WO2020083327A1 - 含螺二芴结构的有机化合物及其在oled器件中的应用 - Google Patents

含螺二芴结构的有机化合物及其在oled器件中的应用 Download PDF

Info

Publication number
WO2020083327A1
WO2020083327A1 PCT/CN2019/112937 CN2019112937W WO2020083327A1 WO 2020083327 A1 WO2020083327 A1 WO 2020083327A1 CN 2019112937 W CN2019112937 W CN 2019112937W WO 2020083327 A1 WO2020083327 A1 WO 2020083327A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
organic compound
compound according
compound
Prior art date
Application number
PCT/CN2019/112937
Other languages
English (en)
French (fr)
Inventor
钱晓春
Original Assignee
常州强力电子新材料股份有限公司
常州强力昱镭光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州强力电子新材料股份有限公司, 常州强力昱镭光电材料有限公司 filed Critical 常州强力电子新材料股份有限公司
Priority to KR1020217015834A priority Critical patent/KR20210113165A/ko
Publication of WO2020083327A1 publication Critical patent/WO2020083327A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/86Separation
    • C07C209/88Separation of optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/14Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hydrocarbon radicals, substituted by nitrogen atoms, attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • C07D279/22[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom
    • C07D279/24[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom with hydrocarbon radicals, substituted by amino radicals, attached to the ring nitrogen atom
    • C07D279/26[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom with hydrocarbon radicals, substituted by amino radicals, attached to the ring nitrogen atom without other substituents attached to the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms

