WO2020088535A1 - 芯片的封装结构以及封装方法 - Google Patents

芯片的封装结构以及封装方法 Download PDF

Info

Publication number
WO2020088535A1
WO2020088535A1 PCT/CN2019/114411 CN2019114411W WO2020088535A1 WO 2020088535 A1 WO2020088535 A1 WO 2020088535A1 CN 2019114411 W CN2019114411 W CN 2019114411W WO 2020088535 A1 WO2020088535 A1 WO 2020088535A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
circuit board
vcsel
mems
cover plate
Prior art date
Application number
PCT/CN2019/114411
Other languages
English (en)
French (fr)
Inventor
王之奇
Original Assignee
苏州晶方半导体科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州晶方半导体科技股份有限公司 filed Critical 苏州晶方半导体科技股份有限公司
Publication of WO2020088535A1 publication Critical patent/WO2020088535A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0067Packages or encapsulation for controlling the passage of optical signals through the package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00317Packaging optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping

Definitions

  • the present application relates to the field of chip packaging technology, for example, to a chip packaging structure and packaging method.
  • the laser has unique optical characteristics, such as high monochromaticity and strong directivity, which makes the development of vertical cavity surface emitting laser (Vertical-Cavity, Surface-Emitting Laser, VCSEL) chips faster and faster, and the scope of application is more and more wide. Especially due to the extremely strong directivity of the laser, the laser can maintain the quality of the light spot within a preset distance without using a lens, making the laser the preferred light source for barcode scanning.
  • vertical cavity surface emitting laser Very-Cavity, Surface-Emitting Laser, VCSEL
  • a scanning device that controls laser scanning is also required, and a micro-electromechanical system with a galvanometer (Micro-Electro-Mechanical) is usually used.
  • MEMS Micro-Electro-Mechanical
  • the MEMS chip and the VCSEL chip need to be packaged to form a package structure to facilitate electrical connection with external circuits.
  • the package structure formed by the MEMS chip and the VCSEL chip is thick.
  • the present application provides a chip packaging structure and a packaging method, which reduces the thickness of a packaging structure formed by a MEMS chip and a VCSEL chip.
  • An embodiment provides a chip packaging structure, including: a circuit board having an interconnection circuit connected to an external circuit; a MEMS chip, a VCSEL chip and a light-transmitting cover plate, the MEMS chip, the VCSEL chip and The light-transmitting cover plates are respectively fixed on the circuit board, and the MEMS chip and the VCSEL chip are respectively connected to the interconnection circuit; and a reflective structure is provided on the light-transmitting cover plate; wherein, The MEMS chip has opposite front and back sides, and the front side of the MEMS chip has a galvanometer; the VCSEL chip has opposite front and back sides, and the front side of the VCSEL chip is configured to emit laser light; The surface of the circuit board has a first area and a second area, the first area is configured to emit laser light, and the reflective structure is provided in the second area; the front surface of the MEMS chip and the front surface of the VCSEL chip face In the light-transmitting cover plate, the VCSEL chip is configured to emit laser light, and the laser
  • An embodiment provides a chip packaging method.
  • the packaging method includes: providing a substrate provided with a cutting channel, wherein the substrate includes an interconnect circuit connected to an external circuit; and binding a MEMS chip on the substrate And a VCSEL chip, wherein the MEMS chip and the VCSEL chip are connected to the interconnection circuit, the MEMS chip has opposite front and back sides, the front side of the MEMS chip has a galvanometer, and the VCSEL chip has opposite Front and back, the front of the VCSEL chip is set to emit laser light; the substrate is divided based on the cutting channel to form a plurality of single-grain circuit boards, wherein the cutting channel is provided in two adjacent Between the circuit boards; and a light-transmitting cover plate is fixed on the circuit board, wherein the surface of the light-transmitting cover plate facing the circuit board has a first area and a second area, the first area is provided as To emit laser light, the second region has a reflective structure, the front surface of the MEMS chip and the front surface of the VCSEL
  • 1 is a schematic diagram of the working principle of the interaction between the VCSEL chip and the galvanometer on the MEMS chip provided by an embodiment to achieve scanning;
  • FIG. 2 is a schematic structural diagram of a package structure of a VCSEL chip and a MEMS chip provided by an embodiment
  • FIG. 3 is a schematic diagram of a chip packaging structure provided by an embodiment
  • FIG. 4 is a schematic diagram of a chip packaging structure provided by an embodiment
  • FIG. 5 is a schematic diagram of a chip packaging structure provided by an embodiment
  • FIG. 6 is a structural schematic diagram of a chip packaging structure provided by an embodiment
  • 15 is a flowchart of a chip packaging method according to an embodiment.
  • FIG. 1 is a schematic diagram of the working principle of the interaction between the VCSEL chip 1 and the galvanometer 21 on the MEMS chip 2 to realize scanning; the MEMS chip 2 can control the deflection of the galvanometer 21 to achieve the effect of reciprocating scanning, as shown in FIG. 1
  • the galvanometer 21 is deflected from state L1 to state L2, and the reflected laser light is deflected in the A direction to realize scanning.
  • the galvanometer 21 is a two-dimensional scanning device, which can simultaneously scan in two directions on one galvanometer, that is, in the direction shown by arrow A in FIG. 1 and the direction perpendicular to the paper surface shown in FIG. 1 (Not shown in Figure 1).
  • the VCSEL chip 1 is usually arranged directly above the MEMS chip 2, and the position of the VCSEL chip 1 and the MEMS chip 2 is fixed by other auxiliary structures.
  • the auxiliary structure includes a ceramic substrate and a frame structure with a large thickness.
  • the MEMS chip 2 is fixed on one surface of the ceramic substrate, the frame structure is fixed on the surface, and the VCSEL chip 1 is fixed on the upper end of the frame structure.
  • the frame structure is set as Ensure the distance between the MEMS chip and the VCSEL chip, the distance is generally about 1mm.
  • a transparent cover plate needs to be provided on the side of the VCSEL chip 1 facing away from the ceramic substrate. The transparent cover plate and the surface of the ceramic substrate form a closed cavity to seal and protect the two chips.
  • the VCSEL chip 1 and the MEMS chip 2 are packaged in the manner shown in FIG. 1, since the VCSEL chip 1 and the MEMS chip 2 are directly opposite, and the VCSEL chip 1 has a preset area, the VCSEL chip 1 will block part of it The light reflected by the galvanometer 21, so that there is a preset blind zone during the scanning process. However, the closer the distance between the VCSEL chip 1 and the galvanometer 21, the larger the area of the scanning blind area formed.
  • the distance between the VCSEL chip 1 and the MEMS chip 2 in the related art can be selected to be about 1 mm; plus the thickness of the MEMS chip 2 and the thickness of the VCSEL chip 1, as well as the ceramic substrate and The thickness of the frame structure eventually makes the total thickness of the package structure thicker.
  • FIG. 2 is a schematic structural diagram of a packaging structure of a VCSEL chip and a MEMS chip.
  • a circuit board 125 having a through hole 126 is used, and the VCSEL chip 121 and the MEMS chip 122 are respectively bound on opposite sides of the circuit board 125, and the MEMS chip 122 covers the through hole 126
  • the light-transmitting cover 123 is fixed at the opening of the other end of the through hole 126, and the two chips are connected to the solder ball 124 through the circuit in the circuit board 125 to facilitate connection with external circuits.
  • an external reflective structure 127 is required.
  • the reflective structure 127 is configured to emit the laser signal emitted by the VCSEL chip 121 onto the MEMS chip 122. The thickness of the entire system is still Larger.
  • the MEMS chip, the VCSEL chip and the light-transmitting cover plate are simultaneously fixed on the same circuit board, the light-transmitting cover plate has a reflective structure, and the reflective structure is integrated into the light-transmitting structure On the cover plate, there is no need to separately provide a reflective structure, which reduces the thickness of the packaging structure.
  • FIG. 3 is a schematic diagram of a chip packaging structure provided by this embodiment.
  • the packaging structure includes a circuit board 11, a MEMS chip 13 fixed on the circuit board 11, a VCSEL chip 12 and a transparent cover 14 .
  • the circuit board 11 has an interconnection circuit connected to an external circuit.
  • the interconnection circuit is not shown in FIG. 3.
  • the circuit board 11 includes solder bumps 18 electrically connected to external circuits.
  • the interconnection circuit is connected to the solder bump 18.
  • Both the MEMS chip 13 and the VCSEL chip 12 are connected to the interconnection circuit.
  • the MEMS chip 13 has opposite front and back sides, and the front side of the MEMS chip 13 has a galvanometer.
  • the VCSEL chip 12 has opposite front and back sides, and the front side of the VCSEL chip 12 is used to emit laser light.
