WO2020085066A1 - フッ素ガス製造装置 - Google Patents
フッ素ガス製造装置 Download PDFInfo
- Publication number
- WO2020085066A1 WO2020085066A1 PCT/JP2019/039545 JP2019039545W WO2020085066A1 WO 2020085066 A1 WO2020085066 A1 WO 2020085066A1 JP 2019039545 W JP2019039545 W JP 2019039545W WO 2020085066 A1 WO2020085066 A1 WO 2020085066A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anode
- cathode
- electrolytic solution
- fluorine gas
- electrolytic cell
- Prior art date
Links
- 239000011737 fluorine Substances 0.000 title claims abstract description 101
- 229910052731 fluorine Inorganic materials 0.000 title claims abstract description 101
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 title claims abstract description 100
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 50
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 130
- 239000007789 gas Substances 0.000 claims abstract description 123
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 56
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims abstract description 55
- 239000007788 liquid Substances 0.000 claims abstract description 48
- 238000005192 partition Methods 0.000 claims description 115
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 229910000792 Monel Inorganic materials 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 4
- 230000002194 synthesizing effect Effects 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 238000005868 electrolysis reaction Methods 0.000 abstract description 40
- 238000006243 chemical reaction Methods 0.000 abstract description 18
- 230000006798 recombination Effects 0.000 abstract description 15
- 238000005215 recombination Methods 0.000 abstract description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 54
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 23
- 238000007654 immersion Methods 0.000 description 22
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 18
- 239000003792 electrolyte Substances 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 238000001816 cooling Methods 0.000 description 12
- 239000011698 potassium fluoride Substances 0.000 description 11
- 235000003270 potassium fluoride Nutrition 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000004020 conductor Substances 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 230000001502 supplementing effect Effects 0.000 description 7
- 238000004080 punching Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- -1 but for example Inorganic materials 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000009172 bursting Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910018503 SF6 Inorganic materials 0.000 description 2
- 229920006026 co-polymeric resin Polymers 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001038 ethylene copolymer Polymers 0.000 description 2
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 2
- 229960000909 sulfur hexafluoride Drugs 0.000 description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 2
- SANRKQGLYCLAFE-UHFFFAOYSA-H uranium hexafluoride Chemical compound F[U](F)(F)(F)(F)F SANRKQGLYCLAFE-UHFFFAOYSA-H 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 150000002221 fluorine Chemical class 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/245—Fluorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
- C25B11/03—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/042—Electrodes formed of a single material
- C25B11/046—Alloys
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/02—Diaphragms; Spacing elements characterised by shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/60—Constructional parts of cells
- C25B9/65—Means for supplying current; Electrode connections; Electric inter-cell connections
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/60—Constructional parts of cells
- C25B9/67—Heating or cooling means
Definitions
- the present invention relates to a fluorine gas production device.
- Fluorine gas can be synthesized (electrolytic synthesis) by electrolyzing an electrolytic solution containing hydrogen fluoride.
- a fluorine gas production apparatus that industrially performs electrolytic synthesis of fluorine gas
- a reaction in which fluorine gas generated at the anode and hydrogen gas generated at the cathode are contacted to form hydrogen fluoride hereinafter, referred to as “recombination reaction”.
- the partition wall is provided so that the fluorine gas generated at the anode and the hydrogen gas generated at the cathode do not mix with each other.
- the separation of fluorine gas and hydrogen gas by the partition wall may not be complete even though the current density of the anode is as small as 0.1 to 0.15 A / cm 2. It was Therefore, a recombination reaction occurs in the electrolyte solution, hydrogen gas leaks into the anode chamber and recombines with fluorine gas in the gas phase part, or fluorine gas leaks into the cathode chamber and the gas phase part In some cases, the hydrogen gas may cause a recombination reaction, resulting in a decrease in current efficiency. Further, when electrolysis is carried out at a high current density, the separability of fluorine gas and hydrogen gas deteriorates, so that the degree of decrease in current efficiency tends to increase.
- Patent Document 1 discloses a technique for improving the separability of a gas generated at an anode and a gas generated at a cathode by controlling the vertical length of a portion of a partition wall that is immersed in an electrolytic solution. However, the separability of both gases was not sufficient, and the reduction in current efficiency could not be prevented sufficiently.
- Non-Patent Document 1 discloses the design of an industrially used electrolytic cell for producing fluorine gas, which is an electrolytic cell for electrolyzing at a current density of less than 0.2 A / cm 2 and has a high current. It was not an electrolytic cell capable of electrolysis at a density.
- An object of the present invention is to provide a fluorine gas production apparatus capable of producing a fluorine gas by electrolyzing an electrolytic solution with high current efficiency.
- a fluorine gas production apparatus for electrolyzing an electrolytic solution containing hydrogen fluoride to electrolytically synthesize fluorine gas, An electrolytic cell containing an electrolytic solution, A cylindrical partition wall that extends vertically downward from the ceiling surface inside the electrolytic cell, and partitions the inside of the electrolytic cell into an anode chamber and a cathode chamber, An anode disposed in the anode chamber, A cathode arranged to face the anode, Equipped with The lower end of the partition wall is immersed in the electrolytic solution, the vertical length of the part of the partition wall immersed in the electrolytic solution is from the inner bottom surface of the electrolytic cell to the liquid surface of the electrolytic solution.
- the cathode is entirely immersed in the electrolytic solution, the upper end of the cathode is vertically the same position as the lower end of the partition wall, or is arranged vertically below the lower end of the partition wall,
- the said anode is a fluorine gas manufacturing apparatus installed so that a part of it may be exposed from the liquid surface of the said electrolyte solution.
- An anode connection member for supplying power to the anode, and a cathode connection member for supplying power to the cathode are further provided,
- the anode connecting member has one end connected to a positive electrode of a DC power source, the other end penetrating a wall of the electrolytic cell and connected to the anode, and the anode connecting member and the electrolytic cell are Insulated,
- the cathode connecting member, one end thereof is connected to the bottom wall of the electrolytic cell, or to a portion of the side wall of the side wall at a position vertically below the lower end of the partition wall, and the other end is connected to the cathode,
- the fluorine gas production apparatus according to [1], wherein the electrolytic cell and the negative electrode of the DC power source are connected.
- the fluorine gas production apparatus according to [2], wherein the cathode connecting member is a metal tube through which a fluid can flow.
- the anode and the cathode are plate-shaped, and the side surfaces inside the anode, the cathode, the partition, and the electrolytic cell are provided to be parallel to the vertical direction,
- the shortest distance A between the anode and the cathode is 2.0 cm or more and 5.0 cm or less
- the shortest distance B between the anode and the partition wall is 0.5 cm or more and 2.5 cm or less, and smaller than the shortest distance A
- the shortest distance C between the portion of the anode that does not face the cathode and the side surface inside the electrolytic cell is 1.5 times or more and 3 times or less of the shortest distance A [1] to [3].
- the part of the cathode facing the anode is formed of a flat plate or a flat plate having a through hole with an aperture ratio of 20% or less, [1] to [6].
- Fluorine gas production equipment [8] The fluorine gas production apparatus according to any one of [1] to [7], which does not have a diaphragm that extends vertically downward from the partition wall and divides the inside of the electrolytic cell into the anode chamber and the cathode chamber. .
- the electrolytic solution containing hydrogen fluoride even when the electrolysis of the electrolytic solution containing hydrogen fluoride is carried out at a high current density, the recombination reaction in the electrolytic solution or the recombination reaction in the vapor phase part of the anode chamber and the cathode chamber It is less likely to occur, and the electrolytic solution can be electrolyzed with high current efficiency to produce fluorine gas.
- the present embodiment shows an example of the present invention, and the present invention is not limited to this embodiment. Further, various changes or improvements can be added to the present embodiment, and a mode in which such changes or improvements are added can also be included in the present invention.
- FIG. 1 is a cross-sectional view of the fluorine gas production apparatus virtually cut along a plane orthogonal to the plate surfaces of the anode 3 and the cathode 5 of the fluorine gas production apparatus and parallel to the vertical direction.
- FIG. 2 is a cross-sectional view of the fluorine gas production apparatus virtually cut along a plane parallel to the plate surfaces of the anode 3 and the cathode 5 of the fluorine gas production apparatus and parallel to the vertical direction.
- the fluorine gas production apparatus shown in FIGS. 1 and 2 is an apparatus for electrolytically synthesizing fluorine gas by electrolyzing an electrolytic solution 10 containing hydrogen fluoride.
- This fluorine gas manufacturing apparatus is provided with an electrolytic bath 1 that contains an electrolytic solution 10 therein, an anode 3 that is placed inside the electrolytic bath 1 and immersed in the electrolytic solution 10, and an electrolytic bath that is placed inside the electrolytic bath 1 for electrolysis.
- the cathode 5 is provided so as to be immersed in the liquid 10 and to face the anode 3.
