WO2020093286A1 - 一种非稠合电子受体材料、制备方法及其构筑的有机太阳能电池 - Google Patents
一种非稠合电子受体材料、制备方法及其构筑的有机太阳能电池 Download PDFInfo
- Publication number
- WO2020093286A1 WO2020093286A1 PCT/CN2018/114431 CN2018114431W WO2020093286A1 WO 2020093286 A1 WO2020093286 A1 WO 2020093286A1 CN 2018114431 W CN2018114431 W CN 2018114431W WO 2020093286 A1 WO2020093286 A1 WO 2020093286A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- organic solar
- electron acceptor
- active layer
- group
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/02—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
- C07D333/04—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
- C07D333/06—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
- C07D333/24—Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/50—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
- C07D333/78—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems condensed with rings other than six-membered or with ring systems containing such rings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/626—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/655—Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6576—Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the invention belongs to the field of energy materials, in particular to a non-fused electron acceptor material and its application.
- the purpose of the present invention is to overcome the deficiencies of the prior art and provide a non-fused electron acceptor material.
- the material is easy to prepare, and while optimizing the receptor structure and reaction route, the corresponding solar cell can still maintain high photoelectric conversion efficiency.
- D is one of the following chemical structural formulas as a donor group:
- B is one of the following chemical structural formulas as a bridging group:
- A is one of the following chemical structural formulas as an acceptor group:
- R 1 and R 2 are modified solubilizing groups, and X is a halogen atom.
- the modified solubilizing group R 1 includes H, C1-C18 branched alkyl groups and C1-C18 linear alkyl groups.
- modified solubilizing group R 1 is one of the following chemical structural formulas:
- the modified solubilizing group R 2 includes C1-C18 branched alkyl, C1-C18 branched alkoxy, C1-C18 linear alkyl, C1-C18 linear alkoxy, C3 -C7 cycloalkyl and C3-C7 cycloalkoxy.
- modified solubilizing group R 2 is one of the following chemical structural formulas:
- the invention also provides a method for preparing a non-fused electron acceptor material, which includes the following steps:
- the invention also provides an organic solar cell, including an active layer.
- the active layer includes a donor material and the non-fused electron acceptor material described above.
- the active layer is a blended film of non-fused electron acceptor material and donor material.
- the donor material is one of the following chemical structural formulas:
- the mass ratio of the donor material to the non-condensed electron acceptor material in the active layer is 1: 5 to 5: 1, and the thickness of the active layer is 10 to 1000 nm.
- the active layer is annealed, the annealing temperature is 20 to 250 ° C., and the annealing time is 1 to 60 min.
- the organic solar cell has a layered structure, and the order from bottom to top is the substrate, the cathode, the electron transport layer, the active layer, the hole transport layer, and the anode. Its structure is shown in Figure 2.
- the electron transport layer is ZnO
- the hole transport layer is MoO 3
- the cathode is ITO
- the anode is Ag.
- the present invention has the following beneficial effects:
- the invention uses a hydrocarbon activation reaction to construct a non-condensed conjugated skeleton and prepare a novel organic solar cell receptor.
- the reaction process is concise and efficient, in line with atomic economics.
- organic solar cell acceptor materials based on non-condensed skeletons have low synthesis cost, wide absorption range, and suitable energy level. Based on such molecules, a series of highly efficient organic photovoltaic materials can be constructed.
- Figure 1 is the current-voltage curve of each organic solar cell under light.
- Figure 2 shows the basic structure of a solar cell.
- anode 1 hole transport layer 2, active layer 3, electron transport layer 4, cathode 5, substrate 6.
- reaction solution was extracted with dichloromethane, the organic phase was collected, then washed with water, and the solvent was removed by rotary evaporation.
- the crude product was finally purified on silica gel column chromatography to obtain 0.34 g of product 2 (yellow solid, yield 65) %).
- the transparent conductive glass with strip-shaped ITO (cathode) etched on the surface is washed with ultrasonic cleaner, deionized water, acetone and isopropyl alcohol in sequence, dried, and then treated with oxygen plasma for 15 minutes; then on the conductive glass Spin-coat zinc oxide on the surface at a speed of 3000r / min and dry at 150 ° C for 10 minutes; then, spin-coat the mixed solution of PBDB-TF and PTIC on it at a speed of 3000r / min and the total concentration of the solution is 15mg / mL.