  • the surface of the light-transmitting cover plate 14 facing the circuit board 11 has a first area and a second area, the first area is configured to emit laser light, and the second area has a reflective structure 10.
  • the front surface of the MEMS chip 13 and the front surface of the VCSEL chip 12 both face the light-transmitting cover plate 14, and the laser light emitted by the VCSEL chip 12 is reflected by the reflective structure 10 to the oscillating mirror, and passes the oscillating The mirror reflects to the first area and exits through the first area, and the laser direction is as shown by the arrow in FIG. 3.
  • the second area does not overlap with the MEMS chip 13 to avoid the reflective structure 10 located in the second area from blocking the laser light reflected by the galvanometer on the MEMS chip 13. Since the galvanometers are emitted at a small angle, they generally do not overlap directly with the MEMS chip 13 to avoid the problem of scanning blind areas caused by shading.
  • the VCSEL chip 12 and the second area may be directly opposed to each other.
  • the circuit board 11 has opposite front and back sides, wherein the front side of the circuit board 11 faces the light-transmitting cover plate 14.
  • the solder bump 18 is provided on the back of the circuit board 11.
  • the back surface of the MEMS chip 13 and the back surface of the VCSEL chip 12 are fixed on the front surface of the circuit board 11.
  • the two chips can be connected to the interconnection circuit respectively, and then connected to the solder bump 18 through the interconnection circuit, so as to connect the external circuit.
  • the light-transmitting cover plate 14 is fixed on the front surface of the circuit board 11 through a bracket structure 19, and forms a closed cavity with the circuit board 11, so as to realize the sealing protection of the two chips.
  • both the front surface of the MEMS chip 13 and the front surface of the VCSEL chip 12 face the light-transmitting cover plate 14, and there is no need to connect the front surface of the MEMS chip 13 and the VCSEL chip 12
  • the relative arrangement on the front side avoids the problem that the two chips are arranged oppositely, which causes a scanning blind area, and on the other hand, there is no need for the two chips to have a facing distance, which reduces the thickness of the packaging structure.
  • the reflective structure 10 is disposed on the light-transmitting cover plate 14, that is, the reflective structure 10 is integrated on the light-transmitting cover plate 14, and there is no need to separately provide the reflective structure 10, which reduces the thickness of the packaging structure.
  • the reflective structure 10 includes: a groove 16 formed in the second region and a reflective layer 17 formed on the inner wall of the groove 16, the reflective layer 17 is arranged to The laser light emitted by the VCSEL chip 12 is reflected to the galvanometer.
  • the light-transmitting cover plate 14 may use a glass substrate or a silicon substrate, and a groove is formed on the substrate, and a metal layer with high reflectivity, such as an aluminum layer, is deposited in the groove. If a glass substrate is used, the groove can be formed by a mechanical trenching process, and if a silicon substrate is used, the groove can be formed by an etching process.
  • the reflective structure 10 is directly integrated into the surface of the light-transmitting cover plate 14 facing the VCSEL chip 12, and the thickness of the packaging structure and the thickness of the light-transmitting cover plate 14 are not additionally increased.
  • FIG. 4 is a schematic diagram of another chip packaging structure provided by an embodiment.
  • the packaging structure differs from FIG. 3 in that the implementation of the reflective structure 10 is different.
  • the reflective structure 10 includes: forming The raised structure 21 in the second area and the reflective layer 22 formed on the surface of the raised structure 21 are configured to reflect the laser light emitted by the VCSEL chip 12 to the galvanometer.
  • This method eliminates the need to dig the translucent cover plate 14 and reuses the space of the sealed cavity between the translucent cover plate 14 and the circuit board 11 to provide the reflective structure 10 without increasing the thickness of the packaging structure and the manufacturing process is simple , Does not affect the mechanical strength of the translucent cover plate 14.
  • FIG. 5 is a schematic structural diagram of yet another chip packaging structure provided by an embodiment.
  • the packaging structure is different from FIG. 3 in that the reflective structure 10 is implemented differently.
  • the reflective structure 10 is fixed The mirror 31 in the second area.
  • this method does not require grooving of the light-transmitting cover plate 14 and reuses the space of the sealed cavity between the light-transmitting cover plate 14 and the circuit board 11 to provide the reflective structure 10 without increasing the thickness of the packaging structure.
  • the process is simple and does not affect the mechanical strength of the transparent cover 14.
  • the light-transmitting cover plate 14 may be a glass cover plate. In other embodiments, the light-transmitting cover plate 14 may also be a silicon cover plate that can transmit ultraviolet light. At this time, the laser light emitted by the VCSEL chip 12 is infrared light.
  • the circuit board 11 has opposite front and back sides; the periphery of the light-transmitting cover plate 14 and the periphery of the front surface of the circuit board 11 are fixed to each other, and the light-transmitting cover can be fixed by the support structure 19
  • the peripheral edge of the board 14 and the peripheral edge of the front surface of the circuit board 11 are fixed to each other.
  • the peripheral edge of the light-transmitting cover plate 14 and the peripheral edge of the front surface of the circuit board 11 can also be fixed to each other by a glue layer with a set thickness.
  • the MEMS chip 13 and the VCSEL chip 12 are bound to the front of the circuit board 11, and are located on the circuit board 11 and the transparent cover Between 14. The two chips are connected to the interconnection circuit via wires 15 respectively.
  • the back surface of the MEMS chip 13 is attached and fixed to the front surface of the circuit board 11.
  • the front surface of the MEMS chip 13 has a solder pad, and the solder pad is connected to the interconnection circuit through a wire 15.
  • the back surface of the VCSEL chip 12 is adhered and fixed to the front surface of the circuit board 11.
  • the front surface of the VCSEL chip 12 has a solder pad, and the solder pad is connected to the interconnection circuit through a wire 15.
  • the back of the MEMS chip 13 has solder bumps, and the solder bumps are fixed to the interconnection circuit by welding; the back of the VCSEL chip 12 has solder bumps, and the solder bumps are The interconnection circuit is soldered and fixed.
  • the inner side of the support structure 19 has an anti-reflection layer to prevent the ambient light reflected from the inner side of the support structure 19 from entering the MEMS chip 13.
  • FIG. 6 is a schematic diagram of yet another chip package structure provided by an embodiment.
  • the circuit board 11 has a light-transmitting hole T; the MEMS chip 13 and the VCSEL chip 12 One is bound to the front of the circuit board 11 and the other is bound to the back of the circuit board 11; the chip bound to the front of the circuit board 11 does not overlap with the light-transmitting hole T and is bound to The chip on the back of the circuit board 11 covers the light transmission hole T.
  • the back of the chip has a soldering structure, and the soldering structure is soldered and fixed to the interconnected circuit, or the back of the chip is fixedly attached to the front of the circuit board 11, and
  • the chip has solder pads on the front side, and the solder pads are connected to the interconnection circuit through a wire 15, and the interconnection circuit includes a pad provided on the back of the circuit board.
  • the chip has solder pads on the front side, and the solder pads are fixed to the pads on the back of the circuit board 11 by welding.
  • the packaging structure also needs to fix the light-transmitting cover plate on the surface of the circuit board 11.
  • the light-transmitting cover plate has a reflective structure 10.
  • the light-transmitting cover plate and the reflection structure 10 in the light-transmitting cover plate are implemented in the same manner as described above.
  • the light-transmitting cover plate is fixed on the surface of the circuit board 11 through a bracket structure.
  • a solder bump 18 is provided on the back of the circuit board 11, the MEMS chip 13 and the solder bump 18 are located on the same side of the circuit board 11, and are located on the circuit board 11 back.
  • the MEMS chip 13 covers the light transmission hole T.
  • the VCSEL chip 12 is located on the front surface of the circuit board 11 and does not overlap with the light passing hole T.
  • the VCSEL chip 12 is directly connected to the interconnection circuit through a wire 15 and then connected to an external circuit through a separate solder bump 18.
  • the front pad of the MEMS chip 13 is directly connected to the pad by welding and fixed, and is connected to an external circuit through a separate welding bump 18.
  • FIG. 6 In the chip packaging structure shown in FIG. 6, a transparent cover plate is fixed on the front surface of the circuit board 11, and the transparent cover plate has a reflective structure 10, and FIG. 6 only shows the reflective structure in the transparent cover plate 10.