- the inside of the electrolytic cell 1 is formed by a cylindrical partition wall 7 extending vertically downward from a ceiling surface inside the electrolytic cell 1 (in the example of FIGS. 1 and 2, the back surface of the lid 1a of the electrolytic cell 1). And the cathode chamber 14. More specifically, an inner region surrounded by the cylindrical partition wall 7 and a lower region thereof are the anode chamber 12, and an outer region of the cylindrical partition wall 7 and a lower region thereof are the cathode chamber 14.
- the anode 3 is arranged in the anode chamber 12, and the cathode 5 is arranged in the cathode chamber 14.
- the space above the liquid surface of the electrolytic solution 10 is divided into a space inside the anode chamber 12 and a space inside the cathode chamber 14 by the partition wall 7, and a portion of the electrolytic solution 10 above the lower end of the partition wall 7. Is separated by the partition 7, but the portion of the electrolytic solution 10 below the lower end of the partition 7 is not directly separated by the partition 7 and is continuous.
- the shape of the anode 3 is not particularly limited and may be, for example, a columnar shape, but in the present embodiment, it has a flat plate shape and is arranged in the anode chamber 12 so that its plate surface is parallel to the vertical direction. Has been done.
- the shape of the cathode 5 is not particularly limited, and may be, for example, a columnar shape, but in the present embodiment, it has a flat plate shape, and its plate surface faces the plate surface of the anode 3 in parallel. Further, the cathode 3 is arranged in the cathode chamber 14 so that the anode 3 is sandwiched between the two cathodes 5 and 5.
- the shape of the partition wall 7 is not particularly limited as long as it is a tubular shape, and may be a cylindrical shape or a square tubular shape.
- the partition wall 7 is a square tubular shape.
- the partition wall 7 is arranged such that the four walls are parallel to each other in the vertical direction, and the two opposing walls of the four walls are parallel to both plate surfaces of the anode 3. It is arranged so as to face each other.
- the shape of the electrolytic cell 1 is not particularly limited, but in the present embodiment, it has a rectangular parallelepiped shape.
- the four side walls of the electrolytic cell 1 are provided so as to be parallel to the vertical direction and to be parallel to and face the four wall bodies of the partition wall 7, respectively. Therefore, the inner side surface of the electrolytic cell 1 (that is, the inner side surface of the side wall of the electrolytic cell 1) is parallel to the vertical direction, and the plate surface of the anode 3, the plate surface of the cathode 5, and the four wall members of the partition wall 7 are formed. Of these, two wall bodies facing both plate surfaces of the anode 3 are parallel to each other and face each other.
- the cathode 5 is installed so that the whole is immersed in the electrolytic solution 10, and the anode 3 is partially exposed from the liquid surface of the electrolytic solution 10. Is installed as. Further, the lower end of the partition wall 7 is immersed in the electrolytic solution 10, and the vertical length H of the part of the partition wall 7 immersed in the electrolytic solution 10 (hereinafter also referred to as “dipping length H of partition wall”). Yes) is 10% or more and 30% or less of the distance from the inner bottom surface of the electrolytic cell 1 to the liquid surface of the electrolytic solution 10 (hereinafter sometimes referred to as “liquid level height”).
- the upper end of the cathode 5 is arranged at the same position as the lower end of the partition wall 7 in the vertical direction or at a position vertically lower than the lower end of the partition wall 7 (in the example of FIGS. 1 and 2, the upper end of the cathode 5 is , Is arranged vertically below the lower end of the partition wall 7).
- the electrolytic solution 10 is electrolyzed and the anode 3 An anode gas containing fluorine gas (F 2 ) as a main component is generated, and a cathode gas containing hydrogen gas (H 2 ) as a main component is produced as a byproduct at the cathode 5.
- the anode gas accumulates in the space above the liquid level of the electrolyte solution 10 in the anode chamber 12 and the cathode gas accumulates in the space above the liquid level of the electrolyte solution 10 in the cathode chamber 14. Since the space above the liquid surface of the electrolytic solution 10 is divided into the space inside the anode chamber 12 and the space inside the cathode chamber 14 by the partition wall 7, the anode gas and the cathode gas are not mixed.
- the anode chamber 12 is provided with an exhaust port 21 for discharging the anode gas generated by the anode 3 from the inside of the anode chamber 12 to the outside of the electrolytic cell 1, and the cathode chamber 14 is provided with a cathode generated by the cathode 5.
- An exhaust port 23 for exhausting gas from the inside of the cathode chamber 14 to the outside of the electrolytic cell 1 is provided.
- a cooler for cooling the cathode 5 and the electrolytic solution 10 is attached to the plate surface opposite to the plate surface facing the anode 3 among the front and back plate surfaces of the cathode 5.
- a cooling pipe 16 which is a metal pipe through which a cooling fluid such as water flows is attached to the cathode 5 as a cooler.
- the cathode 5 and the electrolytic solution 10 can be heated by flowing a heating fluid such as steam into the cooling pipe 16.
- the electrolysis of the electrolytic solution 10 containing hydrogen fluoride is performed at a high current density (for example, 0.2 A / cm 2 or more and 1 A / cm 2 or less). Even in the case, the recombination reaction in the electrolytic solution 10 and the recombination reaction in the gas phase portions of the anode chamber 12 and the cathode chamber 14 are less likely to occur, and the electrolytic solution 10 is electrolyzed with high current efficiency to industrially produce fluorine gas. Can be manufactured.
- a high current density for example, 0.2 A / cm 2 or more and 1 A / cm 2 or less.
- the whole of the cathode is immersed in the electrolytic solution, and the upper end of the cathode is arranged at the same position in the vertical direction as the lower end of the partition wall, or in the position vertically lower than the lower end of the partition wall. Since the upper end is arranged at the same position in the vertical direction as the lower end of the partition wall 7 or in the position vertically lower than the lower end of the partition wall 7, it is possible to suppress the bipolarization of the partition wall 7.
- the sandwiched part of the partition wall becomes a bipolar electrode, so that hydrogen gas is generated at the part of the partition wall facing the anode and fluorine gas is generated at the part of the partition wall facing the cathode. Gas is generated.
- the current efficiency may decrease, and the portion of the partition wall facing the cathode may become thin due to electrolytic corrosion and deteriorate. Since the partition wall 7 is not sandwiched between the anode 3 and the cathode 5 in the fluorine gas manufacturing apparatus of the present embodiment, bipolarization of the partition wall 7 is suppressed, and current efficiency and partition wall 7 are less likely to deteriorate.
- the entire cathode 5 is installed so as to be immersed in the electrolytic solution 10, and the upper end of the cathode 5 is arranged vertically below the liquid surface of the electrolytic solution 10, the current efficiency during electrolysis is improved. The effect of doing is exhibited. This point will be described in detail below.
- the bubbles of hydrogen gas generated at the cathode 5 are very fine bubbles, and the bubbles ascend to reach the liquid surface of the electrolytic solution 10. However, even if the bubbles reach the liquid surface of the electrolytic solution 10, all the bubbles are instantaneous. The bubbles are not released to the gas phase part by bursting, and there are bubbles that stay in the electrolytic solution 10 along with the flow of the electrolytic solution 10 in the bath motion.
- the fluorine gas production apparatus of the present embodiment when used, it is possible to suppress the leakage of hydrogen gas generated at the cathode 5 into the anode chamber 12 and separate fluorine gas and hydrogen gas with high separability. Therefore, even when electrolysis is performed at a high current density, the electrolytic solution 10 containing hydrogen fluoride can be electrolyzed with high current efficiency to produce fluorine gas.
- the lower end of the partition wall is immersed in the electrolytic solution, and the immersion length H of the partition wall is 10% or more and 30% or less of the liquid level height.
- the immersion length H of the partition wall 7 is the liquid level height. If it is 10% or more, the amount of bubbles of hydrogen gas leaking into the anode chamber 12 is reduced, so that the current efficiency is less likely to decrease. On the other hand, if the immersion length H of the partition wall 7 is 30% or less of the liquid surface height, the portions of the anode 3 and the cathode 5 that function as electrodes increase, and the amount of the electrolytic solution 10 to be electrolyzed also increases. It is economical.
- the immersion length H of the partition 7 is preferably small.
- the immersion length H of the partition wall 7 is required to be 10% or more and 30% or less of the liquid surface height, and more preferably 12% or more and 20% or less.
- hydrogen fluoride in the electrolytic solution is consumed by the electrolytic reaction and the liquid level is lowered, it is preferable to supplement the hydrogen fluoride to maintain the above range.
- the following method can be mentioned.
- the liquid level height of the electrolytic solution is obtained by using a nitrogen gas blowing type differential pressure gauge immersed in the electrolytic solution, and the decrease of the liquid level height is detected to set a preset liquid level. It is a method of replenishing hydrogen fluoride when the amount of decrease in height is reached.
- the water column pressure corresponding to the immersion length H of the partition wall 7 can be determined by the differential pressure gauge, and the immersion length H of the partition wall 7 can be determined from the pressure.
