WO2020091033A1 - 参照電極として導電性ダイヤモンド電極を有する三極電極、装置及び、電気化学的測定方法 - Google Patents

参照電極として導電性ダイヤモンド電極を有する三極電極、装置及び、電気化学的測定方法 Download PDF

Info

Publication number
WO2020091033A1
WO2020091033A1 PCT/JP2019/043000 JP2019043000W WO2020091033A1 WO 2020091033 A1 WO2020091033 A1 WO 2020091033A1 JP 2019043000 W JP2019043000 W JP 2019043000W WO 2020091033 A1 WO2020091033 A1 WO 2020091033A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
voltage
concentration
measuring
bdd
Prior art date
Application number
PCT/JP2019/043000
Other languages
English (en)
French (fr)
Inventor
泰明 栄長
敬介 夏井
伴子 児玉
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to JP2020554974A priority Critical patent/JP7272565B2/ja
Publication of WO2020091033A1 publication Critical patent/WO2020091033A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present invention relates to a triode electrode having a conductive diamond electrode as a reference electrode, an apparatus, and an electrochemical measurement method.
  • Boron-doped diamond electrodes have been attracting attention in recent years because they have superior characteristics compared to other conventional electrode materials such as glassy carbon and platinum electrodes.
  • boron-doped diamond electrodes have a wide potential window, small background current, and high adsorption resistance, and are chemically inert. Has attractive properties.
  • the boron-doped diamond electrode is physically and chemically stable and has excellent durability. Diamond electrodes are described, for example, in Non-Patent Document 1.
  • Ozone water is widely used in industrial and sanitary applications, as well as in medical care and nursing care because of its sterilizing and deodorizing effects. For example, unlike chlorine, ozone does not remain and is used as a cleaning method. However, since the concentration of ozone water decays in a short time, it is desirable to confirm the exact concentration at the site of use, and an ozone concentration measuring method has been required.
  • a method for measuring the concentration of ozone water there are a method of observing the color change of a reagent such as potassium iodide, an ultraviolet absorption method, a diaphragm polarographic method, and the like, but a simple measuring method has been demanded.
  • Patent Document 1 describes an ozone water concentration measuring device and an ozone water concentration measuring method.
  • the disclosed method achieves the measurement of electroless ozone water concentration by setting the working electrode area to 0.0039 cm 2 or less, that is, by using a microelectrode.
  • the counter electrode is a platinum electrode
  • a silver / silver chloride reference electrode is used as a reference electrode.
  • the silver / silver chloride reference electrode requires a solution containing chloride ions to be present in the system, and thus has problems in operability and miniaturization of the electrode portion of the device. Further, there is a problem of stability when using Ag / AgCl paste as the reference electrode.
  • Patent Document 2 describes a dissolved ozone concentration measuring device and a dissolved ozone concentration measuring method. The method described in this document cannot measure the concentration unless an electrolyte is added to ozone water. Also, the disclosed method uses a platinum counter electrode and a silver / silver chloride reference electrode.
  • Uric acid was conventionally measured by an enzymatic method that combines uricase and peroxidase.
  • hydrogen peroxide produced when the enzyme uricase oxidizes uric acid is quantified.
  • this method requires an enzyme and a color-developing agent and is not necessarily a simple measurement method.
  • As another method for measuring uric acid there is an absorbance method utilizing an enzymatic reaction. In this method, the decrease in the ultraviolet light absorbance of uric acid due to the enzymatic reaction is measured. However, this method requires a light source and an enzyme, and is not necessarily a simple measurement method.
  • Another method for measuring uric acid is the reduction method.
  • the reagent is reduced with uric acid and quantified with a color former.
  • this method also requires a light source and an enzyme, and is not necessarily a simple measurement method. A simple method for measuring the concentration of uric acid has been desired.
  • the pH of a solution was generally measured with a glass electrode. In this method, the potential difference is measured. Although this method gives accurate measurement results, it requires glass and a solution, and requires careful handling. Moreover, there is a limit to downsizing the glass electrode.
  • the reference electrode is generally an Ag / AgCl electrode and requires a saturated KCl solution and a salt bridge, but it is especially difficult to downsize the saturated KCl solution.
  • a method using a hydrogen electrode, a quinhydrone electrode and an antimony electrode is known, but hydrogen gas, quinhydrone (reagent), etc. are required, and the configuration of the measurement system is not simple. Absent. In addition, the accuracy of measurement is poor, and this method is rarely used. A convenient method for measuring the pH of a solution has been desired.
  • Chlorine has conventionally been measured by colorimetric methods such as the DPD method and polarographic methods using electrodes.
  • DPD method the residual chlorine in the sample solution reacts with diethyl-p-phenylenediamine (DPD) to develop the pink red color, and the measurement operator compares the residual chlorine concentration with the standard colorimetric table. Is the way.
  • DPD diethyl-p-phenylenediamine
  • the polarographic method using an electrode is a method of measuring the residual chlorine concentration by measuring the value of the current flowing through the working electrode.
  • the platinum electrode is used as the working electrode as shown in Patent Document 3
  • the oxidation current peak of residual chlorine appears only near the limit of the potential window and is applied to the potential window. There is a problem that the measurement is disturbed.
  • a simple method for measuring the chlorine concentration of a solution has been desired.
  • a reference electrode (also referred to as a standard electrode) will be described. It is very important because the reference electrode serves as a reference for potential in voltammetric measurement by the triode method.
  • the electrode reaction on the electrode surface needs to be reversible and equilibrium with the substance in the liquid must be established.
  • a typical Ag / AgCl reference electrode requires the surface of a silver rod to be covered with silver chloride and then immersed in a chloride solution, such as saturated KCl solution. With this configuration, [Chemical 1] AgCl + e - ⁇ ⁇ Ag + Cl - That is, the electrode reaction becomes possible.
  • Non-Patent Document 2 describes a reference electrode.
  • the reference electrode section on page 89 of the document states that an ideal reference electrode must have the following properties: (1) The electrode reaction on the surface of the reference electrode is reversible and responds (also referred to as Nernst response) according to the equilibrium potential equation of a certain species in the electrolyte and Nernst. (2) The potential is stable over time. (3) Even if a minute current flows, the potential should immediately return to the initial potential (no hysteresis). (4) In the case of Ag / AgCl, the solid layer should not dissolve in the electrolyte. (5) Even if the temperature changes, a constant potential should be output if there is a constant temperature (no temperature hysteresis).
  • -It is common general knowledge that a metal electrode alone does not establish a reversible electrode reaction and equilibrium with a substance in a solution, and therefore does not function as a reference electrode.
  • a silver rod alone does not normally function as a reference electrode.
  • Diamond electrode Yasuaki Eicho (Author), Chemical Society of Japan (ed.), 14 points of chemistry series, Kyoritsu Publishing, 2015 (ISBN 978-4-320-04419-7)
  • Electrochemical measurement method Akira Fujishima, Masuo Aizawa, Tohru Inoue, Gihodo Publishing Co., Ltd., 1984 (ISBN 4-7655-0356-9)
  • an object of the present invention is to provide a triode electrode that can be used for electrochemical measurement, an apparatus, and a measurement method using these, which at least partially solve the above problems. To do.
  • an object of the present invention is to provide a method and apparatus for measuring ozone water concentration using an electrochemical method.
  • an object of the present invention is to provide a method and an apparatus for measuring uric acid using an electrochemical method.
  • the present invention aims to provide a method and an apparatus for measuring pH using an electrochemical method.
  • the object of the present invention is to provide a chlorine measuring method and apparatus using an electrochemical method.
  • the inventors of the present invention did not use a platinum counter electrode and a silver / silver chloride reference electrode, which have been conventionally used, and thus, a working electrode / counter electrode. ⁇
  • the three electrodes of the reference electrode were composed of conductive diamond electrodes and the ozone concentration contained in the electroless ozone water was measured, it was surprisingly found that the electroless ozone water concentration could be measured with high accuracy.
  • the present invention has been completed that includes the heading and includes it as an embodiment.
  • the present inventors have measured the concentration of uric acid contained in an electrolyte-free uric acid solution using the triode, and have found that surprisingly it is possible to measure electroless uric acid with high accuracy.
  • the present invention including this as one embodiment has been completed.
  • the present inventors have found that when the pH contained in the solution was measured using the triode, it was surprisingly possible to measure the pH with high accuracy, and this was included as an embodiment.
  • the present invention has been completed.
  • chlorine contained in the solution using a triode composed of a conductive diamond electrode as the three electrodes of the working electrode, counter electrode, and reference electrode surprisingly, chlorine was The inventors have found that highly accurate measurement can be performed, and completed the present invention including this as an embodiment.
  • the present disclosure includes the following embodiments: [1] A triode having a conductive diamond electrode as a working electrode, a conductive diamond electrode as a reference electrode, and a counter electrode. [2] The triode electrode according to Embodiment 1, wherein the counter electrode is a conductive diamond electrode or a platinum electrode. [3] The conductive diamond electrode is a conductive diamond electrode doped with an impurity selected from the group consisting of boron (B), sulfur (S), nitrogen (N), oxygen (O), and silicon (Si). The triode electrode according to Embodiment 1 or 2. [4] The triode electrode according to Embodiment 3, wherein the conductive diamond electrode is a boron-doped conductive diamond electrode.
  • Embodiments 1 to 4 wherein the working electrode is a boron-doped conductive diamond electrode, the reference electrode is a boron-doped conductive diamond electrode, and the counter electrode is a boron-doped conductive diamond electrode.
  • the triode according to any one of 1.
  • An electrochemical measuring device including the triode according to any one of Embodiments 1 to 5.
  • the electrochemical measurement device according to the sixth embodiment which is capable of measuring any of ozone water concentration, uric acid concentration, solution pH, or chlorine concentration.
  • the working electrode, the reference electrode, and the counter electrode can be contacted with ozone water which is a sample solution, A voltage applying unit for applying a voltage between the working electrode and the counter electrode, An ozone water concentration measuring device having a current value measuring unit for measuring a current value when a voltage is applied between a working electrode and a counter electrode.
  • An ozone water generation device including the ozone water concentration measurement device according to the eighth embodiment and an ozone generation device.
  • the working electrode, the reference electrode, and the counter electrode can contact the uric acid solution that is the sample solution, A voltage applying unit for applying a voltage between the working electrode and the counter electrode, A uric acid concentration measuring device having a current value measuring unit for measuring a current value when a voltage is applied between a working electrode and a counter electrode.
  • the tripolar electrode according to any one of Embodiments 1 to 5 The working electrode, the reference electrode, and the counter electrode can contact the sample solution, It has a current applying section for flowing an electric current between the working electrode and the counter electrode, A pH measuring device having a potential measuring section for measuring a potential when a current value or a current density between a working electrode and a counter electrode is constant.
  • the working electrode, the reference electrode, and the counter electrode can be contacted with a chlorine solution which is a sample solution, A voltage applying unit for applying a voltage between the working electrode and the counter electrode, A chlorine concentration measuring device having a current value measuring unit for measuring a current value when a voltage is applied between a working electrode and a counter electrode.
  • a chlorine solution which is a sample solution
  • a voltage applying unit for applying a voltage between the working electrode and the counter electrode
  • a chlorine concentration measuring device having a current value measuring unit for measuring a current value when a voltage is applied between a working electrode and a counter electrode.
  • the triode electrode according to any one of Embodiments 1 to 5, wherein two or more measurement targets selected from the group consisting of ozone water concentration, uric acid concentration, solution pH, and chlorine concentration are An electrochemical measuring device capable of measuring with a polar electrode.
  • the device according to the thirteenth embodiment which has a function of changing the measurement algorithm according to a measurement target selected from the group consisting of ozone water concentration, uric acid concentration, solution pH, and chlorine concentration.
  • a method for measuring ozone water concentration which uses the apparatus according to any one of Embodiments 7 to 9, 13 and 14.
  • the limiting current-voltage curve is measured from the measured voltage and the measured current value, and the relationship between the previously prepared limiting current value and ozone concentration is calculated from the limiting current value corresponding to the predetermined voltage in the limiting current-voltage curve.
  • the limiting current-voltage curve is measured from the measured voltage and the measured current value, and the relationship between the previously prepared limiting current value and the uric acid concentration is calculated from the limiting current value corresponding to the predetermined voltage in the limiting current-voltage curve.
  • the uric acid concentration measuring method according to embodiment 19, wherein the uric acid concentration of the solution is calculated based on the calibration curve shown.
  • the applied current is measured by bringing the working electrode, the counter electrode, and the reference electrode into contact with the sample solution, flowing a constant current between the working electrode and the counter electrode, and measuring the potential under the current.
  • limiting current-voltage curve was measured from the measured potential value, and the relationship between the previously prepared limiting potential value and the solution pH was shown from the limiting potential value corresponding to the predetermined current in the limiting current-voltage curve.
  • a chlorine concentration measuring method using the device according to any of Embodiments 12 to 14. At least a working electrode and a counter electrode are brought into contact with a chlorine solution which is a sample solution, a voltage is applied between the working electrode and the counter electrode, and a current value under the voltage is measured to apply the voltage.
  • the limiting current-voltage curve is measured from the measured voltage and the measured current value, and the relationship between the limiting current value and the chlorine concentration that has been created in advance is calculated from the limiting current value corresponding to the specified voltage on the limiting current-voltage curve.
  • step (ii) a pin header is placed between the BDD electrode and the conductive cable, and the pin header is fixed with an adhesive so that the pin header overlaps the BDD electrode.
  • the pin header and the BDD electrode are electrically conductive.
  • Step (iii) includes a step of covering the pin header with an insulating material and performing an insulating process together with a part of the conductive cable and a part of the BDD electrode. The manufacturing method according to embodiment 26.
  • a conductive diamond thin film doped with boron is formed on one surface of a base material of an insulating material, and then a groove is formed in the diamond thin film to produce a triode electrode insulated from each other.
  • BDD electrode boron-doped conductive diamond electrode
  • a triode electrode that can be used for various purposes without using a complicated reference electrode such as a silver / silver chloride reference electrode.
  • uric acid can be measured with high accuracy.
  • the solution pH can be measured with high accuracy.
  • chlorine can be measured with high accuracy.
  • the results of performing linear sweep voltammetry (LSV) on ozone water using the working electrode and the counter electrode as the BDD electrode and the reference electrode as the Ag / AgCl electrode are shown. It is a plot of the relationship between the limiting current value at +0.15 V and the ozone concentration measured by the absorbance method based on the results of FIG.
  • the horizontal axis represents ozone (O 3 ) concentration (ppm), and the vertical axis represents current density.
  • the working electrode is a BDD electrode
  • the counter electrode is a Pt electrode
  • the reference electrode is an Ag / AgCl electrode or a BDD electrode
  • the CV of 1 mM potassium ferricyanide in a 0.1M KCl solution is shown.
  • the scanning speed was 0.1 V / sec.
  • FIG. 1 It is a schematic diagram of the experimental system which performed ozone water concentration measurement.
  • the results of LSV of ozone water using the working electrode and the counter electrode as the BDD electrode and the reference electrode as the BDD electrode are shown.
  • the horizontal axis represents ozone (O 3 ) concentration (ppm), and the vertical axis represents current density.
  • the results of LSV of ozone water with the working electrode and the counter electrode as the BDD electrode and the reference electrode as the SUS316 electrode are shown.
  • FIG. 8 is a plot of the relationship between the limiting current value at ⁇ 0.7 V and the ozone concentration measured by the absorbance method based on the results of FIG. 7.
  • the horizontal axis represents ozone (O 3 ) concentration (ppm), and the vertical axis represents current density.
  • It is a schematic diagram of a flat plate electrode whose working electrode, counter electrode, and reference electrode are BDD. It is the photograph which showed each composition of a plate electrode concretely.
  • the white plate is a ceramic substrate.
  • the three members on the right side are boron-doped diamond electrodes (BDD electrodes). These are BDD electrodes deposited on a silicon substrate.
  • a pin header is placed in the center.
  • the terminal with cable is placed on the left. It is a photograph of the assembled flat plate electrode.
  • FIG. 14 is a plot of the relationship between the limiting current value at ⁇ 0.7 V and the ozone concentration measured by the absorbance method based on the results of FIG. 13.
  • the horizontal axis represents ozone (O 3 ) concentration (ppm), and the vertical axis represents current density.
  • the result of having measured CV about the uric acid solution using a BDD triode is shown.
  • the result which plotted the current density in + 0.75V and the uric acid concentration based on the result of FIG. 15 is shown.
  • the horizontal axis shows the uric acid concentration ( ⁇ M), and the vertical axis shows the current density at + 0.75V.
  • the result of having performed LSV measurement about the uric acid solution using a BDD triode is shown.
  • the result which plotted the current density in + 0.58V and the uric acid concentration based on the result of FIG. 17 is shown.
  • the horizontal axis is the uric acid concentration ( ⁇ M), and the vertical axis is the current density at + 0.58V.
  • the results of electrochemical measurements by the chronopotentiometry (CP) method for solutions with different pH using BDD triode are shown.
  • the results of plotting the potential and pH after 60 seconds for the CP method are shown.
  • the horizontal axis is pH, and the vertical axis is the potential after 60 seconds (E vs. BDD / V).
  • Reference numeral 1 is a base material (insulator)
  • 2 is a conductive diamond thin film
  • 3 is a groove.
  • An example of a BDD triode is shown.