- the solvent is chlorobenzene
- the weight ratio of PBDB-TF to PTIC is 1: 1.2
- the spin coating time is 40 seconds
- a blend film (active layer) of PBDB-TF and PTIC with a thickness of 100 nm is obtained; annealing treatment at 120 ° C 10 minutes; then spin-coat a layer of MoO 3 on the active layer, the rotation speed is 3000r / min, the concentration of the solution is 2mg / ml; finally, the upper layer is evaporated under vacuum with a pressure lower than 5 ⁇ 10 -4 Pa 100nm thick Ag, thus obtaining a complete organic solar cell device.
- Figure 1 shows the current-voltage curve of the device under AM1.5 simulated sunlight with an illumination intensity of 100mW / cm 2 .
- the transparent conductive glass with strip-shaped ITO (cathode) etched on the surface is washed with ultrasonic cleaner, deionized water, acetone and isopropyl alcohol in sequence, dried, and then treated with oxygen plasma for 15 minutes; then on the conductive glass Spin-coat zinc oxide on the surface at a speed of 3000r / min and dry at 150 ° C for 10 minutes; then, spin-coat a mixed solution of PBDB-T and PTICH_H on it at a speed of 3000r / min and the total concentration of the solution is 15mg / ml.
- the solvent is chlorobenzene, the weight ratio of PBDB-T to PTICH_H is 1: 1.1, and the spin coating time is 40 seconds.
- a blend film (active layer) of PBDB-T and PTICH_H with a thickness of 100 nm is obtained; annealed at 120 °C 10 minutes; then spin-coat a layer of MoO 3 on the active layer, the rotation speed is 3000r / min, the concentration of the solution is 2mg / ml; finally, the upper layer is evaporated under vacuum with a pressure lower than 5 ⁇ 10 -4 Pa 100nm thick Ag, thus obtaining a complete organic solar cell device.
- Figure 1 shows the current-voltage curve of the device under AM1.5 simulated sunlight with an illumination intensity of 100mW / cm 2 .
- the transparent conductive glass with strip-shaped ITO (cathode) etched on the surface is washed with ultrasonic cleaner, deionized water, acetone and isopropyl alcohol in sequence, dried, and then treated with oxygen plasma for 15 minutes; then on the conductive glass Spin-coat zinc oxide on the surface at a speed of 3000r / min and dry at 150 ° C for 10 minutes; then, spin-coat a mixed solution of PBDB-TF and PTICH on it at a speed of 3000r / min and the total concentration of the solution is 15mg / mL.
- the solvent is chlorobenzene
- the weight ratio of PBDB-TF to PTICH is 1: 1
- the spin coating time is 40 seconds
- a blend film (active layer) of PBDB-TF and PTICH with a thickness of 100 nm is obtained; annealed at 120 °C 10 minutes; then spin-coat a layer of MoO 3 on the active layer, the rotation speed is 3000r / min, the concentration of the solution is 2mg / ml; finally, the upper layer is evaporated under vacuum with a pressure lower than 5 ⁇ 10 -4 Pa 100nm thick Ag, thus obtaining a complete organic solar cell device.
- Figure 1 shows the current-voltage curve of the device under AM1.5 simulated sunlight with an illumination intensity of 100mW / cm 2 .
- the transparent conductive glass with strip-shaped ITO (cathode) etched on the surface is washed with ultrasonic cleaner, deionized water, acetone and isopropyl alcohol in sequence, dried, and then treated with oxygen plasma for 15 minutes; then on the conductive glass Spin-coat zinc oxide on the surface at a speed of 3000r / min and dry at 150 ° C for 10 minutes; then, spin-coat a mixed solution of PBDB-TF and PTICO on it at a speed of 3000r / min and a total concentration of 15mg / ml.
- the solvent is chlorobenzene
- the weight ratio of PBDB-TF to PTICO is 1: 1.2
- the spin coating time is 40 seconds
- a blend film (active layer) of PBDB-TF and PTICO with a thickness of 100 nm is obtained; annealed at 120 °C 10 minutes; then spin-coat a layer of MoO 3 on the active layer, the rotation speed is 3000r / min, the concentration of the solution is 2mg / ml; finally, the upper layer is evaporated under vacuum with a pressure lower than 5 ⁇ 10 -4 Pa 100nm thick Ag, thus obtaining a complete organic solar cell device.
- Figure 1 shows the current-voltage curve of the device under AM1.5 simulated sunlight with an illumination intensity of 100mW / cm 2 .