  • the overall structure of the light-transmitting cover plate is not shown, and the implementation of the light-transmitting cover plate and the reflective structure 10 is the same as that described above.
  • an anti-reflection layer is provided on the inner side wall of the through hole T to prevent ambient light reflected by the inner side wall of the through hole T from entering the MEMS chip 13.
  • the packaging structure provided in this embodiment includes the light-transmitting cover plate 14 with the reflective structure 10, and this arrangement can make the front surface of the MEMS chip 13 and the front surface of the VCSEL chip 12 face the same direction, Therefore, the MEMS chip 13 and the VCSEL chip 12 do not need to be directly arranged, avoiding the VCSEL chip 12 from blocking the MEMS chip 13 from reflecting laser light, and there is no need to separately provide a reflective structure outside the packaging structure, so that the packaging structure has a small thickness .
  • this embodiment also provides a chip packaging method, which is set to make the above packaging structure.
  • the packaging method is shown in FIGS. 7-11, and FIGS. 7-11 are provided in this embodiment.
  • Flow chart of a packaging method, the packaging method includes:
  • S10 Provide the substrate 110 with the cutting channel 100.
  • the substrate 110 includes an interconnection circuit connected to an external circuit.
  • both the MEMS chip 13 and the VCSEL chip 12 are connected to the interconnection circuit; wherein, the MEMS chip 13 has opposite front and back sides, and the front side of the MEMS chip 13 has a galvanometer;
  • the VCSEL chip 12 has opposite front and back sides, and the front side of the VCSEL chip 12 is configured to emit laser light.
  • the cutting channel is provided between two adjacent circuit boards 11, and after division, a VCSEL chip 12 and a MEMS are fixed on the surface of each circuit board 11 Chip 13.
  • the surface of the light-transmitting cover plate 14 facing the circuit board 11 has a first area and a second area, the first area is set to emit laser light, and the second area has a reflection Structure 10; wherein, the front surface of the MEMS chip 13 and the front surface of the VCSEL chip 12 both face the light-transmitting cover plate 14, the VCSEL chip 12 is set to emit laser light, and the laser light is set to pass through the reflective structure 10 Reflects to the galvanometer, and reflects to the first area through the galvanometer, and exits through the first area.
  • the circuit board 11 has opposite front and back surfaces; the fixing the light-transmitting cover plate 14 on the circuit board 11 includes: aligning the periphery of the light-transmitting cover plate 14 with the front surface of the circuit board 11 The perimeter of the is fixed to each other.
  • the back side of the circuit board 11 has a solder bump 18 which is connected to the interconnection circuit.
  • the fixing the periphery of the light-transmitting cover plate 14 and the periphery of the front surface of the circuit board 11 to each other includes: fixing the periphery of the light-transmitting cover plate 14 to all
  • the peripheral edges of the front surface of the circuit board 11 are fixed to each other by a bracket structure 19.
  • a bracket structure 19 is fixed on the front of the circuit board 11.
  • the bracket structure 19 surrounds two chips.
  • a light-transmitting cover plate 14 is fixed on the bracket structure 10.
  • the peripheral edge of the light-transmitting cover plate 14 and the peripheral edge of the front surface of the circuit board 11 may be fixed to each other by a glue layer with a set thickness.
  • a packaging structure as shown in FIGS. 3 to 5 can be manufactured. Both the MEMS chip 13 and the VCSEL chip 12 are fixed on the front surface of the circuit board 11, and the back surfaces of both chips face the circuit. Board 11.
  • the packaging method of the reflective structure 10 includes: forming a groove in the second area, forming a reflective layer on the inner wall of the groove, the reflective layer being configured to emit the laser light emitted by the VCSEL chip 12 Reflecting to the galvanometer; or, forming a convex structure in the second area, forming a reflective layer on the surface of the convex structure, the reflective layer being configured to reflect the laser light emitted by the VCSEL chip 12 to the A galvanometer; or, a mirror is fixed in the second area, and the mirror is configured to reflect the laser light emitted by the VCSEL chip 12 to the galvanometer.
  • a mirror is fixed in the second area, and the mirror is configured to reflect the laser light emitted by the VCSEL chip 12 to the galvanometer.
  • the transparent cover plate 14 is a glass cover plate; or, the transparent cover plate 14 is a silicon cover plate that can transmit ultraviolet light, and the laser light emitted by the VCSEL chip 12 at this time is Infrared light.
  • the binding of the MEMS chip 13 and the VCSEL chip 12 on the substrate 110 includes: binding the MEMS chip 13 and the VCSEL chip 12 to the front surface of the circuit board 11, and Located between the circuit board 11 and the transparent cover 14.
  • the binding of the MEMS chip 13 and the VCSEL chip 12 on the substrate 110 includes: providing a solder bump on the back of the MEMS chip 13; and welding and fixing the solder bump to the interconnection circuit; or, The back surface of the MEMS chip 13 is adhered and fixed to the front surface of the circuit board 11; solder pads and wires are provided on the front surface of the MEMS chip 13; and the solder pads are connected to the interconnection circuit through the wires.
  • the solder pads of the MEMS chip 13 are connected to the interconnection circuit through corresponding wires 15 as an example for illustration.
  • the binding of the MEMS chip 13 and the VCSEL chip 12 on the substrate 110 includes: providing a solder bump on the back of the VCSEL chip 12, and soldering and fixing the solder bump to the interconnection circuit; or
  • the back surface of the VCSEL chip 12 is attached and fixed to the front surface of the circuit board 11; pads and wires 15 are provided on the front surface of the VCSEL chip 12; and the pads are connected to the interconnection circuit through the wires 15 .
  • the solder pads of the VCSEL chip 12 are connected to the interconnection circuit through corresponding wires 15 as an example for illustration.
  • FIGS. 12-14 are process flow diagrams of another packaging method provided by an embodiment.
  • a substrate 110 is provided.
  • the circuit board 11 has a light-transmitting hole T.
  • the binding of the MEMS chip 13 and the VCSEL chip 12 on the substrate 110 includes: as shown in FIG. 13, binding one of the MEMS chip 13 and the VCSEL chip 12 to the front of the circuit board 11, The other of the MEMS chip 13 and the VCSEL chip 12 is bound to the back of the circuit board 11; wherein, the MEMS chip 13 or the VCSEL chip 12 bound to the front of the circuit board 11 and the The light transmission holes T do not overlap, and the VCSEL chip 12 or the MEMS chip 13 bound to the back of the circuit board 11 covers the light transmission holes T.
  • Bonding one of the MEMS chip 13 and the VCSEL chip 12 to the front side of the circuit board 11 includes: setting a solder on the back side of the MEMS chip 13 or the VCSEL chip 12 bound to the front side of the circuit board 11 Bumps; and soldering the solder bumps to the interconnection circuit; or, fixing and fixing the back of the MEMS chip 13 or VCSEL chip 12 to the front of the circuit board 11; at the MEMS chip 13 or VCSEL chip 12 A solder pad and a wire are provided on the front surface of the machine, and the solder pad is connected to the interconnection circuit through the wire.
  • Bonding the other of the MEMS chip 13 and the VCSEL chip 12 to the back of the circuit board 11 includes: the interconnection circuit includes a pad provided on the back of the circuit board 11 and is bonded at Solder pads are provided on the front surface of the VCSEL chip 12 or the MEMS chip 13 on the back side of the circuit board 11; and the solder pads are soldered to the pads on the back side of the circuit board 11.
  • the MEMS chip 13 is fixed on the back of the circuit board 11, the front of the MEMS chip 13 is directly soldered and fixed to the interconnection circuit, the back of the VCSEL chip 12 is fixed on the front of the circuit board 11, and the front of the VCSEL chip 12 is The bonding pad is electrically connected to the interconnection circuit through the wire 15.
  • an anti-reflection layer may be provided in the first region of the light-transmitting cover plate 14 to prevent the laser beam emitted by the MEMS chip 13 from being reflected again on the MEMS chip 13 and causing scanning interference.
  • the packaging structure described in the above embodiments can be manufactured.
  • the manufacturing process is simple, the manufacturing cost is low, and the packaging structure can have a small thickness, which is convenient for the miniaturization design of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Micromachines (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种芯片的封装结构以及封装方法,封装结构包括:电路板(11),具有与外部电路连接的互联电路;分别固定在电路板(11)上的MEMS芯片(13)、VCSEL芯片(12)以及透光盖板(14),且MEMS芯片(13)与VCSEL芯片(12)分别与互联电路连接;及反射结构(10),设置于透光盖板(14)上;其中,MEMS芯片(13)的正面具有振镜;VCSEL芯片(12)的正面设置为发射激光;透光盖板(14)朝向电路板(11)的表面具有第一区域以及第二区域,第一区域设置为出射激光,反射结构(10)设置于第二区域;MEMS芯片(13)的正面以及VCSEL芯片(12)的正面朝向透光盖板(14),VCSEL芯片(12)设置为发射激光,激光设置为通过反射结构(10)反射至振镜,并通过振镜反射至第一区域,及经过第一区域出射。