- the second is a method of using two liquid level sensors of a type that measures electric resistance.
- the upper sensor (A sensor) and the lower sensor (B sensor) are installed, and when both sensors sense that they are separated from the liquid, hydrogen fluoride supply is started, and both sensors are placed in the liquid.
- the liquid level height can be controlled by stopping the supply of hydrogen fluoride during the immersion.
- the anode 3 may be connected to an anode connecting member 15 that supplies power to the anode 3, and the anode 3 and the anode connecting member 15 may be connected.
- Means such as bolt joining and welding joining are used for joining with, but when the joining portion between the anode 3 and the anode connecting member 15 is immersed in the electrolytic solution 10, there is a risk of corrosion or an increase in electrical resistance. is there. If a part of the anode 3 is exposed from the liquid surface of the electrolytic solution 10, the exposed part and the connection member 15 for the anode can be joined, and immersion in the electrolytic solution 10 can be prevented.
- the bubbles of fluorine gas generated in the anode 3 are larger than the bubbles of hydrogen gas, even if the upper end of the anode 3 is located above the liquid surface of the electrolyte solution 10, the bubbles between the anode 3 and the partition wall 7 will be separated. The downward flow of the electrolytic solution 10 is unlikely to occur.
- the fluorine gas produced by the fluorine gas producing apparatus of the present embodiment contains uranium hexafluoride (UF 6 ), sulfur hexafluoride (SF 6 ), carbon tetrafluoride (CF 4 ), nitrogen trifluoride and the like. It can be used as a starting material in chemically synthesizing a fluorine compound. Fluorine gas and fluorinated compounds such as uranium hexafluoride, sulfur hexafluoride, carbon tetrafluoride and nitrogen trifluoride are useful in the nuclear industry field, semiconductor industry field, medical and agricultural chemicals field, consumer field, etc. is there.
- Electrolytic cell 1 for electrolytic synthesis is not particularly limited, but from the viewpoint of corrosion resistance, it is preferable to use copper, mild steel, Monel (trademark), nickel alloy, fluororesin or the like. .
- the electrolysis tank 1 needs to be formed of a conductive material such as metal, but the power is supplied to the anode 3 and the cathode 5 without passing through the electrolysis tank 1. In this case, it is not necessary to form the electrolytic cell 1 with a conductive material, and the electrolytic cell 1 may be formed with an insulating material.
- the electrolytic cell 1 may be an integral type that does not separate into a plurality of members, or may be a separation type that includes a plurality of separable members.
- the electrolytic cell 1 of the fluorine gas production apparatus shown in FIG. 1 and FIG. 2 is of a separable type, and is composed of a main body 1b for containing the electrolytic solution 10 and a lid 1a for closing an upper opening of the main body 1b.
- the lid 1a and the main body 1b are preferably attached so as to have airtightness in order to prevent fluorine gas and hydrogen gas from leaking out of the electrolytic cell 1.
- the main body 1b is made of a conductive material such as metal. It is formed of the material.
- the lid 1a is also made of a conductive material such as metal, it is necessary to insulate the main body 1b from the lid 1a.
- the material of the anode 3 is not particularly limited as long as it can be used in an electrolytic solution containing hydrogen fluoride, but for example, metal or carbon can be used, and conductive diamond can be used.
- a coated carbon electrode can be preferably used.
- the shape of the anode 3 is not particularly limited, and may be a flat plate shape, a mesh shape, a punching plate shape, a shape in which the plate is rolled, a shape in which generated bubbles are guided to the back surface of the electrode, or a circulation of the electrolytic solution. You can freely design things such as those with a three-dimensional structure that takes into consideration.
- the punching plate is a flat plate that is punched to form through holes.
- the material of the cathode 5 is not particularly limited as long as it can be used in the electrolytic solution containing hydrogen fluoride, but for example, a metal can be used.
- a metal can be used.
- the type of metal include iron, copper, nickel, and Monel (trademark).
- the portion of the cathode 5 facing the anode 3 is preferably formed of at least one material selected from Monel (trademark), nickel, and copper, and more preferably formed of Monel (trademark). preferable.
- the diameter of bubbles of hydrogen gas generated tends to change depending on the type of metal, and the larger the diameter of bubbles of hydrogen gas, the better the separability of fluorine gas and hydrogen gas by the partition wall 7.
- iron used as the material of the cathode 5
- Monel used as the material of the cathode 5
- the diameter of bubbles of hydrogen gas generated is relatively large. Therefore, the generated bubbles of hydrogen gas rise vertically upward from the cathode 5 and the bubbles entrained in the vortex are reduced, so that the separability of the fluorine gas and hydrogen gas by the partition walls 7 is improved and the current efficiency is increased.
- nickel and copper are inferior in strength to Monel (trademark)
- the diameter of bubbles of hydrogen gas generated is almost the same as that of Monel (trademark).
- the shape of the cathode 5 is the same as that of the anode 3, but the portion of the cathode 5 facing the anode 3 is formed of a flat plate, or a flat plate having a through hole with an aperture ratio of 20% or less. (That is, a punching plate) is preferable.
- the portion of the cathode 5 facing the anode 3 is formed of a flat plate, because when the bubbles of hydrogen gas rise, the velocity component mainly increases only in the vertical component. Since the higher the rising speed of the bubbles in the electrolytic solution 10 is, the easier the bubbles are to pop at the liquid surface. Therefore, it is important for the bubbles to be easily popped that the rising component of the bubbles is only the vertical component.
- the shape and size of the opening of the through hole of the punching plate is not particularly limited, but the opening ratio is preferably 20% or less. Although it is possible to use a punching plate having an opening ratio of more than 20%, the presence of the opening of the through hole hinders the rise of hydrogen gas bubbles and generates a horizontal velocity component. Separation of fluorine gas and hydrogen gas by the partition wall may be deteriorated.
- the aperture ratio is obtained by dividing the "sum of the opening areas of the openings of all through holes" by the "area obtained by multiplying the vertical length and the horizontal length of the portion of the cathode facing the anode". Calculated as a percentage of the value
- a molten salt containing hydrogen fluoride (HF) can be used as the electrolytic solution.
- HF molten salt containing hydrogen fluoride
- KF mixed molten salt of hydrogen fluoride and potassium fluoride
- CsF mixed molten salt of hydrogen fluoride and cesium fluoride
- the hydrogen fluoride concentration of the electrolytic solution 10 during electrolysis is preferably 38% by mass or more and 42% by mass or less.
- the hydrogen fluoride concentration of the electrolytic solution 10 during electrolysis can be controlled as follows. That is, the relationship between the amount of hydrogen fluoride supplemented to the electrolytic solution 10, the liquid level of the electrolytic solution 10 and the hydrogen fluoride concentration of the electrolytic solution 10 is grasped in advance, and then the electrolytic solution 10 is supplemented with hydrogen fluoride. By controlling the liquid level of the electrolytic solution 10, the hydrogen fluoride concentration of the electrolytic solution 10 can be controlled within the above range.
- the electrolyte generally contains 0.1% by mass or more and 5% by mass or less of water.
- the water content of the electrolytic solution is more than 3% by mass, the water content of the electrolytic solution is reduced to 3% by mass or less by the method described in JP-A-7-2515, for example. Therefore, it may be used for electrolysis. In general, it is difficult to easily reduce the amount of water in the electrolytic solution. Therefore, when fluorine gas is industrially electrolytically synthesized, hydrogen fluoride having a water content of 3% by mass or less is used as a raw material in terms of cost. It is preferable to use as.
- the current density of the current supplied to the anode 3 during electrolysis is not particularly limited, but can be 0.2 A / cm 2 or more and 1 A / cm 2 or less.
- the fluorine gas production apparatus of the present embodiment is used, even if electrolysis of the electrolytic solution 10 is performed at a high current density of 0.2 A / cm 2 or more and 1 A / cm 2 or less, recombination reaction in the electrolytic solution 10 and The recombination reaction in the gas phase portions of the anode chamber 12 and the cathode chamber 14 is unlikely to occur, and the electrolytic solution 10 can be electrolyzed with high current efficiency to produce fluorine gas.
- the anode is not a porous body or when the surface is not roughened, the above current density is the current per surface area of the anode when the surface is assumed to be smooth, that is, the apparent current density. It may be.
- the anode 3, cathode 5, and partition wall 7 are preferably arranged so as to satisfy the following three conditions (see FIG. 1).
- the shortest distance A between the anode 3 and the cathode 5 is 2.0 cm or more and 5.0 cm or less.
- the shortest distance B between the anode 3 and the partition wall 7 is 0.5 cm or more and 2.5 cm or less and smaller than the shortest distance A.
- the shortest distance C between the portion of the anode 3 not facing the cathode 5 and the side surface inside the electrolytic cell 1 is 1.5 times or more and 3 times or less than the shortest distance A.