Definitions

  • the invention belongs to the technical field of organic electroluminescence (organic EL, also called OLED), and particularly relates to an organic compound containing a spirobifluorene structure that can be used in OLED devices and its application in OLED devices.
  • organic EL organic electroluminescence
  • OLED organic electroluminescence
  • OLED technology has the characteristics of light and thin, wide viewing angle, high contrast, low power consumption, high response speed, full-color screen, flexibility, etc., and has broad application prospects in full-color displays and portable electronic devices.
  • OLED technology has been applied in the fields of smart phones, tablet computers, and automobiles, and is expanding to large-scale application fields such as TVs.
  • Industrially applied OLED devices usually include a variety of film layers such as a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc.
  • the photoelectric functional materials include at least hole injection materials, hole transport materials, light emitting materials, electron transport materials, and the like.
  • optoelectronic functional materials have strong selectivity, and the performance of the same material in different structural devices may be significantly different.
  • the hole transport material used in the hole transport layer or hole injection layer is especially a triarylamine derivative, which usually contains at least two triarylamino groups or at least one triarylamino group and at least A carbazole group.
  • These compounds are usually derived from diarylamino-substituted triphenylamine (TPA type), diarylamino-substituted biphenyl derivative (TAD type) or a combination of these basic compounds.
  • TPA type diarylamino-substituted triphenylamine
  • TAD type diarylamino-substituted biphenyl derivative
  • these materials are insufficient in terms of efficiency, lifetime and operating voltage.
  • Spirobifluorene is a well-known spiro compound that can be used to configure and implement electronic circuits and switches in organic electronic devices. It has good performance in electroluminescent devices and has high commercial application value.
  • US2003065190 discloses a variety of spirobifluorene compounds for electroluminescent materials, but these compounds are not very satisfactory in terms of luminous efficiency and color purity.
  • US7714145 discloses the use of spirobifluorene compounds as hole transport layers in organic light-emitting devices.
  • the device's luminous efficiency and driving voltage cannot meet the actual display application requirements, such as
  • the organic materials used in organic light-emitting devices need to have good thermal stability to maintain the requirements of their devices in terms of luminous chromaticity, current efficiency, external quantum efficiency, luminous efficiency, and service life. Therefore, there is an urgent need to develop an organic light-emitting material that improves device performance and prolongs service life to meet the needs of diverse applications.
  • the object of the present invention is to provide an organic compound containing a spirobifluorene (9,9′-Spirobifluorene) structure, which has a relatively high glass transition temperature, suitable HOMO and LUMO energy levels, And higher Eg, can be sublimated without decomposition and no residues, has good application effect in OLED devices, can effectively improve the luminous performance and device life of OLED devices, suitable for phosphorescent and fluorescent OLED devices , Especially when using the compound as a hole transport material or matrix material.
  • An organic compound containing a spirobifluorene structure of the present invention has a structure represented by the following chemical formula (1):
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 each independently represent a substituted or unsubstituted aryl or heterocyclic aryl, and Ar 1 and Ar 2 may be connected to each other through E 1 to form a ring, Ar 3 and Ar 4 Can be connected to each other through E 2 to form a ring;
  • E 1 and E 2 each independently represent a direct bond, CRR ′, NR, O or S, where R and R ′ each independently represent a C 1 -C 8 linear or branched alkyl group, C 1 -C 8 Alkoxy, C 7 -C 14 aralkyl;
  • S 1 and S 2 each independently represent a direct bond, substituted or unsubstituted arylene, substituted or unsubstituted heteroarylene;
  • n and n independently represent integers from 0 to 3;
  • R 1 and R 2 each independently represent hydrogen, deuterium, halogen, nitrile, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkoxy, Substituted or unsubstituted aryl, substituted or unsubstituted aryloxy, substituted or unsubstituted alkylaryl, substituted or unsubstituted aralkyl, substituted or unsubstituted Arylalkenyl, or substituted or unsubstituted heterocyclyl;
  • Ar 1 (Ar 2 ) N- (S 1 ) m -and-(S 2 ) n -NAr 3 (Ar 4 ) are different, and the substitution positions are symmetrical, that is, the substitution positions of the two are 1, 1 'position , 2, 2 ', 3, 3' or 4, 4 '.
  • Ar 1 , Ar 2 , Ar 3 , and Ar 4 each independently have 6 to 60 C atoms, and each independently represents a substituted or unsubstituted phenyl group, substituted or unsubstituted Substituted biphenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted tetraphenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted phenanthryl, Substituted or unsubstituted fluorenyl, substituted or unsubstituted spirobifluorenyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted dibenzofuranyl, or Substituted or unsubstituted carbazolyl.
  • S 1 and S 2 each independently represent a direct bond, a C 6 -C 20 arylene group or a heteroarylene group. More preferably, S 1 and S 2 represent a direct bond, that is, the spirobifluorene structure is directly connected to the N atom.
  • n and n each independently represent 0, 1, or 2, and m + n ⁇ 3. More preferably, m and n each independently represent 0 or 1.
  • R 1 and R 2 each independently represent hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, 2-methylbutyl, n-pentyl, sec-pentyl, neopentyl, cyclopentyl, n-hexyl, neohexyl, cyclohexyl, n-heptyl, cycloheptyl, n-octyl, cyclooctyl, 2- Ethylhexyl, trifluoromethyl, pentafluoroethyl, phenyl, 1-naphthyl, 2-naphthyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, methoxy, ethoxy, N-propoxy, isopropoxy,
  • the organic compound containing a spirobifluorene structure is selected from the following compounds having the structures shown in chemical formulas (2)-(5):
  • the organic compound containing a spirobifluorene structure according to the present invention is selected from the following compounds having the structures represented by the chemical formulas (2-1)-(5-1):
  • the organic compound containing a spirobifluorene structure of the present invention has a structure represented by the chemical formula (2-1).
  • Ar 1 , Ar 2 , Ar 3 , and Ar 4 are each independently, and may preferably be selected from the following structures:
  • the dashed line represents the connection site to be bonded to nitrogen;
  • R 3 independently represents methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, cycloheptyl, N-octyl, phenyl, 4-tert-butylphenyl, cycloalkyl.
  • the Buchwald-Hartwig coupling reaction can be carried out sequentially by dihalospirobifluorene substituted symmetrically with different diarylamines, and different diarylamine groups are introduced step by step.
  • the target compound is obtained.
  • the present invention also provides the application of the above organic compound in OLED devices.
  • the OLED device includes: a first electrode; a second electrode disposed facing the first electrode; and one or more organic material layers disposed between the first electrode and the second electrode, wherein the organic One or more of the material layers contain the compound represented by chemical formula (1).
  • the organic material layer may be composed of a single-layer structure or a multilayer structure in which two or more organic material layers are stacked.
  • the light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like as an organic material layer.
  • the device structure is not limited to this, and may include a smaller number of organic layers.
  • the organic material layer includes a hole transport layer, and the hole transport layer includes a compound of formula (1).
  • the organic material layer includes a hole injection layer and a hole transport layer.
  • the hole transport layer contains the compound of the chemical formula (1)
  • the hole injection layer uses only the compound HAT-CN having the following structural formula:
  • the organic material layer includes a hole injection layer
  • the hole injection layer includes a compound of formula (1), and includes a P-type doping material doped at a doping concentration of 1-20 wt%, P-type doped
  • the chemical structural formula of the hybrid material is as follows:
  • the organic material layer includes a hole injection layer and a hole transport layer, and both the hole injection layer and the hole transport layer include the compound of the chemical formula (1).
  • the organic material layer further includes an electron blocking layer that uses the compound HT2 of the following chemical structure:
  • the organic material layer further includes a light-emitting layer, and the light-emitting layer uses compound EB as the main light emitter and compound BD as the guest light emitter, where the doping ratio of the guest light emitter is 1-10% by weight, both
  • the chemical structural formula is as follows:
  • the organic material layer further includes an electron transport layer that uses the compound ET of the following chemical structure and contains 5 wt% doped lithium quinoline (Lithium 8-quinolinolate, abbreviated as LiQ):
  • the organic material layer further includes an electron injection layer, and the compound used for the electron injection layer is lithium fluoride (LiF).
  • the compound used for the electron injection layer is lithium fluoride (LiF).
  • the OLED device of the present invention may be a top emission type, a bottom emission type or a bidirectional emission type.
  • Using the compound of the chemical formula (1) of the present invention in the organic material layer of an OLED device can improve the efficiency, low driving voltage and / or lifespan characteristics of the device; especially when used for hole injection and / or hole transport materials,
  • the device has a low driving voltage and a long service life, showing high stability of device performance.
