on the inner surface of the back cover, or on the outer surface of the back cover, or may be embedded in the back cover.
  • the floating metal antenna may be a metal strip attached to the inner surface of the back cover. It is not limited to a floating metal antenna.
  • the antenna element provided on the back cover may also be other antenna elements provided on the back cover that can be coupled to radiate signals.
  • the coupled antenna device provided in the first aspect may include an antenna element (such as a suspended metal antenna) provided on the back cover.
  • the antenna element such as a suspended metal antenna
  • the antenna element has sufficient design space on the back cover, and its size may be The design is larger.
  • the coupled antenna structure formed by the antenna element (such as a suspended metal antenna) and the feed antenna can excite a resonance mode in a lower frequency band, generate more resonance, and realize more frequency band coverage.
  • the size of the feed antenna included in the coupled antenna device can be designed to be small, reduced by the influence of surrounding devices, and can be realized in a small design space.
  • the coupled antenna device may be specifically implemented in the following ways:
  • the feeding unit of the coupled antenna device may be a fed antenna.
  • the coupling unit of the coupled antenna device may include an antenna element (such as a suspended metal antenna) provided on the back cover, and may also include a slot antenna formed by a slotted metal middle frame.
  • the slot antenna can be closed at both ends and grounded.
  • the antenna element (such as a suspended metal antenna) provided on the back cover may be open at both ends.
  • the bracket antenna can be fed at one end and open at one end.
  • the feeding bracket antenna can be coupled to one or more antenna elements (such as a suspended metal antenna) provided on the back cover and the slot antenna to generate resonance in multiple frequency bands.
  • the multiple frequency band resonance may include multiple Wi-Fi frequency band resonances.
  • the Wi-Fi frequency band may include one or more of the following: 2.4 GHz frequency band and 5 GHz frequency band.
  • only one antenna element (such as a suspended metal antenna) may be provided on the back cover.
  • the coupled antenna device may generate one resonance in the 2.4 GHz frequency band (may be referred to as resonance 1) and three resonances in the 5 GHz frequency band (may be resonance 2, 3, 4).
  • a resonance in the 2.4GHz band (resonance 1) can be generated by the half-wavelength mode of the antenna element (such as a floating metal antenna) provided on the back cover; the lowest resonance (resonance 2) among the three resonances in the 5GHz band It can be generated by the double wavelength mode of the antenna element (such as a floating metal antenna) provided on the back cover; the middle resonance (resonance 3) of the three resonances in the 5GHz band can be fed by the bracket antenna (such as the quarter wavelength mode) ); The highest resonance (resonance 4) of the three resonances in the 5GHz band can be generated by the half-wavelength mode of the slot antenna.
  • the feeding bracket antenna can generate resonance 3, and can be coupled to the suspended metal antenna, and the suspended metal antenna can be excited to generate resonance 1 and resonance 2, and can also be coupled to the slot antenna, which can generate resonance 4.
  • the wavelength mode of resonance 1 is not limited by the antenna element (such as a suspended metal antenna) installed on the back cover. Three-wavelength mode is generated.
  • the wavelength mode of resonance 2 is not limited by the antenna element (such as a suspended metal antenna) installed on the back cover, and the resonance 2 can also be a three-half wavelength mode, two The fifth-half wavelength mode is generated.
  • the wavelength mode of resonance 3 generated by the bracket antenna is not limited, and resonance 3 can also be generated by the three-quarter wavelength mode and the five-quarter wavelength mode of the bracket antenna.
  • the wavelength mode in which the slot antenna generates resonance 4 is not limited, and resonance 4 can be generated by the three-half wavelength mode and the fifth-half wavelength mode of the slot antenna.
  • the slot antenna may be closed at one end and grounded and open at the other end. At this time, the slot antenna can generate resonance through the quarter-wavelength mode, the third-quarter wavelength mode, the fifth-quarter wavelength mode, etc. 4.
  • the coupled antenna device implemented in the first manner can generate more resonance.
  • the coupled antenna device can generate four resonances in the 5 GHz frequency band.
  • the coupling antenna device implemented in the first way can also generate resonance in other frequency bands.
  • the antenna radiators such as suspended metal antennas, The size or shape of the bracket antenna and slot antenna).
  • the feeding bracket antenna and the antenna element (such as a suspended metal antenna) provided on the rear cover may be arranged in parallel and opposite to each other.
  • the feeding antenna and the slot antenna may be arranged in parallel and opposite to each other.
  • the feeding unit of the coupled antenna device may be a feeding bracket antenna.
  • the coupling unit of the coupled antenna device may be one or more antenna elements (such as a suspended metal antenna) provided on the back cover.
  • the antenna element (such as a suspended metal antenna) provided on the back cover may be open at both ends.
  • the bracket antenna can be fed at one end and open at one end.
  • the fed antenna can be coupled to one or more antenna elements (such as a suspended metal antenna) provided on the back cover to generate resonance in multiple frequency bands.
  • the multiple frequency band resonance may include multiple Wi-Fi frequency band resonances.
  • the Wi-Fi frequency band may include one or more of the following: 2.4 GHz frequency band and 5 GHz frequency band.
  • only one antenna element (such as a suspended metal antenna) may be provided on the back cover.
  • the coupled antenna device can generate one resonance in the 2.4 GHz frequency band (can be referred to as resonance 5) and two resonances in the 5 GHz frequency band (can be resonance 6, 7).
  • a resonance in the 2.4GHz band can be generated by the half-wavelength mode of the antenna element (such as a suspended metal antenna) provided on the back cover; the lower resonance (resonance 6) of the two resonances in the 5GHz band ) Can be generated by the double-wavelength mode of the antenna element (such as a floating metal antenna) provided on the back cover; the higher resonance (resonance 7) of the two resonances in the 5GHz band can be fed by the bracket antenna (such as a quarter Wavelength mode).
  • the feeding bracket antenna can generate resonance 7, and can be coupled with the floating metal antenna, and the floating metal antenna is excited to generate resonance 5 and resonance 6.
  • the wavelength mode of resonance 5 is not limited by the antenna element (such as a suspended metal antenna) installed on the back cover, and the resonance 5 can also be doubled by half the wavelength mode of the antenna element (such as a suspended metal antenna) installed on the back cover Three-wavelength mode is generated.
  • the wavelength mode of resonance 6 is not limited by the antenna element (such as a floating metal antenna) installed on the back cover, and the resonance 6 can also be a three-half wavelength mode, two The fifth-half wavelength mode is generated.
  • the wavelength mode of resonance 7 generated by the bracket antenna is not limited, and resonance 7 can also be generated by the three-quarter wavelength mode and the five-quarter wavelength mode of the bracket antenna.
  • the coupling antenna device implemented in the second way can also generate resonances in other frequency bands.
  • the antenna radiators such as suspended metal antennas, Bracket antenna
  • size or shape to set such as suspended metal antennas, Bracket antenna
  • the coupled antenna device implemented in the second manner can generate more resonance.
  • the coupled antenna device can generate three resonances in the 5 GHz frequency band.
  • the feeding support antenna and the antenna element (such as a suspended metal antenna) provided on the rear cover may be arranged in parallel and opposite.
  • the feeding unit of the coupled antenna device may be a fed slot antenna.
  • the coupling unit of the coupled antenna device may include an antenna element (such as a suspended metal antenna) provided on the back cover, and may further include a bracket antenna fixed on the antenna bracket.
  • the slot antenna can be fed at one end and closed at the other end to ground.
  • the bracket antenna 31 may be closed and grounded at one end and open at the other end.
  • the floating metal antenna can be open at both ends.
  • the fed slot antenna can be coupled to one or more antenna elements (such as a suspended metal antenna) and a bracket antenna provided on the back cover to generate resonance in multiple frequency bands.
  • the multiple frequency band resonance may include multiple Wi-Fi frequency band resonances.
  • the Wi-Fi frequency band may include one or more of the following: 2.4 GHz frequency band and 5 GHz frequency band.
  • only one antenna element (such as a suspended metal antenna) may be provided on the back cover.
  • the coupled antenna device can generate one resonance in the 2.4 GHz band (can be called resonance 1) and three resonances in the 5 GHz band (can be resonance 2, 3, 4).
  • a resonance in the 2.4GHz band (resonance 1) can be generated by the half-wavelength mode of the antenna element (such as a floating metal antenna) provided on the back cover; the lowest resonance (resonance 2) among the three resonances in the 5GHz band It can be generated by the double-wavelength mode of the antenna element (such as a suspended metal antenna) provided on the back cover; the middle resonance (resonance 3) of the three resonances in the 5GHz band can be generated by the bracket antenna (such as the quarter-wavelength mode); The highest resonance (resonance 4) of the three resonances in the 5GHz band can be generated by the half-wavelength mode of the fed slot antenna.
  • the fed slot antenna can generate resonance 4, and can be coupled to the suspended metal antenna to excite the suspended metal antenna to generate resonance 1 and resonance 2, and can also be coupled to the bracket antenna to stimulate the bracket antenna to generate resonance 3.
  • the slot antenna for feeding and the antenna element provided on the rear cover may be arranged in parallel and opposite to each other.
  • the feeding slot antenna and the bracket antenna may be arranged in parallel and opposite.
  • the feeding unit of the coupled antenna device may be a fed slot antenna.
  • the coupling unit of the coupled antenna device may be an antenna element (such as a suspended metal antenna) provided on the back cover.
  • the slot antenna may be fed at one end and the other end is closed to ground.
  • the suspended metal antenna may be open at both ends.
  • the fed slot antenna may be coupled to one Or multiple antenna elements (such as a floating metal antenna) provided on the back cover generate resonances in multiple frequency bands.
  • the resonances in the multiple frequency bands may include resonances in multiple Wi-Fi frequency bands.
  • the Wi-Fi frequency band may be Including one or more of the following: 2.4GHz frequency band, 5GHz frequency band.
  • only one antenna element (such as a suspended metal antenna) may be provided on the back cover.
  • the coupled antenna device can generate one resonance in the 2.4 GHz band (can be called resonance 8), and two resonances in the 5 GHz band (can be resonance 9, ).
  • a resonance in the 2.4GHz band can be generated by the half-wavelength mode of the antenna element (such as a floating metal antenna) provided on the back cover; the lower resonance (resonance 9 ) Can be produced by the double-wavelength mode of the antenna element (such as a suspended metal antenna) provided on the back cover; the higher resonance (resonance) of the two resonances in the 5GHz band ) Can be produced by a fed slot antenna (such as a half-wavelength mode).
  • the feeding slot antenna can generate resonance It can also be coupled to a suspended metal antenna to stimulate the suspended metal antenna to produce resonance 8 and resonance 9.
  • the wavelength mode of resonance 8 is not limited by the antenna element (such as a floating metal antenna) installed on the back cover. Three-wavelength mode is generated.
  • the wavelength mode of resonance 9 is not limited by the antenna element (such as a floating metal antenna) installed on the back cover.
  • the fifth-half wavelength mode is generated.
  • Unrestricted slot antenna resonance Wavelength mode, resonance It can be generated by the three-half wavelength mode and the fifth-half wavelength mode of the slot antenna.
  • the coupling antenna device implemented in the fourth way can also generate resonances in other frequency bands.
  • the antenna radiators such as slot antennas, floating Metal antenna
  • the coupled antenna device implemented in the fourth manner can generate more resonance.
  • the coupled antenna device can generate three resonances in the 5 GHz frequency band.
  • the feeding slot antenna and the antenna element provided on the rear cover may be arranged in parallel and opposite to each other.
  • the feeding unit of the coupled antenna device may be a fed antenna.
  • the coupling unit of the coupled antenna device may include an antenna element (such as a suspended metal antenna) provided on the back cover, and may also include a slot antenna formed by a slotted metal middle frame.
  • the slot antenna can be longer than the floating metal antenna.
  • the feeding bracket antenna can be coupled to one or more antenna elements (such as a suspended metal antenna) provided on the back cover and the slot antenna to generate resonance in multiple frequency bands.
  • the resonance of the multiple frequency bands may include a Wi-Fi frequency band (such as a 2.4 GHz frequency band), and may also include a mobile communication frequency band.
  • the mobile communication frequency band may include one or more of the following: LTE B1 frequency band, LTE B3 frequency band, and LTE B7 frequency band.
  • the length of the slot antenna may be 43 mm, or a value near 43 mm (such as a value within 40 mm to 45 mm).
  • the width of the slot antenna ie, the slit width
  • the length of the bracket antenna may be 17 mm, or a value near 17 mm (eg, 16 mm, 18 mm, etc.).
  • the width of the bracket antenna may be 5 mm, or a value near 5 mm (eg, 6 mm, 4 mm, etc.).
  • the length of the floating metal antenna may be 32 mm, or a value near 32 mm (such as 33 mm, 32 mm, etc.).
  • the width of the floating metal antenna may be 6.5 mm, or a value near 6.5 mm (such as 6 mm, 7 mm, etc.).
  • the Z-direction distance between the bracket antenna and the suspended metal antenna may be 0.15 mm to 0.25 mm. There may be some arcs on the outer surface contours of the bracket antenna and the suspended metal antenna.
  • the Z-direction spacing between the two may have many different values.
  • the maximum Z-distance between the two may be 0.25 mm.
  • the minimum Z distance can be 0.15 mm.
  • the Z-projection area of the floating metal antenna may not cover the bracket antenna, or only cover a small part of the bracket antenna (such as 20% of the bracket antenna).
  • the Z-direction distance between the bracket antenna and the slot antenna may be 2 mm, or a value near 2 mm (eg, 1.8 mm, 2.2 mm, etc.).
  • the X-direction distance between the bracket antenna and the slot antenna can be within 5 mm.
  • the slot antenna can be closed and grounded at both ends.
  • the antenna element such as a suspended metal antenna
  • the bracket antenna can be fed at one end and open at one end.
  • the coupled antenna device implemented in the fifth way can generate a resonance (which can be called resonance) near 1.8 GHz (LTE B3) ), A resonance can also be generated around 2.1GHz (LTE B1) (can be called resonance) ), It can also generate a resonance around 2.4GHz (LTE B7) ).
  • Unrestricted slot antenna resonance Wavelength mode, resonance It can also be generated by the three-half wavelength mode and the fifth-half wavelength mode of the slot antenna.
  • Unrestricted antenna elements such as suspended metal antennas installed on the back cover produce resonance Wavelength mode, resonance It can also be generated by the double wavelength mode, three-half wavelength mode, five-half wavelength mode, etc. of the antenna element (such as a suspended metal antenna) provided on the back cover.
  • Unrestricted resonance of the bracket antenna Wavelength mode, resonance It can also be generated by the three-quarter wavelength mode and the five-quarter wavelength mode of the bracket antenna.
  • the coupled antenna device implemented in the fifth manner may not include a slot antenna.
  • the coupling antenna device implemented in the fifth manner may be a coupling antenna device formed by coupling a suspended metal antenna to a feeding bracket antenna (ie, not including the slot antenna 21).
  • the coupled antenna device can also generate resonance
  • the floating metal antenna can be designed longer.
  • the length of the floating metal antenna may be 39 mm, or a value near 39 mm (such as 38 mm, 40 mm, etc.). In this way, the half-wavelength mode of the floating metal antenna can produce resonance
  • the double-wavelength mode of the floating metal antenna can produce resonance resonance resonance It can be produced by the quarter-wavelength mode of the bracket antenna.
  • the coupled antenna device implemented in the fifth way can generate multiple resonances, covering Wi-Fi frequency bands (such as the 2.4 GHz frequency band) and LTE B3, LTE B1, LTE B7 and other frequency bands. It is not limited to Wi-Fi frequency band (such as 2.4GHz frequency band) and LTE B3, LTE B1, LTE B7 and other frequency bands.
  • the coupled antenna device can also generate resonance in other frequency bands. Specifically, by adjusting each antenna radiator in the antenna structure The size or shape of the suspended metal antenna, bracket antenna, slot antenna) is set.
  • the two or two Different coupling distances can be formed between more than one antenna element (such as a suspended metal antenna) and a feed antenna (such as a fed bracket antenna).
  • the feeding unit in the coupled antenna device may have multiple antenna branches.
  • the antenna branch of the fed bracket antenna can be embodied as multiple radiation arms, and the antenna branch of the fed slot antenna can be embodied as multiple radiation slots.
  • the multiple antenna branches can further increase the number of resonances generated by the coupled antenna structure, and can further increase the coverage frequency band of the antenna.
  • the antenna element (such as a suspended metal antenna) disposed on the back cover in the coupled antenna device may have multiple antenna branches.
  • the multiple antenna branches can further increase the number of resonances generated by the coupled antenna device, and can further increase the coverage frequency band of the antenna.
  • the antenna element (such as a suspended metal antenna) provided in the rear cover of the coupled antenna device may be divided into multiple parts, and distributed parameters or lumped parameters may be adopted between the multiple parts Inductive connection to reduce the size of the antenna element (such as a floating metal antenna).
  • the end of the antenna element (such as a suspended metal antenna) provided on the back cover may have a capacitor, which can reduce the size of the antenna element (such as a suspended metal antenna).
  • an antenna element such as a suspended metal antenna
  • a filter such as a band pass filter, a high-frequency filter
  • the antenna element such as a suspended metal
  • the signal radiated by the antenna can be filtered to realize multiple frequency bands.
  • the present application provides an electronic device.
  • the electronic device may include a printed circuit board (PCB), a metal middle frame, a back cover, and the coupled antenna device described in the first aspect.
  • PCB printed circuit board
  • metal middle frame metal middle frame
  • back cover the coupled antenna device described in the first aspect.
  • Figure 1 is a schematic diagram of a traditional antenna design location
  • FIG. 2 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • 3A-3F are schematic diagrams of an antenna device provided by an embodiment of the present application.
  • 3G is a schematic diagram of a traditional coupled antenna structure
  • FIGS. 4A-4B are schematic diagrams of an antenna device provided by an embodiment of the present application.
  • 5A-5D are schematic diagrams of an antenna device provided by another embodiment of the present application.
  • 6A-6D are schematic diagrams of an antenna device provided by yet another embodiment of the present application.
  • FIGS. 7A-7B are schematic diagrams of an antenna device provided by yet another embodiment of the present application.
  • FIGS. 8A-8G are schematic diagrams of an antenna device provided by yet another embodiment of the present application.
  • FIGS. 9A-9C are schematic diagrams of an antenna device provided by yet another embodiment of the present application.
  • FIGS. 10A-10C are schematic diagrams of an antenna device provided by yet another embodiment of the present application.
  • FIGS. 11A-11H are schematic diagrams of an antenna device provided by yet another embodiment of the present application.
  • FIG. 12 is a schematic diagram of an antenna device provided by yet another embodiment of the present application.
  • FIGS. 13A-13B are schematic diagrams of antenna devices provided by further embodiments of the present application.
  • the technical solutions provided in this application are applicable to electronic equipment using one or more of the following MIMO communication technologies: long term evolution (LTE) communication technology, Wi-Fi communication technology, 5G communication technology, SUB-6G communication technology, and Other MIMO communication technologies in the future.
  • the electronic device may be a mobile phone, a tablet computer, a personal digital assistant (personal digital assistant, PDA), and other electronic devices.
  • FIG. 2 exemplarily shows the internal environment of the electronic device on which the antenna design scheme provided by the present application is based.
  • the electronic device may include: a display screen 21, a metal middle frame 23, a printed circuit board PCB 25 and a back cover 27.
  • the display screen 21, the metal middle frame 23, the printed circuit board PCB 25 and the back cover 27 can be respectively arranged on different layers, and these layers can be parallel to each other.
  • the plane where each layer is located can be called the XY plane, and the direction perpendicular to the XY plane For the Z direction. That is to say, the display screen 21, the metal middle frame 23, the printed circuit board PCB 25 and the back cover 27 can be distributed in layers in the Z direction.
  • the printed circuit board PCB 25 is located between the rear cover 27 and the metal middle frame 23, and the rear cover 27 may be made of an insulating material, for example, glass, ceramics, or plastic.
  • An antenna bracket (for fixing the antenna) may be provided on the printed circuit board PCB25.
  • the antenna bracket can use insulating material, such as PC / ABS material.
  • the Z height of the antenna bracket from the printed circuit board PCB25 can be 1.5 mm
  • the thickness of the antenna bracket can be 1 mm
  • the inner surface of the back cover 27 is away from the Z direction of the antenna bracket
  • the height can be 0.3 mm.
  • the 1.5 mm, 1 mm, and 0.3 mm mentioned here are only examples, and the relative positions of the antenna bracket and surrounding components may also be different, as long as the clearance requirement of the antenna on the antenna bracket is satisfied, it should not be limited.
  • a slot antenna may be formed on the metal middle frame 23 (such as the side of the metal middle frame 23).
  • the slot antenna can be filled with insulating materials, such as PC / ABS materials (dielectric constant 3.6, dielectric loss angle 0.01).
  • the Z-height of the display screen 21 from the metal middle frame 23 may be 0.3 mm.
  • the antenna clearance width of the slot antenna in the Z direction projection area may be 0.6 mm.
  • the 0.3 mm and 0.6 mm mentioned here are only examples, and the relative positions of the slot antenna and the surrounding components may also be different, as long as the clearance requirements of the slot antenna are satisfied, it should not be limited.
  • the floating metal antenna can be arranged on the rear cover 27.
  • the floating metal antenna may be provided on the inner surface of the back cover 27, or may be provided on the outer surface of the back cover 27, or may be embedded in the back cover 27.
  • the floating metal antenna may be a metal strip attached to the inner surface of the back cover 27, or may be printed on the inner surface of the back cover 27 using conductive silver paste.
  • the floating metal antenna can form a coupled antenna structure with the feed antenna inside the electronic device.
  • the feed antenna may be an antenna fixed on an antenna bracket (may be called a bracket antenna), and the bracket antenna may be in the form of different types of antennas, such as an IFA antenna, a monopole antenna, or a loop antenna.
  • the feeding antenna may be a slot antenna formed by slitting the metal middle frame 23 or the like.
  • the antenna device formed by the coupled antenna structure can generate multiple resonance modes of excitation, which can improve the antenna bandwidth and radiation characteristics.
