WO2020080553A9 - 熱延鋼板およびその製造方法 - Google Patents

熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2020080553A9
WO2020080553A9 PCT/JP2019/041314 JP2019041314W WO2020080553A9 WO 2020080553 A9 WO2020080553 A9 WO 2020080553A9 JP 2019041314 W JP2019041314 W JP 2019041314W WO 2020080553 A9 WO2020080553 A9 WO 2020080553A9
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
hot
rolled steel
sheet according
Prior art date
Application number
PCT/JP2019/041314
Other languages
English (en)
French (fr)
Other versions
WO2020080553A1 (ja
Inventor
龍雄 横井
輝樹 林田
睦海 榊原
洵 安藤
真輔 甲斐
洋志 首藤
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN201980066651.1A priority Critical patent/CN112805395B/zh
Priority to KR1020217009676A priority patent/KR102529040B1/ko
Priority to JP2020542670A priority patent/JP6897882B2/ja
Priority to EP19873240.6A priority patent/EP3868903A4/en
Priority to US17/283,476 priority patent/US20220010396A1/en
Priority to MX2021003895A priority patent/MX2021003895A/es
Publication of WO2020080553A1 publication Critical patent/WO2020080553A1/ja
Publication of WO2020080553A9 publication Critical patent/WO2020080553A9/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/52Methods of heating with flames
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B2001/028Slabs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a hot-rolled steel sheet and a method for producing the same.
  • the present application claims priority based on Japanese Patent Application No. 2018-197935 filed in Japan on October 19, 2018, the contents of which are incorporated herein by reference.
  • LCA Life Cycle Assessment
  • zinc phosphate treatment which is a kind of chemical conversion treatment
  • the zinc phosphate treatment is low cost and has excellent coating film adhesion and corrosion resistance.
  • the zinc phosphate treatment solution contains phosphoric acid as a main component and contains metal components such as zinc salt, nickel salt, and manganese salt. Therefore, there is a concern about the environmental load of the waste liquid phosphorus and metals that are discarded after use.
  • a large amount of sludge containing iron phosphate as a main component that precipitates in the chemical conversion treatment tank has become a large environmental load as industrial waste.
  • Patent Documents 2 and 3 describe techniques for forming a chemical conversion treatment film on a metal surface using a zirconium chemical conversion treatment liquid.
  • the conventional high-strength steel sheet up to the strength class of 780 MPa can obtain corrosion resistance and coating film adhesion comparable to the zinc phosphate chemical conversion treatment.
  • the amount of alloying elements contained is large, so that zirconium-based chemical crystals are insufficiently adhered to the steel sheet surface, resulting in good corrosion resistance and coating film adhesion. I can't get it.
  • the present invention has been devised in view of the above-mentioned problems, and an object of the present invention is an ultra-high-strength steel sheet having a tensile strength of 980 MPa or more and sufficient low-temperature toughness, and a zirconium-based chemical conversion treatment.
  • the present inventors have conducted diligent studies to solve the above problems, and have found that the oxide on the surface layer of the steel sheet has a great influence on the chemical conversion treatment property and the coating film adhesion, as will be described later.
  • the hot-rolled steel sheet according to one aspect of the present invention has a chemical composition represented by an average value of the entire plate thickness direction in mass%, C: 0.050% or more, 0.200% or less, Si: 0.05% or more, 3.00% or less, Mn: 1.00% or more and 4.00% or less, Al: 0.001% or more, 2.000% or less, N: 0.0005% or more, 0. 1000% or less, Ni: 0.02% or more, 2.00% or less, Nb: 0% or more, 0.300% or less, Ti: 0% or more, 0.300% or less, Cu: 0% or more, 2.
  • Mo 0% or more, 1.000% or less
  • V 0% or more, 0.300% or less
  • Cr 0% or more, 2.00% or less
  • Mg 0% or more, 0.0100% Below
  • Ca 0% or more, 0.0100% or less
  • REM 0% or more, 0.1000% or less
  • B 0% or more, 0.0100% or less, one of Zr, Co, Zn, and W.
  • two or more types 0 to 1.000% in total, Sn: 0 to 0.050%, P: 0.100% or less, S: 0.0300% or less, O: 0.0100% or less.
  • the balance is composed of Fe and impurities, satisfies the following formula (i), the PCM represented by the following (ii) is 0.20 or more, and the Ms represented by the following (iii) is 400 ° C. or higher.
  • the metallographic structure at the position t / 4 from the surface contains one or both of tempered martensite and lower bainite in a total volume ratio of 90% or more, and has tensile strength. Is 980 MPa or more, and the average Ni concentration on the surface is 7.0% or more. 0.05% ⁇ Si + Al ⁇ 2.50% ...
  • the element shown in the above formula is the mass% of the element contained in the hot-rolled steel sheet.
  • the hot-rolled steel sheet according to (1) above may contain Ni: 0.02% or more and 0.05% or less in mass% of the chemical composition.
  • the hot-rolled steel sheet according to (1) or (2) has an average number density of iron-based carbides present in the tempered martensite and the lower bainite of 1.0 ⁇ 10 6 / mm 2. It may be the above.
  • the hot-rolled steel sheet according to any one of (1) to (3) above has an internal oxide layer, and the average depth of the internal oxide layer is the surface of the hot-rolled steel sheet. May be 5.0 ⁇ m or more and 20.0 ⁇ m or less.
  • the standard deviation of the arithmetic mean roughness Ra of the surface of the hot-rolled steel sheet is 10.0 ⁇ m or more and 50.0 ⁇ m or less. You may.
  • the hot-rolled steel sheet according to any one of (1) to (5) above has a chemical composition of B: 0.0001% or more and 0.0100% or less, Ti: 0.015% in mass%. One or two of the above 0.300% or less may be contained.
  • the hot-rolled steel sheet according to any one of (1) to (6) above has a chemical composition of Nb: 0.005% or more, 0.300% or less, Cu: 0.01 in mass%. % Or more, 2.00% or less, Mo: 0.010% or more, 1.000% or less, V: 0.010% or more, 0.300% or less, Cr: 0.01% or more, 2.00% or less , One or more of the above may be contained.
  • the hot-rolled steel sheet according to any one of (1) to (7) above has a chemical composition of Mg: 0.0005% or more, 0.0100% or less, Ca: 0.0005 in mass%. % Or more, 0.0100% or less, REM: 0.0005% or more, 0.1000% or less, one or more of them may be contained.
  • the method for producing a hot-rolled steel sheet according to another aspect of the present invention includes a casting step of casting molten steel having the chemical composition described in (1) above to obtain a steel piece, and at least preliminarily using the steel piece.
  • the air ratio is 1.1 or more and 1.9 or less.
  • Ms 561-474 ⁇ C-33 ⁇ Mn-17 ⁇ Ni-17 ⁇ Cr-21 ⁇ Mo ⁇ ⁇ ⁇ Equation (iv) (10)
  • the primary cooling is stopped at a temperature lower than the Ms point temperature and 350 ° C. or higher, and the hot-rolled steel sheet after the primary cooling is maximally cooled. It may be cooled to less than 350 ° C. so that the rate is less than 50 ° C./sec.
  • the air ratio in the heating zone is 0.9 or more and 1.3 or less in the heating step.
  • the method for producing a hot-rolled steel sheet according to any one of (9) to (11) above has an air ratio of 0.9 or more and 1.9 or less in the heat equalizing zone in the heating step. May be. (13) In the method for producing a hot-rolled steel sheet according to (11) or (12) above, the air ratio in the preheating zone may be larger than the air ratio in the heating zone. (14) The method for producing a hot-rolled steel sheet according to any one of (9) to (13) above is that 1 to 10 wt% hydrochloric acid at a temperature of 20 to 95 ° C. is applied to the hot-rolled steel sheet after the winding step. A pickling step of pickling with a solution under the condition of a pickling time of less than 30 to 60 seconds may be provided.
  • an ultra-high strength steel sheet having a tensile strength of 980 MPa or more and good low temperature toughness, and a zinc phosphate chemical conversion treatment liquid was used even when a zirconium-based chemical conversion treatment liquid was used. It is possible to obtain a hot-rolled steel sheet having chemical conversion treatment property and coating film adhesion equal to or higher than the case. Since the steel sheet according to the present invention is excellent in chemical conversion treatment property and coating film adhesion, it is excellent in corrosion resistance after coating. Therefore, the steel sheet according to the present invention is suitable for automobile parts that require high strength and corrosion resistance after painting.
  • the present inventors have diligently studied the conditions under which good chemical conversion treatment and coating film adhesion can be stably obtained by chemical conversion treatment using a zirconium-based chemical conversion treatment liquid on an ultra-high-strength steel plate having a tensile strength of 980 MPa or more. Was piled up.
  • the oxide on the surface layer of the steel sheet greatly affected the chemical conversion treatment property and the coating film adhesion. Specifically, it is as follows.
  • the steel sheet is usually pickled before the chemical conversion treatment.
  • oxides such as Si and Al are formed on the surface of the ultra-high strength steel plate, which deteriorates the chemical conversion treatment property and the coating film adhesion in the zirconium-based chemical conversion treatment.
  • the formation of oxides such as Si and Al is suppressed, and the surface of the steel sheet is used as a precipitation core of zirconium-based chemical crystals. It has been found that it is effective to form a layer having a Ni-enriched portion in the vicinity (sometimes called a Ni-enriched layer).
  • the present inventors limit the content of a small amount of Ni and the heating conditions in the heating step prior to hot rolling, assuming that the process for manufacturing a general hot-rolled steel sheet is inexpensive and mass-produced. It was found that it is possible to form a Ni-concentrated layer near the surface of the steel sheet after pickling (before the chemical conversion treatment).
  • C 0.050% or more and 0.200% or less C is one of the important elements in the hot-rolled steel sheet according to the present embodiment.
  • C is an element that contributes to increasing the strength and hardenability of the steel sheet. If the C content is less than 0.050%, the effect of improving the strength by strengthening the structure of the low temperature transformation generation phase cannot be obtained. Therefore, the C content is set to 0.050% or more. It is preferably 0.070% or more.
  • C produces iron-based carbides such as cementite (Fe 3 C) that are precipitated when bainite and martensite are rebaked.
  • the C content exceeds 0.200%, iron-based carbides such as cementite (Fe 3 C), which is the starting point of cracking of the secondary sheared surface during punching, increases, and moldability such as hole expandability deteriorates. To do. Therefore, the C content is set to 0.200% or less. Preferably, it is 0.180% or less.
  • Si 0.05% or more and 3.00% or less Si is one of the important elements in the hot-rolled steel sheet according to the present embodiment.
  • Si is an element that contributes to an increase in the strength of the base metal by improving the temper softening resistance, and is also an effective element as a deoxidizing material for molten steel.
  • Si is also an effective element for suppressing the occurrence of scale-based defects such as scales and spindle scales.
  • the Si content is set to 0.05% or more. Further, as the Si content increases, the precipitation of iron-based carbides such as cementite in the material structure is suppressed, and the strength and hole expandability are improved. Therefore, the Si content is preferably 0.10% or more. On the other hand, even if the Si content exceeds 3.00%, the effect of contributing to the increase in strength is saturated. Therefore, the Si content is set to 3.00% or less. It is preferably 2.50% or less.
  • Mn 1.00% or more and 4.00% or less
  • Mn is an element that contributes to solid solution strengthening. Further, Mn is an element that enhances hardenability, and is contained in order to make the steel sheet structure tempered martensite or the main phase of lower bainite. If the Mn content is less than 1.00%, the effect of suppressing ferrite transformation and bainite transformation during cooling is not sufficiently exhibited, and the steel sheet structure cannot be the main phase of lower bainite and / or martensite. Therefore, the Mn content is set to 1.00% or more. On the other hand, even if the Mn content exceeds 4.00%, this effect is saturated. Therefore, the Mn content is set to 4.00% or less. Further, when the Mn content exceeds 3.00%, slab cracking is likely to occur during casting. Therefore, the Mn content is preferably 3.00% or less.
  • Al 0.001% or more and 2.000% or less
  • Al is one of the important elements in the hot-rolled steel sheet according to the present embodiment.
  • Al is an element that suppresses the formation of coarse cementite when bainite and martensite are tempered, and improves the hole-spreading property. It can also be used as a deoxidizing material.
  • the Al content is set to 0.001% or more.
  • the excessive content of Al increases the number of Al-based coarse inclusions, which causes deterioration of hole expandability and surface defects. From this, the Al content is set to 2.000% or less. Further, if the Al content is high, the tundish nozzle is likely to be blocked during casting, so the Al content is preferably 1.500% or less.
  • N 0.0005% or more, 0.1000% or less
  • the N content is set to 0.1000% or less.
  • it is 0.0100% or less.
  • the N content is set to 0.0005% or more.
  • Ni 0.02% or more, 2.00% or less
  • Ni is one of the important elements in the hot-rolled steel sheet according to the present embodiment.
