WO2020090150A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2020090150A1
WO2020090150A1 PCT/JP2019/025285 JP2019025285W WO2020090150A1 WO 2020090150 A1 WO2020090150 A1 WO 2020090150A1 JP 2019025285 W JP2019025285 W JP 2019025285W WO 2020090150 A1 WO2020090150 A1 WO 2020090150A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield
wiring
pixel
voltage
voltage line
Prior art date
Application number
PCT/JP2019/025285
Other languages
English (en)
French (fr)
Inventor
嘉晃 佐藤
佐藤 好弘
雅史 村上
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020554757A priority Critical patent/JP7291894B2/ja
Publication of WO2020090150A1 publication Critical patent/WO2020090150A1/ja
Priority to US17/154,011 priority patent/US20210143218A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5225Shielding layers formed together with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5223Capacitor integral with wiring layers

Definitions

  • the present disclosure relates to an imaging device.
  • Image sensors are used in digital cameras, etc.
  • Examples of the image sensor include a CCD (Charge Coupled Device) image sensor and a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor
  • a photodiode is provided on a semiconductor substrate.
  • Patent Documents 1 and 2 propose an imaging device having a laminated structure of a semiconductor substrate and a photoelectric conversion unit.
  • the photoelectric conversion unit has a photoelectric conversion layer that performs photoelectric conversion. Electric charges are generated by photoelectric conversion. The charges are stored in a charge storage region (called “floating diffusion”).
  • a CCD circuit or a CMOS circuit is provided on the semiconductor substrate. A signal corresponding to the amount of charges accumulated in the charge accumulation region is read out via the CCD circuit or the CMOS circuit.
  • This disclosure is A semiconductor substrate, a first pixel that performs photoelectric conversion, and a first shield
  • the first pixel is A first diffusion region present in the semiconductor substrate, A first wiring connected to the first diffusion region, in which a first signal charge obtained by the photoelectric conversion by the first pixel flows;
  • the present disclosure provides technology for suppressing noise.
  • FIG. 1 is a schematic diagram showing an exemplary circuit configuration of an image pickup apparatus.
  • FIG. 2 is a schematic diagram showing an exemplary circuit configuration of a pixel.
  • FIG. 3 is a schematic diagram showing an exemplary circuit configuration of a pixel.
  • FIG. 4 is a schematic diagram showing an exemplary circuit configuration of the imaging device.
  • FIG. 5 is a timing chart for explaining an example of the operation of the read circuit.
  • FIG. 6 is a plan view schematically showing an example of the layout of each wiring in the pixel.
  • FIG. 7A is a plan view schematically showing an example of the layout of each wiring in the pixel.
  • FIG. 7B is a plan view schematically showing an example of the layout of each wiring in the pixel.
  • FIG. 1 is a schematic diagram showing an exemplary circuit configuration of an image pickup apparatus.
  • FIG. 2 is a schematic diagram showing an exemplary circuit configuration of a pixel.
  • FIG. 3 is a schematic diagram showing an exemplary circuit configuration of a pixel.
  • FIG. 8 is a plan view schematically showing an example of the layout of each wiring in the pixel.
  • FIG. 9 is a cross-sectional view schematically showing an example of a cross section of a pixel.
  • FIG. 10 is a cross-sectional view schematically showing an example of a cross section of a pixel.
  • FIG. 11 is a cross-sectional view schematically showing an example of a cross section of a pixel.
  • FIG. 12 is a cross-sectional view schematically showing an example of a cross section of a pixel.
  • FIG. 13A is a cross-sectional view schematically showing an example of a cross section of a pixel.
  • FIG. 13B is a cross-sectional view schematically showing an example of a cross section of the pixel.
  • FIG. 13A is a cross-sectional view schematically showing an example of a cross section of a pixel.
  • FIG. 13B is a cross-sectional view schematically showing an example of a cross section of
  • FIG. 13C is a cross-sectional view schematically showing an example of a cross section of the pixel.
  • FIG. 14 is a cross-sectional view schematically showing an example of a cross section of a pixel.
  • FIG. 15 is a schematic diagram showing an exemplary circuit configuration of the image pickup apparatus.
  • FIG. 16 is a schematic diagram showing an exemplary circuit configuration of a pixel.
  • FIG. 17 is a timing chart for explaining an example of the operation of the read circuit.
  • FIG. 18 is a plan view schematically showing an example of the layout of each wiring in the pixel.
  • FIG. 19 is a plan view schematically showing an example of the layout of each wiring in the pixel.
  • FIG. 20 is a cross-sectional view schematically showing an example of a cross section of a pixel.
  • FIG. 21 is a cross-sectional view schematically showing an example of a cross section of a pixel.
  • FIG. 22 is a plan view schematically showing an example of the layout of each wiring in the pixel.
  • FIG. 23 is a cross-sectional view schematically showing an example of a cross section of a pixel.
  • FIG. 24A is a plan view schematically showing an example of the layout of each wiring in the pixel.
  • FIG. 24B is a plan view schematically showing an example of the layout of each wiring in the pixel.
  • FIG. 25 is a cross-sectional view schematically showing an example of a cross section of a pixel.
  • FIG. 26 is a cross-sectional view schematically showing an example of a cross section of a pixel.
  • FIG. 27 is a block diagram of the camera system.
  • the imaging device is A semiconductor substrate, a first pixel, and a first shield,
  • the first pixel is A first diffusion region provided on the semiconductor substrate;
  • a first wiring connected to the first diffusion region, in which a first signal charge obtained by photoelectric conversion by the first pixel flows;
  • a first voltage line forming at least a part of a voltage supply path to the drain or the source of the first transistor, the first voltage line being applied with different voltages; Including, The distance between the first voltage line and the first shield is smaller than the distance between the first voltage line and the first wiring.
  • the first mode is suitable for suppressing noise.
  • the first shield of the first aspect is suitable for suppressing noise from being superimposed on the first wiring due to the first voltage line.
  • An imaging device is A semiconductor substrate, a first pixel, a second pixel, and a first shield, The first pixel and the second pixel are adjacent to each other,
  • the first pixel is A first diffusion region provided on the semiconductor substrate;
  • the second pixel is A first transistor including a gate into which a second signal charge obtained by photoelectric conversion by the second pixel flows;
  • a first voltage line forming at least a part of a voltage supply path to the drain or the source of the first transistor, the first voltage line being applied with different voltages;
  • the distance between the first voltage line and the first shield is smaller than the distance between the first voltage line and the first wiring.
  • the second mode is suitable for suppressing noise.
  • the first shield of the second aspect is suitable for suppressing noise from being superimposed on the first wiring due to the first voltage line.
  • the voltage of the first voltage line may be changed while the voltage of the first shield is fixed.
  • the first shield of the third aspect is suitable for suppressing noise from being superimposed on the first wiring due to the first voltage line.
  • the imaging device further includes a first wiring layer provided at a first position in the thickness direction of the semiconductor substrate.
  • the first voltage line may be arranged in the first wiring layer
  • the first shield may be arranged in the first wiring layer
  • the first wiring may include a first portion located in the first wiring layer, The first shield may be between the first portion and the first voltage line in a plan view.
  • the first voltage line and the first shield may be placed on the same wiring layer.
  • the 1st shield of the 4th mode can exhibit the above-mentioned noise suppression effect.
  • the imaging device has a first wiring layer and a second wiring which are provided at different positions in the thickness direction of the semiconductor substrate. May further comprise layers, The first voltage line may be arranged in the first wiring layer, The first shield may be disposed on the second wiring layer, The first wiring may include a first portion located in the second wiring layer, The first shield may be between the first portion and the first voltage line in a plan view.
  • the first voltage line and the first shield may be placed in different wiring layers.
  • the first shield of the fifth aspect can exert the above noise suppressing effect.
  • the imaging device may include a second shield, A distance between the first voltage line and the second shield may be smaller than a distance between the first voltage line and the first wiring.
  • the second shield of the sixth aspect is suitable for suppressing noise from being superimposed on the first wiring due to the first voltage line.
  • a distance between the first shield and the first voltage line may be smaller than a distance between the first shield and the first wiring.
  • the first shield of the seventh aspect is suitable for suppressing noise from being superimposed on the first wiring due to the first voltage line.
  • Wiring may not be present between the first voltage line and the first shield in a plan view.
  • the first shield of the eighth aspect is suitable for suppressing the noise from being superimposed on the first wiring due to the first voltage line.
  • the first shield may include a first shield wire, A distance between the first voltage line and the first shield line may be smaller than a distance between the first voltage line and the first wiring.
  • the first shielded wire of the ninth aspect is suitable for suppressing the superimposition of noise on the first wiring due to the first voltage wire.
  • the imaging device may further include a capacitive element,
  • the capacitive element is A pair of electrodes, A dielectric layer sandwiched between the pair of electrodes, May be included,
  • the first shield may include one of the pair of electrodes.
  • the electrode of the capacitive element of the tenth aspect can act as a shield for suppressing the noise.
  • the one of the pair of electrodes may be closer to the first voltage line than the other of the pair of electrodes, A distance between the one of the pair of electrodes and the first voltage line may be smaller than a distance between the first wiring and the first voltage line.
  • One of the pair of electrodes according to the eleventh aspect is suitable for suppressing superimposition of noise on the first wiring due to the first voltage line.
  • the imaging device may further include a first photoelectric conversion unit,
  • the first photoelectric conversion unit may include a first electrode, a second electrode, and a photoelectric conversion layer arranged between the first electrode and the second electrode,
  • the photoelectric conversion layer may convert incident light into the first signal charge
  • the first wiring may connect the second electrode and the first diffusion region.
  • the first wiring of the twelfth aspect is suitable for flowing a signal charge from the first photoelectric conversion section to the first diffusion region.
  • the first electrode and the second electrode of the twelfth aspect are suitable for adjusting the electric field applied to the photoelectric conversion layer and adjusting the amount of the first signal charge generated in the photoelectric conversion layer.
  • the first voltage line and the first shield may be located between the first photoelectric conversion unit and the semiconductor substrate.
  • the arrangement of the first voltage line and the first shield in the thirteenth aspect is an example of the arrangement that can be adopted in the twelfth aspect.
  • the imaging device may further include a plurality of wiring layers provided at different positions in the thickness direction of the semiconductor substrate,
  • the plurality of wiring layers may include a first wiring layer,
  • the first voltage line may be arranged in the first wiring layer,
  • the first wiring layer may be the proximal layer.
  • the fourteenth aspect is suitable for avoiding disposing the signal line and the power supply line on the first photoelectric conversion unit side as viewed from the first voltage line. By doing so, the design considering the voltage fluctuation of the first voltage line is partially relaxed, and the wiring becomes easy.
  • the second electrode, the first shield, the first voltage line, and the semiconductor substrate may be arranged in this order in the thickness direction of the semiconductor substrate.
  • the first shield of the fifteenth aspect is suitable for suppressing noise from being superimposed on the second electrode due to the first voltage line.
  • the first shield may include a first shield wire,
  • the first shield line may overlap at least a part of the first voltage line in a plan view.
  • the 16th aspect of the shielded wire is suitable for suppressing noise from being superimposed on the second electrode due to the first voltage wire.
  • the first shield line may overlap the entire first voltage line.
  • the shield wire of the seventeenth aspect is suitable for suppressing noise from being superimposed on the second electrode due to the first voltage wire.
  • the imaging device may further include a third electrode,
  • the third electrode may be provided on the same side as the second electrode when viewed from the photoelectric conversion layer,
  • the third electrode may be electrically separated from the second electrode,
  • the third electrode may be electrically connected to the first shield.
  • the configuration of the eighteenth aspect is an example of a configuration in which the third electrode and the first shield can use a common voltage supply source.
  • the distance between the first shield and the first voltage line is Smaller than the distance between the second electrode and the first voltage line in the thickness direction of the semiconductor substrate, and It may be smaller than the distance between the first voltage line and the first wiring in a plan view.
  • the first shield of the nineteenth aspect suppresses noise from being superimposed on the second electrode due to the first voltage line, and prevents noise from being superimposed on the first wiring due to the first voltage line. Suitable for suppressing and.
  • a first photodiode may be formed by the first diffusion region and the semiconductor substrate, The first photodiode may convert incident light into the first signal charge, The first wiring may electrically connect the first transistor and the first diffusion region.
  • the twentieth aspect it is possible to realize an image pickup device using a photodiode.
  • An imaging device is A semiconductor substrate, a first pixel, and a first shield,
  • the first pixel is A first diffusion region provided on the semiconductor substrate;
  • a first wiring connected to the first diffusion region, in which a signal charge obtained by photoelectric conversion by the first pixel flows;
  • a first transistor A first voltage line connected to the gate of the first transistor, the first voltage line being applied with different voltages;
  • Including The distance between the first voltage line and the first shield is smaller than the distance between the first voltage line and the first wiring.
  • the 21st mode is suitable for suppressing noise.
  • the first shield of the twenty-first aspect is suitable for suppressing noise from being superimposed on the first wiring due to the first voltage line.
  • a twenty-second aspect of the present disclosure is A semiconductor substrate, a first pixel, a second pixel, and a first shield, The first pixel and the second pixel are adjacent to each other,
  • the first pixel is A first transistor, A first voltage line connected to the gate of the first transistor, the first voltage line being applied with different voltages;
  • the second pixel is A first diffusion region provided on the semiconductor substrate;
  • the 22nd mode is suitable for suppressing noise.
  • the first shield of the twenty-second aspect is suitable for suppressing noise from being superimposed on the first wiring due to the first voltage line.
  • the distance between two objects refers to the length of the shortest line segment connecting the two objects.
  • the terms FD wiring and shielded wire may be used.
  • the FD wiring refers to an element that may include a via.
  • Shield line refers to an element that may include vias.
  • the via hole and the conductor inside thereof are collectively referred to as “via”.
  • FIG. 1 is a diagram showing a structure of an image pickup apparatus 100 according to this embodiment. The structure of the image pickup apparatus 100 will be described with reference to FIG.
  • the image pickup device 100 is a photoelectric conversion film laminated type image pickup device.
  • the imaging device 100 has a structure in which a photoelectric conversion film is laminated on one surface side of a semiconductor substrate.
  • the imaging device 100 includes a plurality of pixels 101 and peripheral circuits.
  • a pixel area is composed of a plurality of pixels 101.
  • the plurality of pixels 101 are two-dimensionally arranged.
  • the plurality of pixels 101 may be arranged one-dimensionally.
  • the imaging device 100 is a line sensor.
  • the plurality of pixels 101 are arranged in the row direction and the column direction.
  • the row direction is the direction in which the row extends.
  • the column direction is the direction in which the columns extend.
  • the vertical direction is the column direction.
  • the horizontal direction is the row direction.
  • the image pickup apparatus 100 includes a control signal line CON1, a control signal line CON2, a control signal line CON3, an output signal line 111, a power supply line CON4, and a power supply line 112.
  • the control signal line CON1, the control signal line CON2, and the control signal line CON3 are arranged in each row.
  • the output signal line 111 and the power supply line CON4 are arranged for each column.
  • the reference voltage Vp is applied to the power supply line 112, and the reference voltage Vp is supplied to all the pixels.
  • Each of the pixels 101 is connected to the output signal line 111 arranged corresponding to the corresponding column. A detailed description of the pixel 101 will be given later.
  • the peripheral circuit includes a vertical scanning circuit 102, a column signal processing circuit 103, a horizontal signal reading circuit 104, a constant current source 105A, and a constant current source 105B.
  • the vertical scanning circuit 102 is also called a row scanning circuit.
  • the column signal processing circuit 103 is also called a row signal storage circuit.
  • the horizontal signal reading circuit 104 is also called a column scanning circuit.
  • the column signal processing circuit 103, the constant current source 105A, and the constant current source 105B are arranged, for example, for each column of the pixels 101 arranged two-dimensionally.
  • an example of the configuration of the peripheral circuit will be described.
  • the vertical scanning circuit 102 is connected to the control signal line CON1, the control signal line CON2, and the control signal line CON3.
  • the vertical scanning circuit 102 selects a plurality of pixels 101 arranged in each row by row unit by applying a predetermined voltage to the control signal line CON1. As a result, the reading of the signal voltage of the selected pixel 101 and the resetting of the pixel electrode described later are executed.
  • the pixels 101 arranged in each column are electrically connected to the column signal processing circuit 103 via the output signal line 111 corresponding to each column.
  • the column signal processing circuit 103 performs noise suppression signal processing represented by correlated double sampling and analog-digital conversion (AD conversion).
  • a horizontal signal reading circuit 104 is electrically connected to the plurality of column signal processing circuits 103 provided corresponding to the plurality of columns.
  • the horizontal signal read circuit 104 sequentially reads the signals output from the plurality of column signal processing circuits 103 to the horizontal signal common line 113.
  • the voltages having the plurality of values are generated by a voltage source (not shown). Note that this voltage source may be provided inside the image pickup apparatus 100 or may be provided outside the image pickup apparatus 100.
  • FIG. 2 is a circuit diagram showing an exemplary configuration of the pixel 101 in the imaging device 100 according to this embodiment.
  • the pixel 101 includes a photoelectric conversion unit 121 and a reading circuit 122.
  • the photoelectric conversion unit 121 is a photodetector.
  • the photoelectric conversion unit 121 converts incident light that is an optical signal into signal charge that is an electric signal.
  • the reading circuit 122 reads the electric signal detected by the photoelectric conversion unit 121.
  • the readout circuit 122 includes a band control unit 123, a charge storage region 124, a selection transistor 125, and an amplification transistor 126.
  • the charge storage region 124 refers to a part of the region where the signal charges detected by the photoelectric conversion unit 121 are stored. Specifically, the charge storage region 124 corresponds to the diffusion region provided in the semiconductor substrate. The charge storage region 124 can be called a floating diffusion (FD).
  • FD floating diffusion
  • the charge storage unit CSP refers to the entire configuration in which the signal charges detected by the photoelectric conversion unit 121 are stored.
  • the charge storage unit CSP includes a charge storage region 124.
  • the photoelectric conversion unit 121 has a first electrode, a second electrode, and a photoelectric conversion film.
  • the photoelectric conversion film is located between the first electrode and the second electrode.
  • the photoelectric conversion film is, for example, an organic photoelectric conversion film.
  • the reference voltage Vp is applied to the first electrode.
  • the charge storage region 124 is electrically connected to the second electrode. As a result, the signal charges generated by the photoelectric conversion unit 121 are accumulated in the charge accumulation region 124.
  • a method of accumulating signal charges in the charge accumulation region 124 when using the photoelectric conversion unit 121 having a photoelectric conversion film will be specifically described.
  • Electrons can also be used as signal charges.
  • a photodiode 127 is used as a photoelectric conversion unit like the pixel 101 shown in FIG.
  • the photodiode 127 includes, for example, an n-type diffusion layer located on the surface of the substrate and a p-type diffusion layer located in the substrate and in contact with the n-type diffusion layer.
  • the ground potential or the reference voltage Vp is applied to the p-type layer of the photodiode 127.
  • the photodiode 127 and the charge storage region 124 can be electrically connected via a transfer transistor (not shown). This specific example corresponds to the form of FIG. 26 described later.
  • the signal charge generated by the photodiode 127 is transferred to and accumulated in the charge accumulation region 124 via the transfer transistor.
  • the transfer transistor is not essential. The case where the photodiode 127 is used as the photoelectric conversion unit will be described later with reference to FIGS. 25 and 26.
  • An element having a photoelectric conversion function can be widely used as the photoelectric conversion unit.
  • the charge storage region 124 is connected to the photoelectric conversion unit 121 via a wiring layer.
  • the charge storage region 124 is connected to the gate of the amplification transistor 126.
  • the amplification transistor 126 outputs a signal corresponding to the amount of signal charges accumulated in the charge accumulation region 124 to the band control unit 123 and the selection transistor 125.
  • the band control unit 123 includes a reset transistor 131, a band control transistor 132, a capacitive element 133, and a capacitive element 134.
  • the reset transistor 131 is used to reset the charge storage region 124.
  • the band control transistor 132 is used to limit the band of the feedback signal that is fed back from the charge storage region 124 through the amplification transistor 126.
  • the signal charge read from the charge storage region 124 is amplified by the amplification transistor 126, band-limited by the band control transistor 132, and then fed back to the charge storage region 124. That is, the read circuit 122 has a feedback path that negatively feeds back the signal output from the amplification transistor 126 according to the amount of signal charge to the charge storage region 124.
  • This feedback path includes the charge storage region 124, the amplification transistor 126, the band control transistor 132, and the capacitance element 134.
  • the selection transistor 125 is connected to the output signal line 111 shared by at least two pixels 101.
  • the pixels 101 sharing the output signal line 111 may belong to the same column.
  • the output signal line 111 does not have to be arranged in all columns.
  • one output signal line 111 may be arranged for a plurality of columns, and one output signal line 111 may be shared by a plurality of columns.
  • a plurality of output signal lines 111 may be arranged in one column.
  • the first output signal line 111A and the second output signal line 111B are arranged in one column, and the signals of the pixels 101 located in odd rows are output to the first output signal line 111A.
  • the signals of the pixels 101 located in even-numbered rows may be output to the second output signal line 111B.
  • Capacitance element means a structure in which a dielectric such as an insulating film is sandwiched between electrodes.
  • the “electrode” is not limited to an electrode formed of a metal, but is widely interpreted to include a polysilicon layer and the like. The “electrode” in the present specification may be a part of the semiconductor substrate.
  • the charge storage region 124 is electrically connected to the gate of the amplification transistor 126.
  • the other of the drain and the source of the amplification transistor 126 is electrically connected to the other of the drain and the source of the band control transistor 132 and one of the drain and the source of the selection transistor 125.
  • one of the drain and the source of the band control transistor 132 is electrically connected to one end of the capacitive element 133.
  • the reference voltage VR1 is applied to the other end of the capacitive element 133.
  • One of the drain and the source of the band control transistor 132 is further electrically connected to one end of the capacitive element 134. Further, the other end of the capacitive element 134 is electrically connected to the charge storage region 124.
  • the control signal line CON2 is connected to the gate of the band control transistor 132. On / off of the band control transistor 132 is determined by the voltage of the control signal line CON2.
  • the band control transistor 132 when the voltage of the control signal line CON2 is high level, the band control transistor 132 is turned on. As a result, the charge storage region 124, the amplification transistor 126, the band control transistor 132, and the capacitive element 134 form a feedback path.
  • the signal output from the band control transistor 132 is attenuated by the attenuator circuit formed by the parasitic capacitance of the capacitor element 134 and the charge storage region 124, and the attenuated signal is transferred to the charge storage region 124. Will be returned.
  • the capacitance of the capacitive element 134 is Cc and the parasitic capacitance of the charge storage region 124 is Cfd
  • the attenuation rate B is represented by Cc / (Cc + Cfd).
  • the band control transistor 132 is turned off when the voltage of the control signal line CON2 becomes lower and becomes low level. In this case, no return path is formed.
  • the charge storage region 124 is further electrically connected to one of the drain and the source of the reset transistor 131.
  • One of the drain and the source of the reset transistor 131 may function as the charge storage region 124. That is, one of the drain and the source of the reset transistor 131 may be the charge storage region 124.
  • the other of the drain and the source of the reset transistor 131 is connected to the node 129.
  • a node means an electrical connection portion between a plurality of elements in an electric circuit, and is a concept including a wiring and the like that electrically connect the elements.
  • the control signal line CON3 is connected to the gate of the reset transistor 131.
  • the state of the reset transistor 131 is determined by the voltage of the control signal line CON3. For example, when the voltage of the control signal line CON3 is at high level, the reset transistor 131 turns on. As a result, the charge storage region 124 is reset to the voltage of the node 129.
  • the other of the source and the drain of the selection transistor 125 is connected to the output signal line 111.
  • the gate of the selection transistor 125 is connected to the control signal line CON1.
  • ON / OFF of the selection transistor 125 is determined by the voltage of the control signal line CON1. For example, when the voltage of the control signal line CON1 is high level, the selection transistor 125 is turned on. As a result, the amplification transistor 126 and the output signal line 111 are electrically connected. When the voltage of the control signal line CON1 is low level, the selection transistor 125 is turned off. As a result, the selection transistor 125 and the output signal line 111 are electrically separated.
  • the power supply line CON4 is connected to one of the drain and the source of the amplification transistor 126.
  • the voltage VA1 is applied from the power supply line CON4 to one of the drain and the source of the amplification transistor 126.
  • the voltage VA2 is applied to one of the drain and the source of the amplification transistor 126 from the power supply line CON4.
  • the voltage applied to one of the drain and the source of the amplification transistor 126 is switched to the voltage VA1 or the voltage VA2.
  • the voltage VA1 is GND.
  • GND is a ground voltage.
  • the voltage VA2 is VDD.
  • VDD is a power supply voltage.
  • the amplification circuit including the power supply line CON4 and the amplification transistor 126 may be provided for each pixel 101 or may be shared by a plurality of pixels 101. By sharing the amplifier circuit with the plurality of pixels 101, the number of elements per pixel can be reduced.
  • a constant current source 105A or 105B can be connected to the output signal line 111.
  • the selection transistor 125 When the selection transistor 125 is on, the selection transistor 125, the amplification transistor 126, and the constant current source 105A or 105B form a source follower circuit.
  • a signal corresponding to the signal charge accumulated in the charge accumulation region 124 is output to the output signal line 111 and read out to the outside.
  • the constant current source 105A is connected to the output signal line 111 during a reset period and a noise suppression period described later.
  • the constant current source 105B is connected to the output signal line 111.
  • FIG. 5 is a timing chart showing an example of the operation of the read circuit 122.
  • the horizontal axis represents time.
  • the vertical axis represents the voltage level of the control signal line CON1, the voltage level of the control signal line CON2, the voltage level of the control signal line CON3, and the voltage level of the power supply line CON4 from the top.
  • the selection transistor 125 is off because the voltage of the control signal line CON1 is at low level. Further, during this period, the signal charge generated according to the incident light is accumulated in the charge accumulation region 124.
  • the time period from time t1 to time t2 corresponds to the reading period.
  • the voltage of the control signal line CON1 becomes high level, so that the selection transistor 125 is turned on.
  • the voltage level of the power supply line CON4 is the voltage VA2 (eg VDD).
  • the amplification transistor 126 and the constant current source 105B form a source follower circuit.
  • a signal corresponding to the signal charge accumulated in the charge accumulation region 124 is output to the output signal line 111.
  • the amplification factor of the source follower circuit is, for example, about 1 time.
  • the voltage of the control signal line CON2 becomes high level, and the band control transistor 132 is turned on. Further, the voltage level of the power supply line CON4 becomes the voltage VA1, and the voltage VA1 is applied to one of the drain and the source of the amplification transistor 126.
  • the voltage VA1 is GND, for example.
  • the reset transistor 131 is turned on when the voltage of the control signal line CON3 becomes high level. As a result, the voltage of the charge storage region 124 is reset to the voltage VA1.
  • the power line CON4 has a resistance component.
  • this resistance component causes a voltage drop. Therefore, strictly speaking, when the reset transistor 131 is turned on, the voltage of the charge storage region 124 is reset to the reference voltage deviated from the voltage VA1. In reality, the voltage drop due to the resistance component also occurs in other wirings, but for convenience of explanation, the discussion of such voltage drop is omitted.
  • the period from time t3 to time t4 corresponds to the noise suppression period.
  • the read circuit 122 forms a feedback path with an amplification factor of ⁇ A ⁇ B. Therefore, the kTC noise of the charge storage region 124 when the reset transistor 131 is turned off is suppressed to 1 / (1 + A ⁇ B) times.
  • A is the amplification factor of the amplification transistor 126.
  • the voltage of the control signal line CON2 is set to the high level voltage.
  • the voltage of the control signal line CON2 is set to the middle level voltage between the high level and the low level. Therefore, the operation band of the band control transistor 132 is narrower in the period from time t3 to time t4 than in the period from time t2 to time t3.
  • the noise suppressing effect becomes large.
  • the time required for noise suppression becomes long, and therefore a long time is required as the time from time t3 to time t4.
  • the designer can arbitrarily adjust the operation band of the band control transistor 132 in accordance with the allowable time from time t3 to time t4.
  • the operating band of the band control transistor 132 in the noise suppression period is treated as being sufficiently lower than the operating band of the amplification transistor 126. Even if the operating band of the band control transistor 132 in the noise suppressing period is higher than the operating band of the amplifying transistor 126, the noise suppressing effect can be obtained.
  • the kTC noise generated in the band control transistor 132 is suppressed to 1 / (1 + A ⁇ B) 1/2 times.
  • the band control transistor 132 is turned off.
  • the kTC noise remaining in the charge storage region 124 when the band control transistor 132 is turned off is the root sum square of the kTC noise caused by the reset transistor 131 and the kTC noise caused by the band control transistor 132.
  • the capacitance of the capacitive element 133 is Cs.
  • the kTC noise of the band control transistor 132 generated without suppression by feedback is (Cfd / Cs) 1/2 times the kTC noise of the reset transistor 131 generated without suppression by feedback. ..
  • the kTC noise with feedback is suppressed by [ ⁇ 1+ (1 + A ⁇ B) ⁇ Cfd / Cs ⁇ 1/2 / (1 + A ⁇ B)] times as much as without feedback. ..
  • the voltage level of the power supply line CON4 becomes the voltage VA2.
  • the voltage VA2 is VDD, for example.
  • the voltage VA2 is applied to one of the drain and the source of the amplification transistor 126.
  • the amplification transistor 126 and the constant current source 105B form a source follower circuit.
  • a signal corresponding to the reset voltage is output to the output signal line 111.
  • a correlated double sampling process is performed in which the difference between the signal read during the reset read period and the signal read during the read period is calculated. Then, the obtained difference is output to the outside of the image pickup apparatus 100 as a pixel signal.
  • the kTC noise is included in the random noise.