  • FIG. 23 shows an example of a complete solid-state triode electrode structure with the BDD triode electrode of FIG. 22 attached. 9 diamond electrodes were simultaneously formed. The photo is after dividing a part.
  • the result of having measured chlorine concentration by LSV using a BDD triode is shown.
  • the result which plotted the current density in -1.85V and chlorine concentration based on the result of FIG. 25 is shown.
  • the horizontal axis represents chlorine concentration (ppm), and the vertical axis represents current density at -1.85V. It is a photograph of the BDD triode used for chlorine measurement.
  • WE is the working electrode
  • RE is the reference electrode
  • CE is the counter electrode.
  • the present invention provides a triode electrode having a conductive diamond electrode as a working electrode, a conductive diamond electrode as a reference electrode, and a counter electrode. In the present specification, this may be referred to as the triode electrode of the present invention.
  • the counter electrode can be a conductive diamond electrode or a conventional metallic material such as platinum.
  • the conductive diamond electrode is conductive with an impurity selected from the group consisting of boron (B), sulfur (S), nitrogen (N), oxygen (O), and silicon (Si). It can be a conductive diamond electrode doped with diamond, eg boron.
  • a triode electrode in which the working electrode is a boron-doped conductive diamond electrode, the reference electrode is a boron-doped conductive diamond electrode, and the counter electrode is a boron-doped conductive diamond electrode. provide. In the present specification, this may be referred to as a BDD triode electrode.
  • an electrochemical measuring device having the triode of the present invention there is provided an electrochemical measuring device having the triode of the present invention.
  • an electrochemical measurement device having a BDD triode electrode is provided.
  • the present invention provides an ozone water concentration measuring device. This device comprises the triode electrode of the present invention. That is, in one embodiment, the present invention provides an ozone water concentration measuring device having a conductive diamond electrode as a working electrode, a conductive diamond electrode as a reference electrode, and a counter electrode.
  • a uric acid concentration measuring device having the triode of the present invention.
  • a pH measuring device having the triode of the present invention.
  • a chlorine concentration measuring device having the triode electrode of the present invention.
  • an electrochemical measuring device having the triode of the present invention, wherein ozone water concentration, uric acid concentration, solution pH, or chlorine concentration can be measured by the triode.
  • the two or more measurement targets selected from the group consisting of ozone water concentration, uric acid concentration, solution pH, and chlorine concentration, having the triode electrode (for example, BDD triode electrode) of the present invention.
  • An electrochemical measuring device is provided which can be measured by the triode (ie the same triode). In this specification, this may be referred to as a multitasking measuring device.
  • the ozone water concentration measuring device of the present invention is capable of contacting the working electrode, the reference electrode, and the counter electrode with ozone water that is a sample solution, and applying a voltage between the working electrode and the counter electrode. It has a voltage application part and has a current value measurement part for measuring the current value when a voltage is applied between the working electrode and the counter electrode.
  • the ozone water concentration measuring device of the present invention may further include an ozone generator. That is, in one embodiment, the present invention provides an ozone water generation device or system including an ozone water concentration measurement device (also referred to as ozone water concentration measurement unit) and an ozone generation device (also referred to as ozone generation unit).
  • the ozone generator may have a conventional ozone generating means or mechanism.
  • the ozone generation mechanism include, but are not limited to, an ozone generation mechanism such as an electrolysis method, a discharge method, a silent discharge method, a corona discharge method, an ultraviolet lamp method, and a cold plasma method.
  • Conductive diamond electrodes may be used in the electrolysis method. See Non-Patent Document 1, for example.
  • the uric acid concentration measuring apparatus of the present invention is capable of contacting a working electrode, a reference electrode, and a counter electrode with a solution that may contain uric acid as a sample solution (hereinafter, also simply referred to as a uric acid solution). And has a voltage applying section for applying a voltage between the working electrode and the counter electrode, and a current value measuring section for measuring a current value when the voltage is applied between the working electrode and the counter electrode.
  • the pH measuring device of the present invention has a working electrode, a reference electrode, and a counter electrode capable of contacting a sample solution, and has a current applying unit for passing a current between the working electrode and the counter electrode.
  • a potential measuring unit for measuring the potential when the current value between the working electrode and the counter electrode is constant.
  • the chlorine concentration measuring apparatus of the present invention is capable of contacting a working electrode, a reference electrode, and a counter electrode with a sample solution that may contain chlorine (hereinafter, also simply referred to as a chlorine solution). And has a voltage applying section for applying a voltage between the working electrode and the counter electrode, and a current value measuring section for measuring a current value when the voltage is applied between the working electrode and the counter electrode.
  • the present invention provides a method for measuring ozone water concentration.
  • the triode electrode of the present invention or the ozone water concentration measuring device of the present invention can be used.
  • the electrolyte solution may not be included in the sample solution when measuring the ozone water concentration.
  • the concentration of ozone water containing ozone generated by an ozone generator can be measured by the ozone water concentration measuring device of the present invention or by the ozone water concentration measuring method of the present invention.
  • the present invention provides a method for measuring uric acid concentration. The triode electrode of the present invention or the uric acid concentration measuring device of the present invention can be used in this method.
  • the electrolyte solution may not be included in the sample solution when measuring the uric acid concentration.
  • the present invention provides a method of measuring the pH of a sample solution. The triode electrode of the present invention or the pH measuring device of the present invention can be used in this method.
  • the electrolyte may not be added to the sample solution when measuring the solution pH.
  • the present invention provides a chlorine concentration measuring method. The triode electrode of the present invention or the chlorine concentration measuring device of the present invention can be used in this method.
  • the sample solution can be free of electrolytes when measuring chlorine concentration.
  • the measurement principle of ozone water concentration is as follows. That is, the electrode is immersed in the solution and an electric potential is applied. When the potential exceeds a certain level, the substance in the solution undergoes a redox reaction on the surface of the electrode, and a current flows. Since the current value at this time is proportional to the concentration of the substance, quantification is possible.
  • the ozone concentration in ozone water can be quantified by measuring the current value of the reduction reaction of ozone. See, for example, US Pat.
  • ozone water as a sample solution is contacted with at least a working electrode and a counter electrode, and a voltage is applied between the working electrode and the counter electrode, The current value under voltage can be measured.
  • the voltage applied to the working electrode as the potential with respect to the reference electrode is swept in a predetermined range by the potentiostat, and the response current flowing between the working electrode and the counter electrode at the time of sweeping the potential can be measured.
  • the limiting current-voltage curve is measured from the applied voltage and the measured current value, and the limiting current value and the ozone concentration which are created in advance are calculated from the limiting current value corresponding to the predetermined voltage in the limiting current-voltage curve.
  • the ozone concentration of ozone water can be calculated based on a calibration curve showing the relationship with. That is, an information processing device (information processing unit) measures a limit current-voltage curve from a voltage swept by a potentiostat and a measured current value, and in the limit current-voltage curve, a limit corresponding to a predetermined voltage is measured. From the current value, the ozone concentration can be calculated based on a calibration curve created in advance.
  • a uric acid solution that is a sample solution is brought into contact with at least a working electrode and a counter electrode, and a voltage is applied between the working electrode and the counter electrode, and the voltage is applied.
  • the current value below can be measured.
  • the voltage applied to the working electrode as the potential with respect to the reference electrode is swept in a predetermined range by the potentiostat, and the response current flowing between the working electrode and the counter electrode at the time of sweeping the potential can be measured.
  • the limiting current-voltage curve is measured from the applied voltage and the measured current value, and the limiting current value and the uric acid concentration that are created in advance are calculated from the limiting current value corresponding to the predetermined voltage in the limiting current-voltage curve.
  • the uric acid concentration of the solution can be calculated based on the calibration curve showing the relationship with. That is, the information processing device measures a limiting current-voltage curve from the voltage swept by the potentiostat and the measured current value, and in this limiting current-voltage curve, the limiting current value corresponding to a predetermined voltage is previously calculated.
  • the uric acid concentration can be calculated based on the prepared calibration curve.
  • a working electrode, a counter electrode and a reference electrode are brought into contact with a sample solution, and an electric current is passed between the working electrode and the counter electrode.
  • an electric current is passed between the working electrode and the counter electrode.
  • the resistance of the reference electrode is set high, no current flows between the working electrode and the reference electrode.
  • the galvanostat kept the current constant and the potential value at that current value If the relationship with the concentration of the substance to be measured (H + ) is obtained in advance, the concentration of the substance to be measured (H + ) in the test solution corresponding to the obtained potential, that is, the pH, can be known from that relation. it can.
  • pH is determined by the following procedure using chronopotentiometry.
  • Various different pH solutions are prepared in advance, and a constant current is applied to each solution for potentiometric measurement.
  • a calibration curve is created by plotting the detected potential values against the known pH of each solution.
  • the pH of the sample solution can be known by comparing the potential value obtained from the measurement sample solution with the calibration curve.
  • Chronopotentiometry is a method of applying a current to a working electrode and measuring the change over time in the potential.
  • chronopotentiometry measurement for example, -100nA, -200nA, -300nA, -400nA, -500nA, -1.0 ⁇ A, -2.0 ⁇ A, -3.0 ⁇ A, -4.0 ⁇ A, at -5.0 ⁇ A or more current. It can be carried out, or can be carried out at a current of -1nA, -2nA, -5nA, -10nA, -20nA, -30nA, -50nA, -100nA or less.
  • chronopotentiometry measurement for example, -400nA / cm 2 , -800nA / cm 2 , -1.2 ⁇ A / cm 2 , -1.6 ⁇ A / cm 2 , -2.0 ⁇ A / cm 2 , -4.0 ⁇ A / cm 2 , -8.0 ⁇ A / cm 2, -12 ⁇ A / cm 2, -16 ⁇ A / cm 2, it can be carried out in -20 ⁇ A / cm 2 or more current density, also -4nA / cm 2, -8nA / cm 2, -20nA / cm 2, -40nA / cm 2, -80nA / cm 2, -120nA / cm 2, -200nA / cm 2, can be carried out at a current density of -400nA / cm 2 or less.
  • the chronopotentiometry measurement can be performed by applying a constant step current in the range of, for example, -5.0 ⁇ A to -1 nA.
  • a chlorine solution as a sample solution is brought into contact with at least a working electrode and a counter electrode, and a voltage is applied between the working electrode and the counter electrode, The current value below can be measured.
  • the voltage applied to the working electrode as the potential with respect to the reference electrode is swept in a predetermined range by the potentiostat, and the response current flowing between the working electrode and the counter electrode at the time of sweeping the potential can be measured.
  • the limiting current-voltage curve is measured from the applied voltage and the measured current value, and the limiting current value and the chlorine concentration that are created in advance are calculated from the limiting current value corresponding to the predetermined voltage in the limiting current-voltage curve.
  • the chlorine concentration of the solution can be calculated based on the calibration curve showing the relationship with. That is, the information processing device measures a limiting current-voltage curve from the voltage swept by the potentiostat and the measured current value, and in this limiting current-voltage curve, the limiting current value corresponding to a predetermined voltage is previously calculated.
  • the chlorine concentration can be calculated based on the prepared calibration curve.
  • Electrochemical measurements can lead to gradual soiling of the electrode surface.
  • the triode can be cleaned (washing operation) to remove dirt on the electrode surface and maintain sensor performance.
  • the electrochemical measuring device of the present invention for example, an ozone water concentration measuring device, a uric acid concentration measuring device, a pH measuring device, or a chlorine concentration measuring device is a measuring cell, a potentiostat and / or a galvanostat, and An information processing device may be provided.
  • the electrochemical measuring device of the present invention such as an ozone water concentration measuring device, a uric acid concentration measuring device, a pH measuring device, or a chlorine concentration measuring device, is connected to the potentiostat and / or galvanostat and the information processing device. May be.
  • a sample solution such as ozone water, a uric acid solution, a solution having a specific pH, or a chlorine solution can be stored in the measuring cell.
  • the working electrode, the reference electrode and the counter electrode are arranged so that they can contact the sample solution in the measurement cell.
  • the potentiostat is connected to the working electrode, the reference electrode and the counter electrode so as to control the voltages of the working electrode, the reference electrode and the counter electrode.
  • the galvanostat is connected to the working electrode, the reference electrode and the counter electrode so that the current of the working electrode, the reference electrode and the counter electrode can be controlled.
  • the information processing device can calculate the concentration of the measurement target substance in the sample solution based on the current value and / or voltage value obtained by the potentiostat or galvanostat.
  • the potentiostat has a voltage application unit that applies a voltage to the working electrode, the counter electrode, and the reference electrode, and a current measurement unit that measures the current value at the applied voltage.
  • the potentiostat can be controlled by the information processing device, receives voltage signals and current signals from the working electrode, the counter electrode, and the reference electrode, and can control the working electrode, the counter electrode, and the reference electrode. That is, the potentiostat sweeps a voltage applied to the working electrode as a potential with respect to the reference electrode in a predetermined range, and measures a response current flowing between the working electrode and the counter electrode when sweeping the potential.
  • the potential of the working electrode relative to the reference electrode is, for example, + 2.0V to -2.0V, such as +1.0 to -0.8V, +0.7 to + 0.4V, or 0 to -1.0V, such as + 1.5V.
  • the scanning speed is not limited to 0.1 V / s, and may be set appropriately in the range of 0.01 V / s to 1.0 V / s or 0.05 V / s to 0.5 V / s.
  • the information processing apparatus can obtain a limiting current-voltage curve from the voltage in the swept predetermined range and its response current value by using a potentiostat. Then, in this limiting current-voltage curve, the measuring object is measured based on a calibration curve prepared in advance from the limiting current value corresponding to a predetermined voltage (for example, if the measuring object is ozone, -0.7V). The concentration of the substance can be calculated.
  • the calibration curve for the measurement target substance of known concentration, the voltage is swept in a predetermined range, the response current flowing between the working electrode and the counter electrode during the sweep is measured, and the voltage in the swept predetermined range is measured.
  • the limiting current-voltage curve is obtained from the response current value, and in the limiting current-voltage curve, the limiting current value at a predetermined voltage (for example, -0.7 V if the measurement target substance is ozone) and the measurement target substance It is obtained by plotting the relationship with the concentration.
  • a predetermined voltage for example, -0.7 V if the measurement target substance is ozone
  • the predetermined voltage that serves as a reference for creating the calibration curve is not limited to -0.7 V above even when the substance to be measured is ozone
  • the voltage at the portion where the limiting current value at each known concentration is clearly known may be used as the reference.
  • the reference voltage for creating the calibration curve is not limited to one value, and the voltage at the part where the limiting current value at each known concentration is clearly known is used as the reference voltage in the limiting current-voltage curve. can do.
  • the information processing apparatus sets the potential of the working electrode to the reference electrode at, for example, 0.1 V / ⁇ 2.0 V, for example, between +1.0 V and ⁇ 2.0 V.
  • the potentiostat can be controlled to change at a rate of s.
  • the information processing device can record a change in potential over time with a constant current value using a galvanostat. Then, by the chronopotentiometry method, under a predetermined current, after a lapse of a certain time, for example, from the measured potential value after 50 seconds have passed since the current was passed, based on a calibration curve prepared in advance, The pH can be calculated.
  • the information processing device may have a CPU, a memory, an external storage device such as an HDD, a communication interface such as a modem, a display, and an input unit such as a mouse and a keyboard.
  • the information processing device can analyze the electric signal and calculate the ozone concentration according to a program or software set in a predetermined area such as an internal memory or an external storage device.
  • the information processing device may be a general-purpose device or a dedicated device.
  • a series of operations including electrochemical measurement and arithmetic processing controls the information processing device by a program or software.
  • a program or software for carrying out the electrochemical measurement method of the present invention is provided.
  • the program or software may be incorporated in the information processing device, or may be recorded in an information recording medium and the information recording medium may be stored in the device or the information processing device of the present invention.
  • an information recording medium in which the program or software is recorded is provided.
  • an electrochemical measuring device incorporating the program or software is provided.
  • an electrochemical measuring device in which the information recording medium is stored is provided.
  • the information processing device for controlling the multitasking measuring device of the present invention is selected from the group consisting of an ozone water concentration measuring algorithm, a uric acid concentration measuring algorithm, a solution pH measuring algorithm, and a chlorine concentration measuring algorithm.
