WO2020083387A1 - 一种高强耐蚀镁合金材料及其制造方法 - Google Patents

一种高强耐蚀镁合金材料及其制造方法 Download PDF

Info

Publication number
WO2020083387A1
WO2020083387A1 PCT/CN2019/113375 CN2019113375W WO2020083387A1 WO 2020083387 A1 WO2020083387 A1 WO 2020083387A1 CN 2019113375 W CN2019113375 W CN 2019113375W WO 2020083387 A1 WO2020083387 A1 WO 2020083387A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
corrosion
alloy material
resistant magnesium
strength
Prior art date
Application number
PCT/CN2019/113375
Other languages
English (en)
French (fr)
Inventor
徐世伟
曾卓然
唐伟能
刘瑞良
波比利斯尼克
陈晓博
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to US17/271,462 priority Critical patent/US20210189527A1/en
Priority to KR1020217003597A priority patent/KR102573665B1/ko
Publication of WO2020083387A1 publication Critical patent/WO2020083387A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the invention relates to a magnesium alloy material and a manufacturing method thereof, in particular to a high-strength corrosion-resistant magnesium alloy material and a manufacturing method thereof.
  • Magnesium is one of the most abundant elements on earth, and commercially pure magnesium can achieve a purity of 99.8%. Magnesium has a lower density, 35% lighter than aluminum, and 78% lighter than steel. In today's lightweight era, magnesium and its alloys have become increasingly attractive engineering materials.
  • alloy elements usually lead to a faster corrosion rate of magnesium alloys.
  • the main reasons are: first, magnesium is a very chemically active metal, and the addition of alloy elements usually leads to secondary phases in the microstructure Generation, thereby forming a microscopic cathode, which in turn accelerates the corrosion of the magnesium alloy matrix.
  • magnesium has limited ability to support the cathode reaction (hydrogen evolution reaction, HER).
  • HER hydrogen evolution reaction
  • the exchange current density of magnesium relative to hydrogen evolution reaction is one of the lowest. Therefore, when there are more inert other metal alloy elements or impurities (such as copper, nickel, iron), the corrosion rate of magnesium alloy will be greatly accelerated.
  • magnesium alloys cannot passivate metals by adding a sufficient amount of alloy elements to form a dense oxide film.
  • the fundamental reason is that many alloy elements have limited solid solubility in magnesium. Although some elements (such as lithium and yttrium) have some solubility in magnesium, the addition of these elements cannot form a more corrosion-resistant inert oxide film on the surface of the magnesium alloy. On the contrary, it usually forms an even more active oxide film.
  • alloying elements usually leads to an increase in the corrosion rate of magnesium. Although alloying elements can enhance mechanical properties, the negative effects of corrosion limit the application of magnesium alloys.
  • One of the objects of the present invention is to provide a high-strength corrosion-resistant magnesium alloy material, which not only has high strength, but also has strong corrosion resistance.
  • the present invention proposes a high-strength corrosion-resistant magnesium alloy material, which contains 0.01-1.2wt% of Ge element and 0.01-1.2wt% of Zn element.
  • Germanium is a kind of off-white metal. It is shiny and hard. It belongs to the carbon family. Its chemical properties are similar to those of the same family of tin and silicon. It is insoluble in water, hydrochloric acid, and dilute caustic alkali solutions. Sulfuric acid is amphoteric, so it is soluble in molten alkali, alkali peroxide, alkali metal nitrates or carbonates, and is relatively stable in the air. It reacts with oxygen above 700 ° C to form GeO 2 and above 1000 ° C with hydrogen. Adding germanium to magnesium will form a columnar morphology of Mg 2 Ge intermetallic compound phase. This second phase can strengthen the magnesium alloy and affect the corrosion resistance of the magnesium alloy.
  • the formed second phase can delay the corrosion and strengthen the alloy, which has a significant improvement effect on the corrosion resistance and strength of the alloy.
  • the solubility of Ge in Mg is very low, excessive addition of Ge may embrittle the alloy; when the Ge content exceeds 1.18%, the bulk coarsened Mg2Ge second phase aggregates at the grain boundary and begins to appear inside the grain.
  • the bulk phase, the corrosion resistance, mechanical strength and plasticity of the alloy are significantly deteriorated. Therefore, in the high-strength corrosion-resistant magnesium alloy material according to the present invention, the weight percentage of Ge element is limited to 0.01-1.2 wt%. Preferably, the weight percentage of Ge element is between 0.02 and 1.18 wt%.
  • the zinc element has the dual functions of solid solution strengthening and aging strengthening. Adding an appropriate amount of Zn can form a variety of Mg-Zn phases, improve the strength (such as yield strength and tensile strength) and plasticity of magnesium alloys, ductility, improve melt fluidity, and improve casting performance. However, if the amount of Zn added is too large, it will greatly reduce the fluidity of the Zn alloy, and make the magnesium alloy produce micro-shrinkage or hot cracking tendency. Therefore, in the high-strength corrosion-resistant magnesium alloy material according to the present invention, the weight percentage of Zn element is limited to 0.01-1.2 wt%. Preferably, the weight percentage of Zn element is 0.02-1.2 wt%.
  • the microstructure includes an ⁇ -Mg phase and a columnar Mg 2 Ge intermetallic compound phase.
  • the yield strength is higher than 260 MPa, and the weightlessness corrosion is less than 0.8 mg / cm 2 day.
  • Another object of the present invention is to provide a high-strength corrosion-resistant magnesium alloy material, which not only has higher strength, but also has stronger corrosion resistance.
  • the present invention proposes a high-strength corrosion-resistant magnesium alloy material whose weight percentage of chemical elements is:
  • the balance is Mg and other inevitable impurity elements.
  • the high-strength corrosion-resistant magnesium alloy material according to the present invention contains at least one of Mn, Ca, Zr, Sr, and Gd in addition to the above-mentioned 0.01-1.2 wt% Ge element and 0.01-1.2 wt% Zn element
  • Mn, Ca, Zr, Sr, and Gd can all affect the alloy's microstructure grain size and crystal texture strength and type, and improve the ductility and formability of magnesium alloy deformed materials.
  • these alloying elements are excessive, a large number of second phases will be formed and coarsened into large-sized second phases, thereby reducing the plasticity and strength of the alloy, and will cause the microbattery corrosion to increase.
  • the solubility of calcium in magnesium is less than 1%. Large amounts of it will embrittle the grain boundaries and reduce the corrosion resistance of magnesium alloys. Therefore, in the high-strength corrosion-resistant magnesium alloy material according to the present invention, the sum of the weight percentages of Mn, Ca, Zr, Sr, and Gd is defined as ⁇ 3%, and the weight percentage of single elements is ⁇ 0.8%.
  • the design principles of the Ge element and the Zn element are as described above, and will not be repeated here.
  • the high-strength corrosion-resistant magnesium alloy material according to the present invention further contains at least one of Al, Cu, Si, and Fe, the total weight percentage of which is less than or equal to 2%, and the weight percentage of a single element is not more than 0.5%.