  • the random noise means fluctuation of the output when the electric signal converted by the photoelectric conversion unit 121 is zero.
  • the kTC noise is suppressed by [ ⁇ 1+ (1 + A ⁇ B) ⁇ Cfd / Cs ⁇ 1/2 / (1 + A ⁇ B)] times during the noise suppression period. As a result, it is possible to obtain good image data in which random noise is suppressed.
  • the capacitance Cs of the capacitance element 133 is preferably larger than the capacitance Cc of the capacitance element 134.
  • the capacitive element 134 is interposed between the charge storage region 124 and the capacitive element 133. Due to this interposition, the charge storage region 124 and the capacitive element 133 are electrically separated. Therefore, even if the capacitance of the capacitive element 133 is increased, the signal in the charge storage region 124 is less likely to decrease. Therefore, it is possible to effectively suppress the random noise while suppressing the deterioration of the signal. Thereby, the S / N can be effectively improved.
  • the amplification factor is about one.
  • the present invention is not limited to this, and the designer may change the amplification factor according to the S / N or the circuit range required for the system.
  • feedback for noise cancellation is performed within each pixel.
  • the influence of the time constant of the output signal line 111 can be reduced as compared with the case where the feedback is performed via the output signal line 111. Therefore, noise can be canceled at high speed.
  • the capacitance of the capacitive element arranged in the pixel 101 a larger noise suppressing effect can be obtained.
  • the voltage of the power supply line CON4 changes during the transition from the read period to the reset period. That is, the voltage of the power supply line CON4 changes at time t2 in FIG.
  • the voltage of the power supply line CON4 also changes during the transition from the noise suppression period to the reset read period. That is, the voltage of the power supply line CON4 changes at time t4 in FIG.
  • a parasitic capacitance may occur between the power supply line CON4 and the charge storage unit CSP. Due to the presence of this parasitic capacitance, the voltage fluctuation of the voltage of the power supply line CON4 at the time t2 and the time t4 can change the voltage of the charge storage unit CSP.
  • a shield is provided to reduce the parasitic capacitance between the power supply line CON4 and the charge storage unit CSP.
  • the shield here means an electrostatic shield that blocks the influence of the electric field of the conductor.
  • the shield may include a material that is electrically conductive. The shield is held at a predetermined potential.
  • FIG. 6 is a plan view schematically showing an example of the layout of the FD wiring 141, the power supply line CON4, and the first shield 171 of the pixel 101 in the configuration of FIG.
  • the FD wiring 141 is connected to the charge storage region 124.
  • the FD wiring 141 is included in the charge storage unit CSP.
  • the material of the first shield 171 is, for example, metal, polysilicon, or semiconductor.
  • the first shield 171 includes the first shield wire 171L.
  • the first shield 171 may be configured by the shield wire 171L.
  • the first shield 171 may be made of a non-linear body.
  • the first shield 171 may include a shield wire and a non-linear body.
  • the first shield 171 is located between the FD wiring 141 and the power supply line CON4 in plan view.
  • the first shield 171 is closer to the power supply line CON4 than the FD wiring 141. No wiring exists between the power supply line CON4 and the first shield 171 in a plan view.
  • planar view means observing from a direction perpendicular to the semiconductor substrate.
  • the first shield line 171L is located between the FD wiring 141 and the power supply line CON4 in plan view.
  • the first shield line 171L is closer to the power supply line CON4 than the FD wiring 141 is.
  • no wiring exists between the power supply line CON4 and the first shield line 171L.
  • the power line CON4 extends in the column direction. However, the power supply line CON4 may extend in other directions such as the row direction.
  • the first shield wire 171L extends in the column direction. However, the first shield wire 171L may extend in other directions such as the row direction.
  • a discontinuous pattern may be provided between two adjacent pixels 101 or within one pixel 101. All or part of such a non-continuous pattern may act as a shield.
  • the discontinuous pattern can be composed of a plurality of parts.
  • each part may be electrically separated from each other. In this case, different voltages can be applied to the plurality of portions.
  • each part is connected to a corresponding fixed voltage source within the pixel 101 so that each part can be supplied with a predetermined voltage.
  • Multiple parts may be electrically connected to each other.
  • a plurality of portions can be provided in a certain wiring layer, and a plurality of vias can be extended to the plurality of portions from the same wiring in the wiring layer adjacent to the wiring layer. With this configuration, a plurality of parts can be electrically connected.
  • the plurality of parts may include a first shield 171 and a second shield 172.
  • the plurality of portions include a first shield wire 171L and a second shield wire 172L.
  • a gap G is formed between the first shield wire 171L and the second shield wire 172L.
  • the first shield wire 171L and the second shield wire 172L extend on the common axis CX.
  • the common axis CX extends parallel to the power supply line CON4.
  • the first shield wire 171L and the second shield wire 172L do not extend on the common axis.
  • the first shield wire 171L extends parallel to a part of the power supply line CON4.
  • the second shield wire 172L extends parallel to another part of the power supply line CON4.
  • the power supply line CON4 may be a power supply line commonly used for all pixels as shown in FIG.
  • the power supply line CON4 has at least a wiring portion extending in the column direction.
  • the power supply line CON4 has a plurality of wiring portions extending in the column direction within the pixel region. The wiring portion is provided for each column.
  • the plurality of wiring portions are electrically connected to each other outside the pixel region.
  • the voltage of the power supply line CON4 changes during the transition from the read period to the reset period.
  • the voltage of the power supply line CON4 also changes during the transition from the noise suppression period to the reset read period. Since there is a parasitic capacitance between the power supply line CON4 and the FD wiring 141, these voltage fluctuations may be transmitted to the FD wiring 141.
  • FIGS. 6, 7A and 7B it is possible to reduce the parasitic capacitance between the power supply line CON4 and the FD wiring 141 and suppress the voltage fluctuation of the FD wiring 141 due to capacitive coupling.
  • FIG. 8 is a plan view schematically showing an example of the layout of the charge storage region 124, the power supply line CON4 and the shield of the pixel 101 in the configuration of FIG.
  • the FD wiring 141 is arranged between the first shield 171A and the first shield 171B. Specifically, in plan view, the FD wiring 141 is arranged between the first shield line 171LA and the first shield line 171LB.
  • the first shield 171A is located between the FD wiring 141 and the power supply line CON4A in a plan view. Specifically, in a plan view, the first shield line 171LA is located between the FD wiring 141 and the power supply line CON4A.
  • the first shield 171B is located between the FD wiring 141 and the power supply line CON4B in plan view.
  • the first shield line 171LB is located between the FD wiring 141 and the power supply line CON4B in a plan view.
  • the first shield 171A and the first shield 171B may be electrically connected or may be electrically separated.
  • the power supply line CON4A and the power supply line CON4B are arranged in the same column.
  • the power supply line CON4A and the power supply line CON4B are not electrically connected in the pixel region.
  • the power supply line CON4A and the power supply line CON4B are connected to different pixels 101.
  • the power supply line CON4A is electrically connected to one of the source and the drain of the amplification transistor 126 included in a certain pixel 101.
  • the power supply line CON4B is electrically connected to one of the source and the drain of the amplification transistor 126 included in another pixel 101.
  • the power supply line CON4A is electrically connected to one of the source and the drain of the amplification transistor 126 included in the pixel 101 located in an odd row, and the power supply line CON4B is included in the pixel 101 located in an even row. It may be electrically connected to one of a source and a drain of the amplification transistor 126.
  • the power supply line CON4A and the power supply line CON4B are arranged in the same column.
  • the power supply line CON4A and the power supply line CON4B are electrically connected in the pixel region.
  • the power supply line CON4A and the power supply line CON4B are connected to the same pixel 101.
  • the power supply line CON4A and the power supply line CON4B are electrically connected to one of a source and a drain of the amplification transistor 126 included in a certain pixel 101.
  • the rows A and the rows B may be alternately arranged.
  • the number of power supply lines CON4 provided for one column may be one or plural.
  • pixel 101A and pixel 101B are adjacent to each other in the same column. Further, it is assumed that the power supply line CON4A and the power supply line CON4B are provided for the column.
  • the power supply line CON4A can be connected to the pixel 101A and the power supply line CON4B can be connected to the pixel 101B.
  • the first shield 171A and the first shield 171B are provided as shown in FIG. 8, capacitive coupling between the element in the pixel 101A and the power supply line CON4B can be suppressed, and the element in the pixel 101B can be suppressed. Capacitive coupling between the power supply line CON4A and the power supply line CON4A can be suppressed. A technique related to this will be described in detail in an example using FIG. 24B of the sixth embodiment.
  • FIG. 9 shows a cross-sectional view schematically showing the cross section taken along line A0-A1 of FIG.
  • FIG. 10 is a sectional view schematically showing a section taken along line A0-A1 of FIG.
  • a laminated structure including the photoelectric conversion unit 121 and the semiconductor substrate 151 is configured.
  • a p-type silicon (Si) substrate is used as the semiconductor substrate 151 will be described.
  • the interlayer insulating layer 152 includes interlayer insulating layers 152A, 152B, 152C and 152D.
  • the interlayer insulating layers 152A, 152B, 152C and 152D are laminated in this order.
  • the photoelectric conversion section 121 includes a first electrode 153, a photoelectric conversion layer 154, and a second electrode 155.
  • the first electrode 153, the photoelectric conversion layer 154, and the second electrode 155 are stacked in this order.
  • the first electrode 153 is provided on the surface of the photoelectric conversion layer 154 on the side on which the light from the subject is incident.
  • the photoelectric conversion layer 154 is arranged between the first electrode 153 and the second electrode 155.
  • the photoelectric conversion layer 154 typically has a film shape.
  • the photoelectric conversion layer 154 is, for example, an organic photoelectric conversion film.
  • the photoelectric conversion layer 154 may be an amorphous silicon film.
  • a shield electrode 156 is provided between the second electrode 155 of a certain pixel 101 and the second electrode 155 of the pixel 101 adjacent to the pixel 101.
  • the shield electrode 156 discharges the charges photoelectrically converted at the boundary between the pixels 101 adjacent to each other and improves the color mixing characteristic.
  • a fixed voltage can be supplied to the shield electrode 156.
  • a voltage can be applied to the shield electrode 156 via the wiring 159C and the via 159D.
  • a voltage can be applied to the shield electrode 156 from a power source (not shown) via the wiring 159C and the via 159D.
  • the amplification transistor 126 is formed between the semiconductor substrate 151 and the photoelectric conversion unit 121.
  • the FD wiring 141 includes wirings 157A, 157B and 157C and vias 158A, 158B, 158C and 158D.
  • the wirings 157A to 157C and the vias 158A to 158D are arranged in the interlayer insulating layer 152.
  • the wirings 157A to 157C are arranged in different wiring layers. Specifically, the wiring 157A is arranged in the wiring layer 192A. The wiring 157B is arranged in the wiring layer 192B. The wiring 157C is arranged in the wiring layer 192C.
  • the first shield 171, the power supply line CON4, and the wiring 157B are arranged in the same wiring layer 192B.
  • the first shield 171 is arranged between the power supply line CON4 and the wiring 157B.
  • the first shield line 171L, the power supply line CON4, and the wiring 157B are arranged in the same wiring layer 192B.
  • the first shield line 171L is arranged between the power supply line CON4 and the wiring 157B.
  • the first shield 171A, the power supply line CON4A, and the wiring 157B are arranged in the same wiring layer 192B.
  • the first shield 171A is arranged between the power supply line CON4A and the wiring 157B.
  • the first shield line 171LA, the power supply line CON4A, and the wiring 157B are arranged in the same wiring layer 192B.
  • the first shield line 171LA is arranged between the power supply line CON4A and the wiring 157B.
  • the first shield 171B, the power supply line CON4B, and the wiring 157B are arranged in the same wiring layer 192B.
  • the first shield 171B is arranged between the power supply line CON4B and the wiring 157B.
  • the first shield line 171LB, the power supply line CON4B, and the wiring 157B are arranged in the same wiring layer 192B.
  • the first shield line 171LB is arranged between the power supply line CON4B and the wiring 157B.
  • One power line CON4 may be arranged so as to straddle a plurality of wiring layers. Different power lines CON4 may be arranged in a plurality of wiring layers. In these cases, the parasitic capacitance can be suppressed by disposing the first shield 171 (specifically, the first shield line 171L) in each wiring layer in which the power supply line CON4 exists. Specifically, the parasitic capacitance can be suppressed by disposing the first shield 171 in each of the above wiring layers as described in the present embodiment.
  • the first shield 171 is supplied with a voltage that does not fluctuate during the pixel reading period.
  • the pixel readout period includes a signal readout period, a reset period, and a reset readout period.
  • the signal reading period corresponds to the period from time t1 to t2 in FIG.
  • the reset period corresponds to the period from time t2 to t3 in FIG.
  • the reset read period corresponds to the period from time t4 to t5 in FIG.
  • the voltage source that supplies the voltage to the first shield 171 may be the same as the voltage source that supplies the voltage to other elements. By doing so, the number of power sources in the imaging device 100 can be reduced. For example, one of the GND, the power supply voltage VDD, and the voltage applied to the shield electrode 156 can be supplied to the first shield 171. However, a dedicated power source for the first shield 171 may be used.
  • FIG. 11 is a cross-sectional view schematically showing a modified example of the cross section taken along the line A0-A1 shown in FIG.
  • the example shown in FIG. 11 differs from the example shown in FIG. 9 in that the first shield 171 (specifically, the first shield line 171L) is arranged over a plurality of wiring layers. Specifically, in FIG. 11, the first shield 171 is arranged in the three wiring layers 192A, 192b and 192C. However, the first shield 171 may be arranged over two wiring layers, or may be arranged over four or more wiring layers.
  • the first shield 171 specifically, the first shield line 171L
  • the first shield 171 is arranged over a plurality of wiring layers.
  • the first shield 171 is arranged in the three wiring layers 192A, 192b and 192C.
  • the first shield 171 may be arranged over two wiring layers, or may be arranged over four or more wiring layers.
  • FD wiring 141 is also arranged in wiring layers 192A and 192C different from wiring layer 192B in which power supply line CON4 is arranged.
  • the first shield 171 specifically, the first shield wire 171L
  • the first shield wire 171L not only in the wiring layer 192B but also in the wiring layers 192A and 192C. .. This is advantageous from the viewpoint of suppressing capacitive coupling between the wiring 157A of the FD wiring 141 and the power supply line CON4, and between the wiring 157C of the FD wiring 141 and the power supply line CON4.
  • the imaging device 100 of this embodiment can be described as follows.
  • the image pickup device 100 includes a semiconductor substrate 151, a first pixel 101, and a first shield 171.
  • the first pixel 101 includes a first diffusion region 124, a first wiring 141, a first transistor 126, and a first voltage line CON4.
  • the first diffusion region 124 is provided on the semiconductor substrate 151.
  • the first wiring 141 is connected to the first diffusion region 124.
  • the first transistor 126 includes a gate into which the first signal charge flows.
  • the first voltage line CON4 constitutes at least a part of a voltage supply path to the drain or the source of the first signal charge 126. Different voltages VA1 and VA2 are applied to the first voltage line CON4.
  • the distance Da between the first voltage line CON4 and the first shield 171 is smaller than the distance Dd between the first voltage line CON4 and the first wiring 141.
  • This embodiment is suitable for suppressing noise.
  • the first shield 171 of the present embodiment is suitable for suppressing the superimposition of noise on the first wiring 141 due to the first voltage line CON4.
  • the imaging device 100 may include a voltage supply circuit that applies different voltages to the first voltage line CON4.
  • the first diffusion region 124 corresponds to the charge storage region 124.
  • the first wiring 141 corresponds to the FD wiring 141.
  • the first transistor 126 corresponds to the amplification transistor 126.
  • the first voltage line CON4 corresponds to the power supply line CON4. For example, the first signal charge obtained by the photoelectric conversion of the photoelectric conversion unit 121 flows into the first diffusion region 124 and the gate of the first transistor 126 via the first wiring 141 connected to the photoelectric conversion unit 121. ..
  • the distance Da is the distance between the first voltage line CON4 existing in the first pixel 101 and the first shield 171.
  • the distance Dd is a distance between the first voltage line CON4 existing in the first pixel 101 and the first wiring 141 existing in the first pixel 101.
  • the distance Da is smaller than the distance Dd.
  • the first shield 171 having such a configuration is suitable for suppressing noise from being superimposed on the first wiring 141 existing in the first pixel 101 due to the first voltage line CON4 existing in the first pixel 101. ing.
  • the first shield 171 can shield at least a part of the line of electric force between the first wiring 141 and the first voltage line CON4.
  • the first voltage line CON4 is connected to the drain or source of the first signal charge 126.
  • the first shield 171 may be included in the first pixel 101 or may not be included in the first pixel 101.
  • the number of pixels corresponding to the first pixel 101 may be one or plural. All the pixels in the imaging device 100 may correspond to the first pixel 101.
  • the voltage of the first voltage line CON4 is changed while the voltage of the first shield 171 is fixed.
  • the voltage supply circuit described above may change the voltage of the first voltage line CON4 while applying the fixed voltage to the first shield 171.
  • the first shield 171 having such a configuration is suitable for suppressing noise from being superimposed on the first wiring 141 due to the first voltage line CON4.
  • the expression “the voltage of the first voltage line CON4 is changed while the voltage of the first shield 171 is fixed” is limited to only the aspect in which the voltage of the first shield 171 is always constant. Should not be construed as. This expression should be interpreted as including a mode in which the voltage of the first shield 171 changes except when the voltage of the first voltage line CON4 is changed.
  • the imaging device 100 includes the first wiring layer 192B.
  • the first wiring layer 192B is provided at a first position in the thickness direction of the semiconductor substrate 151.
  • the first voltage line CON4 is arranged in the first wiring layer 192B.
  • the first shield 171 is arranged on the first wiring layer 192B.
  • the first wiring 141 includes a first portion located in the first wiring layer 192B.
  • the first shield 171 is between the first portion and the first voltage line CON4 in a plan view.
  • the first voltage line CON4 and the first shield 171 may be arranged in the same wiring layer. In such a case, the 1st shield of this example can exhibit the above-mentioned noise suppression effect.
  • the first portion corresponds to the wiring 157B.
  • the imaging device 100 includes the second shield 172.
  • the distance Dx between the first voltage line CON4 and the second shield 172 is smaller than the distance Dd between the first voltage line CON4 and the first wiring 141.
  • the second shield having such a configuration is suitable for suppressing noise from being superimposed on the first wiring 141 due to the first voltage line CON4.
  • the distance Dx is the distance between the first voltage line CON4 existing in the first pixel 101 and the second shield 172.
  • the distance Dd is a distance between the first voltage line CON4 existing in the first pixel 101 and the first wiring 141 existing in the first pixel 101.
  • the distance Dx is smaller than the distance Dd.
  • the second shield 172 having such a configuration is suitable for suppressing noise from being superimposed on the first wiring 141 existing in the first pixel 101 due to the first voltage line CON4 existing in the first pixel 101. ing.
  • the second shield 172 can shield at least a part of the line of electric force between the first wiring 141 and the first voltage line CON4.
  • the voltage of the first voltage line CON4 can be changed while the voltage of the second shield 172 is fixed.
  • the second shield 172 having such a configuration is suitable for suppressing noise from being superimposed on the first wiring 141 due to the first voltage line CON4.
  • the first shield 171 and the second shield 172 may be electrically separated or may be electrically connected.
  • the second shield 172 may be included in the first pixel 101 or may not be included in the first pixel 101.
  • the voltage applied to the first shield 171 and the voltage applied to the second shield 172 may be the same or different.
  • the distance Da between the first shield 171 and the first voltage line CON4 is smaller than the distance Df between the first shield 171 and the first wiring 141.
  • the first shield 171 having such a configuration is suitable for suppressing noise from being superimposed on the first wiring 141 due to the first voltage line CON4.
  • the first shield 171 having such a configuration is suitable for suppressing noise from being superimposed on the first wiring 141 due to the first voltage line CON4.
  • the imaging device 100 includes the first wiring layer 192B.
  • the first wiring layer 192B is provided at a first position in the thickness direction of the semiconductor substrate 151.
  • the first voltage line CON4 is arranged in the first wiring layer 192B.
  • the first shield 171 is arranged on the first wiring layer 192B.
  • the first wiring 141 includes a first portion located in the first wiring layer 192B.
  • the first shield 171 is between the first portion and the first voltage line CON4 in a plan view. In a plan view, no wiring exists between the first voltage line CON4 and the first shield 171.
  • the first shield 171 includes the first shield wire 171L.
  • the distance Da between the first voltage line CON4 and the first shield line 171L is smaller than the distance Dd between the first voltage line CON4 and the first wiring 141.
  • the first shield line 171L having such a configuration is suitable for suppressing noise from being superimposed on the first wiring 141 due to the first voltage line CON4.
  • the distance Da is the distance between the first voltage line CON4 existing in the first pixel 101 and the first shield line 171L.
  • the distance Dd is a distance between the first voltage line CON4 existing in the first pixel 101 and the first wiring 141 existing in the first pixel 101.
  • the distance Da is smaller than the distance Dd.
  • the first shield line 171L having such a configuration suppresses noise from being superimposed on the first wiring 141 existing in the first pixel 101 due to the first voltage line CON4 existing in the first pixel 101. are suitable.
  • the first shield line 171L can shield at least a part of the lines of electric force between the first wiring 141 and the first voltage line CON4.
  • the second shield 172 includes the second shield wire 172L.
  • the distance Dx between the first voltage line CON4 and the second shield line 172L is smaller than the distance Dd between the first voltage line CON4 and the first wiring 141.
  • the second shield line 172L having such a configuration is suitable for suppressing noise from being superimposed on the first wiring 141 due to the first voltage line CON4.
  • the distance Dx is the distance between the first voltage line CON4 existing in the first pixel 101 and the second shield line 172L.
  • the distance Dd is a distance between the first voltage line CON4 existing in the first pixel 101 and the first wiring 141 existing in the first pixel 101.
  • the distance Dx is smaller than the distance Dd.
  • the second shield line 172L having such a configuration suppresses noise from being superimposed on the first wiring 141 existing in the first pixel 101 due to the first voltage line CON4 existing in the first pixel 101. are suitable.
  • the second shield line 172L can shield at least a part of the line of electric force between the first wiring 141 and the first voltage line CON4.
  • the first shield wire 171L and the second shield wire 172L may be electrically separated or may be electrically connected.
  • the first shield line 171L and the first voltage line CON4 extend in parallel in the region where they are closest to each other.
  • the second shield line 172L and the first voltage line CON4 extend in parallel in the region where they are closest to each other.
  • the distance Da between the first shield line 171L and the first voltage line CON4 is smaller than the distance Df between the first shield 171 and the first wiring 141.
  • the imaging device 100 includes the first wiring layer 192B.
  • the first wiring layer 192B is provided at a first position in the thickness direction of the semiconductor substrate 151.
  • the first voltage line CON4 is arranged in the first wiring layer 192B.
  • the first shield line 171L is arranged in the first wiring layer 192B.
  • the first wiring 141 includes a first portion located in the first wiring layer 192B.
  • the first shield line 171L is between the first portion and the first voltage line CON4 in a plan view. When seen in a plan view, no wiring exists between the first voltage line CON4 and the first shield line 171L.
  • the imaging device 100 includes a first photoelectric conversion unit 121.
  • the first photoelectric conversion section 121 includes a first electrode 153, a second electrode 155, and a photoelectric conversion layer 154 arranged between the first electrode 153 and the second electrode 155.
  • the photoelectric conversion layer 154 converts incident light into first signal charges.
  • the first wiring 141 connects the second electrode 155 and the first diffusion region 124.
  • the first wiring 141 having such a configuration is suitable for flowing the first signal charge from the first photoelectric conversion unit 121 to the first diffusion region 124.
  • the first electrode 153 and the second electrode 155 are suitable for adjusting the electric field applied to the photoelectric conversion layer 154 and adjusting the amount of the first signal charge generated in the photoelectric conversion layer 154.
  • the first voltage line CON4 and the first shield 171 are located between the first photoelectric conversion section 121 and the semiconductor substrate 151 in the thickness direction of the semiconductor substrate 151.
  • the first voltage line CON4 and the first shield line 171L are located between the first photoelectric conversion unit 121 and the semiconductor substrate 151 in the thickness direction of the semiconductor substrate 151.
  • the imaging device 100 includes the third electrode 156.
  • the third electrode 156 is provided on the same side as the second electrode 155 when viewed from the photoelectric conversion layer 154.
  • the third electrode 156 is electrically separated from the second electrode 155.
  • the third electrode 156 may be electrically connected to the first shield 171.
  • This configuration is an example of a configuration in which the third electrode and the first shield can use a common voltage supply source.
  • the third electrode 156 corresponds to the shield electrode 156.
  • the power supply line CON4 and the first shield 171 are arranged in different wiring layers.
  • the power supply line CON4 is arranged in the wiring layer 192B.
  • the first shield 171 is arranged on the wiring layer 192A.
  • the first shield 171 includes a first shield wire 171L.
  • the power supply line CON4 and the first shield line 171L are arranged in different wiring layers.
  • the first shield line 171L is arranged in the wiring layer 192A.
  • the shield in a wiring layer different from the wiring layer in which the power supply line CON4 is arranged. Even if the shields are arranged in different wiring layers, the shield can suppress capacitive coupling due to parasitic capacitance between the FD wiring 141 and the power supply line CON4. For example, when the shield is arranged closer to the FD wiring 141 than the power supply line CON4, the shield may shield part of the lines of electric force between the power supply line CON4 and the FD wiring 141.
  • the first shield 171 is arranged in the wiring layer on the semiconductor substrate 151 side as viewed from the wiring layer in which the power supply line CON4 is arranged.
  • the first shield 171 may be arranged in a wiring layer opposite to the semiconductor substrate 151 as viewed from the wiring layer in which the power supply line CON4 is arranged.
  • the first shield 171 may be arranged on both the wiring layer on the side of the semiconductor substrate 151 and the wiring layer on the side opposite to the semiconductor substrate 151 when viewed from the wiring layer on which the power supply line CON4 is arranged.
  • the first shield line 171L is arranged in the wiring layer on the semiconductor substrate 151 side as viewed from the wiring layer in which the power supply line CON4 is arranged.
  • the first shield line 171L may be arranged in the wiring layer on the side opposite to the semiconductor substrate 151 when viewed from the wiring layer in which the power supply line CON4 is arranged.
  • the first shield line 171L may be arranged in both the wiring layer on the side of the semiconductor substrate 151 and the wiring layer on the side opposite to the semiconductor substrate 151 when viewed from the wiring layer in which the power supply line CON4 is arranged.
  • the imaging device 100 of this embodiment can be described as follows.
  • the image pickup apparatus 100 includes a first wiring layer 192B and a second wiring layer 192C.
  • the first wiring layer 192B and the second wiring layer 192C are provided at different positions in the thickness direction of the semiconductor substrate 151.
  • the first voltage line CON4 is arranged in the first wiring layer 192B.
  • the first shield 171 is arranged on the second wiring layer 192A.
  • the first wiring 141 includes a first portion located inside the second wiring layer 192A.
  • the first shield 171 is between the first portion and the first voltage line CON4 in a plan view. In this way, the first voltage line and the first shield may be arranged in different wiring layers. In such a case, the 1st shield of this embodiment can exhibit the above-mentioned noise suppression effect.
  • the first portion corresponds to the wiring 157A.
  • the first wiring 141 includes a second portion located inside the first wiring layer 192B.
  • the first shield 171 is between the second portion and the first voltage line CON4 in a plan view.
  • the second portion corresponds to the wiring 157A.
  • the first shield line 171L is arranged on the second wiring layer 192A.
  • the first shield line 171L is between the first portion and the first voltage line CON4 in a plan view.
  • the first shield line 171L is between the second portion and the first voltage line CON4 in a plan view.
  • the first wiring layer 192B where the first voltage line CON4 is located and the second wiring layer 192A where the first shield 171 is located are adjacent to each other.
  • the wiring layer in which the first voltage line CON4 is located and the wiring layer in which the first shield 171 is located may not be adjacent to each other.
  • the first shield 171 is arranged on the wiring layer 192C on the side opposite to the semiconductor substrate 151 as viewed from the wiring layer 192B on which the power supply line CON4 is arranged.
  • the first shield 171 includes a first shield wire 171L.
  • the first shield line 171L is arranged on the wiring layer 192C on the opposite side.
  • the second electrode 155, the first shield 171, the power supply line CON4, and the semiconductor substrate 151 are arranged in this order. Specifically, with respect to the thickness direction of the semiconductor substrate 151, the second electrode 155, the first shield 171, the power supply line CON4, and the semiconductor substrate 151 are arranged in this order.
  • the second electrode 155 is included in the charge storage unit CSP. Therefore, from the viewpoint of reducing noise, it is advantageous to suppress not only the parasitic capacitance between the power supply line CON4 and the FD wiring 141 but also the parasitic capacitance between the power supply line CON4 and the second electrode 155. ..
  • the image pickup apparatus 100 of the present embodiment has a feature that can be explained as follows.
  • the first shield 171 includes a first shield wire 171L.
  • the first shield line 171L overlaps at least a part of the first voltage line CON4. With this configuration, it is easy to shield the line of electric force between the first voltage line CON4 and the second electrode 155.
  • the first shield line 171L having such a configuration is suitable for suppressing noise from being superimposed on the second electrode 155 due to the first voltage line CON4.
  • the first shield line 171L overlaps the entire first voltage line CON4 in plan view.
  • this configuration it is particularly easy to shield the line of electric force between the first voltage line CON4 and the second electrode 155. Therefore, this configuration is particularly suitable for suppressing noise from being superimposed on the second electrode 155 due to the first voltage line CON4.
  • the width of the first shield line 171L is wider than the width of the first voltage line CON4 in plan view.
  • this configuration it is easy to shield the line of electric force between the first voltage line CON4 and the second electrode 155. Therefore, this configuration is suitable for suppressing noise from being superimposed on the second electrode 155 due to the first voltage line CON4. Even when the first shield line 171L and the first voltage line CON4 do not overlap with each other in a plan view, the effect of shielding the lines of electric force between the first voltage line CON4 and the second electrode 155 can be obtained. ..
  • the configuration shown in FIG. 13B can also be adopted.
  • the imaging device 100 includes a plurality of wiring layers 192A to 192C provided at different positions in the thickness direction of the semiconductor substrate 151.
  • the plurality of wiring layers 192A to 192C include a first wiring layer 192C.
  • the first voltage line CON4 is arranged in the first wiring layer 192C.
  • the first wiring layer 192C is the proximal layer. This is suitable for avoiding disposing the signal line and the power supply line on the photoelectric conversion layer 154 side as viewed from the first voltage line CON4. In this way, the design considering the voltage fluctuation of the first voltage line CON4 is partly relaxed, and the wiring becomes easier.
  • the size of the interlayer insulating layer 152D in the thickness direction of the semiconductor substrate 151 may be large, and the distance between the second electrode 155 and the proximal layer 192C may be large.