  • Ni is concentrated in the vicinity of the steel sheet surface near the interface between the steel sheet surface and the scale under specific conditions, mainly in the heating process of the hot rolling process.
  • this Ni serves as a precipitation core of the zirconium-based chemical conversion treatment film, and promotes the formation of a film having no scale and good adhesion. If the Ni content is less than 0.02%, there is no effect, so the Ni content is set to 0.02% or more.
  • Ni is an element effective for suppressing ferrite transformation during cooling as an element for enhancing hardenability and for tempering the steel sheet structure into a tempered martensite or lower bainite structure.
  • the Ni content is set to 2.00% or less. It is preferably 0.50% or less, more preferably 0.05% or less.
  • the hot-rolled steel sheet according to the present embodiment may contain the above elements and the balance may consist of Fe and impurities. However, for the purpose of improving various properties, the following components can be further contained. Since the following elements do not necessarily have to be contained, the lower limit of the content is 0%.
  • Nb 0% or more and 0.300% or less Nb forms a carbonitride, or the solid-melt Nb delays grain growth during hot rolling to reduce the particle size of the hot-rolled steel sheet. It is an element that contributes to the improvement of low temperature toughness through.
  • the Nb content is preferably 0.005% or more.
  • the Nb content is set to 0.300% or less even when Nb is contained.
  • Ti 0% or more, 0.300% or less Ti forms a carbonitride, or the solid solution Ti delays the grain growth during hot rolling to reduce the particle size of the hot-rolled steel sheet. It is an element that contributes to the improvement of low temperature toughness through. When this effect is obtained, the Ti content is preferably 0.005% or more. Further, in order to contain B and exhibit the effect of improving the quenchability, it is necessary to minimize the amount of B precipitated as BN. When the Ti content is 0.015% or more, stable TiN is precipitated at a temperature higher than that of BN, and sufficient improvement in hardenability due to the solid solution B can be expected. Therefore, when B is contained at the same time, the Ti content is preferably 0.015% or more. On the other hand, even if the Ti content exceeds 0.300%, the above effect is saturated and the economic efficiency is lowered. Therefore, even when Ti is contained as needed, the Ti content is set to 0.300% or less.
  • Cu 0% or more, 2.00% or less Mo: 0% or more, 1.000% or less V: 0% or more, 0.300% or less Cr: 0% or more, 2.00% or less
  • Mo, V, Cr may contain any one or more as an element for enhancing hardenability in order to suppress ferrite transformation during cooling and to make the steel plate structure tempered martensite or lower bainite structure. Further, these elements are elements having an effect of improving the strength of the hot-rolled steel sheet by precipitation strengthening or solid solution strengthening, and one or more kinds may be contained in order to obtain this effect. In order to obtain the above effects, it is preferable that the respective contents of Mo and V are 0.010% or more, and the contents of Cu and Cr are 0.01% or more.
  • the Cu content is more than 2.00%, the Mo content is more than 1.000%, the V content is more than 0.300%, and the Cr content is more than 2.00%, the above effect is saturated. Moreover, the economic efficiency is reduced. Therefore, even when Cu, Mo, V, and Cr are contained, if necessary, the Cu content is 2.00% or less, the Mo content is 1.000% or less, and the V content is 0.300% or less. The Cr content is 2.00% or less.
  • Mg 0% or more, 0.0100% or less Ca: 0% or more, 0.0100% or less REM: 0% or more, 0.1000% or less
  • Mg, Ca and REM rare earth elements
  • Ca, REM and Mg are the starting points of fracture of steel sheets. It is an element that controls the morphology of non-metal inclusions that cause deterioration of workability and improves the workability of steel sheets. Therefore, any one or more of these may be contained.
  • the contents of Ca, REM and Mg are preferably 0.0005% or more, respectively.
  • the Mg content exceeds 0.0100%
  • the Ca content exceeds 0.0100%
  • the REM content exceeds 0.1000%
  • the Mg content is 0.0100% or less
  • the Ca content is 0.0100% or less
  • the REM content is 0.1000% or less.
  • REM refers to a total of 17 elements composed of Sc, Y and lanthanoids
  • the content of REM refers to the total content of these elements.
  • lanthanoids they are industrially added in the form of misch metal.
  • B 0% or more, 0.0100% or less
  • B is an element that enhances hardenability and is effective for delaying the ferrite transformation during cooling to make the steel sheet structure tempered martensite or lower bainite structure. It is an element and may be contained to obtain this effect.
  • the B content is preferably 0.0001% or more. It is more preferably 0.0005% or more, still more preferably 0.0007% or more.
  • the B content is set to 0.0100% or less. It is preferably 0.0050% or less, more preferably 0.0030% or less.
  • Zr, Co, Zn, and W 1 type or 2 or more types in total 0 to 1.000% Sn: 0.050% or less. Even if Zr, Co, Zn, and W are contained in a total of 1.000% or less with respect to other elements, the effect of the hot-rolled steel sheet according to the present embodiment is not impaired. Therefore, these elements may be contained in a total of 1.0000% or less. Further, even if a small amount of Sn is contained, the effect of the hot-rolled steel sheet according to the present embodiment is not impaired. However, if the Sn content exceeds 0.050%, flaws may occur during hot rolling, so it is desirable to set the Sn content to 0.050% or less.
  • P 0.100% or less
  • P is an impurity contained in the hot metal, and is an element that segregates at the grain boundaries of the steel sheet and lowers the low temperature toughness as the content increases. Therefore, the lower the P content, the more desirable. If the P content is more than 0.100%, the workability and weldability are significantly adversely affected. Therefore, the P content is set to 0.100% or less. In particular, when considering weldability, the P content is preferably 0.030% or less. On the other hand, it is preferable that P is small, but reducing it more than necessary imposes a great load on the steelmaking process. Therefore, the P content may be 0.001% or more.
  • S 0.0300% or less
  • S is an impurity contained in the hot metal, and if the content is too large, it is an element that causes cracking during hot rolling. Further, S is an element that produces inclusions such as MnS that deteriorates the hole expanding property. Therefore, the S content should be reduced as much as possible. However, if the S content is 0.0300% or less, it is within an acceptable range, so the S content is set to 0.0300% or less. However, from the viewpoint of hole expandability, the S content is preferably 0.0100% or less, and more preferably 0.0050% or less. On the other hand, it is preferable that the S content is small, but reducing it more than necessary imposes a great load on the steelmaking process. Therefore, the S content may be 0.0001% or more.
  • O 0.0100% or less
  • O is an element that forms a coarse oxide that is the starting point of fracture in steel when the content is too large, causing brittle fracture and hydrogen-induced fracture. Therefore, the O content is set to 0.0100% or less. From the viewpoint of on-site weldability, the O content is preferably 0.0030% or less.
  • O is an element that disperses a large number of fine oxides when deoxidizing molten steel. Therefore, the O content may be 0.0005% or more.
  • the hot-rolled steel sheet according to the present embodiment contains basic elements, optionally contains arbitrary elements, and the balance is composed of Fe and impurities.
  • Impurities refer to components that are unintentionally contained in the steel sheet manufacturing process from raw materials or other manufacturing processes.
  • PCM PCM ⁇ 0.20 Ms ⁇ 400 (° C) Further, in the hot-rolled steel sheet according to the present embodiment, it is necessary to control the content of each element within the above range and set the PCM obtained by the following formula (2) to 0.20 or more.
  • PCM C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Mo / 15 + Cr / 20 + V / 10 + 5 ⁇ B ... Equation (2) If the PCM is less than 0.20, the hardenability is insufficient, and a microstructure having the main phase tempered martensite and / or lower bainite cannot be obtained.
  • Ms represented by the following formula (3). If Ms is less than 400 (° C.), the auto temper (automatic tempering) during cooling becomes insufficient and the stretch flangeability deteriorates.
  • Ms 561-474 ⁇ C-33 ⁇ Mn-17 ⁇ Ni-17 ⁇ Cr-21 ⁇ Mo ⁇ ⁇ ⁇ Equation (3)
  • the content of each element in the hot-rolled steel sheet described above is the average content in the total plate thickness determined by ICP emission spectroscopic analysis using chips according to JISG1201: 2014.
  • microstructure The microstructure (metal structure) of the hot-rolled steel sheet according to the present embodiment will be described. Unless otherwise specified,% for microstructure indicates% by volume fraction.
  • the metal structure at the position of t / 4 (t: sheet thickness) from the surface of the steel sheet is 90% or more in total of tempered martensite and / or both: volume ratio of the hot-rolled steel sheet according to the present embodiment. Then, the main phase is tempered martensite and / or lower bainite, and the total volume ratio is 90% or more.
  • the lower limit of the total volume fraction of tempered martensite and lower bainite is 90%. Even if the volume fraction is 100%, high strength and excellent low temperature toughness can be obtained.
  • tempered martensite is the most important microstructure in order to have high strength and excellent low temperature toughness.
  • Tempering martensite is a collection of lath-shaped crystal grains, and contains iron-based carbides with a major axis of 5 nm or more inside, and the carbides are a plurality of variants, that is, a plurality of iron-based carbide groups extending in different directions. It is an organization belonging to.
  • the tempered martensite has a structure when the cooling rate at the time of cooling below the Ms point (martensite transformation start temperature) is lowered, or when the martensite structure is once formed and then tempered at 100 to 600 ° C. Can be obtained.
  • precipitation is controlled by cooling control of less than 400 ° C.
  • the lower bainite is also a collection of lath-shaped crystal grains like tempered martensite, and contains iron-based carbides with a major axis of 5 nm or more inside.
  • the carbides belong to a single variant, i.e., a group of iron-based carbides extending in the same direction.
  • tempered martensite and lower bainite can be distinguished.
  • the iron-based carbide group extending in the same direction means that the difference in the extension direction of the iron-based carbide group is within 5 °.
  • the microstructure may contain one or more of ferrite, fresh martensite, upper bainite, pearlite, and retained austenite as a structure other than tempered martensite and lower bainite in a total volume fraction of 10% or less. ..
  • the fresh martensite is martensite containing no carbide inside. Therefore, tempered martensite and fresh martensite can be easily distinguished from the viewpoint of carbides. That is, the inside of the lath-shaped crystal grains can be observed using FE-SEM, and the presence or absence of iron-based carbides can be used for discrimination.
  • Fresh martensite has high strength but inferior low temperature toughness. For this reason, the volume fraction needs to be limited to 10% or less.
  • Residual austenite is a structure in which austenite generated during heating does not transform to room temperature and remains. However, when the steel material is plastically deformed during press forming or the automobile member is plastically deformed during collision, it is transformed into fresh martensite. To do.
  • the volume fraction can be easily determined by the X-ray diffraction method.
  • Upper bainite is an aggregate of lath-shaped crystal grains containing carbides between laths.
  • carbides are precipitated at the interface of the lath, which is clearly different from the case where the lower bainite precipitates carbides inside the lath. Therefore, it can be easily identified. That is, the interface of lath-shaped crystal grains can be observed using FE-SEM, and the presence or absence of iron-based carbides can be used for discrimination. Since the carbides contained between the laths serve as the starting point of fracture, if the volume fraction of the upper bainite is large, the low temperature toughness decreases.
  • the upper bainite is formed at a higher temperature than the lower bainite, the strength is low, and excessive formation makes it difficult to secure a tensile strength of 980 MPa or more. Since this adverse effect becomes remarkable when the volume fraction of the upper bainite exceeds 10%, it is necessary to limit the volume fraction to 10% or less.
  • Ferrite is a massive crystal grain and has a structure that does not contain a substructure such as a lath inside. Ferrite is the softest structure, and it is necessary to limit it to 10% or less in order to secure a tensile strength of 980 MPa or more. Further, since it is extremely soft as compared with tempered martensite or lower bainite, which is the main phase, deformation is concentrated at the interface between ferrite and tempered martensite or lower bainite, and it is likely to be a starting point of fracture. Since this adverse effect becomes remarkable when the volume fraction exceeds 10%, it is necessary to limit the volume fraction to 10% or less.
  • Pearlite is a lamellar metal structure in which cementite is deposited in layers between ferrites, and like ferrites, it causes a decrease in strength and deterioration of low temperature toughness. Therefore, it is necessary to limit the volume fraction to 10% or less. There is.
  • the volume ratio is measured by corroding the cross section in the rolling direction of the steel sheet or the cross section in the direction perpendicular to the rolling direction using a bainite reagent and a reagent disclosed in JP-A-59-219473, and a scanning type of 1000 to 100,000 times. This is possible by observing with a transmissive electron microscope.
  • the structure can also be discriminated from crystal orientation analysis using the FESEM-EBSP method and hardness measurement of a minute region such as Micro Vickers hardness measurement.
  • tempered martensite, upper bainite, and lower bainite have different carbide formation sites and crystal orientation relationships (elongation directions), so FE-SEM is used to make the iron system inside the lath-shaped crystal grains.
  • FE-SEM is used to make the iron system inside the lath-shaped crystal grains.