  • the high-strength corrosion-resistant magnesium alloy material described in the present invention also contains at least one of Al, Cu, Si and Fe, and its design principle is that Al, Cu, Si and Fe can improve the ductility and Formability.
  • Al, Cu, Si and Fe can improve the ductility and Formability.
  • the sum of the weight percentages of Al, Cu, Si, and Fe is defined as ⁇ 2%, and the weight percentage of single elements is ⁇ 0.5%.
  • the sum of the weight percentages of Al, Cu, Si and Fe is ⁇ 0.5%, and the weight percentage of single elements is ⁇ 0.05%.
  • the plasticity of the mechanical properties of the magnesium alloy will be significantly improved, and the corrosion resistance will also be obvious Enhanced.
  • the total amount of inevitable impurities is less than 100 ppm.
  • the microstructure includes an ⁇ -Mg phase and a columnar Mg 2 Ge intermetallic compound phase.
  • the microstructure in the high-strength corrosion-resistant magnesium alloy material can include other added trace alloy elements (for example, in addition to the ⁇ -Mg phase and the columnar Mg 2 Ge intermetallic compound phase) Mn, Ca, Zr, Sr, Gd, etc.) intermetallic compound phase formed with magnesium element.
  • trace alloy elements for example, in addition to the ⁇ -Mg phase and the columnar Mg 2 Ge intermetallic compound phase
  • the yield strength is higher than 260 MPa, and the weightlessness corrosion is less than 0.8 mg / cm 2 day.
  • another object of the present invention is to provide a method for manufacturing the above-mentioned high-strength corrosion-resistant magnesium alloy material.
  • the high-strength corrosion-resistant magnesium alloy material manufactured by the manufacturing method not only has higher strength, but also has stronger Corrosion resistance.
  • the present invention provides a method for manufacturing a high-strength corrosion-resistant magnesium alloy material, which includes the steps of smelting, solution heat treatment, and extrusion into a material, wherein in the extrusion into a material step, the extrusion temperature is 180-350 °C, the extrusion rate is 0.1-10mm / s, and the extrusion ratio is 10: 1-30: 1. If the extrusion temperature is lower than 180 ° C, the die will wear more, the spindle will be difficult to squeeze, and the surface of the profile will crack. If the extrusion temperature is higher than 350 ° C, the grains will grow significantly, resulting in a significant decrease in strength. If the extrusion speed is too fast or the extrusion ratio is too high, the sample surface is easy to crack; and if the extrusion speed is too slow or the extrusion ratio is too low, the production efficiency is too slow.
  • the raw material in the smelting step, in some embodiments, may be heated and melted in an SF 6 protective atmosphere, and the molten magnesium alloy liquid is injected into the preheated mold for cooling.
  • the manufacturing method described in the present invention makes the microstructure of the obtained high-strength corrosion-resistant magnesium alloy material include the ⁇ -Mg phase, the Mg 2 Ge intermetallic compound phase, and the intermetallic compound phase formed by other added alloy elements and magnesium elements.
  • the solution heat treatment temperature is 350-450 ° C.
  • the time is 10-24 h.
  • the high-strength corrosion-resistant magnesium alloy material and its manufacturing method described in the present invention have the following beneficial effects:
  • the present invention significantly improves the mechanical properties and corrosion resistance of the high-strength corrosion-resistant magnesium alloy material of the present invention by adding zinc and germanium elements and other alloying elements.
  • the high-strength corrosion-resistant magnesium alloy material according to the present invention has a yield strength higher than 260 MPa and a weight loss corrosion of less than 0.8 mg / cm 2 day.
  • the manufacturing method of the high-strength corrosion-resistant magnesium alloy material of the present invention significantly improves the strength and corrosion resistance of the high-strength corrosion-resistant magnesium alloy material of the present invention.
  • FIG. 1 is a scanning electron microscope image of the high-strength corrosion-resistant magnesium alloy material of Comparative Example 2 in backscattered electron (BSE) mode.
  • Example 2 is a scanning electron microscope image of the high-strength corrosion-resistant magnesium alloy material of Example 3 in backscattered electron (BSE) mode.
  • Example 3 is a scanning electron microscope image of the high-strength corrosion-resistant magnesium alloy material of Example 4 in backscattered electron (BSE) mode.
  • FIG. 4 is an energy spectrum analysis diagram of the high-strength corrosion-resistant magnesium alloy material of Comparative Example 2.
  • FIG. 4 is an energy spectrum analysis diagram of the high-strength corrosion-resistant magnesium alloy material of Comparative Example 2.
  • FIG. 5 is an energy spectrum analysis diagram of the high-strength corrosion-resistant magnesium alloy material of Example 3.
  • FIG. 5 is an energy spectrum analysis diagram of the high-strength corrosion-resistant magnesium alloy material of Example 3.
  • FIG. 6 is an energy spectrum analysis diagram of the high-strength corrosion-resistant magnesium alloy material of Example 4.
  • FIG. 6 is an energy spectrum analysis diagram of the high-strength corrosion-resistant magnesium alloy material of Example 4.
  • FIG. 7 is an electron backscatter diagram of the high-strength corrosion-resistant magnesium alloy material of Comparative Example 2.
  • FIG. 8 is an electron backscatter diagram of the high-strength corrosion-resistant magnesium alloy material of Example 3.
  • FIG. 8 is an electron backscatter diagram of the high-strength corrosion-resistant magnesium alloy material of Example 3.
  • FIG. 9 is an electron backscatter diagram of the high-strength corrosion-resistant magnesium alloy material of Example 4.
  • FIG. 10 shows the grain size distribution of the high-strength corrosion-resistant magnesium alloy materials of Examples 3 and 4 and Comparative Example 2.
  • FIG. 10 shows the grain size distribution of the high-strength corrosion-resistant magnesium alloy materials of Examples 3 and 4 and Comparative Example 2.
  • FIG. 11 is a graph showing the results of the potentiodynamic polarization test of the high-strength corrosion-resistant magnesium alloy materials of Comparative Examples 1-2 and Example 3-4 in 0.1 M sodium chloride solution.
  • FIG. 12 is a graph showing the results of cathodic polarization tests of the high-strength corrosion-resistant magnesium alloy materials of Comparative Examples 1-2 and Example 3-4.
  • FIG. 13 is a graph showing the results of weightlessness and hydrogen evolution tests of the high-strength corrosion-resistant magnesium alloy material of Comparative Example 1-2 and Example 3-4 and the commercially-used AZ91 type magnesium alloy.
  • 16 is a scanning electron microscope image (under low magnification) of the high-strength corrosion-resistant magnesium alloy material of Comparative Example 2 after soaking in the secondary electron (SE) mode.
  • 17 is a scanning electron microscope image (at high magnification) of the high-strength corrosion-resistant magnesium alloy material of Comparative Example 2 after soaking in the secondary electron (SE) mode.
  • Example 18 is a scanning electron microscope image (under low magnification) of the high-strength corrosion-resistant magnesium alloy material of Example 3 after soaking in the secondary electron (SE) mode.
  • Example 20 is a scanning electron microscope image (at a low magnification) of the high-strength corrosion-resistant magnesium alloy material of Example 4 after soaking in the secondary electron (SE) mode.