- the shortest distance A between the anode 3 and the cathode 5 is 2.0 cm or more, the separability of the fluorine gas and hydrogen gas by the partition wall 7 will be good, and the current efficiency will tend to be high.
- the shortest distance A between the anode 3 and the cathode 5 is 5.0 cm or less, the resistance of the electrolytic solution 10 becomes low and the electrolytic cell voltage becomes low, so that loss of power consumption hardly occurs and it is economical.
- the shortest distance B between the anode 3 and the partition wall 7 is 0.5 cm or more, the separability of the fluorine gas and the hydrogen gas by the partition wall 7 will be good, and the current efficiency will tend to be high. If the shortest distance B between the anode 3 and the partition 7 is 2.5 cm or less, a downflow is unlikely to be formed between the anode 3 and the partition 7, so that the current generated by the hydrogen gas generated at the cathode 5 being entrained in the downflow. The efficiency is less likely to deteriorate. Further, when the shortest distance B between the anode 3 and the partition wall 7 is 2.5 cm or less, the resistance of the electrolytic solution 10 becomes low and the electrolytic cell voltage becomes low, so that loss of power consumption hardly occurs and it is economical.
- the shortest distance C between the portion of the anode 3 not facing the cathode 5 and the side surface inside the electrolytic cell 1 is 1.5 times or more the shortest distance A, the side surface inside the anode 3 and the electrolytic cell 1 ( Since the partition wall 7 sandwiched between the side wall and the side wall is unlikely to be bipolar, current efficiency is less likely to decrease. If the shortest distance C between the portion of the anode 3 not facing the cathode 5 and the side surface inside the electrolytic cell 1 is 3 times or less than the shortest distance A, the electrolytic cell 1 becomes small and the amount of the electrolyte solution 10 used is small. It is economical because it is a small amount.
- the fluorine gas manufacturing apparatus further includes an anode connecting member 15 and a cathode connecting member 16, and power is supplied to the anode 3 through the anode connecting member 15. Power is supplied to the cathode 5 via the cathode connecting member 16.
- the anode connecting member 15 is, for example, a rod-shaped member, one end of which is connected to the positive electrode of the DC power source 20, and the other end of which is connected to the anode 3 through the lid 1 a of the electrolytic cell 1.
- the lid 1a of the electrolytic cell 1 is made of a conductive material such as metal, the anode connecting member 15 and the lid 1a of the electrolytic cell 1 are insulated.
- the cooling pipe 16 is also used as a cathode connecting member. That is, the cathode connecting member 16 is, for example, a metal tube, and one end thereof is connected to a part of the side wall of the main body 1b of the electrolytic cell 1 at a position vertically below the lower end of the partition wall 7 by welding or the like. (It may be connected to the bottom wall of the main body 1b of the electrolytic cell 1), and the other end is connected to the cathode 5.
- the wall of the main body 1b of the electrolytic cell 1 is made of a conductive material such as metal, and the side wall of the main body 1b of the electrolytic cell 1 and the negative electrode of the DC power source 20 are connected to each other. Power is supplied to the cathode 5 through the side wall of the main body 1b of No. 1 and the connecting member 16 for the cathode.
- the partition wall 7 serves as the anode 3. Since the structure is not sandwiched between the cathode connecting members 16, the partition walls 7 are unlikely to have a bipolar structure, and the current efficiency tends to be excellent.
- the lid 1a of the electrolytic bath 1 is also made of a conductive material such as metal, it is connected to the lid 1a of the electrolytic bath 1. It is preferable to insulate the lid 1a of the electrolytic cell 1 from the main body 1b in order to make the partition wall 7 having an electrically neutral voltage. If the partition wall 7 has an electrically neutral voltage, the partition wall 7 is unlikely to serve as an anode or a cathode, resulting in good current efficiency.
- the inner bottom surface of the electrolytic cell 1 may be covered with an electrically insulating layered member 18 made of fluororesin or ceramics.
- the layered member 18 include a sheet-shaped member and a film-shaped member. As long as the electrically insulating layered member 18 covers the inner bottom surface of the electrolytic cell 1, even if the wall of the electrolytic cell 1 is made of a conductive material, the inner bottom surface of the electrolytic cell 1 and the anode 3 are No current will flow between them.
- the type of fluororesin and ceramics is not particularly limited as long as it has corrosion resistance to the electrolytic solution.
- the fluororesin include polytetrafluoroethylene resin, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin, tetrafluoroethylene / hexafluoropropylene copolymer resin, tetrafluoroethylene / ethylene copolymer resin, polyvinylidene
- ceramics include alumina.
- the fluorine gas production apparatus of the present embodiment preferably does not have a diaphragm (not shown) extending vertically downward from the partition wall 7.
- This partition wall is for directly partitioning the anode chamber 12 and the cathode chamber 14 in a portion (a portion below the lower end of the partition wall 7) that is not directly partitioned by the partition wall 7, It is provided between the anode 3 and the cathode 5 so as to continuously extend downward from the lower end of the partition wall 7 in the vertical direction.
- a diaphragm made of a metal net or the like is installed on the partition wall 7, bipolarization may occur at this portion, and the metal of the diaphragm may cause a dissolution reaction to reduce current efficiency. Further, since the metal of the diaphragm eluted in the electrolytic solution 10 may be reduced at the cathode 5 and sludge of metal fluoride may be generated, the sludge must be removed regularly, and the continuous operation of electrolytic synthesis is performed. Is less likely to occur.
- Electrochemical synthesis of fluorine gas was performed using a fluorine gas production apparatus having the same configuration as the fluorine gas production apparatus shown in FIGS. 1 and 2.
- the electrolytic cell 1 is made of iron for both the lid 1a and the main body 1b, and has a rectangular parallelepiped shape with a length of 710 mm, a width of 240 mm, and a height of 590 mm.
- the electrolytic bath 1 is composed of a main body 1b that contains the electrolytic solution 10 and includes a bottom surface and side surfaces, and a lid 1a that closes an upper opening of the main body 1b.
- the main body 1b and the lid 1a are insulated (the insulating member is (Not shown). Further, the inner bottom surface of the main body 1b of the electrolytic cell 1 is covered with a layered member 18 made of a polytetrafluoroethylene sheet having a thickness of 5 mm.
- a square tubular partition 7 made of Monel (trademark) is provided on the back surface of the lid 1a (corresponding to the ceiling surface inside the electrolytic cell 1).
- the inside of the electrolytic cell 1 is divided into an anode chamber 12 and a cathode chamber 14 by a partition wall 7.
- the fluorine gas generated in the anode 3 is supplied from the inside of the anode chamber 12 to the electrolytic cell 1.
- An exhaust port 21 for exhausting the hydrogen gas generated in the cathode 5 from the inside of the cathode chamber 14 to the outside of the electrolytic cell 1 is provided.
- the anode 3 installed in the anode chamber 12 is a carbon electrode coated with conductive diamond, and its shape is a flat plate having a length of 450 mm, a width of 280 mm, and a thickness of 70 mm.
- Two anodes 3 are installed inside the electrolytic cell 1. Further, the anode 3 and the positive electrode of the DC power source 20 installed outside the electrolytic cell 1 are connected by the connecting member 15 for the anode, and the connecting member 15 for the anode is provided so as to penetrate the lid 1 a of the electrolytic cell 1. Has been.
- the anode connecting member 15 and the lid 1a of the electrolytic cell 1 are insulated (insulating member is not shown).
- the cathode 5 installed in the cathode chamber 14 is made of Monel (trademark), and its shape is a flat plate having a length of 280 mm, a width of 670 mm, and a thickness of 2 mm.
- An iron cooling pipe 16 is welded to the cathode 5 so that the cathode 5 and the electrolytic solution 10 can be cooled.
- the end portion of the cooling pipe 16 penetrates the side wall of the main body 1b of the electrolytic cell 1 and projects to the outside, and is welded to the side wall of the main body 1b of the electrolytic cell 1.
- Steam of 120 ° C. or hot water of 60 ° C. can be passed through the cooling pipe 16.
- the temperature of the electrolytic solution 10 can be maintained by heating by flowing steam through the cooling pipe 16, and at the time of energization, the electrolytic temperature is controlled by circulating hot water through the cooling pipe 16 while controlling the flow rate. You can do it.
- the side wall of the main body 1b of the electrolytic cell 1 and the negative electrode of the DC power source 20 installed outside the electrolytic cell 1 are connected to each other, a direct current flows from the DC power source 20 to the side wall of the main body 1b of the electrolytic cell 1.
- Power is supplied to the cathode 5 via the cooling pipe 16.
- liquid level sensors of the type that measure electric resistance that is, an upper A sensor and a lower B sensor were installed in the electrolytic cell 1.
- a part of the anode 3 is exposed from the liquid surface of the electrolytic solution 10.
- the entire cathode 5 is immersed in the electrolytic solution 10, and the upper end of the cathode 5 is arranged vertically below the lower end of the partition wall 7.