- the transparent conductive glass with strip-shaped ITO (cathode) etched on the surface is washed with ultrasonic cleaner, deionized water, acetone and isopropyl alcohol in sequence, dried, and then treated with oxygen plasma for 15 minutes; then on the conductive glass Spin-coat zinc oxide on the surface at a speed of 3000r / min and dry at 150 ° C for 10 minutes; then, spin-coat a mixed solution of PBDB-T and PTICPT on it at a speed of 3000r / min and the total concentration of the solution is 18mg / ml.
- the solvent is chlorobenzene, the weight ratio of PBDB-T and PTICPT is 1: 1, and the spin coating time is 40 seconds.
- a blend film (active layer) of PBDB-T and PTICPT with a thickness of 100 nm is obtained; annealed at 120 °C 10 minutes; then spin-coat a layer of MoO 3 on the active layer, the rotation speed is 3000r / min, the concentration of the solution is 2mg / ml; finally, the upper layer is evaporated under vacuum with a pressure lower than 5 ⁇ 10 -4 Pa 100nm thick Ag, thus obtaining a complete organic solar cell device.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
Abstract
一种非稠合电子受体材料、制备方法及其构筑的有机太阳能电池,它包括衬底、阴极、电子传输层、活性层、阳极修饰层和阳极,其中活性层为聚合物给体和新型受体的共混膜。所制备的有机太阳电池具有很高的开路电压V OC(0.9~1.1V)和拓宽的光谱响应范围(300-850nm),能量转换效率(PCE)最高可超过10.00%。
Description
本发明属于能源材料领域,尤其涉及一种非稠合电子受体材料及其应用。
基于非富勒烯受体的有机光伏材料近年来发展迅猛。其中,二元器件的最高效率已经超过14%(Adv.Mater.2018,1800868),而叠层器件的最高效率已经超过17%(Science DOI:10.1126/science.aat2612)。然而,目前高效的非富勒烯受体大都属于稠环类材料。这不仅可以保持材料的平面性,以确保分子内电荷转移过程(ICT)的有效进行,同时,利用稠环分子上sp3碳原子延伸出来的侧基可以有效避免分子过度堆积,以调控相形貌。(Nat.Mater.2018,17,119;Nat.Rev.Mater.2018,3,18003;Nat.Photon.2018,12,131.)然而,稠环类分子合成过程繁琐,这不仅增加了材料合成成本、不利于推进其工业化进程,也对深入研究非富勒烯受体的构效关系造成了一定的阻碍。
发明内容
本发明的目的在于克服现有技术的不足,并提供一种非稠合电子受体材料。该材料制备简便,在优化受体结构和反应路线的同时,相应的太阳电池仍能保持高的光电转化效率。
本发明所采用的具体技术方案如下:
一种非稠合电子受体材料,分子结构为A-B-D-B-A形式。
其中,D为如下化学结构式中的一种,作为给体基团:
其中,B为如下化学结构式中的一种,作为桥连基团:
其中,A为如下化学结构式中的一种,作为受体基团:
式中,R
1及R
2为修饰增溶基团,X为卤素原子。
作为优选,修饰增溶基团R
1包括H、C1-C18的支链烷基及C1-C18的直链烷基。
进一步优选,修饰增溶基团R
1为如下化学结构式中的一种:
作为优选,修饰增溶基团R
2包括C1-C18的支链烷基、C1-C18的支链烷氧基、C1-C18的直链烷基、C1-C18的直链烷氧基、C3-C7的环烷基及C3-C7的环烷氧基。
进一步优选,修饰增溶基团R
2为如下化学结构式中的一种:
本发明还提供了一种非稠合电子受体材料的制备方法,包括如下步骤:
1)以含二溴二醇的芳基及烷基醇为原料,通过SN2反应,制备给体基团D两侧连有Br的化合物1;