  • Software or program capable of executing two or more algorithms according to the present invention is selected from the group consisting of an ozone water concentration measurement algorithm, a uric acid concentration measurement algorithm, a solution pH measurement algorithm, and a chlorine concentration measurement algorithm.
  • a software or program capable of executing two or more algorithms selected from the group consisting of an ozone water concentration measurement algorithm, a uric acid concentration measurement algorithm, a solution pH measurement algorithm, and a chlorine concentration measurement algorithm.
  • the software or program may have a function of changing the measurement algorithm according to the measurement target (ozone water concentration, uric acid concentration, solution pH, or chlorine concentration).
  • the electrochemical measurement device equipped with the software or program can change the measurement algorithm according to the measurement target.
  • the electrochemical measurement device of the present invention has a changeover mechanism or changeover switch that changes the measurement algorithm according to the measurement target (configuration by hardware).
  • the modification of the measurement algorithm can be done by software or a program.
  • the touch panel on the display screen can be operated to switch the measurement mode (configuration by software). The user of the device can easily switch the measurement mode according to the measurement target by operating the switch or operating the touch panel.
  • the electrochemical measuring device of the present invention may further include a foolproof mechanism.
  • a foolproof mechanism For example, when the user operates the changeover switch with the intention of measuring chlorine and then performs measurement, if no potential is detected, the user mistakenly operates the changeover switch and is not in the chlorine measurement mode. It may have been switched to ozone water measurement mode. In this case, after performing a sweep for ozone measurement (oxidation side) and no potential was detected, the device can additionally perform a sweep for chlorine measurement (reduction side) due to the foolproof mechanism. The chlorine measurement result can then be displayed.
  • the electrochemical measuring device of the present invention may include a changeover switch and a foolproof mechanism. In some embodiments, the foolproof mechanism may be implemented by software or a program.
  • the present invention provides a method of making a triode.
  • the first manufacturing method includes the following steps: (i) Prepare three BDD electrodes formed on a base material, the first BDD electrode as a working electrode, the second BDD electrode as a reference electrode, and the third BDD electrode as a counter electrode, each of which is a substrate. Fixing on top, (ii) connecting the BDD electrode to a conductive cable, (iii) a step of covering a part of the conductive cable and a part of the BDD electrode with an insulating material to perform an insulation treatment, Can be included. See, for example, Figures 10-12.
  • a pin header is arranged between the BDD electrode and the conductive cable, and the pin header terminal is fixed with an adhesive so as to overlap with the BDD electrode.
  • the step (iii) of the first manufacturing method may include a step of covering the part of the conductive cable and the part of the BDD electrode as well as the pin header with an insulating material to perform an insulating treatment.
  • the conductive paste may be silver paste or the like.
  • the second manufacturing method of the triode of the present invention comprises the following steps: (i) A conductive diamond thin film doped with boron is formed on one surface of a base material of an insulating material, and then a groove is formed in the diamond thin film to produce a triode electrode insulated from each other on the substrate.
  • the second BDD electrode as a working electrode
  • the third BDD electrode as a counter electrode
  • a step of covering a part of the conductive cable and a part of the BDD electrode with an insulating material to perform an insulation treatment Can be included.
  • the insulating material can be silicon nitride or the like.
  • the processing of the groove on the diamond thin film can be performed by a laser processing machine or the like. See, for example, Figures 21, 22, 23 and 27. These are just examples of methods for manufacturing BDD triode electrodes, and the methods for producing triode electrodes are not limited to these as long as they finally obtain insulated triode electrodes and electrochemical measurements can be performed. Not done.
  • the shape of the base material for forming the diamond layer is not particularly limited, and in the finally manufactured electrode, as long as the polycrystalline thin film of conductive diamond is exposed and can be used as an electrode, It may have a shape.
  • the shape of the substrate can be flat, cylindrical, rod-shaped, conical, frusto-conical, elliptical cone, elliptical frustum, pyramidal, truncated pyramidal, spherical, or hemispherical. Is not limited to this.
  • the substrate can be flat, cylindrical or rod-shaped.
  • the base material may be an insulating base material or a conductive base material.
  • the substrate can be, but is not limited to, silicon, niobium, silicon nitride, silicon carbide or high strength metals such as tungsten or molybdenum.
  • a flat base material is prepared.
  • the base material can be appropriately processed by electrolytic polishing, cutting or the like depending on the purpose.
  • a conductive diamond thin film is formed on all or part of the surface of the base material using a CVD device.
  • the shape of the substrate on which the first BDD electrode (working electrode), the second BDD electrode (reference electrode), and the third BDD electrode (counter electrode) are placed is not particularly limited, and it depends on the target measurement object or device configuration. Depending on the shape, various shapes can be used.
  • the shape of the substrate can be flat, cylindrical, rod-shaped, conical, frusto-conical, elliptical-conical, elliptical-conical-pyramidal, pyramidal-pyramidal, spherical, or hemispherical. It is not limited to this.
  • the substrate can be flat or cylindrical.
  • the substrate can be an insulating base material.
  • the substrate may be, but is not limited to, a ceramic substrate.
  • BDD electrodes, pin headers, conductive cables, etc. may be fixed on the substrate with adhesive or adhesive tape.
  • a trace amount of impurities can be doped when forming diamond.
  • Impurities that can be used to obtain the conductive diamond thin film include boron (B), sulfur (S), nitrogen (N), oxygen (O), silicon (Si), and the like.
  • B boron
  • S sulfur
  • N nitrogen
  • O oxygen
  • Si silicon
  • a source gas containing a carbon source diborane, trimethoxyborane, boron oxide, boron trimethoxide for obtaining boron, sulfur oxide, hydrogen sulfide for obtaining sulfur, and oxygen or dioxide for obtaining oxygen.
  • Carbon or ammonia or nitrogen can be added to obtain nitrogen, and silane or the like can be added to obtain silicon.
  • a highly-doped boron-doped conductive diamond electrode has the advantages of a wide potential window and a small background current compared to other electrode materials. Therefore, in the present specification, a boron-doped conductive diamond electrode will be described below as an example.
  • a conductive diamond electrode doped with other impurities may be used.
  • the potential and the voltage are used interchangeably and can be mutually replaced unless otherwise specified.
  • a boron-doped conductive diamond electrode may be referred to as a BDD electrode.
  • the vapor deposition process of impurities-mixed diamond or impurities-free diamond on the substrate can be performed at 700 to 1200 ° C. for 1 to 12 hours, for example, 1 to 3 hours.
  • the vapor deposition can be plasma vapor deposition.
  • the plasma power for the vapor deposition process can be 500 W to 5000 W, for example 1 kW to 3 kW, for example 3.0 kW, and the chamber pressure can be 30 to 120 Torr, for example 60 Torr.
  • the conductive diamond thin film can be deposited by a conventional microwave plasma chemical vapor deposition (MPCVD) method.
  • a substrate such as a silicon single crystal (100) is set in a film forming apparatus, and a film forming gas using high-purity hydrogen gas as a carrier gas is flown.
  • the film forming gas contains carbon and boron.
  • a microwave is applied to a film forming apparatus in which high-purity hydrogen gas containing carbon and boron is supplied to cause plasma discharge, carbon radicals are generated from the carbon source in the film forming gas, and Si single crystals are formed on the substrate.
  • a diamond thin film is formed by depositing while maintaining the sp 3 structure and mixing boron.
  • “to” is used to mean that the numerical values described before and after it are included as the lower limit and the upper limit. When the lower limit is not included, “less than” is used, and when the upper limit is not included, “above” is used.
  • the deposited conductive diamond layer can be in an as-grown state (as grown, with crystals still growing on the substrate).
  • the deposited conductive diamond layer may be hydrogen terminated or oxygen terminated.
  • the hydrogen termination can be performed by cathodic reduction, for example, cathodic reduction by applying a voltage of -1.8 V to a conductive diamond electrode and dipping it in 0.1 M sulfuric acid (H 2 SO 4 ) for 30 minutes.
  • Oxygen termination can be done by anodization, for example by applying a voltage of +3.0 V to a conductive diamond electrode and soaking in 0.1 M perchloric acid for about 30 minutes or oxygen plasma treatment.
  • the thickness of the diamond thin film can be controlled by adjusting the film formation time.
  • the film thickness may be 10 ⁇ m or more, 5 ⁇ m or more, 1 ⁇ m or more, etc. depending on the purpose.
  • a method for manufacturing a diamond electrode is disclosed in JP 2006-098281 A, JP 2011-152324 A, JP 2006-010357 A, JP 2011-174822 A, and JP 2005-039544 A.
  • a method for manufacturing a microelectrode is disclosed in International Publication No. 2014/0777017 pamphlet. The descriptions of these documents are incorporated herein by reference.
  • the BDD working electrode of the present invention used for electrochemical measurement has a surface area that is not a microelectrode. It is possible. In certain embodiments, the BDD working electrode of the present invention used for electrochemical measurements does not have a surface area in contact with a sample solution (eg, ozone water, uric acid solution, solution having pH, or chlorine solution) of less than 400,000 pm 2 .
  • a sample solution eg, ozone water, uric acid solution, solution having pH, or chlorine solution
  • the BDD working electrode of the present invention used for electrochemical measurement has a surface area in contact with the sample solution of 400,000 ⁇ m 2 or more, for example 500,000 ⁇ m 2 or more, such as 1 mm 2 or more, 10 mm 2 or more, 1 cm 2 or more. And so on.
  • the electrode of the present invention or the method using the same enables highly accurate measurement of the concentration of electroless ozone water.
  • a counter electrode made of platinum and a silver / silver chloride reference electrode which are conventionally used, and an electroless ozone water is used for the electrode of the present invention or the method using the same. It is possible to measure the concentration with high accuracy.
  • a counter electrode made of platinum and a silver / silver chloride reference electrode which are conventionally used, and the uric acid concentration can be accurately measured by the electrode of the present invention or the method using the same.
  • the reference electrode is very important because it serves as a reference for the electric potential, but it has a complicated structure such as requiring a saturated KCl solution or a salt bridge, which hinders measurement or becomes a barrier to rapid measurement. Was there.
  • a triode can be realized with a simple structure.
  • the concentration of ozone water can be easily measured with high sensitivity by the triode of the present invention.
  • the tripolar electrode of the present invention enables simple and highly sensitive measurement of uric acid concentration.
  • the tripolar electrode of the present invention enables simple and wide-range measurement of solution pH. Further, the tripolar electrode of the present invention enables the chlorine concentration to be measured easily and with high sensitivity.
  • the measurement method of the present invention is an electrochemical measurement, unlike the enzyme method, it is not necessary to dispose of the enzyme each time it is used, and the running cost is low. Further, unlike the absorbance method, a light source and an absorptiometer are not required, and the structure is simple. Further, unlike the reference electrode in the glass electrode method, there is no need to replenish the saturated potassium chloride solution and control the concentration, the reference electrode is maintenance-free, and size reduction is easy. Furthermore, two or more measurement targets selected from the group consisting of ozone water concentration, uric acid concentration, solution pH, and chlorine concentration can be measured by the triode electrode and / or device of the present invention.
  • the BDD triode of the present invention facilitates cleaning of the working electrode. Also, it is not necessary to use a liquid for the reference electrode. Ozone and chlorine are highly corrosive, and the electrode surface may gradually become soiled when measuring these test substances. For continuous measurements or repeated use of the device, it is desirable to clean the working electrode. However, when cleaning the working electrode, if the reference electrode is an Ag / AgCl electrode, the structure such as a saturated KCl solution or a salt bridge hinders cleaning, or the reference electrode needs to be removed and reattached. The cleaning operation becomes complicated. When the triode is a BDD triode, cleaning can be performed under strong conditions, for example, by applying a high potential, because both electrodes are chemically inert diamond. This is particularly advantageous when measuring a measurement target selected from the group consisting of ozone water concentration, uric acid concentration, solution pH, and chlorine concentration.
  • Example 1 Method for producing boron-doped diamond electrode
  • a boron-doped diamond electrode (BDD electrode) formed on a silicon substrate was manufactured by the following procedure. That is, a microwave plasma CVD apparatus (manufactured by Cone's Technology) was used to introduce hydrogen gas for plasma generation into the chamber to generate plasma. Next, acetone was used as a carbon source, trimethoxyborane was used as a boron source, hydrogen gas was used as a carrier gas, and acetone and trimethoxyborane were mixed at a predetermined mixing ratio (boron doping amount 1%). The mixed liquid was bubbled with hydrogen gas as a carrier gas to be vaporized and used as a raw material gas. Next, this raw material gas was introduced into the chamber in a line separate from the hydrogen gas for plasma.
  • a microwave plasma CVD apparatus manufactured by Cone's Technology
  • the silicon substrate Si (100) surface was nucleated with diamond powder as a pretreatment, and then 50 mL of acetone and 4 mL of trimethylborane (boron concentration 1%) were used as a carbon source with a plasma output of 5000 W.
  • a film was formed on the substrate under the conditions of a pressure of 110 Torr for 6 hours (Cone's Technology, Model A x 5400).
  • Example 2 Measurement of concentration of ozone water using silver-silver chloride reference electrode
  • a silver-silver chloride electrode Ag / AgCl
  • electrochemical measurement of ozone concentration was performed. That is, linear sweep voltammetry (LSV) was performed using the working electrode (Working Electrode, WE) and the counter electrode (Counter Electrode, CE) as BDD electrodes and the reference electrode (Reference Electrode, RE) as Ag / AgCl electrodes.
  • LSV linear sweep voltammetry
  • the cell was a Teflon (registered trademark) cell, and the working electrode had an area of 0.502 cm 2 and a diameter of 8 mm. The distance between the working electrode and the reference electrode was 2 mm.
  • +3.5 V was applied for 5 min in 0.1 M perchloric acid.
  • the ozone water generator was ChemO3 (manufactured by Nikka Micron Co., Ltd.) and generated ozone water from ultrapure water.
  • the electrochemical measurement the reduction current of ozone was measured by LSV.
  • the concentration of ozone was estimated by UV absorption.
  • BDD When BDD is used as a reference electrode in the redox potential measurement of potassium ferricyanide, compared to the case where Ag / AgCl is used as a reference electrode, only a redox potential shifts, and other behaviors are not significantly different. I could't see it. From this, it was considered that BDD could be used as a reference electrode instead of Ag / AgCl. Therefore, the ozone water concentration was actually measured.
  • FIG. 9 shows a schematic diagram.
  • FIG. 10 is a photograph specifically showing each structure.
  • the white plate is a ceramic substrate.
  • the three members on the right side are boron-doped diamond electrodes (BDD electrodes). These are BDD electrodes deposited on a silicon substrate.
  • a pin header is placed in the center.
  • the terminal with cable is placed on the left.
  • a BDD electrode formed on a silicon substrate is cut into 2 mm x 10 mm by a laser processing machine and fixed on a ceramic substrate with an adhesive at a pitch of 2.5 mm. At that time, be careful not to get adhesive or fingerprints on the electrode surface.
  • All the parts from the silver paste connection part, through the pin header, to the cable with terminals are covered with silicone resin, and insulation processing is performed.
  • the length of the insulation treatment may be around 50 mm from the right edge of the ceramic substrate. 6. At this time, leave a few mm on the right side of the BDD electrode, for example, 5 mm or more. 7. Check the continuity between the BDD electrode surface and the left end of the cable. 8. Make sure that each of the three cables is insulated. Photographs of the processed flat plate type triode are shown in FIGS. 11 and 12. The numbers in FIGS. 11 and 12 correspond to the above procedure numbers.
  • LSV Linear sweep voltammetry
  • An ozone water generator is constructed by connecting an ozone water measuring device having a BDD working electrode, a BDD reference electrode, and a BDD counter electrode to an ozone generator.
  • This ozone water generation device is a device or system including an ozone generation device that generates ozone and an ozone water concentration measurement device that measures the ozone concentration of ozone water that contains ozone generated by the ozone generation device.
  • Example 6 Electrochemical detection of uric acid using BDD triode electrode
  • Example 7 Electrochemical measurement of pH using BDD triode
  • the same BDD triode electrode as in Example 4 was used.
  • the effective electrode area was about 0.1 cm 2 for each of the working electrode, counter electrode, and reference electrode.
  • Briton-Robinson-Buffer (BRB) was used.
  • the pH of each sample solution was adjusted to 2.057, 4.190, 6.099, 8.054, and 10.145, respectively.
  • the measurement was performed by the chronopotentiometry method. First 10 seconds, and held at 0 .mu.A / cm 2, then, a current flow of -2.0 ⁇ A / cm 2 50 sec.
  • FIGS. 19 and 20 show the results of chronopotentiometry
  • FIG. 20 shows the result of plotting the potential and pH after 60 seconds. As shown in FIG. 20, a correlation was obtained between pH and potential.
  • Example 8 Electrochemical Detection of Chlorine Using BDD Triode Electrode The BDD triode electrode was manufactured by the following procedure. An insulating material such as silicon nitride was used as the electrode base material, and a conductive diamond thin film was formed on the surface using a CVD device. After that, grooves were formed in the diamond thin film by a laser processing machine or the like to produce three electrodes insulated from each other (FIG. 22). Further, an electrode for fixing the processed diamond electrode and connecting it to an electric circuit was attached (FIG. 27). The diamond electrode size in FIG. 22 is a square of about 10 mm ⁇ 10 mm. The prepared BDD triode electrode of FIG.
  • a metal electrode alone cannot establish a reversible electrode reaction and equilibrium with a substance in a solution, and therefore cannot function as a reference electrode.
  • the working electrode, the counter electrode, and the reference electrode to be all conductive diamond electrodes and measured the concentration of electroless ozone water, surprisingly, electroless ozone water was used. The concentration could be measured with high accuracy. With respect to uric acid, solution pH, and chlorine as well, the measurement targets could be effectively measured. This was an unexpected finding and was surprising in view of the common general knowledge that a metal electrode alone does not function as a reference electrode.
  • a triode electrode with a simple structure. This can be used, for example, for measuring the concentration of electroless ozone water. It can also be used for measuring uric acid concentration, for example. It can also be used, for example, to measure the pH of a solution. It can also be used for chlorine concentration measurement, for example. Furthermore, according to the present invention, a multitasking measuring device capable of measuring a plurality of types of test samples can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

