WO2020087761A1 - 一种石脑油中提取有机硫化物的聚氨酯/聚偏氟乙烯复合膜及其制备方法 - Google Patents

一种石脑油中提取有机硫化物的聚氨酯/聚偏氟乙烯复合膜及其制备方法 Download PDF

Info

Publication number
WO2020087761A1
WO2020087761A1 PCT/CN2018/125985 CN2018125985W WO2020087761A1 WO 2020087761 A1 WO2020087761 A1 WO 2020087761A1 CN 2018125985 W CN2018125985 W CN 2018125985W WO 2020087761 A1 WO2020087761 A1 WO 2020087761A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinylidene fluoride
polyurethane
film
fluoride composite
composite membrane
Prior art date
Application number
PCT/CN2018/125985
Other languages
English (en)
French (fr)
Inventor
侯影飞
许杨
王目敏
陈聪聪
李熠宇
牛青山
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Priority to US17/280,126 priority Critical patent/US11458438B2/en
Publication of WO2020087761A1 publication Critical patent/WO2020087761A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/11Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by dialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/00091Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching by evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/521Aliphatic polyethers
    • B01D71/5211Polyethylene glycol or polyethyleneoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/54Polyureas; Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Definitions

  • the present invention relates to the technical field of composite membrane material processing, in particular to a polyurethane / polyvinylidene fluoride composite membrane for extracting organic sulfides from naphtha and a preparation method thereof.
  • sulfide contained in naphtha include elemental sulfur, hydrogen sulfide, thiol, thioether, and thiophene.
  • Organic sulfide is the main component.
  • the traditional treatment process is hydrodesulfurization, which has high cost and harsh operating conditions.
  • Organic sulfides are hydrotreated to become hydrogen sulfide, which can only be recycled and discharged after a complicated tail gas treatment process, resulting in huge waste.
  • Polyurethane has strong chemical stability, strong solvent resistance, strong hydrophobic organic affinity, and other properties, is an ideal material for film making, when it is directly used in naphtha to extract sulfur-containing organic compounds , The permeation flux is low, which affects the extraction rate of sulfur-containing organic compounds.
  • the present invention provides a polyurethane / polyvinylidene fluoride composite membrane for extracting organic sulfides from naphtha and a preparation method thereof.
  • a polyurethane / polyvinylidene fluoride composite membrane from which organic sulfides are extracted from naphtha is composed of an active layer and a support layer, wherein the active layer is a polyurethane cast film and the support layer is a polyvinylidene fluoride film , And the active layer is coated on the support layer to prepare a polyurethane / polyvinylidene fluoride composite film.
  • the thickness of the active layer is 20 ⁇ 3 (Vm, the thickness of the support layer is 110 ⁇ 120-.
  • a method for preparing a polyurethane / polyvinylidene fluoride composite membrane for extracting organic sulfides from naphtha which is characterized in that the preparation steps are as follows:
  • step b The film casting solution filtered in step b is left still for 2 to 5 hours to remove air bubbles, and the prepared polyurethane film casting solution is used as an active layer;
  • step (2) The casting film solution defoamed in step (2) is coated on the polyvinylidene fluoride film obtained in step (1) with a doctor blade, and after coating, it is placed in a blast oven to remove the active layer Tetrahydrofuran to obtain polyurethane / polyvinylidene fluoride composite membrane.