2)以化合物1为原料,在醋酸钯及三环己基膦氟硼酸盐的催化下,偶联噻吩醛基化合物或并二噻吩醛基化合物,得到化合物2;
3)以化合物2及3-(二氰基亚甲基)茚-1-酮或其衍生物为原料,以氯仿为溶剂、吡啶为催化剂,通过Knoevenagel反应得到所述非稠合电子受体材料。
本发明还提供了一种有机太阳能电池,包括活性层。活性层包括供体材料及所述的一种非稠合电子受体材料。
作为优选,活性层为非稠合电子受体材料及供体材料的共混膜。其中供体材料为如下化学结构式中的一种:
进一步优选,活性层中供体材料与非稠合电子受体材料的质量比为1:5~5:1,活性层的厚度为10~1000nm。
进一步优选,活性层经过退火处理,退火温度为20~250℃,退火时间为1~60min。
作为优选,有机太阳能电池为层状结构,其顺序由下至上分别为衬底、阴极、电子传输层、活性层、空穴传输层、和阳极。其结构如图2所示。
进一步优选,电子传输层为ZnO,空穴传输层为MoO
3,所述阴极为ITO,所述的阳极为Ag。
本发明相对于现有技术而言,具有以下有益效果:
本发明利用碳氢活化反应构建非稠合共轭骨架、制备出新型的有机太阳电池的受体。反应过程简洁高效、符合原子经济学。此外,基于非稠合骨架的有机太阳电池受体材料合成成本低廉,且吸收范围广,能级合适。基于这类分子,可以构筑一系列高效的有机光伏材料。
图1为各有机太阳电池在光照下的电流-电压曲线。
图2为太阳能电池基本结构。
图中:阳极1、空穴传输层2、活性层3、电子传输层4、阴极5、衬底6。
下面结合附图和具体实施方式对本发明做进一步阐述和说明。本发明中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。
需要说明的是,下述各实施例中的试剂、材料,如无特殊说明,均可采用市售材料。另外,各实施例的合成路线方程式中部分化合物带有编号,在后续的描述中考虑描述方便,将在部分位置用编号表示该化合物。实施例中所采用的供体材料结构式如发明内容部分所述。
实施例1
利用1,4-二溴-2,5-二羟基苯为初始原料合成PTIC,反应方程式为:
其中,中间体1用文献Angewandte Chemie,International Edition,2016,55(2),703-707;报道的方法合成。中间体2及最终产物3的合成步骤为:
氩气保护下,将中间体1(395mg,0.55mmol),3-己基噻吩甲醛(320mg,1.64mmol),三环己基膦氟硼酸盐(8.1mg,0.022mmol),三甲基乙酸(17mg,0.17mmol),碳酸钾(114mg,0.83mmol),甲苯(20mL)置于Schlenk真空密封瓶。液氮冷冻后,然后进行三次抽真空充氩气的循环,随后加入Pd(OAc)
2(2.5mg,0.011mmol),再冻抽三次。在80℃加热回流24小时。反应结束后,用二氯甲烷对反应液进行萃取,收集有机相,然后水洗,旋蒸除去溶剂,粗产物最后用在硅胶柱色谱上进行纯化,得到0.34g产物2(黄色固体,产率65%)。
氩气保护下,将中间体2(0.15g,0.16mmol),4(110mg,0.48mmol)溶于氯仿(30mL)中,并加入吡啶(0.5mL)。在80℃加热回流12小时。反应结束后,用二氯甲烷对反应液进行萃取,收集有机相,然后水洗,旋蒸除去溶剂,粗产物最后依次用甲醇、丙酮洗,随后在氯仿和甲醇混合溶液中重结晶,得到0.14g产物3(PTIC,黑色固体,产率67%)。
实施例2
将表面刻蚀有条状ITO(阴极)的透明导电玻璃依次用清洗剂、去离子水、丙酮和异丙醇超声振荡清洗后,烘干,再用氧等离子体处理15分钟;然后在导电玻璃表面上旋涂氧化锌,转速为3000r/min,150℃干燥10分钟;接着,在其上旋涂PBDB-TF与PTIC的混合溶液,转速为3000r/min,溶液的总浓度为15mg/mL,溶剂为氯苯,PBDB-TF与PTIC的重量比为1:1.2,旋涂时间为40秒,得到一层厚度为100nm的PBDB-TF与PTIC的共混膜(活性层);120℃退火处理10分钟;然后在活性层上旋涂上一层MoO
3,转速为3000r/min,溶液的浓度为2mg/ml;最后,在压力低于5×10
-4Pa的真空下蒸镀上一层100nm厚的Ag,从而得到了一个完整的有机太阳电池器件。
在光照强度为100mW/cm
2的AM1.5模拟太阳光照射下,测试该器件的电流-电压曲线,从中得到开路电压为0.93V,短路电流密度为16.73mA/cm
2,填充因子为0.66,光电能量转换效率为10.27%。
图1给出了该器件在光照强度为100mW/cm
2的AM1.5模拟太阳光照射下的电流-电压曲线。
实施例3
利用1,4-二溴-2,5-二羟基苯为初始原料合成PTICH_H,反应方程式为:
其中,中间体1用文献Angewandte Chemie,International Edition,2016,55(2),703-707;报道的方法合成。中间体5及目标产物6的合成步骤为:
将1(395mg,0.55mmol),K
2CO