簡便に操作することのできる参照電極を有する三極電極、装置及び方法を提供すること。 作用電極として導電性ダイヤモンド電極を有し、参照電極として導電性ダイヤモンド電極を有し、対電極を有する、オゾン水濃度測定装置及びこれを用いる方法を提供する。

Description

参照電極として導電性ダイヤモンド電極を有する三極電極、装置及び、電気化学的測定方法
 本発明は、参照電極として導電性ダイヤモンド電極を有する三極電極、装置及び、電気化学的測定方法に関する。
 ホウ素ドープダイヤモンド電極は、ガラス状炭素や白金電極などの他の従来型の電極材料と比較して特性が優れており、近年、注目を集めている。熱伝導性が高いことや硬度が極めて高いというダイヤモンドの周知の特性の他に、ホウ素ドープダイヤモンド電極は、広い電位窓、小さいバックグランド電流、及び吸着耐性が高く、化学的に不活性であるといった魅力的な特性を有する。また、ホウ素ドープダイヤモンド電極は物理的、化学的に安定で耐久性に優れる。ダイヤモンド電極は、例えば非特許文献1に解説されている。
 オゾン水は、その殺菌作用や脱臭作用等から、産業用や衛生用、さらには医療や介護などにおいて広く応用されている。例えば塩素と異なりオゾンは残留しないことから洗浄方法として利用されている。しかしながら、オゾン水の濃度は短い時間で減衰することから、使用の現場では正確な濃度を確認することが望ましく、オゾン濃度測定法が求められていた。オゾン水の濃度測定方法としては、ヨウ化カリウム等の試薬の色の変化を見る方法、紫外線吸収法、隔膜ポーラログラフ法などがあるが、簡便な測定方法が求められていた。
 特許文献1はオゾン水濃度測定装置及びオゾン水濃度測定方法を記載している。開示されている方法は、いわゆる電圧降下の問題を回避するために、作用電極面積を0.0039cm2以下とすること、すなわちマイクロ電極を使用することにより、無電解質のオゾン水濃度測定を実現している。また、対電極は白金電極であり、参照電極としては銀/塩化銀参照電極が使用されている。ところが、銀/塩化銀参照電極は、系に塩化物イオンを含む溶液を存在させる必要があり、操作性が煩雑であったり、装置の電極部分の微小化に問題があった。また、参照電極としてAg/AgClペーストを使用する場合には安定性の問題があった。
 特許文献2は、溶存オゾン濃度測定装置及び溶存オゾン濃度測定方法を記載している。この文献に記載の方法は、オゾン水に電解質を添加しなければ濃度測定ができない。また、開示されている方法は、白金製の対電極、及び銀/塩化銀参照電極を使用するものである。
 作用電極の面積が大きい場合においても、無電解質のオゾン水濃度を高精度に測定する手段が望まれていた。また、より簡便な構成でオゾン水濃度を高精度に測定する方法が望まれていた。
 尿酸は、従来、ウリカーゼとペルオキシダーゼを組み合わせた酵素法により測定されていた。この方法では、酵素ウリカーゼが尿酸を酸化する際に生じる過酸化水素を定量する。しかしながら、この方法では、酵素及び発色剤が必要であり、必ずしも簡便な測定法とはいえない。尿酸を測定する別の方法として、酵素反応を利用した吸光度法もある。この方法では、酵素反応による尿酸の紫外光の吸光度減少を計測する。しかしながら、この方法では光源及び酵素が必要であり、必ずしも簡便な測定法とはいえない。尿酸を測定する別の方法としては、還元法がある。還元法では、試薬を尿酸により還元し、発色剤により定量する。しかしながら、この方法も光源及び酵素が必要であり、必ずしも簡便な測定法とはいえない。尿酸濃度を測定する簡便な方法が望まれていた。
 溶液のpHは、従来、一般的にガラス電極により測定されていた。この方法では電位差を測定する。この方法は、測定結果は正確であるが、ガラス及び溶液が必要であり、取扱いに注意が必要である。なおかつ、ガラス電極では、小型化に限界がある。参照電極は一般的にAg/AgCl電極であり、かつ飽和KCl溶液及び塩橋を必要とするが、特に飽和KCl溶液の小型化が困難である。溶液のpHを測定する別の方法としては、水素電極、キンヒドロン電極及びアンチモン電極を用いる方法が知られているが、水素ガス、キンヒドロン(試薬)等が必要であり、測定系の構成が簡便ではない。また、測定の正確性も乏しく、この方法はあまり用いられていない。溶液のpHを測定する簡便な方法が望まれていた。
 塩素は、従来、DPD法などの比色法、電極を用いたポーラログラフ法等により測定されていた。これらの測定方法については、厚生労働省告示第318号(平成15年9月29日)[水道法施行規則第17条第2項の規定に基づく遊離残留塩素及び結合残留塩素の検査方法]に詳細な記述がある。例えばDPD法は、試料溶液中の残留塩素がジエチル-p-フェニレンジアミン(DPD)と反応して発色する桃赤色を、測定作業者が標準比色表と比色して残留塩素濃度を測定する方法である。この方法では試薬のコストが大きく、測定結果にも個人差が生じる可能性があり、測定後の廃液処理が必要であり、また測定においてはサンプル採取が必要なため残留塩素濃度を連続的に測定できないという問題がある。また、電極を用いたポーラログラフ法は、作用電極に流れる電流値を測定して残留塩素濃度を測定する方法である。しかしながら従来のポーラログラフ法は、特許文献3に示すように作用電極に白金電極を用いているため、残留塩素の酸化電流ピークが電位窓の限界付近にしか現れず、電位窓にかかってしまい正確な測定が阻害されるという問題がある。溶液の塩素濃度を測定する簡便な方法が望まれていた。
 参照電極(基準電極ともいう)について説明すると、三極電極方式によるボルタンメトリー測定において、参照電極は電位の基準となるため、非常に重要である。電極が参照電極として機能するには、電極表面での電極反応が可逆であり、液中の物質との平衡が成立している必要がある。例えば、一般的なAg/AgCl参照電極は、銀の棒の表面を塩化銀で覆った上で、それを塩化物溶液、例えば飽和KCl溶液中に浸す必要がある。この構成により
[化1]
 AgCl + e- ←→ Ag + Cl-
という電極反応が可能となる。
 例えば非特許文献2は参照電極について解説している。当該文献の89頁の参照電極の項では、理想的な参照電極として、次のような性質をもっていることが必要である、と記載されている:
(1) 参照電極表面での電極反応が可逆であって、電解液中のある化学種とNernstの平衡電位式に従って応答(Nernst応答ともいう)すること。
(2) その電位は時間に対して安定であること。
(3) その電位は微少電流が流れたとしても、すぐ最初の電位に戻ること(ヒステリシスがない)。
(4) Ag/AgClのような場合には、固体層が電解液中で溶解しないこと。
(5) 温度が変化しても、一定の温度になれば一定の電位を出すこと(温度ヒステリシスがないこと)。
 金属電極単独では、可逆の電極反応及び溶液中の物質との平衡が成立せず、したがって参照電極として機能しないのが技術常識である。例えば銀の棒単独では通常、参照電極として機能しない。
国際公開第2014/077017号パンフレット(特許第5265803号対応) 特開2007-212232 特公昭55-017939号公報
ダイヤモンド電極、栄長泰明(著)、日本化学会(編)、化学の要点シリーズ14巻、共立出版、2015年(ISBN 978-4-320-04419-7) 電気化学測定法、藤嶋昭、相澤益男、井上徹著、技報堂出版株式会社、1984年(ISBN 4-7655-0356-9)
 ある実施形態において、本発明は、上記の問題を少なくとも部分的に解決する、電気化学的測定に使用することのできる三極電極、装置、及びこれらを用いた測定法を提供することを目的とする。別の実施形態において、本発明は、電気化学的な方法を用いたオゾン水濃度の測定方法及び装置を提供することを課題とする。さらなる実施形態において、本発明は、電気化学的な方法を用いた尿酸の測定方法及び装置を提供することを課題とする。さらなる実施形態において、本発明は、電気化学的な方法を用いたpHの測定方法及び装置を提供することを課題とする。さらなる実施形態において、本発明は、電気化学的な方法を用いた塩素の測定方法及び装置を提供することを課題とする。
 本発明者らは、上記の問題を解決すべく鋭意研究を重ねた結果、従来使用されているような、白金製の対電極、銀/塩化銀参照電極を用いることなく、作用電極・対電極・参照電極の3電極を導電性ダイヤモンド電極で構成し、無電解質のオゾン水に含まれるオゾン濃度を測定したところ、驚くべきことに無電解質のオゾン水濃度を高精度に測定することができることを見出し、これを一実施形態として包含する本発明を完成した。さらに、本発明者らは、前記三極電極を用いて、無電解質の尿酸溶液に含まれる尿酸濃度を測定したところ、驚くべきことに無電解質の尿酸を高精度に測定することができることを見出し、これを一実施形態として包含する本発明を完成した。さらに、本発明者らは、前記三極電極を用いて、溶液に含まれるpHを測定したところ、驚くべきことにpHを高精度に測定することができることを見出し、これを一実施形態として包含する本発明を完成した。さらに、本発明者らは、作用電極・対電極・参照電極の3電極を導電性ダイヤモンド電極で構成した三極電極を用いて、溶液に含まれる塩素を測定したところ、驚くべきことに塩素を高精度に測定することができることを見出し、これを一実施形態として包含する本発明を完成した。
 すなわち本開示は、以下の実施形態を包含する:
[1] 作用電極として導電性ダイヤモンド電極を有し、参照電極として導電性ダイヤモンド電極を有し、対電極を有する、三極電極。  
[2] 対電極が導電性ダイヤモンド電極又は白金電極である、実施形態1に記載の三極電極。  
[3] 導電性ダイヤモンド電極がホウ素(B)、硫黄(S)、窒素(N)、酸素(O)、及びケイ素(Si)からなる群より選択される不純物がドープされた導電性ダイヤモンド電極である、実施形態1又は2に記載の三極電極。  
[4] 導電性ダイヤモンド電極がホウ素をドープした導電性ダイヤモンド電極である、実施形態3に記載の三極電極。  
[5] 作用電極がホウ素をドープした導電性ダイヤモンド電極であり、参照電極がホウ素をドープした導電性ダイヤモンド電極であり、対電極がホウ素をドープした導電性ダイヤモンド電極である、実施形態1~4のいずれかに記載の三極電極。  
[6] 実施形態1~5のいずれかに記載の三極電極を有する、電気化学的測定装置。  
[7] オゾン水濃度、尿酸濃度、溶液pH、又は塩素濃度のいずれかを測定することができる、実施形態6に記載の電気化学的測定装置。  
[8] 実施形態1~5のいずれかに記載の三極電極を有し、
作用電極、参照電極、及び対電極が試料溶液であるオゾン水に接触可能であり、
作用電極と対電極との間に電圧を印加する電圧印加部を有し、
作用電極と対電極との間に電圧を印加したときの電流値を測定する電流値測定部を有する、オゾン水濃度測定装置。  
[9] 実施形態8に記載のオゾン水濃度測定装置、及びオゾン発生装置を備えた、オゾン水生成装置。  
[10] 実施形態1~5のいずれかに記載の三極電極を有し、
作用電極、参照電極、及び対電極が試料溶液である尿酸溶液に接触可能であり、
作用電極と対電極との間に電圧を印加する電圧印加部を有し、
作用電極と対電極との間に電圧を印加したときの電流値を測定する電流値測定部を有する、尿酸濃度測定装置。  
[11] 実施形態1~5のいずれかに記載の三極電極を有し、
作用電極、参照電極、及び対電極が試料溶液に接触可能であり、
作用電極と対電極との間に電流を流す電流印加部を有し、
作用電極と対電極との間の電流値又は電流密度を一定としたときの電位を測定する電位測定部を有する、pH測定装置。  
[12] 実施形態1~5のいずれかに記載の三極電極を有し、
作用電極、参照電極、及び対電極が試料溶液である塩素溶液に接触可能であり、
作用電極と対電極との間に電圧を印加する電圧印加部を有し、
作用電極と対電極との間に電圧を印加したときの電流値を測定する電流値測定部を有する、塩素濃度測定装置。  
[13] 実施形態1~5のいずれかに記載の三極電極を有し、オゾン水濃度、尿酸濃度、溶液pH、及び塩素濃度からなる群より選択される2以上の測定対象を、前記三極電極により測定することができる、電気化学的測定装置。  
[14] オゾン水濃度、尿酸濃度、溶液pH、及び塩素濃度からなる群より選択される測定対象に応じて、測定アルゴリズムを変更する機能を有する、実施形態13に記載の装置。  
[15] 実施形態7~14のいずれかに記載の装置を制御するための、プログラム。  
[16] 実施形態15に記載のプログラムを記録した、情報記録媒体。  
[17] 実施形態7~9、13及び14のいずれかに記載の装置を使用する、オゾン水濃度測定方法。  
[18] 試料溶液であるオゾン水に、少なくとも作用電極及び対電極を接触させ、前記作用電極と前記対電極との間に電圧を印加し、当該電圧下における電流値を測定することにより、印加した電圧及び測定した電流値から、限界電流-電圧曲線を測定し、当該限界電流-電圧曲線において所定の電圧に対応する限界電流値から、予め作成済みの限界電流値とオゾン濃度との関係を示した検量線に基づいて、オゾン水のオゾン濃度を算出する、実施形態17に記載のオゾン水濃度測定方法。  
[19] 実施形態7、10、13及び14のいずれかに記載の装置を使用する、尿酸濃度測定方法。  
[20] 試料溶液である尿酸溶液に、少なくとも作用電極及び対電極を接触させ、前記作用電極と前記対電極との間に電圧を印加し、当該電圧下における電流値を測定することにより、印加した電圧及び測定した電流値から、限界電流-電圧曲線を測定し、当該限界電流-電圧曲線において所定の電圧に対応する限界電流値から、予め作成済みの限界電流値と尿酸濃度との関係を示した検量線に基づいて、溶液の尿酸濃度を算出する、実施形態19に記載の尿酸濃度測定方法。  
[21] 実施形態7、11、13及び14のいずれかに記載の装置を使用する、pH測定方法。  
[22] 試料溶液に作用電極と対電極及び参照電極を接触させ、前記作用電極と前記対電極との間に一定値の電流を流し、当該電流下における電位を測定することにより、印加した電流及び測定した電位値から、限界電流-電圧曲線を測定し、当該限界電流-電圧曲線において所定の電流に対応する限界電位値から、予め作成済みの限界電位値と溶液pHとの関係を示した検量線に基づいて、溶液のpHを測定する、実施形態21に記載のpH測定方法。  
[23] 実施形態12~14のいずれかに記載の装置を使用する、塩素濃度測定方法。  
[24] 試料溶液である塩素溶液に、少なくとも作用電極及び対電極を接触させ、前記作用電極と前記対電極との間に電圧を印加し、当該電圧下における電流値を測定することにより、印加した電圧及び測定した電流値から、限界電流-電圧曲線を測定し、当該限界電流-電圧曲線において所定の電圧に対応する限界電流値から、予め作成済みの限界電流値と塩素濃度との関係を示した検量線に基づいて、溶液の塩素濃度を算出する、実施形態23に記載の塩素濃度測定方法。  
[25] 試料溶液に電解質を含ませない、実施形態17~24のいずれかに記載の測定方法。  
[26] 以下の工程、
(i)基材上に成膜したホウ素をドープした導電性ダイヤモンド電極(BDD電極)を3つ用意し、第1のBDD電極を作用電極とし、第2のBDD電極を参照電極とし、第3のBDD電極を対電極とし、それぞれ基板上に固定する工程、
(ii) 前記BDD電極を導電性ケーブルに接続する工程、
(iii)前記導電性ケーブルの一部及び前記BDD電極の一部を絶縁性材料で覆い絶縁処理を行う工程、
を含む、三極電極の製造方法。  
[27] さらに、工程(ii)が、BDD電極と導電性ケーブルとの間にピンヘッダを配置し、該ピンヘッダがBDD電極に重なるように接着剤で固定し、該ピンヘッダとBDD電極間を導電性ペーストで接続する工程、及び、導電性ケーブルをピンヘッダに接続する工程を含み、
 工程(iii)が、前記導電性ケーブルの一部及び前記BDD電極の一部と共に、前記ピンヘッダも絶縁性材料で覆い絶縁処理を行う工程を含む、
実施形態26に記載の製造方法。  
[28] (i)絶縁材料の基材の一つの面にホウ素をドープした導電性のダイヤモンド薄膜を成膜し、次いで、ダイヤモンド薄膜に溝を加工し、互いに絶縁された三極電極を作製し、基板上の第1のホウ素をドープした導電性ダイヤモンド電極(BDD電極)を作用電極とし、第2のBDD電極を参照電極とし、第3のBDD電極を対電極とする工程、