  • step (1) the mass ratio of polyvinylidene fluoride, polyethylene glycol, and N-methylpyrrolidone is 1: 0.1 ⁇ 0.2: 5 ⁇ 8.
  • step (1) it is necessary to scrape the film on the non-woven fabric, when scraping the film, adjust the thickness of the scraper to 100 ⁇ 200 [xm °
  • the thickness of the polyvinylidene fluoride film prepared in step (1) is 110-120-.
  • step (2) the mass ratio of the polyurethane, tetrahydrofuran and polyethylene glycol is 2: 0.1 ⁇ 0.2: 12.
  • step (3) the blade thickness is adjusted to 200 to 30 (Vm when the film is scraped, and the temperature of the blast oven is controlled to be 40 to 50 ° C during drying.
  • the average molecular weight of the polyethylene glycol in steps (1) and (2) is 200.
  • the beneficial effect of the present invention is that the composite membrane is a polyvinylidene fluoride ultrafiltration membrane as a support layer, polyvinylidene fluoride has strong mechanical properties, is a good support for pervaporation membrane, polyurethane is selected as According to the dissolution-diffusion theory, the active layer of the composite membrane has a strong affinity for organic sulfides in naphtha, and has advantages such as excellent solvent resistance and flexibility.
  • the prepared composite membrane has high separation efficiency, and can extract more than 80% of organic sulfides in naphtha;
  • the polyurethane / polyvinylidene fluoride composite membrane prepared by the present invention can be used for the extraction of organic sulfides in naphtha, which can significantly improve the extraction rate of organic sulfides.
  • the mass ratio is 1: 0.15: 6.54, that is, 45.883g polyvinylidene fluoride, 7.058g polyethylene glycol, 300gN-A Put pyrrolidone in a round-bottom flask, stir for 12h in a 50 ° C water bath, filter and defoam after complete dissolution, adjust the blade thickness of the film scraper to 10 (Vm, scrape the film on the non-woven fabric, and scrape it well
  • the membrane is immersed in deionized water for 72h, and then placed in a 60 ° C oven to dry, to obtain 110 ⁇ 12 (Vm polyvinylidene fluoride membrane, that is, the support layer; [0034] 2.
  • the mass ratio is 2: 0.1: 12, which is 2g Polyurethane, O. lg polyethanol, 12g tetrahydrofuran are added to the Erlenmeyer flask
  • the prepared film casting liquid was filtered with a 300 mesh copper mesh, and then the filtered film casting liquid was allowed to stand for 2 hours to remove air bubbles to prepare a polyurethane film casting liquid as an active layer.
  • the prepared film casting liquid was filtered with a 300 mesh copper mesh, and then the filtered film casting liquid was allowed to stand for 2 hours to remove air bubbles, and a polyurethane film casting liquid was prepared as an active layer.
  • the prepared film casting solution was filtered with a 300 mesh copper mesh, and then the filtered film casting solution was allowed to stand for 2 hours to remove air bubbles, and a polyurethane film casting solution was prepared as an active layer.
  • polyethylene glycol to polyurethane can increase the spacing between polyurethane molecular chains, and polyethylene glycol also has a good affinity for organic sulfides, in improving the permeation flux At the same time, less sulfur enrichment factor is lost to avoid the trade-off effect of the permeation flux and enrichment factor often encountered when the pervaporation membrane is modified, so it can significantly improve the removal from naphtha The extraction rate of sulfur-containing organic compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

一种石脑油中提取有机硫化物的聚氨酯/聚偏氟乙烯复合膜,涉及复合膜材料加工技术领域,由活性层和支撑层组成,活性层为聚氨酯铸膜,支撑层为聚偏氟乙烯膜,且活性层涂覆于支撑层上制得聚氨酯/聚偏氟乙烯复合膜,同时公开了该聚氨酯/聚偏氟乙烯复合膜的制备方法。有益效果是,所制得的聚氨酯/聚偏氟乙烯复合膜,可用于石脑油中有机硫化物的提取,分离效率高、装置简单、操作方便、条件温和,且该复合膜基本不改变原料油品辛烷值等性质,能显著提高有机硫化物得到提取率。