3(114mg,0.83mmol),醋酸钯(2.5mg,0.011mmol),PCy
3·HBF
4(8.1mg,0.022mmol)和三甲基乙酸(17mg,0.17mmol)加入50mL两口圆底烧瓶。烧瓶接连N
2三次抽换气。然后在N
2保护下加入2-噻吩甲醛(185mg,1.65mmol)和甲苯(15mL)。反应液在N
2氛围下80℃加热回流16小时。反应结束后,冷却到室温,加入饱和食盐水,并用二氯甲烷萃取三次,合并有机层,使用无水硫酸镁干燥并过滤,使用减压蒸馏移除溶剂,并用硅胶柱以正己烷和二氯甲烷的混合液作为洗脱剂过柱提纯,得到黄色固体产物5(300mg,产率70%)。
将5(200mg,0.26mmol)和2-(3-氧-2,3-二氢茚-1-亚基)丙二腈(250mg,1.29mmol)加入50mL两口圆底烧瓶。烧瓶接连N
2三次抽换气。然后在N
2保护下,加入氯仿(30mL)和吡啶(1mL)。反应液在N
2氛围下70℃加热回流12小时。 反应结束后,冷却到室温,加入饱和食盐水,并用氯仿萃取三次,合并有机层,使用无水硫酸镁干燥并过滤,使用减压蒸馏移除溶剂,并用硅胶柱以氯仿作为洗脱剂过柱提纯,得到深蓝色固体产物6(PTICH_H,256mg,产率87%)。
实施例4
将表面刻蚀有条状ITO(阴极)的透明导电玻璃依次用清洗剂、去离子水、丙酮和异丙醇超声振荡清洗后,烘干,再用氧等离子体处理15分钟;然后在导电玻璃表面上旋涂氧化锌,转速为3000r/min,150℃干燥10分钟;接着,在其上旋涂PBDB-T与PTICH_H的混合溶液,转速为3000r/min,溶液的总浓度为15mg/ml,溶剂为氯苯,PBDB-T与PTICH_H的重量比为1:1.1,旋涂时间为40秒,得到一层厚度为100nm的PBDB-T与PTICH_H的共混膜(活性层);120℃退火处理10分钟;然后在活性层上旋涂上一层MoO
3,转速为3000r/min,溶液的浓度为2mg/ml;最后,在压力低于5×10
-4Pa的真空下蒸镀上一层100nm厚的Ag,从而得到了一个完整的有机太阳电池器件。
在光照强度为100mW/cm
2的AM1.5模拟太阳光照射下,测试该器件的电流-电压曲线,从中得到开路电压为0.97V,短路电流密度为8.29mA/cm
2,填充因子为0.55,光电能量转换效率为4.43%。
图1给出了该器件在光照强度为100mW/cm
2的AM1.5模拟太阳光照射下的电流-电压曲线。
实施例5
利用1,4-二溴-2,5-二羟基苯为初始原料合成PTICH,反应方程式为:
氩气保护下,将中间体5(0.12g,0.16mmol),4(110mg,0.48mmol)溶于氯仿(30mL)中,并加入吡啶(0.5mL)。在80℃加热回流12小时。反应结束后,用二氯甲烷对反应液进行萃取,收集有机相,然后水洗,旋蒸除去溶剂,粗产物最后依次用甲醇、丙酮洗,随后在氯仿和甲醇混合溶液中重结晶,得到0.13g产物7(PTICH,黑色固体,产率68%)。
实施例6
将表面刻蚀有条状ITO(阴极)的透明导电玻璃依次用清洗剂、去离子水、丙酮和异丙醇超声振荡清洗后,烘干,再用氧等离子体处理15分钟;然后在导电玻璃表面上旋涂氧化锌,转速为3000r/min,150℃干燥10分钟;接着,在其上旋涂PBDB-TF与PTICH的混合溶液,转速为3000r/min,溶液的总浓度为15mg/mL,溶剂为氯苯,PBDB-TF与PTICH的重量比为1:1,旋涂时间为40秒,得到一层厚度为100nm的PBDB-TF与PTICH的共混膜(活性层);120℃退火处理10分钟;然后在活性层上旋涂上一层MoO
3,转速为3000r/min,溶液的浓度为2mg/ml;最后,在压力低于5×10
-4Pa的真空下蒸镀上一层100nm厚的Ag,从而得到了一个完整的有机太阳电池器件。
在光照强度为100mW/cm
2的AM1.5模拟太阳光照射下,测试该器件的电流-电压曲线,从中得到开路电压为0.92V,短路电流密度为8.22mA/cm
2,填充因子为0.54,光电能量转换效率为4.11%。
图1给出了该器件在光照强度为100mW/cm
2的AM1.5模拟太阳光照射下的电流-电压曲线。
实施例7
利用1,4-二溴-2,5-二羟基苯为初始原料合成PTICO,反应方程式为:
将1(395mg,0.55mmol),K
2CO
3(114mg,0.83mmol),醋酸钯(2.5mg,0.011mmol),PCy
3·HBF
4(8.1mg,0.022mmol)和三甲基乙酸(17mg,0.17mmol)加入50mL两口圆底烧瓶。烧瓶接连N
2三次抽换气。然后在N
2保护下加入8(350mg,1.65mmol)和甲苯(15mL)。反应液在N
2氛围下80℃加热回流16小时。反应结束后,冷却到室温,加入饱和食盐水,并用二氯甲烷萃取三次,合并有机层,使用无水硫酸镁干燥并过滤,使用减压蒸馏移除溶剂,并用硅胶柱以正己烷和二氯甲烷的混合液作为洗脱剂过柱提纯,得到黄色固体产物9(350mg,产率68%)。
将9(200mg,0.20mmol)和4(184mg,0.80mmol)加入50mL两口圆底烧瓶。烧瓶接连N