(ii)加工後のダイヤモンド電極を固定して電気回路と接続するための電極を取り付け、次いで各BDD電極を導電性ケーブルに接続する工程、
(iii)前記導電性ケーブルの一部及び前記BDD電極の一部を絶縁性材料で覆い絶縁処理を行う工程、
を含む、三極電極の製造方法。  
[29] 基板が平板状又は円筒状である、実施形態26~28のいずれかに記載の製造方法。  
[30] 作用電極としてホウ素をドープした導電性ダイヤモンド電極を有し、参照電極としてホウ素をドープした導電性ダイヤモンド電極を有し、対電極としてホウ素をドープした導電性ダイヤモンド電極を有する三極電極を有する電気化学的測定装置。  
 本明細書は本願の優先権の基礎となる日本国特許出願番号2018-206319号の開示内容を包含する。
 本発明によれば、銀/塩化銀参照電極のような煩雑な構成の参照電極を用いることなく、種々の用途に使用可能な三極電極が得られる。また、ある実施形態において、例えば無電解質のオゾン水濃度を高精度に測定することが可能となる。また、ある実施形態において、例えば尿酸を高精度に測定することができる。また、ある実施形態において、例えば溶液pHを高精度に測定することができる。また、ある実施形態において、例えば塩素を高精度に測定することができる。
作用電極及び対電極をBDD電極とし、参照電極をAg/AgCl電極として、オゾン水についてリニアスイープボルタンメトリー(LSV)を行った結果を示す。 図1の結果に基づき+0.15Vにおける限界電流値と、吸光度法により測定したオゾン濃度との関係をプロットしたものである。横軸はオゾン(O3)濃度(ppm)、縦軸は電流密度である。 作用電極をBDD電極とし、対電極をPt電極とし、参照電極をAg/AgCl電極又はBDD電極として、0.1M KCl溶液中における1mMフェリシアン化カリウムのCVを示す。走査速度は0.1V/secとした。 オゾン水濃度測定を行った実験系の模式図である。 作用電極及び対電極をBDD電極とし、参照電極をBDD電極として、オゾン水についてLSVを行った結果を示す。 図5の結果に基づき-0.7Vにおける限界電流値と、吸光度法により測定したオゾン濃度との関係をプロットしたものである。横軸はオゾン(O3)濃度(ppm)、縦軸は電流密度である。 作用電極及び対電極をBDD電極とし、参照電極をSUS316電極として、オゾン水についてLSVを行った結果を示す。 図7の結果に基づき-0.7Vにおける限界電流値と、吸光度法により測定したオゾン濃度との関係をプロットしたものである。横軸はオゾン(O3)濃度(ppm)、縦軸は電流密度である。 作用電極、対電極、及び参照電極がBDDである平板電極の模式図である。 平板電極の各構成を具体的に示した写真である。白い板はセラミック基板である。右側に3つある部材がホウ素ドープダイヤモンド電極(BDD電極)である。これらは、シリコン基板上に成膜したBDD電極である。中央にピンヘッダを配置した。また左にケーブル付き端子を配置した。 組み立てた平板電極の写真である。 組み立てた平板電極の写真である。 作用電極、対電極及び参照電極のいずれもがBDDである平板型の三極電極を使用して、オゾン水についてLSVを行った結果を示す。 図13の結果に基づき-0.7Vにおける限界電流値と、吸光度法により測定したオゾン濃度との関係をプロットしたものである。横軸はオゾン(O3)濃度(ppm)、縦軸は電流密度である。 BDD三極電極を用いて、尿酸溶液について、CV測定を行った結果を示す。 図15の結果に基づき+0.75Vにおける電流密度と、尿酸濃度とをプロットした結果を示す。横軸は尿酸濃度(μM)、縦軸は+0.75Vにおける電流密度である。 BDD三極電極を用いて、尿酸溶液について、LSV測定を行った結果を示す。 図17の結果に基づき+0.58Vにおける電流密度と、尿酸濃度とをプロットした結果を示す。横軸は尿酸濃度(μM)、縦軸は+0.58Vにおける電流密度である。 BDD三極電極を用いて、pHの異なる溶液について、クロノポテンシオメトリー(CP)法により電気化学的測定を行った結果を示す。 CP法について、60秒後の電位とpHとをプロットした結果を示す。横軸はpH、縦軸は60秒後の電位(E vs. BDD/V)である。 BDD三極電極を作製する手順の例を示す。1は基材(絶縁体)であり、2は導電性ダイヤモンド薄膜であり、3は溝である。 BDD三極電極の一例を示す。 図22のBDD三極電極を取り付けた完全固体型三極電極構造の例を示す。 ダイヤモンド電極9枚を同時に成膜したものである。写真は一部を分割した後のものである。 BDD三極電極を用いて、LSVにより塩素濃度を測定した結果を示す。 図25の結果に基づき、-1.85Vにおける電流密度と、塩素濃度とをプロットした結果を示す。横軸は塩素濃度(ppm)、縦軸は-1.85Vにおける電流密度である。 塩素測定に使用したBDD三極電極の写真である。WEは作用電極であり、REは参照電極であり、CEは対電極である。
 ある実施形態において本発明は、作用電極として導電性ダイヤモンド電極を有し、参照電極として導電性ダイヤモンド電極を有し、対電極を有する、三極電極を提供する。本明細書においてこれを本発明の三極電極ということがある。対電極は導電性ダイヤモンド電極又は白金など慣用の金属材料であり得る。
 ある実施形態において、導電性ダイヤモンド電極は、ホウ素(B)、硫黄(S)、窒素(N)、酸素(O)、及びケイ素(Si)からなる群より選択される不純物がドープされた導電性ダイヤモンド、例えばホウ素をドープした導電性ダイヤモンド電極であり得る。
 ある実施形態において、作用電極がホウ素をドープした導電性ダイヤモンド電極であり、参照電極がホウ素をドープした導電性ダイヤモンド電極であり、対電極がホウ素をドープした導電性ダイヤモンド電極である三極電極を提供する。本明細書においてこれを、BDD三極電極ということがある。
 ある実施形態において、本発明の三極電極を有する電気化学的測定装置が提供される。別の実施形態においてBDD三極電極を有する電気化学的測定装置が提供される。ある実施形態において本発明は、オゾン水濃度測定装置を提供する。この装置は、本発明の三極電極を有する。すなわちある実施形態において本発明は、作用電極として導電性ダイヤモンド電極を有し、参照電極として導電性ダイヤモンド電極を有し、対電極を有するオゾン水濃度測定装置を提供する。別の実施形態において、本発明の三極電極を有する、尿酸濃度測定装置が提供される。別の実施形態において、本発明の三極電極を有する、pH測定装置が提供される。別の実施形態において、本発明の三極電極を有する、塩素濃度測定装置が提供される。別の実施形態において、本発明の三極電極を有し、オゾン水濃度、尿酸濃度、溶液pH、又は塩素濃度を、前記三極電極により測定することができる、電気化学的測定装置が提供される。別の実施形態において、本発明の三極電極(例えばBDD三極電極)を有し、オゾン水濃度、尿酸濃度、溶液pH、及び塩素濃度からなる群より選択される2以上の測定対象を、前記三極電極(すなわち、同一の三極電極)により測定することができる、電気化学的測定装置が提供される。本明細書においてこれをマルチタスク型測定装置ということがある。
 ある実施形態において、本発明のオゾン水濃度測定装置は、作用電極、参照電極、及び対電極が試料溶液であるオゾン水に接触可能であり、作用電極と対電極との間に電圧を印加する電圧印加部を有し、作用電極と対電極との間に電圧を印加したときの電流値を測定する電流値測定部を有する。ある実施形態において、本発明のオゾン水濃度測定装置は、さらにオゾン発生装置を備えていてもよい。すなわちある実施形態において本発明は、オゾン水濃度測定装置(オゾン水濃度測定部ともいう)及びオゾン発生装置(オゾン発生部ともいう)を備えた、オゾン水生成装置又はシステムを提供する。オゾン発生装置は、慣用のオゾン発生手段又はオゾン発生機構を有し得る。オゾン発生機構としては例えば電気分解法、放電法、無声放電法、コロナ放電法、紫外線ランプ法、冷プラズマ法等によるオゾン発生機構が挙げられるがこれに限らない。電気分解法では導電性ダイヤモンド電極を使用しうる。例えば非特許文献1を参照のこと。
 別の実施形態において、本発明の尿酸濃度測定装置は、作用電極、参照電極、及び対電極が試料溶液である尿酸を含む可能性のある溶液(以下、単に尿酸溶液ともいう)に接触可能であり、作用電極と対電極との間に電圧を印加する電圧印加部を有し、作用電極と対電極との間に電圧を印加したときの電流値を測定する電流値測定部を有する。
 別の実施形態において、本発明のpH測定装置は、作用電極、参照電極、及び対電極が試料溶液に接触可能であり、作用電極と対電極との間に電流を流す電流印加部を有し、作用電極と対電極との間の電流値を一定としたときの電位を測定する電位測定部を有する。
 別の実施形態において、本発明の塩素濃度測定装置は、作用電極、参照電極、及び対電極が試料溶液である塩素を含む可能性のある溶液(以下、単に塩素溶液ともいう)に接触可能であり、作用電極と対電極との間に電圧を印加する電圧印加部を有し、作用電極と対電極との間に電圧を印加したときの電流値を測定する電流値測定部を有する。
 ある実施形態において、本発明は、オゾン水濃度測定方法を提供する。この方法には、本発明の三極電極、又は本発明のオゾン水濃度測定装置を使用することができる。ある実施形態において、オゾン水濃度を測定する際、試料溶液に電解質を含ませないことができる。ある実施形態において、オゾン発生装置により発生させたオゾンを含んだオゾン水の濃度を、本発明のオゾン水濃度測定装置により、又は本発明のオゾン水濃度測定方法により測定し得る。別の実施形態において、本発明は、尿酸濃度測定方法を提供する。この方法には、本発明の三極電極、又は本発明の尿酸濃度測定装置を使用することができる。ある実施形態において、尿酸濃度を測定する際、試料溶液に電解質を含ませないことができる。別の実施形態において、本発明は、試料溶液のpHを測定する方法を提供する。この方法には、本発明の三極電極、又は本発明のpH測定装置を使用することができる。ある実施形態において、溶液pHを測定する際、試料溶液に電解質を添加せずともよい。別の実施形態において、本発明は、塩素濃度測定方法を提供する。この方法には、本発明の三極電極、又は本発明の塩素濃度測定装置を使用することができる。ある実施形態において、塩素濃度を測定する際、試料溶液に電解質を含ませないことができる。
 オゾン水濃度の測定原理は次のとおりである。すなわち溶液中に電極を浸漬し、電位を印加する。ある電位を超えると、溶液中の物質が電極表面で酸化還元反応し、電流が流れる。このときの電流値は物質の濃度に比例するので、定量が可能となる。オゾンの場合は、還元側で
[化2]
O3 + 2H+ + 2e- → O2 + H2O
という反応が進行する。そのためオゾンの還元反応の電流値を計測することでオゾン水中のオゾン濃度が定量可能である。例えば特許文献1を参照のこと。
 また、尿酸の場合は、酸化側で
[化3]
尿酸 + O2 + H2O → 5-ヒドロキシイソ尿酸 + H2O2
という反応が進行する。そのため尿酸の酸化反応の電流値を計測することで溶液中の尿酸濃度が定量可能である。
 また、溶液のpHを測定する場合は、還元側で
[化4]
2H+ + 2e- → H2
という反応が進行する。そのためプロトン(H+)の還元反応の電流値を計測することで溶液中のpHが測定可能である。
 また、塩素の場合は、還元側で
[化5]
2HClO + 2e- → Cl- + ClO-+ H2O
という反応が進行する。そのためHClOの還元反応の電流値を計測することで溶液中の有効塩素濃度が定量可能である。
 ある実施形態において、本発明のオゾン水濃度測定方法では、試料溶液であるオゾン水に、少なくとも作用電極及び対電極を接触させ、前記作用電極と前記対電極との間に電圧を印加し、当該電圧下における電流値を測定することができる。このとき、ポテンシオスタットにより、参照電極に対する電位として作用電極に印加する電圧を所定の範囲で掃引し、電位の掃引の際に作用電極と対電極との間を流れる応答電流を測定しうる。これにより、印加した電圧及び測定した電流値から、限界電流-電圧曲線を測定し、当該限界電流-電圧曲線において所定の電圧に対応する限界電流値から、予め作成済みの限界電流値とオゾン濃度との関係を示した検量線に基づいて、オゾン水のオゾン濃度を算出することができる。すなわち、情報処理装置(情報処理部)により、ポテンシオスタットで掃引した電圧及び測定した電流値から、限界電流-電圧曲線を測定し、この限界電流-電圧曲線において、所定の電圧に対応する限界電流値から、予め作成しておいた検量線に基づいてオゾン濃度を算出しうる。
 ある実施形態において、本発明の尿酸濃度測定方法では、試料溶液である尿酸溶液に、少なくとも作用電極及び対電極を接触させ、前記作用電極と前記対電極との間に電圧を印加し、当該電圧下における電流値を測定することができる。このとき、ポテンシオスタットにより、参照電極に対する電位として作用電極に印加する電圧を所定の範囲で掃引し、電位の掃引の際に作用電極と対電極との間を流れる応答電流を測定しうる。これにより、印加した電圧及び測定した電流値から、限界電流-電圧曲線を測定し、当該限界電流-電圧曲線において所定の電圧に対応する限界電流値から、予め作成済みの限界電流値と尿酸濃度との関係を示した検量線に基づいて、溶液の尿酸濃度を算出することができる。すなわち、情報処理装置により、ポテンシオスタットで掃引した電圧及び測定した電流値から、限界電流-電圧曲線を測定し、この限界電流-電圧曲線において、所定の電圧に対応する限界電流値から、予め作成しておいた検量線に基づいて尿酸濃度を算出しうる。
 ある実施形態において、本発明のpH測定方法では、試料溶液に作用電極と対電極及び参照電極を接触させ、前記作用電極と前記対電極との間に電流を流す。このとき参照電極は抵抗を高く設定しているため、作用電極と参照電極との間には電流は流れない。作用電極に電位を印加すると、測定対象物質(水素イオンH+)が電極表面で電気化学的に酸化され(このときH2が発生する)、対電極との間に電流が流れる。このとき、作用電極と参照電極との間の電位が被験試料に含まれる測定対象物質(水素イオン)の濃度に比例するため、ガルバノスタットにより電流を一定にして、その電流値での電位値と測定対象物質(H+)の濃度との関係を予め求めておけば、その関係から、得られた電位に対応する被検溶液中の測定対象物質(H+)の濃度、すなわちpHを知ることができる。
 一例として、pHは、クロノポテンシオメトリーを用い、次の手順で決定する。予め各種異なったpH溶液を調製しておき、各溶液に一定電流を印加してポテンシオメトリー測定を行う。検出された電位値を各溶液の既知pHに対してプロットすることにより検量線を作成する。次に測定試料溶液から得られた電位値を当該検量線と対比することにより、被試料溶液のpHを知ることができる。
 クロノポテンシオメトリー(chronopotentiometry)は、作用電極の電流を印加し、その際の電位の時間の変化を測定する方法である。本発明では、クロノポテンシオメトリー測定は、例えば-100nA、-200nA、-300nA、-400nA、-500nA、-1.0μA、-2.0μA、-3.0μA、-4.0μA、-5.0μA以上の電流で行うことができ、また-1nA、-2nA、-5nA、-10nA、-20nA、-30nA、-50nA、-100nA以下の電流で行うことができる。或いは、クロノポテンシオメトリー測定は、例えば-400nA/cm2、-800nA/cm2、-1.2μA/cm2、-1.6μA/cm2、-2.0μA/cm2、-4.0μA/cm2、-8.0μA/cm2、-12μA/cm2、-16μA/cm2、-20μA/cm2以上の電流密度で行うことができ、また-4nA/cm2、-8nA/cm2、-20nA/cm2、-40nA/cm2、-80nA/cm2、-120nA/cm2、-200nA/cm2、-400nA/cm2以下の電流密度で行うことができる。ある実施形態において、クロノポテンシオメトリー測定は、例えば-5.0μA~-1nAの範囲に含まれる一定電流のステップ電流を印加して行うことができる。