  • the bracket antenna may be a feeding unit, and the slot antenna and the floating metal antenna may be coupling units. That is to say, the feeding bracket antenna can be coupled to the suspended metal antenna and the slot antenna at the same time.
  • FIG. 3A-3B exemplarily show the coupled antenna structure provided in the first embodiment.
  • FIG. 3A is a schematic diagram of a simulation model
  • FIG. 3B is a simplified diagram of the structure.
  • the coupled antenna structure may include a bracket antenna 31, a slot antenna 21 and a suspended metal antenna 41. among them:
  • the bracket antenna 31 may be fixed to an antenna bracket (not shown).
  • the bracket antenna 31 may have a feeding point.
  • the bracket antenna 31 can be fed at one end and open at the other end.
  • the slot antenna 21 may be formed by slitting the side of the metal middle frame. Not limited to the side, the slot antenna 21 may also be formed by slitting at other positions of the metal middle frame. Both ends of the slot antenna 21 can be closed and grounded.
  • the floating metal antenna 41 may be provided on the inner surface of the back cover. The floating metal antenna 41 may be open at both ends.
  • the slot antenna 21 and the suspended metal antenna 41 may not be fed, and the two may be used as coupling units to be coupled by the fed antenna 31.
  • the feeding antenna 31 and the suspended metal antenna 41 may be arranged in parallel and opposite each other.
  • the parallel relative arrangement may mean that one or more radiating arms of the bracket antenna 31 and the suspended metal antenna 41 may be arranged in parallel and opposite.
  • the radiating arm 31-A and the radiating arm 31-B of the bracket antenna 31 may be disposed parallel to and opposite to the suspended metal antenna 41.
  • the suspended metal antenna 41 may have multiple radiation arms, wherein one or more radiation arms may be respectively arranged parallel to and opposite to the one or more radiation arms of the bracket antenna 31.
  • the support antenna 31 and the suspended metal antenna 41 need not be arranged in parallel and opposite each other.
  • the feeding bracket antenna 31 can also be coupled to the floating metal antenna 41, but the coupling effect is not as strong as when the two are arranged in parallel and opposite to each other.
  • the fed antenna 31 and the slot antenna 21 may be arranged in parallel and opposite each other.
  • the parallel relative arrangement may mean that one or more radiating arms of the bracket antenna 31 and the slot antenna 21 may be arranged in parallel and opposite.
  • the radiating arm 31 -A and the radiating arm 31 -B of the bracket antenna 31 may be arranged parallel to and opposite to the slot antenna 21.
  • the slot antenna 21 may have a plurality of radiation slots, wherein one or more radiation slots may be respectively arranged in parallel and opposite to one or more radiation arms of the bracket antenna 31.
  • the fed antenna 31 and the slot antenna 21 may not necessarily be arranged in parallel and opposite each other.
  • the feeding support antenna 31 can also be coupled to the slot antenna 21, but the coupling effect is not as strong as when the two are arranged in parallel and relative to each other.
  • FIG. 3C exemplarily shows the coupling distance between the fed bracket antenna 31 and the suspended metal antenna 41 and the slot antenna 21.
  • a coupling gap 1 (gap1) between the fed bracket antenna 31 and the floating metal antenna 41, and a coupling region 1 may be formed between the two.
  • a coupling gap 2 (gap2) between the fed bracket antenna 31 and the slot antenna 21, and a coupling region 2 may be formed between the two.
  • the present application does not limit the specific values of the coupling pitch 1, the coupling pitch 2, the coupling area 1, and the coupling area 2, as long as the bracket antenna 31 can couple the suspended metal antenna 41 and the slot antenna 21.
  • FIG 3C only illustrates the coupling spacing between the antennas.
  • the coupling distance between the antennas (such as the coupling distance between the bracket antenna 31 and the floating metal antenna 41) may have only one value, that is, the coupling distance is equal everywhere.
  • the coupling distance between the antennas (such as the coupling distance between the bracket antenna 31 and the suspended metal antenna 41) can also have multiple values, because the outer surface of the antenna may be curved, and the coupling distance in some places is larger, while there is a The position coupling distance is small.
  • the position with the smallest coupling distance may be the closest distance between the antennas, and the position with the largest coupling distance may be the farthest distance between the antennas.
  • each antenna radiator in the above coupled antenna structure, the positional relationship between each antenna radiator and the surrounding metal parts (such as display screen, PCB, etc.) can be as follows:
  • the slot width of the slot antenna 21 may be 1.2 mm, and the slot antenna 21 may have a width of 0.6 mm in the Z-direction projection area to coincide with the display screen.
  • the antenna headroom width of the slot antenna 21 in the Z direction projection area can be 0.6 mm, which can meet the headroom requirement of the slot antenna 21.
  • the antenna headroom width of the slot antenna 21 in the Z-direction projection area may also be other values, as long as the headroom requirement is satisfied.
  • the Z distance of the suspended metal antenna 41 from the bracket antenna 31 may be 0.3 mm, and the Z distance of the suspended metal antenna 41 from the PCB may be 1.8 mm.
  • the Z-distance of the antenna bracket (not shown) for fixing the bracket antenna 31 from the PCB may be 1.5 mm. This can meet the clearance requirements of the bracket antenna 31 and the suspended metal antenna 41. It is not limited to the positional relationship described in the 0.3 mm, 1.8 mm, and 1.5 mm mentioned here.
  • the positional relationship of the suspended metal antenna 41, the bracket antenna 31, and the surrounding metal parts (such as PCBs) may also be different.
  • the clear space requirement of the bracket antenna 31 is sufficient.
  • the floating metal antenna 41 may also be disposed on the outer surface of the back cover, or may be embedded in the back cover.
  • the coupled antenna structure can generate resonance around 2.4 GHz, and can also generate three resonances around 5 GHz: 2, 3, and 4. specific:
  • the resonance 1 can be generated by the half-wavelength mode of the suspended metal antenna 41.
  • the lowest resonance (ie, resonance 2) can be generated by the double-wavelength mode of the suspended metal antenna 41
  • the intermediate resonance (ie, resonance 3) can be generated by the bracket antenna (eg, quarter wavelength) Mode)
  • the highest resonance (ie, resonance 4) can be generated by the half-wavelength mode of the slot antenna 21.
  • FIG. 3E exemplarily shows the current distribution of resonances 1, 2, 3, and 4.
  • FIG. 3F exemplarily shows the electric field distribution of resonance 1, 2, 3, 4. It can be seen from the current distribution and electric field distribution of resonance 1 that both ends (both open ends) of the suspended metal antenna 41 are strong points of the electric field, and the signal of resonance 1 can be radiated by the half-wavelength mode of the suspended metal antenna 41. It can be seen from the current distribution and electric field distribution of resonance 2 that the ends of the suspended metal antenna 41 and the middle position are the strong points of the electric field, and the signal of resonance 2 is radiated by the double-wavelength mode of the suspended metal antenna 41.
  • one end (feeding end) of the bracket antenna 31 is a strong current point and the other end (open end) is a strong electric field point.
  • the signal of the resonance 3 can be divided by four One wavelength mode radiation. From the current distribution and electric field distribution of resonance 4, it can be seen that both ends (ground terminal) of the slot antenna 21 are strong current points, and the middle position is the strong point of the electric field. .
  • the wavelength mode of resonance 1 produced by the suspended metal antenna 41 is not limited, and resonance 1 can also be generated by the double wavelength mode, the three-half wavelength mode, etc. of the suspended metal antenna 41.
  • the wavelength mode of resonance 2 produced by the floating metal antenna 41 is not limited, and resonance 2 can also be generated by the three-half wavelength mode and the five-half wavelength mode of the floating metal antenna 41.
  • the wavelength mode at which the bracket antenna 31 generates resonance 3 is not limited, and resonance 3 can also be generated by the three-quarter wavelength mode, the five-quarter wavelength mode, etc. of the bracket antenna 31.
  • the wavelength mode of the resonance 4 generated by the slot antenna 21 is not limited, and the resonance 4 can be generated by the three-half wavelength mode, the fifth-half wavelength mode, etc. of the slot antenna 21.
  • the slot antenna 21 may be closed and grounded at one end and open at the other end. At this time, the slot antenna 21 can generate resonance through the quarter-wavelength mode, the third-quarter wavelength mode, the fifth-quarter wavelength mode, and the like 4.
  • the feeding bracket antenna 31 can be coupled to the suspended metal antenna 41 and the slot antenna 21 at the same time to generate resonance in multiple Wi-Fi frequency bands and cover multiple Wi-Fi frequency bands.
  • the coupling antenna structure exemplarily shown in FIGS. 3A-3B can also generate resonance in other frequency bands. Specifically, by adjusting each antenna radiator in the antenna structure (such as the suspended metal antenna 41, the bracket The size or shape of the antenna 31 and the slot antenna 21) are set.
  • frequency band refers to a frequency range.
  • the 2.4 GHz frequency band may refer to the frequency range of 2.4 GHz to 2.4835 GH, that is, the frequency range around 2.4 GHz.
  • the 5 GHz frequency band may refer to a frequency range of 5.150 GHz to 5.350 GHz and 5.725 GHz to 5.850 GHz, that is, a frequency range around 5 GHz.
  • FIG. 3D also shows a conventional coupled antenna structure, such as the resonance antenna structure generated by the bracket antenna 31 coupling slot antenna 21 (refer to FIG. 3G). Due to the limited design space of the bracket antenna 31 and the small design size of the bracket antenna, this traditional coupled antenna structure can only generate two resonances around 5 GHz. No resonance can be generated around 2.4GHz.
  • the exemplary coupled antenna structure shown in FIGS. 3A-3B includes a suspended metal antenna provided on the back cover.
  • the size of the suspended metal antenna can be The design is larger, and the coupling antenna structure formed by the suspended metal antenna and the feeding bracket antenna can excite the resonance mode of the lower frequency band, generate more resonance, and realize more frequency band coverage.
  • the size of the bracket antenna included in the coupled antenna structure exemplarily shown in FIGS. 3A-3B can be designed to be small, reduced by the influence of surrounding devices, and can be realized in a small design space.
  • the slot antenna 21 may have a feeding point.
  • the slot antenna 21 can be fed at one end and closed at the other end to ground.
  • the bracket antenna 31 may be closed and grounded at one end and open at the other end.
  • the floating metal antenna can be open at both ends.
  • the slot antenna 21 may be a feeding unit, and the bracket antenna 31 and the floating metal antenna 41 may be coupling units. That is to say, the fed slot antenna 21 can be coupled to the suspended metal antenna 41 and the bracket antenna 31 at the same time.
  • the slot antenna 21 and the suspended metal antenna 41 may be arranged in parallel and opposite each other.
  • the parallel relative arrangement may mean that one or more radiating slots of the slot antenna 21 and the suspended metal antenna 41 may be arranged in parallel and opposite.
  • the suspended metal antenna 41 may have multiple radiation arms, where one or more radiation arms may be disposed parallel to the one or more radiation slots of the slot antenna 21.
  • the slot antenna 21 and the bracket antenna 31 that are fed can be arranged in parallel and opposite to each other.
  • the parallel relative arrangement may mean that one or more radiating slots of the slot antenna 21 and the bracket antenna 31 may be arranged in parallel and opposite.
  • the bracket antenna 31 may have a plurality of radiation arms, where one or more radiation arms may be disposed parallel to and opposite to one or more radiation slots of the slot antenna 21.
  • FIG. 4B exemplarily shows the coupling distance between each antenna radiator included in the coupled antenna structure provided in the second embodiment.
  • a coupling gap 3 (gap3) between the fed slot antenna 21 and the suspended metal antenna 41, and a coupling region 3 may be formed between the two.
  • a coupling gap 4 (gap4) between the fed slot antenna 21 and the bracket antenna 31, and a coupling region 4 may be formed between the two.
  • This application does not limit the specific values of the coupling pitch 3, the coupling pitch 4, the coupling area 3, and the coupling area 4, as long as the slot antenna 21 can couple the suspended metal antenna 41 and the bracket antenna 31.
  • each antenna radiator in the coupled antenna structure In order to meet the clearance requirement of each antenna radiator in the coupled antenna structure, the positional relationship between each antenna radiator and the surrounding metal parts can refer to the relevant description in Embodiment 1.
  • the fed slot antenna 21 can simultaneously couple the suspended metal antenna 41 and the bracket antenna 31 to generate resonance in multiple Wi-Fi frequency bands and cover multiple Wi-Fi frequency bands.
  • the coupled antenna structure provided in the second embodiment can generate the same resonance mode as that generated by the coupled antenna structure provided in the first embodiment. For details, reference may be made to the related description in the first embodiment, and details are not repeated here.
  • the coupled antenna structure may include a bracket antenna 31 and a suspended metal antenna 41.
  • the bracket antenna 31 may have a feeding point.
  • the bracket antenna 31 can be fed at one end and open at the other end.
  • the floating metal antenna 41 may be open at both ends.
  • the bracket antenna may be a feeding unit, and the floating metal antenna may be a coupling unit. That is to say, the feeding bracket antenna can be coupled with a floating metal antenna.
  • FIG. 5C exemplarily shows the coupling distance between the fed bracket antenna 31 and the floating metal antenna 41.
  • the coupling pitch 5 may be equal to the coupling pitch 1 in the first embodiment, and the coupling area 5 may be equal to the coupling area 1 in the first embodiment.
  • the present application does not limit the values of the coupling distance 5 and the coupling region 5, and the bracket antenna 31 that satisfies the feeding can be coupled to the floating metal antenna 41.
  • the coupled antenna structure can generate resonance around 2.4GHz, and can also generate two resonances around 5GHz: 6, 7. specific:
  • the resonance 5 can be generated by the half-wavelength mode of the suspended metal antenna 41.
  • the lower resonance (ie resonance 6) can be generated by the double wavelength mode of the suspended metal antenna 41, and the higher resonance (ie resonance 7) can be generated by the bracket antenna (quarter wavelength mode) )produce.
  • the fed antenna 31 can be coupled to the floating metal antenna 41 to generate multiple resonances and cover multiple frequency bands.
  • the feeding bracket antenna 31 can generate resonance 7, and can be coupled to the suspended metal antenna 41 to excite the suspended metal antenna 41 to generate resonance 5 and resonance 6.
  • the wavelength mode of resonance 5 produced by the floating metal antenna 41 is not limited, and resonance 5 can also be generated by the double wavelength mode, the three-half wavelength mode, etc. of the floating metal antenna 41.
  • the wavelength mode of the resonance 6 produced by the floating metal antenna 41 is not limited, and the resonance 6 may also be generated by the three-half wavelength mode and the five-half wavelength mode of the floating metal antenna 41.
  • the wavelength mode at which the bracket antenna 31 generates resonance 7 is not limited, and resonance 7 can also be generated by the three-quarter wavelength mode, the five-quarter wavelength mode, etc. of the bracket antenna 31.
  • the feeding bracket antenna 31 can be coupled to the floating metal antenna 41 to generate resonance in multiple Wi-Fi frequency bands and cover multiple Wi-Fi frequency bands.
  • the coupling antenna structure illustrated in FIGS. 5A-5B can also generate resonance in other frequency bands.
  • the antenna radiators such as the suspended metal antenna 41 and the bracket
  • the size or shape of the antenna 31) is set.
  • FIG. 5D also shows a conventional coupled antenna structure, such as the coupled antenna structure of the bracket antenna 31 coupling slot antenna 21 (refer to FIG. 3G), and the generated resonance mode. Due to the limited design space of the bracket antenna 31 and the small design size of the bracket antenna, this traditional coupled antenna structure can only generate two resonances around 5 GHz. No resonance can be generated around 2.4GHz.
  • the exemplary coupled antenna structure shown in FIGS. 5A-5B includes a suspended metal antenna provided on the back cover.
  • the size of the suspended metal antenna can be The design is larger, and the coupling antenna structure formed by the suspended metal antenna and the feeding bracket antenna can excite the resonance mode of the lower frequency band, generate more resonance, and realize more frequency band coverage.
  • the coupled antenna structure may include a slot antenna 21 and a suspended metal antenna 41.
  • the slot antenna 21 may have a feeding point.
  • the slot antenna 21 can be fed at one end and closed at the other end to ground.
  • the floating metal antenna 41 may be open at both ends.
  • the slot antenna 21 may be a feeding unit, and the floating metal antenna 41 may be a coupling unit. That is to say, the fed slot antenna 21 may be coupled to the floating metal antenna 41.
  • FIG. 6C exemplarily shows the coupling pitch between the fed slot antenna 21 and the floating metal antenna 41.
  • the coupling pitch 6 may be equal to the coupling pitch 3 in the second embodiment, and the coupling area 6 may be equal to the coupling area 3 in the second embodiment.
  • the present application does not limit the specific values of the coupling distance 6 and the coupling region 6, and the slot antenna 21 that satisfies the feeding can be coupled to the floating metal antenna 41.
  • the positional relationship between the slot antenna 21, the suspended metal antenna 41 and the surrounding metal parts (such as PCB, etc.) can be referred to the relevant description in the first embodiment. Repeat again.
  • the coupled antenna structure can generate resonance around 2.4GHz8, and can also generate two resonances around 5GHz: 9, specific:
  • the resonance 8 can be generated by the half-wavelength mode of the suspended metal antenna 41.
  • Two resonances around 5GHz 9, Medium, lower resonance (ie resonance 9) can be produced by the double wavelength mode of the suspended metal antenna 41, higher resonance (ie resonance ) Can be generated by the half-wavelength mode of the slot antenna 21.
  • the fed slot antenna 21 can be coupled to the floating metal antenna 41 to generate multiple resonances and cover multiple frequency bands. Specifically, the fed slot antenna 21 may generate resonance
  • the suspended metal antenna 41 can be coupled to excite the suspended metal antenna 41 to generate resonance 8 and resonance 9.
  • the wavelength mode of resonance 8 produced by the floating metal antenna 41 is not limited, and the resonance 8 can also be generated by the double wavelength mode, the three-half wavelength mode, etc. of the floating metal antenna 41.
  • the wavelength mode of resonance 9 produced by the floating metal antenna 41 is not limited, and the resonance 9 can also be generated by the three-half wavelength mode and the five-half wavelength mode of the floating metal antenna 41.
  • Unrestricted slot antenna 21 resonance Wavelength mode, resonance It can be generated by the three-half wavelength mode, the fifth-half wavelength mode, etc. of the slot antenna 21.
  • the fed slot antenna 21 can be coupled to the floating metal antenna 41 to generate resonance in multiple Wi-Fi frequency bands and cover multiple Wi-Fi frequency bands.
  • the coupled antenna structure shown in FIGS. 6A-6B can also generate resonance in other frequency bands.
  • the antenna radiators such as the suspended metal antenna 41 and the slot
  • the size or shape of the antenna 21) is set.
  • FIG. 6D also shows a conventional coupled antenna structure, such as the coupled antenna structure of the bracket antenna 31 coupling the slot antenna 21 (refer to FIG. 3G), and the generated resonance mode. Due to the limited design space of the bracket antenna 31 and the small design size of the bracket antenna, this traditional coupled antenna structure can only generate two resonances around 5 GHz. No resonance can be generated around 2.4GHz.
  • the exemplary coupled antenna structure shown in FIGS. 6A-6B includes a suspended metal antenna provided on the back cover.
  • the size of the suspended metal antenna can be The larger the design, the coupling antenna structure formed by the suspended metal antenna and the feed slot antenna can excite the resonance mode in the lower frequency band, generate more resonance, and achieve more frequency band coverage.
  • FIG. 7A shows a set of simulated antenna reflection coefficient curves, including: the reflection coefficient curve corresponding to structure D, the reflection coefficient curve corresponding to structure E, and the reflection coefficient curve corresponding to structure F. among them,
  • the antenna may have two resonances working around 5.5 GHz: resonance 10, Among them, lower resonance (ie resonance 10) can be generated by the bracket antenna 31 (quarter wavelength mode), and higher resonance (ie resonance ) Can be generated by the half-wavelength mode of the slot antenna 21.
  • the resonance of the antenna around 2.5 GHz (that is, resonance 5) can be generated by the half-wavelength mode of the suspended metal antenna 41; the antenna can also have two resonances around 5 GHz.
  • the low resonance ie, resonance 6) can be generated by the double-wavelength mode of the suspended metal antenna 41, and the higher resonance (ie, resonance 7) can be generated by the bracket antenna 31 (quarter-wavelength mode).
  • the resonance of the antenna around 2.5 GHz can be generated by the half-wavelength mode of the suspended metal antenna 41; the antenna can also have three resonances around 5 GHz, of which the lowest Resonance (ie resonance 2) can be generated by the double wavelength mode of the suspended metal antenna, intermediate resonance (ie resonance 3) can be generated by the bracket antenna (quarter wavelength mode), and the highest resonance (ie resonance 4) can be halved by the slot antenna One wavelength mode is generated.
  • structure E and structure F are the coupling antenna structure formed by the feed antenna coupling suspended metal antenna, the design size of the suspended metal antenna can be larger than that of the bracket antenna and slot antenna, so this coupled antenna structure can also be in 2.4 Resonance occurs near GHz.
  • structure F can generate three resonances around 5 GHz. Because the bracket antenna fed in the structure F is coupled with the floating metal antenna and the slot antenna, the structure F can excite more resonance modes and can cover more frequency bands.
  • FIG. 7B shows the efficiency curves of the above three coupled antenna structure simulations of structure D, structure E, and structure F.
  • the solid line represents the system efficiency curve
  • the broken line represents the radiation efficiency curve. Comparing the efficiency curves of these structures, it can be seen that the coupling antenna structure (structure E, structure F) formed by the feed antenna coupled with the suspended metal antenna has high radiation efficiency around 2.4 GHz and 5 GHz, and there is no obvious efficiency recess. pit.
  • the feed antenna coupled floating metal antenna can form a coupled antenna structure.
  • the antenna device of the coupled antenna structure includes a suspended metal antenna provided on the back cover.
  • the size of the suspended metal antenna can be designed to be larger.
  • the coupled antenna structure formed by the suspended metal antenna and the feed antenna can excite the resonance mode in the lower frequency band , Generate more resonance, can improve the antenna bandwidth and radiation characteristics.
  • the feeding antenna may be an antenna fixed on an antenna bracket (may be called a bracket antenna).
  • the feeding bracket antenna may also be coupled with a suspended metal antenna and a slot antenna at the same time, which can excite more resonance modes.
  • the feeding antenna may also be a slot antenna formed by slitting the metal middle frame 23, and the feeding slot antenna may simultaneously couple the suspended metal antenna and the bracket antenna, which may excite more resonance modes.
  • the bracket antenna may be a feeding unit, and two or more floating metal antennas may be coupling units. That is to say, the feeding bracket antenna can be coupled to two or more floating metal antennas at the same time.