Description

芯片的封装结构以及封装方法
本申请要求申请日为2018年10月30日、申请号为201811275274.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及芯片封装技术领域,例如涉及一种芯片的封装结构以及封装方法。
背景技术
激光具有独特的光学特性,如单色性高及方向性强等特点,使得垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,VCSEL)芯片的发展速度越来越快,应用范围越来越广。特别是由于激光极强的方向性,使得激光不需借助透镜就能在预设距离内保持光点的质量,使激光成为条码扫描的首选光源。
相关技术中,条码扫描过程中,除了需要采用激光芯片(如VCSEL芯片)作为激光光源之外,还需要控制激光进行扫描的扫描设备,通常使用具有振镜的微机电系统(Micro-Electro-Mechanical Systems,MEMS)芯片控制激光进行扫描。
MEMS芯片与VCSEL芯片需要进行封装,形成封装结构,以便于与外部电路电连接。但是相关技术中,MEMS芯片与VCSEL芯片形成的封装结构厚度较大。
发明内容
本申请提供了一种芯片的封装结构以及封装方法,减小了MEMS芯片与VCSEL芯片形成的封装结构的厚度。
一实施例提供一种芯片的封装结构,包括:电路板,所述电路板具有和外部电路连接的互联电路;MEMS芯片、VCSEL芯片以及透光盖板,所述MEMS芯片、所述VCSEL芯片以及所述透光盖板分别固定在所述电路板上,且所述MEMS芯片与所述VCSEL芯片分别与所述互联电路连接;及反射结构,设置于所述透光盖板上;其中,所述MEMS芯片具有相对的正面和背面,所述MEMS芯片的正面具有振镜;所述VCSEL芯片具有相对的正面和背面,所述VCSEL芯片的正面设置为发射激光; 所述透光盖板朝向所述电路板的表面具有第一区域以及第二区域,所述第一区域设置为出射激光,所述反射结构设置于所述第二区域;所述MEMS芯片的正面以及所述VCSEL芯片的正面朝向所述透光盖板,所述VCSEL芯片设置为发射激光,所述激光设置为通过所述反射结构反射至所述振镜,并通过所述振镜反射至所述第一区域,及经过所述第一区域出射。
一实施例提供了一种芯片的封装方法,所述封装方法包括:提供设置有切割沟道的基板,其中,所述基板包括和外部电路连接的互联电路;在所述基板上绑定MEMS芯片以及VCSEL芯片,其中,所述MEMS芯片与所述VCSEL芯片与所述互联电路连接,所述MEMS芯片具有相对的正面和背面,所述MEMS芯片的正面具有振镜,所述VCSEL芯片具有相对的正面和背面,所述VCSEL芯片的正面设置为发射激光;基于所述切割沟道分割所述基板,以形成多个单粒的电路板,其中,所述切割沟道设置于相邻两个所述电路板之间;及在所述电路板上固定透光盖板,其中,所述透光盖板朝向所述电路板的表面具有第一区域以及第二区域,所述第一区域设置为出射激光,所述第二区域具有反射结构,所述MEMS芯片的正面以及所述VCSEL芯片的正面朝向所述透光盖板,所述VCSEL芯片设置为发射激光,所述激光设置为通过所述反射结构反射至所述振镜,并通过所述振镜反射至所述第一区域,及经过所述第一区域出射。
附图说明
图1为一实施例提供的VCSEL芯片与MEMS芯片上的振镜相互作用实现扫描的工作原理示意图;
图2为一实施例提供的VCSEL芯片与MEMS芯片的封装结构的结构示意图;
图3为一实施例提供的芯片封装结构的示意图;
图4为一实施例提供的芯片封装结构的示意图;
图5为一实施例提供的芯片封装结构的示意图;
图6为一实施例提供的芯片封装结构的结构示意图;
图7-图11为一实施例提供的芯片封装方法的工艺流程图;
图12-图14为一实施例提供的芯片封装方法的工艺流程图;
图15为一实施例提供的芯片的封装方法的流程图。
具体实施方式
参见图1,图1为VCSEL芯片1与MEMS芯片2上的振镜21相互作用实现扫描的工作原理示意图;MEMS芯片2可以控制振镜21发生偏转,以达到往复扫描的效果,如图1中所示,振镜21由状态L1偏转至状态L2,反射的激光沿A方向发生偏转,实现扫描。其中,振镜21为二维扫描设备,能够在一个振镜上同时完成两个方向的扫描,即沿图1中的箭头A所示的方向,以及垂直于图1所示的纸面的方向(图1中未示出)。
如图1所示,通常将VCSEL芯片1设置在MEMS芯片2的正上方,并通过其他辅助结构实现VCSEL芯片1与MEMS芯片2的位置固定。辅助结构包括厚度较大的陶瓷基板和框架结构,将MEMS芯片2固定在陶瓷基板的一个表面上,将框架结构固定在所述表面上,在框架结构的上端固定VCSEL芯片1,框架结构设置为保证MEMS芯片和VCSEL芯片之间的距离,该距离一般在1mm左右。在VCSEL芯片1背离陶瓷基板的一侧需要设置透光盖板,透光盖板与所述陶瓷基板的表面形成密闭腔体,以对两个芯片进行密封保护。
图1所示方式对VCSEL芯片1以及MEMS芯片2进行封装时,由于VCSEL芯片1与MEMS芯片2正对设置,且VCSEL芯片1具有预设的面积,激光扫描过程中,VCSEL芯片1会遮挡一部分被振镜21反射的光,从而使得扫描过程中,存在预设的盲区。而VCSEL芯片1与振镜21的距离越近,形成的扫描盲区的面积越大。为了避免扫描盲区较大,影响扫描结果,相关技术中VCSEL芯片1与MEMS芯片2之间的距离可选为1mm左右;再加上MEMS芯片2的厚度和VCSEL芯片1的厚度,以及陶瓷基板和框架结构的厚度,最终使得封装结构的封装总厚度较厚。
如图2所示,图2为一种VCSEL芯片与MEMS芯片的封装结构的结构示意图。图2所示封装结构中,采用一具有通光孔126的电路板125,将VCSEL芯片121与MEMS芯片122分别绑定在电路板125的相对的两侧,MEMS芯片122覆盖在通光孔126的一端开口处,通光孔126的另一端开口处固定透光盖板123,两个芯片通过电路板125内的电路与锡球124连接,以便于与外部电路连接。该方式相对于图1所示方式虽然可以降低封装结构的厚度,但是需要外置反射结构127,反射结构127设置为将VCSEL芯片121发射的激光信号发射到MEMS芯片122上,整个系统的厚度仍然较大。
本实施例提供的封装结构中,将所述MEMS芯片、VCSEL芯片以及透光盖板同时固定在同一电路板上,所述透光盖板上具有反射结构,将反射结构集成在所述透光盖板上,无需单独设置反射结构,降低了封装结构的厚度。
参考图3,图3为本实施例提供的一种芯片封装结构的示意图,该封装结构包括电路板11、固定在所述电路板11上的MEMS芯片13、VCSEL芯片12以及透光盖板14。
所述电路板11具有和外部电路连接的互联电路。图3中未示出所述互联电路。所述电路板11包括与外部电路电连接的焊接凸起18。所述互联电路与所述焊接凸起18连接。所述MEMS芯片13与所述VCSEL芯片12均与所述互联电路连接。所述MEMS芯片13具有相对的正面和背面,且MEMS芯片13的正面具有振镜。所述VCSEL芯片12具有相对的正面和背面,且VCSEL芯片12的正面用于发射激光。所述透光盖板14朝向所述电路板11的表面具有第一区域以及第二区域,所述第一区域设置为出射激光,所述第二区域具有反射结构10。