2三次抽换气。然后在N
2保护下,加入氯仿(30mL)和吡啶 (1mL)。反应液在N
2氛围下70℃加热回流12小时。反应结束后,冷却到室温,加入饱和食盐水,并用氯仿萃取三次,合并有机层,使用无水硫酸镁干燥并过滤,使用减压蒸馏移除溶剂,并用硅胶柱以氯仿作为洗脱剂过柱提纯,得到深蓝色固体产物10(PTICO,235mg,产率85%)。
实施例8
将表面刻蚀有条状ITO(阴极)的透明导电玻璃依次用清洗剂、去离子水、丙酮和异丙醇超声振荡清洗后,烘干,再用氧等离子体处理15分钟;然后在导电玻璃表面上旋涂氧化锌,转速为3000r/min,150℃干燥10分钟;接着,在其上旋涂PBDB-TF与PTICO的混合溶液,转速为3000r/min,溶液的总浓度为15mg/ml,溶剂为氯苯,PBDB-TF与PTICO的重量比为1:1.2,旋涂时间为40秒,得到一层厚度为100nm的PBDB-TF与PTICO的共混膜(活性层);120℃退火处理10分钟;然后在活性层上旋涂上一层MoO
3,转速为3000r/min,溶液的浓度为2mg/ml;最后,在压力低于5×10
-4Pa的真空下蒸镀上一层100nm厚的Ag,从而得到了一个完整的有机太阳电池器件。
在光照强度为100mW/cm
2的AM1.5模拟太阳光照射下,测试该器件的电流-电压曲线,从中得到开路电压为1.01V,短路电流密度为12.60mA/cm
2,填充因子为0.52,光电能量转换效率为6.62%。
图1给出了该器件在光照强度为100mW/cm
2的AM1.5模拟太阳光照射下的电流-电压曲线。
实施例9
利用1,4-二溴-2,5-二羟基苯为初始原料合成PTICPT,反应方程式为:
将2(200mg,0.21mmol)和11(315mg,1.30mmol)加入50mL两口圆底烧瓶。烧瓶接连N
2三次抽换气。然后在N
2保护下,加入氯仿(30mL)和吡啶(1mL)。反应液在N
2氛围下70℃加热回流12小时。反应结束后,冷却到室温,加入饱和食盐水,并用氯仿萃取三次,合并有机层,使用无水硫酸镁干燥并过滤,使用减压蒸馏移除溶剂,并用硅胶柱以氯仿作为洗脱剂过柱提纯,得到深蓝色固体产物12(PTICPT,230mg,产率82%)。
实施例10
将表面刻蚀有条状ITO(阴极)的透明导电玻璃依次用清洗剂、去离子水、丙酮和异丙醇超声振荡清洗后,烘干,再用氧等离子体处理15分钟;然后在导电玻璃表面上旋涂氧化锌,转速为3000r/min,150℃干燥10分钟;接着,在其上旋涂PBDB-T与PTICPT的混合溶液,转速为3000r/min,溶液的总浓度为18mg/ml,溶剂为氯苯,PBDB-T与PTICPT的重量比为1:1,旋涂时间为40秒,得到一层厚度为100nm的PBDB-T与PTICPT的共混膜(活性层);120℃退火处理10分钟;然后在活性层上旋涂上一层MoO
3,转速为3000r/min,溶液的浓度为2mg/ml;最后,在压力低于5×10
-4Pa的真空下蒸镀上一层100nm厚的Ag,从而得到了一个完整的有机太阳电池器件。
在光照强度为100mW/cm
2的AM1.5模拟太阳光照射下,测试该器件的电流-电压曲线,从中得到开路电压为0.88V,短路电流密度为11.02mA/cm
2,填充因子为0.45,光电能量转换效率为4.39%。
以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。
Claims (10)
- 一种如权利要求1所述的非稠合电子受体材料的制备方法,其特征在于,包括如下步骤:1)以含二溴二醇的芳基及烷基醇为原料,通过SN2反应,制备给体基团D两侧连有Br的化合物1;2)以化合物1为原料,在醋酸钯及三环己基膦氟硼酸盐的催化下,偶联噻吩醛基化合物或并二噻吩醛基化合物,得到化合物2;3)以化合物2及3-(二氰基亚甲基)茚-1-酮或其衍生物为原料,以氯仿为溶剂、吡啶为催化剂,通过Knoevenagel反应得到所述非稠合电子受体材料。
- 一种有机太阳能电池,其特征在于,包括活性层;所述活性层包括供体材料及如权利要求1所述的一种非稠合电子受体材料。
- 如权利要求6所述的一种有机太阳能电池,其特征在于,所述活性层中供体材料与非稠合电子受体材料的质量比为1:5~5:1,活性层的厚度为10~1000nm。
- 如权利要求6所述的一种有机太阳能电池,其特征在于,所述活性层经 过退火处理,退火温度为20~250℃,退火时间为1~60min。
- 如权利要求5所述的一种有机太阳能电池,其特征在于,所述有机太阳能电池为层状结构,其顺序由下至上分别为衬底、阴极、电子传输层、活性层、空穴传输层和阳极。
- 如权利要求9所述的一种有机太阳能电池,其特征在于所述的电子传输层为ZnO;空穴传输层为MoO 3;所述阴极为ITO,所述的阳极为Ag。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811316140.4 | 2018-11-07 | ||