  • the following describes an example of a coupled antenna structure in which a fed bracket antenna simultaneously couples two suspended metal antennas.
  • FIGS. 8A-8B exemplarily show the coupled antenna structure provided by the fifth embodiment.
  • FIG. 8A is a schematic diagram of a simulation model
  • FIG. 8B is a simplified diagram of the structure.
  • the coupled antenna structure may include a bracket antenna 31, a suspended metal antenna 413 and a suspended metal antenna 411. among them:
  • the bracket antenna 31 may be fixed to an antenna bracket (not shown).
  • the bracket antenna 31 may have a feeding point.
  • the bracket antenna 31 can be fed at one end and open at the other end.
  • Both the suspended metal antenna 413 and the suspended metal antenna 411 may be disposed on the inner surface of the back cover, and a gap 45 may be provided between the suspended metal antenna 413 and the suspended metal antenna 411.
  • the floating metal antenna 411 may be longer than the floating metal antenna 413.
  • the floating metal antenna can be open at both ends.
  • the feeding antenna 31 and the suspended metal antenna 413 may be arranged in parallel and opposite each other.
  • the feeding antenna 31 and the suspended metal antenna 411 may be arranged in parallel and opposite each other.
  • the parallel relative arrangement may mean that one or more radiating arms of the bracket antenna 31 and the suspended metal antenna may be arranged in parallel and opposite.
  • FIG. 8C exemplarily shows the coupling distance between the fed bracket antenna 31 and the suspended metal antenna 413 and the suspended metal antenna 411.
  • the coupling pitch between the fed bracket antenna 31 and the suspended metal antenna 411 may be the same as the coupling pitch between the fed bracket antenna 31 and the suspended metal antenna 413, that is, the coupling gap 7 (gap7).
  • a coupling region 7 may be formed between the fed bracket antenna 31 and the suspended metal antenna 411, and a coupling region 8 may be formed between the fed bracket antenna 31 and the suspended metal antenna 413.
  • the present application does not limit the values of the coupling distance 7, the coupling area 7, and the coupling area 8, and the bracket antenna 31 that satisfies the feeding can be coupled to the suspended metal antenna 413 and the suspended metal antenna 411 at the same time.
  • Example 1 In order to meet the clearance requirements of the bracket antenna 31 and the suspended metal antenna (the suspended metal antenna 413 and the suspended metal antenna 411) in the coupled antenna structure, the positional relationship between the bracket antenna 31, the suspended metal antenna and the surrounding metal components (such as PCB, etc.) can be referred to The relevant description in Example 1 will not be repeated here.
  • Figure 8D Represents different resonances.
  • the coupled antenna structure can generate resonance around 2.4GHz
  • Three resonances can also be generated around 5GHz: specific:
  • the resonance It can be produced by the half-wavelength mode of the floating metal antenna 411.
  • Three resonances around 5GHz Medium lowest resonance (ie resonance ) Can be generated by the bracket antenna 31 (quarter-wave mode), the middle resonance (ie resonance ) Can be generated by the double wavelength mode of the suspended metal antenna 411, the highest resonance (ie resonance ) Can be produced by the half-wavelength mode or the double-wavelength mode of the suspended metal antenna 413.
  • FIG. 8E exemplarily shows resonance Current distribution.
  • Fig. 8F exemplarily shows resonance Electric field distribution. From resonance It can be seen that the current distribution and electric field distribution of the The signal of can be radiated by the half-wavelength mode of the longer floating metal antenna. From resonance It can be seen that the current distribution and electric field distribution of the bracket antenna 31 are at one end (feeding end) of a strong current point and the other end (open end) of a strong electric field point, resonating The signal of can be radiated by the quarter-wavelength mode of the bracket antenna 31.
  • the current distribution and the electric field distribution of the long floating metal antenna ie, the floating metal antenna 411) at both ends (both open ends) are strong electric field points, and the middle position is also the strong electric field point, resonance
  • the signal from can be radiated in the double wavelength mode of the longer floating metal antenna. From resonance It can be seen that the current distribution and electric field distribution of the The signal of can be radiated by the half-wavelength mode of the shorter floating metal antenna.
  • Unrestricted resonance of suspended metal antenna 411 Wavelength mode, resonance It can also be generated by the double wavelength mode, the three-half wavelength mode, etc. of the suspended metal antenna 411.
  • Unrestricted resonance of the support antenna 31 Wavelength mode, resonance It can also be generated by the three-quarter wavelength mode, the five-quarter wavelength mode, etc. of the bracket antenna 31.
  • Unrestricted resonance of suspended metal antenna 411 Wavelength mode, resonance It can also be generated by the three-half wavelength mode and the five-half wavelength mode of the suspended metal antenna 411.
  • Unrestricted suspension of metallic antenna 413 for resonance Wavelength mode, resonance It can be generated by the double wavelength mode, the three-half wavelength mode, the five-half wavelength mode, etc. of the suspended metal antenna 413.
  • the coupled antenna structure can further generate more resonance.
  • the feeding bracket antenna 31 can simultaneously couple multiple floating metal antennas to generate resonance in multiple Wi-Fi frequency bands and cover multiple Wi-Fi frequency bands. It is not limited to the 2.4GHz frequency band and the 5GHz frequency band.
  • the coupling antenna structure exemplarily shown in FIGS. 8A-8B can also generate resonance in other frequency bands.
  • the antenna radiators in the antenna structure can be adjusted (such as suspended metal antenna 411, suspended The size or shape of the metal antenna 413 and the bracket antenna 31) are set.
  • FIG. 8G shows the efficiency curve of the coupled antenna structure simulation shown exemplarily in FIGS. 8A-8B.
  • the solid line represents the system efficiency curve
  • the broken line represents the radiation efficiency curve. It can be seen that the radiation efficiency of the coupled antenna structure exemplarily shown in FIGS. 8A-8B is high at each resonance, and there is no obvious efficiency pit.
  • the bracket antenna may be a feeding unit, and two or more floating metal antennas and slot antennas may be coupling units. That is to say, the feeding antenna can be coupled to two or more floating metal antennas and slot antennas.
  • the following describes an example of a coupled antenna structure in which a fed bracket antenna simultaneously couples two suspended metal antennas and a slot antenna.
  • FIGS. 9A-9B exemplarily show the coupled antenna structure provided in the sixth embodiment.
  • FIG. 9A is a schematic diagram of a simulation model
  • FIG. 9B is a simplified diagram of the structure.
  • the coupled antenna structure may further include a slot antenna 21.
  • the slot antenna 21 can be closed and grounded at both ends.
  • the slot antenna 21 may be arranged parallel to and opposite to the feeding bracket antenna 31.
  • FIG. 9C exemplarily shows the coupling distance between the fed bracket antenna 31 and the floating metal antenna and slot antenna 21.
  • the coupling pitch 9 may be equal to the coupling pitch 7 in the fifth embodiment, and the coupling regions 9 and 10 may be equal to the coupling regions 7 and 8 in the fifth embodiment, respectively.
  • This application does not limit the specific values of the coupling distances 9 and 10, and the specific values of the coupling areas 9, 10 and 11, and the bracket antenna 31 that satisfies the feeding can simultaneously couple the suspended metal antenna 411, the suspended metal antenna 413 and the slot antenna 21 is enough.
  • the positional relationship between the bracket antenna 31, the slot antenna 21, the suspended metal antenna and the surrounding metal parts can refer to Embodiment 1. Relevant descriptions will not be repeated here.
  • the coupled antenna structure exemplarily shown in FIGS. 9A-9B can also generate an additional resonance around 5 GHz.
  • This resonance can be generated by the half-wavelength mode of the slot antenna 21. That is to say, in addition to the resonance around 2.4 GHz, the coupled antenna structure exemplarily shown in FIGS. 9A-9B can generate four resonances around 5 GHz.
  • the bracket antenna 31 fed in the coupled antenna structure exemplarily shown in FIGS. 9A-9B can simultaneously couple multiple floating metal antennas and slot antennas 21, which can excite more resonance modes and cover more frequency bands.
  • the exemplary coupled antenna structure of FIGS. 9A-9B can also generate resonances in other frequency bands.
  • the antenna radiators in the antenna structure can be adjusted (such as suspended metal antenna 411, suspended metal antenna 413.
  • the size or shape of the bracket antenna 31 and the slot antenna 21) are set.
  • the slot antenna 21 may be closed and grounded at one end and open at the other end. At this time, the slot antenna 21 can generate the resonance through the quarter-wavelength mode, the third-quarter wavelength mode, the fifth-quarter wavelength mode, and the like.
  • the feeding unit in the coupled antenna structure shown in FIG. 9A may also be a slot antenna 21. That is to say, the fed slot antenna 21 can simultaneously couple multiple floating metal antennas and the bracket antenna 31, which can excite more resonance modes and cover more frequency bands.
  • the coupled antenna structure may include a slot antenna 21 and two or more floating metal antennas.
  • the slot antenna 21 may have a feeding point.
  • the slot antenna 21 can be fed at one end and closed at the other end to ground.
  • the slot antenna 21 may be a feeding unit, and two or more floating metal antennas may be coupling units.
  • the floating metal antenna can be open at both ends. That is to say, the fed slot antenna 21 can simultaneously couple two or more floating metal antennas.
  • the slot antenna 21 for feeding may be arranged parallel to the suspended metal antenna.
  • FIG. 10C exemplarily shows the coupling pitch between the fed slot antenna 21 and the floating metal antenna.
  • This application does not limit the specific values of the coupling distance 12, the coupling area 12, and the coupling area 13, and the slot antenna 21 that satisfies the feeding can be coupled to the floating metal antenna 411 and the floating metal antenna 413 at the same time.
  • the positional relationship between the slot antenna 21, the suspended metal antenna and the surrounding metal components can be referred to the related description in Embodiment 1, which is not repeated here .
  • the exemplary coupled antenna structure of FIGS. 10A-10B Compared to the coupled antenna structure exemplarily shown in FIGS. 9A-9B, the exemplary coupled antenna structure of FIGS. 10A-10B generates one less resonance around 5 GHz, which is generated by the bracket antenna (quarter wavelength mode) Resonance, as shown in Figure 8D That is to say, in addition to the resonance around 2.4 GHz, the coupled antenna structure exemplarily shown in FIGS. 10A-10B can generate three resonances around 5 GHz.
  • the coupled antenna structure can generate resonance in the Wi-Fi frequency band (such as 2.4 GHz frequency band), and can also generate resonance in the mobile communication frequency band (such as LTE B3, LTE B1, LTE B7, etc.).
  • the range of the LTE B3 frequency band is: uplink 1710-785 MHz, downlink 1805-1880 MHz.
  • the range of LTE B1 band is: uplink 1920-1980MHz, downlink 2110-2170MHz.
  • the range of LTE B7 frequency band is: uplink 2500 ⁇ 2570MHz, downlink 2620 ⁇ 2690MHz.
  • FIGS. 11A-11B exemplarily show the coupled antenna structure provided in the eighth embodiment.
  • FIG. 11A is a schematic diagram of a simulation model
  • FIG. 11B is a simplified diagram of the structure.
  • the coupled antenna structure may include a bracket antenna 31 and a suspended metal antenna 41.
  • the coupled antenna structure may further include a slot antenna 21, and both ends of the slot antenna 21 may be closed and grounded.
  • the slot antenna 21 may be longer than the floating metal antenna 41. among them:
  • the bracket antenna 31 may have a feeding point, and may be a feeding unit.
  • the bracket antenna 31 can be fed at one end and open at the other end.
  • the floating metal antenna 41 and the slot antenna 21 may be coupling units.
  • the floating metal antenna can be open at both ends.
  • the slot antenna can be closed and grounded at both ends.
  • the Z-projection area of the suspended metal antenna 41 can almost cover the bracket antenna 31, that is, the coverage ratio of the Z-projection area of the suspended metal antenna 41 to the bracket antenna 31 can exceed a certain ratio (such as 80%) to form a larger coupling area .
  • the length of the slot antenna 21 may be 43 mm, or a value near 43 mm (e.g., a value within 40 mm to 45 mm).
  • the width of the slot antenna 21 (that is, the slit width) may be 1.1 mm, or a value near 1.1 mm (eg, 1.2 mm, 1.0 mm, etc.).
  • the length of the bracket antenna 31 may be 17 mm, or a value near 17 mm (eg, 16 mm, 18 mm, etc.).
  • the width of the bracket antenna 31 may be 5 mm, or a value near 5 mm (eg, 6 mm, 4 mm, etc.).
  • the length of the floating metal antenna 41 may be 32 mm, or a value near 32 mm (such as 33 mm, 32 mm, etc.).
  • the width of the floating metal antenna 41 may be 6.5 mm, or a value near 6.5 mm (eg, 6 mm, 7 mm, etc.).
  • the Z-direction distance between the bracket antenna 31 and the suspended metal antenna 41 may be 0.15 mm to 0.25 mm.
  • the outer surface contours of the bracket antenna 31 and the suspended metal antenna 41 may have some arcs, and the Z-direction spacing between the two may have many different values.
  • the maximum Z-distance between the two may be 0.25 mm
  • the minimum distance in the Z direction can be 0.15 mm.
  • the Z-projection area of the floating metal antenna 41 may not cover the bracket antenna 31, or only cover a small part of the bracket antenna 31 (for example, 20% of the bracket antenna 31).
  • the Z-direction distance between the bracket antenna 31 and the slot antenna 21 may be 2 mm, or a value near 2 mm (eg, 1.8 mm, 2.2 mm, etc.).
  • the X-direction distance between the bracket antenna 31 and the slot antenna 21 may be within 5 mm.
  • the coupled antenna structure (ie including the slot antenna 21) formed by the feeding bracket antenna 31 simultaneously coupling the suspended metal antenna 41 and the slot antenna 21 can generate resonance near 1.8 GHz (LTE B3) It can also generate resonance around 2.1GHz (LTE B1) It can also generate resonance around 2.4GHz (LTE B7) Specific: resonance Can be generated by the half-wavelength mode of the slot antenna 21, resonating Can be generated by the half-wavelength mode of the suspended metal antenna 41, resonating It can be generated by the quarter-wavelength mode of the bracket antenna 31.
  • FIG. 11D exemplarily shows resonance Current distribution.
  • FIG. 11E exemplarily shows resonance Electric field distribution. From resonance The current distribution and electric field distribution can be seen, the two ends of the slot antenna (both ground terminals) are strong current points, resonance The signal can be radiated by the half-wavelength mode of the slot antenna. From resonance It can be seen that the current distribution and the electric field distribution of the two, the two ends (both open ends) of the floating metal antenna 41 are the strong points of the electric field, the resonance The signal of can be radiated by the half-wavelength mode of the suspended metal antenna 41.
  • the current distribution and electric field distribution of the bracket antenna 31 are at one end (feeding end) of a strong current point and the other end (open end) of a strong electric field point, resonating
  • the signal of can be radiated by the quarter-wavelength mode of the bracket antenna 31.
  • Unrestricted slot antenna 21 resonance Wavelength mode, resonance It can also be generated by the three-half wavelength mode, the fifth-half wavelength mode, etc. of the slot antenna 21.
  • Unrestricted resonance of the suspended metal antenna 41 Wavelength mode, resonance It can also be generated by the double wavelength mode, the three-half wavelength mode, the five-half wavelength mode, etc. of the suspended metal antenna 41.
  • Unrestricted resonance of the support antenna 31 Wavelength mode, resonance It can also be generated by the three-quarter wavelength mode, the five-quarter wavelength mode, etc. of the bracket antenna 31.
  • the slot antenna 21 may be closed and grounded at one end and open at the other end. At this time, the slot antenna 21 can generate resonance through the quarter-wavelength mode, the third-quarter wavelength mode, the fifth-quarter wavelength mode, etc.
  • FIG. 11C also shows the resonance mode generated by the coupled antenna structure (that is, the slot antenna 21 is not included) formed by the fed bracket antenna 31 coupled to the suspended metal antenna 41.
  • the coupled antenna structure can generate resonance around 2.1 GHz (LTE B1) It can also generate resonance around 2.4GHz (LTE B7) Specific: resonance Can be generated by the half-wavelength mode of the suspended metal antenna 41, resonating It can be generated by the quarter-wavelength mode of the bracket antenna 31.
  • Unrestricted resonance of the suspended metal antenna 41 Wavelength mode, resonance It can also be generated by the double wavelength mode, the three-half wavelength mode, the five-half wavelength mode, etc. of the suspended metal antenna 41.
  • Unrestricted resonance of the support antenna 31 Wavelength mode, resonance It can also be generated by the three-quarter wavelength mode, the five-quarter wavelength mode, etc. of the bracket antenna 31.
  • the coupled antenna structure formed by the feeding bracket antenna 31 coupled with the suspended metal antenna 41 can also generate resonance
  • the floating metal antenna 41 can be designed longer.
  • the length of the floating metal antenna 41 may be 39 mm, or a value near 39 mm (such as 38 mm, 40 mm, etc.).
  • the half-wavelength mode of the floating metal antenna 41 can generate resonance
  • the double-wavelength mode of the floating metal antenna 41 can generate resonance resonance It can be generated by the quarter-wavelength mode of the bracket antenna 31.
  • the exemplary coupled antenna structure shown in FIGS. 11A-11B can generate multiple resonances, covering Wi-Fi bands (such as the 2.4 GHz band) and LTE B3, LTE B1, LTE B7 and other frequency bands. It is not limited to Wi-Fi frequency band (such as 2.4GHz frequency band) and LTE B3, LTE B1, LTE B7 and other frequency bands.
  • Wi-Fi frequency band such as 2.4GHz frequency band
  • LTE B3, LTE B1, LTE B7 and other frequency bands such as 2.4GHz frequency band
  • the size or shape of each antenna radiator (such as suspended metal antenna 41, bracket antenna 31, slot antenna 21) in the antenna structure is set.
  • FIG. 11F shows the efficiency curve of the coupled antenna structure simulation shown exemplarily in FIGS. 11A-11B.
  • the solid line represents the system efficiency curve
  • the broken line represents the radiation efficiency curve. It can be seen that the radiation efficiency of the coupled antenna structure exemplarily shown in FIGS. 11A-11B is high at each resonance, and there is no obvious efficiency pit.
  • the matching network optimization design (such as optimizing the antenna reflection coefficient, impedance, etc.) may be performed at the feed in the coupled antenna structure exemplarily shown in FIGS. 11A-11B, so that the coupled antenna structure Broadband coverage can be formed from 1800 to 2700MHz (refer to Figure 11G), and its average efficiency can be above -9dB (refer to Figure 11H).
  • the coupled antenna structure formed by the feed antenna coupling suspended metal antenna can generate one or more Wi-Fi frequency bands (such as the 2.4GHz frequency band), and the resonance can also generate one or more mobile communication frequency bands (such as LTE B3, LTE B1, LTE B7, etc.) resonance.
  • Wi-Fi frequency bands such as the 2.4GHz frequency band
  • mobile communication frequency bands such as LTE B3, LTE B1, LTE B7, etc.
  • Multiple floating metal antennas can form different coupling distances with the feed antenna
  • a coupled antenna structure formed by a feed antenna simultaneously coupling two or more floating metal antennas, the two or more floating metal antennas and the feed antenna (such as Different coupling distances can be formed between the bracket antennas 31).
  • a coupling pitch A is formed between the fed bracket antenna 31 and the suspended metal antenna 41-A
  • a coupling pitch B is formed between the fed bracket antenna 31 and the suspended metal antenna 41-B.
  • the coupling pitch A and the coupling pitch B may be different. The examples are only for explaining this application, and should not constitute a limitation.
  • the feed antenna can have multiple antenna branches
  • the feeding antenna (such as a feeding bracket antenna or a feeding slot antenna) in the coupled antenna structure provided by the present application may have multiple antenna branches.
  • the antenna branch of the fed bracket antenna can be embodied as multiple radiation arms
  • the antenna branch of the fed slot antenna can be embodied as multiple radiation slots.
  • the multiple antenna branches can further increase the number of resonances generated by the coupled antenna structure, and can further increase the coverage frequency band of the antenna.
  • the fed stent antenna 31 may have two antenna branches: an antenna branch 31-A and an antenna branch 31-B. Both antenna branches can be closed at one end and open at the other end. Both antenna branches can generate resonance, which is more than the bracket antenna of a single antenna branch.
  • the fed stent antenna 31 may have three antenna branches: antenna branch 31-A, antenna branch 31-B, and antenna branch 31-C. All three antenna branches can be closed at one end and open at the other end. All three antenna branches can generate resonance, which is more than that of a single antenna branch antenna.
  • the floating metal antenna in the coupled antenna structure provided by the present application may have multiple antenna branches.
  • the multiple antenna branches can further increase the number of resonances generated by the coupled antenna structure, and can further increase the coverage frequency band of the antenna.
  • the floating metal antenna 41 may have two antenna branches: an antenna branch 41-A and an antenna branch 41-B.
  • the two antenna branches can produce different resonances.
  • the examples are only for explaining this application, and should not constitute a limitation.
  • the floating metal antenna may be divided into multiple parts, and distributed parameters or lumped parameter inductive connections may be used between the multiple parts to reduce the size of the floating metal antenna.
  • the floating metal antenna may be divided into two parts, and distributed parameter inductance (such as a meander conductor line) may be used to connect the two parts.
  • distributed parameter inductance such as a meander conductor line
  • the floating metal antenna can be divided into two parts, and a lumped parameter inductance can be used to connect the two parts.
  • the end of the floating metal antenna 41 may have a capacitance, which can reduce the size of the floating metal antenna.
  • the floating metal antenna may have a filter inside, such as a band-pass filter and a high-frequency filter, which can filter the signal radiated by the floating metal antenna and can realize multiple frequency bands.
  • a filter inside such as a band-pass filter and a high-frequency filter, which can filter the signal radiated by the floating metal antenna and can realize multiple frequency bands.
  • the coupled antenna structures provided by various embodiments of the present application can generate multiple resonance mode excitations, which can improve the antenna bandwidth and radiation characteristics.
  • the coupled antenna structure can be realized in a limited design space, the bracket antenna takes up very little space, and effectively saves the antenna design space inside the electronic device.
  • the modified coupling antenna structure will not affect the industrial design appearance of the electronic device, and there is no need to make additional grooves on the metal frame, which can effectively reduce the impact of the grip.
  • the coupling unit in the coupling antenna device provided in the embodiments of the present application may also be other antenna elements provided on the back cover and capable of being coupled to radiate signals.
  • the wavelength in a certain wavelength mode of the antenna may refer to the wavelength of the signal radiated by the antenna.
  • the half-wavelength mode of a floating metal antenna can generate resonance in the 2.4 GHz band, where the wavelength in the half-wavelength mode refers to the wavelength of the antenna radiating signals in the 2.4 GHz band.
  • the wavelength of the radiation signal in the medium can be calculated as follows: Where ⁇ is the relative dielectric constant of the medium, and the frequency is the frequency of the radiated signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线装置包括在电子设备内部的馈电天线以及在电子设备的后盖上设置的一个或多个天线元件,如悬浮金属天线。该悬浮金属天线可以和电子设备内部的馈电天线形成耦合天线结构。馈电天线可以是固定于天线支架上的天线(可以称为支架天线),馈电天线也可以是在电子设备的金属中框上开缝形成的槽天线等。该天线装置可以在有限的设计空间内实现,有效节省了电子设备内部的天线设计空间。该天线装置可产生多个谐振模式的激励,可改善天线带宽及辐射特性。