- the shortest distance A between the anode 3 and the cathode 5 is 3.0 cm
- the shortest distance B between the anode 3 and the partition 7 is 1.0 cm.
- the shortest distance C between the portion of the anode 3 that does not face the cathode 5 and the side surface inside the main body 1b of the electrolytic cell 1 is 6.5 cm, which is 2.17 times the shortest distance A.
- the area of the liquid surface of the electrolytic solution 10 in the cathode chamber 14 is 1084 cm 2 .
- a direct current of 940 A was passed through the fluorine gas producing apparatus so that the apparent current density was 0.3 A / cm 2, and electrolysis was performed while maintaining the temperature of the electrolytic cell 1 at 90 ° C. About 1.9 hours after the start of energization, the electrolytic solution level dropped and fell below the lower B sensor position, but by supplementing with hydrogen fluoride at a supply amount of 1000 g / h, the upper portion of the B sensor was about 4.4 hours later. The electrolyte level recovered to the A sensor position. By repeating this behavior, electrolysis was continued for about 100 hours. As a result, fluorine gas and hydrogen gas were generated, the generation current efficiency of fluorine gas was 99%, and the generation current efficiency of hydrogen gas was 99%.
- the generated current efficiency of the fluorine gas is the amount of fluorine gas generated calculated from the energization amount according to the electrolysis reaction formula, which is a value obtained by quantitatively measuring the fluorine gas actually generated at the anode 3 in an aqueous potassium iodide solution.
- the generation efficiency of the hydrogen gas is determined by diluting the gas generated at the cathode 5 with nitrogen gas having a known flow rate and measuring the hydrogen gas concentration by gas chromatography to obtain the amount of hydrogen gas obtained from the electrolysis reaction. It is the ratio to the hydrogen gas generation amount calculated according to the formula.
- Example 2 Electrolysis was performed in the same manner as in Example 1 except that the material of the cathode 5 was copper. As a result, the generation current efficiency of fluorine gas was 99%, and the generation current efficiency of hydrogen gas was 99%.
- Example 3 Electrolysis was performed in the same manner as in Example 1 except that a direct current of 2820 A was passed so that the apparent current density was 0.9 A / cm 2 and the supply amount of hydrogen fluoride at the time of replenishment was 2500 g / h. went. About 0.6 hours after the start of energization, the electrolyte level dropped and fell below the lower B sensor position, but by supplementing with hydrogen fluoride in the above supply amount, the upper A sensor was reached in about 3.3 hours. The electrolyte level recovered to the position. By repeating this behavior, electrolysis was continued for about 100 hours. As a result, the generation current efficiency of fluorine gas was 97%, and the generation current efficiency of hydrogen gas was 97%.
- Example 4 Electrolysis was performed in the same manner as in Example 1 except that the material of the cathode 5 was a punching plate made of Monel (trademark) having an aperture ratio of 47%. About 2.3 hours after the start of energization, the electrolyte level dropped and fell below the lower B sensor position, but by supplementing with hydrogen fluoride at a supply rate of 1000 g / h, the upper level was reduced in about 3.0 hours. The electrolyte level recovered to the A sensor position. By repeating this behavior, electrolysis was continued for about 100 hours. As a result, the generation current efficiency of fluorine gas was 81%, and the generation current efficiency of hydrogen gas was 81%.
- Example 5 Electrolysis was performed in the same manner as in Example 1 except that a direct current of 4700 A was passed so that the apparent current density was 1.5 A / cm 2, and the supply amount of hydrogen fluoride at the time of replenishment was 3000 g / h. went. About 0.6 hours after the start of energization, the electrolyte level dropped and fell below the lower B sensor position, but by supplementing with hydrogen fluoride at the above supply amount, the upper A sensor was reached in about 1.8 hours. The electrolyte level recovered to the position. By repeating this behavior, electrolysis was continued for about 100 hours. As a result, the generation current efficiency of fluorine gas was 82%, and the generation current efficiency of hydrogen gas was 82%.
- the electrolytic solution level is 44.0 cm, which is 14.8% of the liquid surface height of the electrolytic solution.
- the electrolytic solution level dropped and fell below the lower B sensor position, but by supplementing with hydrogen fluoride at a supply amount of 1000 g / h, the upper portion of the B sensor was about 4.4 hours later.
- the electrolyte level recovered to the A sensor position. By repeating this behavior, electrolysis was continued for about 100 hours. As a result, the generation current efficiency of fluorine gas was 99%, and the generation current efficiency of hydrogen gas was 99%.