  • Example 21 is a scanning electron microscope image (at high magnification) of the high-strength corrosion-resistant magnesium alloy material of Example 4 after soaking in the secondary electron (SE) mode.
  • Example 22 is a graph showing the results of the cathode current density test of the high-strength corrosion-resistant magnesium alloy material of Comparative Example 1-2 and Example 3-4 when the anode current density is 0.025-2.5 mA / cm 2 .
  • Example 23 is a graph showing the results of the cathode current density test of the high-strength corrosion-resistant magnesium alloy materials of Comparative Examples 1-2 and Example 3-4 when the anode current density is 2-24 mA / cm 2 .
  • OCP open-circuit potential
  • PDP potentiodynamic polarization
  • FIG. 25 shows the relationship between anode dissolution current density and anode potential of the high-strength corrosion-resistant magnesium alloy materials of Comparative Examples 1-2 and Examples 3-4.
  • FIG. 26 shows the microhardness test results of the high-strength corrosion-resistant magnesium alloy materials of Comparative Example 2 and Examples 3-4.
  • FIG. 27 shows the engineering stress-strain curves of the high-strength corrosion-resistant magnesium alloy materials of Comparative Example 2 and Examples 3-4.
  • Table 1-1 and Table 1-2 list the weight percentage (wt%) of each chemical element in the high-strength corrosion-resistant magnesium alloy materials of Examples 1-17 and Comparative Examples 1-2.
  • the high-strength corrosion-resistant magnesium alloy materials of Examples 1-17 and Comparative Examples 1-2 were subjected to performance tests to test their yield strength and weightlessness corrosion value in 0.1 M NaCl solution for 24 hours.
  • the yield strength test is the stress corresponding to 0.2% strain of the curve obtained from the tensile test according to the ASTM E-8 standard.
  • the experimental platform is Instron 4505.
  • the stretching rate is 10 -3 / s.
  • the initial set length of the extensometer is 10mm.
  • the length of the parallel part of the tensile sample is 22 mm.
  • the weightlessness corrosion test method is based on the ASTM-G1-03 standard: the sample is a cube with a side length of 5 cm, and the surface is polished with 1200 grid sandpaper. Soak in 0.1M NaCl solution for 24 hours at 25 °C. After soaking, the surface is cleaned to remove corrosion products. Weigh after drying. The test results are listed in Table 3.
  • Example 1 A Yield strength (MPa) Weightlessness corrosion (mg / cm 2 day) Example 1 285 0.72 Example 2 310 0.78 Example 3 288 0.60 Example 4 320 0.70 Example 5 328 069 Example 6 316 0.75 Example 7 320 0.73
  • Example 8 306 0.77
  • Example 9 270 0.78
  • Example 10 280 0.75
  • Example 11 265 0.63
  • Example 12 295 0.58
  • Example 13 279 0.68
  • Example 14 286 0.65
  • Example 15 275 0.60
  • Example 16 266 0.62
  • Example 17 265 0.72 Comparative Example 1 70 10.5 Comparative Example 2 255 1.8
  • the high-strength corrosion-resistant magnesium alloy materials of Comparative Example 1-2 have superior mechanical and corrosion resistance, and their yield strength is higher than 260 MPa , Weightlessness corrosion is less than 0.8mg / cm 2 day, has a wide range of application prospects.
  • the microstructure of the high-strength corrosion-resistant magnesium alloy material of Comparative Example 2 is composed of a single ⁇ -Mg phase.
  • columnar morphology of the Mg 2 Ge intermetallic compound phase and trace amounts of Mg 2 Ca compound were observed.
  • FIG. 10 shows the grain size distribution of the high-strength corrosion-resistant magnesium alloy materials of Examples 3 and 4 and Comparative Example 2.
  • the graph Mg-1Zn represents Comparative Example 2 and the graph Mg-1Zn-0.3Ge represents the Example 3.
  • the illustration Mg-1Zn-0.5Ge represents Example 4.
  • the concentration of the germanium alloy element is increased from about 0.3% to about 0.5%, the proportion of large-sized columnar grains increases significantly. This indicates that the germanium alloy element concentration can affect the formation of these large-sized columnar grains.
  • the corrosion potential of the high-strength corrosion-resistant magnesium alloy material of Comparative Example 2 increases by about 50 mV due to the increased Zn content compared to Comparative Example 1.
  • the corrosion potential of the high-strength corrosion-resistant magnesium alloy materials of Examples 3 and 4 is reduced to about ⁇ 1.67 V SCE .
  • the cathode reaction rate of the high-strength corrosion-resistant magnesium alloy material of Comparative Example 2 is higher than that of Comparative Example 1, indicating that the increase of Zn improves the cathode kinetics.
  • the increase of Ge led to a decrease in the cathode current density of the high-strength corrosion-resistant magnesium alloy materials of Examples 3 and 4, which indicated that Ge alloying counteracted the effect of Zn alloying and significantly reduced the cathode dynamic potential dynamics.
  • the corrosion product was chromic acid solution (ie 200g / L chromium trioxide, 10g / L silver nitrate and 20g / L barium nitrate) cleaning treatment to show the degree of corrosion, observe the surface morphology at this time.
  • chromic acid solution ie 200g / L chromium trioxide, 10g / L silver nitrate and 20g / L barium nitrate
  • the effect of alloying on the cathode activation (difference effect) of magnesium was further evaluated by constant current potential experiment.
  • the sample was anodically polarized with a cycle of 0.025-2.5mA / cm 2 in a step-by-step increment, maintaining a fixed negative potential (-2V SCE ) between each anode polarization cycle to measure the maintenance on the surface of the anode polarization Cathode current density (applied dissolution current density), as shown in Figure 22.
  • the sample was anodized in a stepwise increment of 2-24mA / cm 2 cycle, maintaining a fixed negative potential (-2V SCE ) between each anode polarization cycle to measure the cathode maintained on the surface of the anode polarization
  • the current density (applied dissolution current density), as shown in Figure 23.
  • Mg represents Comparative Example 1
  • Mg-1Zn represents Comparative Example 2
  • Mg-1Zn-0.3Ge represents Example 3
  • Mg-1Zn-0.5Ge represents Example 4.
  • OCP open-circuit potential
  • PDP potentiodynamic polarization
  • the graph Mg represents Comparative Example 1
  • the graph Mg-1Zn represents Comparative Example 2
  • the graph Mg-1Zn-0.3Ge represents Example 3
  • the graph Mg-1Zn-0.5Ge represents Example 4.
  • Example 3 and Example 4 exhibited the lowest anode dissolution current density during OCP and electrokinetic polarization.
  • FIG. 25 shows the relationship between anode dissolution current density and anode potential of the high-strength corrosion-resistant magnesium alloy materials of Comparative Examples 1-2 and Examples 3-4.
  • the graph Mg represents Comparative Example 1
  • the graph Mg-1Zn represents Comparative Example 2
  • the graph Mg-1Zn-0.3Ge represents Example 3
  • the graph Mg-1Zn-0.5Ge represents Example 4.
  • FIG. 26 shows the microhardness test results of the high-strength corrosion-resistant magnesium alloy materials of Comparative Example 2 and Examples 3-4.
  • FIG. 27 shows the engineering stress-strain curves of the high-strength corrosion-resistant magnesium alloy materials of Comparative Example 2 and Examples 3-4.
  • Mg-1Zn represents Comparative Example 2
  • Mg-1Zn-0.3Ge represents Example 3
  • Mg-1Zn-0.5Ge represents Example 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