  • FIG. 13C The configuration shown in FIG. 13C can also be adopted.
  • the distance Dc between the first shield 171 and the first voltage line CON4 is smaller than the distance Db between the second electrode 155 and the first voltage line CON4 in the thickness direction of the semiconductor substrate 151. small.
  • the distance Dc is smaller than the distance Dd between the first voltage line CON4 and the first wiring 141 in plan view.
  • the distance Dc between the first shield line 171L and the first voltage line CON4 is the distance between the second electrode 155 and the first voltage line CON4 in the thickness direction of the semiconductor substrate 151. It is smaller than the distance Db between them. The distance Dc is smaller than the distance Dd between the first voltage line CON4 and the first wiring 141 in plan view.
  • the image pickup apparatus 100 includes a capacitive element 185.
  • the capacitor 185 includes an electrode 181, an electrode 183, and a dielectric layer 182.
  • the electrode 181 and the electrode 183 are on opposite sides of each other with the dielectric layer 182 interposed therebetween.
  • the capacitive element 185 is a MIM (Metal Insulator Metal) capacitance.
  • the electrode 181 can be referred to as the first MIM electrode 181.
  • the electrode 183 can be referred to as the second MIM electrode 183.
  • the capacitive element 133 or the capacitive element 134 can be adopted as the capacitive element 185.
  • the first MIM electrode 181 is electrically connected to a power source (not shown). In one example, this power supply provides a fixed voltage to the first MIM electrode 181.
  • the second MIM electrode 183 is electrically connected to the second diffusion region 184.
  • the second diffusion region 184 is provided on the semiconductor substrate 151.
  • the second diffusion region 184 is a diffusion region different from the first diffusion region 124.
  • the second diffusion region 184 may be the other of the drain and the source of the reset transistor 131.
  • the first MIM electrode 181 plays a role of shielding a part of the lines of electric force between the power supply line CON4 and the FD wiring 141.
  • the first MIM electrode 181 can be considered to be included in the first shield 171.
  • the imaging device 100 of this embodiment can be described as follows.
  • the image pickup apparatus 100 includes a capacitive element 185.
  • the capacitor 185 includes a pair of electrodes 181 and 183 and a dielectric layer 182.
  • the dielectric layer 182 is sandwiched between the pair of electrodes 181 and 183.
  • the first shield 171 includes one of the pair of electrodes 181 and 183.
  • the electrode of the capacitor 185 having such a structure can act as a shield for suppressing the noise.
  • the above-mentioned one of the pair of electrodes 181 and 183 is closer to the first voltage line CON4 than the other of the pair of electrodes 181 and 183.
  • the distance De between the one of the pair of electrodes 181 and 183 and the first voltage line CON4 is smaller than the distance Dd between the first wiring 141 and the first voltage line CON4.
  • the proximal electrode having such a configuration is suitable for suppressing noise from being superimposed on the first wiring 141 due to the first voltage line.
  • the one of the pair of electrodes 181 and 183 corresponds to the first MIM electrode 181.
  • the plurality of pixels 201 are arranged in the row direction and the column direction, similarly to the imaging device 100 of the first embodiment shown in FIG.
  • one output signal line 111 is provided for each column.
  • the output signal line 111 in each column is connected to the pixel 101 in that column.
  • the constant current source 105A or the constant current source 105B can be connected to the output signal line 111 of each column.
  • one signal line 211 is provided for each column.
  • the signal line 211 in each column is connected to the pixel 201 in that column.
  • the constant current source 105B or the power supply line CON4 can be connected to the signal line 211 in each column.
  • a signal line 212 is further connected to each pixel 201.
  • the constant current source 105A or the power supply VDD can be connected to the output signal line 212.
  • FIG. 16 shows an exemplary circuit diagram of the pixel 201 in the imaging device 200 according to this embodiment.
  • a circuit configuration different from the circuit configuration of the first embodiment shown in FIG. 2 is adopted.
  • the lower terminal in FIG. 16 is referred to as one of the drain and the source, and the upper terminal is referred to as the other of the drain and the source.
  • the power supply line CON4 is connected to one of the drain and the source of the amplification transistor 126.
  • the constant current source 105A or the constant current source 105B can be electrically connected to the other of the drain and the source of the amplification transistor 126 via the selection transistor 125.
  • the constant current source 105B or the power supply line CON4 can be electrically connected to one of the drain and the source of the amplification transistor 126 via the selection transistor 125.
  • the constant current source 105A or the power supply VDD can be electrically connected to the other of the drain and the source of the amplification transistor 126.
  • one of the drain and the source of the selection transistor 125 is electrically connected to the other of the drain and the source of the amplification transistor 126.
  • One of a drain and a source of the selection transistor 125 is electrically connected to the band control transistor 132.
  • the other one of the drain and the source of the selection transistor 125 is electrically connected to one of the drain and the source of the amplification transistor 126.
  • One of a drain and a source of the selection transistor 125 can be electrically connected to the constant current source 105B or the power supply line CON4.
  • FIG. 17 is a timing chart showing an example of the operation of the read circuit 222.
  • the horizontal axis of each graph shows time.
  • the vertical axis represents the voltage level of the control signal line CON1, the voltage level of the control signal line CON2, the voltage level of the control signal line CON3, and the voltage level of the power supply line CON4 from the top.
  • the voltage value of the power supply line CON4 is 1 value.
  • the value of the voltage applied to the power supply line CON4 may be a plurality of values.
  • the selection transistor 125 is off because the voltage of the control signal line CON1 is at low level. Further, during this period, the signal charge generated according to the incident light is accumulated in the charge accumulation region 124.
  • the time period from time t1 to time t2 corresponds to the reading period.
  • the voltage of the control signal line CON1 becomes high level, so that the selection transistor 125 is turned on.
  • the power supply VDD is electrically connected to the amplification transistor 126 and the constant current source 105B is electrically connected to the selection transistor 125.
  • the amplification transistor 126 and the constant current source 105B form a source follower circuit.
  • a signal corresponding to the signal charge accumulated in the charge accumulation region 124 is output to the signal line 211.
  • the voltage of the control signal line CON2 becomes high level, and the band control transistor 132 is turned on.
  • the constant current source 105A is electrically connected to the amplification transistor 126
  • the power supply line CON4 is electrically connected to the selection transistor 125
  • the voltage VA1 is applied to one of the drain and the source of the amplification transistor 126.
  • the voltage of the control signal line CON3 becomes high level, and the reset transistor 131 is turned on. As a result, the voltage of the charge storage region 124 is reset to the voltage VA1.
  • the voltage of the control signal line CON3 becomes low level, and the reset transistor 131 is turned off.
  • the read circuit 122 forms a feedback path with an amplification factor of ⁇ A ⁇ B. Therefore, the kTC noise of the charge storage region 124 when the reset transistor 131 is turned off is suppressed to 1 / (1 + A ⁇ B) times.
  • the period from time t3 to time t4 corresponds to the noise suppression period.
  • the voltage of the control signal line CON2 is set to the high level voltage.
  • the voltage of the control signal line CON2 is set to the middle level voltage between the high level and the low level.
  • the noise is suppressed by [ ⁇ 1+ (1 + A ⁇ B) ⁇ Cfd / Cs ⁇ 1/2 / (1 + A ⁇ B)] times as compared with the case where there is no feedback, as in the first embodiment.
  • the power supply VDD is electrically connected to the amplification transistor 126 again, and the constant current source 105B is electrically connected to the selection transistor 125 again.
  • the amplification transistor 126 and the constant current source 105B form a source follower circuit.
  • a signal corresponding to the reset voltage is output to the signal line 211.
  • the electrical connection destination of the signal line 211 is switched between the constant current source 105B and the power supply line CON4. This switching causes a change in the voltage of the signal line 211.
  • the voltage of the signal line 211 changes at the transition from the read period to the reset period. That is, the voltage of the signal line 211 changes at time t2 in FIG. Further, the voltage of the signal line 211 also changes during the transition from the noise suppression period to the reset read period. That is, the voltage of the signal line 211 changes at time t4 in FIG.
  • a shield for reducing the parasitic capacitance between the signal line 211 and the charge storage unit CSP is provided.
  • FIG. 18 is a plan view schematically showing an example of the layout of the charge storage region 124 of the pixel 201, the signal line 211, and the first shield 171 in the configuration of FIG. Similar to the first embodiment, the FD wiring 141 is connected to the charge storage region 124.
  • the first shield 171 is located between the FD wiring 141 and the signal line 211 in plan view.
  • the plan view means observation from a direction perpendicular to the semiconductor substrate 151.
  • the first shield line 171L is closer to the signal line 211 than the FD wiring 141. In a plan view, no wiring exists between the signal line 211 and the shield line.
  • the signal line 211 extends in the column direction. However, the signal line 211 may extend in other directions such as the row direction.
  • the first shield wire 171L extends in the column direction. However, the first shield wire 171L may extend in other directions such as the row direction.
  • the voltage of the signal line 211 changes during the transition from the read period to the reset period.
  • the voltage of the signal line 211 also changes during the transition from the noise suppression period to the reset read period. If there is a parasitic capacitance between the signal line 211 and the FD wiring 141, these voltage fluctuations may be transmitted to the FD wiring 141.
  • the imaging device 200 of this embodiment can be described as follows.
  • the image pickup device 200 includes a semiconductor substrate 151, a first pixel 201, and a first shield 171.
  • the first pixel 201 includes a first diffusion region 124, a first wiring 141, a first transistor 126, and a first voltage line 211.
  • the first diffusion region 124 is provided on the semiconductor substrate 151.
  • the first wiring 141 is connected to the first diffusion region 124.
  • the first voltage line 211 constitutes at least a part of a voltage supply path to the drain or the source of the first transistor 126. Different voltages are applied to the first voltage line 211.
  • the distance Da between the first voltage line 211 and the first shield 171 is smaller than the distance Dd between the first voltage line 211 and the first wiring 141.
  • This embodiment is suitable for suppressing noise.
  • the first shield 171 of the present embodiment is suitable for suppressing noise from being superimposed on the first wiring 141 due to the first voltage line 211.
  • the first voltage line 211 corresponds to the signal line 211.
  • the voltage applied to the signal line 211 may change when the signal line 211 is connected to the constant current source 105B and when it is connected to the power supply line CON4.
  • the distance Da is the distance between the first voltage line 211 existing in the first pixel 201 and the first shield 171.
  • the distance Dd is a distance between the first voltage line 211 existing in the first pixel 201 and the first wiring 141 existing in the first pixel 201.
  • the distance Da is smaller than the distance Dd.
  • the first shield 171 having such a configuration is suitable for suppressing noise from being superimposed on the first wiring 141 existing in the first pixel 201 due to the first voltage line 211 existing in the first pixel 201. ing.
  • the first shield 171 can shield at least a part of the lines of electric force between the first wiring 141 and the first voltage line 211.
  • the voltage of the control signal line CON1, the control signal line CON2, and the control signal line CON3 also fluctuates during the pixel readout period. If there is a parasitic capacitance between each signal line and the FD wiring 141, the voltage of the FD wiring 141 changes due to the voltage fluctuation of each signal line via the parasitic capacitance.
  • the parasitic capacitance between the FD wiring 141 and the control signal line CON1 the parasitic capacitance between the FD wiring 141 and the control signal line CON2, and the parasitic capacitance between the FD wiring 141 and the control signal line CON3. It is advantageous to suppress the parasitic capacitance of The same applies to the fifth embodiment.
  • the charge storage region 124, the control signal line CON1, the control signal line CON2, the control signal line CON3, and the first shield 171 of the pixel 101 according to FIG. 1 are laid out as illustrated in FIG. Be done.
  • the first shield 171 is located between the FD wiring 141 and the control signal line CON1 in plan view.
  • the first shield 171 is located between the FD wiring 141 and the control signal line CON2 in a plan view.
  • the first shield 171 is located between the FD wiring 141 and the control signal line CON3 in a plan view.
  • the first shield 171 includes the first shield wire 171L.
  • the first shield 171 may be configured by the shield wire 171L.
  • the first shield 171 may be made of a non-linear body.
  • the first shield 171 may include a shield wire and a non-linear body.
  • the first shield line 171L is located between the FD wiring 141 and the control signal line CON1 in plan view.
  • the first shield line 171L is located between the FD wiring 141 and the control signal line CON2 in a plan view.
  • the first shield line 171L is located between the FD wiring 141 and the control signal line CON3 in a plan view.
  • the first shield 171 is closer to the control signal line CON1 than the FD wiring 141. In plan view, no wiring exists between the control signal line CON1 and the first shield 171.
  • the first shield line 171L is closer to the control signal line CON1 than the FD wiring 141. In plan view, no wiring exists between the control signal line CON1 and the first shield line 171L.
  • control signal line CON1, the control signal line CON2, and the control signal line CON3 extend in the row direction.
  • control signal line CON1, the control signal line CON2, and the control signal line CON3 may extend in the column direction.
  • the first shield wire 171L extends in the row direction.
  • the first shield wire 171L may extend in the column direction.
  • the discontinuous pattern may be provided between two adjacent pixels 101 or within one pixel 101. All or part of such a non-continuous pattern may act as a shield.
  • the discontinuous pattern can be composed of a plurality of parts electrically separated from each other.
  • the plurality of portions may include the first shield 171 and the second shield 172.
  • the plurality of portions may include a first shield wire 171L and a second shield wire 172L.
  • control signal line CON1, the control signal line CON2, and the control signal line CON3 is not limited to the arrangement shown in FIG.
  • the control signal line CON3, the control signal line CON2, and the control signal line CON1 may be arranged in this order from the side closer to the first shield 171.
  • the control signal line CON3, the control signal line CON2, and the control signal line CON1 may be arranged in this order from the side closer to the first shield line 171L.
  • FIG. 20 is a sectional view schematically showing the section taken along the line A0-A1 of FIG.
  • the first shield 171, the control signal line CON1, the control signal line CON2, and the control signal line CON3 are arranged in the same wiring layer 192B. Specifically, the first shield line 171L, the control signal line CON1, the control signal line CON2, and the control signal line CON3 are arranged in the same wiring layer 192B.
  • the control signal line CON1, the control signal line CON2, and the control signal line CON3 may be arranged in different wiring layers.
  • the first shield 171 can be arranged between each control signal line and the FD wiring 141 in a plan view.
  • the first shield line 171L can be arranged between each control signal line and the FD wiring 141 in a plan view.
  • the control signal line CON1 is arranged in the wiring layer 192C.
  • the control signal line CON2 is arranged in the wiring layer 192B.
  • the control signal line CON3 is arranged in the wiring layer 192A.
  • the first shield 171 is arranged across a plurality of wiring layers. Specifically, in FIG. 21, the first shield 171 is arranged in the three wiring layers 192C, 192B, and 192A.
  • the first shield 171 specifically includes a first shield wire 171L. In the wiring layer 192C, the first shield line 171L is arranged between the control signal line CON1 and the FD wiring 141.
  • the first shield line 171L is arranged between the control signal line CON2 and the FD wiring 141.
  • the first shield line 171L is arranged between the control signal line CON3 and the FD wiring 141.
  • FIG. 22 is a plan view schematically showing another example of the layout of the charge storage region 124, the control signal line CON1, the control signal line CON2, the control signal line CON3, and the shield of the pixel 101 in the configuration of FIG.
  • the FD wiring 141 is located between the first shield 171A and the first shield 171B in plan view.
  • the first shield 171A is located between the FD wiring 141 and the control signal line CON1 in a plan view.
  • the first shield 171B is located between the FD wiring 141 and the control signal line CON3 in a plan view.
  • the FD wiring 141 is located between the first shield line 171LA and the first shield line 171LB in a plan view.
  • the first shield line 171LA is located between the FD wiring 141 and the control signal line CON1 in a plan view.
  • the first shield line 171LB is located between the FD wiring 141 and the control signal line CON3 in a plan view.
  • FIG. 23 is a sectional view schematically showing a section taken along the line A0-A1 of FIG.
  • control signal line CON1, the control signal line CON2, and the control signal line CON3 are arranged in the same wiring layer 192B.
  • a first shield 171A and a first shield 171B are also arranged on the wiring layer 192B.
  • the first shield line 171LA and the first shield line 171LB are arranged in the wiring layer 192B.
  • FIG. 24A is a plan view schematically showing an example of the layout of the pixels 101A and 101B that are adjacent in the same column.
  • each of the pixel 101A and the pixel 101B includes the charge storage region 124, the control signal line CON1, the control signal line CON2, the control signal line CON3, the first shield 171A, and the first shield 171B.
  • each of the pixel 101A and the pixel 101B includes a charge storage region 124, a control signal line CON1, a control signal line CON2, a control signal line CON3, a first shield line 171LA, and a first shield line 171LB.
  • the FD wiring 141 is located between the first shield 171A and the first shield 171B in a plan view.
  • the first shield 171A is located between the FD wiring 141 and the control signal line CON1 in a plan view. The same applies to the pixel 101B.
  • the FD wiring 141 is located between the first shield line 171LA and the first shield line 171LB in a plan view.
  • the first shield line 171LA is located between the FD wiring 141 and the control signal line CON1 in a plan view. The same applies to the pixel 101B.
  • the first shield 171B of the pixel 101B is located between the FD wiring 141 of the pixel 101B and the control signal line CON3 of the pixel 101A.
  • the first shield line 171LB of the pixel 101B is located between the FD wiring 141 of the pixel 101B and the control signal line CON3 of the pixel 101A.
  • the first shield 171A of the pixel 101A can suppress the capacitive coupling between the FD wiring 141 of the pixel 101A and the control signal line CON1 of the pixel 101A.
  • the first shield 171A of the pixel 101B can suppress capacitive coupling between the FD wiring 141 of the pixel 101B and the control signal line CON1 of the pixel 101B.
  • the first shield 171B of the pixel 101B can suppress capacitive coupling between the FD wiring 141 of the pixel 101B and the control signal line CON3 of the pixel 101A.
  • the pixel 101A has a first shield 171C, and the first shield 171C is located between the FD wiring 141 of the pixel 101B and the one of the control signal lines of the pixel 101A closest to the FD wiring 141 of the pixel 101B. You may have. Also according to this mode, the first shield 171C of the pixel 101A can suppress the capacitive coupling between the FD wiring 141 of the pixel 101B and the control signal lines CON1 to CON3 of the pixel 101A.
  • the layout of FIG. 24B can also be adopted.
  • the distance Da between the power supply line CON4 of the second pixel 101B and the first shield 171 is the distance between the power supply line CON4 of the second pixel 101B and the first wiring 141 of the first pixel 101B. It is smaller than Dd. By doing so, it is possible to suppress capacitive coupling between the power supply line CON4 of the second pixel 101B and the first wiring 141 of the first pixel 101B.
  • the imaging device 100 according to FIG. 24B can be described as follows.
  • the imaging device 100 includes a semiconductor substrate 151, a first pixel 101A, a second pixel 101B, and a first shield.
  • the first pixel 101A and the second pixel 101B are adjacent to each other.
  • the first pixel 101A includes a first diffusion region 124 and a first wiring 141.
  • the first diffusion region 124 is provided on the semiconductor substrate 151.
  • the first wiring 141 is connected to the first diffusion region 124.
  • the first signal charge obtained by the photoelectric conversion by the first pixel 101A flows.
  • the second pixel 101B includes a first transistor 126 and a first voltage line CON4.
  • the first transistor 126 includes a gate into which the second signal charge obtained by the photoelectric conversion by the second pixel 101B flows.
  • the first voltage line CON4 constitutes at least a part of a voltage supply path to the drain or the source of the first transistor 126. Different voltages VA1 and VA2 are applied to the first voltage line CON4.
  • the distance Da between the first voltage line CON4 and the first shield 171 is smaller than the distance Dd between the first voltage line CON4 and the first wiring 141.
  • This configuration is suitable for suppressing noise.
  • the first shield 171 having such a configuration is suitable for suppressing noise from being superimposed on the first wiring 141 due to the first voltage line CON4.
  • the first diffusion region 124 corresponds to the charge storage region 124.
  • the first wiring 141 corresponds to the FD wiring 141.
  • the first transistor 126 corresponds to the amplification transistor 126.
  • the first voltage line CON4 corresponds to the power supply line CON4.
  • the distance Da is the distance between the first voltage line CON4 existing in the second pixel 101B and the first shield 171.
  • the distance Dd is a distance between the first voltage line CON4 existing in the second pixel 101B and the first wiring 141 existing in the first pixel 101A.
  • the distance Da is smaller than the distance Dd.
  • the first shield 171 having such a configuration is suitable for suppressing noise from being superimposed on the first wiring 141 existing in the first pixel 101A due to the first voltage line CON4 existing in the second pixel 101B. ing.
  • the first shield 171 can shield at least a part of the line of electric force between the first wiring 141 and the first voltage line CON4.
  • the first voltage line CON4 is connected to the drain or source of the first signal charge 126.
  • the semiconductor substrate 151 is provided with the second diffusion layer of the second pixel 101B.
  • the second wiring of the second pixel 101B is connected to the second diffusion layer.
  • the second signal charge obtained by the photoelectric conversion of the second pixel 101B flows.
  • the second diffusion layer is electrically connected to the gate of the first transistor 126 of the second pixel 101B.
  • the second diffusion layer corresponds to the charge storage region 124 of the second pixel 101B.
  • the second wiring corresponds to the FD wiring 141 of the second pixel 101B.
  • the first shield 171 may be a constituent element of the first pixel 101A, a constituent element of the second pixel 101B, or a constituent element of these pixels 101A and 101B.
  • the pixels of the imaging device form an array.
  • the first pixel 101A and the second pixel 101B are adjacent to each other in the row direction or the column direction of the array.
  • the amplification transistor 126 and the first voltage line CON4 of the second pixel 101B may have the same features as those of the amplification transistor 126 and the first voltage line CON4 of the second pixel 101B described above in the first embodiment and the like. ..
  • the features of the above-described embodiment can be combined with the example of FIG. 24B.
  • the photoelectric conversion unit is not limited to the one described in the first embodiment.
  • the photodiode 127 is used as the photoelectric conversion unit.
  • FIG. 25 is an example of a cross-sectional view taken along line A0-A1 shown in FIG. 6 in that case.
  • the photodiode 127 is composed of the charge storage region 124 and the semiconductor substrate 151. It can be said that the charge accumulation region 124 is provided on the semiconductor substrate 151 as in the first embodiment.
  • the charge storage region 124 is connected to the FD wiring 141.
  • the FD wiring 141 electrically connects the charge storage region 124 and the gate of the amplification transistor 126 (not shown).
  • a part of the FD wiring 141, the first shield 171, and the power supply line CON4 are arranged in the same wiring layer 192A. Specifically, a part of the FD wiring 141, the first shield line 171L, and the power supply line CON4 are arranged in the same wiring layer 192A.
  • the FD wiring 141 includes a via 158A and a wiring 157A.
  • the part of the FD wiring 141 is the wiring 157A.
  • the signal charge generated by the photodiode 127 flows from the charge storage region 124 through the FD wiring 141 into the gate of the amplification transistor 126 shown in FIG.
  • the distance Da between the first voltage line CON4 and the first shield 171 is smaller than the distance Dd between the first voltage line CON4 and the first wiring 141.
  • the first shield 171 is arranged in the wiring layer 192A between a part of the first wiring 141 and the first voltage line CON4. As a result, it is possible to suppress capacitive coupling due to the parasitic capacitance between the first wiring 141 and the first voltage line CON4.
  • FIG. 6 is an example of a cross-sectional view taken along line A0-A1 shown in FIG. 6 in that case. In the following, a description overlapping with the example of FIG. 25 may be omitted.
  • the photodiode 127 is composed of the charge storage region and the semiconductor substrate 151.
  • the charge accumulation region 124 different from the charge accumulation region of the photodiode 127 is provided on the semiconductor substrate 151.
  • the photodiode 127 and the charge storage region 124 can be electrically connected via the transfer transistors 161 and 162.
  • the number of transfer transistors used may be one or three or more.
  • the signal charge generated by the photodiode 127 flows into the charge storage region 124 through the transistors 161 and 162, and further, from the charge storage region 124 through the first wiring 141, the amplification transistor shown in FIG. It flows into the gate of 126.
  • the first diffusion region 124 or the diffusion region and the semiconductor substrate 151 form the first photodiode 127. That is, the first photodiode 127 exists in the semiconductor substrate 151 and includes the first diffusion region 124 or the diffusion region. The first photodiode 127 converts incident light into first signal charges.
  • the first wiring 141 electrically connects the first transistor 126 and the first diffusion region 124.
  • Imaging device 100 according to FIG. 24A described above can be described as follows.
  • the image pickup device 100 includes a semiconductor substrate 151, a first pixel 101A, and a first shield.
  • the first pixel 101A includes a first diffusion region 124, a first wiring 141, a first transistor, and a first voltage line.
  • the first diffusion region 124 is provided on the semiconductor substrate 151.
  • the first wiring 141 is connected to the first diffusion region 124.
  • signal charges obtained by photoelectric conversion by the first pixel 101A flow.
  • the first voltage line is connected to the gate of the first transistor. Different voltages are applied to the first voltage line.
  • the distance between the first voltage line and the first shield is smaller than the distance between the first voltage line and the first wiring 141.
  • Such a configuration is suitable for suppressing noise.
  • the first shield having such a configuration is suitable for suppressing noise from being superimposed on the first wiring due to the first voltage line.
  • the combination of the first transistor and the first voltage line may correspond to the combination of the selection transistor 125 of the first pixel 101A and the control signal line CON1 of the first pixel 101A.
  • the combination of the first transistor and the first voltage line may correspond to the combination of the band control transistor 132 of the first pixel 101A and the control signal line CON2 of the first pixel 101A.
  • the combination of the first transistor and the first voltage line may correspond to the combination of the reset transistor 131 of the first pixel 101A and the control signal line CON3 of the first pixel 101A.
  • the first shield may correspond to the first shield 171A extending in a chain double-dashed line that represents the first pixel 101A in FIG. 24A. Specifically, the first shield can correspond to the first shield line 171LA extending in the two-dot chain line.
  • the distance between the first voltage line existing in the first pixel 101A and the first shield is the first voltage line existing in the first pixel 101A and the first voltage line existing in the first pixel 101A. It is smaller than the distance between the first wiring 141 and the first wiring 141.
  • the first shield having such a configuration is suitable for suppressing noise from being superimposed on the first wiring 141 existing in the first pixel 101A due to the first voltage line existing in the first pixel 101A. ..
  • the first shield can shield at least a part of the line of electric force between the first wiring 141 and the first voltage line.
  • the first shield may be a constituent element of the first pixel 101A or may not be a constituent element of the first pixel 101A.
  • the imaging device 100 according to FIG. 24A described above can also be described as follows.
  • the imaging device 100 includes a semiconductor substrate 151, a first pixel 101A, a second pixel 101B, and a first shield.
  • the first pixel 101A and the second pixel 101B are adjacent to each other.
  • the first pixel 101A includes a first transistor and a first voltage line.
  • the first voltage line is connected to the gate of the first transistor. Different voltages are applied to the first voltage line.
  • the second pixel 101B includes a first diffusion region 124 and a first wiring 141.
  • the first diffusion region 124 is provided on the semiconductor substrate 151.
  • the first wiring 141 is connected to the first diffusion region 124. In the first wiring 141, signal charges obtained by photoelectric conversion by the second pixel 101B flow.
  • the distance between the first voltage line and the first shield is smaller than the distance between the first voltage line and the first wiring 141.
  • Such a configuration is suitable for suppressing noise.
  • the first shield having such a configuration is suitable for suppressing noise from being superimposed on the first wiring due to the first voltage line.
  • the combination of the first transistor and the first voltage line may correspond to the combination of the selection transistor 125 of the first pixel 101A and the control signal line CON1 of the first pixel 101A.
  • the combination of the first transistor and the first voltage line may correspond to the combination of the band control transistor 132 of the first pixel 101A and the control signal line CON2 of the first pixel 101A.
  • the combination of the first transistor and the first voltage line may correspond to the combination of the reset transistor 131 of the first pixel 101A and the control signal line CON3 of the first pixel 101A.
  • the first shield may correspond to the first shield 171B extending in a chain double-dashed line that represents the second pixel 101B in FIG. 24A. Specifically, the first shield can correspond to the first shield line 171LB extending in the same two-dot chain line.
  • the distance between the first voltage line existing in the first pixel 101A and the first shield is the first voltage line existing in the first pixel 101A and the first voltage line existing in the second pixel 101B. It is smaller than the distance between the first wiring 141 and the first wiring 141.
  • the first shield having such a configuration is suitable for suppressing noise from being superimposed on the first wiring 141 existing in the second pixel 101B due to the first voltage line existing in the first pixel 101A. ..
  • the first shield can shield at least a part of the line of electric force between the first wiring 141 and the first voltage line.
  • the first shield may be a constituent element of the first pixel 101A, a constituent element of the second pixel 101B, or a constituent element of these pixels 101A and 101B.
  • the pixels of the imaging device form an array.
  • the first pixel 101A and the second pixel 101B are adjacent to each other in the row direction or the column direction of the array.
  • a camera system can be configured using the image pickup apparatus according to each of the embodiments described above.
  • an example of the camera system will be described with reference to FIG.
  • the camera system 300 shown in FIG. 27 includes an optical system 310, an imaging device 100, a signal processing circuit 360, a system controller 370, and a display device 380.
  • the camera system 300 is, for example, a smartphone, a digital camera, a video camera, or the like.
  • the image pickup apparatus 200 can be used.
  • the signal processing circuit 360 is, for example, a DSP (Digital Signal Processor).
  • the signal processing circuit 360 receives the output data from the imaging device 100 and performs processing such as gamma correction, color interpolation processing, spatial interpolation processing, and auto white balance.
  • the display device 380 is, for example, a liquid crystal display or an organic EL (Electro Luminescence) display.
  • the display device 380 may include an input interface such as a touch panel.
  • the user can use the touch pen to select the processing content of the signal processing circuit 360, control it, and set the imaging conditions via the input interface.
  • the system controller 370 controls the entire camera system 300.
  • the system controller 370 is typically a semiconductor integrated circuit, for example, a CPU.
  • the captured image can be displayed on the display device 380. Therefore, the photographed image can be immediately confirmed. Furthermore, GUI (Graphic User Interface) control using the display device 380 becomes possible.
  • the imaging device according to the present disclosure is useful as various imaging devices. It can also be applied to applications such as digital cameras, digital video cameras, mobile phones with cameras, medical cameras such as electronic endoscopes, in-vehicle cameras and robot cameras.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