- Electrolysis was performed in the same manner as in Example 1 except that the vertical dimension of the cathode 5 was increased from 280 mm to 70 mm to 350 mm, and the upper end of the cathode 5 was exposed from the liquid surface of the electrolytic solution 10. About 2.9 hours after the start of energization, the electrolyte level dropped and fell below the position of the lower B sensor, but by supplementing with hydrogen fluoride at a supply amount of 1000 g / h, the upper part of the B sensor was reached in about 2.4 hours. The electrolyte level recovered to the A sensor position. By repeating this behavior, electrolysis was continued for about 100 hours. As a result, a bursting noise was occasionally generated during electrolysis, in which fluorine gas and hydrogen gas reacted in the gas phase. The generated current efficiency of fluorine gas was 65%, and the generated current efficiency of hydrogen gas was 65%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
非特許文献1には、工業的に使用されるフッ素ガス製造用電解槽の設計について開示されているが、0.2A/cm2未満の電流密度で電解を行う電解槽であって、高い電流密度で電解可能な電解槽ではなかった。
[1] フッ化水素を含有する電解液を電気分解してフッ素ガスを電解合成するフッ素ガス製造装置であって、
電解液を収容する電解槽と、
前記電解槽の内部の天井面から鉛直方向下方に延び、前記電解槽の内部を陽極室と陰極室に区画する筒状の隔壁と、
前記陽極室内に配された陽極と、
前記陽極に対向して配された陰極と、
を備え、
前記隔壁の下端は前記電解液に浸漬しており、前記隔壁のうち前記電解液に浸漬している部分の鉛直方向の長さは、前記電解槽の内部の底面から前記電解液の液面までの距離の10%以上30%以下であり、
前記陰極は全体が前記電解液に浸漬しており、前記陰極の上端は、前記隔壁の下端と鉛直方向同位置、又は、前記隔壁の下端よりも鉛直方向下方位置に配置されており、
前記陽極は、その一部が前記電解液の液面から露出するように設置されているフッ素ガス製造装置。
前記陽極用接続部材は、その一端が直流電源の正極に接続され、他端が前記電解槽の壁体を貫通して前記陽極に接続されているとともに、前記陽極用接続部材と前記電解槽は絶縁されており、
前記陰極用接続部材は、その一端が前記電解槽の底壁、又は、側壁のうち前記隔壁の下端よりも鉛直方向下方位置の部分に接続され、他端が前記陰極に接続されており、
前記電解槽と前記直流電源の負極が接続されている[1]に記載のフッ素ガス製造装置。
[3] 前記陰極用接続部材が、流体を流通可能な金属製の管である[2]に記載のフッ素ガス製造装置。
前記陽極と前記陰極の最短距離Aは、2.0cm以上5.0cm以下であり、
前記陽極と前記隔壁の最短距離Bは、0.5cm以上2.5cm以下で、且つ、前記最短距離Aよりも小さく、
前記陽極のうち前記陰極に対向していない部分と前記電解槽の内部の側面との最短距離Cは、前記最短距離Aの1.5倍以上3倍以下である[1]~[3]のいずれか一項に記載のフッ素ガス製造装置。
[6] 前記陰極のうち前記陽極に対向する部分は、モネル(商標)、ニッケル、及び銅から選ばれる少なくとも1種の材質で形成される[1]~[5]のいずれか一項に記載のフッ素ガス製造装置。
[8] 前記隔壁から鉛直方向下方に延び前記電解槽の内部を前記陽極室と前記陰極室に区画する隔膜を有しない[1]~[7]のいずれか一項に記載のフッ素ガス製造装置。
陽極ガスは、陽極室12内の電解液10の液面上の空間に溜まり、陰極ガスは、陰極室14内の電解液10の液面上の空間に溜まる。電解液10の液面上の空間は、隔壁7によって陽極室12内の空間と陰極室14内の空間に区画されているので、陽極ガスと陰極ガスは混合しないようになっている。
陰極5の表裏両板面のうち、陽極3に対向する板面とは反対側の板面には、陰極5や電解液10を冷却するための冷却器が装着されている。図1及び図2に示すフッ素ガス製造装置の例では、水等の冷却用流体が流れる金属製の管である冷却管16が、冷却器として陰極5に装着されている。冷却管16に水蒸気等の加温用流体を流して、陰極5や電解液10を加温することもできる。
陰極5の上端が、隔壁7の下端と鉛直方向同位置、又は、隔壁7の下端よりも鉛直方向下方位置に配置されていることにより、隔壁7の複極化が抑制されるという効果が奏される。隔壁が陽極と陰極に挟まれると、隔壁のうち挟まれた部分が複極化するため、隔壁のうち陽極に面した部分で水素ガスが発生したり、隔壁のうち陰極に面した部分でフッ素ガスが発生したりする。その結果、電流効率が低下する場合があるとともに、隔壁のうち陰極に面した部分が電食により薄くなって劣化する場合がある。本実施形態のフッ素ガス製造装置は、隔壁7が陽極3と陰極5に挟まれていないので、隔壁7の複極化が抑制され、電流効率の低下や隔壁7の劣化が生じにくい。
陰極5で発生した水素ガスの気泡は非常に細かい気泡であり、この気泡が上昇して電解液10の液面に到達するが、電解液10の液面に到達しても全ての気泡が瞬時にはじけて気相部に放出される訳ではなく、電解液10の浴動の流れに乗って電解液10中に滞留する気泡も存在している。
隔壁7の浸漬長さHが液面高さの10%以上であれば、水素ガスの気泡が陽極室12内に漏れ込む量が減少するため、電流効率の低下が生じにくい。一方、隔壁7の浸漬長さHが液面高さの30%以下であれば、陽極3及び陰極5のうち電極として機能する部分が多くなるので、電解される電解液10の量も多くなり経済的である。つまり、陽極3及び陰極5のうち隔壁7と対向している部分は電極として機能しにくいので、隔壁7の浸漬長さHは小さい方が好ましい。隔壁7の浸漬長さHは液面高さの10%以上30%以下である必要があるが、12%以上20%以下であることがより好ましい。
なお、電解反応によって電解液中のフッ化水素が消費され液面高さが低下した場合は、フッ化水素を補充して上記範囲を維持することが好ましい。上記範囲を維持する方法として、例えば以下の方法を挙げることができる。
2つめは、電気抵抗を測定するタイプの液レベルセンサーを2つ用いる方法である。すなわち、上部センサー(Aセンサー)と下部センサー(Bセンサー)を設置し、両方のセンサーが液中から離れたことを感知したときにフッ化水素の供給を開始し、両方のセンサーが液中に浸漬しているときにはフッ化水素の供給を停止することで、液面高さを制御することができる。
陽極3には、陽極3へ給電を行う陽極用接続部材15が接続される場合があり、陽極3と陽極用接続部材15との接合にはボルト接合、溶接接合等の手段が用いられるが、陽極3と陽極用接続部材15との接合部分が電解液10に浸漬すると、腐食したり電気抵抗が増加したりするおそれがある。陽極3の一部が電解液10の液面から露出していれば、その露出部分と陽極用接続部材15とを接合することができ、電解液10への浸漬を防ぐことができる。陽極3で発生したフッ素ガスの気泡は、水素ガスの気泡に比べて大きいので、陽極3の上端が電解液10の液面よりも上方に位置していても、陽極3と隔壁7の間において電解液10の下降流が発生しにくい。
(a)電解槽
電解合成を行う電解槽1の材質は特に限定されるものではないが、耐食性の点から、銅、軟鋼、モネル(商標)、ニッケル合金、フッ素樹脂等を使用することが好ましい。
電解槽1を介して陽極3や陰極5に給電する場合は、電解槽1を金属等の導電性の材質で形成する必要があるが、電解槽1を介さずに陽極3や陰極5に給電する場合は電解槽1を導電性の材質で形成する必要はなく、絶縁性の材質で電解槽1を形成してもよい。
陽極3の材質は、フッ化水素を含有する電解液中で使用できるものであれば特に限定されるものではないが、例えば、金属、炭素が使用可能であり、導電性ダイヤモンドで被覆された炭素電極を好ましく用いることができる。
陽極3の形状は特に限定されるものではなく、平板状、メッシュ状、パンチングプレート状、プレートを丸めたような形状、発生した気泡を電極の裏面に誘導するような形状、電解液の循環を考慮した三次元構造をしたものなど、自由に設計することができる。なお、パンチングプレートとは、貫通孔を設けるパンチング加工を施した平板である。
陰極5の材質は、フッ化水素を含有する電解液中で使用できるものであれば特に限定されるものではないが、例えば、金属が使用可能である。金属の種類としては、例えば、鉄、銅、ニッケル、モネル(商標)があげられる。特に、陰極5のうち陽極3に対向する部分は、モネル(商標)、ニッケル、及び銅から選ばれる少なくとも1種の材質で形成されることが好ましく、モネル(商標)で形成されることがより好ましい。
電解液の一例について説明する。電解液としては、フッ化水素(HF)を含有する溶融塩を用いることができる。例えば、フッ化水素とフッ化カリウム(KF)の混合溶融塩や、フッ化水素とフッ化セシウム(CsF)の混合溶融塩や、フッ化水素とフッ化カリウムとフッ化セシウムの混合溶融塩を用いることができる。
電解時に陽極3に給電する電流の電流密度は特に限定されるものではないが、0.2A/cm2以上1A/cm2以下とすることができる。本実施形態のフッ素ガス製造装置を使用すれば、電解液10の電解を0.2A/cm2以上1A/cm2以下という高い電流密度で行っても、電解液10中での再結合反応や陽極室12及び陰極室14の気相部中での再結合反応が生じにくく、電解液10を高い電流効率で電解してフッ素ガスを製造することができる。
なお、陽極が多孔質体でない場合や粗面化処理を行っていない場合は、上記の電流密度は、表面が平滑であると仮定したときの陽極の表面積当たりの電流、つまり見かけの電流密度であってもよい。
陽極3、陰極5、及び隔壁7は、以下のような3つの条件を満たすように配置することが好ましい(図1を参照)。
・陽極3と陰極5の最短距離Aは、2.0cm以上5.0cm以下である。
・陽極3と隔壁7の最短距離Bは、0.5cm以上2.5cm以下で、且つ、最短距離Aよりも小さい。
・陽極3のうち陰極5に対向していない部分と電解槽1の内部の側面との最短距離Cは、最短距離Aの1.5倍以上3倍以下である。
陽極3や陰極5には直接的に給電を行ってもよいが、接続部材を介して給電を行ってもよい。図1及び図2の例では、フッ素ガス製造装置は陽極用接続部材15と陰極用接続部材16をさらに備え、陽極3には陽極用接続部材15を介して給電が行われるようになっており、陰極5には陰極用接続部材16を介して給電が行われるようになっている。
(h-1)シート
電解槽1の内部の底面は、フッ素樹脂製又はセラミックス製の電気絶縁性の層状部材18で覆われていてもよい。層状部材18としては、シート状の部材やフィルム状の部材があげられる。電気絶縁性の層状部材18が電解槽1の内部の底面を覆っていれば、電解槽1の壁体が導電性の材質で形成されていても、電解槽1の内部の底面と陽極3との間に電流が流れることがない。そのため、電解槽1の内部の底面で水素ガスが発生することを抑制することができるので、電解槽1の内部の底面で発生した水素ガスと陽極3で発生したフッ素ガスとの再結合反応を防ぐことができる。電解槽1の内部の底面で水素ガスが発生すると、その水素ガスは陽極3に接近しやすいため、フッ素ガスとの再結合反応をおこすおそれがある。
本実施形態のフッ素ガス製造装置は、隔壁7から鉛直方向下方に延びる隔膜(図示せず)を有しないことが好ましい。この隔膜は、隔壁7によっては直接的に区画されていない部分(隔壁7の下端よりも下方側の部分)の陽極室12と陰極室14とを、直接的に区画するためのものであり、隔壁7の下端から連続して鉛直方向下方に向かって延びるように、陽極3と陰極5との間に設けられるものである。
〔実施例1〕