Description

耦合天线装置及电子设备 技术领域
本发明涉及天线技术领域,特别涉及应用在电子设备中的耦合天线装置。
背景技术
随着通信技术的发展,多输入多输出(multi input multi output,MIMO)天线技术在电子设备上的应用愈加广泛,天线数量成倍增加,覆盖频段越来越多。电子设备产品尤其是金属工业设计(industry design,ID)的电子设备依然要求很高的结构紧凑性。而最近的电子设备设计趋势是更高的屏占比、更多的多媒体器件以及更大的电池容量,这些设计使得天线空间被急剧压缩。被急剧压缩的天线空间导致很多传统天线设计,如天线支架上的柔性印刷电路板(flexible printed circuits,FPC)天线或激光直接成型(laser direct structuring,LDS)天线,不能满足天线性能要求。
目前,在金属边框、玻璃后盖ID的电子设备上,MIMO天线,如无线保真(wireless fidelity,Wi-Fi)频段的MIMO天线(也可称为Wi-Fi MIMO天线),的传统设计方案,一般在避开内部金属器件以及金属边框,同时高度超出金属边框的天线支架上进行天线设计。
例如,图1中的虚线框区域为目前常用的Wi-Fi MIMO天线支架的设计区域,随着周围器件(如摄像头)的体积增加,天线空间被进一步压缩,高度受限。在这种情况下,在此天线支架上设计倒F天线(inverted-F antenna,IFA)已不能满足Wi-Fi 2.4GHz频段以及Wi-Fi5GHz频段的带宽需求。
如何在有限空间内设计天线又能满足天线性能要求,为业界的研究方向。
发明内容
本发明实施例提供了一种耦合天线装置及电子设备,该耦合天线装置可以在有限的设计空间内实现,并可以产生多个谐振模式的激励,可改善天线带宽及辐射特性。
第一方面,本申请提供了一种应用于电子设备的耦合天线装置,该电子设备可包括印刷电路板PCB,金属中框和后盖,PCB可位于后盖和金属中框之间。该耦合天线装置可包括:馈电单元和耦合单元,该馈电单元可具有馈电点,该馈电单元可耦合该耦合单元产生多个频段的谐振。该耦合单元可包括一个或多个设置于后盖上的天线元件。后盖可以由玻璃、陶瓷或塑料等材料构成。
本申请中,该馈电单元(又可称为馈电天线)可以是固定于天线支架上的天线(可以称为支架天线),支架天线可以是不同类型的天线形式,如IFA天线、单极天线或者环天线等。馈电单元也可以是在金属中框上开缝形成的槽天线。
本申请中,该耦合单元(又可称为耦合天线)可以包括设置于后盖上的悬浮金属天线。即该设置于后盖上的天线元件可以是设置于后盖上的悬浮金属天线。该悬浮金属天线可以设置于后盖的内表面,也可以设置于后盖的外表面,还可以嵌入于后盖中。例如,悬浮金属天线可以是粘贴于后盖内表面的金属条。不限于悬浮金属天线,该设置于后盖上的天线元件还 可以是其他设置于后盖上的能够被耦合而辐射信号的天线元件。
可以看出,第一方面提供的耦合天线装置可包括设置于后盖上的天线元件(如悬浮金属天线),该天线元件(如悬浮金属天线)在后盖上的设计空间充裕,其尺寸可以设计的较大。这样,该天线元件(如悬浮金属天线)和馈电天线形成的耦合天线结构可以激励出较低频段的谐振模式,产生更多谐振,实现更多频段覆盖。而且,该耦合天线装置包括的馈电天线的尺寸可以设计的很小,受周围器件影响降低,在较小的设计空间内便可以实现。
结合第一方面,在一些实施例中,该耦合天线装置具体可以通过以下几种方式实现:
第1种方式,该耦合天线装置的馈电单元可以为馈电的支架天线。该耦合天线装置的耦合单元可以包括设置于后盖的天线元件(如悬浮金属天线),还可以包括开缝金属中框所形成的槽天线。槽天线可两端闭合接地。设置于后盖的天线元件(如悬浮金属天线)可以两端开放。支架天线可以一端馈电,一端开放。馈电的支架天线可以耦合一个或多个设置于后盖上的天线元件(如悬浮金属天线)以及该槽天线产生多个频段的谐振。该多个频段的谐振可以包括多个Wi-Fi频段的谐振。可选的,Wi-Fi频段可包括以下一项或多项:2.4GHz频段、5GHz频段。
在一种可选的实施方式中,后盖上可以仅设置有一个天线元件(如悬浮金属天线)。此时,该耦合天线装置可以产生2.4GHz频段的一个谐振(可以称为谐振①),5GHz频段的三个谐振(可以为谐振②、③、④)。其中,2.4GHz频段的一个谐振(谐振①)可由设置于后盖上的天线元件(如悬浮金属天线)的二分之一波长模式产生;5GHz频段的三个谐振中的最低谐振(谐振②)可由设置于后盖上的天线元件(如悬浮金属天线)的一倍波长模式产生;5GHz频段的三个谐振中的中间谐振(谐振③)可由馈电的支架天线(如四分之一波长模式)产生;5GHz频段的三个谐振中的最高谐振(谐振④)可由槽天线的二分之一波长模式产生。
也即是说,馈电的支架天线可以产生谐振③,并可耦合悬浮金属天线,激励悬浮金属天线产生谐振①和谐振②,还可以耦合槽天线,激励槽天线产生谐振④。
不限制设置于后盖上的天线元件(如悬浮金属天线)产生谐振①的波长模式,谐振①也可由设置于后盖上的天线元件(如悬浮金属天线)的一倍波长模式、二分之三波长模式等产生。不限制设置于后盖上的天线元件(如悬浮金属天线)产生谐振②的波长模式,谐振②也可由设置于后盖上的天线元件(如悬浮金属天线)的二分之三波长模式、二分之五波长模式等产生。不限制支架天线产生谐振③的波长模式,谐振③也可由支架天线的四分之三波长模式、四分之五波长模式等产生。不限制槽天线产生谐振④的波长模式,谐振④可由槽天线的二分之三波长模式、二分之五波长模式等产生。
在一些可选的实现方式中,槽天线可以一端闭合接地,另一端开放。此时,槽天线可以通过四分之一波长模式、四分之三波长模式、四分之五波长模式等产生谐振④。
可以理解的是,当后盖上设置有多个天线元件(如悬浮金属天线)时,第1种方式实现的该耦合天线装置可以产生更多谐振。例如,该耦合天线装置可以在5GHz频段产生四个谐振。
不限于2.4GHz频段、5GHz频段等Wi-Fi频段,第1种方式实现的该耦合天线装置还可以产生其他频段的谐振,具体可通过调整该天线结构中各个天线辐射体(如悬浮金属天线、支架天线、槽天线)的尺寸或形状来设置。
第1种方式实现的该耦合天线装置中,馈电的支架天线与设置于后盖上的天线元件(如悬浮金属天线)可以平行相对设置。馈电的支架天线与槽天线可以平行相对设置。
第2种方式,该耦合天线装置的馈电单元可以为馈电的支架天线。该耦合天线装置的耦合单元可以为一个或多个设置于后盖上的天线元件(如悬浮金属天线)。设置于后盖的天线元件(如悬浮金属天线)可以两端开放。支架天线可以一端馈电,一端开放。馈电的支架天线可以耦合一个或多个设置于后盖上的天线元件(如悬浮金属天线)产生多个频段的谐振。该多个频段的谐振可以包括多个Wi-Fi频段的谐振。可选的,Wi-Fi频段可包括以下一项或多项:2.4GHz频段、5GHz频段。
在一种可选的实施方式中,后盖上可以仅设置有一个天线元件(如悬浮金属天线)。此时,该耦合天线装置可以产生2.4GHz频段的一个谐振(可以称为谐振⑤),5GHz频段的两个谐振(可以为谐振⑥、⑦)。其中,2.4GHz频段的一个谐振(谐振⑤)可由设置于后盖上的天线元件(如悬浮金属天线)的二分之一波长模式产生;5GHz频段的两个谐振中的较低谐振(谐振⑥)可由设置于后盖上的天线元件(如悬浮金属天线)的一倍波长模式产生;5GHz频段的两个谐振中的较高谐振(谐振⑦)可由馈电的支架天线(如四分之一波长模式)产生。
也即是说,馈电的支架天线可以产生谐振⑦,并可耦合悬浮金属天线,激励悬浮金属天线产生谐振⑤和谐振⑥。
不限制设置于后盖上的天线元件(如悬浮金属天线)产生谐振⑤的波长模式,谐振⑤也可由设置于后盖上的天线元件(如悬浮金属天线)的一倍波长模式、二分之三波长模式等产生。不限制设置于后盖上的天线元件(如悬浮金属天线)产生谐振⑥的波长模式,谐振⑥也可由设置于后盖上的天线元件(如悬浮金属天线)的二分之三波长模式、二分之五波长模式等产生。不限制支架天线产生谐振⑦的波长模式,谐振⑦也可由支架天线的四分之三波长模式、四分之五波长模式等产生。
不限于2.4GHz频段、5GHz频段等Wi-Fi频段,第2种方式实现的该耦合天线装置还可以产生其他频段的谐振,具体可通过调整该天线结构中各个天线辐射体(如悬浮金属天线、支架天线)的尺寸或形状来设置。
可以理解的是,当后盖上设置有多个天线元件(如悬浮金属天线)时,第2种方式实现的该耦合天线装置可以产生更多谐振。例如,该耦合天线装置可以在5GHz频段产生三个谐振。
第2种方式实现的该耦合天线装置中,馈电的支架天线与设置于后盖上的天线元件(如悬浮金属天线)可以平行相对设置。
第3种方式,该耦合天线装置的馈电单元可以为馈电的槽天线。该耦合天线装置的耦合单元可以包括设置于后盖的天线元件(如悬浮金属天线),还可以包括固定于天线支架上的支架天线。槽天线可以一端馈电,另一端闭合接地。支架天线31可以一端闭合接地,另一端开放。悬浮金属天线可以两端开放。馈电的槽天线可以耦合一个或多个设置于后盖上的天线元件(如悬浮金属天线)以及支架天线产生多个频段的谐振。该多个频段的谐振可以包括多个Wi-Fi频段的谐振。可选的,Wi-Fi频段可包括以下一项或多项:2.4GHz频段、5GHz频段。
在一种可选的实施方式中,后盖上可以仅设置有一个天线元件(如悬浮金属天线)。此时,与第1种方式相同,该耦合天线装置可以产生2.4GHz频段的一个谐振(可以称为谐振①),5GHz频段的三个谐振(可以为谐振②、③、④)。其中,2.4GHz频段的一个谐振(谐振①)可由设置于后盖上的天线元件(如悬浮金属天线)的二分之一波长模式产生;5GHz频段的三个谐振中的最低谐振(谐振②)可由设置于后盖上的天线元件(如悬浮金属天线)的一倍波长模式产生;5GHz频段的三个谐振中的中间谐振(谐振③)可由支架天线(如四分之一波长 模式)产生;5GHz频段的三个谐振中的最高谐振(谐振④)可由馈电的槽天线的二分之一波长模式产生。
也即是说,馈电的槽天线可以产生谐振④,并可耦合悬浮金属天线,激励悬浮金属天线产生谐振①和谐振②,还可以耦合支架天线,激励支架天线产生谐振③。
第3种方式实现的耦合天线装置产生的谐振模式可以参考第1种方式实现的耦合天线装置产生的谐振模式,这里不再赘述。
第3种方式实现的耦合天线装置中,馈电的槽天线与设置于后盖上的天线元件可以平行相对设置。馈电的槽天线与支架天线可以平行相对设置。
第4种方式,该耦合天线装置的馈电单元可以为馈电的槽天线。该耦合天线装置的耦合单元可以为设置于后盖的天线元件(如悬浮金属天线。槽天线可以一端馈电,另一端闭合接地。悬浮金属天线可以两端开放。馈电的槽天线可以耦合一个或多个设置于后盖上的天线元件(如悬浮金属天线)产生多个频段的谐振。该多个频段的谐振可以包括多个Wi-Fi频段的谐振。可选的,Wi-Fi频段可包括以下一项或多项:2.4GHz频段、5GHz频段。
在一种可选的实施方式中,后盖上可以仅设置有一个天线元件(如悬浮金属天线)。此时,该耦合天线装置可以产生2.4GHz频段的一个谐振(可以称为谐振⑧),5GHz频段的两个谐振(可以为谐振⑨、
Figure PCTCN2019115493-appb-000001
)。其中,2.4GHz频段的一个谐振(谐振⑧)可由设置于后盖上的天线元件(如悬浮金属天线)的二分之一波长模式产生;5GHz频段的两个谐振中的较低谐振(谐振⑨)可由设置于后盖上的天线元件(如悬浮金属天线)的一倍波长模式产生;5GHz频段的两个谐振中的较高谐振(谐振
Figure PCTCN2019115493-appb-000002
)可由馈电的槽天线(如二分之一波长模式)产生。
也即是说,馈电的槽天线可以产生谐振
Figure PCTCN2019115493-appb-000003
并可耦合悬浮金属天线,激励悬浮金属天线产生谐振⑧和谐振⑨。
不限制设置于后盖上的天线元件(如悬浮金属天线)产生谐振⑧的波长模式,谐振⑧也可由设置于后盖上的天线元件(如悬浮金属天线)的一倍波长模式、二分之三波长模式等产生。不限制设置于后盖上的天线元件(如悬浮金属天线)产生谐振⑨的波长模式,谐振⑨也可由设置于后盖上的天线元件(如悬浮金属天线)的二分之三波长模式、二分之五波长模式等产生。不限制槽天线产生谐振
Figure PCTCN2019115493-appb-000004
的波长模式,谐振
Figure PCTCN2019115493-appb-000005
可由槽天线的二分之三波长模式、二分之五波长模式等产生。
不限于2.4GHz频段、5GHz频段等Wi-Fi频段,第4种方式实现的该耦合天线装置还可以产生其他频段的谐振,具体可通过调整该天线结构中各个天线辐射体(如槽天线、悬浮金属天线)的尺寸或形状来设置。
可以理解的是,当后盖上设置有多个天线元件(如悬浮金属天线)时,第4种方式实现的该耦合天线装置可以产生更多谐振。例如,该耦合天线装置可以在5GHz频段产生三个谐振。
第4种方式实现的耦合天线装置中,馈电的槽天线与设置于后盖上的天线元件可以平行相对设置。
第5种方式,该耦合天线装置的馈电单元可以为馈电的支架天线。该耦合天线装置的耦合单元可以包括设置于后盖的天线元件(如悬浮金属天线),还可以包括开缝金属中框所形成的槽天线。槽天线可以比悬浮金属天线长。馈电的支架天线可以耦合一个或多个设置于后盖上的天线元件(如悬浮金属天线)以及该槽天线产生多个频段的谐振。该多个频段的谐振可以包括Wi-Fi频段(如2.4GHz频段),还可以包括移动通信频段。可选的,移动通信频段可 包括以下一项或多项:LTE B1频段、LTE B3频段、LTE B7频段。
在一种可选的实施方式中,槽天线的长度可以是43毫米,或43毫米附近的值(如40毫米至45毫米之内的值)。槽天线的宽度(即开缝宽度)可以是1.1毫米,或1.1毫米附近的值(如1.2毫米、1.0毫米等)。支架天线的长度可以是17毫米,或17毫米附近的值(如16毫米、18毫米等)。支架天线的宽度可以是5毫米,或5毫米附近的值(如6毫米、4毫米等)。悬浮金属天线的长度可以是32毫米,或32毫米附近的值(如33毫米、32毫米等)。悬浮金属天线的宽度可以是6.5毫米,或6.5毫米附近的值(如6毫米、7毫米等)。
在一种可选的实施方式中,支架天线与悬浮金属天线之间的Z向距离可以是0.15毫米至0.25毫米。支架天线、悬浮金属天线的外表面轮廓可能存在一些弧度,二者之间的Z向间距可能出现多个不同的值,二者之间的最大Z向距离可以是0.25毫米,二者之间的最小Z向距离可以是0.15毫米。悬浮金属天线的Z向投影区域也可以不覆盖支架天线,或只覆盖支架天线的少部分(如支架天线的20%)。
在一种可选的实施方式中,支架天线与槽天线之间的Z向距离可以是2毫米,或2毫米附近的值(如1.8毫米、2.2毫米等)。支架天线与槽天线之间的X向距离可以是5毫米以内。
在第5种方式实现的耦合天线装置中,槽天线可两端闭合接地。设置于后盖的天线元件(如悬浮金属天线)可以两端开放。支架天线可以一端馈电,一端开放。第5种方式实现的耦合天线装置可以在1.8GHz附近(LTE B3)产生一个谐振(可以称为谐振
Figure PCTCN2019115493-appb-000006
),还可以在2.1GHz附近(LTE B1)产生一个谐振(可以称为谐振
Figure PCTCN2019115493-appb-000007
),还可以在2.4GHz附近(LTE B7)产生一个谐振(可以称为谐振
Figure PCTCN2019115493-appb-000008
)。具体的:谐振
Figure PCTCN2019115493-appb-000009
可由槽天线的二分之一波长模式产生,谐振
Figure PCTCN2019115493-appb-000010
可由悬浮金属天线的二分之一波长模式产生,谐振
Figure PCTCN2019115493-appb-000011
可由支架天线的四分之一波长模式产生。
不限制槽天线产生谐振
Figure PCTCN2019115493-appb-000012
的波长模式,谐振
Figure PCTCN2019115493-appb-000013
也可由槽天线的二分之三波长模式、二分之五波长模式等产生。不限制设置于后盖的天线元件(如悬浮金属天线)产生谐振
Figure PCTCN2019115493-appb-000014
的波长模式,谐振
Figure PCTCN2019115493-appb-000015
也可由设置于后盖的天线元件(如悬浮金属天线)的一倍波长模式、二分之三波长模式、二分之五波长模式等产生。不限制支架天线产生谐振
Figure PCTCN2019115493-appb-000016
的波长模式,谐振
Figure PCTCN2019115493-appb-000017
也可由支架天线的四分之三波长模式、四分之五波长模式等产生。
在一些可选实施例中,第5种方式实现的耦合天线装置也可以不包括槽天线。此时,第5种方式实现的耦合天线装置可以为馈电的支架天线耦合悬浮金属天线所形成的耦合天线装置(即不包括槽天线21)。该耦合天线装置也可以产生谐振
Figure PCTCN2019115493-appb-000018
对此,悬浮金属天线可以设计得更长。在一种可能的实施方式中,悬浮金属天线的长度可以是39毫米,或39毫米附近的值(如38毫米、40毫米等)。这样,悬浮金属天线的二分之一波长模式可以产生谐振
Figure PCTCN2019115493-appb-000019
悬浮金属天线的一倍波长模式可以产生谐振
Figure PCTCN2019115493-appb-000020
谐振
Figure PCTCN2019115493-appb-000021
可由支架天线的四分之一波长模式产生。
可以看出,第5种方式实现的耦合天线装置可以产生多个谐振,覆盖Wi-Fi频段(如2.4GHz频段)以及LTE B3、LTE B1、LTE B7等频段。不限于Wi-Fi频段(如2.4GHz频段)以及LTE B3、LTE B1、LTE B7等频段,该耦合天线装置还可以产生其他频段的谐振,具体可通过调整该天线结构中各个天线辐射体(如悬浮金属天线、支架天线、槽天线)的尺寸或形状来设置。
结合第一方面,在一些实施例中,在馈电天线同时耦合两个或两个以上的设置于后盖的天线元件(如悬浮金属天线)所形成的耦合天线结构中,该两个或两个以上的天线元件(如 悬浮金属天线)与馈电天线(如馈电的支架天线)之间可分别形成不同的耦合间距。
结合第一方面,在一些实施例中,该耦合天线装置中的馈电单元(如馈电的支架天线或馈电的槽天线)可以具有多个天线枝节。馈电的支架天线的天线枝节可以体现为多个辐射臂,馈电的槽天线的天线枝节可以体现为多个辐射缝隙。这多个天线枝节可进一步增加该耦合天线结构产生的谐振数量,可进一步增加天线的覆盖频段。
结合第一方面,在一些实施例中,该耦合天线装置中的设置于后盖的天线元件(如悬浮金属天线)可以具有多个天线枝节。这多个天线枝节可进一步增加该耦合天线装置产生的谐振数量,可进一步增加天线的覆盖频段。