一种高强耐蚀镁合金材料,其含有0.01-1.2wt%的Ge元素以及0.01-1.2wt%的Zn元素。一种高强耐蚀镁合金材料,其化学元素重量百分配比为:Ge:0.01~1.2%;Zn:0.01~1.2%;Mn、Ca、Zr、Sr、Gd中的至少一种,其重量百分比总和≤3%,单种元素的重量百分比≤0.8%;余量为Mg以及其他不可避免的杂质元素。一种上述高强耐蚀镁合金材料的制造方法,其包括步骤:熔炼,固溶热处理,挤压成材,其中在挤压成材步骤中,挤压温度为180-350℃,挤压速率为0.1-10mm/s,挤压比为10:1-30:1。

Description

一种高强耐蚀镁合金材料及其制造方法 技术领域
本发明涉及一种镁合金材料及其制造方法,尤其涉及一种高强耐蚀镁合金材料及其制造方法。
背景技术
镁是地球上最丰富的元素之一,商业化纯镁可以达到99.8%的纯度。镁的密度较低,比铝轻35%,比钢轻78%。在如今轻量化的时代,镁及其合金成为越来越具有吸引力的工程材料。
由于镁的化学性质不稳定性,纯镁不能满足绝大多数的工程应用场合。为了改善镁的综合性能,许多合金元素被尝试运用添加到镁中,用于制作生产镁合金产品。通过合金元素的添加,镁的机械性能得到显著提升。
然而不同于机械性能的提升,合金元素通常导致了更快的镁合金腐蚀速率,其中主要原因是:首先,镁是化学性质非常活泼的金属,合金元素的添加通常导致了微观结构中二次相的产生,从而形成了微观的阴极,进而加速了镁合金基体的腐蚀。其次,镁元素自身支持阴极反应(析氢反应,HER)能力有限。在所有金属元素中,镁的相对于析氢反应交换电流密度是最低之一。因此当有更惰性的其他金属合金元素或者杂质(例如铜,镍,铁)存在的时候,镁合金的腐蚀速率会极大的加快。
此外,不同于其他具有良好腐蚀性能的合金体系,例如一些铝合金和不锈钢体系,镁合金无法通过添加足量的合金元素从而通过形成致密的氧化膜来钝化金属。其根本原因在于许多合金元素在镁中固溶度有限。虽然有些元素(例如锂、钇)在镁中存在一些溶解度,但是这些元素的添加无法使镁合金表面形成更有防腐性能的惰性氧化膜,相反,其通常形成甚至更活泼的氧化膜。
综上所述,合金元素的添加通常导致了镁腐蚀速率的增加。尽管合金元素能增强机械性能,但腐蚀方面带来的负面影响使镁合金的应用受限制。
鉴于此,期望获得一种镁合金材料,其不仅具有较高的强度,还具有较强 的耐腐蚀性能。
发明内容
本发明的目的之一在于提供一种高强耐蚀镁合金材料,其不仅具有较高的强度,还具有较强的耐腐蚀性能。
为了实现上述目的,本发明提出了一种高强耐蚀镁合金材料,其含有0.01-1.2wt%的Ge元素以及0.01-1.2wt%的Zn元素。
在本发明所述的技术方案中,添加Ge元素以及Zn元素的设计原理如下:
Ge:锗单质是一种灰白色类金属,有光泽,质硬,属于碳族,化学性质与同族的锡与硅相近,不溶于水、盐酸、稀苛性碱溶液,溶于王水、浓硝酸或硫酸,具有两性,故溶于熔融的碱、过氧化碱、碱金属硝酸盐或碳酸盐,在空气中较稳定,在700℃以上与氧作用生成GeO 2,在1000℃以上与氢作用。锗元素加入镁中,会形成柱状形貌的Mg 2Ge金属间化合物相,这种第二相可以强化镁合金,并对镁合金的耐蚀性产生影响。当Ge含量较低时,形成的第二相能延缓腐蚀、强化合金,对于合金的耐蚀性和强度具有明显提升效果。但因为Ge在Mg中溶解度很低,过量添加Ge可能会脆化合金;当Ge含量超过1.18%时,大块粗化的Mg2Ge第二相在晶界出现聚集,而且在晶粒内部也开始出现大块相,合金的耐蚀性能和力学强度与塑性均显著恶化。因此,在本发明所述的高强耐蚀镁合金材料中,将Ge元素的重量百分比限定在0.01-1.2wt%。优选地,Ge元素的重量百分比在0.02-1.18wt%。
Zn:锌元素具有固溶强化和时效强化的双重作用。添加适量Zn能够形成多种Mg-Zn相,提高镁合金的强度(例如屈服强度和拉伸强度)和塑性,延展性,改善熔体流动性,提高铸造性能。但是若Zn的添加量过多,反而会大大降低Zn的合金流动性,并且使得镁合金产生显微缩松或热裂倾向。因此,在本发明所述的高强耐蚀镁合金材料中,将Zn元素的重量百分比限定在0.01-1.2wt%。优选地,Zn元素的重量百分比在0.02-1.2wt%。
进一步地,在本发明所述的高强耐蚀镁合金材料中,其显微组织包括α-Mg相和柱状的Mg 2Ge金属间化合物相。
更进一步地,在本发明所述的高强耐蚀镁合金材料中,其屈服强度高于260MPa,失重腐蚀小于0.8mg/cm 2day。
本发明的另一目的在于提供一种高强耐蚀镁合金材料,其不仅具有较高的强度,还具有较强的耐腐蚀性能。
为了实现上述目的,本发明提出了一种高强耐蚀镁合金材料,其化学元素重量百分配比为:
Ge:0.01~1.2%;
Zn:0.01~1.2%;
Mn、Ca、Zr、Sr、Gd中的至少一种,其重量百分比总和≤3%,单种元素的重量百分比≤0.8%;
余量为Mg以及其他不可避免的杂质元素。
本发明所述的高强耐蚀镁合金材料,除了含有上述的0.01-1.2wt%的Ge元素以及0.01-1.2wt%的Zn元素,还含有Mn、Ca、Zr、Sr、Gd中的至少一种,主要设计原理是,Mn、Ca、Zr、Sr、Gd均能够影响合金的显微组织晶粒尺寸和晶体织构强度和类型,提高镁合金变形材料的延展性和成型性。但当这些合金元素过量时,会形成大量的第二相,并粗化成大尺寸第二相,从而降低合金的塑性和强度,并且会引起微电池腐蚀加剧。此外,钙在镁中的溶解度小于1%,大量添加会脆化晶界,降低镁合金抗腐蚀能力。因此,在本发明所述的高强耐蚀镁合金材料中,限定Mn、Ca、Zr、Sr、Gd的重量百分比总和≤3%,单种元素的重量百分比≤0.8%。此外,需要说明的是,Ge元素以及Zn元素的设计原理如上文所述,此处不再赘述。
进一步地,在本发明所述的高强耐蚀镁合金材料中,还包含Al、Cu、Si和Fe的至少其中之一,其重量百分比总和≤2%,单种元素的重量百分比≤0.5%。
在本发明所述的高强耐蚀镁合金材料中,还包含Al、Cu、Si和Fe的至少其中之一,其设计原理是Al、Cu、Si和Fe均能够提高镁合金板材的延展性和成型性。但当这些合金元素过量时,会形成大量的第二相,并粗化成大尺寸第二相,从而降低合金的塑性和强度,并且会显著引起微电池腐蚀加剧。因此,在本发明所述的高强耐蚀镁合金材料中,限定Al、Cu、Si和Fe的重量百分比总和≤2%,单种元素的重量百分比≤0.5%。优选地,Al、Cu、Si和Fe的重量百分比总和≤0.5%,单种元素的重量百分比≤0.05%,在此范围内镁合金的力学性能的塑性都会获得明显提高,耐腐蚀性也会明显增强。
进一步地,在本发明所述的高强耐蚀镁合金材料中,不可避免的杂质的总量低于100ppm。
进一步地,在本发明所述的高强耐蚀镁合金材料中,其显微组织包括α-Mg相和柱状的Mg 2Ge金属间化合物相。
在本发明所述的技术方案中,高强耐蚀镁合金材料中的显微组织除了包括α-Mg相和柱状的Mg 2Ge金属间化合物相以外,还可以包括其它添加的微量合金元素(例如Mn、Ca、Zr、Sr、Gd等)与镁元素形成的金属间化合物相。
进一步地,在本发明所述的高强耐蚀镁合金材料中,其屈服强度高于260MPa,失重腐蚀小于0.8mg/cm 2day。