撮像装置は、半導体基板と、光電変換を行う第1画素と、第1シールドと、を備える。前記第1画素は、前記半導体基板内に存在する第1拡散領域と、前記第1拡散領域に接続された第1配線と、第1トランジスタと、前記第1トランジスタのドレインまたはソースへの電圧供給経路の少なくとも一部を構成する第1電圧線と、を含む。第1配線には、前記第1画素による前記光電変換で得られた第1信号電荷が流れる。前記第1トランジスタのゲートには、前記第1配線を経由して前記第1信号電荷が流入する。第1電圧線には、互いに異なる電圧が印加される。前記第1電圧線と前記第1シールドとの間の距離は、前記第1電圧線と前記第1配線との間の距離よりも小さい。

Description

撮像装置
 本開示は、撮像装置に関する。
 デジタルカメラなどに、イメージセンサが用いられている。イメージセンサとしては、CCD(Charge Coupled Device)イメージセンサおよびCMOS(Complementary Metal Oxide Semiconductor)イメージセンサが例示される。これらのイメージセンサでは、半導体基板に、フォトダイオードが設けられている。
 他方、特許文献1および2では、半導体基板と光電変換部との積層構造を有する撮像装置が提案されている。特許文献1および2の積層型の撮像装置では、光電変換部は、光電変換を行う光電変換層を有する。光電変換により、電荷が生成される。電荷は、電荷蓄積領域(「フローティングディフュージョン」と呼ばれる)に蓄積される。半導体基板には、CCD回路またはCMOS回路が設けられている。電荷蓄積領域に蓄積された電荷の量に応じた信号が、CCD回路またはCMOS回路を介して読み出される。
特許第6108280号 特許第6124217号
 ノイズを抑制する技術が要求されている。
 本開示は、
 半導体基板と、光電変換を行う第1画素と、第1シールドと、を備え、
 前記第1画素は、
  前記半導体基板内に存在する第1拡散領域と、
  前記第1拡散領域に接続された第1配線であって、前記第1画素による前記光電変換で得られた第1信号電荷が流れる第1配線と、
  前記第1配線を経由して前記第1信号電荷が流入するゲートを含む第1トランジスタと、
  前記第1トランジスタのドレインまたはソースへの電圧供給経路の少なくとも一部を構成する第1電圧線であって、互いに異なる電圧が印加される第1電圧線と、
 を含み、
 前記第1電圧線と前記第1シールドとの間の距離は、前記第1電圧線と前記第1配線との間の距離よりも小さい、
 撮像装置を提供する。
 本開示は、ノイズを抑制する技術を提供する。
図1は、撮像装置の例示的な回路構成を示す模式図である。 図2は、画素の例示的な回路構成を示す模式図である。 図3は、画素の例示的な回路構成を示す模式図である。 図4は、撮像装置の例示的な回路構成を示す模式図である。 図5は、読み出し回路の動作の一例を説明するためのタイミングチャートである。 図6は、画素における各配線のレイアウトの一例を模式的に示す平面図である。 図7Aは、画素における各配線のレイアウトの一例を模式的に示す平面図である。 図7Bは、画素における各配線のレイアウトの一例を模式的に示す平面図である。 図8は、画素における各配線のレイアウトの一例を模式的に示す平面図である。 図9は、画素における断面の一例を模式的に示す断面図である。 図10は、画素における断面の一例を模式的に示す断面図である。 図11は、画素における断面の一例を模式的に示す断面図である。 図12は、画素における断面の一例を模式的に示す断面図である。 図13Aは、画素における断面の一例を模式的に示す断面図である。 図13Bは、画素における断面の一例を模式的に示す断面図である。 図13Cは、画素における断面の一例を模式的に示す断面図である。 図14は、画素における断面の一例を模式的に示す断面図である。 図15は、撮像装置の例示的な回路構成を示す模式図である。 図16は、画素の例示的な回路構成を示す模式図である。 図17は、読み出し回路の動作の一例を説明するためのタイミングチャートである。 図18は、画素における各配線のレイアウトの一例を模式的に示す平面図である。 図19は、画素における各配線のレイアウトの一例を模式的に示す平面図である。 図20は、画素における断面の一例を模式的に示す断面図である。 図21は、画素における断面の一例を模式的に示す断面図である。 図22は、画素における各配線のレイアウトの一例を模式的に示す平面図である。 図23は、画素における断面の一例を模式的に示す断面図である。 図24Aは、画素における各配線のレイアウトの一例を模式的に示す平面図である。 図24Bは、画素における各配線のレイアウトの一例を模式的に示す平面図である。 図25は、画素における断面の一例を模式的に示す断面図である。 図26は、画素における断面の一例を模式的に示す断面図である。 図27は、カメラシステムのブロック図である。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る撮像装置は、
 半導体基板と、第1画素と、第1シールドと、を備え、
 前記第1画素は、
  前記半導体基板に設けられた第1拡散領域と、
  前記第1拡散領域に接続された第1配線であって、前記第1画素による光電変換で得られた第1信号電荷が流れる第1配線と、
  前記第1信号電荷が流入するゲートを含む第1トランジスタと、
  前記第1トランジスタのドレインまたはソースへの電圧供給経路の少なくとも一部を構成する第1電圧線であって、互いに異なる電圧が印加される第1電圧線と、
 を含み、
 前記第1電圧線と前記第1シールドとの間の距離は、前記第1電圧線と前記第1配線との間の距離よりも小さい。
 第1態様は、ノイズを抑制するのに適している。具体的には、第1態様の第1シールドは、第1電圧線が原因で第1配線にノイズが重畳されるのを抑制するのに適している。
 本開示の第2態様に係る撮像装置は、
 半導体基板と、第1画素と、第2画素と、第1シールドと、を備え、
 前記第1画素および前記第2画素は、互いに隣接しており、
 前記第1画素は、
  前記半導体基板に設けられた第1拡散領域と、
  前記第1拡散領域に接続された第1配線であって、前記第1画素による光電変換で得られた第1信号電荷が流れる第1配線と、
 を含み、
 前記第2画素は、
  前記第2画素による光電変換で得られた第2信号電荷が流入するゲートを含む第1トランジスタと、
  前記第1トランジスタのドレインまたはソースへの電圧供給経路の少なくとも一部を構成する第1電圧線であって、互いに異なる電圧が印加される第1電圧線と、
 を含み、
 前記第1電圧線と前記第1シールドとの間の距離は、前記第1電圧線と前記第1配線との間の距離よりも小さい。
 第2態様は、ノイズを抑制するのに適している。具体的には、第2態様の第1シールドは、第1電圧線が原因で第1配線にノイズが重畳されるのを抑制するのに適している。
 本開示の第3態様において、例えば、第1態様または第2態様に係る撮像装置では、
 前記第1シールドの電圧が固定された状態で、前記第1電圧線の電圧が変更されてもよい。
 第3態様の第1シールドは、第1電圧線が原因で第1配線にノイズが重畳されるのを抑制するのに適している。
 本開示の第4態様において、例えば、第1から第3態様のいずれか1つに係る撮像装置は、前記半導体基板の厚さ方向に関する第1の位置に設けられた第1配線層をさらに備えていてもよく、
 前記第1電圧線は、前記第1配線層に配置されていてもよく、
 前記第1シールドは、前記第1配線層に配置されていてもよく、
 前記第1配線は、前記第1配線層内に位置する第1部分を含んでいてもよく、
 平面視において、前記第1シールドは、前記第1部分と前記第1電圧線との間にあってもよい。
 第1電圧線および第1シールドが、同じ配線層に配置されている場合がある。そのような場合において、第4態様の第1シールドは、上記ノイズ抑制効果を発揮し得る。
 本開示の第5態様において、例えば、第1から第3態様のいずれか1つに係る撮像装置は、前記半導体基板の厚さ方向に関する互いに異なる位置に設けられた第1配線層および第2配線層をさらに備えていてもよく、
 前記第1電圧線は、前記第1配線層に配置されていてもよく、
 前記第1シールドは、前記第2配線層に配置されていてもよく、
 前記第1配線は、前記第2配線層内に位置する第1部分を含んでいてもよく、
 平面視において、第1シールドは、前記第1部分と前記第1電圧線との間にあってもよい。
 第1電圧線および第1シールドが、互いに異なる配線層に配置されている場合がある。そのような場合において、第5態様の第1シールドは、上記ノイズ抑制効果を発揮し得る。
 本開示の第6態様において、例えば、第1から第5態様のいずれか1つに係る撮像装置は、第2シールドを備えていてもよく、
 前記第1電圧線と前記第2シールドとの間の距離は、前記第1電圧線と前記第1配線との間の距離よりも小さくてもよい。
 第6態様の第2シールドは、第1電圧線が原因で第1配線にノイズが重畳されるのを抑制するのに適している。
 本開示の第7態様において、例えば、第1から第6態様のいずれか1つに係る撮像装置では、
 前記第1シールドと前記第1電圧線との間の距離は、前記第1シールドと前記第1配線との間の距離よりも小さくてもよい。
 第7態様の第1シールドは、第1電圧線が原因で第1配線にノイズが重畳されるのを抑制するのに適している。
 本開示の第8態様において、例えば、第1から第7態様のいずれか1つに係る撮像装置では、
 平面視において、前記第1電圧線と前記第1シールドとの間に、配線が存在しなくてもよい。
 第8態様の第1シールドは、第1電圧線が原因で第1配線にノイズが重畳されるのを抑制するのに適している。
 本開示の第9態様において、例えば、第1から第8態様のいずれか1つに係る撮像装置では、
 前記第1シールドは、第1シールド線を含んでいてもよく、
 前記第1電圧線と前記第1シールド線との間の距離は、前記第1電圧線と前記第1配線との間の距離よりも小さくてもよい。
 第9態様の第1シールド線は、第1電圧線が原因で第1配線にノイズが重畳されるのを抑制するのに適している。
 本開示の第10態様において、例えば、第1から第9態様のいずれか1つに係る撮像装置は、容量素子をさらに備えていてもよく、
 前記容量素子は、
  一対の電極と、
  前記一対の電極に挟まれた誘電体層と、
 を含んでいてもよく、
 前記第1シールドは、前記一対の電極の一方を含んでいてもよい。
 第10態様の容量素子の電極は、上記ノイズ抑制のためのシールドとして作用し得る。
 本開示の第11態様において、例えば、第10態様に係る撮像装置では、
 前記一対の電極の前記一方は、前記一対の電極の他方に比べて前記第1電圧線に近い近くてもよく、
 前記一対の電極の前記一方と前記第1電圧線との間の距離は、前記第1配線と前記第1電圧線との間の距離よりも小さくてもよい。
 第11態様の一対の電極の一方は、第1電圧線が原因で第1配線にノイズが重畳されるのを抑制するのに適している。
 本開示の第12態様において、例えば、第1から第11態様のいずれか1つに係る撮像装置は、第1光電変換部をさらに備えていてもよく、
 前記第1光電変換部は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に配置された光電変換層と、を含んでいてもよく、
 前記光電変換層は、入射光を前記第1信号電荷に変換してもよく、
 前記第1配線は、前記第2電極と前記第1拡散領域とを接続していてもよい。
 第12態様の第1配線は、第1光電変換部から第1拡散領域へと信号電荷を流すのに適している。第12態様の第1電極および第2電極は、光電変換層に印加される電界を調整して光電変換層で生成される第1信号電荷の量を調整するのに適している。
 本開示の第13態様において、例えば、第12態様に係る撮像装置では、
 前記半導体基板の厚さ方向に関し、前記第1電圧線および前記第1シールドは、前記第1光電変換部と前記半導体基板との間の位置にあってもよい。
 第13態様の第1電圧線および第1シールドの配置は、第12態様において採用され得る配置の一例である。
 本開示の第14態様において、例えば、第12態様または第13態様に係る撮像装置は、前記半導体基板の厚さ方向に関する互いに異なる位置に設けられた複数の配線層をさらに備えていてもよく、
 前記複数の配線層は、第1配線層を含んでいてもよく、
 前記第1電圧線は、前記第1配線層に配置されていてもよく、
 前記複数の配線層のうち前記第1光電変換部に最も近い層を近位層と定義したとき、前記第1配線層は、前記近位層であってもよい。
 第14態様は、第1電圧線からみて第1光電変換部側に信号線および電源線を配置するのを回避するのに適している。このようにすれば、第1電圧線の電圧変動を考慮した設計が一部緩和され、配線が容易となる。
 本開示の第15態様において、例えば、第12から第14態様のいずれか1つに係る撮像装置では、
 前記半導体基板の厚さ方向に関し、前記第2電極と、前記第1シールドと、前記第1電圧線と、前記半導体基板とは、この順に並んでいてもよい。
 第15態様の第1シールドは、第1電圧線が原因で第2電極にノイズが重畳されるのを抑制するのに適している。
 本開示の第16態様において、例えば、第15態様に係る撮像装置では、
 前記第1シールドは、第1シールド線を含んでいてもよく、
 平面視において、前記第1シールド線は、前記第1電圧線の少なくとも一部と重なっていてもよい。
 第16態様のシールド線は、第1電圧線が原因で第2電極にノイズが重畳されるのを抑制するのに適している。
 本開示の第17態様において、例えば、第16態様に係る撮像装置では、
 平面視において、前記第1シールド線は、前記第1電圧線の全体と重なっていてもよい。
 第17態様のシールド線は、第1電圧線が原因で第2電極にノイズが重畳されるのを抑制するのに適している。
 本開示の第18態様において、例えば、第12から第17態様のいずれか1つに係る撮像装置は、第3電極をさらに備えていてもよく、
 前記第3電極は、前記光電変換層からみて前記第2電極と同じ側に設けられていてもよく、
 前記第3電極は、前記第2電極と電気的に分離されていてもよく、
 前記第3電極は、前記第1シールドと電気的に接続されていてもよい。
 第18態様の構成は、第3電極と第1シールドとが共通の電圧供給元を利用可能な構成の一例である。
 本開示の第19態様において、例えば、第12から第18態様のいずれか1つに係る撮像装置では、
 前記第1シールドと前記第1電圧線との間の距離は、
  前記半導体基板の厚さ方向に関する前記第2電極と前記第1電圧線との間の距離よりも小さく、かつ、
  平面視における前記第1電圧線と前記第1配線との間の距離よりも小さくてもよい。
 第19態様の第1シールドは、第1電圧線が原因で第2電極にノイズが重畳されるのを抑制することと、第1電圧線が原因で第1配線にノイズが重畳されるのを抑制することと、に適している。
 本開示の第20態様において、例えば、第1から第11態様のいずれか1つに係る撮像装置では、
 前記第1拡散領域と、前記半導体基板とによって、第1フォトダイオードが構成されていてもよく、
 前記第1フォトダイオードは、入射光を前記第1信号電荷に変換してもよく、
 前記第1配線は、前記第1トランジスタと前記第1拡散領域とを電気的に接続していてもよい。
 第20態様によれば、フォトダイオードを用いた撮像装置を実現できる。
 本開示の第21態様に係る撮像装置は、
 半導体基板と、第1画素と、第1シールドと、を備え、
 前記第1画素は、
  前記半導体基板に設けられた第1拡散領域と、
  前記第1拡散領域に接続された第1配線であって、前記第1画素による光電変換で得られた信号電荷が流れる第1配線と、
  第1トランジスタと、
  前記第1トランジスタのゲートに接続された第1電圧線であって、互いに異なる電圧が印加される第1電圧線と、
 を含み、
 前記第1電圧線と前記第1シールドとの間の距離は、前記第1電圧線と前記第1配線との間の距離よりも小さい。
 第21態様は、ノイズを抑制するのに適している。具体的には、第21態様の第1シールドは、第1電圧線が原因で第1配線にノイズが重畳されるのを抑制するのに適している。
 本開示の第22態様は、
 半導体基板と、第1画素と、第2画素と、第1シールドと、を備え、
 前記第1画素および前記第2画素は、互いに隣接しており、
 前記第1画素は、
  第1トランジスタと、
  前記第1トランジスタのゲートに接続された第1電圧線であって、互いに異なる電圧が印加される第1電圧線と、
 を含み、
 前記第2画素は、
  前記半導体基板に設けられた第1拡散領域と、
  前記第1拡散領域に接続された第1配線であって、前記第2画素による光電変換で得られた信号電荷が流れる第1配線と、
 を含み、
 前記第1電圧線と前記第1シールドとの間の距離は、前記第1電圧線と前記第1配線との間の距離よりも小さい。
 第22態様は、ノイズを抑制するのに適している。具体的には、第22態様の第1シールドは、第1電圧線が原因で第1配線にノイズが重畳されるのを抑制するのに適している。
 以下、図面を参照しながら、本開示の実施形態を詳細に説明する。なお、以下で説明する実施形態は、いずれも包括的または具体的な例を示す。以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。本明細書において説明される種々の態様は、矛盾が生じない限り互いに組み合わせることが可能である。また、以下の実施形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。以下の説明において、実質的に同じ機能を有する構成要素は共通の参照符号で示し、説明を省略することがある。
 本明細書では、2つの物体間の距離は、2つの物体を結ぶ最短の線分の長さを指す。
 本明細書では、FD配線およびシールド線という用語を用いることがある。FD配線は、ビアを含んでいてもよい要素を指す。シールド線は、ビアを含んでいてもよい要素を指す。また、本明細書では、ビアホールおよびその内部の導体をまとめて「ビア」と呼ぶ。
 本明細書では、第1、第2、第3・・・という序数詞を用いることがある。ある要素に序数詞が付されている場合に、より若番の同種類の要素が存在することは必須ではない。必要に応じて序数詞の番号を変更することができる。
 <1-1.撮像装置100の構造>
 以下、第1の実施形態について説明する。図1は、本実施形態に係る撮像装置100の構造を示す図である。図1を参照しながら、撮像装置100の構造を説明する。
 以下に説明する例では、撮像装置100は、光電変換膜積層型の撮像装置である。撮像装置100では、光電変換膜が半導体基板の一方面側に積層された構成となっている。
 撮像装置100は、複数の画素101と、周辺回路と、を備える。
 複数の画素101により、画素領域が構成されている。本実施形態では、複数の画素101は、二次元状に配置されている。ただし、複数の画素101は、一次元に配列されていてもよい。その場合、撮像装置100は、ラインセンサである。
 図1の例では、複数の画素101は、行方向および列方向に配列されている。行方向は、行が延びる方向である。列方向は、列が延びる方向である。垂直方向が、列方向である。水平方向が、行方向である。
 撮像装置100は、制御信号線CON1、制御信号線CON2、制御信号線CON3と、出力信号線111と、電源線CON4と、電源線112と、を備える。制御信号線CON1、制御信号線CON2および制御信号線CON3は、行毎に配置されている。出力信号線111および電源線CON4は、列毎に配置されている。電源線112は、基準電圧Vpが印加され、全ての画素に基準電圧Vpを供給する。画素101の各々は、対応する列に対応して配置されている出力信号線111に接続されている。画素101の詳細な説明は後述する。
 周辺回路は、垂直走査回路102と、カラム信号処理回路103と、水平信号読み出し回路104と、定電流源105Aと、定電流源105Bとを含む。垂直走査回路102は、行走査回路とも呼ばれる。カラム信号処理回路103は、行信号蓄積回路とも呼ばれる。水平信号読み出し回路104は、列走査回路とも呼ばれる。
 カラム信号処理回路103、定電流源105Aおよび定電流源105Bは、例えば、二次元に配列された画素101の列毎に配置される。以下、周辺回路の構成の一例を説明する。
 垂直走査回路102は、制御信号線CON1と制御信号線CON2と制御信号線CON3とに接続されている。垂直走査回路102は、制御信号線CON1に所定の電圧を印加することにより、各行に配置された複数の画素101を行単位で選択する。これにより、選択された画素101の信号電圧の読み出しと、後述する画素電極のリセットとが実行される。
 各列に配置された画素101は、各列に対応した出力信号線111を介してカラム信号処理回路103に電気的に接続されている。カラム信号処理回路103は、相関二重サンプリングに代表される雑音抑圧信号処理およびアナログ-デジタル変換(AD変換)などを行う。
 複数の列に対応して設けられた複数のカラム信号処理回路103には、水平信号読み出し回路104が電気的に接続されている。水平信号読み出し回路104は、複数のカラム信号処理回路103から出力された信号を水平信号共通線113に順次読み出す。
 電源線CON4には、複数の値の電圧が印加される。例えば、これら複数の値の電圧は、図示しない電圧源により生成される。なお、この電圧源は、撮像装置100の内部に設けられていてもよいし、撮像装置100の外部に設けられていてもよい。
 図2は、本実施形態に係る撮像装置100内の画素101の例示的な構成を示す回路図である。画素101は、光電変換部121と、読み出し回路122とを含んでいる。
 光電変換部121は、光検出器である。光電変換部121は、光信号である入射光を電気信号である信号電荷に変換する。
 読み出し回路122は、光電変換部121により検出された電気信号を読み出す。読み出し回路122は、帯域制御部123と、電荷蓄積領域124と、選択トランジスタ125と、増幅トランジスタ126とを含んでいる。
 電荷蓄積領域124は、光電変換部121によって検出された信号電荷が蓄積される領域の一部を指す。具体的には、電荷蓄積領域124は、半導体基板に設けられた拡散領域に対応する。電荷蓄積領域124を、フローティングディフュージョン(FD)と呼ぶことができる。
 以下では、電荷蓄積部CSPという用語を用いることがある。電荷蓄積部CSPは、光電変換部121によって検出された信号電荷が蓄積される構成全体を指す。電荷蓄積部CSPは、電荷蓄積領域124を含む。
 例えば、光電変換部121は、第1電極と、第2電極と、光電変換膜とを有する。光電変換膜は、第1電極と第2電極との間に位置する。光電変換膜は、例えば、有機光電変換膜である。第1電極には基準電圧Vpが印加される。電荷蓄積領域124が第2電極に電気的に接続されている。これにより、光電変換部121で生成された信号電荷は電荷蓄積領域124に蓄積される。
 光電変換膜を有する光電変換部121を用いる場合において、信号電荷を電荷蓄積領域124に蓄積する方法を具体的に説明する。
 光電変換膜に光が入射すると、光電変換により電子-正孔対が発生する。第1電極と第2電極との間に電位差がある場合、発生した電子あるいは正孔の一方が、第2電極に移動する。例えば、第1電極に印加される基準電圧Vpが第2電極の電圧よりも高い場合には、正孔が第2電極に移動する。第2電極の電圧は、例えばリセット電圧である。正孔は配線を介して電荷蓄積領域124に移動する。これにより、正孔を信号電荷として利用することができる。
 電子を信号電荷として用いることもできる。
 他の一例では、図3に示す画素101のように、光電変換部として、フォトダイオード127が用いられる。フォトダイオード127は、例えば基板表面に位置するn型拡散層と、基板内に位置し、n型拡散層に接するp型拡散層とを含む。フォトダイオード127のp型層にはグランド電位または基準電圧Vpが印加される。一具体例では、図示しない転送トランジスタを介してフォトダイオード127と電荷蓄積領域124とが電気的に接続され得る。この具体例は、後述の図26の形態に対応する。この具体例では、フォトダイオード127で生成された信号電荷は、転送トランジスタを介して電荷蓄積領域124に転送され、蓄積される。ただし、図25に示すように、転送トランジスタは必須ではない。光電変換部としてフォトダイオード127が用いられる場合については、図25および26を参照して後述する。
 光電変換部として、光電変換機能を有する素子を広く利用することができる。
 再び図2を参照する。電荷蓄積領域124は、配線層を介して光電変換部121と接続されている。電荷蓄積領域124は、増幅トランジスタ126のゲートに接続されている。増幅トランジスタ126は、電荷蓄積領域124に蓄積された信号電荷の量に対応した信号を帯域制御部123および選択トランジスタ125に出力する。
 帯域制御部123は、リセットトランジスタ131と、帯域制御トランジスタ132と、容量素子133と、容量素子134とを含んでいる。リセットトランジスタ131は、電荷蓄積領域124をリセットするために用いられる。帯域制御トランジスタ132は、電荷蓄積領域124から増幅トランジスタ126を通り帰還される帰還信号の帯域を制限するために用いられる。
 後述する「ノイズ抑制期間」において、電荷蓄積領域124から読み出された信号電荷は、増幅トランジスタ126によって増幅され、帯域制御トランジスタ132によって帯域制限をかけられた後に電荷蓄積領域124に帰還される。つまり、読み出し回路122は、増幅トランジスタ126から出力された、信号電荷の量に応じた信号を、電荷蓄積領域124に負帰還する帰還経路を有する。この帰還経路は、電荷蓄積領域124と、増幅トランジスタ126と、帯域制御トランジスタ132と、容量素子134とを含む。
 選択トランジスタ125は、少なくとも2つの画素101で共有される出力信号線111に接続されている。出力信号線111を共有する画素101は、同じ列に属していてもよい。出力信号線111は、全ての列に配置されていなくてもよい。例えば、複数の列に対して一本の出力信号線111が配置されており、複数の列で一本の出力信号線111を共有していてもよい。あるいは、1つの列に複数の出力信号線111が配置されていてもよい。例えば、図4に示すように、1つの列に第1出力信号線111Aおよび第2出力信号線111Bが配置され、奇数行に位置する画素101の信号が第1出力信号線111Aに出力され、偶数行に位置する画素101の信号が第2出力信号線111Bに出力されてもよい。
 後述する「読み出し期間およびリセット読み出し期間」において、増幅トランジスタ126によって増幅された信号は、選択トランジスタ125を介して出力信号線111に出力される。この期間において、帰還経路は形成されない。「容量素子」は、電極の間に絶縁膜などの誘電体が挟まれた構造を意味する。また、「電極」は、金属から形成された電極に限定されず、ポリシリコン層などを広く含むように解釈される。本明細書における「電極」は、半導体基板の一部分であってもよい。
 <1-2.読出し回路122の動作>
 読出し回路122の動作について説明する。なお、トランジスタのドレインおよびソースは、厳密には印加電圧により決定されるものであり、構造上区別できない場合がある。よって、本実施形態では、これらをドレインおよびソースの一方、または、ドレインおよびソースの他方と記す。また、便宜上、図2における下側の端子をドレインおよびソースの一方と記し、上側の端子をドレインおよびソースの他方と記す。また、ドレインおよびソースは、それぞれ拡散領域で構成される。
 図2に示すように、増幅トランジスタ126のゲートには、電荷蓄積領域124が電気的に接続されている。増幅トランジスタ126のドレインおよびソースの他方は、帯域制御トランジスタ132のドレインおよびソースの他方と、選択トランジスタ125のドレインおよびソースの一方とに、電気的に接続されている。
 また、帯域制御トランジスタ132のドレインおよびソースの一方は、容量素子133の一端に電気的に接続されている。また、容量素子133の他端には基準電圧VR1が印加される。これにより、帯域制御トランジスタ132と容量素子133とによってRCフィルタ回路が形成される。
 帯域制御トランジスタ132のドレインおよびソースの一方は、さらに、容量素子134の一端と電気的に接続されている。また、容量素子134の他端は、電荷蓄積領域124に電気的に接続されている。
 帯域制御トランジスタ132のゲートには、制御信号線CON2が接続されている。制御信号線CON2の電圧により、帯域制御トランジスタ132のオン・オフが決定される。
 例えば、制御信号線CON2の電圧がハイレベルのとき、帯域制御トランジスタ132はオンする。その結果、電荷蓄積領域124と、増幅トランジスタ126と、帯域制御トランジスタ132と、容量素子134とによって、帰還経路が形成される。