Description

一种石脑油中提取有机硫化物的聚氨酯 /聚偏氟乙烯复合 膜及其制备方法 技术领域
[0001] 本发明涉及复合膜材料加工技术领域, 尤其涉及一种石脑油中提取有机硫化物 的聚氨醋 /聚偏氟乙烯复合膜及其制备方法。
背景技术
[0002] 目前, 随着世界各国对环境保护的日益重视及环保法规的日益严格, 生产清洁 油品已成为世界范围内的重要研究课题。 石脑油中所含硫化物的存在形式有元 素硫、 硫化氢、 硫醇、 硫醚以及噻吩等, 有机硫化物是其中的主要组成部分。 传统的处理工艺为加氢脱硫, 该工艺成本高, 操作条件苛刻, 有机硫化物经加 氢处理后变成硫化氢, 要经过复杂的尾气处理工艺后才能回收利用和排放, 造 成巨大的浪费。
[0003] 随着膜分离技术的发展与应用, 越来越多的膜分离过程应用于实际的化工生产 过程中, 其中, 渗透汽化技术具有环境友好、 经济性好、 易于放大等优点, 收 到各国研究者的重视, 将其用于油品中有机硫化物的提取, 操作简单, 不需对 原料预处理, 不发生化学反应, 避免了硫化氢的产生, 不仅可降低油品中的硫 含量, 提取出的噻吩等有机硫化物经过简单的提纯过程后, 还可作为制造医药 、 农药、 染料等化工产品的重要原料, 具有很好的环境效益和经济价值。
[0004] 聚氨酯有较强的化学稳定性、 较强的耐溶剂性、 较强的疏水亲有机物等性能, 是制膜的理想材料, 将其直接用于石脑油中提取含硫有机化合物时, 渗透通量 较低, 影响含硫有机化合物提取率。
发明概述
技术问题
问题的解决方案
技术解决方案 [0005] 解决上述技术问题, 本发明提供一种石脑油中提取有机硫化物的聚氨醋 /聚偏 氟乙烯复合膜及其制备方法。
[0006] 为实现上述目的, 本发明采用下述技术方案:
[0007] 一种石脑油中提取有机硫化物的聚氨醋 /聚偏氟乙烯复合膜, 由活性层和支撑 层组成, 其中, 活性层为聚氨酯铸膜, 支撑层为聚偏氟乙烯膜, 且所述活性层 涂覆于所述支撑层上制得聚氨醋 /聚偏氟乙烯复合膜。
[0008] 进一步地, 所述活性层的厚度为 20~3(Vm, 支撑层的厚度为 110~120—。
[0009] 一种石脑油中提取有机硫化物的聚氨醋 /聚偏氟乙烯复合膜的制备方法, 其特 征在于, 制备步骤如下:
[0010] ( 1) 支撑层准备
[0011] 将一定质量比的聚偏氟乙烯、 聚乙二醇、 N-甲基吡咯烷酮加入圆底烧瓶中, 圆 底烧瓶放置于 50~60°C恒温水浴中 12~24h, 待完全溶解后依次进行过滤、 脱气、 刮膜和干燥处理;
[0012] 将刮好的膜放入去离子水中 48~72h, 除去 N-甲基吡咯烷酮后, 再放入鼓风烘箱 中干燥, 温度控制在 50~60°C, 得到聚偏氟乙烯膜, 作为支撑层;
[0013] (2) 活性层准备
[0014] a、 将一定质量比的聚氨酯、 聚乙二醇、 四氢呋喃加入圆底烧瓶中, 待其完全 溶解, 形成均相铸膜液;
[0015] b、 将 a制得的均相铸膜液用 300目的不锈钢过滤网进行过滤;
[0016] c 将经步骤 b过滤后的铸膜液静止 2~5h, 脱除气泡, 制得的聚氨酯铸膜液作为 活性层;
[0017] (3) 复合膜制备
[0018] 将步骤 (2) 脱泡后的铸膜液用刮刀涂覆在步骤 ( 1) 所得的聚偏氟乙烯膜上, 涂覆后, 放入鼓风烘箱中, 脱除活性层内的四氢呋喃, 得到聚氨醋 /聚偏氟乙烯 复合膜。
[0019] 进一步地, 步骤 ⑴ 中, 聚偏氟乙烯、 聚乙二醇、 N-甲基吡咯烷酮的质量比 为 1:0.1~0.2:5~8。