所述MEMS芯片13的正面以及所述VCSEL芯片12的正面均朝向所述透光盖板14,所述VCSEL芯片12发射的激光通过所述反射结构10反射至所述振镜,通过所述振镜反射至第一区域,经过所述第一区域出射,激光方向如图3中箭头所示。在垂直于电路板11的方向上,第二区域与MEMS芯片13不交叠,以避免位于第二区域的反射结构10遮挡MEMS芯片13上的振镜反射后的激光。由于振镜都是小角度出射,一般不和MEMS芯片13正对交叠,可以避免遮光导致出现扫描盲区的问题。在一实施例中,在垂直于电路板11的方向上,可以将所述VCSEL芯片12与所述第二区域正对设置。
图3所示方式中,电路板11具有相对的正面以及背面,其中,电路板11的正面朝向所述透光盖板14。焊接凸起18设置在电路板11的背面。所述MEMS芯片13的背面以及所述VCSEL芯片12的背面均固定在电路板11的正面。两个芯片可以分别与互联电路连接,进而通过互联电路与焊接凸起18连接,以便于连接外部电路。所述透光盖板14通过支架结构19固定在所述电路板11的正面上,并与所述电路板11形成一密闭腔体,以实现对两个芯片的密封保护。
本实施例所述封装结构中,所述MEMS芯片13的正面以及所述VCSEL芯片12的正面均朝向所述透光盖板14,无需将所述MEMS芯片13的正面与所述VCSEL芯片12的正面相对设置,一方面,避免了两个芯片正对设置导致具有扫描盲区的问题,另一方面,无需两芯片具有正对距离,降低了封装结构的厚度。而且,将反射结构10设置在透光盖板14上,即在透光盖板14上集成反射结构10,无需单独设置反射结构10,降低了封装结构的厚度。
在图3所示方式中,所述反射结构10包括:形成在所述第二区域的凹槽16以 及形成在所述凹槽16的内壁上的反射层17,所述反射层17设置为将所述VCSEL芯片12发射的激光反射至所述振镜。在一实施例中,透光盖板14可采用玻璃基板或硅基板,在基板上制作凹槽,在凹槽内沉积具有高反射率的金属层,如铝层。如采用玻璃基板,可以通过机械挖槽工艺形成所述凹槽,如采用硅基板,可以采用刻蚀工艺形成所述凹槽。本实施例中直接将反射结构10集成在透光盖板14朝向所述VCSEL芯片12的表面内,不会额外增加封装结构的厚度以及透光盖板14的厚度。
参考图4,图4为一实施例提供的另一种芯片封装结构的示意图,该封装结构与图3的不同在于反射结构10的实现方式不同,该方式中,所述反射结构10包括:形成在所述第二区域的凸起结构21以及形成在所述凸起结构21表面的反射层22,所述反射层22设置为将所述VCSEL芯片12发射的激光反射至所述振镜。该方式无需对透光盖板14进行挖槽处理,复用透光盖板14与电路板11之间的密封腔体的空间设置反射结构10,不会增大封装结构的厚度,制作工艺简单,不影响透光盖板14的机械强度。
参考图5,图5为一实施例提供的又一种芯片封装结构的结构示意图,该封装结构与图3的不同在于反射结构10的实现方式不同,该方式中,所述反射结构10为固定在所述第二区域的反射镜31。同样,该方式无需对透光盖板14进行挖槽处理,复用透光盖板14与电路板11之间的密封腔体的空间设置反射结构10,不会增大封装结构的厚度,制作工艺简单,不影响透光盖板14的机械强度。
在一实施例中,所述透光盖板14可以为玻璃盖板。在其他实施例中,所述透光盖板14还可以为可以透过紫外光的硅盖板,此时,所述VCSEL芯片12发射的激光为红外光。
在一实施例中,所述电路板11具有相对的正面以及背面;所述透光盖板14的周缘与所述电路板11正面的周缘相互固定,可以通过支架结构19将所述透光盖板14的周缘与所述电路板11正面的周缘相互固定。在其他实施例中,所述透光盖板14的周缘与所述电路板11正面的周缘还可以通过设定厚度的胶层相互固定。
在图3-图5所示的芯片封装结构中,所述MEMS芯片13与所述VCSEL芯片12均绑定在所述电路板11的正面,且位于所述电路板11与所述透明盖板14之间。两个芯片分别通过导线15与所述互联电路连接。所述MEMS芯片13的背面与所述电路板11的正面贴合固定,所述MEMS芯片13的正面具有焊垫,所述焊垫通过导线 15与所述互联电路连接。所述VCSEL芯片12的背面与所述电路板11的正面贴合固定,所述VCSEL芯片12的正面具有焊垫,所述焊垫通过导线15与所述互联电路连接。在一实施例中中,所述MEMS芯片13的背面具有焊接凸起,所述焊接凸起与所述互联电路焊接固定;所述VCSEL芯片12背面具有焊接凸起,所述焊接凸起与所述互联电路焊接固定。
在一实施例中,为了降低环境光的干扰,支架结构19的内侧具有减反层,以避免支架结构19的内侧反射的环境光入射所述MEMS芯片13。
参考图6,图6为一实施例提供的又一种芯片封装结构的示意图,该封装结构中,所述电路板11具有透光孔T;所述MEMS芯片13与所述VCSEL芯片12中的一个绑定在所述电路板11的正面,另一个绑定在所述电路板11的背面;绑定在所述电路板11正面的芯片与所述透光孔T不交叠,绑定在所述电路板11背面的芯片覆盖所述透光孔T。对于绑定在所述电路板11正面的芯片,该芯片背面具有焊接结构,所述焊接结构与所述互联电路焊接固定,或,该芯片背面与所述电路板11的正面贴合固定,且该芯片正面具有焊垫,所述焊垫通过导线15与所述互联电路连接,所述互联电路包括设置在所述电路板背面的焊盘。对于绑定在所述电路板11背面的芯片,该芯片正面具有焊垫,所述焊垫与所述电路板11背面的焊盘焊接固定。该封装结构同样需要在电路板11的表面固定透光盖板,所述透光盖板具有反射结构10,透光盖板及透光盖板具有的反射结构10的实现方式与上述方式相同。透光盖板通过支架结构固定在电路板11的表面。
在图6所示的芯片封装结构中,电路板11的背面设有焊接凸起18,所述MEMS芯片13与所述焊接凸起18位于所述电路板11的同一侧,位于电路板11的背面。所述MEMS芯片13覆盖所述通光孔T。所述VCSEL芯片12位于所述电路板11的正面,且与所述通光孔T不交叠。所述VCSEL芯片12直接通过导线15与所述互联电路连接,再通过单独的焊接凸起18与外部电路连接。所述MEMS芯片13正面焊垫直接与所述焊盘连接焊接固定,通过单独的焊接凸起18与外部电路连接。
在图6所示的芯片封装结构中,电路板11的正面固定有透光盖板,所述透光盖板具有反射结构10,图6中仅是示出了透光盖板中的反射结构10,未示出透光盖板的整体结构,透光盖板及具有的反射结构10的实现方式与上述方式相同。该方式中,为了降低环境光干扰,在通光孔T的内侧壁上设置有减反层,避免通光孔T的内侧壁反射的环境光入射所述MEMS芯片13。
当芯片正面的焊垫通过导线15与电路板11上的互联电路连接时,本实施例 附图中并未示出所述互联电路以及芯片正面的焊垫,互联电路与芯片正面焊垫的结构以及连接方式均可以根据相关技术中的电连接方式实现,不作具体图示以及说明;当芯片背面的焊接凸起直接与电路板11上的互联电路连接时,本实施例附图中并未示出所述互联电路以及芯片背面的焊接凸起,互联电路与芯片背面的焊接凸起的结构以及连接方式均可以根据相关技术中的电连接方式实现,不作具体图示以及说明。
通过上述描述可知,本实施例提供的封装结构中,包括具有反射结构10的透光盖板14,这样设置可以使得所述MEMS芯片13的正面与所述VCSEL芯片12的正面均朝向同一方向,使得MEMS芯片13和VCSEL芯片12无需正对设置,避免了所述VCSEL芯片12对所述MEMS芯片13反射激光的遮挡,也无需在封装结构外部单独设置反射结构,使得封装结构具有较小的厚度。