CN201811316140.4A CN109438415B (zh) | 2018-11-07 | 2018-11-07 | 一种非稠合电子受体材料、制备方法及其构筑的有机太阳能电池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020093286A1 true WO2020093286A1 (zh) | 2020-05-14 |
Family
ID=65550930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/114431 WO2020093286A1 (zh) | 2018-11-07 | 2018-11-07 | 一种非稠合电子受体材料、制备方法及其构筑的有机太阳能电池 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109438415B (zh) |
WO (1) | WO2020093286A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114933583A (zh) * | 2022-03-24 | 2022-08-23 | 中国科学院大学 | 一种固态添加剂及其在有机太阳能电池中的应用和方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110690349B (zh) * | 2019-10-09 | 2021-04-30 | 浙江大学 | 一种基于非富勒烯受体合金的高效三元有机太阳电池 |
CN113072533B (zh) * | 2021-03-31 | 2023-10-31 | 浙江大学 | 一种非稠合电子受体材料及其构筑的有机太阳能电池 |
CN113429383B (zh) * | 2021-06-16 | 2022-10-04 | 中国科学院上海有机化学研究所 | 一种非富勒烯受体材料、其制备方法和应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104177378A (zh) * | 2013-05-21 | 2014-12-03 | 中国科学院化学研究所 | 四取代的苝二酰亚胺二聚体、其制备方法及其在有机光伏器件中的应用 |
CN107011361A (zh) * | 2017-03-13 | 2017-08-04 | 南开大学 | 有机光电受体材料及其制备方法和应用 |
-
2018
- 2018-11-07 CN CN201811316140.4A patent/CN109438415B/zh active Active
- 2018-11-07 WO PCT/CN2018/114431 patent/WO2020093286A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104177378A (zh) * | 2013-05-21 | 2014-12-03 | 中国科学院化学研究所 | 四取代的苝二酰亚胺二聚体、其制备方法及其在有机光伏器件中的应用 |
CN107011361A (zh) * | 2017-03-13 | 2017-08-04 | 南开大学 | 有机光电受体材料及其制备方法和应用 |
Non-Patent Citations (3)
Title |
---|
GOUJON, ANTOINE: "Hierarchical Self-Assembly of Supramolecular Muscle-Like Fibers", ANGEWANDTE CHEMIE, vol. 55, no. 2, 19 November 2015 (2015-11-19) - 11 January 2016 (2016-01-11), pages 703 - 707, XP055706179, ISSN: 1433-7851 * |
YHANG YHONGQIANG ET AL.: "Photovoltaic properties of DPP-based two-and three-component polymers", ACTA POLZMERICA SINICA, no. 2, 28 February 2018 (2018-02-28), ISSN: 1000'3304 * |
ZHANG, ZHONGQIANG ET AL.: "A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells", ACTA PHYSICO-CHIMICA SINICA, vol. 35, no. 4, 9 May 2018 (2018-05-09), pages 395 - 397, ISSN: 1000-6818 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114933583A (zh) * | 2022-03-24 | 2022-08-23 | 中国科学院大学 | 一种固态添加剂及其在有机太阳能电池中的应用和方法 |