  • the volume ratios of ferrite, pearlite, upper bainite, lower bainite, and tempered martensite are t / from the surface of the steel sheet in the thickness direction of the steel sheet, where t is the thickness of the steel sheet. It is obtained by collecting a sample from a portion (generally t / 8 to 3 t / 8) including the position 4 and observing the rolling direction cross section (so-called L direction cross section) of the steel sheet.
  • a sample is subjected to bainite etching, and after etching, an image analysis is performed on a microstructure photograph obtained in a field of view of 300 ⁇ m ⁇ 300 ⁇ m using an optical microscope to obtain the area ratios of ferrite and pearlite, respectively. And obtain the total area ratio of bainite, martensite, and retained austenite.
  • the nighttal-etched portion was subjected to repera-etching, and the microstructure photograph obtained in a field of view of 300 ⁇ m ⁇ 300 ⁇ m using an optical microscope was subjected to image analysis to determine the total area ratio of retained austenite and martensite. calculate.
  • bainite is a collection of lath-shaped crystal grains.
  • the bainite includes an upper bainite, which is an aggregate of laths containing carbides between laths, and a lower bainite containing iron-based carbides having a major axis of 5 nm or more inside.
  • the iron-based carbides precipitated in the lower bainite belong to a single variant, i.e., a group of iron-based carbides extending in the same direction.
  • Tempering martensite is a collection of lath-shaped crystal grains, and contains iron-based carbides having a major axis of 5 nm or more inside.
  • the iron carbides in tempered martensite belong to a plurality of variants, i.e., a group of iron carbides extending in different directions.
  • martensite that is not tempered martensite is defined as a metal structure in which carbides having a diameter of 5 nm or more are not precipitated between laths and in laths.
  • the volume fraction of retained austenite can be determined by X-ray diffraction. Since austenite has a different crystal structure from ferrite, it can be easily identified crystallographically. For example, it is a method of easily obtaining the volume fraction by using the following equation from the difference in the reflecting surface strength between austenite and ferrite using Mo K ⁇ rays.
  • V ⁇ (2/3) ⁇ 100 / (0.7 ⁇ ⁇ (211) / ⁇ (220) +1) ⁇ + (1/3) ⁇ 100 / (0.78 ⁇ ⁇ (211) / ⁇ (311)) +1) ⁇
  • ⁇ (211), ⁇ (220) and ⁇ (311) are the X-ray reflecting surface intensities of ferrite ( ⁇ ) and austenite ( ⁇ ), respectively.
  • the hot rolled steel sheet according to the present embodiment in the tempered martensite and lower bainite is included in the microstructure, the iron-based carbides in average number density, 1.0 ⁇ 10 6 (pieces / mm 2) contain more than Is desirable. As-quenched martensite (fresh martensite) has excellent strength but poor toughness. On the other hand, tempered martensite in which iron-based carbides such as cementite are precipitated provides a good balance between strength and low temperature toughness.
  • the present inventors have, low-temperature toughness and was investigated the relationship between the number density of the iron-based carbide, 1.0 ⁇ 10 6 and the number density of the carbides of martensite and in the lower bainite tempering (pieces / mm 2) or more By doing so, it became clear that better low temperature toughness can be ensured. Therefore, the average number density of iron-based carbide contained in martensite and lower bainite tempering, it is preferable to 1.0 ⁇ 10 6 (pieces / mm 2) or more. More preferably, it is 5.0 ⁇ 10 6 (pieces / mm 2 ) or more, and even more preferably 1.0 ⁇ 10 7 (pieces / mm 2 ) or more.
  • the size of the carbides deposited on the hot-rolled steel sheet according to the present embodiment obtained by the method described later is as small as 300 nm or less, and most of them are deposited in the lath of martensite or bainite. Therefore, it is presumed that the low temperature toughness is not deteriorated.
  • a sample is taken with the plate thickness cross section parallel to the rolling direction of the steel plate as the observation surface, the observation surface is polished, and night tar etching is performed to 1/4 (t / 4) of the plate thickness.
  • the range of 1/8 to 3/8 thickness centered on the position of is observed with a field emission scanning electron microscope (FE-SEM: Field Emission Scanning Electron Microscope). Observe 10 fields each at 200,000 times, measure the number density of iron-based carbides contained in tempered martensite and lower bainite in the observation field, and average the number density in each field to obtain the average number density. To do.
  • the main phase is tempered martensite or lower bainite, and the average effective crystal grain size is 10 ⁇ m or less. More preferably, it is 8 ⁇ m or less.
  • the effective crystal grain size described here means a region surrounded by grain boundaries having a crystal orientation difference of 15 ° or more described by the following method, and corresponds to a block grain size in martensite and bainite.
  • the effective crystal grain size is 15 °, which is the threshold value of the large-angle grain boundary, which is generally recognized as the crystal grain boundary, using EBSP-OIM TM (Electron Backscatter Diffraction Pattern-Orientation Image Microscape).
  • the grain is visualized and obtained from the mapped image.
  • EBSP-OIM TM method a highly inclined sample is irradiated with an electron beam in a scanning electron microscope (SEM), and the Kikuchi pattern formed by backscattering is photographed with a high-sensitivity camera and irradiated by computer image processing. It consists of a device and software for measuring the crystal orientation of a point in a short waiting time.
  • the microstructure and crystal orientation of the bulk sample surface can be quantitatively analyzed, and the analysis area is an area that can be observed by SEM, and analysis can be performed with a minimum resolution of 20 nm, depending on the resolution of SEM.
  • the aspect ratio of the effective crystal grains of tempered martensite and bainite (here, meaning the region surrounded by grain boundaries of 15 ° or more) is 2.0 or less. Grains flattened in a specific direction have high anisotropy, and cracks propagate along grain boundaries during the Charpy test, which often causes a decrease in toughness value. Therefore, it is preferable that the effective crystal grains are equiaxed as much as possible.
  • oxides such as Si and Al on the surface of the pickling plate are reduced to a harmless level.
  • oxides such as Si and Al, Ar, He, N 2 in the preheating zone of the heating furnace in order to suppress the oxidation of the slab surface as much as possible in the heating process of hot rolling. It is necessary to create a substantially non-oxidizing atmosphere using an inert gas such as, or to set the air ratio to incomplete combustion of less than 0.9.
  • the adhesion of the coating film after the chemical conversion treatment using the treatment liquid was examined. Since the hot-rolled steel sheet is usually subjected to chemical conversion treatment after pickling, the steel sheet after pickling was evaluated in this embodiment as well. Pickling was carried out using a 1 to 10 wt% (% by weight) hydrochloric acid solution at a temperature of 20 to 95 ° C. and a pickling time of less than 30 to 60 seconds. If no scale is formed on the surface, evaluation may be performed without pickling.
  • the coating peeling width evaluated by the method described later for all the samples was within 4.0 mm, which is the standard, and the coating film adhesion was excellent. Further, in such a case, no scale was observed in the chemical conversion film. On the other hand, the paint peeling width was more than 4.0 mm in all the samples having an average Ni concentration of less than 7.0% on the surface. This is because, as shown in FIG.
  • the Ni-concentrated portion 3 is formed on the surface of the steel sheet, so that a potential difference is generated between the locally concentrated Ni on the surface and the base iron 1. It is considered that this is because Ni serves as a precipitation nucleus of the zirconium-based chemical crystal 4 and thus the formation of the zirconium-based chemical crystal 4 is promoted.
  • the base iron 1 refers to the steel plate portion excluding the scale 2.
  • the average Ni concentration on the surface (the surface after pickling and before the chemical conversion treatment) is 7.0% or more.
  • the average Ni concentration on the surface is 7.0% or more, even if oxides such as Si and Al remain on the surface, it is sufficient to form a precipitation nucleus of zirconium-based chemical crystals.
  • Fe is selectively oxidized to some extent on the surface of the steel sheet so that the iron side of the interface between the scale and the base iron
  • Ni which is less likely to be oxidized than Fe.
  • the average Ni concentration on the surface of the steel sheet is measured using a JXA-8530F field emission electron probe microanalyzer (FE-EPMA).
  • the measurement conditions are accelerating voltage: 15 kV, irradiation current: 6 ⁇ 10-8 A, irradiation time: 30 ms, beam diameter: 1 ⁇ m.
  • the measurement is performed on a measurement area of 900 ⁇ m 2 or more from a direction perpendicular to the surface of the steel sheet, and the Ni concentration in the measurement range is averaged (the Ni concentration at all measurement points is averaged).
  • FIG. 1 shows an example of the surface EPMA measurement result. Ni is mainly concentrated on the ground iron side of the interface between the scale and the ground iron.
  • pickling is usually performed before the chemical conversion treatment. Therefore, when the scale is formed on the surface of the target steel sheet, the measurement is performed after performing the same pickling as in the case of being subjected to the chemical conversion treatment.
  • the coating film adhesion of the pickling plate described above is evaluated according to the following procedure. First, the produced steel sheet is pickled and then subjected to a chemical conversion treatment to attach a zirconium-based chemical conversion treatment film. Further, an electrodeposition coating having a thickness of 25 ⁇ m is applied to the upper surface thereof, and a coating baking process is performed at 170 ° C. for 20 minutes, and then a 130 mm long cut is made in the electrodeposited coating film with a knife having a sharp tip until it reaches the base metal. Then, under the salt spray conditions shown in JIS Z 2371: 2015, 5% salt spray at a temperature of 35 ° C.
  • the hot-rolled steel sheet has an internal oxide layer (region where oxides are generated inside the base iron), and the average depth of the internal oxide layer from the surface of the hot-rolled steel sheet is 5.0 ⁇ m or more and 20.0 ⁇ m or less. Even if there is a concentrated portion, if the coating ratio of oxides such as Si and Al is too large on the surface of the hot-rolled steel sheet, “scale” in which the zirconium-based chemical conversion treatment film does not adhere tends to occur. In order to suppress this, it is desirable that the oxidation of Si, Al, etc. is not an external oxidation that forms an oxide outside the ground iron, but an internal oxidation that forms an oxide inside.
  • the present inventors observed the cross section of only a sample having an average Ni concentration of 7.0% or more on the surface with an optical microscope, and observed the coating peeling width and the average depth of the internal oxide layer from the steel sheet surface (internal oxide layer). The relationship between the positions of the lower ends of the above) was investigated. As a result, all the samples having an average depth of the internal oxide layer of 5.0 ⁇ m or more had a coating peeling width of 3.5 mm or less, whereas the average depth of the internal oxide layer was less than 5.0 ⁇ m. The paint peeling width was more than 3.5 mm and less than 4.0 mm in all the samples.
  • the average depth of the internal oxide layer from the surface of the hot-rolled steel sheet is preferably 5.0 ⁇ m or more and 20.0 ⁇ m or less. If the average depth of the internal oxide layers such as Si and Al is less than 5.0 ⁇ m, the internal oxidation is insufficient and the effect of suppressing “skeleton” to which the zirconium-based chemical conversion treatment film does not adhere is small. On the other hand, when the average depth exceeds 20.0 ⁇ m, not only the effect of suppressing “skeleton” on which the zirconium-based chemical conversion coating does not adhere is saturated, but also the hardness of the surface layer decreases due to the formation of a decarburized layer that occurs at the same time as internal oxidation. There is a concern that fatigue durability will deteriorate.
  • the average depth of the internal oxide layer is a mirror surface after embedding in a resin sample by cutting out a surface parallel to the rolling direction and the plate thickness direction as an embedding sample at a position of 1/4 or 3/4 in the plate width direction of the pickling plate. After polishing, 12 or more visual fields are observed with an optical microscope in a visual field of 195 ⁇ m ⁇ 240 ⁇ m (corresponding to a magnification of 400 times) without etching. The surface intersects the surface of the steel plate when a straight line is drawn in the plate thickness direction, and the depth of the internal oxide layer (position of the lower end) of each field of view with respect to that surface is measured and averaged at 5 points per field of view. , The average value is calculated by excluding the maximum value and the minimum value from the average value of each visual field, and this is taken as the average depth of the internal oxide layer.
  • Standard deviation of arithmetic mean roughness Ra of the surface of hot-rolled steel sheet after pickling under predetermined conditions 10.0 ⁇ m or more and 50.0 ⁇ m or less
  • the film thickness is several ⁇ m.
  • the film thickness is very thin compared to the zinc phosphate film, which is about several tens of nm. This difference in film thickness is due to the fact that the zirconium-based chemical conversion-treated crystals are extremely fine.
  • the chemical conversion-treated crystal is fine, the surface of the chemical conversion-treated crystal is very smooth, and it is difficult to obtain a strong adhesion to the coating film due to the anchor effect as seen in the zinc phosphate-treated film. ..
  • the adhesion between the chemical conversion coating film and the coating film can be improved by forming irregularities on the surface of the steel sheet.
  • the present inventors have applied a sample having an average Ni concentration of 7.0% or more and an average depth of the internal oxide layer of 5.0 ⁇ m or more to a pickling plate before the zirconium-based chemical conversion treatment.