  • FIG. 1 is a schematic structural diagram of an OLED device in device application performance characterization
  • intermediates B2-B4 were synthesized by using different raw materials. The details are shown in Table 1 below.
  • the synthesis of intermediate E can use the synthesis method of method one or method two.
  • the experimental device was sufficiently dried, and into a 500 mL four-necked flask were added 2-chloro-2'-bromo-9,9'-spirobifluorene (B1) 19.3 g (45 mmol) and 17.9 g (49.5 mmol) N- [1,1′-biphenyl-4-yl] -9,9-dimethyl-9H-fluorene-2-amine, then add dried and degassed toluene as a solvent, and add 6.5 g (67.5 mmol) of tertiary Sodium butoxide, 1.2g (2.25mmol) catalyst 1,1'-bis (diphenylphosphine) ferrocene (dppf), warmed to 100-105 °C, the reaction for 16h.
  • B1 2-chloro-2'-bromo-9,9'-spirobifluorene
  • the fluorenone first reacts with the diarylamine, and the general simple diarylamine structure uses this method.
  • intermediate E3-E20 is synthesized by using different raw materials. The details are shown in Tables 2 and 3 below.
  • the target compound can be synthesized by the following process.
  • the experimental device was fully dried, and E2 (23.3g, 45mmol) and N-phenyl-4-benzidine 12.1g (49.5mmol) were added to a 500mL four-necked flask under nitrogen, and then dried and degassed toluene was added as Solvent, add 6.5g (67.5mmol) sodium tert-butoxide, 0.88g (0.96mmol) catalyst Pd 2 (dba) 3 to warm to 80 °C, slowly add 4.5mL of tri-tert-butylphosphine toluene solution with a mass concentration of 10% After the dropwise addition, the temperature was raised to 100-105 ° C and the reaction was carried out for 6h.
  • Compound 1-2 was prepared using the same synthesis method as compound 1-1, except that bis (4-biphenyl) amine was used instead of N-phenyl-4-benzidine. The yield was 82%.
  • Compound 1-3 was prepared using the same synthetic method as compound 1-1, except that E15 was used instead of E2, and bis (4-biphenyl) amine was used instead of N-phenyl-4-benzidine. The yield was 68%.
  • Compound 1-5 was prepared using the same synthesis method as compound 1-1, except that E1 was used instead of E2, and bis (4-biphenyl) amine was used instead of N-phenyl-4-benzidine. The yield was 65%.
  • Compound 1-6 was prepared using the same synthesis method as compound 1-1, except that E3 was used instead of E2, and bis (4-biphenyl) amine was used instead of N-phenyl-4-benzidine. The yield was 65%.
  • Compound 1-7 was prepared using the same synthesis method as compound 1-1, except that bis (9,9-dimethylfluorene) amine was used instead of N-phenyl-4-benzidine. The yield was 73%.
  • Compound 1-8 was prepared using the same synthesis method as compound 1-1, except that E7 was used instead of E2, and N-phenyl-4-benzidine was used instead of N-phenyl-4-benzidine. The yield was 66%.
  • Compound 1-9 was prepared using the same synthetic method as compound 1-1, except that E8 was used instead of E2. The yield was 67%.
  • the glass transition temperature Tg is measured by differential scanning calorimetry (DSC, DSC25 differential scanning calorimeter of American TA Company), and the heating rate is 10 ° C / min; the thermal weightlessness temperature Td is the temperature of 1% weightlessness in a nitrogen atmosphere. Measured on the TGA55 thermogravimetric analyzer of American TA Company, the nitrogen flow rate is 20mL / min; the highest occupied molecular orbital HOMO energy level and the lowest unoccupied molecular orbital LUMO energy level are measured by cyclic voltammetry.
  • the compound of the present invention has a high glass transition temperature, which can ensure the thermal stability of the compound, thereby avoiding the conversion of the amorphous film of the compound into a crystalline film, so that the produced compound containing the organic compound of the present invention The life of OLED devices has been improved.
  • the compounds of the present invention have different HOMO and LOMO energy levels and can be applied to different functional layers of OLED devices.
  • the above-mentioned organic compound of the present invention is particularly suitable for a hole injection layer (HIL), a hole transport layer (HTL), and / or an electron blocking layer (EBL) in an OLED device. They can be used as a separate layer or as a mixed component in HIL, HTL or EBL.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • the above-mentioned organic materials are all existing known compounds for sale, which are purchased from the market.
  • an OLED device is manufactured, and the specific steps are as follows: a glass substrate coated with ITO (indium tin oxide) with a thickness of 130 nm (Corning Glass 50mm * 50mm * 0.7mm) is ultrasonically washed with isopropyl alcohol and pure water After 5 minutes, it was cleaned with ultraviolet ozone again, and then the glass substrate was transferred to the vacuum deposition chamber; the hole injection material HAT-CN was thermally deposited on the transparent ITO electrode at a thickness of 5 nm in vacuum (about 10 -7 Torr).
  • ITO indium tin oxide
  • HAT-CN hole injection material
  • the device structure is expressed as: ITO (130nm) / HAT-CN (5nm) / Compound 1-1 (110nm) / HT2 (20nm) / EB: BD (25nm) / ET: LiQ (25nm) / LiF (1nm) / Al (150nm).
  • the deposition rates of the organic material, lithium fluoride, and aluminum are maintained at 0.1 nm / s, 0.05 nm / s, and 0.2 nm / s, respectively.
  • Example 1 The experiment was conducted in the same manner as in Example 1, except that as the hole transport layer, Compound 1-2 was used instead of Compound 1-1 in Example 1.
  • the device structure is expressed as: ITO (130nm) / HAT-CN (5nm) / Compound 1-2 (110nm) / HT2 (20nm) / EB: BD (25nm) / ET: LiQ (25nm) / LiF (1nm) / Al (150nm).
  • Example 1 The experiment was conducted in the same manner as in Example 1, except that as the hole transport layer, Compound 1-4 was used instead of Compound 1-1 in Example 1.
  • the device structure is expressed as: ITO (130nm) / HAT-CN (5nm) / Compound 1-4 (110nm) / HT2 (20nm) / EB: BD (25nm) / ET: LiQ (25nm) / LiF (1nm) / Al (150nm).
  • Example 1 The experiment was conducted in the same manner as in Example 1, except that as the hole transport layer, Compound 1-6 was used instead of Compound 1-1 in Example 1.
  • the device structure is expressed as: ITO (130nm) / HAT-CN (5nm) / Compound 1-6 (110nm) / HT2 (20nm) / EB: BD (25nm) / ET: LiQ (25nm) / LiF (1nm) / Al (150nm).
  • Example 1 The experiment was conducted in the same manner as in Example 1, except that as the hole transport layer, Compound 1-7 was used instead of Compound 1-1 in Example 1.
  • the device structure is expressed as: ITO (130nm) / HAT-CN (5nm) / Compound 1-7 (110nm) / HT2 (20nm) / EB: BD (25nm) / ET: LiQ (25nm) / LiF (1nm) / Al (150nm).
  • Example 1 The experiment was conducted in the same manner as in Example 1, except that as the hole transport layer, HT1 was used instead of Compound 1-1 in Example 1.
  • the device structure is expressed as: ITO (130nm) / HAT-CN (5nm) / HT1 (110nm) / HT2 (20nm) / EB: BD (25nm) / ET: LiQ (25nm) / LiF (1nm) / Al (150nm ).
  • the device manufacturing process in the above Device Examples 1-5 is completely the same, and the same substrate and electrode materials are used, and the film thickness of the electrode material is also the same. The difference is that the holes in the device The transmission material HT1 was replaced.
  • the luminous color is judged and defined by the CIE x, y chromaticity coordinates;
  • the driving voltage refers to the voltage with a luminance of 1cd / m 2 ;
  • the current efficiency refers to the luminous luminance at a unit current density;
  • external quantum efficiency (EQE) refers to the ratio of the number of photons exiting the surface of the component in the observation direction to the number of injected electrons.
  • LT97 @ 1000nits refers to the time when the device is continuously used for more than 1000h and the device decreases from the initial brightness (100%) to 97%.
  • Example 1-5 are used as a hole transport layer in an organic light-emitting device, and have an excellent hole transport capability and exhibit low voltage and high efficiency compared to a benzidine type material characteristic.
  • Example 1 and Example 4 show better stability and life based on high triplet energy (characteristic of the spiral ring material); and the lifespan of the devices presented in Examples 2, 3, and 5 is comparable to the comparative example Basically equivalent.
  • the device structure is expressed as: ITO (130nm) / Compound 1-1: p-type doped material (20nm) / Compound 1-1 (105nm) / HT2 (20nm) / EB: BD (25nm) / ET: LiQ (25nm ) / LiF (1nm) / Al (150nm).
  • the device structure is expressed as: ITO (130nm) / Compound 1-2: p-type doped material (20nm) / Compound 1-2 (105nm) / HT2 (20nm) / EB: BD (25nm) / ET: LiQ (25nm ) / LiF (1nm) / Al (150nm).
  • the device structure is expressed as: ITO (130nm) / Compound 1-4: p-type doped material (20nm) / Compound 1-4 (105nm) / HT2 (20nm) / EB: BD (25nm) / ET: LiQ (25nm ) / LiF (1nm) / Al (150nm).
  • the device structure is expressed as: ITO (130nm) / compound 1-6: p-type doped material (20nm) / compound 1-6 (105nm) / HT2 (20nm) / EB: BD (25nm) / ET: LiQ (25nm ) / LiF (1nm) / Al (150nm).
  • the device structure is expressed as: ITO (130nm) / Compound 1-7: p-type doped material (20nm) / Compound 1-7 (105nm) / HT2 (20nm) / EB: BD (25nm) / ET: LiQ (25nm ) / LiF (1nm) / Al (150nm).
  • the device structure is expressed as: ITO (130nm) / HAT-CN (20nm) / HT1 (105nm) / HT2 (20nm) / EB: BD (25nm) / ET: LiQ (25nm) / LiF (1nm) / Al (150nm ).
  • the device manufacturing process of Device Examples 6-10 of the present invention is completely the same, and the same substrate and electrode materials are used, and the film thickness of the electrode material also remains the same.
  • the hole injection material and hole transport material were replaced, and the hole injection layer was doped with 2wt% P-type doped material.
  • the compounds used in Examples 6-10 are used as the hole injection layer host material and the hole transport layer of the device. Compared with Comparative Example 2, it brings excellent hole transport capability to the device. The driving voltage is lower, the current efficiency and the luminous efficiency are higher, and it shows better stability and life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开一种含螺二芴结构的有机化合物,具有化学式(1)所示结构,其中Ar1(Ar2)N-(S1)m-和-(S2)n-NAr3(Ar4)不同,且取代位置对称。该化合物具有较高的玻璃化温度、合适的HOMO和LUMO能级、以及较高的Eg,能够在不发生分解和没有残留物的情况下升华,有效提升OLED器件的发光性能以及器件寿命。 (I)