[0020] 进一步地, 步骤 ( 1) 中, 需要在无纺布上刮膜, 刮膜时, 调整刮刀厚度为 100 〜 200[xm°
[0021] 进一步地, 步骤 ⑴ 所制备的聚偏氟乙烯膜的厚度为 110~120—。
[0022] 进一步地, 步骤 (2) 中, 所述聚氨酯、 四氢呋喃和聚乙二醇的质量比为 2:0.1~ 0.2: 12。
[0023] 进一步地, 步骤 (3) 中, 刮膜时调整刮刀厚度为 200~30(Vm, 干燥时控制鼓 风烘箱温度为 40~50°C。
[0024] 进一步地, 步骤 (1) 和 (2) 中的聚乙二醇的平均分子量为 200。
发明的有益效果
有益效果
[0025] 本发明的有益效果是, 该复合膜是以聚偏氟乙烯超滤膜为支撑层, 聚偏氟乙烯 具有较强的机械性能, 是渗透气化膜良好的支撑体, 选用聚氨酯作为复合膜的 活性层, 根据溶解 -扩散理论, 聚氨酯对石脑油中的有机硫化物具有较强的亲和 力, 且具有优良的耐溶剂性、 柔韧性等优势。
[0026] 将本发明制得的聚氨醋 /聚偏氟乙烯复合膜用于石脑油中有机硫化物的提取时 , 具有以下优点:
[0027] 1、 所制得的复合膜分离效率高, 可提取石脑油中 80%以上的有机硫化物;
[0028] 2、 装置简单, 操作方便, 条件温和;
[0029] 3、 基本不改变原料油品辛烷值等性质;
[0030] 综上, 本发明所制得的聚氨醋 /聚偏氟乙烯复合膜可用于石脑油中有机硫化物 的提取, 显著提高有机硫化物得到提取率。
发明实施例
本发明的实施方式
[0031] 下面对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实 施例仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例 , 本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例 , 都属于本发明保护的范围。
[0032] 实施例 1
[0033] 1、 将质量比为 1:0.15:6.54, 即 45.883g聚偏氟乙烯, 7.058g聚乙二醇, 300gN-甲 基吡咯烷酮放入圆底烧瓶中, 在 50°C水浴中搅拌 12h, 完全溶解后过滤、 脱泡, 将刮膜机刮刀厚度调整为 10(Vm, 在无纺布上刮膜, 将刮好的膜浸入去离子水中 72h, 随后放入 60°C烘箱干燥, 得到 110~12(Vm的聚偏氟乙烯膜, 即支撑层; [0034] 2、 将质量比为 2:0.1: 12, 即 2g聚氨酯、 O. lg聚乙醇、 12g四氢呋喃加入锥形瓶中
, 在室温下溶解, 得到铸膜液;
[0035] 将制得的铸膜液用 300目的铜网过滤, 然后将过滤的铸膜液静置 2h以脱除气泡 , 制得聚氨酯铸膜液作为活性层。
[0036] 3、 调整刮刀厚度为 30(Vm, 将步骤 2得到的铸膜液涂覆在步骤 1得到的聚偏氟 乙烯支撑层上, 所得到的膜放入 40°C鼓风烘箱中, 除去四氢呋喃, 得到聚氨醋 / 聚偏氟乙烯复合膜。
[0037] 实施例 2
[0038] 1、 将质量比为 1:0.1:5.97, 即 50.285g聚偏氟乙烯、 5.145g聚乙二醇、 300gN-甲 基吡咯烷酮放入圆底烧瓶中, 在 50°C水浴中搅拌 12h, 完全溶解后过滤、 脱泡, 将刮膜机刮刀厚度调整为 10(Vm, 在无纺布上刮膜, 将刮好的膜浸入去离子水中 72h, 随后放入 60°C烘箱干燥, 得到 110~12(Vm的聚偏氟乙烯膜, 即支撑层; [0039] 2、 将质量比为 2:0.15: 12, 即 2g聚氨酯、 0.15g聚乙二醇、 12g四氢呋喃加入锥形 瓶中, 在室温下溶解, 得到铸膜液;