図1及び図2に示すフッ素ガス製造装置と同様の構成のフッ素ガス製造装置を用いて、フッ素ガスの電解合成を行った。電解槽1は、蓋1a及び本体1bともに鉄製であり、縦710mm、横240mm、高さ590mmの直方体状である。電解槽1は、電解液10を収容し底面及び側面を含む本体1bと、本体1bの上部開口を塞ぐ蓋1aとで構成されており、本体1bと蓋1aは絶縁されている(絶縁部材は図示しない)。また、この電解槽1の本体1bの内部の底面は、厚さ5mmのポリテトラフルオロエチレン製シートからなる層状部材18で覆われている。
陰極室14内に設置された陰極5はモネル(商標)製であり、その形状は縦280mm、横670mm、厚さ2mmの平板状である。
電解液10としては、フッ化カリウムとフッ化水素の混合溶融塩(フッ化カリウムとフッ化水素のモル比は、フッ化カリウム:フッ化水素=1:2)を用いた。そして、隔壁7の浸漬長さHが6.5cmとなるように、電解液10を電解槽1の内部に投入した。電解液10の液面高さは44.0cmであるので、隔壁7の浸漬長さHは電解液10の液面高さの14.8%となっている。
陽極3と陰極5の最短距離Aは3.0cmであり、陽極3と隔壁7の最短距離Bは1.0cmである。陽極3のうち陰極5に対向していない部分と電解槽1の本体1bの内部の側面との最短距離Cは6.5cmであり、最短距離Aの2.17倍である。
陰極室14内の電解液10の液面の面積は、1084cm2である。
通電開始後、約1.9時間で電解液レベルが低下して下部のBセンサー位置を下回ったが、1000g/hの供給量でフッ化水素を補充することによって約4.4時間で上部のAセンサー位置まで電解液レベルが回復した。この挙動を繰り返すことによって、約100時間の電解を継続した。
その結果、フッ素ガスと水素ガスが生成し、フッ素ガスの発生電流効率は99%であり、水素ガスの発生電流効率は99%であった。
陰極5の材質を銅とした点以外は、実施例1と同様にして電解を行った。その結果、フッ素ガスの発生電流効率は99%であり、水素ガスの発生電流効率は99%であった。
〔実施例3〕
見かけの電流密度が0.9A/cm2になるように2820Aの直流電流を流し、フッ化水素の補充時の供給量を2500g/hとした点以外は、実施例1と同様にして電解を行った。
通電開始後、約0.6時間で電解液レベルが低下して下部のBセンサー位置を下回ったが、上記の供給量でフッ化水素を補充することによって約3.3時間で上部のAセンサー位置まで電解液レベルが回復した。この挙動を繰り返すことによって、約100時間の電解を継続した。
その結果、フッ素ガスの発生電流効率は97%であり、水素ガスの発生電流効率は97%であった。
陰極5の材質を開口率47%のモネル(商標)製パンチングプレートとした点以外は、実施例1と同様にして電解を行った。
通電開始後、約2.3時間で電解液レベルが低下して下部のBセンサー位置を下回ったが、1000g/hの供給量でフッ化水素を補充することによって約3.0時間で上部のAセンサー位置まで電解液レベルが回復した。この挙動を繰り返すことによって、約100時間の電解を継続した。
その結果、フッ素ガスの発生電流効率は81%であり、水素ガスの発生電流効率は81%であった。
見かけの電流密度が1.5A/cm2になるように4700Aの直流電流を流し、フッ化水素の補充時の供給量を3000g/hとした点以外は、実施例1と同様にして電解を行った。
通電開始後、約0.6時間で電解液レベルが低下して下部のBセンサー位置を下回ったが、上記の供給量でフッ化水素を補充することによって約1.8時間で上部のAセンサー位置まで電解液レベルが回復した。この挙動を繰り返すことによって、約100時間の電解を継続した。
その結果、フッ素ガスの発生電流効率は82%であり、水素ガスの発生電流効率は82%であった。
フッ化水素の供給を停止させるAセンサーは隔壁7の浸漬長さH=11.0cmで作動する位置に設置し、フッ化水素の供給を開始させるBセンサーは隔壁7の浸漬長さH=6.5cmで作動する位置に設置した点以外は、実施例1と同様にして電解を行った。隔壁7の浸漬長さH=11.0cmは、電解液レベルが48.5cmであるので、電解液の液面高さの22.7%となっており、隔壁7の浸漬長さH=6.5cmは、電解液レベルが44.0cmであるので、電解液の液面高さの14.8%となっている。
通電開始後、約1.9時間で電解液レベルが低下して下部のBセンサー位置を下回ったが、1000g/hの供給量でフッ化水素を補充することによって約4.4時間で上部のAセンサー位置まで電解液レベルが回復した。この挙動を繰り返すことによって、約100時間の電解を継続した。
その結果、フッ素ガスの発生電流効率は99%であり、水素ガスの発生電流効率は99%であった。
陰極5の縦の寸法を280mmから70mm長くして350mmとして、陰極5の上端が電解液10の液面から露出するようにした点以外は、実施例1と同様にして電解を行った。
通電開始後、約2.9時間で電解液レベルが低下して下部のBセンサー位置を下回ったが、1000g/hの供給量でフッ化水素を補充することによって約2.4時間で上部のAセンサー位置まで電解液レベルが回復した。この挙動を繰り返すことによって、約100時間の電解を継続した。
その結果、フッ素ガスと水素ガスが気相部中で反応する破裂音が電解中に時折発生した。そして、フッ素ガスの発生電流効率は65%であり、水素ガスの発生電流効率は65%であった。
フッ化水素の供給を停止させるAセンサーは隔壁7の浸漬長さH=2.5cmで作動する位置に設置し、フッ化水素の供給を開始させるBセンサーは隔壁7の浸漬長さH=1.5cmで作動する位置に設置した点以外は、実施例1と同様にして電解を行った。隔壁7の浸漬長さH=2.5cmは、電解液レベルが40.0cmであるので、電解液の液面高さの6.25%となっており、隔壁7の浸漬長さH=1.5cmは、電解液レベルが39.0cmであるので、電解液の液面高さの3.8%となっている。
通電開始後、約2.6時間で電解液レベルが低下して下部のBセンサー位置を下回ったが、1000g/hの供給量でフッ化水素を補充することによって約2.7時間で上部のAセンサー位置まで電解液レベルが回復した。この挙動を繰り返すことによって、約100時間の電解を継続した。
その結果、フッ素ガスと水素ガスが気相部中で反応する破裂音が電解中に時折発生した。そして、フッ素ガスの発生電流効率は73%であり、水素ガスの発生電流効率は73%であった。
3 陽極
5 陰極
7 隔壁
10 電解液
12 陽極室
14 陰極室
15 陽極用接続部材
16 冷却管(陰極用接続部材)
18 層状部材
20 直流電源
21 排気口(陽極ガス用)
23 排気口(陰極ガス用)
Claims (8)
- フッ化水素を含有する電解液を電気分解してフッ素ガスを電解合成するフッ素ガス製造装置であって、
電解液を収容する電解槽と、
前記電解槽の内部の天井面から鉛直方向下方に延び、前記電解槽の内部を陽極室と陰極室に区画する筒状の隔壁と、
前記陽極室内に配された陽極と、
前記陽極に対向して配された陰極と、
を備え、
前記隔壁の下端は前記電解液に浸漬しており、前記隔壁のうち前記電解液に浸漬している部分の鉛直方向の長さは、前記電解槽の内部の底面から前記電解液の液面までの距離の10%以上30%以下であり、
前記陰極は全体が前記電解液に浸漬しており、前記陰極の上端は、前記隔壁の下端と鉛直方向同位置、又は、前記隔壁の下端よりも鉛直方向下方位置に配置されており、
前記陽極は、その一部が前記電解液の液面から露出するように設置されているフッ素ガス製造装置。 - 前記陽極へ給電を行う陽極用接続部材と、前記陰極へ給電を行う陰極用接続部材と、をさらに備え、
前記陽極用接続部材は、その一端が直流電源の正極に接続され、他端が前記電解槽の壁体を貫通して前記陽極に接続されているとともに、前記陽極用接続部材と前記電解槽は絶縁されており、
前記陰極用接続部材は、その一端が前記電解槽の底壁、又は、側壁のうち前記隔壁の下端よりも鉛直方向下方位置の部分に接続され、他端が前記陰極に接続されており、
前記電解槽と前記直流電源の負極が接続されている請求項1に記載のフッ素ガス製造装置。 - 前記陰極用接続部材が、流体を流通可能な金属製の管である請求項2に記載のフッ素ガス製造装置。
- 前記陽極及び前記陰極が平板状であるとともに、前記陽極、前記陰極、前記隔壁、及び前記電解槽の内部の側面は、鉛直方向に平行をなすように設けられており、
前記陽極と前記陰極の最短距離Aは、2.0cm以上5.0cm以下であり、
前記陽極と前記隔壁の最短距離Bは、0.5cm以上2.5cm以下で、且つ、前記最短距離Aよりも小さく、
前記陽極のうち前記陰極に対向していない部分と前記電解槽の内部の側面との最短距離Cは、前記最短距離Aの1.5倍以上3倍以下である請求項1~3のいずれか一項に記載のフッ素ガス製造装置。 - 前記電解槽の内部の底面がフッ素樹脂製又はセラミックス製の電気絶縁性の層状部材で覆われている請求項1~4のいずれか一項に記載のフッ素ガス製造装置。
- 前記陰極のうち前記陽極に対向する部分は、モネル(商標)、ニッケル、及び銅から選ばれる少なくとも1種の材質で形成される請求項1~5のいずれか一項に記載のフッ素ガス製造装置。
- 前記陰極のうち前記陽極に対向する部分は、平板、又は、開口率20%以下で貫通孔が設けられた平板で構成される請求項1~6のいずれか一項に記載のフッ素ガス製造装置。
- 前記隔壁から鉛直方向下方に延び前記電解槽の内部を前記陽極室と前記陰極室に区画する隔膜を有しない請求項1~7のいずれか一項に記載のフッ素ガス製造装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/279,670 US20210395901A1 (en) | 2018-10-24 | 2019-10-07 | Fluorine gas production device |
CN201980062658.6A CN112752869A (zh) | 2018-10-24 | 2019-10-07 | 氟气制造装置 |
KR1020217007225A KR102609118B1 (ko) | 2018-10-24 | 2019-10-07 | 불소 가스 제조 장치 |
JP2020553084A JP7318658B2 (ja) | 2018-10-24 | 2019-10-07 | フッ素ガス製造装置 |
EP19876248.6A EP3872235A4 (en) | 2018-10-24 | 2019-10-07 | Fluorine gas production device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018200220 | 2018-10-24 | ||
JP2018-200220 | 2018-10-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020085066A1 true WO2020085066A1 (ja) | 2020-04-30 |
Family
ID=70331078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/039545 WO2020085066A1 (ja) | 2018-10-24 | 2019-10-07 | フッ素ガス製造装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20210395901A1 (ja) |
EP (1) | EP3872235A4 (ja) |
JP (1) | JP7318658B2 (ja) |
KR (1) | KR102609118B1 (ja) |
CN (1) | CN112752869A (ja) |
TW (1) | TWI721607B (ja) |
WO (1) | WO2020085066A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021131817A1 (ja) * | 2019-12-27 | 2021-07-01 | 昭和電工株式会社 | フッ素ガスの製造方法及びフッ素ガス製造装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI766780B (zh) * | 2021-07-29 | 2022-06-01 | 鄭益 | 可分離氫氣與氧氣之電解槽裝置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4020246B1 (ja) * | 1959-07-30 | 1965-09-09 | ||