相应地,本发明的又一目的在于提供一种上述的高强耐蚀镁合金材料的制造方法,通过该制造方法制造的高强耐蚀镁合金材料,不仅具有较高的强度,还具有较强的耐腐蚀性能。
为了实现上述目的,本发明提出了一种高强耐蚀镁合金材料的制造方法,其包括步骤:熔炼,固溶热处理,挤压成材,其中在挤压成材步骤中,挤压温度为180-350℃,挤压速率为0.1-10mm/s,挤压比为10:1-30:1。挤压温度低于180℃的话,模具磨损较大,锭子很难挤动,而且型材表面会出现裂纹;挤压温度高于350℃的话,晶粒明显长大,导致强度明显降低。挤压速度过快或者挤压比过高样品表面容易开裂;而挤压速度过慢或者挤压比过低则生产效率过慢。
在本发明所述的制造方法中,在熔炼步骤中,在一些实施方式中,可以在SF 6保护气氛中加热熔化原材料,熔化的镁合金液体注入预热模具冷却。本发明所述的制造方法使得制得的高强耐蚀镁合金材料的显微组织包括α-Mg相、Mg 2Ge金属间化合物相以及其它添加的合金元素与镁元素形成的金属间化合物相。
进一步地,在本发明所述的高强耐蚀镁合金材料的制造方法中,在固溶热处理步骤中,固溶热处理温度为350-450℃,时间为10-24h。
与现有技术相比,本发明所述的高强耐蚀镁合金材料及其制造方法具有如下有益效果:
(1)本发明通过添加锌和锗元素以及其他合金元素,显著提升本发明所述的高强耐蚀镁合金材料的机械性能和耐腐蚀性能。
(2)本发明所述的高强耐蚀镁合金材料的屈服强度高于260MPa,失重腐蚀小于0.8mg/cm 2day。
(3)本发明所述的高强耐蚀镁合金材料的制造方法显著提升本发明所述的高强耐蚀镁合金材料的强度及耐腐蚀性能。
附图说明
图1为对比例2的高强耐蚀镁合金材料在背散射电子(BSE)模式下扫描电子显微镜图。
图2为实施例3的高强耐蚀镁合金材料在背散射电子(BSE)模式下扫描电子显微镜图。
图3为实施例4的高强耐蚀镁合金材料在背散射电子(BSE)模式下扫描电子显微镜图。
图4为对比例2的高强耐蚀镁合金材料的能谱分析图。
图5为实施例3的高强耐蚀镁合金材料的能谱分析图。
图6为实施例4的高强耐蚀镁合金材料的能谱分析图。
图7为对比例2的高强耐蚀镁合金材料的电子背散射图。
图8为实施例3的高强耐蚀镁合金材料的电子背散射图。
图9为实施例4的高强耐蚀镁合金材料的电子背散射图。
图10显示了实施例3和4及对比例2的高强耐蚀镁合金材料的晶粒尺寸分布。
图11为对比例1-2和实施例3-4的高强耐蚀镁合金材料在0.1M氯化钠溶液中的动电位法极化测试结果图。
图12为对比例1-2和实施例3-4的高强耐蚀镁合金材料的阴极极化测试结果图。
图13为对比例1-2和实施例3-4的高强耐蚀镁合金材料以及商业常用的AZ91型镁合金的失重和析氢测试结果图。
图14为经过浸泡后的对比例1的高强耐蚀镁合金材料在二次电子(SE)模式下的扫描电子显微镜图(低倍率下)。
图15为经过浸泡后的对比例1的高强耐蚀镁合金材料在二次电子(SE)模式下的扫描电子显微镜图(高倍率下)。
图16为经过浸泡后的对比例2的高强耐蚀镁合金材料在二次电子(SE)模式下的扫描电子显微镜图(低倍率下)。
图17为经过浸泡后的对比例2的高强耐蚀镁合金材料在二次电子(SE)模式下的扫描电子显微镜图(高倍率下)。
图18为经过浸泡后的实施例3的高强耐蚀镁合金材料在二次电子(SE)模式下的扫描电子显微镜图(低倍率下)。
图19为经过浸泡后的实施例3的高强耐蚀镁合金材料在二次电子(SE)模式下的扫描电子显微镜图(高倍率下)。
图20为经过浸泡后的实施例4的高强耐蚀镁合金材料在二次电子(SE)模式下的扫描电子显微镜图(低倍率下)。
图21为经过浸泡后的实施例4的高强耐蚀镁合金材料在二次电子(SE)模式下的扫描电子显微镜图(高倍率下)。
图22为对比例1-2和实施例3-4的高强耐蚀镁合金材料在阳极电流密度为0.025-2.5mA/cm 2时的阴极电流密度测试结果图。
图23为对比例1-2和实施例3-4的高强耐蚀镁合金材料在阳极电流密度为2-24mA/cm 2时的阴极电流密度测试结果图。
图24显示了电感耦合等离子体发射光谱仪(ICP-OES)分析评估的对比例1-2和实施例3-4的高强耐蚀镁合金材料在0.1M氯化钠中的开路电位(OCP)和动电位极化(PDP)时的阳极溶解电流密度。
图25显示了对比例1-2和实施例3-4的高强耐蚀镁合金材料的阳极溶解电流密度与阳极电位的关系。
图26显示了对比例2和实施例3-4的高强耐蚀镁合金材料的显微硬度测试结果。
图27显示了对比例2和实施例3-4的高强耐蚀镁合金材料的工程应力应变曲线。
具体实施方式
下面将结合说明书附图和具体的实施例对本发明所述的高强耐蚀镁合金材料及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例1-17和对比例1-2
表1-1和表1-2列出了实施例1-17和对比例1-2的高强耐蚀镁合金材料中各化学元素的重量百分比(wt%)。
表1-1.(wt%,余量为Mg及其他不可避免的杂质元素)
Figure PCTCN2019113375-appb-000001
表1-2.(wt%,余量为Mg及其他不可避免的杂质元素)
Figure PCTCN2019113375-appb-000002
Figure PCTCN2019113375-appb-000003
实施例1-17和对比例1-2的高强耐蚀镁合金材料的制造方法如下(具体工艺参数列于表2中):
1)根据表1-1和表1-2所列的各化学元素进行配比,将配比后的原料放置于钢制坩埚中均匀混合。
2)熔炼:在SF6保护气氛中加热熔化,熔化的镁合金液体注入预热模具冷却。
3)固溶热处理。
4)挤压成材。
表2.实施例1-17和对比例1-2的高强耐蚀镁合金材料的制造方法的具体工艺参数
Figure PCTCN2019113375-appb-000004
Figure PCTCN2019113375-appb-000005
对实施例1-17和对比例1-2的高强耐蚀镁合金材料进行性能测试,测试其屈服强度以及在0.1M NaCl溶液中24h的失重腐蚀值。
屈服强度测试是按照ASTM E-8标准由拉伸实验所得曲线0.2%应变对应的应力。实验平台是Instron 4505。拉伸速率为10 -3/s。引伸计初设长度为10mm。拉伸样品平行部分长度为22mm。
失重腐蚀测试方法是根据ASTM-G1-03标准:样品是边长为5cm的立方体,用1200grid砂纸打磨表面。在0.1M NaCl溶液中浸泡24小时,温度为25℃。浸泡完毕后,用清洗表面去除腐蚀产物。烘干后称重。测试结果列于表3。
表3.
  屈服强度(MPa) 失重腐蚀(mg/cm 2day)
实施例1 285 0.72
实施例2 310 0.78
实施例3 288 0.60
实施例4 320 0.70
实施例5 328 069
实施例6 316 0.75
实施例7 320 0.73
实施例8 306 0.77
实施例9 270 0.78
实施例10 280 0.75
实施例11 265 0.63
实施例12 295 0.58
实施例13 279 0.68
实施例14 286 0.65
实施例15 275 0.60
实施例16 266 0.62
实施例17 265 0.72