[0040] 将制得的铸膜液用 300目的铜网过滤, 然后将过滤的铸膜液静置 2h以脱除气泡 , 制得聚氨酯铸膜液作为活性层。
[0041] 3、 调整刮刀厚度为 25(Vm, 将步骤 2得到的铸膜液涂覆在步骤 1得到的聚偏氟 乙烯支撑层上, 所得到的膜放入 40°C鼓风烘箱中, 除去四氢呋喃, 得到聚氨醋 / 聚偏氟乙烯复合膜。
[0042] 实施例 3
[0043] 1、 将质量比为 1:0.2:7.41, 即 47.241g聚偏氟乙烯、 9.365g聚乙二醇、 350gN-甲 基吡咯烷酮放入圆底烧瓶中在 50°C水浴中搅拌 12h, 完全溶解后过滤、 脱泡, 将 刮膜机刮刀厚度调整为 10(Vm, 在无纺布上刮膜, 将刮好的膜浸入去离子水中 72 h, 随后放入 60°C烘箱干燥, 得到 110~12(Vm的聚偏氟乙烯膜, 即支撑层;
[0044] 2、 将质量比为 2:0.2: 12, 即 2g聚氨酯、 0.2g聚乙二醇、 12g四氢呋喃加入锥形瓶 中, 在室温下溶解, 得到铸膜液;
[0045] 将制得的铸膜液用 300目的铜网过滤, 然后将过滤的铸膜液静置 2h以脱除气泡 , 制得聚氨酯铸膜液作为活性层。
[0046] 3、 调整刮刀厚度为 20(Vm, 将步骤 2得到的铸膜液涂覆在步骤 1得到的聚偏氟 乙烯支撑层上, 所得到的膜放入 40°C鼓风烘箱中, 除去四氢呋喃, 得到聚氨醋 / 聚偏氟乙烯复合膜。
[0047] 1、 聚氨醋 /聚偏氟乙烯复合膜处理石脑油
[0048] 将实施例 1、 2和 3制得的聚氨醋 /聚偏氟乙烯复合膜进行石脑油中有机硫化物的 提取实验, 用三种聚氨醋 /聚偏氟乙烯复合膜来处理不同的石脑油中硫含量, 得 到渗透通量和富集液中硫含量数据, 具体实验结果如表一所示:
[0049] 表一
Figure imgf000006_0001
[0050] 结果显示, 在该实验条件下, 三种实施例制得的复合膜的渗透通量都能达到 1~ 2 kg«m-2«h-l以上, 硫富集因子 (富集液中硫含量 /石脑油中硫含量) 都在 3.00左 右, 对硫化物的提取效果好。
[0051] 2、 聚氨醋 /聚偏氟乙烯复合膜寿命
[0052] 此外, 对实施例 1、 2和 3制得的聚氨醋 /聚偏氟乙烯复合膜进行寿命测试, 石脑 油中硫含量为 1300mg/L、 进料流量为 90mL/min, 连续运行 100h后, 得到的实验 数据如表二所示:
[0053] 表二
[]
Figure imgf000007_0001
[0054] 实验结果显示, 该实验条件下, 渗透通量均在 1.00 kg*m-2*h-l以上, 硫富集因 子均维持在 3.00以上。
[0055] 本发明中, 在聚氨酯中加入聚乙二醇, 可以增大聚氨酯分子链之间的间距, 且 聚乙二醇对有机硫化物也具有良好的亲和性, 在提高渗透通量的同时损失较少 的硫富集因子, 避免渗透汽化膜改性时经常遇到的渗透通量和富集因子此消彼 长的“trade-off’效应, 因而能显著地提高从石脑油中提取含硫有机化合物的提取 率。
[0056] 当然, 上述说明并非是对本发明的限制, 本发明也并不仅限于上述举例, 本技 术领域的技术人员在本发明的实质范围内所做出的变化、 改型、 添加或替换, 也应属于本发明的保护范围。