  • the relationship between the standard deviation of the arithmetic mean roughness Ra of the surface and the adhesion of the coating film was investigated.
  • the standard deviation of the arithmetic mean roughness Ra of the steel sheet surface is less than 10.0 ⁇ m, a sufficient anchor effect cannot be obtained.
  • the standard deviation of the arithmetic mean roughness Ra of the steel sheet surface after pickling exceeds 50.0 ⁇ m, not only the anchor effect is saturated, but also zirconium on the uneven valleys and mountain sides of the steel sheet surface after pickling. System chemical conversion treatment Crystals are less likely to adhere and "scale" is more likely to occur.
  • the surface roughness of the steel sheet varies greatly depending on the pickling conditions, but in the hot-rolled steel sheet according to the present embodiment, an acid of less than 30 to 60 seconds using a 1 to 10 wt% hydrochloric acid solution at a temperature of 20 to 95 ° C. It is preferable that the standard deviation of the arithmetic average roughness Ra of the surface of the hot-rolled steel sheet after pickling under the condition of the washing time is 10.0 ⁇ m or more and 50.0 ⁇ m or less.
  • the standard deviation of the arithmetic mean roughness Ra the value obtained by measuring the surface roughness of the pickling plate by the measuring method described in JIS B 0601: 2013 is adopted. After measuring the arithmetic mean roughness Ra on the front and back of 12 or more samples, the standard deviation of the arithmetic average roughness Ra of each sample is calculated, and the average is the standard deviation excluding the maximum and minimum values. Calculate the value.
  • the hot-rolled steel sheet according to the present embodiment having the above-mentioned chemical composition and metal structure may be provided with a plating layer on the surface for the purpose of improving corrosion resistance or the like to be a surface-treated steel sheet.
  • the plating layer may be an electroplating layer or a hot-dip plating layer.
  • the electroplating layer include electrogalvanization and electroZn—Ni alloy plating.
  • the hot-dip plating layer include hot-dip zinc plating, alloyed hot-dip galvanizing, hot-dip aluminum plating, hot-dip Zn-Al alloy plating, hot-dip Zn-Al-Mg alloy plating, hot-dip Zn-Al-Mg-Si alloy plating, and the like.
  • the amount of plating adhered is not particularly limited and may be the same as before. Further, it is also possible to further enhance the corrosion resistance by subjecting an appropriate chemical conversion treatment (for example, application and drying of a silicate-based chromium-free chemical conversion treatment liquid) after plating.
  • an appropriate chemical conversion treatment for example, application and drying of a silicate-based chromium-free chemical conversion treatment liquid
  • the hot-rolled steel sheet according to the present embodiment can be effective as long as it has the above-mentioned characteristics regardless of the manufacturing method.
  • stable production is possible, which is preferable.
  • the slab manufacturing process such as casting that precedes hot rolling is not particularly limited. That is, after melting in a blast furnace or an electric furnace, various secondary smelting is performed to adjust the components to the above-mentioned components, and then a method such as ordinary continuous casting, casting by the ingot method, or thin slab casting is performed. You can cast it with.
  • the ingot may be cooled to a low temperature and then heated again and then subjected to hot rolling, the ingot may be subjected to hot rolling without being cooled to room temperature, or the cast slab may be subjected to hot rolling. It may be continuously subjected to hot rolling. Scrap may be used as the raw material.
  • a cast slab (steel piece) having a predetermined chemical component is heated at 1100 ° C. using a heating furnace having three zones of a preheating zone, a heating zone, and a soaking zone. It is preferable that the hot rolling is performed by heating above and the hot rolling is completed at 850 ° C. or higher.
  • the slab heating temperature for hot rolling is 1100 ° C. or higher. If the slab heating temperature is less than 1100 ° C., the rolling reaction force increases in the subsequent hot rolling, and sufficient hot rolling cannot be performed, not only the desired product thickness cannot be obtained, but also the plate shape deteriorates.
  • the austenite particle size may become smaller, and the hardenability may decrease, making it impossible to obtain the desired microstructure.
  • an element forming a carbonitride is contained in steel such as Ti, it is preferable to heat the steel to a temperature higher than the solution temperature in austenite.
  • the upper limit of the slab heating temperature is not particularly set and the effect can be obtained, it is economically unfavorable to make the heating temperature excessively high. From this, it is desirable that the upper limit of the slab heating temperature is less than 1300 ° C.
  • the finish rolling temperature is preferably 850 ° C. or higher.
  • the hot-rolled steel sheet according to the present embodiment has a reduced hardenability in finish rolling in a temperature range of less than 850 ° C., and one or both of the target tempered martensite and lower bainite have a total volume fraction. However, a microstructure containing 90% or more cannot be obtained. Therefore, the finish rolling temperature is 850 ° C. or higher.
  • the burner equipment of the heating furnace is a heat storage type burner. This is because when "alternate combustion” is performed using a "regenerative burner” equipped with a burner with a built-in heat storage body, the heat storage type burner is in the furnace compared to the conventional burner that does not recover heat from the exhaust. This is because the heating furnace, which will be described later, can be controlled by having a high soaking property of the temperature and a high controllability of each zone, and in particular, by strictly controlling the air ratio in each zone.
  • Air ratio in preheating zone 1.1 or more and 1.9 or less>
  • Ni can be concentrated on the surface of the hot-rolled steel sheet, and the average Ni concentration on the surface of the hot-rolled steel sheet after pickling can be 7.0% or more. it can.
  • the scale growth behavior of the slab surface in the heating furnace is evaluated by the formation scale thickness, and the linear law, which is the rate-determining rate of oxygen supply from the atmosphere on the slab surface, and the diffusion of iron ions in the scale are based on the air ratio (oxygen partial pressure). It is classified as a parabolic law that is rate-determining.
  • the growth of the scale thickness needs to follow the parabolic law. If the air ratio in the preheating zone is less than 1.1, the scale growth will not be parabolic and a sufficient Ni-enriched layer will be formed on the surface of the slab in the limited furnace time in the heating furnace. Can't. In this case, the average Ni concentration on the surface of the hot-rolled steel sheet after pickling does not exceed 7.0%, and as a result, good coating film adhesion cannot be obtained.
  • Air ratio in heating zone 0.9 or more, 1.3 or less>
  • the depth can be 5.0 to 20.0 ⁇ m. If the air ratio in the heating zone is less than 0.9, the average depth of the internal oxide layer does not exceed 5.0 ⁇ m.
  • Air ratio in soaking zone 0.9 or more and 1.9 or less>
  • Ni which is less likely to be oxidized than Fe
  • the Ni-concentrated layer having the Ni-concentrated portion suppresses oxidation in the surface layer, but suppresses external oxidation in the subsequent heating zone and promotes internal oxidation.
  • the scale 2 erodes into the grain boundaries 5 and the like where diffusion is easy, and the ground caused by the difference in the concentration of Ni. Due to the difference in Ni concentration on the surface of iron 1, the way the interface between scale 2 and base iron 1 is oxidized becomes non-uniform, and the unevenness of the interface between scale 2 and base iron 1 becomes large. Further, although not shown in FIG. 3, unevenness is also generated by suppressing the erosion of the grain boundary by the scale 2 by the Ni-concentrated portion 3 around the internal oxide 6. When this steel sheet is pickled, the scale 2 is removed, and the surface of the hot-rolled steel sheet has a predetermined roughness.
  • the air ratio in the soaking zone By setting the air ratio in the soaking zone to 0.9 or more and 1.9 or less, after hot rolling, for example, using a 1 to 10 wt% hydrochloric acid solution at a temperature of 20 to 95 ° C. for less than 30 to 60 seconds.
  • the standard deviation of the arithmetic average roughness Ra of the surface of the hot-rolled steel sheet after pickling under the conditions of the pickling time can be 10.0 ⁇ m or more and 50.0 ⁇ m or less. If the air ratio in the soaking zone is less than 0.9, the oxygen potential is not reached enough to selectively generate oxide nuclei at the grain boundaries where diffusion is easy. Therefore, the standard deviation of the arithmetic mean roughness Ra of the steel sheet surface after pickling does not exceed 10.0 ⁇ m.
  • the air ratio in the preheating zone is higher than the air ratio in the heating zone.
  • the temperature range is lower than the lower bainite formation temperature. If the temperature at which air cooling is performed is higher than the lower bainite formation temperature, upper bainite will be formed. Further, it is preferable that the cooling rate up to the air cooling temperature range is 50 ° C./sec or more. This is to avoid the formation of upper bainite. If the cooling rate between the Bs point temperature and the formation temperature of the lower bainite is less than 50 ° C./sec, the upper bainite is formed and fresh martensite is formed between the bainite laths, or the retained austenite is formed. (It becomes martensite with high dislocation density during processing), and low temperature toughness may decrease.
  • the Bs point temperature is the formation start temperature of the upper bainite determined by the components, and is conveniently 550 ° C.
  • the formation temperature of the lower bainite is also determined by the components, but is 400 ° C. for convenience. That is, between the finish rolling temperature and 400 ° C., it is preferable that the cooling rate between 550 and 400 ° C. is 50 ° C./sec or more, and the average cooling rate between the finish rolling temperature and 400 ° C. is 50 ° C./sec or more. ..
  • cooling is performed with the maximum cooling rate from the primary cooling stop temperature to a temperature range below 350 ° C. being less than 50 ° C./sec. Is preferable. This is to control the average number density of iron-based carbides in tempered martensite or lower bainite within a preferable range.
  • the maximum cooling rate in this temperature range is 50 ° C./sec or more, it is difficult to set the iron-based carbide in a preferable range. For this reason, it is preferable that the maximum cooling rate is less than 50 ° C./sec.
  • Winding temperature less than 350 ° C
  • ferrite transformation must be suppressed in order to obtain martensite, and cooling at 50 ° C / sec or higher is required.
  • the membrane boiling region which has a relatively low heat transfer coefficient and is difficult to cool
  • a temperature region which has a large heat transfer coefficient called the nucleate boiling temperature region and is easy to cool.
  • the cooling stop temperature is set to a temperature range of less than 400 ° C., the winding temperature tends to fluctuate, and the material also fluctuates accordingly. For this reason, the normal winding temperature was often set to either more than 400 ° C. or room temperature winding.
  • [Pickling process] For the purpose of improving ductility by straightening the shape of the steel sheet and introducing movable dislocations, skin pass rolling with a reduction ratio of 0.1% or more and 2.0% or less may be performed. Further, the obtained hot-rolled steel sheet may be pickled, if necessary, for the purpose of removing scale adhering to the surface of the obtained hot-rolled steel sheet. In the case of pickling, it is preferable to pickle with a 1 to 10 wt% hydrochloric acid solution at a temperature of 20 to 95 ° C. under a pickling time of less than 30 to 60 seconds. Further, after pickling, the obtained hot-rolled steel sheet may be subjected to skin pass or cold rolling with a reduction ratio of 10% or less in-line or offline.
  • the hot-rolled steel sheet according to the present embodiment is manufactured through continuous casting, rough rolling, finish rolling, cooling, winding, pickling, etc., which are normal hot-rolling processes, but a part of the hot-rolled steel sheet is removed. Even so, it is possible to secure a tensile strength of 980 MPa or more and excellent low temperature toughness. Further, even if the hot-rolled steel sheet is once manufactured and then heat-treated online or offline in the temperature range of 100 to 600 ° C. for the purpose of precipitating carbides, low-temperature toughness and tensile strength of 980 MPa or more are ensured. It is possible.
  • the steel sheet having a tensile strength of 980 MPa or more is a steel sheet cut out in a direction perpendicular to the rolling direction of hot rolling, and a tensile strength by a tensile test performed in accordance with JIS Z 2241: 2011. Means a steel sheet of 980 MPa or more.
  • the steel sheet having excellent toughness at low temperature refers to a steel sheet having a fracture surface transition temperature (vTrs) of ⁇ 40 ° C. or lower in the Charpy test conducted in accordance with JIS Z 2242: 2005.
  • the plate thickness is about 0.8 to 8.0 mm, but in many cases, the plate thickness is about 3.0 mm. Therefore, in the present embodiment, the surface of the hot-rolled steel sheet is ground and the steel sheet is processed into a 2.5 mm subsize test piece.
  • a hot-rolled steel sheet according to the present embodiment can be obtained.
  • the hot-rolled steel sheet according to the present embodiment it is an ultra-high-strength steel sheet having a tensile strength of 980 MPa or more, and even when a zirconium-based chemical conversion treatment liquid is used, it is different from the case where a zinc phosphate chemical conversion treatment liquid is used. Equivalent or better chemical conversion treatment property and coating film adhesion can be obtained. Therefore, the hot-rolled steel sheet according to the present embodiment is suitable for automobile parts that require high strength and corrosion resistance after painting.
  • Table 1A, Table 1B (Table 1B is a continuation of Table 1A) Steel No. Steels having the chemical compositions shown in A to V were melted and continuously cast to produce slabs having a thickness of 240 to 300 mm. The obtained slab was heated to the temperatures shown in Tables 2A and 2B using a heat storage type burner. At that time, the air ratios in the preheating zone (preheating zone), the heating zone (heating zone), and the soaking zone (equal tropical) were controlled as shown in Tables 2A and 2B.