结合第一方面,在一些实施例中,该耦合天线装置中的设置于后盖的天线元件(如悬浮金属天线)可以分成多个部分,这多个部分之间可以采用分布参数或集总参数电感连接,以缩小该天线元件(如悬浮金属天线)的尺寸。
结合第一方面,在一些实施例中,设置于后盖的天线元件(如悬浮金属天线)的末端可以具有电容,这样可以缩小该天线元件(如悬浮金属天线)的尺寸。
结合第一方面,在一些实施例中,设置于后盖的天线元件(如悬浮金属天线)内部可具有滤波器,如带通滤波器、高频滤波器,可对该天线元件(如悬浮金属天线)辐射的信号进行滤波,可实现多个频段。
第二方面,本申请提供了一种电子设备,该电子设备可包括印刷电路板PCB,金属中框,后盖和上述第一方面描述的耦合天线装置。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1是一种传统天线设计位置的示意图;
图2是本申请的一个实施例提供的电子设备的结构示意图;
图3A-图3F是本申请的一个实施例提供的一种天线装置的示意图;
图3G是一种传统的耦合天线结构的示意图;
图4A-图4B是本申请的一个实施例提供的一种天线装置的示意图;
图5A-图5D是本申请的另一个实施例提供的一种天线装置的示意图;
图6A-图6D是本申请的再一个实施例提供的一种天线装置的示意图;
图7A-图7B是本申请的再一个实施例提供的一种天线装置的示意图;
图8A-图8G是本申请的再一个实施例提供的一种天线装置的示意图;
图9A-图9C是本申请的再一个实施例提供的一种天线装置的示意图;
图10A-图10C是本申请的再一个实施例提供的一种天线装置的示意图;
图11A-图11H是本申请的再一个实施例提供的一种天线装置的示意图;
图12是本申请的再一个实施例提供的天线装置的示意图;
图13A-图13B是本申请的再一些实施例提供的天线装置的示意图;
图14A-图14E是本申请的再一些实施例提供的天线装置的示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
本申请提供的技术方案适用于采用以下一种或多种MIMO通信技术的电子设备:长期演进(long term evolution,LTE)通信技术、Wi-Fi通信技术、5G通信技术、SUB-6G通信技术以及未来其他MIMO通信技术等。本申请中,电子设备可以是手机、平板电脑、个人数码助理(personal digital assistant,PDA)等等电子设备。
图2示例性示出了本申请提供的天线设计方案所基于的电子设备内部环境。如图2所示,电子设备可包括:显示屏21、金属中框23、印刷电路板PCB25和后盖27。显示屏21、金属中框23、印刷电路板PCB25和后盖27可以分别设置于不同的层,这些层可以相互平行,各层所在的平面可以称为X-Y平面,垂直于X-Y平面的方向可以称为Z方向。也即是说,显示屏21、金属中框23、印刷电路板PCB25和后盖27可以在Z方向上分层分布。其中,印刷电路板PCB25位于后盖27和金属中框23之间,后盖27可以由绝缘材料制成,例如可由玻璃、陶瓷或塑料等制成。
印刷电路板PCB25上可以设置有天线支架(用于固定天线)。天线支架可以采用绝缘材料,例如PC/ABS材料。为了满足固定于天线支架上的天线的净空需求,天线支架距离印刷电路板PCB25的Z向高度可以为1.5毫米,天线支架的厚度可以为1毫米,后盖27的内表面距离天线支架的Z向高度可以为0.3毫米。这里提及的1.5毫米、1毫米、0.3毫米只是一种示例,天线支架和周围部件的相对位置还可以不同,只要满足天线支架上的天线的净空需求即可,不应构成限定。
金属中框23上(如金属中框23的侧边)可以开缝形成槽天线。槽天线内可以填充有绝缘材料,如PC/ABS材料(介电常数3.6,介电损耗角0.01)。为了满足金属中框23的槽天线的净空需求,显示屏21距离金属中框23的Z向高度可以为0.3毫米。槽天线在Z向投影区域的天线净空宽度可以为0.6毫米。这里提及的0.3毫米、0.6毫米只是一种示例,槽天线和周围部件的相对位置还可以不同,只要满足槽天线的净空需求即可,不应构成限定。
后盖27上可以设置一个或多个悬浮金属天线。悬浮金属天线可以设置于后盖27的内表面,也可以设置于后盖27的外表面,还可以嵌入于后盖27中。例如,悬浮金属天线可以是粘贴于后盖27内表面的金属条,还可以使用导电银浆印制在后盖27内表面上。悬浮金属天线可以和电子设备内部的馈电天线形成耦合天线结构。馈电天线可以是固定于天线支架上的天线(可以称为支架天线),支架天线可以是不同类型的天线形式,如IFA天线、单极(monopole)天线或者环天线等。馈电天线也可以是在金属中框23上开缝形成的槽天线等。该耦合天线结构形成的天线装置可产生多个谐振模式的激励,可改善天线带宽及辐射特性。
下面实施例将详细说明通过馈电天线和悬浮金属天线形成的耦合天线结构。
实施例一
在实施例一中,支架天线可以是馈电单元,槽天线和悬浮金属天线可以是耦合单元。也即是说,馈电的支架天线可以同时耦合悬浮金属天线以及槽天线。
图3A-图3B示例性示出了实施例一提供的耦合天线结构。其中,图3A为仿真模型示意图,图3B为结构简化图。如图3A-图3B所示,该耦合天线结构可包括支架天线31、槽天线21和悬浮金属天线41。其中:
支架天线31可以固定于天线支架(未示出)上。支架天线31可具有馈电点。支架天线31可以一端馈电,另一端开放。槽天线21可以通过在金属中框侧边开缝形成。不限于侧边,槽天线21也可以通过在金属中框的其他位置开缝形成。槽天线21的两端可以闭合接地。悬 浮金属天线41可以设置于后盖内表面。悬浮金属天线41可以两端开放。槽天线21、悬浮金属天线41可以不馈电,二者可以作为耦合单元,被馈电的支架天线31耦合。
馈电的支架天线31与悬浮金属天线41之间可平行相对设置。这里,平行相对设置可以是指支架天线31的一个或多个辐射臂与悬浮金属天线41之间可平行相对设置。例如,如图3A-图3B所示,支架天线31的辐射臂31-A、辐射臂31-B可以与悬浮金属天线41平行相对设置。在一些可选实施方式中,悬浮金属天线41可以具有多个辐射臂,其中一个或多个辐射臂可以分别与支架天线31的一个或多个辐射臂平行相对设置。
应理解的是,馈电的支架天线31与悬浮金属天线41之间可不必须平行相对设置。当二者之间不平行相对设置时,馈电的支架天线31也可以耦合悬浮金属天线41,只是耦合效应没有二者平行相对设置时强。
馈电的支架天线31与槽天线21之间可平行相对设置。这里,平行相对设置可以是指支架天线31的一个或多个辐射臂与槽天线21之间可平行相对设置。例如,如图3A-图3B所示,支架天线31的辐射臂31-A、辐射臂31-B可以与槽天线21平行相对设置。在一些可选实施方式中,槽天线21可以具有多个辐射缝隙,其中一个或多个辐射缝隙可以分别与支架天线31的一个或多个辐射臂平行相对设置。
应理解的是,馈电的支架天线31与槽天线21之间可不必须平行相对设置。当二者之间不平行相对设置时,馈电的支架天线31也可以耦合槽天线21,只是耦合效应没有二者平行相对设置时强。
图3C示例性示出了馈电的支架天线31与悬浮金属天线41、槽天线21之间的耦合间距。如图3C所示,馈电的支架天线31与悬浮金属天线41之间可以存在耦合间距1(gap1),二者之间可形成耦合区域1。馈电的支架天线31与槽天线21之间可以存在耦合间距2(gap2),二者之间可形成耦合区域2。应理解的是,耦合间距越小,耦合效应越强;耦合区域越大,耦合效应越强。本申请对耦合间距1、耦合间距2、耦合区域1和耦合区域2的具体取值不做限制,满足支架天线31能够耦合悬浮金属天线41以及槽天线21即可。
图3C仅示意各天线之间的耦合间距。天线之间的耦合间距(如支架天线31与悬浮金属天线41之间的耦合间距)可以仅有一个值,即耦合间距处处相等。天线之间的耦合间距(如支架天线31与悬浮金属天线41之间的耦合间距)也可以有多个值,因为天线的外表面可能是弯曲的,有的位置耦合间距较大,而有个位置耦合间距较小。其中耦合间距最小的位置可以是天线之间相距最近的位置,耦合间距最大的位置可以是天线之间相距最远的位置。
为了满足上述耦合天线结构中各天线辐射体的净空要求,各天线辐射体和周围金属部件(如显示屏、PCB等)的位置关系可如下:
槽天线21的缝隙宽度可以为1.2毫米,槽天线21在Z向投影区域可以有0.6毫米的宽度与显示屏重合。这样,槽天线21在Z向投影区域的天线净空宽度可以为0.6毫米,可以满足槽天线21的净空需求。不限于这里提及的0.6毫米,槽天线21在Z向投影区域的天线净空宽度还可以为其他值,满足净空需求即可。
悬浮金属天线41距离支架天线31的Z向距离可以为0.3毫米,悬浮金属天线41距离PCB的Z向距离可以为1.8毫米。用于固定支架天线31的天线支架(未示出)距离PCB的Z向距离可以为1.5毫米。这样可以满足支架天线31、悬浮金属天线41的净空需求。不限于这里提及的0.3毫米、1.8毫米、1.5毫米所描述的位置关系,悬浮金属天线41、支架天线31和周围金属部件(如PCB等)的位置关系还可以不同,满足悬浮金属天线41、支架天线31的 净空需求即可。
上述内容中涉及的显示屏、PCB、天线支架、后盖可参考图2的相关描述,这里不再赘述。在一些可选实施方式中,悬浮金属天线41还可以设置于后盖的外表面,也还可以嵌入于后盖中。
下面说明图3A-图3B示例性所示的耦合天线结构可以产生的谐振模式。
请参阅图3D,图3D中的①、②、③、④代表不同的谐振。该耦合天线结构可以在2.4GHz附近产生谐振①,还可以在5GHz附近产生三个谐振:②、③、④。具体的:
谐振①可由悬浮金属天线41的二分之一波长模式产生。在5GHz附近的三个谐振②、③、④中,最低谐振(即谐振②)可由悬浮金属天线41的一倍波长模式产生,中间谐振(即谐振③)可由支架天线(如四分之一波长模式)产生,最高谐振(即谐振④)可由槽天线21的二分之一波长模式产生。
图3E示例性示出了谐振①、②、③、④的电流分布。图3F示例性示出了谐振①、②、③、④的电场分布。从谐振①的电流分布和电场分布可以看出,悬浮金属天线41的两端(都是开放端)是电场强点,谐振①的信号可由悬浮金属天线41的二分之一波长模式辐射。从谐振②的电流分布和电场分布可以看出,悬浮金属天线41的两端以及中间位置是电场强点,谐振②的信号由可悬浮金属天线41的一倍波长模式辐射。从谐振③的电流分布和电场分布可以看出,支架天线31的一端(馈电端)是电流强点,另一端(开放端)是电场强点,谐振③的信号可由支架天线31的四分之一波长模式辐射。从谐振④的电流分布和电场分布可以看出,槽天线21的两端(接地端)是电流强点,中间位置是电场强点,谐振④的信号可由槽天线的二分之一波长模式辐射。
不限制悬浮金属天线41产生谐振①的波长模式,谐振①也可由悬浮金属天线41的一倍波长模式、二分之三波长模式等产生。不限制悬浮金属天线41产生谐振②的波长模式,谐振②也可由悬浮金属天线41的二分之三波长模式、二分之五波长模式等产生。不限制支架天线31产生谐振③的波长模式,谐振③也可由支架天线31的四分之三波长模式、四分之五波长模式等产生。不限制槽天线21产生谐振④的波长模式,谐振④可由槽天线21的二分之三波长模式、二分之五波长模式等产生。
在一些可选的实现方式中,槽天线21可以一端闭合接地,另一端开放。此时,槽天线21可以通过四分之一波长模式、四分之三波长模式、四分之五波长模式等产生谐振④。
也即是说,馈电的支架天线31可同时耦合悬浮金属天线41、槽天线21,产生多个Wi-Fi频段的谐振,覆盖多个Wi-Fi频段。
不限于2.4GHz频段、5GHz频段,图3A-图3B示例性所示的耦合天线结构还可以产生其他频段的谐振,具体可通过调整该天线结构中各个天线辐射体(如悬浮金属天线41、支架天线31、槽天线21)的尺寸或形状来设置。
本申请中,频段是指一个频率范围。例如2.4GHz频段可以是指2.4GHz~2.4835GH的频率范围,即2.4GHz附近的频率范围。又例如5GHz频段可以是指5.150GHz~5.350GHz、5.725GHz~5.850GHz的频率范围,即5GHz附近的频率范围。
图3D中还示出了传统的耦合天线结构,如支架天线31耦合槽天线21的耦合天线结构(可参考图3G所示),产生的谐振模式。由于支架天线31的设计空间受限,支架天线的设计尺寸很小,因此这种传统的耦合天线结构只能在5GHz附近产生两个谐振⑩、
Figure PCTCN2019115493-appb-000022
不能在2.4GHz附近产生谐振。
可以看出,相比于图3G所示的这种传统的耦合天线结构,图3A-图3B示例性所示的耦合天线结构包括设置于后盖上的悬浮金属天线,悬浮金属天线的尺寸可以设计的较大,悬浮金属天线和馈电的支架天线形成的耦合天线结构可以激励出较低频段的谐振模式,产生更多谐振,实现更多频段覆盖。而且,图3A-图3B示例性所示的耦合天线结构包括的支架天线的尺寸可以设计的很小,受周围器件影响降低,在较小的设计空间内便可实现。
实施例二
实施例二提供的耦合天线结构的仿真模型示意图可以参考图3A。与实施例一不同的是,如图4A所示,槽天线21可具有馈电点。槽天线21可以一端馈电,另一端闭合接地。支架天线31可以一端闭合接地,另一端开放。悬浮金属天线可以两端开放。槽天线21可以是馈电单元,支架天线31和悬浮金属天线41可以是耦合单元。也即是说,馈电的槽天线21可以同时耦合悬浮金属天线41以及支架天线31。
馈电的槽天线21与悬浮金属天线41之间可平行相对设置。这里,平行相对设置可以是指槽天线21的一个或多个辐射缝隙与悬浮金属天线41之间可平行相对设置。在一些可选实施方式中,悬浮金属天线41可以具有多个辐射臂,其中一个或多个辐射臂可以与槽天线21的一个或多个辐射缝隙平行相对设置。
馈电的槽天线21与支架天线31之间可平行相对设置。这里,平行相对设置可以是指槽天线21的一个或多个辐射缝隙与支架天线31之间可平行相对设置。在一些可选实施方式中,支架天线31可以具有多个辐射臂,其中一个或多个辐射臂可以与槽天线21的一个或多个辐射缝隙平行相对设置。
图4B示例性示出了实施例二提供的耦合天线结构中包括的各天线辐射体之间的耦合间距。如图4B所示,馈电的槽天线21与悬浮金属天线41之间可以存在耦合间距3(gap3),二者之间可形成耦合区域3。馈电的槽天线21与支架天线31之间可以存在耦合间距4(gap4),二者之间可形成耦合区域4。本申请对耦合间距3、耦合间距4、耦合区域3和耦合区域4的具体取值不做限制,满足槽天线21能够耦合悬浮金属天线41以及支架天线31即可。
为了满足耦合天线结构中各天线辐射体的净空要求,各天线辐射体和周围金属部件的位置关系可参考实施例一中的相关描述。
实施例二提供的耦合天线结构中,馈电的槽天线21可同时耦合悬浮金属天线41、支架天线31,产生多个Wi-Fi频段的谐振,覆盖多个Wi-Fi频段。实施例二提供的耦合天线结构可以产生同于实施例一提供的耦合天线结构所产生的谐振模式,具体可参考实施例一中的相关描述,这里不再赘述。
实施例三
与实施例一不同的是,耦合天线结构中可以没有槽天线。
图5A-图5B示例性示出了实施例三提供的耦合天线结构。其中,图5A为仿真模型示意图,图5B为结构简化图。如图5A-图5B所示,该耦合天线结构可包括支架天线31、悬浮金属天线41。其中:支架天线31可具有馈电点。支架天线31可以一端馈电,另一端开放。悬浮金属天线41可以两端开放。支架天线可以是馈电单元,悬浮金属天线可以是耦合单元。也即是说,馈电的支架天线可以耦合悬浮金属天线。
图5C示例性示出了馈电的支架天线31与悬浮金属天线41之间的耦合间距。如图5C所 示,馈电的支架天线31与悬浮金属天线41之间可以存在耦合间距5(gap5),二者之间可形成耦合区域5。耦合间距5可等于实施例一中的耦合间距1,耦合区域5可等于实施例一中的耦合区域1。本申请对耦合间距5、耦合区域5的取值不做限制,满足馈电的支架天线31能够耦合悬浮金属天线41即可。
为了满足耦合天线结构中支架天线31、悬浮金属天线41的净空要求,支架天线31、悬浮金属天线41和周围金属部件(如PCB等)的位置关系可参考实施例一中的相关描述,这里不再赘述。
下面说明图5A-图5B示例性所示的耦合天线结构可以产生的谐振模式。
请参阅图5D,图5D中的⑤、⑥、⑦代表不同的谐振。该耦合天线结构可以在2.4GHz附近产生谐振⑤,还可以在5GHz附近产生两个谐振:⑥、⑦。具体的:
谐振⑤可由悬浮金属天线41的二分之一波长模式产生。在5GHz附近的两个谐振⑥、⑦中,较低谐振(即谐振⑥)可由悬浮金属天线41的一倍波长模式产生,较高谐振(即谐振⑦)可由支架天线(四分之一波长模式)产生。
也即是说,馈电的支架天线31可耦合悬浮金属天线41,产生多个谐振,覆盖多个频段。具体的,馈电的支架天线31可产生谐振⑦,并可耦合悬浮金属天线41,激励悬浮金属天线41产生谐振⑤和谐振⑥。
不限制悬浮金属天线41产生谐振⑤的波长模式,谐振⑤也可由悬浮金属天线41的一倍波长模式、二分之三波长模式等产生。不限制悬浮金属天线41产生谐振⑥的波长模式,谐振⑥也可由悬浮金属天线41的二分之三波长模式、二分之五波长模式等产生。不限制支架天线31产生谐振⑦的波长模式,谐振⑦也可由支架天线31的四分之三波长模式、四分之五波长模式等产生。
也即是说,馈电的支架天线31可耦合悬浮金属天线41,产生多个Wi-Fi频段的谐振,覆盖多个Wi-Fi频段。
不限于2.4GHz频段、5GHz频段,图5A-图5B示例性所示的耦合天线结构还可以产生其他频段的谐振,具体可通过调整该天线结构中各个天线辐射体(如悬浮金属天线41、支架天线31)的尺寸或形状来设置。
图5D中还示出了传统的耦合天线结构,如支架天线31耦合槽天线21的耦合天线结构(可参考图3G所示),产生的谐振模式。由于支架天线31的设计空间受限,支架天线的设计尺寸很小,因此这种传统的耦合天线结构只可以在5GHz附近产生两个谐振⑩、
Figure PCTCN2019115493-appb-000023
不能在2.4GHz附近产生谐振。
可以看出,相比于图3G所示的这种传统的耦合天线结构,图5A-图5B示例性所示的耦合天线结构包括设置于后盖上的悬浮金属天线,悬浮金属天线的尺寸可以设计的较大,悬浮金属天线和馈电的支架天线形成的耦合天线结构可以激励出较低频段的谐振模式,产生更多谐振,实现更多频段覆盖。
实施例四
与实施例二不同的是,耦合天线结构中没有支架天线。
图6A-图6B示例性示出了实施例四提供的耦合天线结构。其中,图6A为仿真模型示意图,图6B为结构简化图。如图6A-图6B所示,该耦合天线结构可包括槽天线21和悬浮金属天线41。其中:槽天线21可具有馈电点。槽天线21可以一端馈电,另一端闭合接地。悬浮 金属天线41可以两端开放。槽天线21可以是馈电单元,悬浮金属天线41可以是耦合单元。也即是说,馈电的槽天线21可以耦合悬浮金属天线41。