Claims

权利要求书 [权利要求 1] 一种石脑油中提取有机硫化物的聚氨醋 /聚偏氟乙烯复合膜, 其特征 在于, 由活性层和支撑层组成, 其中, 活性层为聚氨酯铸膜, 支撑层 为聚偏氟乙烯膜, 且所述活性层涂覆于所述支撑层上制得聚氨醋 /聚 偏氟乙烯复合膜。 [权利要求 2] 如权利要求 1所述的一种石脑油中提取有机硫化物的聚氨醋 /聚偏氟乙 烯复合膜, 其特征在于, 所述活性层的厚度为 20~3(Vm, 支撑层的厚 度为 110~120[xm。 [权利要求 3] 一种如权利要求 1-2中任一所述的聚氨醋 /聚偏氟乙烯复合膜的制备方 法, 其特征在于, 制备步骤如下:
( 1) 支撑层准备
将一定质量比的聚偏氟乙烯、 聚乙二醇、 N-甲基吡咯烷酮加入圆底烧 瓶中, 圆底烧瓶放置于 50~60°C恒温水浴中 12~24h, 待完全溶解后依 次进行过滤、 脱气、 刮膜和干燥处理;
将刮好的膜放入去离子水中 48~72h, 除去 N-甲基吡咯烷酮后, 再放 入鼓风烘箱中干燥, 温度控制在 50~60°C, 得到聚偏氟乙烯膜, 作为 支撑层;
(2) 活性层准备
a、 将一定质量比的聚氨醋、 聚乙二醇、 四氢呋喃加入圆底烧瓶中, 待其完全溶解, 形成均相铸膜液;
b、 将 a制得的均相铸膜液用 300目的不锈钢过滤网进行过滤; c 将经步骤 b过滤后的铸膜液静止 2~5h, 脱除气泡, 制得的聚氨酯铸 膜液作为活性层;
(3) 复合膜制备
将步骤 (2) 脱泡后的铸膜液用刮刀涂覆在步骤 ( 1) 所得的聚偏氟乙 烯膜上, 涂覆后, 放入鼓风烘箱中, 脱除活性层内的四氢呋喃, 得到 聚氨醋 /聚偏氟乙烯复合膜。
[权利要求 4] 如权利要求 3所述的聚氨醋 /聚偏氟乙烯复合膜的制备方法, 其特征在 于, 步骤 ⑴ 中, 聚偏氟乙烯、 聚乙二醇、 N-甲基吡咯烷酮的质量 比为 1:0.1~0.2:5~8。
[权利要求 5] 如权利要求 4所述的聚氨醋 /聚偏氟乙烯复合膜的制备方法, 其特征在 于, 步骤 (1) 中, 需要在无纺布上刮膜, 刮膜时, 调整刮刀厚度为 1
00〜 200[xm。
[权利要求 6] 如权利要求 3所述的聚氨醋 /聚偏氟乙烯复合膜的制备方法, 其特征在 于, 步骤 ⑴ 所制备的聚偏氟乙烯膜的厚度为 110~120—。
[权利要求 7] 如权利要求 3所述的聚氨醋 /聚偏氟乙烯复合膜的制备方法, 其特征在 于, 步骤 (2) 中, 所述聚氨酯、 四氢呋喃和聚乙二醇的质量比为 2:0. 1~0.2:12。
[权利要求 8] 如权利要求 3所述的聚氨醋 /聚偏氟乙烯复合膜的制备方法, 其特征在 于, 步骤 (3) 中, 刮膜时调整刮刀厚度为 200~30(Vm, 干燥时控制 鼓风烘箱温度为 40~50°C。
[权利要求 9] 如权利要求 3所述的聚氨醋 /聚偏氟乙烯复合膜的制备方法, 其特征在 于, 步骤 (1) 和 (2) 中的聚乙二醇的平均分子量为 200。
PCT/CN2018/125985 2018-10-31 2018-12-31 一种石脑油中提取有机硫化物的聚氨酯/聚偏氟乙烯复合膜及其制备方法 WO2020087761A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/280,126 US11458438B2 (en) 2018-10-31 2018-12-31 Polyurethane/polyvinylidene fluoride composite membrane for extracting organic sulfide from naphtha and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811283211.5A CN109251765B (zh) 2018-10-31 2018-10-31 一种石脑油中提取有机硫化物的聚氨酯/聚偏氟乙烯复合膜及其制备方法
CN201811283211.5 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020087761A1 true WO2020087761A1 (zh) 2020-05-07