 制御信号線CON2の電圧が低くなると、帯域制御トランジスタ132の抵抗成分が大きくなる。そのため、該抵抗成分と帰還経路における容量成分とによって定まるカットオフ周波数が低くなり、帰還する信号の周波数領域は狭くなる。
 帰還経路が形成されているとき、帯域制御トランジスタ132が出力する信号は、容量素子134および電荷蓄積領域124の寄生容量によって形成される減衰回路で減衰され、減衰された信号が電荷蓄積領域124に帰還される。容量素子134の容量をCc、電荷蓄積領域124の寄生容量をCfdとすると、減衰率Bは、Cc/(Cc+Cfd)で表される。
 制御信号線CON2の電圧がさらに低くなり、ローレベルになると、帯域制御トランジスタ132はオフする。この場合、帰還経路は形成されない。
 電荷蓄積領域124は、さらに、リセットトランジスタ131のドレインおよびソースの一方に電気的に接続されている。リセットトランジスタ131のドレインおよびソースの一方は、電荷蓄積領域124として機能してもよい。つまり、リセットトランジスタ131のドレインおよびソースの一方は、電荷蓄積領域124であってもよい。リセットトランジスタ131のドレインおよびソースの他方は、ノード129に接続されている。ここで、ノードは、電気回路における複数の要素間の電気的な接続部を意味し、該要素間の電気的な接続を担う配線などを含む概念である。
 リセットトランジスタ131のゲートには、制御信号線CON3が接続されている。制御信号線CON3の電圧により、リセットトランジスタ131の状態が決定される。例えば、制御信号線CON3の電圧がハイレベルのとき、リセットトランジスタ131はオンする。これにより、電荷蓄積領域124はノード129の電圧にリセットされる。
 選択トランジスタ125のソースまたはドレインの他方は、出力信号線111に接続されている。選択トランジスタ125のゲートは制御信号線CON1に接続されている。制御信号線CON1の電圧により選択トランジスタ125のオン・オフが決定される。例えば、制御信号線CON1の電圧がハイレベルのとき、選択トランジスタ125はオンする。これにより、増幅トランジスタ126と出力信号線111とは電気的に接続される。制御信号線CON1の電圧がローレベルのとき、選択トランジスタ125はオフする。その結果、選択トランジスタ125と出力信号線111とは電気的に分離される。
 増幅トランジスタ126のドレインおよびソースの一方には、電源線CON4が接続されている。電荷蓄積領域124がリセットされるリセット期間において、増幅トランジスタ126のドレインおよびソースの一方には、電源線CON4から電圧VA1が印加される。また、電荷蓄積領域124から電荷が読み出される読み出し期間において、増幅トランジスタ126のドレインおよびソースの一方には、電源線CON4から電圧VA2が印加される。電源線CON4に印加される電圧を制御することにより、増幅トランジスタ126のドレインおよびソースの一方に印加する電圧が、電圧VA1または電圧VA2に切り替えられる。
 例えば、電圧VA1は、GNDである。GNDは、接地電圧である。電圧VA2は、VDDである。VDDは、電源電圧である。
 電源線CON4と増幅トランジスタ126とを含む増幅回路は、画素101毎に設けられていてもよいし、複数の画素101で共有されていてもよい。増幅回路を複数の画素101で共有することで、1画素当りの素子数を削減できる。
 出力信号線111には、定電流源105Aまたは105Bが接続され得る。選択トランジスタ125がオンのとき、選択トランジスタ125、増幅トランジスタ126、および定電流源105Aまたは105Bによって、ソースフォロア回路が形成される。
 電荷蓄積領域124に蓄積された信号電荷に応じた信号は、出力信号線111に出力され、外部に読み出される。具体的には、後述するリセット期間およびノイズ抑制期間においては、定電流源105Aが出力信号線111に接続される。読み出し期間およびリセット読み出し期間においては、定電流源105Bが出力信号線111に接続される。
 次に、タイミングチャートを用いて読み出し回路122の動作を説明する。図5は、読み出し回路122の動作の一例を示すタイミングチャートである。各グラフにおいて、横軸は時刻を示している。縦軸は、上から、制御信号線CON1の電圧レベル、制御信号線CON2の電圧レベル、制御信号線CON3の電圧レベル、および、電源線CON4の電圧レベルを、それぞれ示す。
 (露光期間)
 時刻t0から時刻t1までが、露光期間に対応する。
 時刻t0から時刻t1までの期間では、制御信号線CON1の電圧がローレベルであるため、選択トランジスタ125はオフしている。また、この期間において、入射光に応じて生成された信号電荷が電荷蓄積領域124に蓄積される。
 (読み出し期間)
 時刻t1から時刻t2までが、読み出し期間に対応する。
 時刻t1において制御信号線CON1の電圧がハイレベルになることで、選択トランジスタ125がオンする。また、電源線CON4の電圧レベルは電圧VA2(例えばVDD)である。この状態においては、増幅トランジスタ126と定電流源105Bとがソースフォロア回路を形成する。これにより、電荷蓄積領域124に蓄積された信号電荷に応じた信号が出力信号線111に出力される。このとき、ソースフォロア回路の増幅率は、例えば1倍程度である。
 (リセット期間)
 時刻t2から時刻t3までが、リセット期間に対応する。
 時刻t2において制御信号線CON2の電圧がハイレベルになることで、帯域制御トランジスタ132がオンする。また、電源線CON4の電圧レベルが電圧VA1になり、増幅トランジスタ126のドレインおよびソースの一方に電圧VA1が印加される。電圧VA1は、例えばGNDである。さらに、制御信号線CON3の電圧がハイレベルになることでリセットトランジスタ131がオンする。これにより、電荷蓄積領域124の電圧は、電圧VA1にリセットされる。
 なお、電源線CON4には、抵抗成分がある。電源線CON4を電流が流れると、この抵抗成分により電圧降下が生じる。このため、厳密には、リセットトランジスタ131がオンすることにより、電荷蓄積領域124の電圧は、電圧VA1からずれた基準電圧にリセットされる。現実には他の配線においてもその抵抗成分による電圧降下は生じるが、説明の便宜上、そのような電圧降下の議論は割愛する。
 (ノイズ抑制期間)
 時刻t3から時刻t4までが、ノイズ抑制期間に対応する。
 時刻t3において、制御信号線CON3の電圧がローレベルになることでリセットトランジスタ131がオフする。このとき、読み出し回路122は、-A×Bの増幅率で帰還経路を形成している。そのため、リセットトランジスタ131をオフしたときの電荷蓄積領域124のkTCノイズは、1/(1+A×B)倍に抑制される。ここで、Aは、増幅トランジスタ126の増幅率である。Bは、減衰率である。先に述べたように、減衰率は、B=Cc/(Cc+Cfd)で表される。Ccは、容量素子134の容量である。Cfdは、電荷蓄積領域124の寄生容量である。
 時刻t2から時刻t3までの期間においては、制御信号線CON2の電圧は、ハイレベルの電圧に設定される。これに対し、時刻t3から時刻t4の期間においては、制御信号線CON2の電圧は、ハイレベルとローレベルとの間のミドルレベルの電圧に設定される。このため、時刻t2から時刻t3までの期間に比べ、時刻t3から時刻t4の期間においては、帯域制御トランジスタ132の動作帯域が狭い。
 帯域制御トランジスタ132の動作帯域を狭くすることにより、ノイズ抑制効果は大きくなる。一方、そのようにすると、ノイズ抑制に必要な時間は長くなり、従って時刻t3から時刻t4までの時間として長い時間が必要となる。時刻t3から時刻t4までの時間として許容できる時間に応じて、設計者は、帯域制御トランジスタ132の動作帯域を任意に調整できる。以下、ノイズ抑制期間における帯域制御トランジスタ132の動作帯域を、増幅トランジスタ126の動作帯域よりも十分に低いものとして扱う。なお、ノイズ抑制期間における帯域制御トランジスタ132の動作帯域が増幅トランジスタ126の動作帯域より高くても、ノイズ抑制効果は得られる。
 ノイズ抑制期間における帯域制御トランジスタ132の動作帯域が増幅トランジスタ126の動作帯域よりも低い状態においては、帯域制御トランジスタ132で発生するkTCノイズは、1/(1+A×B)1/2倍に抑制される。
 この状態で時刻t4において制御信号線CON2の電圧がローレベルになると、帯域制御トランジスタ132がオフする。帯域制御トランジスタ132をオフした時に電荷蓄積領域124に残存するkTCノイズは、リセットトランジスタ131に起因したkTCノイズと、帯域制御トランジスタ132に起因したkTCノイズと、の二乗和平方根となる。
 容量素子133の容量をCsとする。この場合、帰還による抑制がない状態において発生する帯域制御トランジスタ132のkTCノイズは、帰還による抑制がない状態で発生するリセットトランジスタ131のkTCノイズに比べて(Cfd/Cs)1/2倍になる。この点を考慮すると、帰還がある場合のkTCノイズは、帰還がない場合に対して〔{1+(1+A×B)×Cfd/Cs}1/2/(1+A×B)〕倍に抑制される。
 (リセット読み出し期間)
 時刻t4から時刻t5までが、リセット読み出し期間に対応する。
 時刻t4において、電源線CON4の電圧レベルが電圧VA2になる。電圧VA2は、例えばVDDである。これにより、増幅トランジスタ126のドレインおよびソースの一方に電圧VA2が印加される。この状態においては、増幅トランジスタ126と定電流源105Bとがソースフォロア回路を形成する。これにより、リセット電圧に応じた信号が出力信号線111に出力される。
 例えば、後段の回路において、このリセット読み出し期間に読み出された信号と、読み出し期間に読み出された信号との差分が算出される相関二重サンプリング処理が行われる。そして、得られた差分が画素信号として撮像装置100の外部に出力される。
 kTCノイズは、ランダムノイズに含まれる。ここで、ランダムノイズは、光電変換部121で変換される電気信号が0である時の出力の揺らぎを意味する。kTCノイズはノイズ抑制期間に〔{1+(1+A×B)×Cfd/Cs}1/2/(1+A×B)〕倍に抑制される。その結果、ランダムノイズが抑制された良好な画像データを取得することができる。
 容量素子133の容量Csは、容量素子134の容量Ccよりも大きいことが好ましい。
 通常、電荷蓄積領域124の容量を大きくすると、ランダムノイズは低減される。しかし、電荷蓄積領域124において電荷信号を電圧信号に変換する際、信号が小さくなってしまう。したがって、単純に電荷蓄積領域124自体の容量を大きくするだけでは、結果としてS/Nは改善されない。
 本実施形態では、電荷蓄積領域124と容量素子133との間に、容量素子134が介在されている。この介在により、電荷蓄積領域124と容量素子133とが電気的に分離されている。したがって、容量素子133の容量を大きくしても、電荷蓄積領域124における信号の低下は生じにくい。よって、信号の低下を抑制しつつ、ランダムノイズを効果的に抑制できる。これにより、S/Nを効果的に改善できる。
 本実施形態では、読み出し期間において、電荷蓄積領域124の信号はソースフォロア回路により読み出されるので、増幅率は1倍程度である。しかし、これに限定されるものではなく、設計者は、システムに必要なS/Nまたは回路レンジに応じて増幅率を変えてもよい。
 本実施形態によれば、ノイズキャンセルのための帰還を各画素内で行う。これにより、例えば、出力信号線111を介した帰還を行う場合に比べて、出力信号線111の時定数が与える影響を低減できる。よって、ノイズキャンセルを高速に行える。さらに、画素101内に配置する容量素子の容量を大きくすることにより、より大きなノイズ抑制効果が得られる。
 <1-3.寄生容量低減(シールド挿入)>
 読出し回路122の動作についての上述の説明により理解されるように、電源線CON4の電圧は、読出し期間からリセット期間への遷移時に変動する。つまり、電源線CON4の電圧は、図5の時刻t2において変動する。また、電源線CON4の電圧は、ノイズ抑制期間からリセット読出し期間への遷移時にも変動する。つまり、電源線CON4の電圧は、図5の時刻t4において変動する。
 電源線CON4と電荷蓄積部CSPとの間には、寄生容量が生じることがある。この寄生容量の存在により、時刻t2および時刻t4における電源線CON4の電圧の電圧変動が、電荷蓄積部CSPの電圧を変動させ得る。
 これを踏まえ、本実施形態では、電源線CON4と電荷蓄積部CSPとの間の寄生容量を低減するためのシールドが設けられている。ここでのシールドは、導電体の電界の影響を遮断する静電シールドを意味する。シールドは導電性を有する材料を含み得る。シールドは所定の電位に保持される。
 図6は、図1の構成における画素101のFD配線141、電源線CON4および第1シールド171のレイアウトの一例を模式的に示す平面図である。FD配線141は、電荷蓄積領域124に接続されている。FD配線141は、電荷蓄積部CSPに含まれる。
 第1シールド171の材料は、例えば、金属、ポリシリコン、半導体である。
 図6の例では、第1シールド171は、第1シールド線171Lを含む。第1シールド171は、シールド線171Lによって構成されていてもよい。ただし、第1シールド171は、非線状体によって構成されていてもよい。第1シールド171は、シールド線と非線状体とを含んでいてもよい。
 図6の例では、第1シールド171は、平面視において、FD配線141と電源線CON4との間に位置する。第1シールド171は、FD配線141よりも電源線CON4に近接している。平面視において、電源線CON4および第1シールド171の間には、配線は存在しない。
 この例では、平面視は、半導体基板に垂直な方向から観察することをいう。
 具体的には、第1シールド線171Lは、平面視において、FD配線141と電源線CON4との間に位置する。第1シールド線171Lは、FD配線141よりも電源線CON4に近接している。平面視において、電源線CON4および第1シールド線171Lの間には、配線は存在しない。
 電源線CON4は、列方向に延びている。ただし、電源線CON4は、行方向等の他の方向に延びていてもよい。
 第1シールド線171Lは、列方向に延びている。ただし、第1シールド線171Lは、行方向等の他の方向に延びていてもよい。
 非連続なパタンを、隣接する2つの画素101間または1つの画素101内に設けてもよい。そのような非連続なパタンの全部または一部は、シールドとして機能し得る。非連続なパタンは、複数の部分によって構成できる。
 複数の部分は、電気的に互いに分離されていてもよい。この場合、複数の部分に、互いに異なる電圧を印加することができる。一具体例では、複数の部分のそれぞれに所定の電圧を供給できるように、画素101内で、各部分が、対応する固定電圧の電圧源に接続される。
 複数の部分は、電気的に互いに接続されていてもよい。例えば、ある配線層に複数の部分を設け、その配線層に隣接する配線層の同一配線からこれら複数の部分に複数のビアを延ばすことができる。このようにすれば、複数の部分を電気的に接続することができる。
 上記複数の部分は、第1シールド171と第2シールド172とを含み得る。図7Aおよび7Bに示す例では、上記複数の部分は、第1シールド線171Lと第2シールド線172Lとを含む。
 図7Aに示す例では、第1シールド線171Lと第2シールド線172Lとの間には、ギャップGが形成されている。第1シールド線171Lおよび第2シールド線172Lは、共通軸CX上を延びている。共通軸CXは、電源線CON4と平行に延びている。
 図7Bに示す例では、第1シールド線171Lと第2シールド線172Lは、共通軸上を延びていない。この例では、第1シールド線171Lは、電源線CON4の一部と平行に延びている。第2シールド線172Lは、電源線CON4の別の一部と平行に延びている。
 電源線CON4は、図1に示すように全画素に対して共通に用いられる電源線であってもよい。この場合、電源線CON4は、少なくとも列方向に延びる配線部分を有する。例えば、電源線CON4は、画素領域内において列方向に延びる複数の配線部分を有する。配線部分は、列毎に設けられる。また、複数の配線部分は、画素領域外で電気的に互いに接続されている。
 上述の説明により理解されるように、電源線CON4の電圧は、読出し期間からリセット期間への遷移時に変動する。電源線CON4の電圧は、ノイズ抑制期間からリセット読出し期間への遷移時にも変動する。電源線CON4とFD配線141との間には寄生容量があるため、これらの電圧変動は、FD配線141に伝わることがある。しかし、図6,7Aおよび7Bに例示する構成をとることにより、電源線CON4とFD配線141間の寄生容量を低減し、容量カップリングによるFD配線141の電圧変動を抑制できる。
 図8に例示する構成が用いられてもよい。図8は、図4の構成における画素101の電荷蓄積領域124、電源線CON4およびシールドのレイアウトの一例を模式的に示す平面図である。
 図8の例では、平面視において、FD配線141は、第1シールド171Aと、第1シールド171Bとの間に配置されている。具体的には、平面視において、FD配線141は、第1シールド線171LAと、第1シールド線171LBとの間に配置されている。
 図8の例では、平面視において、第1シールド171Aは、FD配線141と電源線CON4Aとの間に位置する。具体的には、平面視において、第1シールド線171LAは、FD配線141と電源線CON4Aとの間に位置する。
 図8の例では、平面視において、第1シールド171Bは、FD配線141と電源線CON4Bとの間に位置する。具体的には、平面視において、第1シールド線171LBは、FD配線141と電源線CON4Bとの間に位置する。
 第1シールド171Aと第1シールド171Bは、電気的に接続されていてもよく、電気的に分離されていてもよい。
 図4および図8の例では、電源線CON4Aおよび電源線CON4Bは、同じ列に配置されている。電源線CON4Aおよび電源線CON4Bは、画素領域内において電気的に接続されていない。電源線CON4Aおよび電源線CON4Bは、互いに異なる画素101に接続されている。具体的には、電源線CON4Aは、ある画素101に含まれる増幅トランジスタ126のソースおよびドレインの一方に電気的に接続されている。電源線CON4Bは、別の画素101に含まれる増幅トランジスタ126のソースおよびドレインの一方に電気的に接続されている。例えば、電源線CON4Aは、奇数行に位置する画素101に含まれる増幅トランジスタ126のソースおよびドレインの一方に電気的に接続されており、電源線CON4Bは、偶数行に位置する画素101に含まれる増幅トランジスタ126のソースおよびドレインの一方に電気的に接続されていてもよい。
 別例では、電源線CON4Aおよび電源線CON4Bは、同じ列に配置されている。電源線CON4Aおよび電源線CON4Bは、画素領域内において電気的に接続されている。電源線CON4Aおよび電源線CON4Bは、同じ画素101に接続されている。具体的には、電源線CON4Aおよび電源線CON4Bは、ある画素101に含まれる増幅トランジスタ126のソースおよびドレインの一方に電気的に接続されている。
 電源線CON4Aが設けられており電源線CON4Bが設けられていない列Aと、電源線CON4Bが設けられており電源線CON4Aが設けられていない列Bと、が存在してもよい。列Aと列Bとが交互に並んでいてもよい。1つの列に対して設けられる電源線CON4の数は、1つであってもよく、複数であってもよい。
 例えば、同じ列において、画素101Aと、画素101Bと、が隣接しているとする。また、その列に対して電源線CON4Aと電源線CON4Bとが設けられているとする。画素101Aに電源線CON4Aが接続され、画素101Bに電源線CON4Bが接続され得る。このような状態において、図8のように第1シールド171Aおよび第1シールド171Bを設ければ、画素101A内の素子と電源線CON4Bとの間の容量カップリングを抑制でき、画素101B内の素子と電源線CON4Aとの間の容量カップリングを抑制できる。これに関連する技術は、第6実施形態の図24Bを用いた例において詳細に説明する。
 図9に、図6のA0-A1線の断面を模式的に表す断面図を示す。図10に、図8のA0-A1線の断面を模式的に表す断面図を示す。図示の例では、光電変換部121および半導体基板151を含む積層構造が構成されている。ここでは、半導体基板151としてp型シリコン(Si)基板を用いる例を説明する。
 図示する例において、半導体基板151、層間絶縁層152、光電変換部121は、この順に並んでいる。層間絶縁層152は、層間絶縁層152A、152B、152Cおよび152Dを含む。層間絶縁層152A、152B、152Cおよび152Dは、この順に積層されている。
 図示する例において、光電変換部121は、第1電極153と光電変換層154と第2電極155とを含む。第1電極153と光電変換層154と第2電極155とは、この順に並んだ状態で積層されている。第1電極153は、光電変換層154の、被写体からの光が入射する側の面に設けられている。光電変換層154は、第1電極153と第2電極155との間に配置されている。典型的には、光電変換層154は、膜の形状を有する。光電変換層154は、例えば、有機光電変換膜である。光電変換層154は、アモルファスシリコン膜であってもよい。
 ある画素101の第2電極155とその画素101に隣接する画素101の第2電極155との間には、シールド電極156が設けられている。シールド電極156は、互いに隣接する画素101の境界で光電変換した電荷を排出し、混色特性を向上させる。シールド電極156には、固定電圧が供給され得る。
 図9の例では、シールド電極156には、配線159Cおよびビア159Dを介して電圧が印加され得る。具体的には、図示しない電源から配線159Cおよびビア159Dを介してシールド電極156に電圧が印加され得る。
 図9では図示が省略されているが、増幅トランジスタ126は、半導体基板151と光電変換部121との間に形成されている。FD配線141は、配線157A,157Bおよび157Cと、ビア158A,158B,158Cおよび158Dと、を含む。配線157A~157Cおよびビア158A~158Dは、層間絶縁層152内に配置されている。
 図9の例では、配線157A~157Cは、互いに異なる配線層に配置されている。具体的には、配線157Aは、配線層192Aに配置されている。配線157Bは、配線層192Bに配置されている。配線157Cは、配線層192Cに配置されている。
 図9の例では、第1シールド171と、電源線CON4と、配線157Bは、同じ配線層192Bに配置されている。電源線CON4と配線157Bとの間に第1シールド171が配置されている。これにより、FD配線141と電源線CON4との寄生容量による容量カップリングを抑制できる。
 図9の例では、具体的には、第1シールド線171Lと、電源線CON4と、配線157Bは、同じ配線層192Bに配置されている。電源線CON4と配線157Bとの間に第1シールド線171Lが配置されている。
 図10の例では、第1シールド171Aと、電源線CON4Aと、配線157Bは、同じ配線層192Bに配置されている。電源線CON4Aと配線157Bとの間に第1シールド171Aが配置されている。これにより、FD配線141と電源線CON4Aとの寄生容量による容量カップリングを抑制できる。
 図10の例では、具体的には、第1シールド線171LAと、電源線CON4Aと、配線157Bは、同じ配線層192Bに配置されている。電源線CON4Aと配線157Bとの間に第1シールド線171LAが配置されている。
 図10の例では、第1シールド171Bと、電源線CON4Bと、配線157Bは、同じ配線層192Bに配置されている。電源線CON4Bと配線157Bとの間に第1シールド171Bが配置されている。これにより、FD配線141と電源線CON4Bとの寄生容量による容量カップリングを抑制できる。
 図10の例では、具体的には、第1シールド線171LBと、電源線CON4Bと、配線157Bは、同じ配線層192Bに配置されている。電源線CON4Bと配線157Bとの間に第1シールド線171LBが配置されている。
 1つの電源線CON4が、複数の配線層をまたぐように配置されていてもよい。複数の配線層に、互いに異なる電源線CON4を配置してもよい。これらの場合、電源線CON4が存在する各配線層に第1シールド171(具体的には第1シールド線171L)を配置することによって、寄生容量を抑制できる。具体的には、上記各配線層において、本実施形態で説明したように第1シールド171を配置することによって、寄生容量を抑制できる。
 典型的には、第1シールド171には、画素の読出し期間において、変動しない電圧が供給される。ここで画素の読出し期間は、信号読出し期間、リセット期間、リセット読出し期間を含む。先に説明したとおり、信号読出し期間は、図5の時刻t1からt2までの期間に対応する。リセット期間は、図5の時刻t2からt3までの期間に対応する。リセット読出し期間は、図5の時刻t4からt5までの期間に対応する。
 第1シールド171に電圧を供給する電圧源は、他の要素に電圧を供給する電圧源と共通していてもよい。このようにすれば、撮像装置100における電源数を削減できる。例えば、GND、電源電圧VDD、およびシールド電極156に印加する電圧のいずれかを、第1シールド171に供給できる。ただし、第1シールド171用の専用電源を用いても良い。
 図11は、図6に示すA0-A1線の断面の変形例を模式的に示す断面図である。
 図11に示す例では、第1シールド171(具体的には第1シールド線171L)が、複数の配線層にまたがって配置されている点で図9に示す例と異なる。具体的には、図11では、第1シールド171が3つの配線層192A,192bおよび192Cに配置されている。ただし、第1シールド171は、2つの配線層にまたがって配置されていてもよく、4つ以上の配線層にまたがって配置されていてもよい。
 FD配線141は、電源線CON4が配置された配線層192Bとは異なる配線層192Aおよび192Cにも配置されている。この場合、図11に示すように、第1シールド171(具体的には第1シールド線171L)を、配線層192B内のみならず配線層192Aおよび配線層192C内にも配置することが考えられる。このようにすることは、FD配線141の配線157Aと電源線CON4との間、および、FD配線141の配線157Cと電源線CON4との間の容量カップリングを抑制する観点から有利である。
 本実施形態の撮像装置100は、以下のように説明され得る。
 撮像装置100は、半導体基板151と、第1画素101と、第1シールド171と、を備える。第1画素101は、第1拡散領域124と、第1配線141と、第1トランジスタ126と、第1電圧線CON4と、を含む。第1拡散領域124は、半導体基板151に設けられている。第1配線141は、第1拡散領域124に接続されている。第1配線141では、第1画素101による光電変換で得られた第1信号電荷が流れる。第1トランジスタ126は、第1信号電荷が流入するゲートを含む。第1電圧線CON4は、第1信号電荷126のドレインまたはソースへの電圧供給経路の少なくとも一部を構成する。第1電圧線CON4には、互いに異なる電圧VA1およびVA2が印加される。第1電圧線CON4と第1シールド171との間の距離Daは、第1電圧線CON4と第1配線141との間の距離Ddよりも小さい。本実施形態は、ノイズを抑制するのに適している。具体的には、本実施形態の第1シールド171は、第1電圧線CON4が原因で第1配線141にノイズが重畳されるのを抑制するのに適している。
 撮像装置100は、第1電圧線CON4に互いに異なる電圧を印加する電圧供給回路を備えていてもよい。本実施形態では、第1拡散領域124は、電荷蓄積領域124に対応する。第1配線141は、FD配線141に対応する。第1トランジスタ126は、増幅トランジスタ126に対応する。第1電圧線CON4は、電源線CON4に対応する。例えば、光電変換部121の光電変換で得られた第1信号電荷は、光電変換部121に接続された第1配線141を介して、第1拡散領域124および第1トランジスタ126のゲートに流入する。
 具体的には、距離Daは、第1画素101内に存する第1電圧線CON4と、第1シールド171と、の間の距離である。距離Ddは、第1画素101内に存する第1電圧線CON4と、第1画素101内に存する第1配線141と、の間の距離である。そして、距離Daは、距離Ddよりも小さい。このような構成に係る第1シールド171は、第1画素101内に存する第1電圧線CON4が原因で第1画素101に存する第1配線141にノイズが重畳されるのを抑制するのに適している。
 具体的には、第1シールド171は、第1配線141と第1電圧線CON4との間の電気力線の少なくとも一部を遮蔽することができる。