对比例1 70 10.5
对比例2 255 1.8
由表3可以看出,相比于对比例1-2的高强耐蚀镁合金材料,实施例1-17的高强耐蚀镁合金材料兼有优越机械和耐腐蚀性能,其屈服强度高于260MPa,失重腐蚀小于0.8mg/cm 2day,具有广泛的应用前景。
由图1至图6可以看出,对比例2的高强耐蚀镁合金材料显微组织由单一的α-Mg相组成。而实施例3和实施例4的高强耐蚀镁合金材料显微组织中观察到柱状形貌的Mg 2Ge金属间化合物相和微量的Mg 2Ca化合物。
由图7至图9可以看出,电子背向散射衍射检查了所制备的合金的晶粒尺寸。对比例2的高强耐蚀镁合金材料的晶粒结构尺寸和形状均匀,平均晶粒尺寸为1.2μm。实施例3和实施例4的高强耐蚀镁合金材料中观察到双峰粒度分布,其显微组织包含柱状晶粒,平均晶粒尺寸为10-22μm。
图10显示了实施例3和4及对比例2的高强耐蚀镁合金材料的晶粒尺寸分布,图中的图示Mg-1Zn代表对比例2,图示Mg-1Zn-0.3Ge代表实施例3,图示Mg-1Zn-0.5Ge代表实施例4。
由图10可以看出,锗合金元素浓度从大约0.3%增加到大约0.5%时,大尺寸柱状晶粒的比例明显增加。这表明锗合金元素浓度能影响这些大尺寸柱状 晶粒的形成。
为了揭示合金添加对镁合金电化学性能的影响,对对比例1-2和实施例3-4的高强耐蚀镁合金材料进行了动电位极化和阴极极化测试分析,具体测试结果如图11和12所示,图中的图示Mg代表对比例1(其中极微量的Ge和Zn可以忽略不计),图示Mg-1Zn代表对比例2,图示Mg-1Zn-0.3Ge代表实施例3,图示Mg-1Zn-0.5Ge代表实施例4。
由图11可以看出,相比于对比例1,由于Zn含量增多,对比例2的高强耐蚀镁合金材料的腐蚀电位增加约50mV。此外,由于锗含量增多,使实施例3和实施例4的高强耐蚀镁合金材料的腐蚀电位降低到约-1.67V SCE
由图12可以看出,对比例2的高强耐蚀镁合金材料的阴极反应速率比对比例1高,表明Zn的增多提高了阴极动力学。相反,Ge的增多导致实施例3和实施例4的高强耐蚀镁合金材料的阴极电流密度降低,这表明Ge合金化抵消了Zn合金化的作用并显著降低了阴极动电位动力学。
结合图11和图12可以看出,实施例3和实施例4的高强耐蚀镁合金材料显示与对比例1的高强耐蚀镁合金材料相似的阳极动力学,实施例3和实施例4的腐蚀电位的变化主要是由于阴极动力学的变化。
为了验证镁合金长期腐蚀表现,将对比例1-2和实施例3-4的高强耐蚀镁合金材料以及商业常用的AZ91型镁合金在0.1M氯化钠溶液的开路电位下进行长时间(24h)的浸泡试验,其结果如图13所示,其中横坐标中的Mg代表对比例1,AZ91代表商业常用的AZ91型镁合金,Mg-1Zn代表对比例2,Mg-1Zn-0.3Ge代表实施例3,Mg-1Zn-0.5Ge代表实施例4。
由图13可以看出,与对比例1及商业常用的AZ91型镁合金相比,在浸泡试验条件下,实施例3和实施例4的高强耐蚀镁合金材料展现的质量损失和析氢速率约小一个数量级,证明Zn和Ge的添加有助于降低Mg的腐蚀速率的能力。
对比例1-2和实施例3-4的高强耐蚀镁合金材料在0.1M氯化钠溶液的开路电位下进行长时间(24h)的浸泡试验后,腐蚀产物用铬酸溶液(即200g/L三氧化铬,10g/L硝酸银和20g/L硝酸钡)清洗处理以展现腐蚀程度,观测此时的表面形态。
由图14至图21可以看出,在浸泡实验后,实施例3和实施例4的高强耐 蚀镁合金材料的腐蚀形貌与对比例1及对比例2的高强耐蚀镁合金材料不同。在实施例3和实施例4中观察到一种离散的表面腐蚀部位,而在对比例1和对比例2中观察到的普遍的“丝状”腐蚀变化。由此可知,Zn和Ge提升了镁合金腐蚀能力,抑制了阴极反应(即析氢反应)速率。
通过恒电流电位实验进一步评估了合金化对镁的阴极活化(差数效应)的影响。试样以0.025-2.5mA/cm 2的循环逐步递增的方式进行阳极极化,在每个阳极极化周期之间保持固定的负电位(-2V SCE),以测量阳极极化表面上维持的阴极电流密度(applied dissolution current density),如图22所示。试样以2-24mA/cm 2的循环逐步递增的方式进行阳极极化,在每个阳极极化周期之间保持固定的负电位(-2V SCE),以测量阳极极化表面上维持的阴极电流密度(applied dissolution current density),如图23所示。在图22和图23中,图示Mg代表对比例1,图示Mg-1Zn代表对比例2,图示Mg-1Zn-0.3Ge代表实施例3,图示Mg-1Zn-0.5Ge代表实施例4。
由图22可以看出,实施例3和实施例4测得的阴极电流密度的大小比对比例1和对比例2低2-3倍,表明Ge元素的添加抑制了镁阴极活化的能力。
由图23可以看出,以较高的阳极极化电流密度(2-24mA/cm 2)重复实验时,观察到类似的趋势。由此表明实施例3和实施例4的高强耐蚀镁合金材料有作为良好电极材料的潜质,原因在于其自身腐蚀性能良好,自身反应(腐蚀)速率低,氢气析出少。
图24显示了电感耦合等离子体发射光谱仪(ICP-OES)分析评估的对比例1-2和实施例3-4的高强耐蚀镁合金材料在0.1M氯化钠中的开路电位(OCP)和动电位极化(PDP)时的阳极溶解电流密度。图示Mg代表对比例1,图示Mg-1Zn代表对比例2,图示Mg-1Zn-0.3Ge代表实施例3,图示Mg-1Zn-0.5Ge代表实施例4。
由图24可以看出,实施例3和实施例4在OCP和动电位极化时都表现出了最低的阳极溶解电流密度。
图25显示了对比例1-2和实施例3-4的高强耐蚀镁合金材料的阳极溶解电流密度与阳极电位的关系。图示Mg代表对比例1,图示Mg-1Zn代表对比例2,图示Mg-1Zn-0.3Ge代表实施例3,图示Mg-1Zn-0.5Ge代表实施例4。
由图25可以看出,对于对比例1-2和实施例3-4的高强耐蚀镁合金材料, 阳极溶解电流密度随着阳极电位的增加呈对数线性增加。值得注意的是,实施例3-4的阳极部分反应的动力学比对比例1-2的动力学要低。ICP-OES极化分析推导出的曲线斜率结果列于表4中。
表4.
序号 斜率((V/μA.cm 2)
实施例3 0.0168
实施例4 0.0234
对比例1 0.0114
对比例2 0.0106
由表4可以看出,上述微量合金元素的添加抑制了镁阳极动力学。
图26显示了对比例2和实施例3-4的高强耐蚀镁合金材料的显微硬度测试结果。图27显示了对比例2和实施例3-4的高强耐蚀镁合金材料的工程应力应变曲线。图26和图27中,图示Mg-1Zn代表对比例2,图示Mg-1Zn-0.3Ge代表实施例3,图示Mg-1Zn-0.5Ge代表实施例4。
由图26可以看出,随着Ge含量增加,合金的硬度增加:从对比例2的50HV1增加到实施例4的83HV1。
由图27可以看出,随着Ge含量增加,合金的屈服强度增加,从对比例2的约255MPa增加到实施例4的约320MPa。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。
此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范 围。