Family

ID=65044196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125985 WO2020087761A1 (zh) 2018-10-31 2018-12-31 一种石脑油中提取有机硫化物的聚氨酯/聚偏氟乙烯复合膜及其制备方法

Country Status (3)

Country Link
US (1) US11458438B2 (zh)
CN (1) CN109251765B (zh)
WO (1) WO2020087761A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377481A (zh) * 2022-08-23 2022-11-22 合肥国轩高科动力能源有限公司 一种有机-无机复合固态电解质及其制备方法、锂离子固态电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1673271A (zh) * 2005-03-16 2005-09-28 福州大学 以聚偏氟乙烯/聚氨酯共混膜为基膜的pH敏感膜及其制备工艺
CN101406812A (zh) * 2008-11-04 2009-04-15 东华大学 一种热塑性聚氨酯弹性体/聚偏氟乙烯共混中空纤维膜的制备方法
CN101444703A (zh) * 2008-12-05 2009-06-03 浙江工业大学 一种用于膜生物反应器的复合膜及其制备方法
CN106606934A (zh) * 2016-12-02 2017-05-03 中国石油大学(华东) 聚氨酯渗透汽化回收溶剂膜及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146747A (en) * 1997-01-22 2000-11-14 Usf Filtration And Separations Group Inc. Highly porous polyvinylidene difluoride membranes
SE0203857L (sv) * 2002-12-20 2004-06-21 Gambro Lundia Ab Permselektivt membran och förfarande för tillverkning därav
US20100166961A1 (en) * 2004-01-20 2010-07-01 Beard Kirby W Production of high porosity open-cell membranes
CN103752182B (zh) * 2014-01-20 2016-05-18 中国石油大学(华东) 乙基纤维素渗透汽化汽油脱硫膜及其制备方法
US20180126338A1 (en) * 2015-05-19 2018-05-10 Basf Se New polymer compositions
CN105080356B (zh) * 2015-08-04 2018-01-19 天津工业大学 疏水亲油中空纤维复合膜及其制备方法
WO2019046284A1 (en) * 2017-08-28 2019-03-07 Dsm Ip Assets, B.V. SYNTHETIC MEMBRANE COMPOSITION COMPRISING POLYURETHANE AND POLYOXAZOLINE
CN108211823B (zh) * 2018-01-24 2019-12-06 中国石油大学(华东) 一种用于汽油脱硫的聚乙烯醇缩丁醛/聚丙烯腈复合膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1673271A (zh) * 2005-03-16 2005-09-28 福州大学 以聚偏氟乙烯/聚氨酯共混膜为基膜的pH敏感膜及其制备工艺
CN101406812A (zh) * 2008-11-04 2009-04-15 东华大学 一种热塑性聚氨酯弹性体/聚偏氟乙烯共混中空纤维膜的制备方法
CN101444703A (zh) * 2008-12-05 2009-06-03 浙江工业大学 一种用于膜生物反应器的复合膜及其制备方法
CN106606934A (zh) * 2016-12-02 2017-05-03 中国石油大学(华东) 聚氨酯渗透汽化回收溶剂膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOU, Y. F. ET AL.: "Influence of Polyethylene Glycol on the Deep Desulfurization of Catalytic Cracking Gasoline by Polyurethane Membranes via Pervaporation", ENERGY FUELS, vol. 32, 17 January 2018 (2018-01-17), pages 2090, XP055699390, ISSN: 0887-0624, DOI: 10.1021/acs.energyfuels.7b03654 *
HOU, YINGFEI ET AL.: "Preparation and Performance of Thermoplastic Polyurethane Pervaporation Membrane for Gasoline Desulfurization", JOURNAL OF CHEMICAL ENGINEERING OF CHINESE UNIVERSITIES, vol. 32, no. 3, 30 June 2018 (2018-06-30), pages 646, XP055699404, ISSN: 1003-9015, DOI: 10.3969/j.issn.1003-9015.2018.03.020 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377481A (zh) * 2022-08-23 2022-11-22 合肥国轩高科动力能源有限公司 一种有机-无机复合固态电解质及其制备方法、锂离子固态电池