  • the heated slab was hot-rolled at the finishing temperatures shown in Tables 2A and 2B. After hot rolling, cooling was performed under the cooling conditions shown in Tables 2A and 2B, and after cooling, winding was performed.
  • the volume fraction of each phase was determined by the following method. First, the sample is nighttal-etched, and after etching, the microstructure photograph obtained in a field of view of 300 ⁇ m ⁇ 300 ⁇ m is subjected to image analysis to obtain the area ratios of ferrite and pearlite, and bainite and martensite. , The total area ratio of retained austenite was obtained. Next, the nighttal-etched portion was subjected to repera-etching, and the microstructure photograph obtained in a field of view of 300 ⁇ m ⁇ 300 ⁇ m using an optical microscope was subjected to image analysis to determine the total area ratio of retained austenite and martensite. Calculated.
  • the residual austenite area ratio was obtained by X-ray diffraction measurement, and the area ratios of ferrite, bainite, martensite, retained austenite, and pearlite were calculated. Obtained. Then, at a depth of 1/4 of the plate thickness from the surface of the steel plate, at least 3 regions of 40 ⁇ m ⁇ 30 ⁇ m were observed at a magnification of 1000 to 100,000 times using a scanning electron microscope, and whether or not the above-mentioned features were included. Based on this, the proportions of lower bainite and upper bainite in bainite and the proportions of tempered martensite and fresh martensite in martensite were determined. From these, the area fraction of each phase was calculated and used as the volume fraction.
  • EBSP-OIM TM Electro Backscatter Diffraction Pattern-Orientation Image Microscopy
  • the Ni concentration on the surface was determined by the following method. Using a JXA-8530F field emission electron probe microanalyzer (FE-EPMA), the target hot-rolled steel sheet was analyzed for Ni concentration over a measurement area of 900 ⁇ m 2 or more from the direction perpendicular to the surface of the steel sheet. The Ni concentration in the measurement range was averaged. At this time, the measurement conditions were an accelerating voltage: 15 kV, an irradiation current: 6 ⁇ 10-8 A, an irradiation time: 30 ms, and a beam diameter of 1 ⁇ m.
  • FE-EPMA field emission electron probe microanalyzer
  • the number density of iron-based carbides was determined by the following method. A sample is taken with the cross section parallel to the rolling direction of the steel plate as the observation surface, the observation surface is polished, and night tar etching is performed. A field emission scanning electron microscope (FE-SEM: Field Emission Scanning Electron Microscope) was used to observe the range of 3/8 in 10 fields at a magnification of 200,000 times, and the number density of iron-based carbides was measured.
  • FE-SEM Field Emission Scanning Electron Microscope
  • the average depth of the internal oxide layer was determined by the following method. A surface parallel to the rolling direction and the plate thickness direction is cut out as an embedding sample at a position 1/4 or 3/4 of the plate width direction of the pickling plate, and after embedding in the resin sample, mirror polishing is performed and the pickling plate is optical without etching. Twelve fields of view were observed with a microscope in a field of view of 195 ⁇ m ⁇ 240 ⁇ m (corresponding to a magnification of 400 times). The surface intersects the surface of the steel plate when a straight line is drawn in the plate thickness direction, and the depth of the internal oxide layer (position of the lower end) of each field of view with respect to that surface is measured and averaged at 5 points per field of view. , The average value was calculated by excluding the maximum value and the minimum value from the average value of each visual field, and this was taken as the average depth of the internal oxide layer.
  • the standard deviation of the arithmetic mean roughness of the surface was calculated by the following method. After measuring the surface roughness of the pickling plate by the measurement method described in JIS B 0601: 2013, the arithmetic mean roughness Ra on the front and back of 12 samples was measured, and then the standard deviation of the arithmetic mean roughness Ra of each sample was calculated. Then, the average value was calculated from the standard deviation excluding the maximum value and the minimum value.
  • the tensile strength was determined by performing a tensile test in accordance with JIS Z 2241 using a JIS No. 5 test piece cut out in a direction perpendicular to the rolling direction of hot rolling. It was judged that preferable characteristics were obtained when the tensile strength was 980 MPa or more.
  • vTrs fracture surface transition temperature
  • the chemical conversion processability was evaluated by the following method.
  • the surface of the steel plate after the chemical conversion treatment was observed with a field emission scanning electron microscope (FE-SEM: Field Emission Scanning Electron Microscope). Specifically, 10 visual fields were observed at a magnification of 10000 times, and the presence or absence of "scale” to which the chemical conversion-treated crystals were not attached was observed. The observation was performed at an accelerating voltage of 5 kV, a probe diameter of 30 mm, and tilt angles of 45 ° and 60 °. Tungsten coating (ESC-101, Elionix) was applied for 150 seconds to impart conductivity to the sample. When no scale was observed in all the visual fields, it was judged that the chemical conversion processability was excellent (“OK” in the table).
  • the coating film adhesion was evaluated by the following method. 25 ⁇ m thick electrodeposition coating is applied to the upper surface of the hot-rolled steel sheet after chemical conversion treatment, and after coating baking treatment at 170 ° C for 20 minutes, the electrodeposition coating film is long until it reaches the base metal with a knife with a sharp tip. A 130 mm notch was made. Then, under the salt spray conditions shown in JIS Z 2371, 5% salt spray at a temperature of 35 ° C. was continuously performed for 700 hours, and then a tape having a width of 24 mm (Nichiban 405A-24 JIS Z 1522) was placed on the notch.
  • a length of 130 mm was attached parallel to the notch, and the maximum peeling width of the coating film when this was peeled off was measured.
  • the maximum coating film peeling width was 4.0 mm or less, it was judged that the coating film adhesion was excellent.