 典型的には、互いに異なる電圧は、互いに異なる直流電圧である。
 図2の例では、第1電圧線CON4は、第1信号電荷126のドレインまたはソースと接続されている。
 第1シールド171は、第1画素101に含まれていてもよく、第1画素101に含まれていなくてもよい。
 第1画素101に該当する画素の数は、1つであってもよく、複数であってもよい。撮像装置100におけるすべての画素が第1画素101に該当してもよい。
 本実施形態では、第1シールド171の電圧が固定された状態で、第1電圧線CON4の電圧が変更される。例えば、上述した電圧供給回路は、第1シールド171に固定電圧を印加した状態で、第1電圧線CON4の電圧を変更してもよい。このような構成に係る第1シールド171は、第1電圧線CON4が原因で第1配線141にノイズが重畳されるのを抑制するのに適している。なお、「第1シールド171の電圧が固定された状態で、第1電圧線CON4の電圧が変更される」という表現は、第1シールド171の電圧が常に一定である態様のみを表すと限定的に解釈されるべきではない。この表現は、第1電圧線CON4の電圧変更時以外には、第1シールド171の電圧は変動する態様を含むと解釈されるべきである。
 図9の例では、撮像装置100は、第1配線層192Bを備える。第1配線層192Bは、半導体基板151の厚さ方向に関する第1の位置に設けられている。第1電圧線CON4は、第1配線層192Bに配置されている。第1シールド171は、第1配線層192Bに配置されている。第1配線141は、第1配線層192B内に位置する第1部分を含む。平面視において、第1シールド171は、第1部分と第1電圧線CON4との間にある。このように、第1電圧線CON4および第1シールド171が、同じ配線層に配置されている場合がある。そのような場合において、この例の第1シールドは、上記ノイズ抑制効果を発揮し得る。この例では、第1部分は、配線157Bに対応する。
 図7Aおよび7Bの例では、撮像装置100は、第2シールド172を備える。第1電圧線CON4と第2シールド172との間の距離Dxは、第1電圧線CON4と第1配線141との間の距離Ddよりも小さい。このような構成に係る第2シールドは、第1電圧線CON4が原因で第1配線141にノイズが重畳されるのを抑制するのに適している。
 具体的には、距離Dxは、第1画素101内に存する第1電圧線CON4と、第2シールド172と、の間の距離である。距離Ddは、第1画素101内に存する第1電圧線CON4と、第1画素101内に存する第1配線141と、の間の距離である。そして、距離Dxは、距離Ddよりも小さい。このような構成に係る第2シールド172は、第1画素101内に存する第1電圧線CON4が原因で第1画素101に存する第1配線141にノイズが重畳されるのを抑制するのに適している。
 具体的には、第2シールド172は、第1配線141と第1電圧線CON4との間の電気力線の少なくとも一部を遮蔽することができる。
 第2シールド172の電圧が固定された状態で、第1電圧線CON4の電圧が変更され得る。このような構成に係る第2シールド172は、第1電圧線CON4が原因で第1配線141にノイズが重畳されるのを抑制するのに適している。
 第1シールド171および第2シールド172は、電気的に分離されていてもよく、電気的に接続されていてもよい。
 第2シールド172は、第1画素101に含まれていてもよく、第1画素101に含まれていなくてもよい。
 第1シールド171に印加される電圧と第2シールド172に印加される電圧とは、同じであってもよく、異なっていてもよい。
 図6の例では、第1シールド171と第1電圧線CON4との間の距離Daは、第1シールド171と第1配線141との間の距離Dfよりも小さい。このような構成に係る第1シールド171は、第1電圧線CON4が原因で第1配線141にノイズが重畳されるのを抑制するのに適している。
 図6の例では、平面視において、第1電圧線CON4と第1シールド171との間に、配線が存在しない。このような構成に係る第1シールド171は、第1電圧線CON4が原因で第1配線141にノイズが重畳されるのを抑制するのに適している。
 図6の例では、撮像装置100は、第1配線層192Bを備える。第1配線層192Bは、半導体基板151の厚さ方向に関する第1の位置に設けられている。第1電圧線CON4は、第1配線層192Bに配置されている。第1シールド171は、第1配線層192Bに配置されている。第1配線141は、第1配線層192B内に位置する第1部分を含む。平面視において、第1シールド171は、第1部分と第1電圧線CON4との間にある。平面視において、第1電圧線CON4と第1シールド171との間に、配線が存在しない。
 図6の例では、第1シールド171は、第1シールド線171Lを含む。第1電圧線CON4と第1シールド線171Lとの間の距離Daは、第1電圧線CON4と第1配線141との間の距離Ddよりも小さい。このような構成に係る第1シールド線171Lは、第1電圧線CON4が原因で第1配線141にノイズが重畳されるのを抑制するのに適している。
 具体的には、距離Daは、第1画素101内に存する第1電圧線CON4と、第1シールド線171Lと、の間の距離である。距離Ddは、第1画素101内に存する第1電圧線CON4と、第1画素101内に存する第1配線141と、の間の距離である。そして、距離Daは、距離Ddよりも小さい。このような構成に係る第1シールド線171Lは、第1画素101内に存する第1電圧線CON4が原因で第1画素101に存する第1配線141にノイズが重畳されるのを抑制するのに適している。
 具体的には、第1シールド線171Lは、第1配線141と第1電圧線CON4との間の電気力線の少なくとも一部を遮蔽することができる。
 図7Aおよび7Bの例では、第2シールド172は、第2シールド線172Lを含む。第1電圧線CON4と第2シールド線172Lとの間の距離Dxは、第1電圧線CON4と第1配線141との間の距離Ddよりも小さい。このような構成に係る第2シールド線172Lは、第1電圧線CON4が原因で第1配線141にノイズが重畳されるのを抑制するのに適している。
 具体的には、距離Dxは、第1画素101内に存する第1電圧線CON4と、第2シールド線172Lと、の間の距離である。距離Ddは、第1画素101内に存する第1電圧線CON4と、第1画素101内に存する第1配線141と、の間の距離である。そして、距離Dxは、距離Ddよりも小さい。このような構成に係る第2シールド線172Lは、第1画素101内に存する第1電圧線CON4が原因で第1画素101に存する第1配線141にノイズが重畳されるのを抑制するのに適している。
 具体的には、第2シールド線172Lは、第1配線141と第1電圧線CON4との間の電気力線の少なくとも一部を遮蔽することができる。
 第1シールド線171Lおよび第2シールド線172Lは、電気的に分離されていてもよく、電気的に接続されていてもよい。
 図7Aおよび7Bの例では、第1シールド線171Lおよび第1電圧線CON4は、それらが最も接近している領域において、平行に延びている。第2シールド線172Lおよび第1電圧線CON4は、それらが最も接近している領域において、平行に延びている。
 図6の例では、第1シールド線171Lと第1電圧線CON4との間の距離Daは、第1シールド171と第1配線141との間の距離Dfよりも小さい。
 図6の例では、平面視において、第1電圧線CON4と第1シールド線171Lとの間に、配線が存在しない。
 図6の例では、撮像装置100は、第1配線層192Bを備える。第1配線層192Bは、半導体基板151の厚さ方向に関する第1の位置に設けられている。第1電圧線CON4は、第1配線層192Bに配置されている。第1シールド線171Lは、第1配線層192Bに配置されている。第1配線141は、第1配線層192B内に位置する第1部分を含む。平面視において、第1シールド線171Lは、第1部分と第1電圧線CON4との間にある。平面視において、第1電圧線CON4と第1シールド線171Lとの間に、配線が存在しない。
 図9の例では、撮像装置100は、第1光電変換部121を備える。第1光電変換部121は、第1電極153と、第2電極155と、第1電極153と第2電極155との間に配置された光電変換層154と、を含む。光電変換層154は、入射光を第1信号電荷に変換する。第1配線141は、第2電極155と第1拡散領域124とを接続している。このような構成に係る第1配線141は、第1光電変換部121から第1拡散領域124へと第1信号電荷を流すのに適している。また、第1電極153および第2電極155は、光電変換層154に印加される電界を調整して光電変換層154で生成される第1信号電荷の量を調整するのに適している。
 図9の例では、半導体基板151の厚さ方向に関し、第1電圧線CON4および第1シールド171は、第1光電変換部121と半導体基板151との間の位置にある。
 図9の例では、半導体基板151の厚さ方向に関し、第1電圧線CON4および第1シールド線171Lは、第1光電変換部121と半導体基板151との間の位置にある。
 図9の例では、撮像装置100は、第3電極156を備える。第3電極156は、光電変換層154からみて第2電極155と同じ側に設けられている。第3電極156は、第2電極155と電気的に分離されている。第3電極156を、第1シールド171と電気的に接続してもよい。この構成は、第3電極と第1シールドとが共通の電圧供給元を利用可能な構成の一例である。図9の例では、第3電極156は、シールド電極156に対応する。
 (第2実施形態)
 以下、第2実施形態について説明する。第2実施形態においては、第1実施形態と同様の内容については、説明を省略することがある。
 図12に示すように、第2実施形態では、電源線CON4と第1シールド171とが、互いに異なる配線層に配置されている。
 図12の例では、電源線CON4は、配線層192Bに配置されている。第1シールド171は、配線層192Aに配置されている。
 具体的には、第1シールド171は、第1シールド線171Lを含んでいる。電源線CON4と第1シールド線171Lとが、互いに異なる配線層に配置されている。第1シールド線171Lは、配線層192Aに配置されている。
 電源線CON4が配置された配線層にシールドを設けることが、容易ではない状況がある。例えば、電源線CON4とFD配線141との間隔が狭い状況が、そのような状況に該当する。また、電源線CON4が配置された配線層と他の配線層とを電気的に接続するためのビアが、電源線CON4とFD配線141との間に配置されている場合も、そのような状況に該当する。
 上記のような状況において、電源線CON4が配置された配線層とは異なる配線層にシールドを配置することが考えられる。異なる配線層に配置された場合であっても、シールドは、FD配線141と電源線CON4との寄生容量による容量カップリングを抑制し得る。例えば、シールドの方が電源線CON4よりもFD配線141の近くに配置されている場合、シールドは、電源線CON4とFD配線141との間の電気力線の一部を遮蔽し得る。
 図12の例では、電源線CON4が配置された配線層からみて半導体基板151側の配線層に、第1シールド171が配置されている。ただし、後述する第3実施形態で説明するように、電源線CON4が配置された配線層からみて半導体基板151とは反対側の配線層に、第1シールド171が配置されていてもよい。電源線CON4が配置された配線層からみて半導体基板151側の配線層と半導体基板151とは反対側の配線層の両方に、第1シールド171が配置されていてもよい。
 具体的には、図12の例では、電源線CON4が配置された配線層からみて半導体基板151側の配線層に、第1シールド線171Lが配置されている。ただし、電源線CON4が配置された配線層からみて半導体基板151とは反対側の配線層に、第1シールド線171Lが配置されていてもよい。電源線CON4が配置された配線層からみて半導体基板151側の配線層と半導体基板151とは反対側の配線層の両方に、第1シールド線171Lが配置されていてもよい。
 本実施形態の撮像装置100は、以下のように説明され得る。
 撮像装置100は、第1配線層192Bおよび第2配線層192Cを備えている。第1配線層192Bおよび第2配線層192Cは、半導体基板151の厚さ方向に関する互いに異なる位置に設けられている。第1電圧線CON4は、第1配線層192Bに配置されている。第1シールド171は、第2配線層192Aに配置されている。第1配線141は、第2配線層192A内に位置する第1部分を含む。平面視において、第1シールド171は、第1部分と第1電圧線CON4との間にある。このように、第1電圧線および第1シールドが、互いに異なる配線層に配置されている場合がある。そのような場合において、本実施形態の第1シールドは、上記ノイズ抑制効果を発揮し得る。図12の例では、第1部分は、配線157Aに対応する。
 図12の例では、第1配線141は、第1配線層192B内に位置する第2部分を含む。平面視において、第1シールド171は、第2部分と第1電圧線CON4との間にある。図12の例では、第2部分は、配線157Aに対応する。
 図12の例では、第1シールド線171Lは、第2配線層192Aに配置されている。平面視において、第1シールド線171Lは、第1部分と第1電圧線CON4との間にある。平面視において、第1シールド線171Lは、第2部分と第1電圧線CON4との間にある。
 図12の例では、第1電圧線CON4が位置している第1配線層192Bおよび第1シールド171が位置している第2配線層192Aは、互いに隣接している。ただし、第1電圧線CON4が位置している配線層および第1シールド171が位置している配線層は、互いに隣接していなくてもよい。
 (第3実施形態)
 以下、第3実施形態について説明する。第3実施形態においては、第2実施形態と同様の内容については、説明を省略することがある。
 図13Aに示すように、第3実施形態では、電源線CON4が配置された配線層192Bからみて半導体基板151とは反対側の配線層192Cに、第1シールド171が配置されている。
 具体的には、第1シールド171は第1シールド線171Lを含んでいる。上記反対側の配線層192Cに、第1シールド線171Lが配置されている。
 半導体基板151の厚さ方向に関し、第2電極155と、第1シールド171と、電源線CON4と、半導体基板151とは、この順に並んでいる。具体的には、半導体基板151の厚さ方向に関し、第2電極155と、第1シールド171線と、電源線CON4と、半導体基板151とは、この順に並んでいる。
 第2電極155は、電荷蓄積部CSPに含まれる。このため、ノイズを低減する観点からは、電源線CON4とFD配線141との間の寄生容量のみならず、電源線CON4と第2電極155との間の寄生容量を抑制することが有利である。
 これを考慮し、本実施形態の撮像装置100は、以下のように説明され得る特徴を有している。
 第1シールド171は、第1シールド線171Lを含む。平面視において、第1シールド線171Lは、第1電圧線CON4の少なくとも一部と重なっている。このように構成すると、第1電圧線CON4と第2電極155との間の電気力線を遮蔽し易い。このような構成に係る第1シールド線171Lは、第1電圧線CON4が原因で第2電極155にノイズが重畳されるのを抑制するのに適している。
 図13Aの例では、平面視において、第1シールド線171Lは、第1電圧線CON4の全体と重なっている。このように構成すると、第1電圧線CON4と第2電極155との間の電気力線を特に遮蔽し易い。したがって、この構成は、第1電圧線CON4が原因で第2電極155にノイズが重畳されるのを抑制するのに特に適している。
 図13Aの例では、平面視において、第1シールド線171Lの幅は、第1電圧線CON4の幅よりも広い。このように構成すると、第1電圧線CON4と第2電極155との間の電気力線を遮蔽し易い。したがって、この構成は、第1電圧線CON4が原因で第2電極155にノイズが重畳されるのを抑制するのに適している。なお、平面視において、第1シールド線171Lと第1電圧線CON4とが重複していなくても、第1電圧線CON4と第2電極155との間の電気力線を遮蔽する効果は得られる。
 図13Bに示すような構成も採用可能である。
 図13Bの例では、撮像装置100は、半導体基板151の厚さ方向に関する互いに異なる位置に設けられた複数の配線層192A~192Cを備える。複数の配線層192A~192Cは、第1配線層192Cを含む。第1電圧線CON4は、第1配線層192Cに配置されている。複数の配線層192A~192Cのうち第1光電変換部151に最も近い層を近位層と定義したとき、第1配線層192Cは、近位層である。このようにすることは、第1電圧線CON4からみて光電変換層154側に、信号線および電源線を配置するのを回避するのに適している。このようにすれば、第1電圧線CON4の電圧変動を考慮した設計が一部緩和され、配線が容易となる。
 半導体基板151の厚さ方向に関する層間絶縁層152Dのサイズが大きく、第2電極155と近位層192Cとの間隔が大きい場合がある。特に限定されないが、そのような場合には、図13Bの構成を採用することが有利である。なぜなら、そのような場合には、第2電極155と第1電圧線CON4との間の寄生容量が大きくなり難いためである。
 図13Cに示すような構成も採用可能である。
 図13Cの例では、第1シールド171と第1電圧線CON4との間の距離Dcは、半導体基板151の厚さ方向に関する第2電極155と第1電圧線CON4との間の距離Dbよりも小さい。距離Dcは、平面視における第1電圧線CON4と第1配線141との間の距離Ddよりも小さい。
 図13Cの例では、具体的には、第1シールド線171Lと第1電圧線CON4との間の距離Dcは、半導体基板151の厚さ方向に関する第2電極155と第1電圧線CON4との間の距離Dbよりも小さい。距離Dcは、平面視における第1電圧線CON4と第1配線141との間の距離Ddよりも小さい。
 (第4実施形態)
 以下、第4実施形態について説明する。第4実施形態においては、第3実施形態と同様の内容については、説明を省略することがある。
 図14に示すように、第4実施形態では、撮像装置100は、容量素子185を備える。容量素子185は、電極181と、電極183と、誘電体層182と、を含む。電極181および電極183は、誘電体層182を挟んで互いに反対側にある。
 図14の例では、容量素子185は、MIM(Metal Insulator Metal)容量である。電極181を、第1MIM電極181と称することができる。電極183を、第2MIM電極183と称することができる。
 容量素子185として、容量素子133または容量素子134を採用可能である。
 第1MIM電極181は、図示しない電源に電気的に接続されている。一例では、この電源は、第1MIM電極181に固定電圧を供給する。第2MIM電極183は、第2拡散領域184に電気的に接続されている。第2拡散領域184は、半導体基板151に設けられている。第2拡散領域184は、第1拡散領域124とは異なる拡散領域である。第2拡散領域184は、リセットトランジスタ131のドレインおよびソースの他方であってもよい。
 上述のように、電源線CON4と同一の配線層にシールドを設けることが、容易ではない状況がある。例えば、電源線CON4とFD配線141との間隔が狭い状況が、そのような状況に該当する。また、電源線CON4が配置された配線層と他の配線層とを電気的に接続するためのビアが、電源線CON4とFD配線141との間に配置されている場合も、そのような状況に該当する。そのような状況において、本実施形態の容量素子185の電極により、電源線CON4とFD配線141との間の電気力線の一部を遮蔽し得る。これにより、FD配線141と電源線CON4との寄生容量による容量カップリングを抑制し得る。
 図14の例では、第1MIM電極181が、電源線CON4とFD配線141との間の電気力線の一部を遮蔽する役割を担う。第1MIM電極181は、第1シールド171に含まれていると考えることができる。
 本実施形態の撮像装置100は、以下のように説明され得る。
 撮像装置100は、容量素子185を備える。容量素子185は、一対の電極181および183と、誘電体層182と、を含む。誘電体層182は、一対の電極181および183に挟まれている。第1シールド171は、一対の電極181および183の一方を含む。このような構成に係る容量素子185の電極は、上記ノイズ抑制のためのシールドとして作用し得る。
 図14の例では、一対の電極181および183の上記一方は、一対の電極181および183の他方に比べて第1電圧線CON4に近い。一対の電極181および183の上記一方と第1電圧線CON4との間の距離Deは、第1配線141と第1電圧線CON4との間の距離Ddよりも小さい。このような構成に係る近位電極は、第1電圧線が原因で第1配線141にノイズが重畳されるのを抑制するのに適している。図14の例では、一対の電極181および183の上記一方は、第1MIM電極181に対応する。
 (第5実施形態)
 以下、第5実施形態について説明する。第5実施形態においては、第1実施形態と同様の内容については、説明を省略することがある。
 図15に示すように、第5実施形態の撮像装置200では、図1に示す第1実施形態の撮像装置100と同様、複数の画素201は、行方向および列方向に配列されている。
 図1の例では、列毎に、1本の出力信号線111が設けられている。各列の出力信号線111は、その列の画素101に接続されている。各列の出力信号線111に対して、定電流源105Aまたは定電流源105Bが接続され得る。
 図15の例では、列毎に、1本の信号線211が設けられている。各列の信号線211は、その列の画素201に接続されている。各列の信号線211に対して、定電流源105Bまたは電源線CON4が接続され得る。
 図15の例では、さらに、信号線212が、各画素201に接続されている。出力信号線212に対して、定電流源105Aまたは電源VDDが接続され得る。
 図16に、本実施形態に係る撮像装置200内の画素201の例示的な回路図を示す。図16の例では、図2に示す第1実施形態の回路構成とは異なる回路構成が採用されている。
 以下、図2の回路構成を、図16の回路構成と比較しつつ説明する。以下では、図2に関する説明に倣い、図16における下側の端子をドレインおよびソースの一方と記し、上側の端子をドレインおよびソースの他方と記す。
 具体的には、図2の例では、増幅トランジスタ126のドレインおよびソースの一方に、電源線CON4が接続されている。増幅トランジスタ126のドレインおよびソースの他方に、定電流源105Aまたは定電流源105Bが、選択トランジスタ125を介して電気的に接続され得る。
 図16の例では、増幅トランジスタ126のドレインおよびソースの一方に、定電流源105Bまたは電源線CON4が、選択トランジスタ125を介して電気的に接続され得る。増幅トランジスタ126のドレインおよびソースの他方に、定電流源105Aまたは電源VDDが電気的に接続され得る。
 図2の例では、選択トランジスタ125のドレインおよびソースの一方は、増幅トランジスタ126のドレインおよびソースの他方に電気的に接続されている。選択トランジスタ125のドレインおよびソースの一方は、帯域制御トランジスタ132に電気的に接続されている。
 図16の例では、選択トランジスタ125のドレインおよびソースの他方は、増幅トランジスタ126のドレインおよびソースの一方に電気的に接続されている。選択トランジスタ125のドレインおよびソースの一方は、定電流源105Bまたは電源線CON4が電気的に接続され得る。
 次にタイミングチャートを用いて読出し回路222の動作について説明する。図17は、読み出し回路222の動作の一例を示すタイミングチャートである。各グラフの横軸は時刻を示す。縦軸は、上から、制御信号線CON1の電圧レベル、制御信号線CON2の電圧レベル、制御信号線CON3の電圧レベル、および、電源線CON4の電圧レベルを、それぞれ示す。
 なお、以下に説明する例では、電源線CON4がとる電圧の値は、1値である。ただし、電源線CON4がとる電圧の値は、複数の値であってもよい。
 (露光期間)
 時刻t0から時刻t1までが、露光期間に対応する。
 時刻t0から時刻t1までの期間では、制御信号線CON1の電圧がローレベルであるため、選択トランジスタ125はオフしている。また、この期間において、入射光に応じて生成された信号電荷が電荷蓄積領域124に蓄積される。
 (読み出し期間)
 時刻t1から時刻t2までが、読み出し期間に対応する。
 時刻t1において制御信号線CON1の電圧がハイレベルになることで、選択トランジスタ125がオンする。また、読み出し期間においては、増幅トランジスタ126に電源VDDが電気的に接続され、選択トランジスタ125に定電流源105Bが電気的に接続されている。この状態においては、増幅トランジスタ126と定電流源105Bとがソースフォロア回路を形成する。これにより、電荷蓄積領域124に蓄積された信号電荷に応じた信号が信号線211に出力される。
 (リセット期間)
 時刻t2から時刻t3までが、リセット期間に対応する。
 時刻t2において制御信号線CON2の電圧がハイレベルになることで、帯域制御トランジスタ132がオンする。また、リセット期間においては、増幅トランジスタ126に定電流源105Aが電気的に接続され、選択トランジスタ125に電源線CON4が電気的に接続され、増幅トランジスタ126のドレインおよびソースの一方に電圧VA1が印加される。さらに、時刻t2において、制御信号線CON3の電圧がハイレベルになることでリセットトランジスタ131がオンする。これにより、電荷蓄積領域124の電圧は、電圧VA1にリセットされる。
 時刻t3において、制御信号線CON3の電圧がローレベルになることでリセットトランジスタ131がオフする。このとき、読み出し回路122は、-A×Bの増幅率で帰還経路を形成している。そのため、リセットトランジスタ131をオフしたときの電荷蓄積領域124のkTCノイズは、1/(1+A×B)倍に抑制される。
 (ノイズ抑制期間)
 時刻t3から時刻t4までが、ノイズ抑制期間に対応する。
 時刻t2から時刻t3までの期間においては、制御信号線CON2の電圧は、ハイレベルの電圧に設定される。これに対し、時刻t3から時刻t4の期間においては、制御信号線CON2の電圧は、ハイレベルとローレベルとの間のミドルレベルの電圧に設定される。
 この状態で時刻t4において制御信号線CON2の電圧がローレベルになると、帯域制御トランジスタ132がオフする。
 結果として、ノイズは、第1実施形態と同様、帰還がない場合に対して〔{1+(1+A×B)×Cfd/Cs}1/2/(1+A×B)〕倍に抑制される。
 (リセット読み出し期間)
 時刻t4から時刻t5までが、リセット読み出し期間に対応する。
 時刻t4において、再び、増幅トランジスタ126に電源VDDが電気的に接続され、選択トランジスタ125に定電流源105Bが電気的に接続される。この状態において、増幅トランジスタ126と定電流源105Bとがソースフォロア回路を形成する。これにより、リセット電圧に応じた信号が信号線211に出力される。
 読出し回路222の動作についての上述の説明により理解されるように、信号線211の電気的な接続先は、定電流源105Bと電源線CON4との間で切り替わる。この切り替わりは、信号線211の電圧の変動をもたらす。
 具体的には、信号線211の電圧は、読出し期間からリセット期間への遷移時に変動する。つまり、信号線211の電圧は、図17の時刻t2において変動する。また、信号線211の電圧は、ノイズ抑制期間からリセット読出し期間への遷移時にも変動する。つまり、信号線211の電圧は、図17の時刻t4において変動する。
 信号線211と電荷蓄積部CSPとの間には、寄生容量があることがある。この寄生容量があると、時刻t2および時刻t4における信号線211の電圧の電圧変動は、電荷蓄積部CSPの電圧を変動させ得る。
 これを踏まえ、本実施形態では、信号線211と電荷蓄積部CSPとの間の寄生容量を低減するためのシールドが設けられている。
 図18は、図15の構成における画素201の電荷蓄積領域124、信号線211および第1シールド171のレイアウトの一例を模式的に示す平面図である。第1実施形態と同様、FD配線141は、電荷蓄積領域124に接続されている。
 図18の例では、第1シールド171は、平面視において、FD配線141と信号線211との間に位置する。この例では、第1実施形態と同様、平面視は、半導体基板151に垂直な方向から観察することをいう。
 図18の例では、第1シールド線171Lは、FD配線141よりも信号線211に近接している。平面視において、信号線211およびシールド線の間には、配線は存在しない。