 ある実施形態において、本発明の塩素濃度測定方法では、試料溶液である塩素溶液に、少なくとも作用電極及び対電極を接触させ、前記作用電極と前記対電極との間に電圧を印加し、当該電圧下における電流値を測定することができる。このとき、ポテンシオスタットにより、参照電極に対する電位として作用電極に印加する電圧を所定の範囲で掃引し、電位の掃引の際に作用電極と対電極との間を流れる応答電流を測定しうる。これにより、印加した電圧及び測定した電流値から、限界電流-電圧曲線を測定し、当該限界電流-電圧曲線において所定の電圧に対応する限界電流値から、予め作成済みの限界電流値と塩素濃度との関係を示した検量線に基づいて、溶液の塩素濃度を算出することができる。すなわち、情報処理装置により、ポテンシオスタットで掃引した電圧及び測定した電流値から、限界電流-電圧曲線を測定し、この限界電流-電圧曲線において、所定の電圧に対応する限界電流値から、予め作成しておいた検量線に基づいて塩素濃度を算出しうる。
 電気化学的測定を行うと、電極の表面が徐々に汚れることがある。電極表面の汚れを除去し、センサーの性能を維持するために、三極電極をクリーニング(洗浄操作)することができる。クリーニング条件は、特に限定されないが、例えば0.1M NaClO4(pH=7.10)溶液を使用し、酸化側では+2.5V以上,還元側では-2.5V以下の高電位を印加することにより電極表面をクリーニングすることができる。
 ある実施形態において、本発明の電気化学的測定装置、例えばオゾン水濃度測定装置、尿酸濃度測定装置、pH測定装置、又は塩素濃度測定装置は、測定セル、ポテンシオスタット及び/又はガルバノスタット、並びに情報処理装置を備え得る。或いは本発明の電気化学的測定装置、例えばオゾン水濃度測定装置、尿酸濃度測定装置、pH測定装置、又は塩素濃度測定装置は、ポテンシオスタット及び/又はガルバノスタット、並びに情報処理装置に接続されていてもよい。測定セルには試料溶液、例えばオゾン水、尿酸溶液、特定のpHを有する溶液、又は塩素溶液を貯留し得る。作用電極、参照電極及び対電極は、測定セル内の試料溶液に接触可能に配置する。ポテンシオスタットは、作用電極、参照電極及び対電極の電圧を制御しうるよう、作用電極、参照電極及び対電極に接続する。ガルバノスタットは、作用電極、参照電極及び対電極の電流を制御しうるよう、作用電極、参照電極及び対電極に接続する。情報処理装置はポテンシオスタット又はガルバノスタットにより得られた電流値及び/又は電圧値に基づいて試料溶液中の測定対象物質の濃度を算出し得る。
 ポテンシオスタットは、作用電極、対電極及び参照電極に電圧を印加する電圧印加部及び当該印加電圧における電流値を測定する電流測定部を有する。ポテンシオスタットは、情報処理装置によって制御可能であり、作用電極、対電極及び参照電極から電圧信号及び電流信号を受信するとともに、これら作用電極、対電極及び参照電極を制御可能である。すなわち、ポテンシオスタットは、参照電極に対する電位として作用電極に印加する電圧を所定の範囲で掃引し、電位の掃引の際に作用電極と対電極との間を流れる応答電流を測定する。具体的には、参照電極に対して作用電極の電位を、例えば+2.0V~-2.0V、例えば+1.0~-0.8V、+0.7~+0.4V、又は0~-1.0V、例えば+1.5~-2.0V、+1.5V~-1.0V、+1.5V~-0V、+1.0V~-0V、-0.6V~-2.0V、-0.6V~-1.9V、例えば-0.6V~-1.85Vの間で、例えば0.1V/sの走査速度で走査し、その電圧下における還元反応または酸化反応に伴う、作用電極と対電極との間の電流値を測定し得る。なお、本明細書において走査速度は0.1V/sに限られず、例えば0.01V/s~1.0V/sや0.05V/s~0.5V/s等の範囲で適当に設定し得る。
 ある実施形態において、情報処理装置は、ポテンシオスタットによって、掃引した所定の範囲における電圧と、その応答電流値から限界電流-電圧曲線を求めることができる。そして、この限界電流-電圧曲線において、所定の電圧(測定対象物質がオゾンであれば、例えば、-0.7V)に対応する限界電流値から、予め作成しておいた検量線に基づいて測定対象物質の濃度を算出することができる。検量線は、既知濃度の測定対象物質に対して、所定の範囲で電圧を掃引し、掃引の際に作用電極と対電極との間を流れる応答電流を測定し、掃引した所定範囲における電圧と、その応答電流値から限界電流-電圧曲線を求め、当該限界電流-電圧曲線において、所定の電圧(測定対象物質がオゾンであれば、例えば、-0.7V)における限界電流値と、測定対象物質濃度との関係をプロットすることにより得られる。なお、限界電流-電圧曲線において、検量線を作成するための基準となる所定の電圧は、測定対象物質がオゾンである場合にも上記の-0.7Vに限らず、限界電流-電圧曲線において、各既知濃度における限界電流値がそれぞれ明確にわかる部分の電圧を基準とすれば良い。他の測定対象物質についても、検量線を作成するための基準電圧は一つの値に限らず、限界電流-電圧曲線において、各既知濃度における限界電流値がそれぞれ明確にわかる部分の電圧を基準とすることができる。さらに、情報処理装置は、測定対象物質濃度を測定するに際して、作用電極の参照電極に対する電位を、例えば、+2.0V~-2.0V、例えば+1.0~-2.0Vの間で、例えば0.1V/sの割合で変化させるようにポテンシオスタットを制御し得る。
 ある実施形態において、情報処理装置は、ガルバノスタットによって、電流値を一定として、電位の経時変化を記録することができる。そして、クロノポテンシオメトリー法により、所定の電流下で、一定時間経過後、例えば電流を流してから50秒経過後の測定電位値から、予め作成しておいた検量線に基づいて測定溶液のpHを算出することができる。
 ある実施形態において情報処理装置は、CPU、メモリ、HDD等の外部記憶装置、モデム等の通信インターフェース、ディスプレイ、マウス及びキーボードなどの入力手段を有し得る。情報処理装置は、内部メモリや外部記憶装置等の所定領域に設定したプログラム又はソフトウェアにしたがい、電気信号を解析し、オゾン濃度の算出を行いうる。情報処理装置は、汎用機器でも専用機器でもよい。
 電気化学的測定、及び演算処理を含めた一連の動作(ピーク電位の決定、一定とする電流又は電流密度の決定、検量線の作成等を含む)は、プログラム又はソフトウエアにより情報処理装置を制御して行ってもよい。すなわちある実施形態において、本発明の電気化学的測定法を実行するためのプログラム又はソフトウエアが提供される。プログラム又はソフトウエアは情報処理装置に組込まれたものでもよく、或いは情報記録媒体に記録され、該情報記録媒体が本発明の装置又は情報処理装置に格納されてもよい。ある実施形態において、該プログラム又はソフトウエアが記録された情報記録媒体が提供される。ある実施形態において、該プログラム若しくはソフトウエアが組込まれた、電気化学的測定装置が提供される。別の実施形態において、該情報記録媒体が格納された、電気化学的測定装置が提供される。
 ある実施形態において、本発明のマルチタスク型測定装置を制御するための情報処理装置は、オゾン水濃度測定アルゴリズム、尿酸濃度測定アルゴリズム、溶液pH測定アルゴリズム、及び塩素濃度測定アルゴリズムからなる群より選択される2以上のアルゴリズムを実行可能なソフトウェア又はプログラムを備え得る。別の実施形態において、オゾン水濃度測定用アルゴリズム、尿酸濃度測定用アルゴリズム、溶液pH測定用アルゴリズム、及び塩素濃度測定用アルゴリズムからなる群より選択される2以上のアルゴリズムを実行可能なソフトウェア又はプログラムが提供される。
 ある実施形態において、ソフトウェア又はプログラムは、測定対象(オゾン水濃度、尿酸濃度、溶液pH、又は塩素濃度)に応じて、測定アルゴリズムを変更する機能を有しうる。該ソフトウェア又はプログラムを備えた電気化学測定装置は、測定対象に応じて、測定アルゴリズムを変更することができる。ある実施形態において、本発明の電気化学測定装置は、測定対象に応じて、測定アルゴリズムを変更する切り替え機構又は切り替えスイッチを有する(ハードウェアによる構成)。別の実施形態において、測定アルゴリズムの変更はソフトウェア又はプログラムにより行われ得る。例えば表示画面のタッチパネルを操作して測定モードを切り替えることができる(ソフトウェアによる構成)。装置の使用者は、測定対象に応じて、該スイッチにより、又はタッチパネルを操作する等して、測定モードを簡便に切り替えることができる。
 ある実施形態において、本発明の電気化学測定装置は、さらにフールプルーフ(foolproof)機構を備えうる。例えば、使用者が塩素を測定することを意図して切り替えスイッチを操作し次いで測定を行ったところ、電位が全く検出されなかった場合、使用者が切り替えスイッチを誤って操作し塩素測定モードではなくオゾン水測定モードに切り替えていた可能性がある。この場合、オゾン測定のための掃引(酸化側)を行い電位が全く検出されなかった後、フールプルーフ機構により、該装置はさらに、塩素測定のための掃引(還元側)を行いうる。そして塩素測定結果を表示し得る。ある実施形態において、本発明の電気化学測定装置は切り替えスイッチ及びフールプルーフ機構を備えうる。ある実施形態において、フールプルーフ機構はソフトウェア又はプログラムにより実装され得る。
 ある実施形態において、本発明は三極電極の製造方法を提供する。第1の製造方法は、以下の工程、
(i)基材上に成膜したBDD電極を3つ用意し、第1のBDD電極を作用電極とし、第2のBDD電極を参照電極とし、第3のBDD電極を対電極とし、それぞれ基板上に固定する工程、
(ii)前記BDD電極を導電性ケーブルに接続する工程、
(iii)前記導電性ケーブルの一部及び前記BDD電極の一部を絶縁性材料で覆い絶縁処理を行う工程、
を含み得る。例えば図10-12を参照のこと。
 ある実施形態においてさらに、第1の製造方法の上記工程(ii)は、BDD電極と導電性ケーブルとの間にピンヘッダを配置し、ピンヘッダ端子がBDD電極に重なるように接着剤で固定し、ピンヘッダ端子とBDD電極間を導電性ペーストで接続する工程、及び、導電性ケーブルをピンヘッダに接続する工程を含み、
 第1の製造方法の上記工程(iii)は、前記導電性ケーブルの一部及び前記BDD電極の一部と共に、前記ピンヘッダも絶縁性材料で覆い絶縁処理を行う工程を含み得る。導電性ペーストは銀ペースト等であり得る。
 本発明の三極電極の第2の製造方法は、以下の工程、
 (i)絶縁材料の基材の一つの面にホウ素をドープした導電性のダイヤモンド薄膜を成膜し、次いで、ダイヤモンド薄膜に溝を加工し、互いに絶縁された三極電極を作製し、基板上の第1のホウ素をドープした導電性ダイヤモンド電極(BDD電極)を作用電極とし、第2のBDD電極を参照電極とし、第3のBDD電極を対電極とする工程、
(ii)加工後のダイヤモンド電極を固定して電気回路と接続するための電極を取り付け、次いで各BDD電極を導電性ケーブルに接続する工程、
(iii)前記導電性ケーブルの一部及び前記BDD電極の一部を絶縁性材料で覆い絶縁処理を行う工程、
を含み得る。絶縁材料は窒化ケイ素等であり得る。ダイヤモンド薄膜への溝の加工は、レーザー加工機等によって行うことができる。例えば図21、22、23及び27を参照のこと。これらはあくまでBDD三極電極の製造方法の例であって、最終的に互いに絶縁された三極電極が得られ、電気化学的測定を行うことができれば、三極電極の製造方法はこれらに限定されない。
 ダイヤモンド層を成膜するための基材の形状は特に限定されず、最終的に製造される電極において、導電性ダイヤモンドの多結晶体薄膜が露出して電極として使用可能であれば、どのような形状でもよい。ある実施形態において、基材の形状は、平板状、円筒状、棒状、円錐状、円錐台状、楕円錐状、楕円錐台状、角錐状、角錐台状、球状、又は半球状であり得るがこれに限らない。ある実施形態において基材は平板状、円筒状又は棒状であり得る。
 基材は絶縁性基材でもよく、導電性基材でもよい。ある実施形態において基材はシリコン、ニオブ、窒化ケイ素、炭化ケイ素又は高強度金属、例えばタングステン又はモリブデンであり得るがこれに限らない。導電性ダイヤモンド電極を製造するには、まず、平板状の基材を用意する。基材は、目的に応じて、電解研磨や切削加工などにより適宜加工し得る。次いで、CVD装置を用いて基材の表面の全部又は一部に導電性ダイヤモンド薄膜を成膜する。
 第1のBDD電極(作用電極)、第2のBDD電極(参照電極)及び、第3のBDD電極(対電極)を載せる基板の形状は特に限定されず、目的の測定対象や装置の構成に応じて、種々の形状とすることができる。ある実施形態において、基板の形状は、平板状、円筒状、棒状、円錐状、円錐台状、楕円錐状、楕円錐台状、角錐状、角錐台状、球状、又は半球状であり得るがこれに限らない。ある実施形態において基板は平板状又は円筒状であり得る。
 基板は絶縁性基材とすることができる。基板としてはセラミック基板が挙げられるがこれに限らない。基板上に、接着剤又は接着テープなどでBDD電極、ピンヘッダ、導電性ケーブル等を固定し得る。
 ある実施形態において、導電性ダイヤモンド薄膜を得るには、ダイヤモンドを成膜させる際に微量の不純物をドープし得る。導電性ダイヤモンド薄膜を得るために使用可能な不純物としては、ホウ素(B)、硫黄(S)、窒素(N)、酸素(O)、ケイ素(Si)等が挙げられる。例えば炭素源を含む原料ガスに、ホウ素を得るためにはジボラン、トリメトキシボラン、酸化ホウ素、ホウ素トリメトキシドを、硫黄を得るためには酸化硫黄、硫化水素を、酸素を得るためには酸素若しくは二酸化炭素を、窒素を得るためにはアンモニア若しくは窒素を、ケイ素を得るためにはシラン等を加えることができる。例えば高濃度でホウ素をドープした導電性ダイヤモンド電極は広い電位窓と、他の電極材料と比較してバックグランド電流が小さいといった有利な性質を有する。そこで本明細書では以下にホウ素ドープ導電性ダイヤモンド電極について例示的に記載する。他の不純物をドープした導電性ダイヤモンド電極を用いてもよい。本明細書では、特に断らない限り、電位と電圧は同義に用い相互に置き換え可能とする。本明細書ではホウ素ドープ導電性ダイヤモンド電極をBDD電極と記載することがある。
 基材への不純物混入ダイヤモンド又は不純物を含まないダイヤモンドの蒸着処理は、700~1200℃で1~12時間、例えば1~3時間行うことができる。蒸着はプラズマ蒸着であり得る。また、蒸着処理のためのプラズマ出力は500W~5000W、例えば1kW~3kW、例えば3.0kWとすることができ、チャンバー圧力は30~120 Torr、例えば60 Torrとし得る。導電性ダイヤモンド薄膜は通常のマイクロ波プラズマ化学気相成長法(MPCVD)で成膜し得る。これには、シリコン単結晶(100)等の基板を成膜装置内にセットし、高純度水素ガスを担体ガスとした成膜用ガスを流す。成膜用ガスには、炭素、ホウ素が含まれている。炭素、ホウ素を含む高純度水素ガスを流している成膜装置内にマイクロ波を与えてプラズマ放電を起こさせると、成膜用ガス中の炭素源から炭素ラジカルが生成し、基板にSi単結晶上にsp3構造を保ったまま、かつホウ素を混入しながら堆積してダイヤモンドの薄膜が形成される。なお本明細書において「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。下限値を含まない場合は「未満」、上限値を含まない場合は「を超える」をそれぞれ使用する。
 ある実施形態において、成膜させた導電性ダイヤモンド層は、アズ グローン状態(as grown、基材上に結晶を成長させたままの状態)としうる。別の実施形態では成膜させた導電性ダイヤモンド層は水素終端化してもよく、又は酸素終端化してもよい。水素終端化は、陰極還元、例えば導電性ダイヤモンド電極に、-1.8Vの電圧を印加し0.1M硫酸(H2SO4)中に30分間漬ける陰極還元により行い得る。酸素終端化は、陽極酸化、例えば導電性ダイヤモンド電極に+3.0Vの電圧を印加して、0.1M過塩素酸中に約30分漬ける陽極酸化又は酸素プラズマ処理により行い得る。
 ダイヤモンド薄膜の膜厚は成膜時間の調整により制御することができる。ダイヤモンド薄膜を電気化学的試験・分析用の電極として使用する際には、膜厚は、目的に応じて、10μm以上、5μm以上、1μm以上等とし得る。
 ダイヤモンド電極の製造方法は、特開2006-098281号、特開2011-152324号、特開2006-010357号、特開2011-174822号、特開2015-039544号公報等に開示されている。マイクロ電極の製造方法は国際公開第2014/077017号パンフレットに開示されている。参照によりこれらの文献の記載を本明細書に組み入れる。