Description

含螺二芴结构的有机化合物及其在OLED器件中的应用 技术领域
本发明属于有机电致发光(有机EL,也称作OLED)技术领域,具体涉及一种可用于OLED器件的含螺二芴结构的有机化合物,及其在OLED器件中的应用。
背景技术
OLED技术具有轻薄、广视角、高对比、低耗电、高响应速度、全彩画面、可挠曲性等特点,在全彩显示器和便携式电子装置中应用前景广阔。当前,OLED技术已应用于智能手机、平板电脑、车载等领域,并正向电视等大尺寸应用领域扩展。
产业上应用的OLED器件通常包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层等多种膜层,这意味着OLED器件中的光电功能材料至少包括空穴注入材料、空穴传输材料、发光材料、电子传输材料等。对于不同构造的OLED器件而言,光电功能材料具有较强的选择性,相同材料在不同结构器件中的性能表现可能存在较大差异。
现有技术中,空穴传输层或空穴注入层中使用的空穴传输材料特别是三芳基胺衍生物,其通常含有至少两个三芳基氨基基团或至少一个三芳基氨基基团和至少一个咔唑基团。这些化合物通常来源于二芳基氨基取代的三苯胺(TPA型)、二芳基氨基取代的联苯衍生物(TAD类型)或这些基础化合物的组合。无论是对于荧光OLED,还是对于磷光OLED,特别是在用于OLED器件中时,这些材料在效率、寿命和工作电压方面都显得不足。
螺二芴是一类公知的螺环化合物,可以用于配置和实现有机电子器件的电子电路和开关,在电致发光器件中性能表现良好,具有很高的商业应用价值。US2003065190公开了多种用于电致发光材料的螺二芴类化合物,但这些化合物在发光效率和色纯度方面不是令人非常满意。US7714145中揭示了将螺二芴环化合物用于有机发光器件中作为空穴传输层,但在使用不同发光层材料时,器件的发光效率及驱动电压等性能皆无法满足实际显示器的应用需求,例如用于车载显示器时,其用于有机发光器件的有机材料需具良好的热稳定性,以维持其器件于发光色度、电流效率、外部量子效率、发光效率及使用寿命方面的要求。因此,亟需开发一种改善器件性能和延长使用寿命的有机发光材料,以符合多样化应用的需求。
发明内容
针对现有技术的不足,本发明的目的在于提供一种含螺二芴(9,9′-Spirobifluorene)结构的有机化合物,该化合物具有较高的玻璃化温度、合适的HOMO和LUMO能级、以及较高的Eg,能够在不发生分解和没有残留物的情况下升华,在OLED器件中具有良好的应用效果,可有效提升OLED器件的发光性能以及器件寿命,适用于磷光和荧光的OLED器件,尤其是在使用该化合物作为空穴传输材料或基质材料时。
本发明的一种含螺二芴结构的有机化合物,具有下述化学式(1)所示结构:
Figure PCTCN2019112937-appb-000001
其中,
Ar 1、Ar 2、Ar 3、Ar 4各自独立地表示经取代或未经取代的芳基或杂环芳基,并且Ar 1和Ar 2可通过E 1彼此连接成环,Ar 3和Ar 4可通过E 2彼此连接成环;
E 1和E 2各自独立地表示直接键、CRR’、NR、O或S,其中R和R’各自独立地表示C 1-C 8的直链或支链烷基、C 1-C 8的烷氧基、C 7-C 14的芳烷基;
S 1和S 2各自独立地表示直接键、经取代或未经取代的亚芳基、经取代或未经取代的亚杂芳基;
m和n各自独立地表示0至3的整数;
R 1和R 2各自独立地表示氢、氘、卤素、腈基、经取代或未经取代的烷基、经取代或未经取代的环烷基、经取代或未经取代的烷氧基、经取代或未经取代的芳基、经取代或未经取代的芳氧基、经取代或未经取代的烷基芳基、经取代或未经取代的芳烷基、经取代或未经取代的芳烯基、或者经取代或未经取代的杂环基;
前提是,Ar 1(Ar 2)N-(S 1) m-和-(S 2) n-NAr 3(Ar 4)不同,且取代位置对称,即两者的取代位是1,1’位、2,2’、3,3’位或4,4’位。
优选地,化学式(1)中,Ar 1、Ar 2、Ar 3、Ar 4各自独立地具有6-60个C原子,且各自独立地表示经取代或未经取代的苯基、经取代或未经取代的联苯基、经取代或未经取代的三联苯基、经取代或未经取代的四联苯基、经取代或未经取代的萘基、经取代或未经取代的菲基、经取代或未经取代的芴基、经取代或未经取代的螺二芴基、经 取代或未经取代的二苯并噻吩基、经取代或未经取代的二苯并呋喃基、或者经取代或未经取代的咔唑基。
优选地,化学式(1)中,S 1和S 2各自独立地表示直接键、C 6-C 20的亚芳基或亚杂芳基。更为优选地,S 1和S 2表示直接键,即螺二芴结构和N原子直接相连。
优选地,化学式(1)中,m和n各自独立地表示0、1或2,且m+n≤3。更为优选地,m和n各自独立地表示0或1。
优选地,化学式(1)中,R 1和R 2各自独立地表示氢、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、正戊基、仲戊基、新戊基、环戊基、正己基、新己基、环己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟乙基、苯基、1-萘基、2-萘基、2-吡啶基、3-吡啶基、4-吡啶基、甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基、叔丁氧基、2-甲基丁氧基、正戊氧基、仲戊氧基、新戊氧基、环戊氧基、正己氧基、新己氧基、环己氧基、正庚氧基、环庚氧基、正辛氧基、环辛氧基、2-乙基己氧基、三氟甲氧基、五氟乙氧基。更为优选地,R 1和R 2各自独立地表示氢或苯基。
作为本发明特别优选的技术方案,所述含螺二芴结构的有机化合物选自下列具有化学式(2)-(5)所示结构的化合物:
Figure PCTCN2019112937-appb-000002
更为优选地,本发明所述含螺二芴结构的有机化合物选自下列具有化学式(2-1)-(5-1)所示结构的化合物:
Figure PCTCN2019112937-appb-000003
特别优选地,本发明所述含螺二芴结构的有机化合物具有化学式(2-1)所示结构。
上述优选结构中的取代基具有上文中所述相同的含义。
进一步地,Ar 1、Ar 2、Ar 3、Ar 4各自独立地,可优选自下列结构:
Figure PCTCN2019112937-appb-000004
Figure PCTCN2019112937-appb-000005
Figure PCTCN2019112937-appb-000006
上述基团中,虚线表示与氮键合的连接位;R 3各自独立地表示甲基、乙基、正丙基、正丁基、正戊基、正己基、正庚基、环庚基、正辛基、苯基、4-叔丁基苯基、环烷基。
非限制性地,基于式(2-1)-(5-1),下文列出了本发明所述有机化合物的部分优选实例,包括:
2,2’位取代结构化合物:
Figure PCTCN2019112937-appb-000007
Figure PCTCN2019112937-appb-000008
Figure PCTCN2019112937-appb-000009
Figure PCTCN2019112937-appb-000010
Figure PCTCN2019112937-appb-000011
3,3’位取代结构化合物:
Figure PCTCN2019112937-appb-000012
1,1’位及4,4’位取代结构化合物:
Figure PCTCN2019112937-appb-000013
在确定本发明上述有机化合物及其结构特征后,如何制备该化合物对有机化学领域的技术人员来说是容易确定的。典型地,可通过对称位取代的二卤代螺二芴与不同的二芳基胺依次进行Buchwald-Hartwig偶联反应(C-N偶联反应),分步引入不同的 二芳基胺基基团,得到目标化合物。
示例性地,下面以合成(2-1)、(3-1)、(4-1)和(5-1)所示结构化合物为代表,描述适用的两种制备方法。
方法一:
Figure PCTCN2019112937-appb-000014
由二卤代联苯在正丁基锂试剂作用下与溴代芴酮加成,水解后环合生成中间体B,再与不同的二芳基胺分步进行C-N偶联反应,得到目标化合物。
方法二:
Figure PCTCN2019112937-appb-000015
在正丁基锂试剂作用下,由二卤代联苯与由卤代芴酮和二芳基胺经C-N偶联反应 得到的中间体C进行加成反应,得到中间体D,水解后环合生成中间体E,再与另一个二芳基胺进行C-N偶联反应,得到目标化合物。
鉴于本发明所述有机化合物的优异性能,本发明还提供上述有机化合物在OLED器件中的应用。
作为示例性实施方案,所述OLED器件包括:第一电极;设置成面向第一电极的第二电极;以及设置在第一电极与第二电极之间的一个或多个有机材料层,其中有机材料层中的一个或多个层包含化学式(1)所示的化合物。
有机材料层可以由单层结构构成,也可以由其中堆叠有两个或更多个有机材料层的多层结构构成。例如,本发明的发光器件可以具有包括空穴注入层、空穴传输层、发光层、电子传输层、电子注入层等作为有机材料层的结构。器件结构不限于此,也可以包括较少数量的有机层。
作为另一种示例性实施方案,有机材料层包括空穴传输层,且传输空穴的层包含化学式(1)的化合物。
作为示例性实施方案,有机材料层包括空穴注入层、空穴传输层,空穴传输层包含化学式(1)的化合物时,空穴注入层仅使用具有下列结构式的化合物HAT-CN:
Figure PCTCN2019112937-appb-000016
作为示例性实施方案,有机材料层包括空穴注入层,空穴注入层包含化学式(1)的化合物,且包含以1-20wt%的掺杂浓度掺杂的P型掺杂材料,P型掺杂材料的化学结构式如下:
Figure PCTCN2019112937-appb-000017
作为示例性实施方案,有机材料层包括空穴注入层、空穴传输层,且空穴注入层与空穴传输层均包含化学式(1)的化合物。
作为示例性实施方案,有机材料层还包括电子阻挡层,电子阻挡层使用以下化学结构的化合物HT2:
Figure PCTCN2019112937-appb-000018
作为示例性实施方案,有机材料层还包括发光层,并且发光层使用化合物EB作为主发光体,化合物BD作为客发光体,其中客发光体的掺杂比例在1-10重量%,两者的化学结构式如下:
Figure PCTCN2019112937-appb-000019
作为示例性实施方案,有机材料层还包括电子传输层,电子传输层使用以下化学结构的化合物ET,并且包含掺杂5重量%的喹啉锂(Lithium 8-quinolinolate,简写成LiQ):
Figure PCTCN2019112937-appb-000020
作为示例性实施方案,有机材料层还包括电子注入层,电子注入层使用的化合物为氟化锂(LiF)。
根据所使用的材料,本发明的OLED器件可以为顶部发光型、底部发光型或双向发光型。
将本发明的化学式(1)化合物用于OLED器件的有机材料层,能够提高器件的效率、低驱动电压和/或寿命特性;特别是当用于空穴注入和/或空穴传输材料时,器件具有低驱动电压及长使用寿命,展现出了高稳定性的器件性能。
附图说明
图1为器件应用性能表征中OLED器件的结构示意图;其中,
1、透明基板,2、ITO阳极层,3、空穴注入层,4、空穴传输层,5、电子阻挡层,6、发光层,7、电子传输层,8、电子注入层,9、阴极层。
具体实施方式
以下通过实施例对本发明做进一步详细说明,但不应将其视为对本发明保护范围的限制。
制备实施例
1.中间体的合成
1.1中间体B(对称位二卤代螺二芴)的合成
Figure PCTCN2019112937-appb-000021
(1)中间体B1即2-氯-2’-溴-9,9’-螺二芴
Figure PCTCN2019112937-appb-000022
将实验装置充分干燥,在氮气下向2L四口烧瓶中加入122g 2-溴-4′-氯-1,1′-联苯(456mmol)和1100mL干燥过的四氢呋喃,搅拌溶解后用液氮降温至-78℃以下,缓慢滴加182.5mL 2.5M(456mmol)的n-BuLi正己烷溶液;滴加结束后在-78℃下搅拌1h,然后在该温度下分批加入118g(455mmol)2-溴-9-芴酮固体,滴加结束后在-78℃下保温1h,然后自然升温至室温后搅拌12h。待反应结束,滴加4M盐酸溶液淬灭反应,用乙酸乙酯萃取,有机相用饱和食盐水洗涤,旋干除去溶剂,得到中间体醇A1。在不进行任何提纯的情况下,再投料到2L的干燥三口烧瓶中,加入500mL乙酸和15g 36%盐酸,升温回流3h,结束反应。冷却至室温后,过滤,用水洗涤两次,干燥,用甲苯和乙醇重结晶,得到121.6g类白色固体产物B1,产率为58%。
对产物B1的结构进行表征,结果如下所示。
1H NMR(CDCl 3,400MHz)δ:7.90~7.88(m,2H),7.83(d,J=8.1Hz,2H),7.77(d,J=8.1Hz,1H),7.61(s,1H),7.56~7.54(m,2H),7.48~7.42(m,2H),7.40~7.36(m,2H),7.29~7.25(m,2H);
IR(KBr)ν:3057,3028,1593,1516,1485,1448,1279,758,694cm -1
MS[M+H] +=428.98。
(2)中间体B2-B4
参照中间体B1的制备方法,通过采用不同原料合成中间体B2-B4。具体如下表1中所示。
表1
Figure PCTCN2019112937-appb-000023
Figure PCTCN2019112937-appb-000024
1.2中间体E的合成
中间体E的合成可利用方法一或方法二的合成工艺。
方法一:
由中间体B与二芳基胺反应得到,一般复杂的二芳基胺结构利用此方法。
Figure PCTCN2019112937-appb-000025
(1)中间体E1,即N-([1,1′-联苯基-4-基)-2′-氯-N-(9-9-二甲基-9-芴-2-基)-9,9′-螺二芴基-2-胺]
Figure PCTCN2019112937-appb-000026
将实验装置充分干燥,在氮气下向500mL四口烧瓶中加入2-氯-2’-溴-9,9’-螺二芴(B1)19.3g(45mmol)和17.9g(49.5mmol)N-[1,1′-联苯-4-基]-9,9-二甲基-9H-芴-2-胺,再加入干燥并脱气过的甲苯作溶剂,加入6.5g(67.5mmol)叔丁醇钠、1.2g(2.25mmol)催化剂1,1′-双(二苯基膦)二茂铁(dppf),升温至100-105℃,反应16h。待反应结束,冷却至室温,用甲苯稀释,垫硅胶过滤,滤液真空蒸去溶剂,得到粗品,粗品用二甲苯溶解脱色并重结晶,得到25.6g产物E1,产率为80%。
MS[M+H] +=710.27。
方法二:
由芴酮先与二芳基胺反应,一般简单的二芳基胺结构利用此方法。
Figure PCTCN2019112937-appb-000027
(2)中间体E2,即2’-氯-N,N-二苯基-9,9′-螺二芴基-2-胺
Figure PCTCN2019112937-appb-000028
将实验装置充分干燥,在氮气下向500mL四口烧瓶中加入25g(96mmol)2-溴-9-芴酮和18.8g(111mmol)二苯胺,再加入干燥并脱气过的250mL甲苯作溶剂,加入14.9g(153.6mmol)叔丁醇钠,0.88g(0.96mmol)催化剂Pd 2(dba) 3升温至80℃,缓慢滴加4.5mL质量浓度为10%的三叔丁基膦甲苯溶液。滴加完毕后升温至100~105℃,反应6h。待反应结束,冷却至室温,用甲苯稀释,垫硅胶过滤,滤液真空蒸去溶剂,得到粗品,粗品用二甲苯溶解脱色并重结晶,得到27.7g棕黄色产物C1,产率为83%。
Figure PCTCN2019112937-appb-000029
在250mL的三口瓶中加入2-溴-4′-氯-1,1′-联苯9.4g(35mmol)和120mL无水四氢呋喃(干燥过),氮气保护,冷却到-78℃,缓慢加入正丁基锂14mL(35mmol),并在-78℃下搅拌1.5h;在氮气保护下加入2-(二苯基氨)基-9-芴酮(C1)12.2g(35mmol),搅拌至室温后,继续搅拌反应2h。待反应结束,加入4M盐酸溶液淬灭反应,用乙酸乙酯萃取,有机相用饱和食盐水洗涤,旋除溶剂,得到中间体醇。在不进一步提纯的情况下,再投料到干燥的三口烧瓶中,加入乙酸和浓盐酸,升温回流3小时,结束反应。冷却至室温,过滤和水洗涤,干燥,用甲苯和乙醇重结晶,得到11.6g类白色固体产物E2,产率为64%。
MS[M+H] +=518.15。
(3)E3-E20
参照中间体E1或E2的制备方法,通过采用不同原料合成中间体E3-E20。具体如下表2和3所示。
方法一:
表2
Figure PCTCN2019112937-appb-000030
Figure PCTCN2019112937-appb-000031
方法二:
表3
Figure PCTCN2019112937-appb-000032
Figure PCTCN2019112937-appb-000033
Figure PCTCN2019112937-appb-000034
2.目标化合物的合成
目标化合物可通过如下工艺合成。
Figure PCTCN2019112937-appb-000035
实施例1-1:
Figure PCTCN2019112937-appb-000036
将实验装置充分干燥,在氮气下向500mL四口烧瓶中加入E2(23.3g,45mmol)和N-苯基-4-联苯胺12.1g(49.5mmol),再加入干燥并脱气过的甲苯作溶剂,加入6.5g(67.5mmol)叔丁醇钠、0.88g(0.96mmol)催化剂Pd 2(dba) 3升温至80℃,缓慢滴加4.5mL质量浓度为10%的三叔丁基膦甲苯溶液,滴加完毕后升温至100-105℃,反应6h。待反应结束,冷却至室温,用甲苯稀释,垫硅胶过滤,滤液真空蒸去溶剂,得到粗品,粗品用二甲苯溶解脱色并重结晶,得到23.9g产物1-1,产率为73%。
化合物1-1的结构表征结果如下。
1H NMR(CDCl 3,400MHz)δ:7.86(d,J=7.5Hz,4H),7.76(d,J=8.1Hz,2H),7.56~7.47(m,6H),7.40~7.30(m,8H),7.26(t,J=7.5Hz,7H),7.16(d,J=7.5Hz,1H),7.10(t,J=7.5Hz,7H),6.99(t,J=7.5Hz,3H);
IR(KBr)ν:3057,3030,1593,1517,1485,1449,1312,1277,758,694cm -1
MS[M+H] +=727.28。
实施例1-2:
Figure PCTCN2019112937-appb-000037
利用与化合物1-1相同的合成方式来制备化合物1-2,不同之处在于使用二(4-联苯基)胺代替N-苯基-4-联苯胺。产率为82%。
1H NMR(CDCl 3,400MHz)δ:7.89(d,J=7.5Hz,4H),7.76(d,J=8.1Hz,4H),7.55~7.45(m,10H),7.40~7.30(m,9H),7.27(t,J=7.5Hz,2H),7.21(m,5H),7.16(d,J=7.5Hz,1H),7.06(d,J=7.5Hz,5H),6.98(t,J=7.5Hz,2H);
IR(KBr)ν:3055,3028,1946,1910,1597,1516,1483,1450,1323,1290,1265,764,696cm -1
MS[M+H] +=803.35。
实施例1-3:
Figure PCTCN2019112937-appb-000038
利用与化合物1-1相同的合成方式来制备化合物1-3,不同之处在于使用E15代替E2,二(4-联苯基)胺代替N-苯基-4-联苯胺。产率为68%。
1H NMR(CDCl 3,400MHz)δ:7.87(d,J=7.5Hz,4H),7.74(d,J=8.1Hz,6H),7.55~7.45(m,14H),7.40~7.30(m,11H),7.26(m,3H),7.24(m,3H),7.15(d,J=7.5Hz,1H),7.07(d,J=7.5Hz,3H),7.01(t,J=7.5Hz,1H);
IR(KBr)ν:3056,3029,1911,1595,1516,1484,1318,1265,760,695cm -1;MS[M+H] +=879.35。
实施例1-4:
Figure PCTCN2019112937-appb-000039