  • the present invention is an ultra-high strength steel sheet having a tensile strength of 980 MPa or more, and even when a zirconium-based chemical conversion treatment liquid is used, the chemical conversion treatment property is equal to or higher than that when a zinc phosphate chemical conversion treatment liquid is used. It is possible to obtain a hot-rolled steel sheet having a coating film adhesion. Since the steel sheet according to the present invention is excellent in chemical conversion treatment property and coating film adhesion, it is excellent in corrosion resistance after coating. Therefore, the present invention is suitable for automobile parts that require high strength and corrosion resistance after painting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

この熱延鋼板は、所定の化学組成を有し、厚さをtとしたとき、表面からt/4の位置における金属組織が、焼き戻しマルテンサイト及び下部ベイナイトのいずれか一方あるいは両方を、体積率の合計で90%以上含有し、引張強さが980MPa以上であり、前記表面における平均Ni濃度が7.0%以上である。

Description

熱延鋼板およびその製造方法
 本発明は、熱延鋼板およびその製造方法に関する。
 本願は、2018年10月19日に、日本に出願された特願2018-197935号に基づき優先権を主張し、その内容をここに援用する。
 近年、自動車からの炭酸ガス(CO)の排出量を抑えるために、高強度鋼板を使用して自動車車体の軽量化が進められている。また、搭乗者の安全性確保のためにも、自動車車体には軟鋼板の他に高強度鋼板が多く使用されるようになってきている。
 さらに最近では、燃費規制やNO等の環境規制の更なる厳格化により、プラグインハイブリッド車や電気自動車の増加が見込まれている。これら次世代自動車においては、大容量バッテリーの搭載が必要であり、より一層の車体の軽量化が必要となる。
 車体の軽量化をより一層進めるためには、鋼板からアルミニウム合金、樹脂、CFRP等の軽量素材への置換もしくは鋼板の更なる高強度化が選択肢となり得るが、素材コストや加工コストの観点からは、高級車を除く大量生産を前提とした大衆車では、超高強度鋼板の採用が現実的である。
 自動車車体の軽量化に関し、例えば、従来、骨格部品であるセンターピラーには780MPa級の高強度鋼板が用いられていたが、近年、車体をより軽量化するために、板厚の薄い1180MPa級の超高強度鋼板が採用されつつある。また、足回り部品であるロアーアームには従来は590MPa級の高強度熱延鋼板が用いられてきたが、例えば特許文献1に記載されているような、980MPa級以上の超高強度熱延鋼板が求められている。
 一方、最近ではLCA(Life Cycle Assessment)が注目されるようになり、自動車の走行時だけでなく、製造時の環境負荷に関しても関心が注がれるようになった。
 例えば、自動車部品の塗装においては、これまで、下地処理として、化成処理の一種であるリン酸亜鉛処理が施されていた。リン酸亜鉛処理は、低コストで、かつ、塗膜密着性、耐食性に優れている。しかしながら、リン酸亜鉛処理液はリン酸を主成分として亜鉛塩・ニッケル塩・マンガン塩等の金属成分が含まれている。そのため、使用後に破棄される廃液のリンおよび金属類による環境負荷が懸念されていた。また、化成処理槽に沈殿するリン酸鉄を主成分とする大量のスラッジが産業廃棄物として大きな環境負荷となっていた。
 そこで、最近では、環境負荷を低減できる化成処理液としてジルコニウム系化成処理液が使用されている。ジルコニウム系化成処理液は、リン酸塩を含まず金属塩を添加する必要がない。そのため、スラッジ発生量がきわめて小さい。例えば、特許文献2および3には、ジルコニウム化成処理液を用いて金属表面に化成処理皮膜を形成する技術が記載されている。
国際公開2014/132968号パンフレット 日本国特開2004-218074号公報 日本国特開2008-202149号公報
 ジルコニウム系化成処理液を用いても、従来の780MPa級の強度クラスまでの高強度鋼板では、リン酸亜鉛化成処理に匹敵する耐食性及び塗膜密着性が得られる。しかしながら、引張強さが980MPa以上の超高強度鋼板においては、含有される合金元素量が多いことから、ジルコニウム系化成結晶の鋼板表面への付着が不十分となり、良好な耐食性と塗膜密着性とが得られない。
 本発明は上述した問題点に鑑みて案出されたものであり、その目的とするところは、980MPa以上の引張強さと十分な低温靭性とを有する超高強度鋼板であって、ジルコニウム系化成処理液を用いた場合でも、リン酸亜鉛化成処理液を用いた場合と同等以上の化成処理性と塗膜密着性とを有する熱延鋼板、及びその熱延鋼板を安定して製造できる製造方法を提供することである。
 本発明者らは、前記課題を解決するため鋭意検討を行い、後述するように、鋼板の表層の酸化物が化成処理性、塗膜密着性に大きく影響していることを見出した。
[規則91に基づく訂正 24.04.2020] 
 本発明は、これら知見を基になされたものであり、その要旨は以下のとおりである。
(1)本発明の一態様に係る熱延鋼板は、板厚方向全体の平均値で表される化学組成が、質量%で、C:0.050%以上、0.200%以下、Si:0.05%以上、3.00%以下、Mn:1.00%以上、4.00%以下、Al:0.001%以上、2.000%以下、N:0.0005%以上、0.1000%以下、Ni:0.02%以上、2.00%以下、Nb:0%以上、0.300%以下、Ti:0%以上、0.300%以下、Cu:0%以上、2.00%以下、Mo:0%以上、1.000%以下、V:0%以上、0.300%以下、Cr:0%以上、2.00%以下、Mg:0%以上、0.0100%以下、Ca:0%以上、0.0100%以下、REM:0%以上、0.1000%以下、B:0%以上、0.0100%以下、Zr、Co、Zn、およびWのうち1種または2種以上:合計で0~1.000%、Sn:0~0.050%、P:0.100%以下、S:0.0300%以下、O:0.0100%以下を含有し、残部がFeおよび不純物からなり、かつ、下記式(i)を満たし、下記(ii)で示されるPCMが0.20以上であり、かつ、下記(iii)で示されるMsが400℃以上であり、厚さをtとしたとき、表面からt/4の位置における金属組織が、焼き戻しマルテンサイト及び下部ベイナイトのいずれか一方あるいは両方を、体積率の合計で90%以上含有し、引張強さが980MPa以上であり、前記表面における平均Ni濃度が7.0%以上である。
 0.05%≦Si+Al≦2.50%・ ・ ・ 式(i)
 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Mo/15+Cr/20+V/10+5×B・ ・ ・ 式(ii)
Ms=561-474×C-33×Mn-17×Ni-17×Cr-21×Mo・ ・ ・ 式(iii)
 上記式中に示す元素は前記熱延鋼板中に含有されている元素の質量%である。
(2)上記(1)に記載の熱延鋼板は、前記化学組成が、質量%で、Ni:0.02%以上、0.05%以下を含有してもよい。
(3)上記(1)または(2)に記載の熱延鋼板は、前記焼き戻しマルテンサイトおよび前記下部ベイナイト中に存在する鉄系炭化物の平均個数密度が1.0×10個/mm以上であってもよい。
(4)上記(1)~(3)のいずれかに記載の熱延鋼板は、前記熱延鋼板に内部酸化層が存在し、前記内部酸化層の平均深さが前記熱延鋼板の前記表面から5.0μm以上、20.0μm以下であってもよい。
(5)上記(1)~(4)のいずれかに記載の熱延鋼板は、前記熱延鋼板の前記表面の算術平均粗さRaの標準偏差が10.0μm以上、50.0μm以下であってもよい。
(6)上記(1)~(5)のいずれかに記載の熱延鋼板は、前記化学組成が、質量%で、B:0.0001%以上0.0100%以下、Ti:0.015%以上0.300%以下、のうち1種または2種を含有してもよい。
(7)上記(1)~(6)のいずれかに記載の熱延鋼板は、前記化学組成が、質量%で、Nb:0.005%以上、0.300%以下、Cu:0.01%以上、2.00%以下、Mo:0.010%以上、1.000%以下、V :0.010%以上、0.300%以下、Cr:0.01%以上、2.00%以下、のうち1種または2種以上を含有してもよい。
(8)上記(1)~(7)のいずれかに記載の熱延鋼板は、前記化学組成が、質量%で、Mg:0.0005%以上、0.0100%以下、Ca:0.0005%以上、0.0100%以下、REM:0.0005%以上、0.1000%以下、のうち1種または2種以上を含有してもよい。
(9)本発明の別の態様に係る熱延鋼板の製造方法は、上記(1)に記載の化学組成を有する溶鋼を鋳造して鋼片を得る鋳造工程と、前記鋼片を、少なくとも予加熱ゾーン、加熱ゾーン及び均熱ゾーンを有する、蓄熱式バーナーを備えた加熱炉で加熱する加熱工程と、加熱された前記鋼片に、仕上げ圧延温度が850℃以上になるように熱間圧延を行って熱延鋼板を得る熱延工程と、前記仕上げ圧延温度から下記式(iv)で計算されるMs点温度までの平均冷却速度が50℃/秒以上となるように、前記Ms点温度以下の温度域まで前記熱延鋼板を一次冷却する一次冷却工程と、前記熱延鋼板を350℃未満の温度で巻き取る巻き取り工程と、を有し、前記加熱工程において、前記予加熱ゾーンでの空気比を1.1以上、1.9以下とする。
 Ms=561-474×C-33×Mn-17×Ni-17×Cr-21×Mo ・ ・ ・ 式(iv)
(10)上記(9)に記載の熱延鋼板の製造方法は、前記一次冷却を前記Ms点温度未満、350℃以上の温度で停止し、前記一次冷却後の前記熱延鋼板を、最大冷却速度が50℃/秒未満となるように350℃未満まで冷却してもよい。
(11)上記(9)または(10)に記載の熱延鋼板の製造方法は、前記加熱工程において、前記加熱ゾーンでの空気比を0.9以上、1.3以下とする。
(12)上記(9)~(11)のいずれか1項に記載の熱延鋼板の製造方法は、前記加熱工程において、前記均熱ゾーンでの空気比を0.9以上、1.9以下としてもよい。
(13)上記(11)または(12)に記載の熱延鋼板の製造方法は、前記予加熱ゾーンでの空気比が、前記加熱ゾーンでの空気比よりも大きくてもよい。
(14)上記(9)~(13)のいずれかに記載の熱延鋼板の製造方法は、前記巻き取り工程後の前記熱延鋼板に、20~95℃の温度の1~10wt%の塩酸溶液を用いて30~60秒未満の酸洗時間の条件で酸洗する酸洗工程を備えてもよい。
 本発明の上記態様によれば、980MPa以上の引張強さと良好な低温靭性とを有する超高強度鋼板であって、ジルコニウム系化成処理液を用いた場合でも、リン酸亜鉛化成処理液を用いた場合と同等以上の化成処理性と塗膜密着性とを有する熱延鋼板を得ることができる。本発明に係る鋼板は、化成処理性と塗膜密着性とに優れるので、塗装後耐食性に優れる。そのため、本発明に係る鋼板は、高強度及び塗装後耐食性を要する自動車用部品に好適である。
本実施形態に係る熱延鋼板及び比較熱延鋼板の、表面のEPMA測定結果の一例である。(測定条件:加速電圧:15kV、照射電流:6×10-8A、照射時間:30ms、ビーム径:1μm) 表面に濃化したNiがジルコニウム系化成結晶の析出核になるメカニズムを示す図である。 熱延鋼板の表面の粗さが変化するメカニズムを示す図である。
 本発明者らは980MPa以上の引張強さの超高強度鋼板において、ジルコニウム系化成処理液を用いた化成処理で良好な化成処理性と塗膜密着性とが安定して得られる条件について鋭意研究を重ねた。検討の結果、鋼板の表層の酸化物が化成処理性、塗膜密着性に大きく影響していることが分かった。具体的には、以下の通りである。
 鋼板は、通常、化成処理を行う前に酸洗される。しかしながら、通常の酸洗を行っても超高強度鋼板の表面には、Si、Al等の酸化物が形成されており、これがジルコニウム系化成処理における化成処理性や塗膜密着性を劣化させることが分かった。本発明者らがさらに検討を行った結果、化成処理性及び塗膜密着性の向上には、Si、Al等の酸化物の形成を抑制するとともに、ジルコニウム系化成結晶の析出核として鋼板の表面近傍にNi濃化部を有する層(Ni濃化層という場合がある)を形成することが、効果的であることを発見した。
 また、本発明者らは、一般的な熱延鋼板を製造する工程において安価でかつ大量生産を前提とした場合、微量なNi含有と、熱間圧延に先立つ加熱工程での加熱条件とを限定することとによって、酸洗後(化成処理前)の鋼板の表面近傍にNiの濃化層を形成することが可能であることを見出した。
 以下、本実施形態に係る熱延鋼板について詳細に説明する。
[鋼板の成分]
 まず、本実施形態に係る熱延鋼板の化学成分の限定理由を説明する。特に断りのない限り、成分の含有量に関する%は質量%を示す。
 また、本明細書中の各式において用いる元素名の表示は、当該元素の鋼板中の含有量(質量%)を示すものとし、含有していない場合は0を代入するものとする。
C:0.050%以上、0.200%以下
 Cは、本実施形態に係る熱延鋼板において重要な元素のひとつである。Cは、鋼板の強度上昇や焼入れ性の向上に寄与する元素である。C含有量が、0.050%未満では、低温変態生成相の組織強化による強度向上の効果を得ることが出来ない。そのため、C含有量は、0.050%以上とする。好ましくは0.070%以上である。
 一方、Cは、ベイナイトやマルテンサイトが焼き戻される際に析出するセメンタイト(FeC)等の鉄系炭化物を生成させる。C含有量が0.200%超であると、打ち抜き加工時の二次せん断面の割れ起点となるセメンタイト(FeC)等の鉄系炭化物が増加し、穴広げ性等の成形性が劣化する。このため、C含有量は、0.200%以下とする。好ましくは、0.180%以下である。
Si:0.05%以上、3.00%以下
 Siは、本実施形態に係る熱延鋼板において重要な元素のひとつである。Siは、焼き戻し軟化抵抗を向上させることで母材の強度上昇に寄与する元素であり、溶鋼の脱酸材としても有効な元素である。また、Siは、ウロコ、紡錘スケールといったスケール系欠陥の発生の抑制にも有効な元素である。これらの効果を得るため、Si含有量は0.05%以上とする。また、Si含有量の増加に伴い、材料組織中におけるセメンタイト等の鉄系炭化物の析出が抑制され、強度と穴広げ性とが向上する。そのため、Si含有量を0.10%以上とすることが好ましい。