图6C示例性示出了馈电的槽天线21与悬浮金属天线41之间的耦合间距。如图6C所示,馈电的槽天线21与悬浮金属天线41之间可以存在耦合间距6(gap6),二者之间可形成耦合区域6。耦合间距6可等于实施例二中的耦合间距3,耦合区域6可等于实施例二中的偶合区域3。本申请对耦合间距6和耦合区域6的具体取值不做限制,满足馈电的槽天线21能够耦合悬浮金属天线41即可。
为了满足耦合天线结构中槽天线21、悬浮金属天线41的净空要求,槽天线21、悬浮金属天线41和周围金属部件(如PCB等)的位置关系可参考实施例一中的相关描述,这里不再赘述。
下面说明图6A-图6B示例性所示的耦合天线结构可以产生的谐振模式。
请参阅图6D,图6D中的⑧、⑨、
Figure PCTCN2019115493-appb-000024
代表不同的谐振。该耦合天线结构可以在2.4GHz附近产生谐振⑧,还可以在5GHz附近产生两个谐振:⑨、
Figure PCTCN2019115493-appb-000025
具体的:
谐振⑧可由悬浮金属天线41的二分之一波长模式产生。在5GHz附近的两个谐振⑨、
Figure PCTCN2019115493-appb-000026
中,较低谐振(即谐振⑨)可由悬浮金属天线41的一倍波长模式产生,较高谐振(即谐振
Figure PCTCN2019115493-appb-000027
)可由槽天线21的二分之一波长模式产生。
也即是说,馈电的槽天线21可耦合悬浮金属天线41,产生多个谐振,覆盖多个频段。具体的,馈电的槽天线21可产生谐振
Figure PCTCN2019115493-appb-000028
并可耦合悬浮金属天线41,激励悬浮金属天线41产生谐振⑧和谐振⑨。
不限制悬浮金属天线41产生谐振⑧的波长模式,谐振⑧也可由悬浮金属天线41的一倍波长模式、二分之三波长模式等产生。不限制悬浮金属天线41产生谐振⑨的波长模式,谐振⑨也可由悬浮金属天线41的二分之三波长模式、二分之五波长模式等产生。不限制槽天线21产生谐振
Figure PCTCN2019115493-appb-000029
的波长模式,谐振
Figure PCTCN2019115493-appb-000030
可由槽天线21的二分之三波长模式、二分之五波长模式等产生。
也即是说,馈电的槽天线21可耦合悬浮金属天线41,产生多个Wi-Fi频段的谐振,覆盖多个Wi-Fi频段。
不限于2.4GHz频段、5GHz频段,图6A-图6B示例性所示的耦合天线结构还可以产生其他频段的谐振,具体可通过调整该天线结构中各个天线辐射体(如悬浮金属天线41、槽天线21)的尺寸或形状来设置。
图6D中还示出了传统的耦合天线结构,如支架天线31耦合槽天线21的耦合天线结构(可参考图3G所示),产生的谐振模式。由于支架天线31的设计空间受限,支架天线的设计尺寸很小,因此这种传统的耦合天线结构只可以在5GHz附近产生两个谐振⑩、
Figure PCTCN2019115493-appb-000031
不能在2.4GHz附近产生谐振。
可以看出,相比于图3G所示的这种传统的耦合天线结构,图6A-图6B示例性所示的耦合天线结构包括设置于后盖上的悬浮金属天线,悬浮金属天线的尺寸可以设计的较大,悬浮金属天线和馈电的槽天线形成的耦合天线结构可以激励出较低频段的谐振模式,产生更多谐振,实现更多频段覆盖。
下面对比分析上面内容中描述的几种典型的耦合天线结构的性能:图3G示例性所示的耦合天线结构(下面简称结构D)、图5A示例性所示的耦合天线结构(下面简称结构E)以 及图3A示例性所示的耦合天线结构(下面简称结构F)。
图7A示出了一组仿真的天线反射系数曲线,包括:结构D对应的反射系数曲线,结构E对应的反射系数曲线,结构F对应的反射系数曲线。其中,
在结构D对应的反射系数曲线中,天线可具有工作在5.5GHz附近的两个谐振:谐振⑩、
Figure PCTCN2019115493-appb-000032
其中,较低谐振(即谐振⑩)可由支架天线31(四分之一波长模式)产生,较高谐振(即谐振
Figure PCTCN2019115493-appb-000033
)可由槽天线21的二分之一波长模式产生。
在结构E对应的反射系数曲线中,天线在2.5GHz附近的谐振(即谐振⑤)可由悬浮金属天线41的二分之一波长模式产生;天线在5GHz附近还可以具有两个谐振,其中,较低谐振(即谐振⑥)可由悬浮金属天线41的一倍波长模式产生,较高谐振(即谐振⑦)可由支架天线31(四分之一波长模式)产生。
在结构F对应的反射系数曲线中,天线在2.5GHz附近的谐振(即谐振①)可由悬浮金属天线41的二分之一波长模式产生;天线在5GHz附近还可以具有三个谐振,其中,最低谐振(即谐振②)可由悬浮金属天线的一倍波长模式产生,中间谐振(即谐振③)可由支架天线(四分之一波长模式)产生,最高谐振(即谐振④)可由槽天线的二分之一波长模式产生。
可以看出,相比于结构D只能在5.5GHz附近产生两个谐振,结构E、结构F还可以在2.4GHz附近产生谐振。因为结构E、结构F是馈电天线耦合悬浮金属天线所形成的耦合天线结构,悬浮金属天线的设计尺寸可以比支架天线、槽天线的设计尺寸更大,所以这种耦合天线结构还可以在2.4GHz附近产生谐振。
可以看出,相比于结构E在5GHz附近可产生两个谐振,结构F在5GHz附近可产生三个谐振。因为结构F中馈电的支架天线在耦合悬浮金属天线的同时还耦合了槽天线,所以结构F可激励出更多的谐振模式,可以覆盖更多频段。
另外,图7B示出了上述结构D、结构E、结构F这三种耦合天线结构仿真的效率曲线。其中,实线表示系统效率曲线,虚线表示辐射效率曲线。对比这几种结构的效率曲线可以看出,馈电天线耦合悬浮金属天线所形成的耦合天线结构(结构E、结构F)在2.4GHz、5GHz附近的辐射效率均较高,没有明显的效率凹坑。
从实施例一至实施例四可以看出,馈电天线耦合悬浮金属天线可以形成耦合天线结构。该耦合天线结构的天线装置包括设置于后盖上的悬浮金属天线,悬浮金属天线的尺寸可以设计的较大,悬浮金属天线和馈电天线形成的耦合天线结构可以激励出较低频段的谐振模式,产生更多谐振,可改善天线带宽及辐射特性。馈电天线可以是固定于天线支架上的天线(可以称为支架天线),馈电的支架天线还可以同时耦合悬浮金属天线和槽天线,可激励出更多谐振模式。馈电天线也可以是在金属中框23上开缝形成的槽天线,馈电的槽天线可以同时耦合悬浮金属天线和支架天线,可激励出更多谐振模式。
实施例五
在实施例五中,支架天线可以是馈电单元,两个或两个以上的悬浮金属天线可以是耦合单元。也即是说,馈电的支架天线可以同时耦合两个或两个以上的悬浮金属天线。
下面以馈电的支架天线同时耦合两个悬浮金属天线的耦合天线结构为例进行说明。
图8A-图8B示例性示出了实施例五提供的耦合天线结构。其中,图8A为仿真模型示意图,图8B为结构简化图。如图8A-图8B所示,该耦合天线结构可包括支架天线31、悬浮金属天线413和悬浮金属天线411。其中:
支架天线31可以固定于天线支架(未示出)上。支架天线31可具有馈电点。支架天线31可以一端馈电,另一端开放。悬浮金属天线413和悬浮金属天线411均可以设置于后盖内表面,悬浮金属天线413和悬浮金属天线411之间可设有缝隙45。悬浮金属天线411可以比悬浮金属天线413长。悬浮金属天线可两端开放。
馈电的支架天线31与悬浮金属天线413之间可平行相对设置。馈电的支架天线31与悬浮金属天线411之间可平行相对设置。这里,平行相对设置可以是指支架天线31的一个或多个辐射臂与悬浮金属天线之间可平行相对设置。
图8C示例性示出了馈电的支架天线31与悬浮金属天线413、悬浮金属天线411之间的耦合间距。如图8C所示,馈电的支架天线31与悬浮金属天线411之间的耦合间距可以同于馈电的支架天线31与悬浮金属天线413之间的耦合间距,即耦合间距7(gap7)。馈电的支架天线31与悬浮金属天线411之间可形成耦合区域7,馈电的支架天线31与悬浮金属天线413之间可形成耦合区域8。本申请对耦合间距7、耦合区域7以及耦合区域8的取值不做限制,满足馈电的支架天线31能够同时耦合悬浮金属天线413、悬浮金属天线411即可。
为了满足耦合天线结构中支架天线31、悬浮金属天线(悬浮金属天线413、悬浮金属天线411)的净空要求,支架天线31、悬浮金属天线和周围金属部件(如PCB等)的位置关系可参考实施例一中的相关描述,这里不再赘述。
下面说明图8A-图8B示例性所示的耦合天线结构可以产生的谐振模式。
请参阅图8D,图8D中的
Figure PCTCN2019115493-appb-000034
代表不同的谐振。该耦合天线结构可以在2.4GHz附近产生谐振
Figure PCTCN2019115493-appb-000035
还可以在5GHz附近产生三个谐振:
Figure PCTCN2019115493-appb-000036
具体的:
谐振
Figure PCTCN2019115493-appb-000037
可由悬浮金属天线411的二分之一波长模式产生。在5GHz附近的三个谐振
Figure PCTCN2019115493-appb-000038
Figure PCTCN2019115493-appb-000039
中,最低谐振(即谐振
Figure PCTCN2019115493-appb-000040
)可由支架天线31(四分之一波长模式)产生,中间谐振(即谐振
Figure PCTCN2019115493-appb-000041
)可由悬浮金属天线411的一倍波长模式产生,最高谐振(即谐振
Figure PCTCN2019115493-appb-000042
)可由悬浮金属天线413的二分之一波长模式或一倍波长模式产生。
图8E示例性示出了谐振
Figure PCTCN2019115493-appb-000043
的电流分布。图8F示例性示出了谐振
Figure PCTCN2019115493-appb-000044
Figure PCTCN2019115493-appb-000045
的电场分布。从谐振
Figure PCTCN2019115493-appb-000046
的电流分布和电场分布可以看出,较长的悬浮金属天线(即悬浮金属天线411)的两端(都是开放端)是电场强点,谐振
Figure PCTCN2019115493-appb-000047
的信号可由该较长的悬浮金属天线的二分之一波长模式辐射。从谐振
Figure PCTCN2019115493-appb-000048
的电流分布和电场分布可以看出,支架天线31的一端(馈电端)是电流强点,另一端(开放端)是电场强点,谐振
Figure PCTCN2019115493-appb-000049
的信号可由支架天线31的四分之一波长模式辐射。从谐振
Figure PCTCN2019115493-appb-000050
的电流分布和电场分布可以看出,较长的悬浮金属天线(即悬浮金属天线411)的两端(都是开放端)是电场强点,其中间位置也是电场强点,谐振
Figure PCTCN2019115493-appb-000051
的信号可由该较长的悬浮金属天线的一倍波长模式辐射。从谐振
Figure PCTCN2019115493-appb-000052
的电流分布和电场分布可以看出,较短的悬浮金属天线(即悬浮金属天线413)的两端(都是开放端)是电场强点,谐振
Figure PCTCN2019115493-appb-000053
的信号可由该较短的悬浮金属天线的二分之一波长模式辐射。
不限制悬浮金属天线411产生谐振
Figure PCTCN2019115493-appb-000054
的波长模式,谐振
Figure PCTCN2019115493-appb-000055
也可由悬浮金属天线411的一倍波长模式、二分之三波长模式等产生。不限制支架天线31产生谐振
Figure PCTCN2019115493-appb-000056
的波长模式,谐振
Figure PCTCN2019115493-appb-000057
也可由支架天线31的四分之三波长模式、四分之五波长模式等产生。不限制悬浮金属天线411产生谐振
Figure PCTCN2019115493-appb-000058
的波长模式,谐振
Figure PCTCN2019115493-appb-000059
也可由悬浮金属天线411的二分之三波长模式、二分之五波长模式等产生。不限制悬浮金属天线413产生谐振
Figure PCTCN2019115493-appb-000060
的波长模式,谐振
Figure PCTCN2019115493-appb-000061
可由悬浮金属天线413的一倍波长模式、二分之三波长模式、二分之五波长模式等产生。
可以理解的是,在馈电的支架天线31同时耦合两个以上的悬浮金属天线时,该耦合天线 结构可以进一步产生更多的谐振。
可以看出,馈电的支架天线31可同时耦合多个悬浮金属天线,产生多个Wi-Fi频段的谐振,覆盖多个Wi-Fi频段。不限于2.4GHz频段、5GHz频段,图8A-图8B示例性所示的耦合天线结构还可以产生其他频段的谐振,具体可通过调整该天线结构中各个天线辐射体(如悬浮金属天线411、悬浮金属天线413、支架天线31)的尺寸或形状来设置。
另外,图8G示出了图8A-图8B示例性所示的耦合天线结构仿真的效率曲线。其中,实线表示系统效率曲线,虚线表示辐射效率曲线。可以看出,图8A-图8B示例性所示的耦合天线结构在各个谐振处的辐射效率均较高,没有明显的效率凹坑。
实施例六
与实施例五不同的是,耦合天线结构中增加了槽天线。在实施例六中,支架天线可以是馈电单元,两个或两个以上的悬浮金属天线以及槽天线可以是耦合单元。也即是说,馈电的支架天线可以同时耦合两个或两个以上的悬浮金属天线,以及槽天线。
下面以馈电的支架天线同时耦合两个悬浮金属天线以及槽天线的耦合天线结构为例进行说明。
图9A-图9B示例性示出了实施例六提供的耦合天线结构。其中,图9A为仿真模型示意图,图9B为结构简化图。如图9A-图9B所示,除了支架天线31、悬浮金属天线413、悬浮金属天线411,该耦合天线结构还可包括槽天线21。其中:槽天线21可以两端闭合接地。槽天线21可以和馈电的支架天线31平行相对设置。
图9C示例性示出了馈电的支架天线31与悬浮金属天线、槽天线21之间的耦合间距。如图9C所示,馈电的支架天线31与悬浮金属天线411之间可以存在耦合间距9(gap9),二者之间可形成耦合区域9。馈电的支架天线31与悬浮金属天线413之间可以存在耦合间距9(gap9),二者之间可形成耦合区域10。馈电的支架天线31与槽天线21之间可以存在耦合间距10(gap10),二者之间可形成耦合区域11。耦合间距9可等于实施例五中的耦合间距7,耦合区域9、10可分别等于实施例五中的偶合区域7、8。本申请对耦合间距9、10的具体取值,耦合区域9、10、11的具体取值不做限制,满足馈电的支架天线31能够同时耦合悬浮金属天线411、悬浮金属天线413以及槽天线21即可。
为了满足耦合天线结构中支架天线31、槽天线21和悬浮金属天线的净空要求,支架天线31、槽天线21、悬浮金属天线和周围金属部件(如PCB等)的位置关系可参考实施例一中的相关描述,这里不再赘述。
相比于图8A-图8B示例性所示的耦合天线结构,除了5GHz附近的三个谐振
Figure PCTCN2019115493-appb-000062
Figure PCTCN2019115493-appb-000063
图9A-图9B示例性所示的耦合天线结构还可以在5GHz附近多产生一个谐振。该谐振可由槽天线21的二分之一波长模式产生。也即是说,除了2.4GHz附近的谐振,图9A-图9B示例性所示的耦合天线结构可以在5GHz附近产生四个谐振。图9A-图9B示例性所示的耦合天线结构中馈电的支架天线31可同时耦合多个悬浮金属天线以及槽天线21,可激励出更多谐振模式,覆盖更多频段。
不限于2.4GHz频段、5GHz频段,图9A-图9B示例性的耦合天线结构还可以产生其他频段的谐振,具体可通过调整该天线结构中各个天线辐射体(如悬浮金属天线411、悬浮金属天线413、支架天线31、槽天线21)的尺寸或形状来设置。
在一些可选的实现方式中,槽天线21可以一端闭合接地,另一端开放。此时,槽天线 21可以通过四分之一波长模式、四分之三波长模式、四分之五波长模式等产生该谐振。
在一些可能的实现方式中,图9A所示的耦合天线结构中的馈电单元也可以是槽天线21。也即是说,馈电的槽天线21可同时耦合多个悬浮金属天线以及支架天线31,可激励出更多谐振模式,覆盖更多频段。
实施例七
与实施例六不同的是,耦合天线结构中没有支架天线。
图10A-图10B示例性示出了实施例七提供的耦合天线结构。其中,图10A为仿真模型示意图,图10B为结构简化图。如图10A-图10B所示,该耦合天线结构可包括槽天线21,以及两个或两个以上的悬浮金属天线。其中:槽天线21可具有馈电点。槽天线21可以一端馈电,另一端闭合接地。槽天线21可以是馈电单元,两个或两个以上的悬浮金属天线可以是耦合单元。悬浮金属天线可以两端开放。也即是说,馈电的槽天线21可以同时耦合两个或两个以上的悬浮金属天线。馈电的槽天线21可以和悬浮金属天线平行相对设置。
图10C示例性示出了馈电的槽天线21与悬浮金属天线之间的耦合间距。如图10C所示,馈电的槽天线21与悬浮金属天线411之间可以存在耦合间距12(gap12),二者之间可形成耦合区域12。馈电的槽天线21与悬浮金属天线413之间可以存在耦合间距13(gap13),二者之间可形成耦合区域13。本申请对耦合间距12、耦合区域12、耦合区域13的具体取值不做限制,满足馈电的槽天线21能够同时耦合悬浮金属天线411、悬浮金属天线413即可。
为了满足耦合天线结构中槽天线21和悬浮金属天线的净空要求,槽天线21、悬浮金属天线和周围金属部件(如PCB等)的位置关系可参考实施例一中的相关描述,这里不再赘述。
相比于图9A-图9B示例性所示的耦合天线结构,图10A-图10B示例性耦合天线结构在5GHz附近少产生一个谐振,该谐振是支架天线(四分之一波长模式)产生的谐振,如图8D中的谐振
Figure PCTCN2019115493-appb-000064
也即是说,除了2.4GHz附近的谐振,图10A-图10B示例性所示的耦合天线结构可以在5GHz附近产生三个谐振。
实施例八
在实施例八中,耦合天线结构可以产生Wi-Fi频段(如2.4GHz频段)的谐振,还可以产生移动通信频段(如LTE B3、LTE B1、LTE B7等)的谐振。LTE B3频段的范围为:上行1710-1785MHz,下行1805-1880MHz。LTE B1频段的范围为:上行1920-1980MHz,下行2110-2170MHz。LTE B7频段的范围为:上行2500~2570MHz,下行2620~2690MHz。