利用与化合物1-1相同的合成方式来制备化合物1-4,不同之处在于使用N-苯基-4-二苯并呋喃胺代替N-苯基-4-联苯胺。产率为68%。
1H NMR(CDCl 3,400MHz)δ:7.97(d,J=9.1Hz,1H),7.87(d,J=7.5Hz,4H),7.64~7.54(m,3H),7.46~7.37(m,3H),7.34~7.27(m,6H),7.23(t,J=7.5Hz,7H),7.15(d,J=7.5Hz,1H),7.07(d,J=7.5Hz,7H),6.98(t,J=7.5Hz,4H);
IR(KBr)ν:3057,3030,1593,1517,1485,1449,1201,758,694cm -1
MS[M+H] +=741.27。
实施例1-5:
Figure PCTCN2019112937-appb-000040
利用与化合物1-1相同的合成方式来制备化合物1-5,不同之处在于使用E1代替E2,二(4-联苯基)胺代替N-苯基-4-联苯胺。产率为65%。
1H NMR(CDCl 3,400MHz)δ:7.90~7.84(m,6H),7.74(d,J=7.5Hz,4H),7.54(d,J=7.5Hz,6H),7.48(t,J=7.5Hz,4H),7.46~7.36(m,9H),7.34~7.26(m,5H),7.32(s,1H),7.23(t,J=7.5Hz,3H),7.15(d,J=7.5Hz,2H),7.07(d,J=7.5Hz,3H),7.01(t,J=7.5Hz,1H),1.68(s,6H);
IR(KBr)ν:3055,3028,1597,1516,1483,1450,1290,764,696cm -1
MS[M+H] +=919.39。
实施例1-6:
Figure PCTCN2019112937-appb-000041
利用与化合物1-1相同的合成方式来制备化合物1-6,不同之处在于使用E3代替E2,二(4-联苯基)胺代替N-苯基-4-联苯胺。产率为65%。
1H NMR(CDCl 3,400MHz)δ:7.90~7.84(m,7H),7.74(d,J=7.5Hz,4H),7.54(d,J=7.5Hz,6H),7.48(t,J=7.5Hz,4H),7.46~7.36(m,14H),7.34~7.26(m,6H),7.22(s,1H),7.15(m,3H),7.07(d,J=7.5Hz,3H),1.68(s,6H);
IR(KBr)ν:3055,3028,1597,1516,1483,1450,1323,1290,763,697cm -1
MS[M+H] +=995.42。
实施例1-7:
Figure PCTCN2019112937-appb-000042
利用与化合物1-1相同的合成方式来制备化合物1-7,不同之处在于使用双(9,9-二甲基芴)胺代替N-苯基-4-联苯胺。产率为73%。
1H NMR(CDCl 3,400MHz)δ:7.90~7.84(m,8H),7.54(d,J=7.5Hz,3H),7.46~7.36(m,4H),7.34~7.26(m,8H),7.23(t,J=7.5Hz,5H),7.15(d,J=7.5Hz,3H),7.07(d,J=7.5Hz,5H),6.99(t,J=7.5Hz,2H),1.68(s,12H);
IR(KBr)ν:3057,3030,1593,1516,1483,1450,1290,758,694cm -1
MS[M+H] +=883.40。
实施例1-8:
Figure PCTCN2019112937-appb-000043
利用与化合物1-1相同的合成方式来制备化合物1-8,不同之处在于使用E7代替E2,N-苯基-4-联苯胺代替N-苯基-4-联苯胺。产率为66%。
1H NMR(CDCl 3,400MHz)δ:8.17(d,J=10.2Hz,1H),7.99(s,1H),7.87(d,J=7.5Hz,5H),7.74(d,J=8.1Hz,2H),7.63~7.54(m,7H),7.50~7.44(m,6H),7.40(t,J=7.5Hz,1H),7.37(t,J=7.5Hz,3H),7.34~7.26(m,4H),7.25~7.19(m,6H),7.15(d,J=7.5Hz,1H),7.07(d,J=7.5Hz,5H),7.01(t,J=7.5Hz,2H),6.46(d,J=7.5Hz,1H);
IR(KBr)ν:3057,3030,1598,1517,1485,1468,1328,1270,1075,761,698cm -1
MS[M+H] +=892.35。
实施例1-9:
Figure PCTCN2019112937-appb-000044
利用与化合物1-1相同的合成方式来制备化合物1-9,不同之处在于使用E8代替E2。产率为67%。
1H NMR(CDCl 3,400MHz)δ:7.86(d,J=7.5Hz,4H),7.74(d,J=8.1Hz,2H),7.56~7.44(m,6H),7.40(t,J=7.5Hz,1H),7.38~7.32(m,4H),7.27(t,J=7.5Hz,3H),7.23(t,J=7.5Hz,3H),7.20~7.13(m,7H),7.07(d,J=7.5Hz,3H),6.99(t,J=7.5Hz,1H),6.94(t,J=7.5Hz,2H),1.66(s,6H);
IR(KBr)ν:3055,3028,1597,1516,1485,1450,1312,1290,764,696cm -1
MS[M+H] +=767.31。
性能表征
3.化合物物理性能
以部分化合物为例,对本发明化学式(1)所示化合物的热性能、HOMO能级和LUMO能级进行检测。检测对象及其结果如下表4所示。
表4
化合物 Tg(℃) Td(℃) HOMO(eV) LUMO(eV) 功能层
1-1 153 479 5.26 2.23 HIL,HTL
1-2 155 481 5.27 2.25 HIL,HTL
1-4 140 423 5.30 2.16 HIL,HTL,EBL
1-6 158 485 5.48 2.28 HIL,HTL
1-7 161 489 5.55 2.30 HIL,HTL
其中,玻璃化温度Tg由示差扫描量热法(DSC,美国TA公司DSC25示差扫描量热仪)测定,升温速率10℃/min;热失重温度Td是在氮气气氛中失重1%的温度,在美国TA公司的TGA55热重分析仪上进行测定,氮气流量为20mL/min;最高占据分子轨道HOMO能级和最低未占分子轨道LUMO能级,是由循环伏安法测得。
由表4数据可知,本发明化合物有较高的玻璃化转变温度,可以保证化合物的热稳定性,从而避免化合物的非结晶性薄膜转变成结晶性薄膜,使得所制作的含有本发明有机化合物的OLED器件的寿命得到提升。同时,本发明化合物具有不同的HOMO和LOMO能级,可应用于OLED器件不同的功能层。
4.OLED器件应用
本发明的上述有机化合物特别适用于OLED器件中的空穴注入层(HIL)、空穴传输层(HTL)和/或电子阻挡层(EBL)。它们可作为单独的层,也可作为HIL、HTL或EBL中的混合组分。
以下结合附图1,通过实施例1-10和比较实施例1-2详细说明本发明的有机化合物在OLED器件中作为不同功能层材料的应用效果。
其中使用到的有机材料的结构式如下:
Figure PCTCN2019112937-appb-000045
上述有机材料都是现有的已知在售化合物,由市场采购获得。
实施例1
参照图1所示结构,制造OLED器件,具体步骤为:将镀有厚度为130nm的ITO(氧化铟锡)的玻璃基板(康宁玻璃50mm*50mm*0.7mm)分别用异丙醇和纯水超声洗涤5 分钟,再用紫外线臭氧清洗,之后将玻璃基板传送至真空沉积室中;将空穴注入材料HAT-CN以5nm的厚度真空(约10 -7Torr)热沉积在透明ITO电极上,由此形成空穴注入层;在空穴注入层上真空沉积110nm厚度的化合物1-1,形成空穴传输层;在空穴传输层上真空沉积20nm厚度的HT2,形成电子阻挡层;作为发光层,真空沉积主体EB和4%的客体掺杂剂BD,厚度为25nm;使用包含掺杂5%LiQ(8-羟基喹啉锂)的ET化合物形成电子传输层,厚度为25nm;最后按顺序沉积1nm厚的氟化锂(电子注入层)和150nm厚度的铝形成阴极;将该器件从沉积室传送至手套箱中,随即用UV可固化环氧树脂及含有吸湿剂的玻璃盖板进行封装。
该器件结构表示为:ITO(130nm)/HAT-CN(5nm)/化合物1-1(110nm)/HT2(20nm)/EB:BD(25nm)/ET:LiQ(25nm)/LiF(1nm)/Al(150nm)。
在上述制造步骤中,有机材料、氟化锂和铝的沉积速率分别保持在0.1nm/s、0.05nm/s和0.2nm/s。
实施例2
以与实施例1中相同的方式进行实验,不同之处在于:作为空穴传输层,使用化合物1-2代替实施例1中的化合物1-1。
该器件结构表示为:ITO(130nm)/HAT-CN(5nm)/化合物1-2(110nm)/HT2(20nm)/EB:BD(25nm)/ET:LiQ(25nm)/LiF(1nm)/Al(150nm)。
实施例3
以与实施例1中相同的方式进行实验,不同之处在于:作为空穴传输层,使用化合物1-4代替实施例1中的化合物1-1。
该器件结构表示为:ITO(130nm)/HAT-CN(5nm)/化合物1-4(110nm)/HT2(20nm)/EB:BD(25nm)/ET:LiQ(25nm)/LiF(1nm)/Al(150nm)。
实施例4
以与实施例1中相同的方式进行实验,不同之处在于:作为空穴传输层,使用化合物1-6代替实施例1中的化合物1-1。
该器件结构表示为:ITO(130nm)/HAT-CN(5nm)/化合物1-6(110nm)/HT2(20nm)/EB:BD(25nm)/ET:LiQ(25nm)/LiF(1nm)/Al(150nm)。
实施例5
以与实施例1中相同的方式进行实验,不同之处在于:作为空穴传输层,使用化合物1-7代替实施例1中的化合物1-1。
该器件结构表示为:ITO(130nm)/HAT-CN(5nm)/化合物1-7(110nm)/HT2(20nm)/EB:BD(25nm)/ET:LiQ(25nm)/LiF(1nm)/Al(150nm)。
比较实施例1
以与实施例1中相同的方式进行实验,不同之处在于:作为空穴传输层,使用HT1代替实施例1中的化合物1-1。