基于上述实施例,本实施例还提供了一种芯片的封装方法,设置为制作上述封装结构,所述封装方法如图7-图11所示,图7-图11为本实施例提供的一种封装方法的工艺流程图,该封装方法包括:
S10:提供具有切割沟道100的基板110。
如图7所示,所述基板110包括和外部电路连接的互联电路。
S20:在所述基板110上绑定MEMS芯片13以及VCSEL芯片12。
如图8所示,所述MEMS芯片13与所述VCSEL芯片12均与所述互联电路连接;其中,所述MEMS芯片13具有相对的正面和背面,所述MEMS芯片13的正面具有振镜;所述VCSEL芯片12具有相对的正面和背面,所述VCSEL芯片12的正面设置为发射激光。
S30:基于所述切割沟道100分割所述基板110,以形成多个单粒的电路板11。
如图7和图9所示,所述切割沟道设置于相邻的两个所述电路板11之间,且分割后,每个电路板11的表面均固定有一个VCSEL芯片12以及一个MEMS芯片13。
S40:在所述电路板11上固定透光盖板14。
如图10和图11所示,所述透光盖板14朝向所述电路板11的表面具有第一区域以及第二区域,所述第一区域设置为出射激光,所述第二区域具有反射结构10;其中,所述MEMS芯片13的正面以及所述VCSEL芯片12的正面均朝向所述透光盖板14,所述VCSEL芯片12设置为发射激光,所述激光设置为通过所述反射结构10反射至所述振镜,并通过所述振镜反射至所述第一区域,及经过所述第一区域出射。
在S40中,所述电路板11具有相对的正面以及背面;所述在所述电路板11上固定透光盖板14包括:将所述透光盖板14的周缘与所述电路板11正面的周缘相互固定。所述电路板11的背面具有焊接凸起18,该焊接凸起18与互联电路连接。
在图10和图11所示的封装方法中,所述将所述透光盖板14的周缘与所述电路板11正面的周缘相互固定包括:将所述透光盖板14的周缘与所述电路板11正面的周缘通过支架结构19相互固定。如图10所示,在电路板11的正面固定支架结构19,该支架结构19包围两个芯片,如图11所示,在支架结构10上固定透光盖板14。在其他实施例中,还可以将所述透光盖板14的周缘与所述电路板11正面的周缘通过设定厚度的胶层相互固定。
利用上述封装方法可以制作如图3-图5所示的封装结构,所述MEMS芯片13与所述VCSEL芯片12均固定在所述电路板11的正面,且两芯片的背面均朝向所述电路板11。
该封装方法中,所述反射结构10的封装方法包括:在所述第二区域形成凹槽,在所述凹槽内壁形成反射层,所述反射层设置为将所述VCSEL芯片12发射的激光反射至所述振镜;或,在所述第二区域形成凸起结构,在所述凸起结构表面形成反射层,所述反射层设置为将所述VCSEL芯片12发射的激光反射至所述振镜;或,在所述第二区域固定反射镜,所述反射镜设置为将所述VCSEL芯片12发射的激光反射至所述振镜。所述反射结构10的具体结构可以参考上述实施例所述。
如上述实施例所述,所述透光盖板14为玻璃盖板;或,所述透光盖板14为可以透过紫外光的硅盖板,此时所述VCSEL芯片12发射的激光为红外光。
在上述封装方法中,所述在所述基板110上绑定MEMS芯片13以及VCSEL芯片12包括:将所述MEMS芯片13与所述VCSEL芯片12均绑定在所述电路板11的正面,且位于所述电路板11与所述透明盖板14之间。
所述在所述基板110上绑定MEMS芯片13以及VCSEL芯片12包括:在所述MEMS芯片13的背面设置焊接凸起;及将所述焊接凸起与所述互联电路焊接固定;或,将所述MEMS芯片13的背面与所述电路板11的正面贴合固定;在所述MEMS芯片13的正面设置焊垫和导线;及将所述焊垫通过所述导线与所述互联电路连接。在上述封装方法中,以所述MEMS芯片13的焊垫通过对应的导线15与所述互联电路连接为例进行图示说明。
所述在所述基板110上绑定MEMS芯片13以及VCSEL芯片12包括:在所述VCSEL 芯片12背面设置焊接凸起,及将所述焊接凸起与所述互联电路焊接固定;或,将所述VCSEL芯片12的背面与所述电路板11的正面贴合固定;在所述VCSEL芯片12的正面设置焊垫和导线15;及将所述焊垫通过所述导线15与所述互联电路连接。在上述封装方法中,以所述VCSEL芯片12的焊垫通过对应的导线15与所述互联电路连接为例进行图示说明。
当制作如图6所示的封装结构时,所述封装方法如图12-图14所示,图12-图14为一实施例提供的另一种封装方法的工艺流程图。
如图12所示,提供一基板110,所述基板110中,所述电路板11具有透光孔T。
在所述基板110上绑定MEMS芯片13以及VCSEL芯片12包括:如图13所示,将所述MEMS芯片13与所述VCSEL芯片12中的一者绑定在所述电路板11的正面,将所述MEMS芯片13与所述VCSEL芯片12中的另一者绑定在所述电路板11的背面;其中,绑定在所述电路板11正面的MEMS芯片13或VCSEL芯片12与所述透光孔T不交叠,绑定在所述电路板11背面的VCSEL芯片12或MEMS芯片13覆盖所述透光孔T。
将所述MEMS芯片13与所述VCSEL芯片12中的一者绑定在所述电路板11的正面包括:在绑定在所述电路板11正面的MEMS芯片13或VCSEL芯片12的背面设置焊接凸起;及将所述焊接凸起与所述互联电路焊接固定;或,将MEMS芯片13或VCSEL芯片12的背面与所述电路板11的正面贴合固定;在MEMS芯片13或VCSEL芯片12的正面设置焊垫和导线;及将所述焊垫通过导线与所述互联电路连接。
将所述MEMS芯片13与所述VCSEL芯片12中的另一者绑定在所述电路板11的背面包括:所述互联电路包括设置在所述电路板11背面的焊盘,在绑定在所述电路板11背面的VCSEL芯片12或MEMS芯片13的正面设置焊垫;及将所述焊垫与所述电路板11背面的焊盘焊接固定。
如图12-图14所示,MEMS芯片13固定在电路板11的背面,MEMS芯片13的正面直接与互联电路焊接固定,VCSEL芯片12的背面固定在电路板11的正面,VCSEL芯片12正面的焊垫通过导线15与互联电路电连接。
在本实施例所述封装方法中,可以在所述透光盖板14的第一区域设置减反层,以避免MEMS芯片13出射的激光再次反射到MEMS芯片13上,造成扫描干扰。
利用本实施例所述封装方法,可以制作上述实施例所述封装结构,制作工艺简单,制作成本低,且可以使得封装结构具有较小的厚度,便于设备小型化设计。
本说明书中多个实施例采用递进的方式描述,每个实施例重点说明的都是 与其他实施例的不同之处,多个实施例之间相同或相似部分互相参见即可。对于实施例公开的封装方法而言,由于与实施例公开的封装结构相对应,所以描述的比较简单,相关之处参见封装结构对应部分说明即可。
还需要说明的是,在本申请中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”和“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括上述要素的物品或者设备中还存在另外的相同要素。