Claims (10)

  1. 一种高强耐蚀镁合金材料,其特征在于,其含有0.01-1.2wt%的Ge元素以及0.01-1.2wt%的Zn元素。
  2. 如权利要求1所述的高强耐蚀镁合金材料,其特征在于,其显微组织包括α-Mg相和柱状的Mg 2Ge金属间化合物相。
  3. 如权利要求1或2所述的高强耐蚀镁合金材料,其特征在于,其屈服强度高于260MPa,失重腐蚀小于0.8mg/cm 2day。
  4. 一种高强耐蚀镁合金材料,其特征在于,其化学元素重量百分配比为:
    Ge:0.01~1.2%;
    Zn:0.01~1.2%;
    Mn、Ca、Zr、Sr、Gd中的至少一种,其重量百分比总和≤3%,单种元素的重量百分比≤0.8%;
    余量为Mg以及其他不可避免的杂质元素。
  5. 如权利要求4所述的高强耐蚀镁合金材料,其特征在于,还包含Al、Cu、Si和Fe的至少其中之一,其重量百分比总和≤2%,单种元素的重量百分比≤0.5%。
  6. 如权利要求4所述的高强耐蚀镁合金材料,其特征在于,不可避免的杂质的总量低于100ppm。
  7. 如权利要求4所述的高强耐蚀镁合金材料,其特征在于,其显微组织包括α-Mg相和柱状的Mg 2Ge金属间化合物相。
  8. 如权利要求4-7中任意一项所述的高强耐蚀镁合金材料,其特征在于如权利要求1所述的高强耐蚀镁合金材料,其特征在于,其屈服强度高于260MPa,失重腐蚀小于0.8mg/cm 2day。
  9. 如权利要求1-8中任意一项所述的高强耐蚀镁合金材料的制造方法,其特征在于,包括步骤:熔炼,固溶热处理,挤压成材,其中在挤压成材步骤中,挤压温度为180-350℃,挤压速率为0.1-10mm/s,挤压比为10:1-30:1。
  10. 如权利要求9所述的高强耐蚀镁合金材料的制造方法,其特征在于,在固溶热处理步骤中,固溶热处理温度为350-450℃,时间为10-24h。
PCT/CN2019/113375 2018-10-26 2019-10-25 一种高强耐蚀镁合金材料及其制造方法 WO2020083387A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/271,462 US20210189527A1 (en) 2018-10-26 2019-10-25 High-strength and corrosion-resistant magnesium alloy material and method for fabricating same
KR1020217003597A KR102573665B1 (ko) 2018-10-26 2019-10-25 고강도 및 내부식성 마그네슘 합금 재료 및 이의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811257872.0A CN111101039A (zh) 2018-10-26 2018-10-26 一种高强耐蚀镁合金材料及其制造方法
CN201811257872.0 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020083387A1 true WO2020083387A1 (zh) 2020-04-30

Family

ID=70330749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113375 WO2020083387A1 (zh) 2018-10-26 2019-10-25 一种高强耐蚀镁合金材料及其制造方法

Country Status (4)