图11A-图11B示例性示出了实施例八提供的耦合天线结构。其中,图11A为仿真模型示意图,图11B为结构简化图。如图11A-图11B所示,该耦合天线结构可包括支架天线31、悬浮金属天线41。在一些实现方式中,该耦合天线结构还可包括槽天线21,槽天线21可以两端闭合接地。槽天线21可以比悬浮金属天线41长。其中:
支架天线31可具有馈电点,可以是馈电单元。支架天线31可以一端馈电,另一端开放。悬浮金属天线41、槽天线21可以为耦合单元。悬浮金属天线可以两端开放。槽天线可以两端闭合接地。悬浮金属天线41的Z向投影区域可以几乎覆盖支架天线31,即悬浮金属天线41的Z向投影区域对支架天线31的覆盖率可以超过特定比例(如80%),以形成较大的耦合面积。
在一种可选的实施方式中,槽天线21的长度可以是43毫米,或43毫米附近的值(如 40毫米至45毫米之内的值)。槽天线21的宽度(即开缝宽度)可以是1.1毫米,或1.1毫米附近的值(如1.2毫米、1.0毫米等)。支架天线31的长度可以是17毫米,或17毫米附近的值(如16毫米、18毫米等)。支架天线31的宽度可以是5毫米,或5毫米附近的值(如6毫米、4毫米等)。悬浮金属天线41的长度可以是32毫米,或32毫米附近的值(如33毫米、32毫米等)。悬浮金属天线41的宽度可以是6.5毫米,或6.5毫米附近的值(如6毫米、7毫米等)。
在一种可选的实施方式中,支架天线31与悬浮金属天线41之间的Z向距离可以是0.15毫米至0.25毫米。支架天线31、悬浮金属天线41的外表面轮廓可能存在一些弧度,二者之间的Z向间距可能出现多个不同的值,二者之间的最大Z向距离可以是0.25毫米,二者之间的最小Z向距离可以是0.15毫米。悬浮金属天线41的Z向投影区域也可以不覆盖支架天线31,或只覆盖支架天线31的少部分(如支架天线31的20%)。
在一种可选的实施方式中,支架天线31与槽天线21之间的Z向距离可以是2毫米,或2毫米附近的值(如1.8毫米、2.2毫米等)。支架天线31与槽天线21之间的X向距离可以是5毫米以内。
下面说明图11A-图11B示例性所示的耦合天线结构可以产生的谐振模式。
请参阅图11C,图11C中的
Figure PCTCN2019115493-appb-000065
代表不同的谐振。
如图11C所示,由馈电的支架天线31同时耦合悬浮金属天线41和槽天线21所形成的耦合天线结构(即包括槽天线21)可以在1.8GHz附近(LTE B3)产生谐振
Figure PCTCN2019115493-appb-000066
还可以在2.1GHz附近(LTE B1)产生谐振
Figure PCTCN2019115493-appb-000067
还可以在2.4GHz附近(LTE B7)产生谐振
Figure PCTCN2019115493-appb-000068
具体的:谐振
Figure PCTCN2019115493-appb-000069
可由槽天线21的二分之一波长模式产生,谐振
Figure PCTCN2019115493-appb-000070
可由悬浮金属天线41的二分之一波长模式产生,谐振
Figure PCTCN2019115493-appb-000071
可由支架天线31的四分之一波长模式产生。
图11D示例性示出了谐振
Figure PCTCN2019115493-appb-000072
的电流分布。图11E示例性示出了谐振
Figure PCTCN2019115493-appb-000073
Figure PCTCN2019115493-appb-000074
的电场分布。从谐振
Figure PCTCN2019115493-appb-000075
的电流分布和电场分布可以看出,槽天线的两端(都是接地端)是电流强点,谐振
Figure PCTCN2019115493-appb-000076
的信号可由槽天线的二分之一波长模式辐射。从谐振
Figure PCTCN2019115493-appb-000077
的电流分布和电场分布可以看出,悬浮金属天线41的两端(都是开放端)是电场强点,谐振
Figure PCTCN2019115493-appb-000078
的信号可由悬浮金属天线41的二分之一波长模式辐射。从谐振
Figure PCTCN2019115493-appb-000079
的电流分布和电场分布可以看出,支架天线31的一端(馈电端)是电流强点,另一端(开放端)是电场强点,谐振
Figure PCTCN2019115493-appb-000080
的信号可由支架天线31的四分之一波长模式辐射。
不限制槽天线21产生谐振
Figure PCTCN2019115493-appb-000081
的波长模式,谐振
Figure PCTCN2019115493-appb-000082
也可由槽天线21的二分之三波长模式、二分之五波长模式等产生。不限制悬浮金属天线41产生谐振
Figure PCTCN2019115493-appb-000083
的波长模式,谐振
Figure PCTCN2019115493-appb-000084
也可由悬浮金属天线41的一倍波长模式、二分之三波长模式、二分之五波长模式等产生。不限制支架天线31产生谐振
Figure PCTCN2019115493-appb-000085
的波长模式,谐振
Figure PCTCN2019115493-appb-000086
也可由支架天线31的四分之三波长模式、四分之五波长模式等产生。
在一些可选的实现方式中,槽天线21可以一端闭合接地,另一端开放。此时,槽天线21可以通过四分之一波长模式、四分之三波长模式、四分之五波长模式等产生谐振
Figure PCTCN2019115493-appb-000087
图11C所示还示出了由馈电的支架天线31耦合悬浮金属天线41所形成的耦合天线结构(即不包括槽天线21)产生的谐振模式。此时,该耦合天线结构可以在2.1GHz附近(LTE B1)产生谐振
Figure PCTCN2019115493-appb-000088
还可以在2.4GHz附近(LTE B7)产生谐振
Figure PCTCN2019115493-appb-000089
具体的:谐振
Figure PCTCN2019115493-appb-000090
可由悬浮金属天线41的二分之一波长模式产生,谐振
Figure PCTCN2019115493-appb-000091
可由支架天线31的四分之一波长模式产生。
不限制悬浮金属天线41产生谐振
Figure PCTCN2019115493-appb-000092
的波长模式,谐振
Figure PCTCN2019115493-appb-000093
也可由悬浮金属天线41的一 倍波长模式、二分之三波长模式、二分之五波长模式等产生。不限制支架天线31产生谐振
Figure PCTCN2019115493-appb-000094
的波长模式,谐振
Figure PCTCN2019115493-appb-000095
也可由支架天线31的四分之三波长模式、四分之五波长模式等产生。
不限于谐振
Figure PCTCN2019115493-appb-000096
馈电的支架天线31耦合悬浮金属天线41所形成的耦合天线结构(即不包括槽天线21)也可以产生谐振
Figure PCTCN2019115493-appb-000097
对此,悬浮金属天线41可以设计得更长。在一种可能的实施方式中,悬浮金属天线41的长度可以是39毫米,或39毫米附近的值(如38毫米、40毫米等)。这样,悬浮金属天线41的二分之一波长模式可以产生谐振
Figure PCTCN2019115493-appb-000098
悬浮金属天线41的一倍波长模式可以产生谐振
Figure PCTCN2019115493-appb-000099
谐振
Figure PCTCN2019115493-appb-000100
可由支架天线31的四分之一波长模式产生。
可以看出,图11A-图11B示例性所示的耦合天线结构可以产生多个谐振,覆盖Wi-Fi频段(如2.4GHz频段)以及LTE B3、LTE B1、LTE B7等频段。不限于Wi-Fi频段(如2.4GHz频段)以及LTE B3、LTE B1、LTE B7等频段,图11A-图11B示例性所示的耦合天线结构还可以产生其他频段的谐振,具体可通过调整该天线结构中各个天线辐射体(如悬浮金属天线41、支架天线31、槽天线21)的尺寸或形状来设置。
另外,图11F示出了图11A-图11B示例性所示的耦合天线结构仿真的效率曲线。其中,实线表示系统效率曲线,虚线表示辐射效率曲线。可以看出,图11A-图11B示例性所示的耦合天线结构在各个谐振处的辐射效率均较高,没有明显的效率凹坑。
在一些可选的实现方式中,可以在图11A-图11B示例性所示的耦合天线结构中的馈电处进行匹配网络优化设计(如优化天线反射系数、阻抗等),这样该耦合天线结构可形成1800~2700MHz的宽频覆盖(可参考图11G所示),其平均效率可以在-9dB以上(可参考图11H所示)。
可以看出,馈电天线耦合悬浮金属天线形成的耦合天线结构可以产生一个或多个Wi-Fi频段(如2.4GHz频段),的谐振还可以产生一个或多个移动通信频段(如LTE B3、LTE B1、LTE B7等)的谐振。
下面说明上述各个实施例涉及的扩展实施方式。
1.多个悬浮金属天线可分别与馈电天线形成不同的耦合间距
在一些实施例中,在馈电天线同时耦合两个或两个以上的悬浮金属天线所形成的耦合天线结构中,该两个或两个以上的悬浮金属天线与馈电天线(如馈电的支架天线31)之间可分别形成不同的耦合间距。
例如,如图12示例性所示,馈电的支架天线31与悬浮金属天线41-A之间形成耦合间距A,馈电的支架天线31与悬浮金属天线41-B之间形成耦合间距B。耦合间距A和耦合间距B可以不同。示例仅仅用于解释本申请,不应构成限定。
2.馈电天线可具有多个天线枝节
在一些实施例中,本申请提供的耦合天线结构中的馈电天线(如馈电的支架天线或馈电的槽天线)可以具有多个天线枝节。馈电的支架天线的天线枝节可以体现为多个辐射臂,馈电的槽天线的天线枝节可以体现为多个辐射缝隙。这多个天线枝节可进一步增加该耦合天线结构产生的谐振数量,可进一步增加天线的覆盖频段。
例如,如图13A示例性所示,馈电的支架天线31可具有两个天线枝节:天线枝节31-A和天线枝节31-B。这两个天线枝节都可以是一端闭合接地,另一端开放。这两个天线枝节都可以产生谐振,比单个天线枝节的支架天线产生的谐振多。
又例如,如图13B示例性所示,馈电的支架天线31可具有三个天线枝节:天线枝节31-A、天线枝节31-B和天线枝节31-C。这三个天线枝节都可以是一端闭合接地,另一端开放。这三个天线枝节都可以产生谐振,比单个天线枝节的支架天线产生的谐振多。
示例仅仅用于解释本申请,不应构成限定。
3.悬浮金属天线的相关扩展
在一些实施例中,本申请提供的耦合天线结构中的悬浮金属天线可以具有多个天线枝节。这多个天线枝节可进一步增加该耦合天线结构产生的谐振数量,可进一步增加天线的覆盖频段。
例如,如图14A示例性所示,悬浮金属天线41可具有两个天线枝节:天线枝节41-A和天线枝节41-B。这两个天线枝节可产生不同的谐振。示例仅仅用于解释本申请,不应构成限定。
在一些实施例中,悬浮金属天线可以分成多个部分,这多个部分之间可以采用分布参数或集总参数电感连接,以缩小悬浮金属天线的尺寸。
例如,如图14B所示,悬浮金属天线可以分成两个部分,这两个部分之间可采用分布参数电感(如曲折导体线)连接。又例如,如图14C所示,悬浮金属天线可以分成两个部分,这两个部分之间可采用集总参数电感来连接。示例仅仅用于解释本申请,不应构成限定。
在一些实施例中,如图14D所示,悬浮金属天线41的末端可以具有电容,这样可以缩小悬浮金属天线的尺寸。
在一些实施例中,如图14E所示,悬浮金属天线内部可具有滤波器,如带通滤波器、高频滤波器,可对悬浮金属天线辐射的信号进行滤波,可实现多个频段。
可以看出,本申请的各个实施例提供的耦合天线结构可以产生多个谐振模式的激励,可改善天线带宽及辐射特性。该耦合天线结构可以在有限的设计空间内实现,支架天线占用空间很小,有效节省了电子设备内部的天线设计空间。而且,本改耦合天线结构不会影响电子设备的工业设计外观,无需在金属边框上额外开槽,可有效降低手握影响。
不限于悬浮金属天线,本申请实施例提供的耦合天线装置中的耦合单元还可以是其他设置于后盖上的能够被耦合而辐射信号的天线元件。
本申请中,天线的某种波长模式(如二分之一波长模式、四分之一波长模式等)中的波长可以是指该天线辐射的信号的波长。例如,悬浮金属天线的二分之一波长模式可产生2.4GHz频段的谐振,其中二分之一波长模式中的波长是指天线辐射2.4GHz频段的信号的波长。应理解的是,辐射信号在空气中的波长可以如下计算:波长=光速/频率,其中频率为辐射信号的频率。辐射信号在介质中的波长可以如下计算:
Figure PCTCN2019115493-appb-000101
其中,ε为该介质的相对介电常数,频率为辐射信号的频率。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种应用于电子设备的耦合天线装置,所述电子设备包括印刷电路板PCB,金属中框和后盖,所述PCB位于所述后盖和所述金属中框之间,其特征在于,所述耦合天线装置包括:馈电单元和耦合单元,所述馈电单元具有馈电点,所述馈电单元耦合所述耦合单元产生多个频段的谐振;所述耦合单元包括一个或多个设置于所述后盖上的天线元件。
  2. 如权利要求1所述的耦合天线装置,其特征在于,所述馈电单元为馈电的支架天线,所述支架天线固定于天线支架上,所述天线支架设置于所述PCB上;
    所述馈电单元耦合所述耦合单元产生多个频段的谐振具体包括:所述馈电的支架天线耦合所述一个或多个设置于所述后盖上的天线元件产生所述多个频段的谐振。
  3. 如权利要求2所述的耦合天线装置,其特征在于,所述馈电的支架天线与设置于所述后盖上的天线元件平行相对设置。
  4. 如权利要求2或3所述的耦合天线装置,其特征在于,所述耦合单元还包括开缝所述金属中框所形成的槽天线;
    所述馈电单元耦合所述耦合单元产生多个频段的谐振具体包括:所述馈电的支架天线耦合所述一个或多个设置于所述后盖上的天线元件以及所述槽天线产生所述多个频段的谐振。
  5. 如权利要求4所述的耦合天线装置,其特征在于,所述馈电的支架天线与所述槽天线平行相对设置。
  6. 如权利要求1所述的耦合天线装置,其特征在于,所述馈电单元为馈电的槽天线,所述槽天线通过开缝所述金属中框形成;
    所述馈电单元耦合所述耦合单元产生多个频段的谐振具体包括:所述馈电的槽天线耦合所述一个或多个设置于所述后盖上的天线元件产生所述多个频段的谐振。
  7. 如权利要求6所述的耦合天线装置,其特征在于,所述馈电的槽天线与设置于所述后盖上的天线元件平行相对设置。
  8. 如权利要求6或7所述的耦合天线装置,其特征在于,所述耦合单元还包括固定于天线支架上的支架天线,所述天线支架设置于所述PCB上;
    所述馈电单元耦合所述耦合单元产生多个频段的谐振具体包括:所述馈电的槽天线耦合所述一个或多个设置于所述后盖上的天线元件以及所述支架天线产生所述多个频段的谐振。
  9. 如权利要求8所述的耦合天线装置,其特征在于,所述馈电的槽天线与所述支架天线平行相对设置。
  10. 如权利要求1至9中任一项所述的耦合天线装置,其特征在于,所述多个频段包括: Wi-Fi频段。
  11. 如权利要求10所述的耦合天线装置,其特征在于,所述Wi-Fi频段包括以下一项或多项:2.4GHz频段、5GHz频段。
  12. 如权利要求1至11中任一项所述的耦合天线装置,其特征在于,所述多个频段包括:移动通信频段。
  13. 如权利要求12所述的耦合天线装置,其特征在于,所述移动通信频段包括以下一项或多项:长期演进LTE B1频段、LTE B3频段、LTE B7频段。
  14. 如权利要求1至13中任一项所述的耦合天线装置,其特征在于,所述设置于所述后盖上的天线元件包括设置于所述后盖上的悬浮金属天线。
  15. 如权利要求14所述的耦合天线装置,其特征在于,所述悬浮金属天线设置于所述后盖上具体包括以下一项或多项:所述悬浮金属天线设置于所述后盖的内表面、所述悬浮金属天线设置于所述后盖的外表面、所述悬浮金属天线嵌入在所述后盖中。
  16. 如权利要求1至15中任一项所述的耦合天线装置,其特征在于,所述后盖由绝缘材料制成。
  17. 一种电子设备,其特征在于,包括印刷电路板PCB,金属中框,后盖和如权利要求1至16中任意一项所述的耦合天线装置。
PCT/CN2019/115493 2018-11-06 2019-11-05 耦合天线装置及电子设备 WO2020093985A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19882615.8A EP3855567B1 (en) 2018-11-06 2019-11-05 Coupled antenna device and electronic device
AU2019376754A AU2019376754B2 (en) 2018-11-06 2019-11-05 Coupled antenna device and electronic device
JP2021523624A JP7232327B2 (ja) 2018-11-06 2019-11-05 結合アンテナ機器及び電子装置
KR1020217013557A KR102519254B1 (ko) 2018-11-06 2019-11-05 결합 안테나 장치 및 전자 기기
CN201980073182.6A CN113228412A (zh) 2018-11-06 2019-11-05 耦合天线装置及电子设备
BR112021007634-4A BR112021007634A2 (pt) 2018-11-06 2019-11-05 dispositivo de antena e dispositivo eletrônico acoplados
US17/290,904 US11916282B2 (en) 2018-11-06 2019-11-05 Coupling antenna apparatus and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811312284 2018-11-06
CN201811312284.2 2018-11-06
CN201811362920.2A CN111146571A (zh) 2018-11-06 2018-11-15 耦合天线装置及电子设备
CN201811362920.2 2018-11-15