 信号線211は、列方向に延びている。ただし、信号線211は、行方向等の他の方向に延びていてもよい。
 第1シールド線171Lは、列方向に延びている。ただし、第1シールド線171Lは、行方向等の他の方向に延びていてもよい。
 上述の説明により理解されるように、信号線211の電圧は、読出し期間からリセット期間への遷移時に変動する。信号線211の電圧は、ノイズ抑制期間からリセット読出し期間への遷移時にも変動する。信号線211とFD配線141との間に寄生容量があると、これらの電圧変動は、FD配線141に伝わることがある。しかし、図18に例示する構成をとることにより、信号線211とFD配線141間の寄生容量を低減し、容量カップリングによるFD配線141の電圧変動を抑制できる。
 本実施形態の撮像装置200は、以下のように説明され得る。
 撮像装置200は、半導体基板151と、第1画素201と、第1シールド171と、を備える。第1画素201は、第1拡散領域124と、第1配線141と、第1トランジスタ126と、第1電圧線211と、を含む。第1拡散領域124は、半導体基板151に設けられている。第1配線141は、第1拡散領域124に接続されている。第1配線141では、第1画素201による光電変換で得られた第1信号電荷が流れる。第1電圧線211には、第1トランジスタ126のドレインまたはソースへの電圧供給経路の少なくとも一部を構成する。第1電圧線211には、互いに異なる電圧が印加される。第1電圧線211と第1シールド171との間の距離Daは、第1電圧線211と第1配線141との間の距離Ddよりも小さい。本実施形態は、ノイズを抑制するのに適している。具体的には、本実施形態の第1シールド171は、第1電圧線211が原因で第1配線141にノイズが重畳されるのを抑制するのに適している。
 本実施形態では、第1電圧線211は、信号線211に対応する。信号線211に印加される電圧は、信号線211が定電流源105Bに接続されているときと電源線CON4に接続されているときとで変化し得る。
 具体的には、距離Daは、第1画素201内に存する第1電圧線211と、第1シールド171と、の間の距離である。距離Ddは、第1画素201内に存する第1電圧線211と、第1画素201内に存する第1配線141と、の間の距離である。そして、距離Daは、距離Ddよりも小さい。このような構成に係る第1シールド171は、第1画素201内に存する第1電圧線211が原因で第1画素201に存する第1配線141にノイズが重畳されるのを抑制するのに適している。
 具体的には、第1シールド171は、第1配線141と第1電圧線211との間の電気力線の少なくとも一部を遮蔽することができる。
 典型的には、互いに異なる電圧は、互いに異なる直流電圧である。
 第1から第4形態で説明した技術を、第5実施形態に適用可能である。
 (第6実施形態)
 以下、第6実施形態について説明する。第6実施形態においては、第1実施形態と同様の内容については、説明を省略することがある。
 第1実施形態では、FD配線141と電源線CON4との間の寄生容量の抑制について述べた。しかし、図5のタイミングチャートに示したように、制御信号線CON1、制御信号線CON2、制御信号線CON3も、画素の読出し期間中に電圧が変動する。各信号線とFD配線141との間の寄生容量があると、その寄生容量を介してそれぞれの信号線の電圧変動によってFD配線141の電圧が変化する。このため、ノイズを低減する観点からは、FD配線141と制御信号線CON1との間の寄生容量、FD配線141と制御信号線CON2との間の寄生容量およびFD配線141と制御信号線CON3間の寄生容量を抑制することが有利である。第5実施形態についても、同様のことが言える。
 これを考慮すると、図1に係る画素101の電荷蓄積領域124、制御信号線CON1、制御信号線CON2、制御信号線CON3および第1シールド171を、図19に例示するようにレイアウトすることが考えられる。
 図19の例では、第1シールド171は、平面視において、FD配線141と制御信号線CON1との間に位置する。第1シールド171は、平面視において、FD配線141と制御信号線CON2との間に位置する。第1シールド171は、平面視において、FD配線141と制御信号線CON3との間に位置する。
 図19の例では、第1シールド171は、第1シールド線171Lを含む。第1シールド171は、シールド線171Lによって構成されていてもよい。ただし、第1シールド171は、非線状体によって構成されていてもよい。第1シールド171は、シールド線と非線状体とを含んでいてもよい。
 図19の例では、第1シールド線171Lは、平面視において、FD配線141と制御信号線CON1との間に位置する。第1シールド線171Lは、平面視において、FD配線141と制御信号線CON2との間に位置する。第1シールド線171Lは、平面視において、FD配線141と制御信号線CON3との間に位置する。
 図19の例では、第1シールド171は、FD配線141よりも制御信号線CON1に近接している。平面視において、制御信号線CON1および第1シールド171の間には、配線は存在しない。
 具体的には、第1シールド線171Lは、FD配線141よりも制御信号線CON1に近接している。平面視において、制御信号線CON1および第1シールド線171Lの間には、配線は存在しない。
 図19の例では、制御信号線CON1、制御信号線CON2、制御信号線CON3は、行方向に延びている。ただし、制御信号線CON1、制御信号線CON2、制御信号線CON3は、列方向に延びていてもよい。
 図19の例では、第1シールド線171Lは、行方向に延びている。ただし、第1シールド線171Lは、列方向に延びていてもよい。
 上述のように、非連続なパタンを、隣接する2つの画素101間または1つの画素101内に設けてもよい。そのような非連続なパタンの全部または一部は、シールドとして機能し得る。非連続なパタンは、電気的に互いに分離された複数の部分によって構成できる。図7Aおよび図7Bを参照して説明したように、上記複数の部分は、第1シールド171と第2シールド172とを含み得る。上記複数の部分は、第1シールド線171Lと第2シールド線172Lとを含み得る。
 制御信号線CON1、制御信号線CON2および制御信号線CON3の配置は、図19の配置に限定されない。例えば、第1シールド171に近い方から、制御信号線CON3、制御信号線CON2および制御信号線CON1がこの順で並んでいてもよい。第1シールド線171Lに近い方から、制御信号線CON3、制御信号線CON2および制御信号線CON1がこの順で並んでいてもよい。
 図20に、図19のA0-A1線の断面を模式的に表す断面図を示す。
 図19および図20の例では、第1シールド171、制御信号線CON1、制御信号線CON2および制御信号線CON3は、同一の配線層192Bに配置されている。具体的には、第1シールド線171L、制御信号線CON1、制御信号線CON2および制御信号線CON3は、同一の配線層192Bに配置されている。
 制御信号線CON1、制御信号線CON2および制御信号線CON3は、互いに異なる配線層に配置されていてもよい。その場合は、図21に示すように、平面視において各制御信号線とFD配線141との間に、第1シールド171を配置することができる。具体的には、平面視において各制御信号線とFD配線141との間に、第1シールド線171Lを配置することができる。
 図21の例では、制御信号線CON1は、配線層192Cに配置されている。制御信号線CON2は、配線層192Bに配置されている。制御信号線CON3は、配線層192Aに配置されている。また、図21の例では、第1シールド171が複数の配線層にまたがって配置されている。具体的には、図21では、第1シールド171が3つの配線層192C、配線層192B、および配線層192Aに配置されている。第1シールド171は、具体的には第1シールド線171Lを含む。配線層192Cにおいて、制御信号線CON1とFD配線141との間に、第1シールド線171Lが配置されている。
 配線層192Bにおいて、制御信号線CON2とFD配線141との間に、第1シールド線171Lが配置されている。
 配線層192Aにおいて、制御信号線CON3とFD配線141との間に、第1シールド線171Lが配置されている。
 このように構成することにより、FD配線141と制御信号線CON1、制御信号線CON2、および制御信号線CON3との間の容量カップリングを抑制することができる。
 図19のレイアウトとは異なるレイアウトを採用することもできる。図22は、図1の構成における画素101の電荷蓄積領域124、制御信号線CON1、制御信号線CON2、制御信号線CON3、およびシールドのレイアウトの別例を模式的に示す平面図である。
 図22の例では、FD配線141は、平面視において、第1シールド171Aと、第1シールド171Bとの間に位置する。第1シールド171Aは、平面視において、FD配線141と制御信号線CON1との間に位置する。第1シールド171Bは、平面視において、FD配線141と制御信号線CON3との間に位置する。
 具体的には、FD配線141は、平面視において、第1シールド線171LAと、第1シールド線171LBとの間に位置する。第1シールド線171LAは、平面視において、FD配線141と制御信号線CON1との間に位置する。第1シールド線171LBは、平面視において、FD配線141と制御信号線CON3との間に位置する。
 図23に、図22のA0-A1線の断面を模式的に表す断面図を示す。
 図23の例では、制御信号線CON1、制御信号線CON2および制御信号線CON3は、同一の配線層192Bに配置されている。その配線層192Bに、第1シールド171Aおよび第1シールド171Bも配置されている。具体的には、配線層192Bに、第1シールド線171LAおよび第1シールド線171LBが配置されている。
 図22および23に示すように第1シールド171Aおよび171Bを設けることで、FD配線141の両側に制御信号線が配置される場合においても、容量カップリングを抑制できる。
 互いに隣接する画素間での容量カップリングを抑制可能なレイアウトも採用され得る。そのようなレイアウトの例を、図24Aに示す。図24Aは、同じ列で隣接する画素101Aおよび画素101Bにおけるレイアウトの一例を模式的に示す平面図である。
 図24Aの例では、画素101Aおよび画素101Bのそれぞれが、電荷蓄積領域124、制御信号線CON1、制御信号線CON2、制御信号線CON3、第1シールド171Aおよび第1シールド171Bを含んでいる。
 具体的には、画素101Aおよび画素101Bのそれぞれが、電荷蓄積領域124、制御信号線CON1、制御信号線CON2、制御信号線CON3、第1シールド線171LAおよび第1シールド線171LBを含んでいる。
 画素101Aでは、平面視において、FD配線141は、第1シールド171Aと、第1シールド171Bとの間に位置する。画素101Aでは、平面視において、第1シールド171Aは、FD配線141と制御信号線CON1との間に位置する。画素101Bについても同様である。
 具体的には、画素101Aでは、平面視において、FD配線141は、第1シールド線171LAと、第1シールド線171LBとの間に位置する。画素101Aでは、平面視において、第1シールド線171LAは、FD配線141と制御信号線CON1との間に位置する。画素101Bについても同様である。
 さらに、平面視において、画素101Bの第1シールド171Bは、画素101BのFD配線141と画素101Aの制御信号線CON3との間に位置する。
 具体的には、平面視において、画素101Bの第1シールド線171LBは、画素101BのFD配線141と画素101Aの制御信号線CON3との間に位置する。
 図24Aの構成によれば、画素101Aの第1シールド171Aによって、画素101AのFD配線141と画素101Aの制御信号線CON1との間の容量カップリングを抑制できる。画素101Bの第1シールド171Aによって、画素101BのFD配線141と画素101Bの制御信号線CON1との間の容量カップリングを抑制できる。また、画素101Bの第1シールド171Bによって、画素101BのFD配線141と画素101Aの制御信号線CON3との間の容量カップリングを抑制できる。
 画素101Aが第1シールド171Cを有しており、第1シールド171Cが、画素101Aの制御信号線のうち最も画素101BのFD配線141に近いものと、画素101BのFD配線141との間に位置していてもよい。この形態によっても、画素101Aの第1シールド171Cによって、画素101BのFD配線141と画素101Aの制御信号線CON1~3との間の容量カップリングを抑制できる。
 図24Bのレイアウトも採用可能である。図24Bの例では、第2画素101Bの電源線CON4と第1シールド171との間の距離Daは、第2画素101Bの電源線CON4と第1画素101Bの第1配線141との間の距離Ddよりも小さい。このようにすれば、第2画素101Bの電源線CON4と第1画素101Bの第1配線141との間の容量カップリングを抑制できる。
 図24Bに係る撮像装置100は、以下のように説明され得る。
 撮像装置100は、半導体基板151と、第1画素101Aと、第2画素101Bと、第1シールドと、を備える。第1画素101Aおよび第2画素101Bは、互いに隣接している。第1画素101Aは、第1拡散領域124と、第1配線141と、を含む。第1拡散領域124は、半導体基板151に設けられている。第1配線141は、第1拡散領域124に接続されている。第1配線141では、第1画素101Aによる光電変換で得られた第1信号電荷が流れる。第2画素101Bは、第1トランジスタ126と、第1電圧線CON4と、を含む。第1トランジスタ126は、第2画素101Bによる光電変換で得られた第2信号電荷が流入するゲートを含む。第1電圧線CON4は、第1トランジスタ126のドレインまたはソースへの電圧供給経路の少なくとも一部を構成する。第1電圧線CON4には、互いに異なる電圧VA1およびVA2が印加される。第1電圧線CON4と第1シールド171との間の距離Daは、第1電圧線CON4と第1配線141との間の距離Ddよりも小さい。この構成は、ノイズを抑制するのに適している。具体的には、このような構成に係る第1シールド171は、第1電圧線CON4が原因で第1配線141にノイズが重畳されるのを抑制するのに適している。
 第1実施形態と同様、図24Bの例では、第1拡散領域124は、電荷蓄積領域124に対応する。第1配線141は、FD配線141に対応する。第1トランジスタ126は、増幅トランジスタ126に対応する。第1電圧線CON4は、電源線CON4に対応する。
 具体的には、距離Daは、第2画素101B内に存する第1電圧線CON4と、第1シールド171と、の間の距離である。距離Ddは、第2画素101B内に存する第1電圧線CON4と、第1画素101A内に存する第1配線141と、の間の距離である。そして、距離Daは、距離Ddよりも小さい。このような構成に係る第1シールド171は、第2画素101B内に存する第1電圧線CON4が原因で第1画素101Aに存する第1配線141にノイズが重畳されるのを抑制するのに適している。
 具体的には、第1シールド171は、第1配線141と第1電圧線CON4との間の電気力線の少なくとも一部を遮蔽することができる。
 典型的には、互いに異なる電圧は、互いに異なる直流電圧である。
 この例では、第1電圧線CON4は、第1信号電荷126のドレインまたはソースと接続されている。
 具体的には、図24Bの例では、半導体基板151に、第2画素101Bの第2拡散層が設けられている。第2画素101Bの第2配線が、第2拡散層に接続されている。第2配線では、第2画素101Bの光電変換で得られた第2信号電荷が流れる。第2画素101Bの第1トランジスタ126のゲートには、第2拡散層が電気的に接続されている。第2拡散層は、第2画素101Bの電荷蓄積領域124に対応する。第2配線は、第2画素101BのFD配線141に対応する。
 第1シールド171は、第1画素101Aの構成要素であってもよく、第2画素101Bの構成要素であってもよく、これらの画素101Aおよび101Bの構成要素でなくてもよい。
 具体的には、撮像装置の画素は、アレイを構成している。第1画素101Aと第2画素101Bは、アレイの行方向または列方向に、互いに隣り合っている。
 第2画素101Bの増幅トランジスタ126および第1電圧線CON4は、第1実施形態等で先に説明した第2画素101Bの増幅トランジスタ126および第1電圧線CON4の特徴と同様の特徴を有し得る。その他、図24Bの例に対し、先に説明した実施形態の特徴を組み合わせることができる。
 (第7実施形態)
 以下、第7実施形態について説明する。第7実施形態においては、第1実施形態と同様の内容については、説明を省略することがある。
 光電変換部は、第1実施形態で説明されたものに限られない。第7実施形態では、光電変換部としてフォトダイオード127が用いられている。
 光電変換部としてフォトダイオード127が用いられる場合であっても、図6に示すレイアウトを採用可能である。図25は、その場合の図6に示すA0-A1線の断面図の一例である。
 図25の例では、電荷蓄積領域124と、半導体基板151とで、フォトダイオード127が構成されている。第1実施形態と同様、半導体基板151に、電荷蓄積領域124が設けられていると言える。
 電荷蓄積領域124は、FD配線141に接続されている。図25の例では、FD配線141は、電荷蓄積領域124と、図示しない増幅トランジスタ126のゲートと、を電気的に接続している。
 図25の例では、FD配線141の一部と、第1シールド171と、電源線CON4とが、同一の配線層192Aに配置されている。具体的には、FD配線141の一部と、第1シールド線171Lと、電源線CON4とが、同一の配線層192Aに配置されている。
 具体的には、FD配線141は、ビア158Aと、配線157Aと、を含んでいる。FD配線141の上記一部は、配線157Aである。例えば、フォトダイオード127で生成された信号電荷は、電荷蓄積領域124からFD配線141を経由して、図3に示した増幅トランジスタ126のゲートに流入する。
 図25の例に対し、先に説明した実施形態の特徴を組み合わせることができる。
 例えば、図25の例では、第1電圧線CON4と第1シールド171との間の距離Daは、第1電圧線CON4と第1配線141との間の距離Ddよりも小さい。
 図25の例では、配線層192Aにおいて、第1配線141の一部と第1電圧線CON4との間に、第1シールド171が配置されている。これにより、第1配線141と第1電圧線CON4との寄生容量による容量カップリングを抑制できる。
 撮像装置において、フォトダイオードとともに転送トランジスタが用いられる場合であっても、図6に示すレイアウトを採用可能である。図26は、その場合の図6に示すA0-A1線の断面図の一例である。以下では、図25の例と重複する説明は、省略することがある。
 図26の例では、図25の例と同様、電荷蓄積領域と、半導体基板151とで、フォトダイオード127が構成されている。
 図26の例では、フォトダイオード127の電荷蓄積領域とは別の電荷蓄積領域124が、半導体基板151に設けられている。転送トランジスタ161および162を介して、フォトダイオード127と電荷蓄積領域124とが電気的に接続され得る。
 図26の例では、2つの転送トランジスタ161および162が用いられている。しかし、用いられる転送トランジスタの数は、1つであってもよく、3つ以上であってもよい。例えば、フォトダイオード127で生成された信号電荷は、トランジスタ161、162を介して電荷蓄積領域124に流入し、さらに、電荷蓄積領域124から第1配線141を介して、図3に示した増幅トランジスタ126のゲートに流入する。
 このように、本実施形態に係る撮像装置では、第1拡散領域124または拡散領域と、半導体基板151とによって、第1フォトダイオード127が構成されている。すなわち、第1フォトダイオード127は、半導体基板151内に存在し、第1拡散領域124または拡散領域を含む。第1フォトダイオード127は、入射光を第1信号電荷に変換する。第1配線141は、第1トランジスタ126と第1拡散領域124とを電気的に接続している。
 (図19および図24Aに係る撮像装置)
 先に説明した図24Aに係る撮像装置100は、以下のように説明され得る。
 撮像装置100は、半導体基板151と、第1画素101Aと、第1シールドと、を備える。第1画素101Aは、第1拡散領域124と、第1配線141と、第1トランジスタと、第1電圧線と、を含む。第1拡散領域124は、半導体基板151に設けられている。第1配線141は、第1拡散領域124に接続されている。第1配線141では、第1画素101Aによる光電変換で得られた信号電荷が流れる。第1電圧線は、第1トランジスタのゲートに接続されている。第1電圧線には、互いに異なる電圧が印加される。第1電圧線と第1シールドとの間の距離は、第1電圧線と第1配線141との間の距離よりも小さい。このような構成は、ノイズを抑制するのに適している。具体的には、このような構成に係る第1シールドは、第1電圧線が原因で第1配線にノイズが重畳されるのを抑制するのに適している。
 第1トランジスタおよび第1電圧線の組み合わせは、第1画素101Aの選択トランジスタ125と第1画素101Aの制御信号線CON1の組み合わせに対応し得る。第1トランジスタおよび第1電圧線の組み合わせは、第1画素101Aの帯域制御トランジスタ132と第1画素101Aの制御信号線CON2の組み合わせに対応し得る。第1トランジスタおよび第1電圧線の組み合わせは、第1画素101Aのリセットトランジスタ131と第1画素101Aの制御信号線CON3の組み合わせに対応し得る。第1シールドは、図24Aにおいて第1画素101Aを表す二点鎖線内を延びる第1シールド171Aに対応し得る。第1シールドは、具体的には、同二点鎖線内を延びる第1シールド線171LAに対応し得る。
 具体的には、第1画素101A内に存する第1電圧線と、第1シールドと、の間の距離は、第1画素101A内に存する第1電圧線と、第1画素101A内に存する第1配線141と、の間の距離よりも小さい。このような構成に係る第1シールドは、第1画素101A内に存する第1電圧線が原因で第1画素101Aに存する第1配線141にノイズが重畳されるのを抑制するのに適している。
 具体的には、第1シールドは、第1配線141と第1電圧線との間の電気力線の少なくとも一部を遮蔽することができる。
 典型的には、互いに異なる電圧は、互いに異なる直流電圧である。
 第1シールドは、第1画素101Aの構成要素であってもよく、第1画素101Aの構成要素でなくてもよい。
 図24Aに係る上記の説明は、図19の例においても成立する。
 先に説明した図24Aに係る撮像装置100は、以下のようにも説明され得る。
 撮像装置100は、半導体基板151と、第1画素101Aと、第2画素101Bと、第1シールドと、を備える。第1画素101Aおよび第2画素101Bは、互いに隣接している。第1画素101Aは、第1トランジスタと、第1電圧線と、を含む。第1電圧線は、第1トランジスタのゲートに接続されている。第1電圧線には、互いに異なる電圧が印加される。第2画素101Bは、第1拡散領域124と、第1配線141と、を含む。第1拡散領域124は、半導体基板151に設けられている。第1配線141は、第1拡散領域124に接続されている。第1配線141では、第2画素101Bによる光電変換で得られた信号電荷が流れる。第1電圧線と第1シールドとの間の距離は、第1電圧線と第1配線141との間の距離よりも小さい。このような構成は、ノイズを抑制するのに適している。具体的には、このような構成に係る第1シールドは、第1電圧線が原因で第1配線にノイズが重畳されるのを抑制するのに適している。
 第1トランジスタおよび第1電圧線の組み合わせは、第1画素101Aの選択トランジスタ125と第1画素101Aの制御信号線CON1の組み合わせに対応し得る。第1トランジスタおよび第1電圧線の組み合わせは、第1画素101Aの帯域制御トランジスタ132と第1画素101Aの制御信号線CON2の組み合わせに対応し得る。第1トランジスタおよび第1電圧線の組み合わせは、第1画素101Aのリセットトランジスタ131と第1画素101Aの制御信号線CON3の組み合わせに対応し得る。第1シールドは、図24Aにおいて第2画素101Bを表す二点鎖線内を延びる第1シールド171Bに対応し得る。第1シールドは、具体的には、同二点鎖線内を延びる第1シールド線171LBに対応し得る。
 具体的には、第1画素101A内に存する第1電圧線と、第1シールドと、の間の距離は、第1画素101A内に存する第1電圧線と、第2画素101B内に存する第1配線141と、の間の距離よりも小さい。このような構成に係る第1シールドは、第1画素101A内に存する第1電圧線が原因で第2画素101Bに存する第1配線141にノイズが重畳されるのを抑制するのに適している。
 具体的には、第1シールドは、第1配線141と第1電圧線との間の電気力線の少なくとも一部を遮蔽することができる。
 典型的には、互いに異なる電圧は、互いに異なる直流電圧である。
 第1シールドは、第1画素101Aの構成要素であってもよく、第2画素101Bの構成要素であってもよく、これらの画素101Aおよび101Bの構成要素でなくてもよい。
 具体的には、撮像装置の画素は、アレイを構成している。第1画素101Aと第2画素101Bは、アレイの行方向または列方向に、互いに隣り合っている。
 <カメラシステム>
 先に説明した各実施形態に係る撮像装置を用いて、カメラシステムを構成できる。以下、カメラシステムの一例を、図27を参照しつつ説明する。
 図27に示すカメラシステム300は、光学系310と、撮像装置100と、信号処理回路360と、システムコントローラ370と、表示装置380と、を備えている。カメラシステム300は、例えば、スマートフォン、デジタルカメラおよびビデオカメラなどである。撮像装置100に代えて、撮像装置200を用いることも可能である。
 信号処理回路360は、例えばDSP(Digital Signal Processor)である。信号処理回路360は撮像装置100からの出力データを受け取り、例えばガンマ補正、色補間処理、空間補間処理、およびオートホワイトバランスなどの処理を行う。
 表示装置380は、例えば液晶ディスプレイおよび有機EL(Electro Luminescence)ディスプレイである。表示装置380は、タッチパネルのような入力インタフェースを含んでいてもよい。これにより、ユーザは、タッチペンを用いて、信号処理回路360の処理内容の選択、制御および撮像条件を入力インタフェースを介して設定できる。
 システムコントローラ370は、カメラシステム300全体を制御する。システムコントローラ370は、典型的には半導体集積回路であり、例えばCPUである。
 図27のカメラシステム300によれば、撮影した画像を表示装置380に表示できる。このため、撮影した画像をすぐに確認できる。さらに、表示装置380を利用したGUI(Graphic User Interface)制御が可能になる。
 本開示に係る撮像装置は、種々の撮像装置として有用である。またデジタルカメラ、デジタルビデオカメラ、カメラ付携帯電話、電子内視鏡などの医療用カメラ、車載カメラ、ロボット用カメラ等の用途にも応用できる。
100,200 撮像装置
101,101A,101B,201 画素
102 垂直走査回路
103 カラム信号処理回路
104 水平信号読み出し回路
105A,105B 定電流源
111,111A,111B 出力信号線
112 電源線
113 水平信号共通線
121 光電変換部
122,222 読出し回路
123 帯域制御部
124 電荷蓄積領域
125 選択トランジスタ
126 増幅トランジスタ
127 フォトダイオード
128,130,157A,157B,157C 配線
129 ノード
131 リセットトランジスタ
132 帯域制御トランジスタ
133,134,185 容量素子
141 FD配線
151 半導体基板
152,152A,152B,152C,152D 層間絶縁層
153 第1電極
154 光電変換層
155 第2電極
156 シールド電極
158A,158B,158C,158D ビア
161,162 転送トランジスタ
171,171A,171B,172 シールド
171L,171LA,171LB,172L シールド線
181 第1MIM電極
182 誘電体層
183 第2MIM電極
192A,192B,192C 配線層
211,212 信号線
300 カメラシステム
310 光学系
360 信号処理回路
370 システムコントローラ
380 表示装置
CON1,CON2,CON3 制御信号線
CON4,CON4A,CON4B 電源線
CX 共通軸
Vp 基準電圧