Country Link
US (1) US20210189527A1 (zh)
KR (1) KR102573665B1 (zh)
CN (1) CN111101039A (zh)
WO (1) WO2020083387A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD995803S1 (en) * 2021-05-19 2023-08-15 Guangzhou Fourto Sanitary Products Co., LTD Paraffin wax warmer
CN114892055B (zh) * 2022-05-25 2023-09-05 鹤壁海镁科技有限公司 一种高强韧Mg-Al-Zn镁合金及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1844433A (zh) * 2005-04-06 2006-10-11 中国科学院金属研究所 一类可铸造形成厘米尺度非晶态块体材料的镁合金
CN100441717C (zh) * 2004-04-06 2008-12-10 第一金属株式会社 具有优秀成形性的变形镁合金及其制造方法
CN102978494A (zh) * 2012-12-13 2013-03-20 北京大学 一种Mg-Ge系镁合金及其制备方法
CN104099501A (zh) * 2014-07-21 2014-10-15 上海理工大学 一种珍珠粉/镁合金准自然骨复合材料及其制备方法
CN105624495A (zh) * 2015-12-28 2016-06-01 青岛博泰美联化工技术有限公司 一种医用缝合线材料及制备方法
JP2017135287A (ja) * 2016-01-28 2017-08-03 トヨタ自動車株式会社 Mg2Ge系熱電材料の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE422000T1 (de) 2001-07-25 2009-02-15 Showa Denko Kk Aluminiumlegierung mit hervorragender zerspanbarkeit und aluminiumlegierungsmaterial und herstellungsverfahren dafür
JP2005240129A (ja) * 2004-02-27 2005-09-08 Mitsubishi Alum Co Ltd 耐熱マグネシウム合金鋳造品
JP2005240130A (ja) * 2004-02-27 2005-09-08 Mitsubishi Alum Co Ltd 耐熱マグネシウム合金鋳造品
JP2006291327A (ja) * 2005-04-14 2006-10-26 Mitsubishi Alum Co Ltd 耐熱マグネシウム合金鋳造品
CN102839308A (zh) * 2012-08-24 2012-12-26 中南大学 一种高强高模镁合金及制备方法
CN104046870A (zh) * 2014-07-09 2014-09-17 北京汽车股份有限公司 一种高弹性模量镁合金及其制备方法
CN105525172A (zh) * 2014-11-13 2016-04-27 比亚迪股份有限公司 一种镁合金及其制备方法和应用
KR20160011136A (ko) * 2015-03-25 2016-01-29 한국기계연구원 내식성이 향상된 마그네슘 합금 및 이를 이용하여 제조한 마그네슘 합금 부재의 제조방법
CN107532249A (zh) * 2015-04-08 2018-01-02 宝山钢铁股份有限公司 可成形镁基锻造合金
JP6607463B2 (ja) * 2015-04-08 2019-11-20 バオシャン アイアン アンド スティール カンパニー リミテッド 希薄マグネシウム合金シートにおけるひずみ誘起時効強化
KR20160136832A (ko) * 2015-05-21 2016-11-30 한국기계연구원 고강도 마그네슘 합금 가공재 및 이의 제조방법
US10947609B2 (en) * 2015-12-28 2021-03-16 Korea Institute Of Materials Science Magnesium alloy having excellent mechanical properties and corrosion resistance and method for manufacturing the same
CN105951014B (zh) * 2016-07-19 2017-10-10 南阳理工学院 一种镁合金的热处理方法
CN106591657A (zh) * 2016-12-08 2017-04-26 新昌县宏胜机械有限公司 一种齿轮用合金材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441717C (zh) * 2004-04-06 2008-12-10 第一金属株式会社 具有优秀成形性的变形镁合金及其制造方法
CN1844433A (zh) * 2005-04-06 2006-10-11 中国科学院金属研究所 一类可铸造形成厘米尺度非晶态块体材料的镁合金
CN102978494A (zh) * 2012-12-13 2013-03-20 北京大学 一种Mg-Ge系镁合金及其制备方法
CN104099501A (zh) * 2014-07-21 2014-10-15 上海理工大学 一种珍珠粉/镁合金准自然骨复合材料及其制备方法
CN105624495A (zh) * 2015-12-28 2016-06-01 青岛博泰美联化工技术有限公司 一种医用缝合线材料及制备方法
JP2017135287A (ja) * 2016-01-28 2017-08-03 トヨタ自動車株式会社 Mg2Ge系熱電材料の製造方法

Also Published As

Publication number Publication date
KR20210028682A (ko) 2021-03-12
US20210189527A1 (en) 2021-06-24
CN111101039A (zh) 2020-05-05
KR102573665B1 (ko) 2023-09-04

Similar Documents

Publication Publication Date Title
Ji et al. Mechanical properties and corrosion behavior of novel Al-Mg-Zn-Cu-Si lightweight high entropy alloys
US11851739B2 (en) High-strength magnesium alloy profile, preparation process therefor and use thereof
CN109988945A (zh) 一种压铸铝合金及其制备方法和通讯产品
CN107236884B (zh) 一种高强耐腐蚀变形镁合金及其制备方法
Liang et al. Microstructure evolution of laser powder bed fusion ZK60 Mg alloy after different heat treatment
WO2020083387A1 (zh) 一种高强耐蚀镁合金材料及其制造方法
WO2016015588A1 (zh) 一种合金及其制备方法
Yang et al. Discharge properties of Mg-Sn-Y alloys as anodes for Mg-air batteries
CN113584364B (zh) 高锂含量超轻镁锂基合金力学和腐蚀性能的协同提升方法
Zhang et al. Effects of solute redistribution during heat treatment on micro-galvanic corrosion behavior of dilute Mg-Al-Ca-Mn alloy
CN115233077A (zh) 高铝高钛含量纳米共格沉淀强化的CoCrNi基中熵合金及其制备方法
CN112680641A (zh) 一种固溶态的含Zn双相镁锂合金及其制备方法和应用
Yuan et al. Improving microstructure and corrosion resistance of LPSO-containing Mg–Y–Zn–Mn alloy through ECAP integrated with prior solution treatment
CN114480933B (zh) 一种特高强铝合金及其制备方法和应用
Xi et al. Effect of volume fraction of 18R-LPSO phase on corrosion resistance of Mg− Zn− Y alloys
Wang et al. Role of trace additions of Ca and Sn in improving the corrosion resistance of Mg-3Al-1Zn alloy
TW202026435A (zh) 濺鍍靶材
CN107236887A (zh) 一种高强度高塑性变形镁合金材料及制备方法
CN102586655B (zh) Al-Sc-Zr导电合金强化和导电性优化工艺
Lv et al. The corrosion resistance and discharge performance of as-extruded AZ91 alloy synergistically improved by the addition of submicron SiCp
Ma et al. The effects of Ca on the microstructure, mechanical and corrosion properties of extruded Mg–2Zn–0.5 Mn alloy
CN113481414A (zh) 一种软包锂电池极耳正极用1系铝合金箔材的制备方法
CN112813323A (zh) 一种预变形镁合金及其加工方法
CN109097648B (zh) 一种Mg-Al-Ca-Ce系镁合金及其制备方法
CN114990395B (zh) 一种含稀土元素的高强度变形铝合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875309

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217003597

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875309

Country of ref document: EP

Kind code of ref document: A1