Publications (1)

Publication Number Publication Date
WO2020093985A1 true WO2020093985A1 (zh) 2020-05-14

Family

ID=70515330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115493 WO2020093985A1 (zh) 2018-11-06 2019-11-05 耦合天线装置及电子设备

Country Status (8)

Country Link
US (1) US11916282B2 (zh)
EP (1) EP3855567B1 (zh)
JP (1) JP7232327B2 (zh)
KR (1) KR102519254B1 (zh)
CN (3) CN111146571A (zh)
AU (1) AU2019376754B2 (zh)
BR (1) BR112021007634A2 (zh)
WO (1) WO2020093985A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112072317A (zh) * 2020-09-07 2020-12-11 北京字节跳动网络技术有限公司 缝隙天线装置及电子设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI719824B (zh) * 2020-02-06 2021-02-21 啓碁科技股份有限公司 天線結構
CN111585072B (zh) * 2020-05-29 2022-06-17 维沃移动通信有限公司 电子设备
CN111740218B (zh) * 2020-06-29 2021-08-06 维沃移动通信有限公司 电子设备
CN114156636B (zh) * 2020-09-08 2023-01-06 华为技术有限公司 终端设备及其天线结构
CN112290194A (zh) * 2020-09-17 2021-01-29 深圳市信维通信股份有限公司 一体化小基站天线
CN112164868B (zh) * 2020-09-23 2023-04-07 RealMe重庆移动通信有限公司 天线模组和终端
CN114389005B (zh) * 2020-10-19 2023-07-28 华为技术有限公司 一种电子设备
CN114389017B (zh) * 2020-10-20 2023-09-29 华为技术有限公司 一种天线及终端
CN112467387B (zh) * 2020-11-20 2023-02-28 Oppo广东移动通信有限公司 天线装置及电子设备
CN113206378A (zh) * 2021-03-30 2021-08-03 联想(北京)有限公司 一种电子设备
EP4358294A1 (en) * 2021-08-10 2024-04-24 Samsung Electronics Co., Ltd. Electronic device comprising antenna

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203134978U (zh) * 2013-02-17 2013-08-14 深圳市信维通信股份有限公司 用于移动终端的lte多频天线和具有它的移动终端
CN105789884A (zh) * 2016-04-19 2016-07-20 惠州硕贝德无线科技股份有限公司 一种基于金属背盖的手机天线结构
CN106505307A (zh) * 2015-09-08 2017-03-15 上海莫仕连接器有限公司 一种移动设备的天线及应用该天线的移动设备
CN107565209A (zh) * 2017-07-31 2018-01-09 北京小米移动软件有限公司 移动终端及其天线
WO2018138580A1 (en) * 2017-01-25 2018-08-02 Airties Kablosuz Iletisim Sanayi Ve Dis Ticaret A.S. Method and apparatus for multi-feed multi-band mimo antenna system
CN108470978A (zh) * 2018-03-28 2018-08-31 信维创科通信技术(北京)有限公司 基于金属框的5g mimo天线系统

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661735A (ja) * 1992-08-13 1994-03-04 Matsushita Electric Works Ltd 平面アンテナ
FI991447A (fi) * 1999-06-24 2000-12-25 Nokia Mobile Phones Ltd Rakenteellisesti itsenäinen tasoantennikonstruktio ja kannettava radio laite
US6563466B2 (en) * 2001-09-26 2003-05-13 Ericsson Inc. Multi-frequency band inverted-F antennas with coupled branches and wireless communicators incorporating same
JP2005218032A (ja) * 2004-02-02 2005-08-11 Alps Electric Co Ltd スロットアンテナ
DE102004013994A1 (de) 2004-03-19 2005-10-06 Thyssenkrupp Transrapid Gmbh Magnetschwebebahn mit einer Wirbelstrombremse
TWI349395B (en) * 2006-07-03 2011-09-21 Accton Technology Corp A portable communication device with slot-coupled antenna module
US8466839B2 (en) 2009-07-17 2013-06-18 Apple Inc. Electronic devices with parasitic antenna resonating elements that reduce near field radiation
US8432322B2 (en) 2009-07-17 2013-04-30 Apple Inc. Electronic devices with capacitive proximity sensors for proximity-based radio-frequency power control
US8698677B2 (en) * 2010-04-09 2014-04-15 Sony Corporation Mobile wireless terminal and antenna device
US8368602B2 (en) * 2010-06-03 2013-02-05 Apple Inc. Parallel-fed equal current density dipole antenna
JP5234094B2 (ja) * 2010-12-02 2013-07-10 Tdk株式会社 アンテナ装置
CN102255134A (zh) 2011-04-21 2011-11-23 广东欧珀移动通信有限公司 一种多耦合式内置天线装置
KR101928933B1 (ko) * 2012-03-29 2018-12-14 삼성전자 주식회사 휴대 단말기의 안테나 장치
US9059514B2 (en) * 2012-05-29 2015-06-16 Apple Inc. Structures for shielding and mounting components in electronic devices
CN104838539A (zh) * 2012-10-26 2015-08-12 诺基亚技术有限公司 具有寄生耦合元件的环形天线
JP6061735B2 (ja) 2013-03-05 2017-01-18 三菱製紙株式会社 電池用セパレータ及び電池用セパレータの製造方法
CN103633426B (zh) 2013-12-06 2016-06-22 华为终端有限公司 天线结构和移动终端设备
KR20150069795A (ko) * 2013-12-16 2015-06-24 삼성전자주식회사 안테나 장치 및 그것을 갖는 통신 장치
CN104836031B (zh) * 2014-02-12 2019-09-03 华为终端有限公司 一种天线及移动终端
US9203141B1 (en) * 2014-06-11 2015-12-01 King Slide Technology Co., Ltd. Communication device and antenna thereof
JPWO2016052733A1 (ja) * 2014-10-02 2017-07-20 旭硝子株式会社 アンテナ装置及び無線装置
CN105762519B (zh) * 2015-04-27 2019-04-12 维沃移动通信有限公司 一种缝隙天线及移动终端
KR102364413B1 (ko) * 2015-05-27 2022-02-17 삼성전자주식회사 안테나 장치를 포함하는 전자 장치
CN105140627B (zh) * 2015-07-31 2018-02-13 瑞声精密制造科技(常州)有限公司 移动终端设备
KR101827275B1 (ko) * 2015-11-27 2018-02-08 엘지전자 주식회사 이동 단말기
CN110600872B (zh) * 2016-01-30 2023-09-12 华为技术有限公司 一种贴片天线单元及天线
KR102552098B1 (ko) * 2016-02-18 2023-07-07 삼성전자주식회사 안테나 장치 및 이를 포함하는 전자 장치
CN105870592B (zh) * 2016-03-23 2019-03-29 上海传英信息技术有限公司 移动通讯设备、以及所述移动通讯设备的中板、后盖
CN110574234B (zh) * 2017-04-27 2022-06-10 Agc株式会社 天线和mimo天线
CN207572519U (zh) 2017-06-06 2018-07-03 惠州Tcl移动通信有限公司 具有显示屏的移动终端及其近场通信天线
CN108172972B (zh) * 2017-12-29 2020-07-03 Oppo广东移动通信有限公司 天线组件和电子设备
CN108232442B (zh) * 2017-12-29 2020-07-17 Oppo广东移动通信有限公司 天线组件和电子设备
CN108258425B (zh) * 2018-01-16 2020-06-16 Oppo广东移动通信有限公司 天线组件、中框组件及电子设备
CN108321523B (zh) * 2018-05-09 2024-03-01 厦门美图移动科技有限公司 天线结构及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203134978U (zh) * 2013-02-17 2013-08-14 深圳市信维通信股份有限公司 用于移动终端的lte多频天线和具有它的移动终端
CN106505307A (zh) * 2015-09-08 2017-03-15 上海莫仕连接器有限公司 一种移动设备的天线及应用该天线的移动设备
CN105789884A (zh) * 2016-04-19 2016-07-20 惠州硕贝德无线科技股份有限公司 一种基于金属背盖的手机天线结构
WO2018138580A1 (en) * 2017-01-25 2018-08-02 Airties Kablosuz Iletisim Sanayi Ve Dis Ticaret A.S. Method and apparatus for multi-feed multi-band mimo antenna system
CN107565209A (zh) * 2017-07-31 2018-01-09 北京小米移动软件有限公司 移动终端及其天线
CN108470978A (zh) * 2018-03-28 2018-08-31 信维创科通信技术(北京)有限公司 基于金属框的5g mimo天线系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112072317A (zh) * 2020-09-07 2020-12-11 北京字节跳动网络技术有限公司 缝隙天线装置及电子设备
CN112072317B (zh) * 2020-09-07 2023-04-18 抖音视界有限公司 缝隙天线装置及电子设备

Also Published As

Publication number Publication date
KR102519254B1 (ko) 2023-04-06
AU2019376754B2 (en) 2022-08-04
CN113228412A (zh) 2021-08-06
US11916282B2 (en) 2024-02-27
CN111490333A (zh) 2020-08-04
BR112021007634A2 (pt) 2021-07-27
AU2019376754A1 (en) 2021-05-13
CN111146571A (zh) 2020-05-12
US20210376452A1 (en) 2021-12-02
EP3855567A4 (en) 2021-12-01
JP2022511667A (ja) 2022-02-01
EP3855567A1 (en) 2021-07-28
JP7232327B2 (ja) 2023-03-02
EP3855567B1 (en) 2023-10-04
KR20210066908A (ko) 2021-06-07

Similar Documents

Publication Publication Date Title
WO2020093985A1 (zh) 耦合天线装置及电子设备
TWI425713B (zh) 諧振產生之三頻段天線
US7170456B2 (en) Dielectric chip antenna structure
TWI487191B (zh) 天線系統
TWM529948U (zh) 通訊裝置
US9306285B2 (en) Antenna having three operating frequency bands and method for manufacturing the same
TWI624997B (zh) 行動裝置
US20230048914A1 (en) Antenna Apparatus and Electronic Device
JP4545665B2 (ja) 広帯域アンテナ、及び、広帯域アンテナの構成方法
TWI669851B (zh) 行動裝置
TWM463913U (zh) 天線結構
TWI633705B (zh) 行動裝置
CN102157794A (zh) 谐振产生的三频段天线
CN112673522B (zh) 天线和无线通信设备
WO2021130844A1 (ja) アンテナ装置および測定システム
CN107293843B (zh) Wifi天线装置
TWI819618B (zh) 電子裝置
EP4164058A1 (en) Planar antenna and method for providing such
TWI821856B (zh) 天線系統
TWI833416B (zh) 天線結構和通訊裝置
WO2024046200A1 (zh) 一种电子设备
WO2024046199A1 (zh) 一种电子设备
TWI509889B (zh) 具訊號阻絕結構之平板天線
TWM644167U (zh) 雙天線裝置
TWM638323U (zh) 多頻雙天線裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021523624

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217013557

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021007634

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019882615

Country of ref document: EP

Effective date: 20210423

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019376754

Country of ref document: AU

Date of ref document: 20191105

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021007634

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210422