 一方、Si含有量が3.00%を超えても強度上昇に寄与する効果が飽和する。そのため、Si含有量は3.00%以下とする。好ましくは2.50%以下である。
Mn:1.00%以上、4.00%以下
 Mnは、固溶強化に寄与する元素である。また、Mnは、焼入れ性を高める元素であり、鋼板組織を焼き戻しマルテンサイトあるいは下部ベイナイト主相とするために含有させる。Mn含有量が1.00%未満では、冷却中のフェライト変態やベイナイト変態の抑制効果が十分に発揮されず、鋼板組織を下部ベイナイト及び/またはマルテンサイト主相にできない。そのため、Mn含有量を1.00%以上とする。
 一方、Mn含有量が4.00%を超えてもこの効果が飽和する。そのため、Mn含有量を4.00%以下とする。また、Mn含有量が3.00%超となると鋳造時にスラブ割れが発生しやすくなる。そのため、好ましくは、Mn含有量は3.00%以下である。
Al:0.001%以上、2.000%以下
 Alは、本実施形態に係る熱延鋼板において重要な元素のひとつである。Alは、ベイナイトやマルテンサイトが焼き戻される際に粗大なセメンタイトの形成を抑制し、穴広げ性を向上させる元素である。また、脱酸材としても活用可能である。この効果を得るため、Al含有量を0.001%以上とする。
 一方で、Alの過剰な含有はAl系の粗大介在物の個数を増大させ、穴拡げ性の劣化や表面疵の原因になる。このことから、Al含有量を2.000%以下とする。また、Al含有量が多いと、鋳造時にタンディッシュノズルが閉塞し易くなるので、Al含有量は、好ましくは、1.500%以下である。
N:0.0005%以上、0.1000%以下
 N含有が多いと、鋼中に固溶Nが残存して延性が低下する。また、Tiが含有されている場合には、粗大なTiNが析出して穴広げ性が低下する。そのため、N含有量は少ないほど好ましい。N含有量が0.1000%を超えると、特に延性、穴広げ性の低下が顕著になるので、N含有量を0.1000%以下とする。好ましくは、0.0100%以下である。
 一方、N含有量を0.0005%未満とすることは経済的に望ましくない。そのため、N含有量を0.0005%以上とする。
Ni:0.02%以上、2.00%以下
 Niは、本実施形態に係る熱延鋼板において重要な元素のひとつである。Niは、主に熱間圧延工程の加熱工程において、特定の条件下で鋼板表面とスケールとの界面近傍の鋼板表面近傍に濃化する。このNiが、鋼板表面にジルコニウム系化成処理を行う際に、ジルコニウム系化成処理皮膜の析出核となり、スケがなく密着性のよい皮膜の形成を促進する。Ni含有量が0.02%未満ではその効果がないので、Ni含有量を0.02%以上とする。上記密着性向上効果は、ジルコニウム系化成処理皮膜だけでなく、従来のリン酸亜鉛化成処理皮膜に対しても同様に得られる。また、溶融亜鉛めっき処理による溶融亜鉛めっき層や、さらには、めっき後合金化処理された合金化亜鉛めっき層の母材との密着性も向上させる。
 さらに、Niは、焼き入れ性を高める元素として冷却時のフェライト変態を抑制し、鋼板組織を焼き戻しマルテンサイトあるいは下部ベイナイト組織とするために有効な元素である。
 一方、Ni含有量が2.00%を超えてもその効果が飽和するだけでなく、合金コストが上昇する。従って、Ni含有量を、2.00%以下とする。好ましくは0.50%以下、より好ましくは0.05%以下である。
 以上が本実施形態に係る熱延鋼板の基本的な化学成分であり、本実施形態に係る熱延鋼板は、上記の元素を含有し、残部がFe及び不純物からなっていてもよい。しかしながら、各種特性の向上を目的として、さらに下記のような成分を含有することができる。以下の元素は、必ずしも含有する必要はないので、含有量の下限は0%である。
Nb:0%以上、0.300%以下
 Nbは、炭窒化物を形成して、あるいは、固溶Nbが熱間圧延時の粒成長を遅延させることで、熱延鋼板の粒径の微細化を通じて低温靭性の向上に寄与する元素である。この効果を得る場合、Nb含有量は0.005%以上とすることが好ましい。
 一方、Nb含有量が0.300%を超えても上記効果は飽和して経済性が低下する。そのため、必要に応じて、Nbを含有させる場合でも、Nb含有量は0.300%以下とする。
Ti:0%以上、0.300%以下
 Tiは、炭窒化物を形成して、あるいは、固溶Tiが熱間圧延時の粒成長を遅延させることで、熱延鋼板の粒径の微細化を通じて、低温靭性の向上に寄与する元素である。この効果を得る場合、Ti含有量を0.005%以上とすることが好ましい。また、Bを含有させてその焼き入れ性向上効果を発現させるためには、BNとして析出するBを極力少なくする必要がある。Ti含有量を0.015%以上とすればBNよりも高温で安定なTiNが析出して、十分な固溶Bによる焼き入れ性の向上が期待できる。そのため、同時にBを含有させる場合には、Ti含有量を0.015%以上とすることが好ましい。
 一方、Ti含有量が0.300%を超えても上記効果は飽和して経済性が低下する。そのため、必要に応じてTiを含有させる場合でも、Ti含有量は0.300%以下とする。
Cu:0%以上、2.00%以下
Mo:0%以上、1.000%以下
V:0%以上、0.300%以下
Cr:0%以上、2.00%以下
 Cu、Mo、V、Crは、焼き入れ性を高める元素として、冷却時のフェライト変態を抑制し、鋼板組織を焼き戻しマルテンサイトあるいは下部ベイナイト組織とするために、いずれか一種又は二種以上を含有させてもよい。また、これらの元素は、析出強化もしくは固溶強化により熱延鋼板の強度を向上させる効果を有する元素であり、この効果を得るために一種又は二種以上を含有させてもよい。上記効果を得る場合、Mo、Vのそれぞれの含有量を0.010%以上、Cu、Crの含有量を0.01%以上とすることが好ましい。
 一方、Cu含有量が2.00%超、Mo含有量が1.000%超、V含有量が0.300%超、Cr含有量が2.00%超であっても上記効果は飽和する上、経済性が低下する。従って、必要に応じて、Cu、Mo、V、Crを含有させる場合でも、Cu含有量は2.00%以下、Mo含有量は1.000%以下、V含有量は0.300%以下、Cr含有量は2.00%以下とする。
Mg:0%以上、0.0100%以下
Ca:0%以上、0.0100%以下
REM:0%以上、0.1000%以下
 Mg、CaおよびREM(希土類元素)は、破壊の起点となり鋼板の加工性を劣化させる原因となる非金属介在物の形態を制御し、鋼板の加工性を向上させる元素である。そのため、これらのいずれか一種又は二種以上を含有させてもよい。この効果を得る場合、Ca、REMおよびMgの含有量は、それぞれ0.0005%以上とすることが好ましい。
 一方、Mgの含有量を0.0100%超、Caの含有量を0.0100%超、REMの含有量を0.1000%超としても上記効果が飽和する上、経済性が低下する。従って、含有させる場合でも、Mg含有量は0.0100%以下、Ca含有量は0.0100%以下、REM含有量は、0.1000%以下であることが望ましい。
 ここで、REMは、Sc、Yおよびランタノイドからなる合計17元素を指し、上記REMの含有量は、これらの元素の合計含有量を指す。ランタノイドの場合、工業的にはミッシュメタルの形で添加される。
B:0%以上、0.0100%以下
 Bは、焼き入れ性を高める元素として、冷却時のフェライト変態を遅延させることで鋼板組織を、焼き戻しマルテンサイトあるいは下部ベイナイト組織とするために有効な元素であり、この効果を得るために含有させても良い。この効果を得る場合、B含有量を0.0001%以上とすることが好ましい。より好ましくは0.0005%以上、さらに好ましくは0.0007%以上である。
 一方では、B含有量が0.0100%を超えると、その効果が飽和するばかりでなく、経済性が低下する。そのため、含有させる場合でも、B含有量を0.0100%以下とする。好ましくは0.0050%以下、より好ましくは0.0030%以下である。
Zr、Co、Zn、およびW:1種または2種以上を合計で0~1.000%
Sn:0.050%以下
 その他の元素について、Zr、Co、Zn、Wを合計で1.000%以下含有しても本実施形態に係る熱延鋼板の効果は損なわれない。そのため、これらの元素を合計で1.0000%以下含有させてもよい。
 また、Snを少量含有させても本実施形態に係る熱延鋼板の効果は損なわれない。しかしながら、Sn含有量が0.050%を超えると熱間圧延時に疵が発生する恐れがあるので、Sn含有量を0.050%以下とすることが望ましい。
P:0.100%以下
 Pは、溶銑に含まれる不純物であり、鋼板の粒界に偏析し、含有量の増加に伴い低温靭性を低下させる元素である。このため、P含有量は、低いほど望ましい。P含有量が0.100%超であると加工性や溶接性への悪影響が著しいので、P含有量を0.100%以下とする。特に、溶接性を考慮する場合、P含有量は、0.030%以下であることが望ましい。
 一方、Pは少ない方が好ましいが、必要以上に低減することは製鋼工程に多大な負荷を掛ける。そのため、P含有量を0.001%以上としても良い。
S:0.0300%以下
 Sは、溶銑に含まれている不純物であり、含有量が多すぎると、熱間圧延時の割れを引き起こす元素である。また、Sは、穴広げ性を劣化させるMnSなどの介在物を生成させる元素である。このため、S含有量は、極力低減させるべきである。しかしながら、S含有量が0.0300%以下ならば許容できる範囲であるので、S含有量を0.0300%以下とする。ただし、穴広げ性の観点からはS含有量を、0.0100%以下とすることが好ましく、0.0050%以下とすることがより好ましい。
 一方、S含有量は少ない方が好ましいが、必要以上に低減することは製鋼工程に多大な負荷がかかる。そのため、S含有量を0.0001%以上としてもよい。
O:0.0100%以下
 Oは、含有量が多すぎると鋼中で破壊の起点となる粗大な酸化物を形成し、脆性破壊や水素誘起割れを引き起こす元素である。そのため、O含有量を0.0100%以下とする。現地溶接性の観点からは、O含有量を0.0030%以下とすることが好ましい。
 一方、Oは、溶鋼の脱酸時に微細な酸化物を多数分散させる元素である。そのため、O含有量を0.0005%以上としても良い。
 上述の通り、本実施形態に係る熱延鋼板は、基本元素を含み、必要に応じて任意元素を含み、残部はFeおよび不純物からなる。不純物とは、鋼板の製造過程において、原料から、またはその他の製造工程から、意図せず含まれる成分をいう。
 0.05%≦Si+Al≦2.50%
 本実施形態に係る熱延鋼板では、各元素の含有量を上記の範囲に制御した上で、Si+Alが下記式(1)を満足するように制御する必要がある。
 0.05%≦Si+Al≦2.50%・ ・ ・ 式(1)
 Si+Alが0.05%未満であると、ウロコ、紡錘スケールといったスケール系欠陥が発生する。
 一方、Si+Alが2.50%超であると、Niを含有させて表層に十分にNiを濃化させても、化成処理結晶の核となる効果が得られず、化成処理性、塗膜密着性を改善する効果が得られなくなる。
 PCM≧0.20
 Ms≧400(℃)
 また、本実施形態に係る熱延鋼板では、各元素の含有量を上記の範囲に制御した上で、下記式(2)で求められるPCMを0.20以上にする必要がある。
 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Mo/15+Cr/20+V/10+5×B・ ・ ・ 式(2)
 PCMが0.20未満であると、焼入れ性が不足し、主相を焼き戻しマルテンサイト及び/または下部ベイナイトとするミクロ組織が得られなくなる。
 また、本実施形態に係る熱延鋼板では、下記式(3)で表されるMsを400(℃)以上にする必要がある。
 Msが400(℃)未満であると、冷却中のオートテンパー(自動焼き戻し)が不十分となり伸びフランジ性が劣化する。
 Ms=561-474×C-33×Mn-17×Ni-17×Cr-21×Mo ・ ・ ・ 式(3)
 上述した、熱延鋼板における各元素の含有量は、JISG1201:2014に準じて切粉によるICP発光分光分析で求めた、全板厚での平均含有量である。
[金属組織]
 本実施形態に係る熱延鋼板のミクロ組織(金属組織)について説明する。特に断りのない限り、ミクロ組織に関する%は体積率での%を示す。
 鋼板の表面からt/4(t:板厚)の位置における金属組織が、焼き戻しマルテンサイト及び下部ベイナイトのいずれか一方あるいは両方:体積率の合計で90%以上
 本実施形態に係る熱延鋼板では、主相を焼き戻しマルテンサイト及び/または下部ベイナイトとし、その合計の体積率を90%以上とする。
 焼き戻しマルテンサイトと下部ベイナイトとの合計の体積率が、90%未満では980MPa以上の引張強さを確保できない。このため、焼き戻しマルテンサイトと下部ベイナイトとの合計の体積率の下限は、90%である。その体積率を100%としても、高強度及び優れた低温靭性は得られる。
 本実施形態に係る熱延鋼板において、焼き戻しマルテンサイトは、高強度及び優れた低温靭性を具備するために、最も重要なミクロ組織である。焼き戻しマルテンサイトは、ラス状の結晶粒の集合であり、内部に長径5nm以上の鉄系炭化物を含み、さらに、その炭化物が複数のバリアント、即ち、異なる方向に伸長した複数の鉄系炭化物群に属する組織である。
 焼き戻しマルテンサイトは、Ms点(マルテンサイト変態開始温度)以下の冷却時の冷却速度を低下させた場合や、一旦、マルテンサイト組織とした後、100~600℃で焼き戻すことで、その組織を得ることが出来る。本実施形態に係る熱延鋼板では400℃未満の冷却制御にて析出を制御している。
 下部ベイナイトも、焼き戻しマルテンサイトと同様にラス状の結晶粒の集合であり、内部に長径5nm以上の鉄系炭化物を含む。下部ベイナイトでは、その炭化物が、単一のバリアント、即ち、同一方向に伸長した鉄系炭化物群に属する。炭化物の伸長方向を観察することで、焼き戻しマルテンサイトと下部ベイナイトとは判別できる。ここで、同一方向に伸長した鉄系炭化物群とは、鉄系炭化物群の伸長方向の差異が5°以内であるものを意味している。しかしながら、本実施形態に係る熱延鋼板においては、材質の観点から焼き戻しマルテンサイトと下部ベイナイトとを明確に区別する必要はない。
 ミクロ組織には、焼き戻しマルテンサイト、下部ベイナイト以外の組織として、フェライト、フレッシュマルテンサイト、上部ベイナイト、パーライト、残留オーステナイトの1種または2種以上を合計で体積率10%以下含有しても良い。
 本実施形態において、フレッシュマルテンサイトとは、内部に炭化物を含まないマルテンサイトである。従って、焼き戻しマルテンサイトとフレッシュマルテンサイトとは炭化物の観点で容易に判別できる。すなわち、FE-SEMを用いてラス状結晶粒内部を観察し、その鉄系炭化物の有無で判別できる。フレッシュマルテンサイトは、高強度であるものの低温靭性に劣る。このことから、その体積率は、10%以下に制限する必要がある。