CN114933583B (zh) * | 2022-03-24 | 2024-03-22 | 中国科学院大学 | 一种固态添加剂及其在有机太阳能电池中的应用和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109438415B (zh) | 2023-11-17 |
CN109438415A (zh) | 2019-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020093286A1 (zh) | 一种非稠合电子受体材料、制备方法及其构筑的有机太阳能电池 | |
He et al. | Impact of dye end groups on acceptor–donor–acceptor type molecules for solution-processed photovoltaic cells | |
WO2018188346A1 (zh) | 三键连接的水醇溶共轭聚合物及其在有机光电器件中的应用 | |
CN109467561B (zh) | 一种含吩噻嗪结构的双给体空穴传输材料及其制备方法和钙钛矿太阳能电池 | |
JP7265738B2 (ja) | 芳香族アミン系化合物及び光電デバイスにおけるその使用 | |
JP2010270084A (ja) | インドール誘導体及びそれを用いた有機薄膜太陽電池 | |
WO2010099583A1 (en) | Photosensitive optoelectronic devices comprising polycyclic aromatic compounds | |
JP2017206479A (ja) | 有機材料および光電変換素子 | |
Nho et al. | Carbazole and rhodanine based donor molecule with improved processability for high performance organic photovoltaics | |
CN113072533B (zh) | 一种非稠合电子受体材料及其构筑的有机太阳能电池 | |
Tsuji et al. | Tripyridyltruxenes: Thermally Stable Cathode Buffer Materials for Organic Thin-Film Solar Cells | |
CN112010872B (zh) | 具有光热稳定性的电子受体材料及其构筑的有机太阳电池 | |
CN117659085A (zh) | 含有吲哚的膦酸化合物及其应用及光电器件 | |
Onicha et al. | Carbazole donor and carbazole or bithiophene bridged sensitizers for dye-sensitized solar cells | |
JP5667693B2 (ja) | キノキサリン単位含有ポルフィリン共重合体及びその製造方法、並びにその応用 | |
WO2023142330A1 (zh) | 富勒烯衍生物材料及其制备方法及其在钙钛矿太阳能电池中的应用 | |
KR102114177B1 (ko) | 신규한 화합물, 이의 제조방법 및 이를 이용하는 유기 전자 소자 | |
Nakagawa et al. | Influence of additives in bulk heterojunction solar cells using magnesium tetraethynylporphyrin with triisopropylsilyl and anthryl substituents | |
CN113416201B (zh) | p掺杂有机小分子及其制备方法和应用 | |
CN111138454B (zh) | 一种基于茚并[1,2-b]咔唑的空穴传输材料及其制备方法和应用 | |
CN111039960B (zh) | 一种基于吩噻嗪衍生物的共轭分子及其制备方法 | |
CN106800511B (zh) | 一种富勒烯衍生物及其在钙钛矿太阳能电池中的应用 | |
JP2019006770A (ja) | 新規なポルフィリン誘導体、ポルフィリン誘導体の製造方法、ドナー材料、光電変換装置、および光電変換装置の製造方法 | |
TW201307427A (zh) | 有機光電變換元件的製造方法 | |
CN116621848B (zh) | 一种苝基稠环化合物、制备方法及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18939594 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18939594 Country of ref document: EP Kind code of ref document: A1 |