Claims (26)

  1.  半導体基板と、光電変換を行う第1画素と、第1シールドと、を備え、
     前記第1画素は、
      前記半導体基板内に存在する第1拡散領域と、
      前記第1拡散領域に接続された第1配線であって、前記第1画素による前記光電変換で得られた第1信号電荷が流れる第1配線と、
      前記第1配線を経由して前記第1信号電荷が流入するゲートを含む第1トランジスタと、
      前記第1トランジスタのドレインまたはソースへの電圧供給経路の少なくとも一部を構成する第1電圧線であって、互いに異なる電圧が印加される第1電圧線と、
     を含み、
     前記第1電圧線と前記第1シールドとの間の距離は、前記第1電圧線と前記第1配線との間の距離よりも小さい、
     撮像装置。
  2.  半導体基板と、光電変換を行う第1画素と、光電変換を行う第2画素と、第1シールドと、を備え、
     前記第1画素および前記第2画素は、互いに隣接しており、
     前記第1画素は、
      前記半導体基板内に存在する第1拡散領域と、
      前記第1拡散領域に接続された第1配線であって、前記第1画素による前記光電変換で得られた第1信号電荷が流れる第1配線と、
     を含み、
     前記第2画素は、
      前記第2画素による前記光電変換で得られた第2信号電荷が流入するゲートを含む第1トランジスタと、
      前記第1トランジスタのドレインまたはソースへの電圧供給経路の少なくとも一部を構成する第1電圧線であって、互いに異なる電圧が印加される第1電圧線と、
     を含み、
     前記第1電圧線と前記第1シールドとの間の距離は、前記第1電圧線と前記第1配線との間の距離よりも小さい、
     撮像装置。
  3.  前記第1シールドの電圧が固定された状態で、前記第1電圧線の電圧が変更される、
     請求項1または請求項2に記載の撮像装置。
  4.  前記半導体基板の厚さ方向に関する第1の位置に設けられた第1配線層をさらに備え、
     前記第1電圧線は、前記第1配線層内に配置され、
     前記第1シールドは、前記第1配線層内に配置され、
     前記第1配線は、前記第1配線層内に位置する第1部分を含み、
     平面視において、前記第1シールドは、前記第1部分と前記第1電圧線との間にある、
     請求項1から請求項3のいずれか一項に記載の撮像装置。
  5.  前記半導体基板の厚さ方向に関する互いに異なる位置に設けられた第1配線層および第2配線層をさらに備え、
     前記第1電圧線は、前記第1配線層内に配置され、
     前記第1シールドは、前記第2配線層内に配置され、
     前記第1配線は、前記第2配線層内に位置する第1部分を含み、
     平面視において、第1シールドは、前記第1部分と前記第1電圧線との間にある、
     請求項1から請求項3のいずれか一項に記載の撮像装置。
  6.  第2シールドをさらに備え、
     前記第1電圧線と前記第2シールドとの間の距離は、前記第1電圧線と前記第1配線との間の距離よりも小さい、
     請求項1から請求項5のいずれか一項に記載の撮像装置。
  7.  前記第1シールドと前記第1電圧線との間の距離は、前記第1シールドと前記第1配線との間の距離よりも小さい、
     請求項1から請求項6のいずれか一項に記載の撮像装置。
  8.  平面視において、前記第1電圧線と前記第1シールドとの間に、配線が存在しない、
     請求項1から請求項7のいずれか一項に記載の撮像装置。
  9.  前記第1シールドは、第1シールド線を含み、
     前記第1電圧線と前記第1シールド線との間の距離は、前記第1電圧線と前記第1配線との間の距離よりも小さい、
     請求項1から請求項8のいずれか一項に記載の撮像装置。
  10.  容量素子をさらに備え、
     前記容量素子は、
      一対の電極と、
      前記一対の電極に挟まれた誘電体層と、
     を含み、
     前記第1シールドは、前記一対の電極の一方を含む、
     請求項1から請求項9のいずれか一項に記載の撮像装置。
  11.  前記一対の電極の前記一方は、前記一対の電極の他方に比べて前記第1電圧線に近く、
     前記一対の電極の前記一方と前記第1電圧線との間の距離は、前記第1配線と前記第1電圧線との間の距離よりも小さい、
     請求項10のいずれか一項に記載の撮像装置。
  12.  前記第1画素は、第1光電変換部をさらに備え、
     前記第1光電変換部は、第1電極と、第2電極と、前記第1電極と前記第2電極との間に配置された光電変換層と、を含み、
     前記光電変換層は、入射光を前記第1信号電荷に変換し、
     前記第1配線は、前記第2電極と前記第1拡散領域とを接続している、
     請求項1から請求項11のいずれか一項に記載の撮像装置。
  13.  前記半導体基板の厚さ方向に関し、前記第1電圧線および前記第1シールドは、前記第1光電変換部と前記半導体基板との間の位置にある、
     請求項12に記載の撮像装置。
  14.  前記半導体基板の厚さ方向に関する互いに異なる位置に設けられた複数の配線層をさらに備え、
     前記複数の配線層は、第1配線層を含み、
     前記第1電圧線は、前記第1配線層に配置され、
     前記第1配線層は、前記複数の配線層のうち前記第1光電変換部に最も近い層である、
     請求項12または請求項13に記載の撮像装置。
  15.  前記半導体基板の厚さ方向に関し、前記第2電極と、前記第1シールドと、前記第1電圧線と、前記半導体基板とは、この順に並んでいる、
     請求項12から請求項14のいずれか一項に記載の撮像装置。
  16.  前記第1シールドは、第1シールド線を含み、
     平面視において、前記第1シールド線は、前記第1電圧線の少なくとも一部と重なっている、
     請求項15に記載の撮像装置。
  17.  平面視において、前記第1シールド線は、前記第1電圧線の全体と重なっている、
     請求項16に記載の撮像装置。
  18.  第3電極をさらに備え、
     前記第3電極は、前記光電変換層からみて前記第2電極と同じ側に設けられており、
     前記第3電極は、前記第2電極と電気的に分離されており、
     前記第3電極は、前記第1シールドと電気的に接続されている、
     請求項12から請求項17のいずれか一項に記載の撮像装置。
  19.  前記第1シールドと前記第1電圧線との間の距離は、
      前記半導体基板の厚さ方向に関する前記第2電極と前記第1電圧線との間の距離よりも小さく、かつ、
      平面視における前記第1電圧線と前記第1配線との間の距離よりも小さい、
     請求項12から請求項18のいずれか一項に記載の撮像装置。
  20.  前記第1画素は、前記半導体基板内に存在する第1フォトダイオードを更に含み、
     前記第1拡散領域は、第1フォトダイオードに含まれ、
     前記第1フォトダイオードは、入射光を前記第1信号電荷に変換し、
     前記第1配線は、前記第1トランジスタと前記第1拡散領域とを電気的に接続している、
     請求項1から請求項11のいずれか一項に記載の撮像装置。
  21.  前記第1画素は、前記半導体基板内に存在する第1フォトダイオードを更に含み、
     前記第1拡散領域は、1つ又は複数のトランジスタを介して前記第1フォトダイオードに接続され、
     前記第1フォトダイオードは、入射光を前記第1信号電荷に変換し、
     前記第1配線は、前記第1トランジスタと前記第1拡散領域とを電気的に接続している、
     請求項1から請求項11のいずれか一項に記載の撮像装置。
  22.  半導体基板と、光電変換を行う第1画素と、第1シールドと、を備え、
     前記第1画素は、
      前記半導体基板内に存在する第1拡散領域と、
      前記第1拡散領域に接続された第1配線であって、前記第1画素による前記光電変換で得られた信号電荷が流れる第1配線と、
      第1トランジスタと、
      前記第1トランジスタのゲートへの電圧供給経路の少なくとも一部を構成する第1電圧線であって、互いに異なる電圧が印加される第1電圧線と、
     を含み、
     前記第1電圧線と前記第1シールドとの間の距離は、前記第1電圧線と前記第1配線との間の距離よりも小さい、
     撮像装置。
  23.  半導体基板と、光電変換を行う第1画素と、光電変換を行う第2画素と、第1シールドと、を備え、
     前記第1画素および前記第2画素は、互いに隣接しており、
     前記第1画素は、
      第1トランジスタと、
      前記第1トランジスタのゲートへの電圧供給経路の少なくとも一部を構成する第1電圧線であって、互いに異なる電圧が印加される第1電圧線と、
     を含み、
     前記第2画素は、
      前記半導体基板内に存在する第1拡散領域と、
      前記第1拡散領域に接続された第1配線であって、前記第2画素による前記光電変換で得られた信号電荷が流れる第1配線と、
     を含み、
     前記第1電圧線と前記第1シールドとの間の距離は、前記第1電圧線と前記第1配線との間の距離よりも小さい、
     撮像装置。
  24.  前記第1電圧線に前記互いに異なる電圧を印加する電圧供給回路をさらに備えた請求項1から請求項23のいずれか一項に記載の撮像装置。
  25.  前記電圧供給回路は、前記第1シールドに固定電圧を印加した状態で、前記第1電圧線の電圧を変更する、請求項24に記載の撮像装置。
  26.  前記第1シールドは、前記第1電圧線と前記第一配線との間の寄生容量を低減する請求項1から請求項25のいずれか一項に記載の撮像装置。
PCT/JP2019/025285 2018-10-30 2019-06-26 撮像装置 WO2020090150A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020554757A JP7291894B2 (ja) 2018-10-30 2019-06-26 撮像装置
US17/154,011 US20210143218A1 (en) 2018-10-30 2021-01-21 Imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-203932 2018-10-30
JP2018203932 2018-10-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/154,011 Continuation US20210143218A1 (en) 2018-10-30 2021-01-21 Imaging device

Publications (1)

Publication Number Publication Date
WO2020090150A1 true WO2020090150A1 (ja) 2020-05-07

Family

ID=70462552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025285 WO2020090150A1 (ja) 2018-10-30 2019-06-26 撮像装置

Country Status (3)

Country Link
US (1) US20210143218A1 (ja)
JP (1) JP7291894B2 (ja)
WO (1) WO2020090150A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013178A1 (ja) * 2021-08-03 2023-02-09 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
WO2023112769A1 (ja) * 2021-12-15 2023-06-22 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
WO2023199560A1 (ja) * 2022-04-15 2023-10-19 パナソニックIpマネジメント株式会社 撮像装置およびカメラシステム
WO2023223720A1 (ja) * 2022-05-16 2023-11-23 パナソニックIpマネジメント株式会社 撮像装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228956A (ja) * 2004-02-13 2005-08-25 Canon Inc 固体撮像装置および撮像システム
JP2012019166A (ja) * 2010-07-09 2012-01-26 Panasonic Corp 固体撮像装置
JP2014146820A (ja) * 2014-03-14 2014-08-14 Panasonic Corp 固体撮像装置
JP2016127265A (ja) * 2014-12-26 2016-07-11 パナソニックIpマネジメント株式会社 撮像装置
JP2016197617A (ja) * 2015-04-02 2016-11-24 パナソニックIpマネジメント株式会社 撮像装置
WO2017169478A1 (ja) * 2016-03-29 2017-10-05 株式会社ニコン 撮像素子および撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228956A (ja) * 2004-02-13 2005-08-25 Canon Inc 固体撮像装置および撮像システム
JP2012019166A (ja) * 2010-07-09 2012-01-26 Panasonic Corp 固体撮像装置
JP2014146820A (ja) * 2014-03-14 2014-08-14 Panasonic Corp 固体撮像装置
JP2016127265A (ja) * 2014-12-26 2016-07-11 パナソニックIpマネジメント株式会社 撮像装置
JP2016197617A (ja) * 2015-04-02 2016-11-24 パナソニックIpマネジメント株式会社 撮像装置
WO2017169478A1 (ja) * 2016-03-29 2017-10-05 株式会社ニコン 撮像素子および撮像装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013178A1 (ja) * 2021-08-03 2023-02-09 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
WO2023112769A1 (ja) * 2021-12-15 2023-06-22 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
WO2023199560A1 (ja) * 2022-04-15 2023-10-19 パナソニックIpマネジメント株式会社 撮像装置およびカメラシステム
WO2023223720A1 (ja) * 2022-05-16 2023-11-23 パナソニックIpマネジメント株式会社 撮像装置

Also Published As

Publication number Publication date
JP7291894B2 (ja) 2023-06-16
JPWO2020090150A1 (ja) 2021-09-24
US20210143218A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP7291894B2 (ja) 撮像装置
JP7241308B2 (ja) 撮像装置およびその駆動方法
US11183524B2 (en) Imaging device and camera system
JP6619631B2 (ja) 固体撮像装置および撮像システム
JP5530839B2 (ja) 固体撮像装置
JP6174902B2 (ja) 固体撮像装置及びカメラ
US20130015328A1 (en) Solid-state image pickup device and image pickup apparatus
JP7103388B2 (ja) 撮像素子および撮像装置
JP2005217366A (ja) 固体撮像装置
JP7026335B2 (ja) 撮像装置
WO2006048965A1 (ja) 増幅型固体撮像装置
JP7386442B2 (ja) 撮像装置
WO2018003012A1 (ja) 固体撮像装置
JP2014146820A (ja) 固体撮像装置
JP6813971B2 (ja) 光電変換装置及び撮像システム
JP5145866B2 (ja) 固体撮像素子
US10879300B2 (en) Image sensor and image-capturing apparatus
JP2013197333A (ja) 固体撮像装置、カメラ、および電子機器
JP6494539B2 (ja) 固体撮像装置及びその製造方法
JP2021106360A (ja) 撮像装置および撮像装置の駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880285

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554757

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880285

Country of ref document: EP

Kind code of ref document: A1