Also Published As

Publication number Publication date
US20210308626A1 (en) 2021-10-07
US11458438B2 (en) 2022-10-04
CN109251765B (zh) 2020-05-05
CN109251765A (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
CN109316981B (zh) 一种具有破乳功能的超亲水聚合物膜的制备方法
CN110314559A (zh) 一种界面聚合复合膜的制备方法
CN106823861B (zh) 一种基于天然高分子的中空纤维复合纳滤膜及其制备方法
CN111686592A (zh) 一种复合纳滤膜及其制备方法
CN103071403A (zh) 双脱盐层复合反渗透膜及其制备方法
CN104785132B (zh) 一种木质素复合纳滤膜及其制备方法
CN110124541A (zh) 一种喹诺酮信号分子抑制剂改性的抗生物污染复合膜及其制备方法
WO2020087761A1 (zh) 一种石脑油中提取有机硫化物的聚氨酯/聚偏氟乙烯复合膜及其制备方法
CN112516817A (zh) 一种聚偏氟乙烯疏松纳滤膜及其制备方法和应用
CN101912741A (zh) 含纳米材料的聚酰胺复合反渗透膜
CN1919429A (zh) 一种接枝苯乙烯改性膜及其制备方法和应用
CN101721927A (zh) 含二氮杂萘酮结构共聚芳醚砜超滤膜及其制备方法
CN105664742A (zh) 一种提高聚酰胺反渗透膜水通量及抗污染能力的方法
CN114570216A (zh) 一种纳米环状结构高通量纳滤膜及其制备方法
CN105749765A (zh) 一种高性能三醋酸纤维正渗透膜的制备方法
CN111701461B (zh) 一种水凝胶超滤膜、制备方法及其应用
CN106422803A (zh) 新型聚酰胺复合正渗透膜的制备方法
CN109758929A (zh) 分盐纳滤膜及其制备方法
CN110975637B (zh) 一种没食子酸-壳聚糖/聚砜复合纳滤膜的制备方法
CN108479400A (zh) 一种二氧化硅/聚偏氟乙烯基-聚酰胺反渗透膜的制备方法
CN114191991A (zh) 金属离子配位交联的聚酰亚胺耐溶剂纳滤膜、制法及应用
CN115155327A (zh) 一种适用于低温预处理盐湖卤水的纳滤膜及其制备方法
CN115318110B (zh) 一种基于弱极性有机溶剂调控制备高选择性纳滤膜的方法
CN103877875A (zh) 一种亚纳滤复合膜及其制备方法
Li et al. Novel TFC membrane with PMIA thin-film as active layer fabricated by the T-FLO technique for dye desalination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938525

Country of ref document: EP

Kind code of ref document: A1