该器件结构表示为:ITO(130nm)/HAT-CN(5nm)/HT1(110nm)/HT2(20nm)/EB:BD(25nm)/ET:LiQ(25nm)/LiF(1nm)/Al(150nm)。
与比较实施例1相比,上述器件实施例1-5中器件制作工艺完全相同,并且采用了相同的基板和电极材料,电极材料的膜厚也保持一致,不同的是对器件中的空穴传输材料HT1做了更换。
将上述实施例1-5和比较实施例1所得器件在10mA/cm 2电流密度下进行性能测试,结果如表5所示。
表5
Figure PCTCN2019112937-appb-000046
其中,发光颜色用CIE x,y色度坐标来判别与定义;驱动电压是指亮度为1cd/m 2的电压;电流效率是指单位电流密度下的发光亮度;发光效率是指消耗单位电功率所产生的光通量;外部量子效率(external quantum efficiency,EQE)是指在观测方向上射出组件表面的光子数目与注入电子数目的比率。LT97@1000nits是指连续使用1000h以上,器件从初始亮度(100%)降低到97%的时间。
如上表所示,实施例1-5中使用的化合物用作有机发光器件中的空穴传输层,与联苯胺型材料相比,具有优异的空穴传输的能力而表现出低电压和高效率特性。另外, 实施例1和实施例4基于高三重态能量(螺环材料的特性)而表现出更好的稳定性及寿命;而实施例2、3和5所呈现的器件的寿命与比较实施例基本相当。
为进一步验证本发明的应用性能优势,参照上述实施例1的方式,制造具有下述结构的OLED器件。
实施例6
该器件结构表示为:ITO(130nm)/化合物1-1:p型掺杂材料(20nm)/化合物1-1(105nm)/HT2(20nm)/EB:BD(25nm)/ET:LiQ(25nm)/LiF(1nm)/Al(150nm)。
实施例7
该器件结构表示为:ITO(130nm)/化合物1-2:p型掺杂材料(20nm)/化合物1-2(105nm)/HT2(20nm)/EB:BD(25nm)/ET:LiQ(25nm)/LiF(1nm)/Al(150nm)。
实施例8
该器件结构表示为:ITO(130nm)/化合物1-4:p型掺杂材料(20nm)/化合物1-4(105nm)/HT2(20nm)/EB:BD(25nm)/ET:LiQ(25nm)/LiF(1nm)/Al(150nm)。
实施例9
该器件结构表示为:ITO(130nm)/化合物1-6:p型掺杂材料(20nm)/化合物1-6(105nm)/HT2(20nm)/EB:BD(25nm)/ET:LiQ(25nm)/LiF(1nm)/Al(150nm)。
实施例10
该器件结构表示为:ITO(130nm)/化合物1-7:p型掺杂材料(20nm)/化合物1-7(105nm)/HT2(20nm)/EB:BD(25nm)/ET:LiQ(25nm)/LiF(1nm)/Al(150nm)。
比较实施例2
该器件结构表示为:ITO(130nm)/HAT-CN(20nm)/HT1(105nm)/HT2(20nm)/EB:BD(25nm)/ET:LiQ(25nm)/LiF(1nm)/Al(150nm)。
与比较实施例2相比,本发明的器件实施例6-10的器件制作工艺完全相同,并且采用了相同的基板和电极材料,电极材料的膜厚也保持一致,所不同的是对器件中的空穴注入材料和空穴传输材料做了更换,并在空穴注入层掺杂了2wt%的P型掺杂材料。
将上述实施例6-10和比较实施例2所得器件在10mA/cm 2电流密度下进行性能测试,结果如表6所示。
表6
Figure PCTCN2019112937-appb-000047
如上表所示,实施例6-10中使用的化合物用作器件的空穴注入层主体材料和空穴传输层,与比较实施例2相比,其为器件带来优异的空穴传输能力,驱动电压更低,电流效率和发光效率更高,且表现出更好的稳定性及寿命。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种含螺二芴结构的有机化合物,具有下述化学式(1)所示结构:
    Figure PCTCN2019112937-appb-100001
    其中,
    Ar 1、Ar 2、Ar 3、Ar 4各自独立地表示经取代或未经取代的芳基或杂环芳基,并且Ar 1和Ar 2可通过E 1彼此连接成环,Ar 3和Ar 4可通过E 2彼此连接成环;
    E 1和E 2各自独立地表示直接键、CRR’、NR、O或S,其中R和R’各自独立地表示C 1-C 8的直链或支链烷基、C 1-C 8的烷氧基、C 7-C 14的芳烷基;
    S 1和S 2各自独立地表示直接键、经取代或未经取代的亚芳基、经取代或未经取代的亚杂芳基;
    m和n各自独立地表示0至3的整数;
    R 1和R 2各自独立地表示氢、氘、卤素、腈基、经取代或未经取代的烷基、经取代或未经取代的环烷基、经取代或未经取代的烷氧基、经取代或未经取代的芳基、经取代或未经取代的芳氧基、经取代或未经取代的烷基芳基、经取代或未经取代的芳烷基、经取代或未经取代的芳烯基、或者经取代或未经取代的杂环基;
    前提是,Ar 1(Ar 2)N-(S 1) m-和-(S 2) n-NAr 3(Ar 4)不同,且取代位置对称。
  2. 根据权利要求1所述的有机化合物,其特征在于:化学式(1)中,Ar 1、Ar 2、Ar 3、Ar 4各自独立地具有6-60个C原子,且各自独立地表示经取代或未经取代的苯基、经取代或未经取代的联苯基、经取代或未经取代的三联苯基、经取代或未经取代的四联苯基、经取代或未经取代的萘基、经取代或未经取代的菲基、经取代或未经取代的芴基、经取代或未经取代的螺二芴基、经取代或未经取代的二苯并噻吩基、经取代或未经取代的二苯并呋喃基、或者经取代或未经取代的咔唑基。
  3. 根据权利要求1所述的有机化合物,其特征在于:化学式(1)中,S 1和S 2各自独立地表示直接键、C 6-C 20的亚芳基或亚杂芳基;优选地,S 1和S 2表示直接键。
  4. 根据权利要求1所述的有机化合物,其特征在于:化学式(1)中,m和n各自独立地表示0、1或2,且m+n≤3;优选地,m和n各自独立地表示0或1。
  5. 根据权利要求1所述的有机化合物,其特征在于:化学式(1)中,R 1和R 2各自独立地表示氢或苯基。
  6. 根据权利要求1-5中任一项所述的有机化合物,其特征在于,所述含螺二芴结构的有机化合物选自下列具有化学式(2)-(5)所示结构的化合物:
    Figure PCTCN2019112937-appb-100002
  7. 根据权利要求1-5中任一项所述的有机化合物,其特征在于,所述含螺二芴结构的有机化合物选自下列具有化学式(2-1)-(5-1)所示结构的化合物:
    Figure PCTCN2019112937-appb-100003
  8. 根据权利要求1-7中任一项所述的有机化合物,其特征在于,Ar 1、Ar 2、Ar 3、Ar 4各自独立地选自下列结构:
    Figure PCTCN2019112937-appb-100004
    Figure PCTCN2019112937-appb-100005
    Figure PCTCN2019112937-appb-100006
    上述基团中,虚线表示与氮键合的连接位;R 3各自独立地表示甲基、乙基、正丙基、正丁基、正戊基、正己基、正庚基、环庚基、正辛基、苯基、4-叔丁基苯基、环烷基。
  9. 权利要求1-8中任一项所述的有机化合物的制备方法,包括:对称位取代的二卤代螺二芴与不同的二芳基胺依次进行C-N偶联反应,分步引入不同的二芳基胺基基团,得到目标化合物。
  10. 权利要求7所述的有机化合物的制备方法,包括:由二卤代联苯在正丁基锂试剂作用下与溴代芴酮加成,水解后环合生成中间体B,再与不同的二芳基胺分步进行C-N偶联反应,得到目标化合物;
    反应式如下所示:
    Figure PCTCN2019112937-appb-100007
  11. 权利要求7所述的有机化合物的制备方法,包括:在正丁基锂试剂作用下,由二卤代联苯与由卤代芴酮和二芳基胺经C-N偶联反应得到的中间体C进行加成反应, 得到中间体D,水解后环合生成中间体E,再与另一个二芳基胺进行C-N偶联反应,得到目标化合物;
    反应式如下所示:
    Figure PCTCN2019112937-appb-100008
  12. 权利要求1-8中任一项所述的有机化合物在OLED器件中的应用。
  13. 一种OLED器件,包括:第一电极;设置成面向第一电极的第二电极;以及设置在第一电极与第二电极之间的一个或多个有机材料层,其中有机材料层中的一个或多个层包含权利要求1-8中任一项所述的有机化合物。
  14. 根据权利要求13所述的OLED器件,其特征在于:有机材料层包括空穴传输层,且传输空穴的层包含权利要求1-8中任一项所述的有机化合物。
  15. 根据权利要求13所述的OLED器件,其特征在于:有机材料层包括空穴注入层,空穴注入层包含权利要求1-8中任一项所述的有机化合物,且包含以1-20wt%的掺杂浓度掺杂的P型掺杂材料。
  16. 根据权利要求13所述的OLED器件,其特征在于:有机材料层包括空穴注入层、空穴传输层,且空穴注入层与空穴传输层均包含权利要求1-8中任一项所述的有机化合物。
PCT/CN2019/112937 2018-10-25 2019-10-24 含螺二芴结构的有机化合物及其在oled器件中的应用 WO2020083327A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217015834A KR20210113165A (ko) 2018-10-25 2019-10-24 스피로비플루오렌 구조를 포함하는 유기 화합물 및 이의 유기 전계 발광 표시 소자에서의 응용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811250231.2 2018-10-25
CN201811250231.2A CN110066222B (zh) 2018-10-25 2018-10-25 含螺二芴结构的有机化合物及其在oled器件中的应用