 ある実施形態において、電気化学的測定(例えばオゾン水濃度測定、尿酸濃度測定、溶液pH測定、又は塩素濃度測定)に用いる本発明のBDD作用電極はマイクロ電極とは言えない大きさの表面積をもつこともあり得る。ある実施形態において、電気化学的測定に用いる本発明のBDD作用電極は試料溶液(例えばオゾン水、尿酸溶液、pHを有する溶液、又は塩素溶液)に接触する表面積が、400,000μm2未満ではない。ある実施形態において、電気化学的測定に用いる本発明のBDD作用電極は、試料溶液に接触する表面積が、400,000μm2以上、例えば500,000μm2以上、例えば1mm2以上、10mm2以上、1cm2以上等であり得る。
 ある実施形態において、製造工程の複雑なマイクロ電極を用いる必要がなく、本発明の電極に又はそれを用いる方法により、無電解質のオゾン水濃度を高精度に測定することが可能となる。また、ある実施形態において、従来使用されているような、白金製の対電極、銀/塩化銀参照電極を用いる必要が無く、本発明の電極に又はそれを用いる方法により、無電解質のオゾン水濃度を高精度に測定することが可能となる。また、ある実施形態において、従来使用されているような、白金製の対電極、銀/塩化銀参照電極を用いる必要が無く、本発明の電極に又はそれを用いる方法により、尿酸濃度を高精度に測定することが可能となる。また、ある実施形態において、従来使用されているような、白金製の対電極、銀/塩化銀参照電極を用いる必要が無く、本発明の電極に又はそれを用いる方法により、溶液pHを高精度に測定することが可能となる。また、ある実施形態において、従来使用されているような、白金製の対電極、銀/塩化銀参照電極を用いる必要が無く、本発明の電極に又はそれを用いる方法により、塩素濃度を高精度に測定することが可能となる。
 参照電極は電位の基準となるため非常に重要である一方、飽和KCl溶液又は塩橋を必要とするなどその構成が煩雑であることから、測定の妨げとなったり、迅速な測定の障壁となっていた。本発明によれば、簡便な構成で三極電極を実現することができる。また本発明の三極電極により、オゾン水濃度を簡便かつ高感度に測定することができる。また本発明の三極電極により、尿酸濃度を簡便かつ高感度に測定することができる。また本発明の三極電極により、溶液pHを簡便かつ広い範囲で測定することができる。また本発明の三極電極により、塩素濃度を簡便かつ高感度に測定することができる。本発明の測定方法は電気化学的測定であるため、酵素法と異なり、使用毎に酵素を使い捨てにする必要がなく、ランニングコストが低い。また、吸光度法と異なり、光源や吸光度計を必要とせず、構成が簡便である。またガラス電極法における参照電極と異なり、飽和塩化カリウム溶液の補充及び濃度管理を必要とせず、参照電極がメンテナンスフリーであり、かつ、小型化が容易である。さらに、本発明の三極電極及び/又は装置により、オゾン水濃度、尿酸濃度、溶液pH、及び塩素濃度からなる群より選択される2以上の測定対象を測定することができる。
 本発明のBDD三極電極を用いると、作用電極のクリーニングが容易となる。また、参照電極に液体を使用する必要がなくなる。オゾンや塩素は腐食性が強く、これらの被験物質を測定すると、電極表面が徐々に汚れることがある。連続的に測定を行うためには、或いは繰り返し装置を使用するためには、作用電極をクリーニングすることが望ましい。ところが作用電極をクリーニングするときに、参照電極がAg/AgCl電極であると、飽和KCl溶液や塩橋といった構成がクリーニングの妨げとなったり、参照電極の取り外し及び再度の取付を必要とする等、洗浄操作が煩雑となる。三極電極がBDD三極電極である場合、いずれの電極も化学的に不活性なダイヤモンドであることから、強力な条件、例えば高電位を印加してクリーニングを行うことができる。これは、オゾン水濃度、尿酸濃度、溶液pH、及び塩素濃度からなる群より選択される測定対象を測定するときに特に有利である。
 以下の実施例は、例示のみを意図したものであり、何ら本発明の技術的範囲を限定することを意図するものではない。特に断らない限り、試薬は、市販されているか、又は当技術分野で慣用の手法、公知文献の手順に従って入手又は調製する。当業者であれば、本発明の精神から逸脱することなく、記載する手順を改変することができる。
[実施例1 ホウ素ドープダイヤモンド電極の製造方法]
 シリコン基板上に成膜したホウ素ドープダイヤモンド電極(BDD電極)は、以下の手順で作製した。すなわち、マイクロ波プラズマCVD装置(コーンズテクノロジー社製)を使用し、プラズマ発生用の水素ガスをチャンバー内に導入してプラズマを発生させた。次いで、炭素源としてアセトンを使用し、ホウ素源としてトリメトキシボランを使用し、キャリアガスとして水素ガスを使用し、アセトン及びトリメトキシボランを所定の混合比(ホウ素ドープ量が1%)で混合した混合液体をキャリアガスである水素ガスによるバブリングを行って気化して原料ガスとした。次いでこの原料ガスを、プラズマ用水素ガスとは別ラインでチャンバー内に導入した。
 具体的には前処理としてシリコン基板Si(100)表面をダイヤモンドパウダーで核付けし、次に炭素源としてアセトン50 mLとトリメチルボラン(ホウ素濃度1%)4 mLを用いて、プラズマ出力5000 Wで6時間、圧力110 Torrの条件で基板上に製膜した(コーンズテクノロジー社製、モデルA×5400)。
[実施例2 銀塩化銀参照電極でのオゾン水濃度測定]
 まず、参照電極として銀塩化銀電極(Ag/AgCl)を使用し、オゾン濃度の電気化学的測定を行った。すなわち、作用電極(Working Electrode、WE)及び対電極(Counter Electrode、CE)をBDD電極として、参照電極(Reference Electrode、RE)をAg/AgCl電極として、リニアスイープボルタンメトリー(LSV)を行った。実験系の模式図を図4に示す。
 セルは、テフロン(登録商標)製セルであり、作用電極の面積は0.502 cm2、直径は8 mmとした。また作用電極と参照電極の距離は2 mmとした。作用電極の前処理として、0.1 M過塩素酸中で、5 min、+3.5 Vを印加した。オゾン水生成器は、ChemO3(日科ミクロン社製)であり、超純水からオゾン水を生成した。なお、オゾンのモル吸光係数は
[数1]
ε = 3000/cm・M
であり、これはオゾン濃度
[数2]
c [M]= A/1[cm]/ε[/cm M]
であることによる。電気化学的測定では、LSVでオゾンの還元電流を測定した。分光測定では、UV吸光でオゾンの濃度を見積した。
 さまざまなオゾン濃度のオゾン水について、+0.7Vから-0.4Vまで、スキャン速度0.1V/sで走査し、電流値をモニタリングした。結果を図1及び図2に示す。図1において、+0.15V付近にオゾンの検出ピークが濃度依存性がある状態で確認できる。また図2に示すように、測定サンプルのオゾン濃度に対して+0.15Vにおける電流密度をプロットするとその間には相関があることが確認できた。
[実施例3 参照電極としてのBDD電極の検討]
 次に、作用電極にBDD、対電極にPt、参照電極として、Ag/AgCl又はBDDを用いて、0.1M KCl中における1mM フェリシアン化カリウムのサイクリックボルタンメトリー(CV)を行った。スキャン速度は0.1V/sで走査し、電流値をモニタリングした。結果を図3に示す。
 フェリシアン化カリウムの酸化還元電位測定においてBDDを参照電極として使用した場合、Ag/AgClを参照電極として使用した場合と比較して、酸化還元電位にずれが生じるのみで、その他の挙動に特に大きな差は見られなかった。このことから、Ag/AgClの代わりに、BDDを参照電極として使用しうると考えられた。そこで実際にオゾン水濃度測定を行った。
[BDD参照電極を用いたオゾン水濃度測定]
 実験は作用電極と対電極にBDDを使用し、参照電極としてBDDを使用した。実験系は図4の模式図のように構築した。また、他の金属電極が単独で参照電極として機能するか否かを確認するために、参照電極としてBDDの代わりにオゾン耐性に優れるSUS316ステンレス鋼を使用した。これはオゾンの腐食作用が強く、通常の金属では不適当と考えられたため、比較対照として、オゾン耐性に優れるSUS316ステンレス鋼を選択したものである。測定セルは標準セルを使用し、任意でサンプリングをしたオゾン水をLSVにより測定した。
 結果を図5、図6、図7及び図8に示す。オゾン水の測定において、参照電極としてBDDを使用した場合は、電位とその時に流れる電流密度との間に良好な相関関係を確認できたが、SUS316を使用した場合には相関関係が確認できなかった。相関係数についても参照電極としてBDDを使用した場合にはR2=0.96~0.98前後と良好であったのに対して、SUS316を使用した場合にはR2=0.09~0.30前後であった。これらの検証結果より、オゾン耐性のある金属材料であればどのようなものでも参照電極として使用できるというわけではなく、導電性ダイヤモンド電極だからこそ、参照電極として使用可能であると言える。以上のことより、BDDを参照電極として使用し、オゾン水濃度を電気化学的に測定することができた。すなわち、オゾン水濃度を電気化学的に測定する場合に使用する参照電極としてBDDが適している。
[実施例4 BDD三極電極の製造方法]
 次に、作用電極、対電極、及び参照電極がBDDである平板電極を以下の手順により作製した。図9に模式図を示す。図10は各構成を具体的に示した写真である。図10中、白い板はセラミック基板である。右側に3つある部材がホウ素ドープダイヤモンド電極(BDD電極)である。これらは、シリコン基板上に成膜したBDD電極である。中央にピンヘッダを配置した。また左にケーブル付き端子を配置した。次に、これらの構成を以下の手順で加工した:
1.シリコン基板上に成膜したBDD電極をレーザ加工機で2mmx10mmに切断し、2.5mmピッチでセラミック基板上に接着剤で固定する。その際、電極表面に接着剤や指紋が付かないように注意する。
2.ピンヘッダ右側端子がBDD電極に重なるように接着剤で固定する。次に、ピンヘッダ右側端子とBDD電極間を導電性銀ペーストで接続する。
3.ケーブル付き端子をピンヘッダ左側端子に接続する。
4.ケーブルの先端をセラミック基板に接着テープ等で固定する。
5.前記2.銀ペースト接続部から、ピンヘッダを介して、端子付きケーブルまでのすべてをシリコン樹脂により覆って、絶縁処理を行う。特定の実施形態では、絶縁処理を行う長さは、セラミック基板右端から50mm前後とし得る。
6.この時にBDD電極の右側数mm、例えば5mm以上を残す。
7.BDD電極表面とケーブル左側先端の導通を確認する。
8.ケーブル3本の間がそれぞれ絶縁されていることを確認する。
 加工した平板型の三極電極の写真を図11及び図12に示す。図11及び12中の番号は上記の手順番号に対応する。
 作製した作用電極、対電極及び参照電極のいずれもがBDDである平板型の三極電極を使用して、オゾン水についてリニアスイープボルタンメトリー(LSV)を行った。測定セルは標準セルを使用し、任意でサンプリングをしたオゾン水をLSVにより測定した。
 結果を図13及び図14に示す。結論として、オゾン水の測定において、参照電極としてBDDを使用した場合は、電位とその時に流れる電流密度との間に良好な相関関係を確認することができた。相関係数もR2=0.92~0.98前後と良好であった。10ppm以下でもオゾンを測定でき、また1ppm以下でもオゾンを測定することができた。
[実施例5 オゾン水濃度測定装置を備えたオゾン水生成装置]
 BDD作用電極、BDD参照電極、及びBDD対電極を有するオゾン水測定装置とオゾン発生装置とを連結して、オゾン水生成装置を構築する。このオゾン水生成装置は、オゾンを発生するオゾン発生装置と、当該オゾン発生装置によって発生したオゾンを含んだオゾン水のオゾン濃度を測定するオゾン水濃度測定装置とを備えた装置或いはシステムである。
[実施例6 BDD三極電極を用いた尿酸の電気化学的検出]
 BDD三極電極は、実施例4と同じものを使用した。ただし測定の前に、0.1M NaClO4(pH=7.10)溶液を使用し電極を電気化学的に前処理した。また作用電極が陰極還元状態となるような条件で測定を開始した。作用電極、対電極、参照電極のいずれについても、有効電極面積は約0.1cm2とした。リン酸緩衝溶液(pH=6.653)中に尿酸を0~100μMの濃度にてそれぞれ溶解させ、CV及びLSV法を用いて電気化学的測定を行った。CVは-1.0V~+1.5Vの範囲で行った。LSVは0.0V~+1.5Vの範囲で行った。
 CVの結果を図15及び16に示す。CVの結果から+0.75Vをピーク電位とした。また、+0.75Vにおける尿酸濃度との関係をプロットした検量線を図16に示す。図16のとおり、尿酸濃度と電流密度との間に良好な相関関係が見られた(R2=約0.99)。LSVの結果を図17及び18に示す。LSVの結果から、+0.58Vをピーク電位とした。また、+0.58Vにおける尿酸濃度との関係をプロットした検量線を図18に示す。図18のとおり、尿酸濃度と電流密度との間に良好な相関関係が見られた(R2=約0.99)。
[実施例7 BDD三極電極を用いたpHの電気化学的測定]
 BDD三極電極は、実施例4と同じものを使用した。作用電極、対電極、参照電極のいずれについても、有効電極面積は約0.1cm2とした。Briton-Robinson-Buffer(BRB)を使用した。各試料溶液のpHは、それぞれ、2.057、4.190、6.099、8.054、10.145にて調整した。測定はクロノポテンシオメトリー法にて行った。まず10秒間、0μA/cm2で保持し、その後、-2.0μA/cm2の電流を50秒間流した。
 結果を図19及び20に示す。図19がクロノポテンシオメトリーの結果であり、図20が、60秒後の電位とpHとをプロットした結果である。図20のとおり、pHと電位との間に相関関係が得られた。
[実施例8 BDD三極電極を用いた塩素の電気化学的検出]
 BDD三極電極は、以下の手順で作製した。電極基材に窒化ケイ素等の絶縁材料を用い、その表面にCVD装置を用いて導電性ダイヤモンド薄膜を成膜した。その後、レーザー加工機等によってダイヤモンド薄膜に溝を加工し、互いに絶縁された3電極を作製した(図22)。さらに、加工後のダイヤモンド電極を固定して電気回路と接続するための電極を取り付けた(図27)。図22のダイヤモンド電極サイズは約10mm×10mmの正方形である。また、作製した図27のBDD三極電極は、作用電極、対電極、参照電極のいずれについても、有効電極面積を約0.25cm2とした。0.1M NaClO4(pH=5.10 HClO4でpH調製)中にNaClO(OCl-)を180ppmとなるよう溶解させ、それをBlank溶液で希釈し、各濃度の塩素水を調製した。その後、LSV法により測定を行った。LSVは、0.0V~-2.2Vの範囲で行った。なお、測定の前に、0.1M NaClO4(pH=7.10)溶液を使用し電極を電気化学的に前処理した。また作用電極が陰極還元状態となるような条件で測定を開始した。
 結果を図25及び26に示す。LSVの結果から、-1.85Vをピーク電位とした。検量線は、-1.85Vのときの電流密度でプロットした。図26のとおり、有効塩素濃度と電流密度との間に良好な相関関係が見られた(R2=約0.98)。
 技術常識によれば金属電極単独では可逆の電極反応及び溶液中の物質との平衡が成立せず、したがって参照電極として機能しえない。ところが本発明者らが、作用電極、対電極及び参照電極の3電極をいずれも導電性ダイヤモンド電極で構成し、無電解質のオゾン水濃度を測定したところ、驚くべきことに、無電解質のオゾン水濃度を高精度に測定することができた。尿酸、溶液pH、塩素についても、同様に測定対象を効果的に測定することができた。金属電極単独では参照電極として機能しないという技術常識に鑑みれば、これは予想外の知見であり、驚くべきことであった。
 本発明により、構成の簡便な三極電極が実現できる。これは例えば無電解質のオゾン水濃度測定等に利用し得る。また、これは例えば尿酸濃度測定に利用し得る。また、これは例えば溶液のpH測定に利用し得る。また、これは例えば塩素濃度測定に利用し得る。さらに、本発明により、複数種の被験試料を測定可能な、マルチタスク型測定装置が実現できる。
 本明細書において言及された文献はいずれも、参照によりその全内容を本明細書に組み入れる。
1 基材
2 導電性ダイヤモンド薄膜
3 溝