JPH072515A (ja) | 1993-01-19 | 1995-01-06 | British Nuclear Fuels Plc | フッ化物混合物の脱水 |
JP2766845B2 (ja) | 1991-08-19 | 1998-06-18 | 三井化学株式会社 | 電解槽 |
JP2002339090A (ja) * | 2000-04-07 | 2002-11-27 | Toyo Tanso Kk | フッ素ガス発生装置 |
JP2005533925A (ja) * | 2002-07-19 | 2005-11-10 | ザ・ビーオーシー・グループ・パブリック・リミテッド・カンパニー | フッ素生成装置および方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3146179A (en) * | 1961-04-05 | 1964-08-25 | Ici Ltd | Process for the electrolytic production of fluorine and apparatus therefor |
GB9418598D0 (en) * | 1994-09-14 | 1994-11-02 | British Nuclear Fuels Plc | Fluorine cell |
CA2337650C (en) * | 2001-02-20 | 2005-09-06 | Larry A. Tharp | Fluorine gas generation system |
EP1457586A4 (en) * | 2001-12-17 | 2005-07-13 | Toyo Tanso Co | DEVICE FOR GENERATING F2-GAS AND METHOD FOR GENERATING F2-GAS AND F2-GAS |
JP4085174B2 (ja) * | 2002-05-29 | 2008-05-14 | 東洋炭素株式会社 | フッ素ガス発生装置 |
KR100533411B1 (ko) * | 2002-11-08 | 2005-12-02 | 도요탄소 가부시키가이샤 | 불소가스 발생장치와 그 전해욕 액면 제어방법 |
KR100515412B1 (ko) * | 2003-01-22 | 2005-09-14 | 도요탄소 가부시키가이샤 | 용융염 전해장치 |
US7229712B2 (en) * | 2003-03-07 | 2007-06-12 | Microcell Corporation | Fuel cell structures and assemblies |
TW200738911A (en) * | 2006-01-20 | 2007-10-16 | Toyo Tanso Co | Electrolytic apparatus for producing fluorine or nitrogen trifluoride |
JP5271896B2 (ja) * | 2007-04-20 | 2013-08-21 | 三井化学株式会社 | 電気分解装置、それに用いる電極および電気分解方法 |
CN103635609A (zh) * | 2011-06-29 | 2014-03-12 | 东洋炭素株式会社 | 电解装置 |
JP2013019035A (ja) * | 2011-07-13 | 2013-01-31 | Toyo Tanso Kk | 気体発生装置 |
US9528191B2 (en) * | 2014-02-26 | 2016-12-27 | Air Products And Chemicals, Inc. | Electrolytic apparatus, system and method for the efficient production of nitrogen trifluoride |
KR101593800B1 (ko) * | 2014-05-29 | 2016-02-15 | (주)후성 | 개선된 불소가스 생성장치 |
CN104651873A (zh) * | 2014-12-22 | 2015-05-27 | 四川聚核科技有限公司 | 智能化集装箱模组式中温电解制氟装置 |
-
2019
- 2019-10-07 EP EP19876248.6A patent/EP3872235A4/en active Pending
- 2019-10-07 WO PCT/JP2019/039545 patent/WO2020085066A1/ja unknown
- 2019-10-07 US US17/279,670 patent/US20210395901A1/en active Pending
- 2019-10-07 JP JP2020553084A patent/JP7318658B2/ja active Active
- 2019-10-07 KR KR1020217007225A patent/KR102609118B1/ko active IP Right Grant
- 2019-10-07 CN CN201980062658.6A patent/CN112752869A/zh active Pending
- 2019-10-17 TW TW108137432A patent/TWI721607B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4020246B1 (ja) * | 1959-07-30 | 1965-09-09 | ||
JP2766845B2 (ja) | 1991-08-19 | 1998-06-18 | 三井化学株式会社 | 電解槽 |
JPH072515A (ja) | 1993-01-19 | 1995-01-06 | British Nuclear Fuels Plc | フッ化物混合物の脱水 |
JP2002339090A (ja) * | 2000-04-07 | 2002-11-27 | Toyo Tanso Kk | フッ素ガス発生装置 |
JP2005533925A (ja) * | 2002-07-19 | 2005-11-10 | ザ・ビーオーシー・グループ・パブリック・リミテッド・カンパニー | フッ素生成装置および方法 |
Non-Patent Citations (2)
Title |
---|
"Industrial Electrochemical Processes", 1971, ELSEVIER PUBLISHING COMPANY, pages: 6 - 69 |
See also references of EP3872235A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021131817A1 (ja) * | 2019-12-27 | 2021-07-01 | 昭和電工株式会社 | フッ素ガスの製造方法及びフッ素ガス製造装置 |
US12098468B2 (en) | 2019-12-27 | 2024-09-24 | Resonac Corporation | Method for producing fluorine gas and device for producing fluorine gas |
Also Published As
Publication number | Publication date |
---|---|
KR102609118B1 (ko) | 2023-12-06 |
US20210395901A1 (en) | 2021-12-23 |
CN112752869A (zh) | 2021-05-04 |
TWI721607B (zh) | 2021-03-11 |
JP7318658B2 (ja) | 2023-08-01 |
EP3872235A1 (en) | 2021-09-01 |
TW202022163A (zh) | 2020-06-16 |
KR20210035305A (ko) | 2021-03-31 |
JPWO2020085066A1 (ja) | 2021-09-16 |
EP3872235A4 (en) | 2021-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6315354B2 (ja) | ||
US20100116649A1 (en) | Gas generating device and carbon electrode for gas generation | |
WO2020085066A1 (ja) | フッ素ガス製造装置 | |
TW200907111A (en) | Electrolysis apparatus, electrode used in the electrolysis apparatus and method for electrolysis | |
DK154027B (da) | Fremgangsmaade og apparat til elektrolyse af en vandig oploesning indeholdende natrium- og/eller kaliumsalte | |
WO2013001800A1 (ja) | 電解装置 | |
US3791947A (en) | Electrolytic cell assemblies and methods of chemical production | |
JP7017361B2 (ja) | 溶融塩電解槽 | |
JP5933057B2 (ja) | 三フッ化窒素の効率的な製造のための電解装置、システム及び方法 | |
JP2013076151A (ja) | 電解セル及び電解槽 | |
FI65282C (fi) | Elektrokemisk anordning och foerfarande foer tillverkning av halater | |
US3464912A (en) | Cathode assembly for electrolytic cell | |
EP0077982B1 (en) | An electrolysis process and electrolytic cell | |
KR101593800B1 (ko) | 개선된 불소가스 생성장치 | |
TW200825209A (en) | A method and an electrolysis cell for production of a metal from a molten chloride | |
JPS6059086A (ja) | 電解方法 | |
EP0110425A2 (en) | An electrolytic process of an aqueous alkali metal halide solution and electrolytic cell used therefor | |
JP2000160382A (ja) | 有機化合物の電解フッ素化装置 | |
US1214808A (en) | Method of reducing metals. | |
JP4831557B2 (ja) | フッ素電解装置 | |
RU131727U1 (ru) | Электролизер для получения фтора | |
TW201520378A (zh) | 改進之電解池 | |
KR20000004093A (ko) | 개선된 불소의 제조 방법 | |
JP2013019035A (ja) | 気体発生装置 | |
JPH0217013Y2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19876248 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020553084 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20217007225 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019876248 Country of ref document: EP Effective date: 20210525 |