Claims (22)

  1. 一种芯片的封装结构,包括:
    电路板,所述电路板具有与外部电路连接的互联电路;
    MEMS芯片、VCSEL芯片以及透光盖板,所述MEMS芯片、所述VCSEL芯片以及所述透光盖板分别固定在所述电路板上,且所述MEMS芯片与所述VCSEL芯片分别与所述互联电路连接;及
    反射结构,设置于所述透光盖板上;
    其中,所述MEMS芯片具有相对的正面和背面,所述MEMS芯片的正面具有振镜;所述VCSEL芯片具有相对的正面和背面,所述VCSEL芯片的正面设置为发射激光;所述透光盖板朝向所述电路板的表面具有第一区域以及第二区域,所述第一区域设置为出射激光,所述反射结构设置于所述第二区域;
    所述MEMS芯片的正面以及所述VCSEL芯片的正面朝向所述透光盖板,所述VCSEL芯片设置为发射激光,所述激光设置为通过所述反射结构反射至所述振镜,并通过所述振镜反射至所述第一区域,及经过所述第一区域出射。
  2. 根据权利要求1所述的芯片的封装结构,其中,所述反射结构包括形成在所述第二区域的凹槽以及形成在所述凹槽内壁的反射层,所述反射层设置为将所述VCSEL芯片发射的激光反射至所述振镜;
    或,所述反射结构包括形成在所述第二区域的凸起结构以及形成在所述凸起结构表面的反射层,所述反射层设置为将所述VCSEL芯片发射的激光反射至所述振镜;
    或,所述反射结构包括固定在所述第二区域的反射镜。
  3. 根据权利要求1所述芯片的的封装结构,其中,所述透光盖板为玻璃盖板;
    或,所述VCSEL芯片发射的激光为红外光,所述透光盖板为可以透过紫外光的硅盖板。
  4. 根据权利要求1所述芯片的的封装结构,其中,所述电路板具有相对的正面以及背面;所述透光盖板的周缘与所述电路板正面的周缘相互固定。
  5. 根据权利要求4所述的芯片的封装结构,其中,所述透光盖板的周缘与所述电路板正面的周缘通过设定厚度的胶层相互固定;
    或,所述透光盖板的周缘与所述电路板正面的周缘通过支架结构相互固定。
  6. 根据权利要求1所述的芯片的封装结构,其中,所述MEMS芯片与所述VCSEL芯片绑定在所述电路板的正面,且位于所述电路板与所述透明盖板之间。
  7. 根据权利要求6所述的芯片的封装结构,其中,所述MEMS芯片的背面具有 焊接凸起,所述焊接凸起与所述互联电路焊接固定;或
    所述MEMS芯片的背面与所述电路板的正面贴合固定,所述MEMS芯片的正面具有焊垫和导线,所述焊垫通过所述导线与所述互联电路连接。
  8. 根据权利要求6所述的芯片的封装结构,其中,所述VCSEL芯片的背面具有焊接凸起,所述焊接凸起与所述互联电路焊接固定;或
    所述VCSEL芯片的背面与所述电路板的正面贴合固定,所述VCSEL芯片的正面具有焊垫和导线,所述焊垫通过所述导线与所述互联电路连接。
  9. 根据权利要求1所述的芯片的封装结构,其中,所述电路板具有透光孔;所述MEMS芯片与所述VCSEL芯片中的一个绑定在所述电路板的正面,所述MEMS芯片与所述VCSEL芯片中的另一个绑定在所述电路板的背面;绑定在所述电路板正面的所述MEMS芯片或所述VCSEL芯片与所述透光孔不交叠,绑定在所述电路板背面的所述VCSEL芯片或所述MEMS芯片覆盖所述透光孔。
  10. 根据权利要求9所述的芯片的封装结构,其中,绑定在所述电路板正面的所述MEMS芯片或所述VCSEL芯片的背面具有焊接凸起,所述焊接凸起与所述互联电路焊接固定,或
    绑定在所述电路板正面的所述MEMS芯片或所述VCSEL芯片的背面与所述电路板的正面贴合固定,且所述所述MEMS芯片或所述VCSEL芯片的正面具有焊垫和导线,所述焊垫通过所述导线与所述互联电路连接。
  11. 根据权利要求9所述的芯片的封装结构,其中,所述互联电路包括设置在所述电路板背面的焊盘;绑定在所述电路板背面的所述VCSEL芯片或所述MEMS芯片的正面具有焊垫,所述焊垫与所述焊盘焊接固定。
  12. 一种芯片的封装方法,包括:
    提供设置有切割沟道的的基板,其中,所述基板包括和外部电路连接的互联电路;
    在所述基板上绑定MEMS芯片以及VCSEL芯片,其中,所述MEMS芯片与所述VCSEL芯片与所述互联电路连接,所述MEMS芯片具有相对的正面和背面,所述MEMS芯片的正面具有振镜,所述VCSEL芯片具有相对的正面和背面,所述VCSEL芯片的正面设置为发射激光;
    基于所述切割沟道分割所述基板,以形成多个单粒的电路板,其中,所述切割沟道设置于相邻两个所述电路板之间;及
    在所述电路板上固定透光盖板,其中,所述透光盖板朝向所述电路板的表 面具有第一区域以及第二区域,所述第一区域设置为出射激光,所述第二区域具有反射结构,所述MEMS芯片的正面以及所述VCSEL芯片的正面朝向所述透光盖板,所述VCSEL芯片设置为发射激光,所述激光设置为通过所述反射结构反射至所述振镜,并通过所述振镜反射至所述第一区域,及经过所述第一区域出射。
  13. 根据权利要求12所述的芯片的封装方法,还包括:
    在所述第二区域形成凹槽,及在所述凹槽的内壁形成反射层,其中,所述反射层设置为将所述VCSEL芯片发射的激光反射至所述振镜;或
    在所述第二区域形成凸起结构,及在所述凸起结构表面形成反射层,其中,所述反射层设置为将所述VCSEL芯片发射的激光反射至所述振镜;或
    在所述第二区域固定反射镜,其中,所述反射镜设置为将所述VCSEL芯片发射的激光反射至所述振镜。
  14. 根据权利要求12所述的芯片的封装方法,其中,所述透光盖板为玻璃盖板;或
    所述VCSEL芯片发射的激光为红外光,所述透光盖板为可以透过紫外光的硅盖板。
  15. 根据权利要求12所述的芯片的封装方法,其中,所述电路板具有相对的正面以及背面;所述在所述电路板上固定透光盖板包括:将所述透光盖板的周缘与所述电路板正面的周缘相互固定。
  16. 根据权利要求15所述的芯片的封装方法,其中,所述将所述透光盖板的周缘与所述电路板正面的周缘相互固定包括:将所述透光盖板的周缘与所述电路板正面的周缘通过设定厚度的胶层相互固定;或
    将所述透光盖板的周缘与所述电路板正面的周缘通过支架结构相互固定。
  17. 根据权利要求12所述的芯片的封装方法,其中,所述在所述基板上绑定MEMS芯片以及VCSEL芯片包括:将所述MEMS芯片与所述VCSEL芯片绑定在所述电路板的正面,且使所述MEMS芯片与所述VCSEL芯片位于所述电路板与所述透明盖板之间。
  18. 根据权利要求17所述的芯片的封装方法,其中,所述将所述MEMS芯片与所述VCSEL芯片绑定在所述电路板的正面包括:
    在所述MEMS芯片的背面设置焊接凸起;及将所述焊接凸起与所述互联电路焊接固定;或
    将所述MEMS芯片的背面与所述电路板的正面贴合固定;在所述MEMS芯片的 正面设置焊垫和导线;及将所述焊垫通过所述导线与所述互联电路连接。
  19. 根据权利要求17所述的芯片的封装方法,其中,所述将所述MEMS芯片与所述VCSEL芯片绑定在所述电路板的正面包括:在所述VCSEL芯片的背面设置焊接凸起;及将所述焊接凸起与所述互联电路焊接固定;或
    将所述VCSEL芯片的背面与所述电路板的正面贴合固定;在所述VCSEL芯片的正面设置焊垫和导线;及将所述焊垫通过所述导线与所述互联电路连接。
  20. 根据权利要求12所述的芯片的封装方法,其中,所述电路板具有透光孔;
    所述在所述基板上绑定MEMS芯片以及VCSEL芯片包括:
    将所述MEMS芯片与所述VCSEL芯片中的一个绑定在所述电路板的正面;及
    将所述MEMS芯片与所述VCSEL芯片中的另一个绑定在所述电路板的背面;
    其中,绑定在所述电路板正面的所述MEMS芯片或所述VCSEL芯片与所述透光孔不交叠,绑定在所述电路板背面的所述VCSEL芯片或所述MEMS芯片覆盖所述透光孔。
  21. 根据权利要求20所述的芯片的封装方法,其中,所述将所述MEMS芯片与所述VCSEL芯片中的一个绑定在所述电路板的正面包括:
    在绑定在所述电路板正面的所述MEMS芯片或所述VCSEL芯片的背面设置焊接凸起;及将所述焊接凸起与所述互联电路焊接固定;
    或,将所述MEMS芯片或所述VCSEL芯片的背面与所述电路板的正面贴合固定;在所述MEMS芯片或所述VCSEL芯片的正面设置焊垫和导线;及将所述焊垫通过所述导线与所述互联电路连接。
  22. 根据权利要求20所述的芯片的封装方法,其中,所述互联电路包括设置在所述电路板背面的焊盘,所述将所述MEMS芯片与所述VCSEL芯片中的另一个绑定在所述电路板的背面包括:在绑定在所述电路板背面的所述VCSEL芯片或所述MEMS芯片的正面设置焊垫;及将所述焊垫与所述电路板的背面的焊盘焊接固定。
PCT/CN2019/114411 2018-10-30 2019-10-30 芯片的封装结构以及封装方法 WO2020088535A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811275274.6A CN109437088A (zh) 2018-10-30 2018-10-30 芯片的封装结构以及封装方法
CN201811275274.6 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020088535A1 true WO2020088535A1 (zh) 2020-05-07