Claims (30)

  1.  作用電極として導電性ダイヤモンド電極を有し、参照電極として導電性ダイヤモンド電極を有し、対電極を有する、三極電極。
  2.  対電極が導電性ダイヤモンド電極又は白金電極である、請求項1に記載の三極電極。
  3.  導電性ダイヤモンド電極がホウ素(B)、硫黄(S)、窒素(N)、酸素(O)、及びケイ素(Si)からなる群より選択される不純物がドープされた導電性ダイヤモンド電極である、請求項1又は2に記載の三極電極。
  4.  導電性ダイヤモンド電極がホウ素をドープした導電性ダイヤモンド電極である、請求項3に記載の三極電極。
  5.  作用電極がホウ素をドープした導電性ダイヤモンド電極であり、参照電極がホウ素をドープした導電性ダイヤモンド電極であり、対電極がホウ素をドープした導電性ダイヤモンド電極である、請求項1~4のいずれか1項に記載の三極電極。
  6.  請求項1~5のいずれか1項に記載の三極電極を有する、電気化学的測定装置。
  7.  オゾン水濃度、尿酸濃度、溶液pH、又は塩素濃度のいずれかを測定することができる、請求項6に記載の電気化学的測定装置。
  8.  請求項1~5のいずれか1項に記載の三極電極を有し、
    作用電極、参照電極、及び対電極が試料溶液であるオゾン水に接触可能であり、
    作用電極と対電極との間に電圧を印加する電圧印加部を有し、
    作用電極と対電極との間に電圧を印加したときの電流値を測定する電流値測定部を有する、オゾン水濃度測定装置。
  9.  請求項8に記載のオゾン水濃度測定装置、及びオゾン発生装置を備えた、オゾン水生成装置。
  10.  請求項1~5のいずれか1項に記載の三極電極を有し、
    作用電極、参照電極、及び対電極が試料溶液である尿酸溶液に接触可能であり、
    作用電極と対電極との間に電圧を印加する電圧印加部を有し、
    作用電極と対電極との間に電圧を印加したときの電流値を測定する電流値測定部を有する、尿酸濃度測定装置。
  11.  請求項1~5のいずれか1項に記載の三極電極を有し、
    作用電極、参照電極、及び対電極が試料溶液に接触可能であり、
    作用電極と対電極との間に電流を流す電流印加部を有し、
    作用電極と対電極との間の電流値を一定としたときの電位を測定する電位測定部を有する、pH測定装置。
  12.  請求項1~5のいずれか1項に記載の三極電極を有し、
    作用電極、参照電極、及び対電極が試料溶液である塩素溶液に接触可能であり、
    作用電極と対電極との間に電圧を印加する電圧印加部を有し、
    作用電極と対電極との間に電圧を印加したときの電流値を測定する電流値測定部を有する、塩素濃度測定装置。
  13.  請求項1~5のいずれか1項に記載の三極電極を有し、オゾン水濃度、尿酸濃度、溶液pH、及び塩素濃度からなる群より選択される2以上の測定対象を、前記三極電極により測定することができる、電気化学的測定装置。
  14.  オゾン水濃度、尿酸濃度、溶液pH、及び塩素濃度からなる群より選択される測定対象に応じて、測定アルゴリズムを変更する機能を有する、請求項13に記載の装置。
  15.  請求項7~14のいずれか1項に記載の装置を制御するための、プログラム。
  16.  請求項15に記載のプログラムを記録した、情報記録媒体。
  17.  請求項7~9、13及び14のいずれか1項に記載の装置を使用する、オゾン水濃度測定方法。
  18.  試料溶液であるオゾン水に、少なくとも作用電極及び対電極を接触させ、前記作用電極と前記対電極との間に電圧を印加し、当該電圧下における電流値を測定することにより、印加した電圧及び測定した電流値から、限界電流-電圧曲線を測定し、当該限界電流-電圧曲線において所定の電圧に対応する限界電流値から、予め作成済みの限界電流値とオゾン濃度との関係を示した検量線に基づいて、オゾン水のオゾン濃度を算出する、請求項17に記載のオゾン水濃度測定方法。
  19.  請求項7、10、13及び14のいずれか1項に記載の装置を使用する、尿酸濃度測定方法。
  20.  試料溶液である尿酸溶液に、少なくとも作用電極及び対電極を接触させ、前記作用電極と前記対電極との間に電圧を印加し、当該電圧下における電流値を測定することにより、印加した電圧及び測定した電流値から、限界電流-電圧曲線を測定し、当該限界電流-電圧曲線において所定の電圧に対応する限界電流値から、予め作成済みの限界電流値と尿酸濃度との関係を示した検量線に基づいて、溶液の尿酸濃度を算出する、請求項19に記載の尿酸濃度測定方法。
  21.  請求項7、11、13及び14のいずれか1項に記載の装置を使用する、pH測定方法。
  22.  試料溶液に作用電極と対電極及び参照電極を接触させ、前記作用電極と前記対電極との間に一定値の電流を流し、当該電流下における電位を測定することにより、印加した電流及び測定した電位値から、限界電流-電圧曲線を測定し、当該限界電流-電圧曲線において所定の電流に対応する限界電位値から、予め作成済みの限界電位値と溶液pHとの関係を示した検量線に基づいて、溶液のpHを測定する、請求項21に記載のpH測定方法。
  23.  請求項12~14のいずれか1項に記載の装置を使用する、塩素濃度測定方法。
  24.  試料溶液である塩素溶液に、少なくとも作用電極及び対電極を接触させ、前記作用電極と前記対電極との間に電圧を印加し、当該電圧下における電流値を測定することにより、印加した電圧及び測定した電流値から、限界電流-電圧曲線を測定し、当該限界電流-電圧曲線において所定の電圧に対応する限界電流値から、予め作成済みの限界電流値と塩素濃度との関係を示した検量線に基づいて、溶液の塩素濃度を算出する、請求項23に記載の塩素濃度測定方法。
  25.  試料溶液に電解質を含ませない、請求項17~24のいずれか1項に記載の測定方法。
  26.  以下の工程、
    (i)基材上に成膜したホウ素をドープした導電性ダイヤモンド電極(BDD電極)を3つ用意し、第1のBDD電極を作用電極とし、第2のBDD電極を参照電極とし、第3のBDD電極を対電極とし、それぞれ基板上に固定する工程、
    (ii) 前記BDD電極を導電性ケーブルに接続する工程、
    (iii)前記導電性ケーブルの一部及び前記BDD電極の一部を絶縁性材料で覆い絶縁処理を行う工程、
    を含む、三極電極の製造方法。
  27.  さらに、工程(ii)が、BDD電極と導電性ケーブルとの間にピンヘッダを配置し、該ピンヘッダがBDD電極に重なるように接着剤で固定し、該ピンヘッダとBDD電極間を導電性ペーストで接続する工程、及び、導電性ケーブルをピンヘッダに接続する工程を含み、
     工程(iii)が、前記導電性ケーブルの一部及び前記BDD電極の一部と共に、前記ピンヘッダも絶縁性材料で覆い絶縁処理を行う工程を含む、
    請求項26に記載の製造方法。
  28.  (i)絶縁材料の基材の一つの面にホウ素をドープした導電性のダイヤモンド薄膜を成膜し、次いで、ダイヤモンド薄膜に溝を加工し、互いに絶縁された三極電極を作製し、基板上の第1のホウ素をドープした導電性ダイヤモンド電極(BDD電極)を作用電極とし、第2のBDD電極を参照電極とし、第3のBDD電極を対電極とする工程、
    (ii)加工後のダイヤモンド電極を固定して電気回路と接続するための電極を取り付け、次いで各BDD電極を導電性ケーブルに接続する工程、
    (iii)前記導電性ケーブルの一部及び前記BDD電極の一部を絶縁性材料で覆い絶縁処理を行う工程、
    を含む、三極電極の製造方法。
  29.  基板が平板状又は円筒状である、請求項26~28のいずれか1項に記載の製造方法。
  30.  作用電極としてホウ素をドープした導電性ダイヤモンド電極を有し、参照電極としてホウ素をドープした導電性ダイヤモンド電極を有し、対電極としてホウ素をドープした導電性ダイヤモンド電極を有する三極電極を有する電気化学的測定装置。
PCT/JP2019/043000 2018-11-01 2019-11-01 参照電極として導電性ダイヤモンド電極を有する三極電極、装置及び、電気化学的測定方法 WO2020091033A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020554974A JP7272565B2 (ja) 2018-11-01 2019-11-01 参照電極として導電性ダイヤモンド電極を有する三極電極、装置及び、電気化学的測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-206319 2018-11-01
JP2018206319 2018-11-01

Publications (1)

Publication Number Publication Date
WO2020091033A1 true WO2020091033A1 (ja) 2020-05-07

Family

ID=70463396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043000 WO2020091033A1 (ja) 2018-11-01 2019-11-01 参照電極として導電性ダイヤモンド電極を有する三極電極、装置及び、電気化学的測定方法

Country Status (2)

Country Link
JP (1) JP7272565B2 (ja)
WO (1) WO2020091033A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114965659A (zh) * 2022-04-20 2022-08-30 中国科学院空天信息创新研究院 检测磷酸盐浓度的方法以及电化学传感器
JP7303353B1 (ja) 2022-07-08 2023-07-04 住友化学株式会社 電気化学センサおよび電気化学センサシステム
JP7345602B1 (ja) 2022-06-10 2023-09-15 住友化学株式会社 電気化学センサ及び電気化学センサの製造方法
JP7455249B1 (ja) 2023-02-27 2024-03-25 住友化学株式会社 電気化学的測定方法、電気化学的測定装置、及びプログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410165A (en) * 1987-07-03 1989-01-13 Terumo Corp Multisensor and its production
JPH1183799A (ja) * 1997-07-14 1999-03-26 Imura Japan Kk ダイヤモンド電極を用いた複数被測定物質の濃度測定方法および濃度センサ
JP2001147211A (ja) * 1999-05-28 2001-05-29 Akira Fujishima 陽極酸化処理されたダイヤモンド薄膜電極を使用した尿酸測定方法とそのダイヤモンド薄膜電極及び陽極酸化処理されたダイヤモンド薄膜電極を使用した尿酸測定センサと尿酸測定装置
JP2006078375A (ja) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd ダイヤモンド電極およびその製造方法
JP2007139725A (ja) * 2005-11-22 2007-06-07 Keio Gijuku 残留塩素測定方法及び残留塩素測定装置
WO2014077017A1 (ja) * 2012-11-16 2014-05-22 学校法人慶應義塾 オゾン水濃度測定装置及びオゾン水濃度測定方法
JP2015039544A (ja) * 2013-08-22 2015-03-02 学校法人慶應義塾 ダイヤモンドマイクロ電極を用いた生体内pH測定装置及び方法
JP2018529981A (ja) * 2015-08-07 2018-10-11 フラウンホーファー・ユー・エス・エイ・インコーポレイテッドFraunhofer Usa, Inc. 導電性ダイヤモンド電極で微量金属を検出するための装置および方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410165A (en) * 1987-07-03 1989-01-13 Terumo Corp Multisensor and its production
JPH1183799A (ja) * 1997-07-14 1999-03-26 Imura Japan Kk ダイヤモンド電極を用いた複数被測定物質の濃度測定方法および濃度センサ
JP2001147211A (ja) * 1999-05-28 2001-05-29 Akira Fujishima 陽極酸化処理されたダイヤモンド薄膜電極を使用した尿酸測定方法とそのダイヤモンド薄膜電極及び陽極酸化処理されたダイヤモンド薄膜電極を使用した尿酸測定センサと尿酸測定装置
JP2006078375A (ja) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd ダイヤモンド電極およびその製造方法
JP2007139725A (ja) * 2005-11-22 2007-06-07 Keio Gijuku 残留塩素測定方法及び残留塩素測定装置
WO2014077017A1 (ja) * 2012-11-16 2014-05-22 学校法人慶應義塾 オゾン水濃度測定装置及びオゾン水濃度測定方法
JP2015039544A (ja) * 2013-08-22 2015-03-02 学校法人慶應義塾 ダイヤモンドマイクロ電極を用いた生体内pH測定装置及び方法
JP2018529981A (ja) * 2015-08-07 2018-10-11 フラウンホーファー・ユー・エス・エイ・インコーポレイテッドFraunhofer Usa, Inc. 導電性ダイヤモンド電極で微量金属を検出するための装置および方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114965659A (zh) * 2022-04-20 2022-08-30 中国科学院空天信息创新研究院 检测磷酸盐浓度的方法以及电化学传感器
JP7345602B1 (ja) 2022-06-10 2023-09-15 住友化学株式会社 電気化学センサ及び電気化学センサの製造方法
WO2023238632A1 (ja) * 2022-06-10 2023-12-14 住友化学株式会社 電気化学センサ及び電気化学センサの製造方法
JP2023181161A (ja) * 2022-06-10 2023-12-21 住友化学株式会社 オゾン濃度測定用の電気化学センサ
JP2023180811A (ja) * 2022-06-10 2023-12-21 住友化学株式会社 電気化学センサ及び電気化学センサの製造方法
JP7445068B2 (ja) 2022-06-10 2024-03-06 住友化学株式会社 オゾン濃度測定用の電気化学センサ
JP7303353B1 (ja) 2022-07-08 2023-07-04 住友化学株式会社 電気化学センサおよび電気化学センサシステム
WO2024009628A1 (ja) * 2022-07-08 2024-01-11 住友化学株式会社 電気化学センサおよび電気化学センサシステム
JP2024008668A (ja) * 2022-07-08 2024-01-19 住友化学株式会社 電気化学センサおよび電気化学センサシステム
JP7455249B1 (ja) 2023-02-27 2024-03-25 住友化学株式会社 電気化学的測定方法、電気化学的測定装置、及びプログラム

Also Published As

Publication number Publication date
JP7272565B2 (ja) 2023-05-12
JPWO2020091033A1 (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2020091033A1 (ja) 参照電極として導電性ダイヤモンド電極を有する三極電極、装置及び、電気化学的測定方法
JP4734097B2 (ja) 残留塩素測定方法及び残留塩素測定装置
Zhang et al. Glucose nanosensor based on Prussian‐blue modified carbon‐fiber cone nanoelectrode and an integrated reference electrode
JP6469687B2 (ja) 電気化学センサ装置及び電気化学センシング方法
Kodera et al. Determination of free chlorine based on anodic voltammetry using platinum, gold, and glassy carbon electrodes
JP6840368B2 (ja) 残留塩素測定方法及び残留塩素測定装置
Ensafi et al. A new electrochemical sensor based on porous silicon supported Pt–Pd nanoalloy for simultaneous determination of adenine and guanine
TWI506275B (zh) Ozone water concentration measuring device and ozone water concentration determination method
JPH05503580A (ja) 外部基準電極を有するポラログラフィー化学センサー
US20130313128A1 (en) Electrochemical Sensor Apparatus and Electrochemical Sensing Method
Rodriguez et al. Glucose biosensor prepared by the deposition of iridium and glucose oxidase on glassy carbon transducer
Hahn et al. The development of new microelectrode gas sensors: an odyssey. Part 1. O2 and CO2 reduction at unshielded gold microdisc electrodes
Colombo et al. Coulometric micro-titrator with a ruthenium dioxide pH-electrode
JP3703787B2 (ja) 導電性ダイヤモンド電極を用いた被検物質濃度の測定方法およびそのための装置
US4798655A (en) Multiparameter analytical electrode structure and method of measurement
JP2008256604A (ja) 溶存オゾン濃度測定装置及び溶存オゾン濃度測定方法
JP6814990B2 (ja) 残留塩素測定方法及び残留塩素測定装置
Li et al. Developing an iridium oxide film modified microelectrode for microscale measurement of pH
Meruva et al. Potentiometric oxygen sensing with copper films: Response mechanism and analytical implications
CA2213055C (en) Determination of chlorate ion concentration using microelectrodes
WO2023074454A1 (ja) 酸化還元酵素及び補酵素を含む反応系を用いた処理装置並びにその制御方法
Riyanto A Highly Sensitive Electrochemical Glucose Sensor By Nickel-Epoxy Electrode With Non-Enzymatic Sensor
JP2005062133A (ja) 残留塩素濃度測定装置
Hauser Electroanalytical methods
Xiao et al. Potentiometric sensor based on modified BLM on rigid support

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554974

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878257

Country of ref document: EP

Kind code of ref document: A1