Publications (1)

Publication Number Publication Date
WO2020083327A1 true WO2020083327A1 (zh) 2020-04-30

Family

ID=67365903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112937 WO2020083327A1 (zh) 2018-10-25 2019-10-24 含螺二芴结构的有机化合物及其在oled器件中的应用

Country Status (3)

Country Link
KR (1) KR20210113165A (zh)
CN (1) CN110066222B (zh)
WO (1) WO2020083327A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022096172A1 (de) * 2020-11-03 2022-05-12 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110066222B (zh) * 2018-10-25 2020-08-11 常州强力电子新材料股份有限公司 含螺二芴结构的有机化合物及其在oled器件中的应用
CN110483769B (zh) * 2019-08-15 2021-07-20 东华大学 螺二芴共轭微孔聚合物/碳纳米管杂化材料及其制备方法
CN111892476B (zh) * 2019-09-02 2023-04-28 广东聚华印刷显示技术有限公司 螺二芴化合物、螺二芴聚合物及其应用、有机发光二极管器件
CN112538047A (zh) * 2019-09-20 2021-03-23 常州强力昱镭光电材料有限公司 具有对称异取代氮杂螺二芴结构的有机化合物及其应用
CN112920059B (zh) * 2019-12-06 2023-09-05 常州强力昱镭光电材料有限公司 多取代螺二芴化合物、空穴传输材料组合物及光电器件

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108137480A (zh) * 2015-10-06 2018-06-08 株式会社Lg化学 胺化合物和包含其的有机发光器件
CN108218721A (zh) * 2016-12-15 2018-06-29 阜阳欣奕华材料科技有限公司 一种苯基茚类化合物、有机电致发光器件及显示装置
CN109776397A (zh) * 2019-03-20 2019-05-21 北京燕化集联光电技术有限公司 一种具有9,9′-螺二芴结构的有机化合物及其制备方法与应用
CN109776395A (zh) * 2019-03-20 2019-05-21 北京燕化集联光电技术有限公司 一种含氟螺二芴结构的空穴材料及其制备方法与应用
CN109776396A (zh) * 2019-03-20 2019-05-21 北京燕化集联光电技术有限公司 一种具有螺二芴结构的有机化合物及其制备方法与应用
CN109879763A (zh) * 2019-03-20 2019-06-14 北京燕化集联光电技术有限公司 一种具有螺二芴结构的有机发光空穴材料及其制备方法与应用
CN109942440A (zh) * 2019-04-25 2019-06-28 北京燕化集联光电技术有限公司 一种具有螺二芴结构的oled材料及其制备方法与应用
CN109970577A (zh) * 2019-04-25 2019-07-05 北京燕化集联光电技术有限公司 一种具有含甲基螺二芴结构的化合物及其制备方法与应用
CN109970578A (zh) * 2019-04-25 2019-07-05 北京燕化集联光电技术有限公司 一种具有9,9′-螺二芴结构的有机化合物及其制备方法与应用
CN110003020A (zh) * 2019-04-25 2019-07-12 北京燕化集联光电技术有限公司 一种具有螺二芴结构的有机电致发光材料及其制备方法与应用
CN110066222A (zh) * 2018-10-25 2019-07-30 常州强力电子新材料股份有限公司 含螺二芴结构的有机化合物及其在oled器件中的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4236652A3 (en) * 2015-07-29 2023-09-13 Merck Patent GmbH Materials for organic electroluminescent devices
CN109810083A (zh) * 2017-11-21 2019-05-28 上海自旭光电科技有限公司 用于有机发光二极管显示器件的化合物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108137480A (zh) * 2015-10-06 2018-06-08 株式会社Lg化学 胺化合物和包含其的有机发光器件
CN108218721A (zh) * 2016-12-15 2018-06-29 阜阳欣奕华材料科技有限公司 一种苯基茚类化合物、有机电致发光器件及显示装置
CN110066222A (zh) * 2018-10-25 2019-07-30 常州强力电子新材料股份有限公司 含螺二芴结构的有机化合物及其在oled器件中的应用
CN109776397A (zh) * 2019-03-20 2019-05-21 北京燕化集联光电技术有限公司 一种具有9,9′-螺二芴结构的有机化合物及其制备方法与应用
CN109776395A (zh) * 2019-03-20 2019-05-21 北京燕化集联光电技术有限公司 一种含氟螺二芴结构的空穴材料及其制备方法与应用
CN109776396A (zh) * 2019-03-20 2019-05-21 北京燕化集联光电技术有限公司 一种具有螺二芴结构的有机化合物及其制备方法与应用
CN109879763A (zh) * 2019-03-20 2019-06-14 北京燕化集联光电技术有限公司 一种具有螺二芴结构的有机发光空穴材料及其制备方法与应用
CN109942440A (zh) * 2019-04-25 2019-06-28 北京燕化集联光电技术有限公司 一种具有螺二芴结构的oled材料及其制备方法与应用
CN109970577A (zh) * 2019-04-25 2019-07-05 北京燕化集联光电技术有限公司 一种具有含甲基螺二芴结构的化合物及其制备方法与应用
CN109970578A (zh) * 2019-04-25 2019-07-05 北京燕化集联光电技术有限公司 一种具有9,9′-螺二芴结构的有机化合物及其制备方法与应用
CN110003020A (zh) * 2019-04-25 2019-07-12 北京燕化集联光电技术有限公司 一种具有螺二芴结构的有机电致发光材料及其制备方法与应用

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DATABASE CAS 28 August 2018 (2018-08-28), retrieved from STN Database accession no. 2241761-19-1 *
DATABASE CAS Database accession no. 1 923734-80-8 *
DATABASE CAS Database accession no. 1380497-16 -4 *
DATABASE CAS Database accession no. 1384279-66 - 6 *
DATABASE CAS Database accession no. 2206753-65 - 1 *
DATABASE CAS Database accession no. 2206753-84 - 4 *
DATABASE CAS Database accession no. 2206754-09- 6 *
DATABASE CAS Database accession no. 2241760-82-5 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022096172A1 (de) * 2020-11-03 2022-05-12 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Also Published As

Publication number Publication date
KR20210113165A (ko) 2021-09-15
CN110066222A (zh) 2019-07-30
CN110066222B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2020083327A1 (zh) 含螺二芴结构的有机化合物及其在oled器件中的应用
JP5902655B2 (ja) 有機電子素子及びその化合物、端末
TWI461507B (zh) 新穎有機電場發光化合物及使用該化合物之有機電場發光裝置
KR100961821B1 (ko) 신규한 안트라센 유도체 및 이를 이용한 유기전자소자
TWI635068B (zh) 新穎化合物及包含其之有機電子裝置
KR101826730B1 (ko) 오원자 헤테로 고리를 포함하는 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
WO2020108422A1 (zh) 二芳基胺取代的螺二芴类化合物及其在oled器件中的应用
KR20100112903A (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2020169060A1 (zh) 含螺二芴结构的有机化合物及其应用
KR20080071969A (ko) 신규한 디아민 유도체, 이의 제조방법 및 이를 이용한유기전자소자
KR20110034103A (ko) 아릴 고리가 축합된 복소환 5원자고리 유도체를 가지는 화합물 및 이를 이용한 유기전기소자, 그 단말
KR101597865B1 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2007123339A1 (en) Novel anthracene derivatives, method for preparation thereof, and organic electronic device using the same
KR101408514B1 (ko) 신규한 디아민 유도체, 이의 제조방법 및 이를 이용한 유기 전자 소자
TWI641598B (zh) 化合物及其有機電子裝置
WO2021109819A1 (zh) 多取代螺二芴化合物、空穴传输材料组合物及光电器件
WO2021103728A1 (zh) 一种有机化合物和使用该化合物的有机电致发光器件
WO2023202198A1 (zh) 有机材料、电子元件和电子装置
KR101380008B1 (ko) 신규한 안트라센 유도체 및 이를 이용한 유기 전자 소자
KR20140015226A (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
CN112939788A (zh) 一种金刚烷胺类化合物及其应用以及包含该化合物的有机电致发光器件
KR101895949B1 (ko) 오원자 헤테로 고리를 포함하는 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
KR101888659B1 (ko) 아민 유도체 화합물 및 이를 포함하는 유기전계발광소자
TW201323379A (zh) 用於有機電致發光裝置之發光之1,1’-雙萘基-4,4’-二胺衍生物及使用該衍生物之有機電致發光裝置
CN116675706B (zh) 一种噁唑并苯并咔唑磷光主体材料及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876032

Country of ref document: EP

Kind code of ref document: A1