Family

ID=65548782

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/114411 WO2020088535A1 (zh) 2018-10-30 2019-10-30 芯片的封装结构以及封装方法
PCT/CN2019/114424 WO2020088541A1 (zh) 2018-10-30 2019-10-30 芯片的封装结构

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114424 WO2020088541A1 (zh) 2018-10-30 2019-10-30 芯片的封装结构

Country Status (2)

Country Link
CN (1) CN109437088A (zh)
WO (2) WO2020088535A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023280497A1 (de) * 2021-07-06 2023-01-12 Robert Bosch Gmbh Projektionsmodul
EP4375747A1 (en) * 2022-11-22 2024-05-29 TriLite Technologies GmbH Light projector module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437088A (zh) * 2018-10-30 2019-03-08 苏州晶方半导体科技股份有限公司 芯片的封装结构以及封装方法
JP2022127979A (ja) * 2021-02-22 2022-09-01 スタンレー電気株式会社 光走査装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020180016A1 (en) * 2001-04-09 2002-12-05 Vernon Shrauger Critically aligned optical MEMS dies for large packaged substrate arrays and method of manufacture
CN1740830A (zh) * 2005-09-13 2006-03-01 浙江大学 一种基于软光刻的光互联耦合结构
CN201766649U (zh) * 2010-08-17 2011-03-16 原相科技股份有限公司 感测装置及其影像感测系统
CN103048744A (zh) * 2012-11-08 2013-04-17 日月光半导体制造股份有限公司 光学模块构造
CN106949955A (zh) * 2017-04-18 2017-07-14 中国工程物理研究院电子工程研究所 一种基于光学检测的微机电系统平台
CN109437088A (zh) * 2018-10-30 2019-03-08 苏州晶方半导体科技股份有限公司 芯片的封装结构以及封装方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014240A (en) * 1998-12-01 2000-01-11 Xerox Corporation Method and apparatus for an integrated laser beam scanner using a carrier substrate
US7768040B2 (en) * 2006-10-23 2010-08-03 Micron Technology, Inc. Imager device with electric connections to electrical device
TWI466278B (zh) * 2010-04-06 2014-12-21 Kingpak Tech Inc 晶圓級影像感測器構裝結構及其製造方法
CN106125299A (zh) * 2016-06-30 2016-11-16 青岛瑞优德智能科技有限公司 一种3d激光扫描模组的封装简化方法及模组
CN106094406B (zh) * 2016-06-30 2018-08-10 青岛瑞优德智能科技有限公司 一种激光扫描投影模组的cob封装简化方法及模组
CN205809413U (zh) * 2016-07-18 2016-12-14 青岛小优智能科技有限公司 一种激光扫描投影模组的cob封装简化垂直出光模组
CN106298699A (zh) * 2016-09-26 2017-01-04 苏州晶方半导体科技股份有限公司 封装结构以及封装方法
CN108063126A (zh) * 2017-12-29 2018-05-22 苏州晶方半导体科技股份有限公司 一种芯片的封装结构以及封装方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020180016A1 (en) * 2001-04-09 2002-12-05 Vernon Shrauger Critically aligned optical MEMS dies for large packaged substrate arrays and method of manufacture
CN1740830A (zh) * 2005-09-13 2006-03-01 浙江大学 一种基于软光刻的光互联耦合结构
CN201766649U (zh) * 2010-08-17 2011-03-16 原相科技股份有限公司 感测装置及其影像感测系统
CN103048744A (zh) * 2012-11-08 2013-04-17 日月光半导体制造股份有限公司 光学模块构造
CN106949955A (zh) * 2017-04-18 2017-07-14 中国工程物理研究院电子工程研究所 一种基于光学检测的微机电系统平台
CN109437088A (zh) * 2018-10-30 2019-03-08 苏州晶方半导体科技股份有限公司 芯片的封装结构以及封装方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023280497A1 (de) * 2021-07-06 2023-01-12 Robert Bosch Gmbh Projektionsmodul
EP4375747A1 (en) * 2022-11-22 2024-05-29 TriLite Technologies GmbH Light projector module

Also Published As

Publication number Publication date
CN109437088A (zh) 2019-03-08
WO2020088541A1 (zh) 2020-05-07

Similar Documents

Publication Publication Date Title
WO2020088535A1 (zh) 芯片的封装结构以及封装方法
KR100707179B1 (ko) 광스캐너 패키지 및 그 제조방법
JP3987500B2 (ja) 光配線基板および光配線基板の製造方法
US6531767B2 (en) Critically aligned optical MEMS dies for large packaged substrate arrays and method of manufacture
JP2021513226A (ja) 部品配置体、パッケージおよびパッケージ配置体、ならびに製造方法
EP0836105B1 (en) An optical transmission/reception module
JP3167650B2 (ja) 一体化鏡を備えた光検出器及びその作成方法
WO2000039621A1 (fr) Emetteur/recepteur permettant une transmission optique en parallele et plaque pour module optique
US20220329039A1 (en) Micromechanical optical component and manufacturing method
TW202101619A (zh) 封裝結構之組件裝配的製造方法、具一組件裝配之封裝結構的製造方法、以及組件裝配及封裝結構
JP4807987B2 (ja) 気密封止パッケージおよび光サブモジュール
JPS62260384A (ja) 半導体装置
JP2010049170A (ja) 光電気配線用パッケージ及び光導波路付リードフレーム
JP6929103B2 (ja) 光モジュール
CN109119885B (zh) 一种激光芯片封装结构及其封装方法
JPH0926530A (ja) 光モジュール
US11692701B2 (en) Optical barrier using side fill and light source module including the same
JP4496708B2 (ja) 発光素子モジュール
JPH05175614A (ja) 光半導体装置
JP2006267154A (ja) 光デバイス及び光監視用デバイス
JP2006310563A (ja) 光通信モジュール
JPH1041539A (ja) 赤外線送受信モジュールの構造
JP2008041918A (ja) 光学装置および光学モジュール
JP2000133822A (ja) 光半導体装置
JPH10223926A (ja) 光結合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878497

Country of ref document: EP

Kind code of ref document: A1