 残留オーステナイトは、加熱時に生成したオーステナイトが常温まで変態せずに残存した組織であるが、プレス成形時に鋼材が塑性変形する、あるいは、衝突時に自動車部材が塑性変形することで、フレッシュマルテンサイトに変態する。そのため、上記で述べたフレッシュマルテンサイトと同様の悪影響を及ぼす。このことから、体積率を10%以下に制限する必要がある。また、残留オーステナイトは結晶構造がFCCであり他のミクロ組織がBCCであり互いに異なるためにX線回折法で容易にその体積率を求めることが可能である。
 上部ベイナイトは、ラス間に炭化物を含むラス状の結晶粒の集合体である。上部ベイナイトでは、このラス界面に炭化物が析出しており、下部ベイナイトがラス内部に炭化物を析出する場合と明確に異なる。そのために容易に判別できる。すなわち、FE-SEMを用いてラス状結晶粒の界面を観察し、その鉄系炭化物の有無で判別できる。ラス間に含まれる炭化物は破壊の起点となるため、上部ベイナイトの体積率が多いと、低温靭性が低下する。また、上部ベイナイトは、下部ベイナイトに比較し、高温で形成することから、低強度であり、過剰な形成は、980MPa以上の引張強さの確保を難しくする。この悪影響は、上部ベイナイトの体積率が10%超となると顕著になるので、体積率を10%以下に制限する必要がある。
 フェライトは塊状の結晶粒であって、内部にラス等の下部組織を含まない組織である。フェライトは、最も軟質な組織であり、980MPa以上の引張強さ確保のためには、10%以下に制限する必要がある。また、主相である焼き戻しマルテンサイトあるいは下部ベイナイトに比較し、極めて軟質であることから、フェライトと、焼き戻しマルテンサイトまたは下部ベイナイトとの界面に変形が集中し、破壊の起点になりやすい。この悪影響は、体積率が10%超となると顕著になることから、その体積率を10%以下に制限する必要がある。
 パーライトはフェライト同士の間にセメンタイトが層状に析出したラメラ状の金属組織であり、フェライトと同様に、強度低下や低温靭性の劣化の原因となるので、その体積率を10%以下に制限する必要がある。
 以上のような本実施形態に係る熱延鋼板のミクロ組織を構成する焼き戻しマルテンサイト、フレッシュマルテンサイト、上部ベイナイト、下部ベイナイト、フェライト、パーライト、残留オーステナイト及び残部組織の同定、存在位置の確認、及び、体積率の測定は、ナイタール試薬及び特開昭59-219473号公報に開示の試薬を用いて、鋼板圧延方向断面又は圧延方向直角方向断面を腐食して、1000~100000倍の走査型及び透過型電子顕微鏡で観察することで可能である。
 また、FESEM-EBSP法を用いた結晶方位解析や、マイクロビッカース硬度測定等の微小領域の硬度測定からも、組織の判別は可能である。
 例えば、上述したように、焼き戻しマルテンサイト、上部ベイナイトおよび下部ベイナイトは、炭化物の形成サイトや結晶方位関係(伸長方向)が異なることから、FE-SEMを用いてラス状結晶粒内部の鉄系炭化物を観察し、その伸長方向を調べることにより、下部ベイナイトと焼き戻しマルテンサイトを容易に区別することができる。ただし、本実施形態に係る熱延鋼板では、焼き戻しマルテンサイトと下部ベイナイトとの合計の体積率を制御すればよいので、これらの組織を必ずしも区別しなくてもよい。
 本実施形態に係る熱延鋼板では、フェライト、パーライト、上部ベイナイト、下部ベイナイト、焼き戻しマルテンサイトの体積率は、鋼板の厚さをtとしたとき、鋼板の厚さ方向で鋼板表面からt/4の位置を含む部分(概ねt/8~3t/8)から試料を採取し、鋼板の圧延方向断面(いわゆるL方向断面)を観察することによって得る。
 具体的には、まず、試料をナイタールエッチングし、エッチング後に光学顕微鏡を用いて300μm×300μmの視野で得られた組織写真に対し、画像解析を行うことによって、フェライト及びパーライトそれぞれの面積率、およびベイナイト、マルテンサイト、残留オーステナイトの合計面積率を得る。次に、ナイタールエッチングした部分をレペラエッチングし、光学顕微鏡を用いて300μm×300μmの視野で得られた組織写真を、画像解析を行うことによって、残留オーステナイトとマルテンサイトとの合計面積率を算出する。さらに圧延面法線方向から板厚の1/4深さまで面削した試料を用い、後述するX線回折測定により残留オーステナイト面積率を求める。この方法により、フェライト、ベイナイト、マルテンサイト、残留オーステナイト、パーライトそれぞれの面積率を得ることができる。
 上述の通り、ベイナイトはラス状の結晶粒の集合である。ベイナイトには、ラス間に炭化物を含む、ラスの集合体である上部ベイナイトと、内部に長径5nm以上の鉄系炭化物を含む下部ベイナイトとがある。下部ベイナイトに析出する鉄系炭化物は、単一のバリアント、即ち、同一方向に伸長した鉄系炭化物群に属する。焼き戻しマルテンサイトは、ラス状の結晶粒の集合であり、内部に長径5nm以上の鉄系炭化物を含む。焼き戻しマルテンサイト内の鉄系炭化物は、複数のバリアント、即ち、異なる方向に伸長した複数の鉄系炭化物群に属する。また、本実施形態において、焼き戻しマルテンサイトではないマルテンサイトは直径5nm以上の炭化物がラス間とラス内に析出していない金属組織と定義する。このことから、鋼板表面から板厚の1/4深さ位置において、走査型電子顕微鏡を用いて倍率1000~100000倍で、40μm×30μmの領域を少なくとも3領域観察し、上述した特徴を含むかどうかに基づいて、ベイナイトにおける下部ベイナイト及び上部ベイナイトの割合、マルテンサイトにおける焼戻しマルテンサイト及びフレッシュマルテンサイトの割合を求め、各相の面積率を算出する。面積率は体積率と等しいとして、これを体積率とする。
 残留オーステナイトの体積率は、X線回折によって求めることができる。オーステナイトはフェライトと結晶構造が違うため結晶学的に容易に識別できる。例えば、MoのKα線を用いてオーステナイトとフェライトとの反射面強度の違いより次式を用いてその体積率を簡便に求める方法である。
Vγ=(2/3){100/(0.7×α(211)/γ(220)+1)}+(1/3){100/(0.78×α(211)/γ(311)+1)}
ただし、α(211)、γ(220)およびγ(311)は、それぞれフェライト(α)、オーステナイト(γ)のX線反射面強度である。
 本実施形態に係る熱延鋼板では、ミクロ組織に含まれる焼き戻しマルテンサイト及び下部ベイナイト中に、鉄系炭化物を平均個数密度で、1.0×10(個/mm)以上含有することが望ましい。
 焼き入れたままのマルテンサイト(フレッシュマルテンサイト)は、強度は優れるものの靭性に乏しい。これに対し、セメンタイトなどの鉄系炭化物が析出した焼き戻しマルテンサイトでは優れた強度と低温靭性とのバランスが得られる。
 本発明者らが、低温靭性と鉄系炭化物の個数密度との関係を調査したところ、焼き戻しマルテンサイト及び下部ベイナイト中の炭化物の個数密度を1.0×10(個/mm)以上とすることで、より優れた低温靭性が確保可能なことが明らかとなった。このことから、焼き戻しマルテンサイト及び下部ベイナイトに含まれる鉄系炭化物の平均個数密度を、1.0×10(個/mm)以上とすることが好ましい。より好ましくは、5.0×10(個/mm)以上であり、更に好ましくは、1.0×10(個/mm)以上である。
 後述する方法で得られる本実施形態に係る熱延鋼板に析出した炭化物のサイズは、300nm以下と小さく、ほとんどがマルテンサイトやベイナイトのラス内に析出する。そのため、低温靭性を劣化させないものと推定される。
 炭化物の個数密度の測定に当たっては、鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨し、ナイタールエッチングし、板厚の1/4(t/4)の位置を中心とする1/8~3/8厚の範囲を電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)で観察することで行う。200000倍にて、各10視野観察を行い、観察視野中の焼き戻しマルテンサイト及び下部ベイナイトに含まれる鉄系炭化物の個数密度を測定し、各視野での個数密度を平均して平均個数密度とする。
 更なる低温靭性向上を図るためには、主相を焼き戻しマルテンサイトや下部ベイナイトとすることに加えて、平均有効結晶粒径を10μm以下とすることが好ましい。より好ましくは、8μm以下である。ここで述べる有効結晶粒径とは、下記手法にて述べる結晶方位差15°以上の粒界に囲まれた領域のことを意味し、マルテンサイトやベイナイトではブロック粒径に相当する。
 有効結晶粒径は、EBSP-OIMTM(Electron Back Scatter Diffraction Pattern-Orientation Image Microscopy)を用い、結晶粒の方位差を一般的に結晶粒界として認識されている大角粒界の閾値である15°と定義してマッピングした画像より粒を可視化して求める。EBSP-OIMTM法は走査型電子顕微鏡(SEM)内で高傾斜した試料に電子線を照射し、後方散乱して形成された菊池パターンを高感度カメラで撮影し、コンピュータ画像処理する事により照射点の結晶方位を短待間で測定する装置およびソフトウエアで構成されている。EBSP法ではバルク試料表面の微細構造並びに結晶方位の定量的解析ができ、分析エリアはSEMで観察できる領域で、SEMの分解能にもよるが、最小20nmの分解能で分析できる。
 焼き戻しマルテンサイト、ベイナイトの有効結晶粒(ここでは、15°以上の粒界に囲まれた領域を意味する)のアスペクト比は、2.0以下とすることが望ましい。特定方向に扁平した粒は異方性が大きく、シャルピー試験の際に亀裂が粒界に沿って伝播するので靭性値の低下の原因となる場合が多い。そのため、有効結晶粒は、出来るだけ等軸な粒にすることが好ましい。本実施形態に係る熱延鋼板では、熱延鋼板の圧延方向断面を観察し、有効結晶粒の圧延方向の長さ(L)と板厚方向の長さ(T)との比(=L/T)をアスペクト比として定義する。
表面における平均Ni濃度:7.0%以上
 酸洗後(化成処理前)の超高強度鋼板の表面においても優れたジルコニウム系化成処理皮膜の化成処理性及び塗膜密着性を得るためには、酸洗板表面のSi、Al等の酸化物が無害なレベルまで低減されることが好ましい。Si、Al等の酸化物の制御だけで、上記効果を得るためには、熱間圧延の加熱工程においてスラブ表面の酸化を極力抑えるために、加熱炉の予加熱ゾーンにおいてAr、He、N等の不活性ガスを使用した実質的な無酸化雰囲気とするか、もしくは空気比を0.9未満の不完全燃焼とする必要がある。しかしながら、一般的な熱延鋼板を製造する工程において安価でかつ大量生産を前提とした場合においては、熱間圧延の加熱工程において不活性ガスを使用した実質的な無酸化雰囲気とすることは不可能である。また、Si、Al等の酸化物の制御のために空気比を0.9未満としても、不完全燃焼による熱損失が著しく増大して、加熱炉そのものの熱効率が低下して生産コストが増加する等の問題が生じる。
 本発明者らは、安価でかつ大量生産が可能な製造工程の適用を前提として、上述した化学成分、組織、及び980MPa以上の引張強さ、及び靭性を有する超高強度鋼板において、ジルコニウム系化成処理液を用いた化成処理後の塗膜密着性について検討した。通常、熱延鋼板は、酸洗後に化成処理が行われるので、本実施形態においても、酸洗後の鋼板について評価した。酸洗は、20~95℃の温度の1~10wt%(重量%)の塩酸溶液を用いて30~60秒未満の酸洗時間の条件で行った。表面にスケールが形成されていない場合には、酸洗を行わずに評価してもよい。
 検討の結果、FE-EPMAを用いた測定において、表面における平均Ni濃度が質量%で7.0%以上であれば、酸洗板表面にSi、Al等の酸化物が残留していても、すべてのサンプルで後述する方法で評価する塗装剥離幅が、基準である4.0mm以内となり、塗膜密着性に優れることが分かった。また、このような場合には、化成処理皮膜において、スケが観察されなかった。一方、表面における平均Ni濃度が7.0%未満のすべてのサンプルで塗装剥離幅が4.0mm超であった。
 これは、図2に示すように、鋼板の表面にNi濃化部3が形成されることで、表面に局部的に濃化したNiと地鉄1との間に電位差が生じ、また、このNiがジルコニウム系化成結晶4の析出核となるため、ジルコニウム系化成結晶4の生成が促進されるためであると考えられる。なお、地鉄1とは、スケール2を除いた鋼板部分を指す。
 従って、本実施形態に係る熱延鋼板では、表面(酸洗後、化成処理前の表面)における平均Ni濃度が7.0%以上である。表面における平均Ni濃度が7.0%以上であれば、表面にSi、Al等の酸化物が残留していてもジルコニウム系化成結晶の析出核となるのに十分である。表面における平均Ni濃度を7.0%以上とするためには、熱間圧延の加熱工程において、鋼板表面においてFeをある程度選択的に酸化させることによって、スケールと地鉄との界面の地鉄側に、Feよりも酸化されにくいNiを濃化させる必要がある。
 鋼板表面の平均Ni濃度の測定は、JXA-8530Fフィールドエミッション電子プローブマイクロアナライザ(FE-EPMA)を用いて実施する。測定条件は、加速電圧:15kV、照射電流:6×10-8A、照射時間:30ms、ビーム径:1μmである。測定は鋼板の表面に垂直な方向から、測定面積900μm以上に対して行い、測定範囲におけるNi濃度を平均(全測定点におけるNi濃度を平均)する。
 図1に表面のEPMA測定結果の例を示す。
 Niは、主にスケールと地鉄との界面の地鉄側に濃化する。また、化成処理を行う前には通常酸洗が行われる。そのため、対象とする鋼板は、表面にスケールが形成されている場合には、化成処理に供する場合と同様の酸洗を行った後に測定する。
 上述の酸洗板の塗膜密着性について、以下の手順に従い評価する。まず、製造した鋼板を、酸洗した後に、ジルコニウム系化成処理皮膜を付着させる化成処理を施す。さらにその上面に25μm厚の電着塗装を行い170℃×20分の塗装焼き付け処理を行った後、先端の尖ったナイフで電着塗膜を地鉄に達するまで長さ130mmの切りこみを入れる。そして、JIS Z 2371:2015に示される塩水噴霧条件にて、35℃の温度での5%塩水噴霧を700時間継続実施した後に切り込み部の上に幅24mmのテープ(ニチバン 405A-24 JIS Z 1522:2009)を切り込み部に平行に130mm長さで貼り、これを剥離させた場合の最大塗膜剥離幅を測定する。
熱延鋼板に内部酸化層(地鉄内部で酸化物が生成した領域)が存在し、内部酸化層の熱延鋼板の表面からの平均深さが5.0μm以上、20.0μm以下
 表面にNi濃化部があっても、熱延鋼板表面においてSi、Al等の酸化物の被覆割合が大きすぎるとジルコニウム系化成処理皮膜が付着しない「スケ」が発生しやすくなる。これを抑制するためにはSi、Al等の酸化を地鉄よりも外部に酸化物を形成する外部酸化ではなく、内部に酸化物を形成する内部酸化にすることが望ましい。
 本発明者らは、表面における平均Ni濃度が7.0%以上であるサンプルのみについて、断面の光学顕微鏡観察を行い、塗装剥離幅と内部酸化層の鋼板表面からの平均深さ(内部酸化層の下端の位置の平均)の関係を調べた。その結果、内部酸化層の平均深さが5.0μm以上のすべてのサンプルが、塗装剥離幅が3.5mm以内であったのに対して、内部酸化層の平均深さが5.0μm未満のすべてのサンプルで塗装剥離幅が3.5mm超4.0mm以下であった。
 そのため、より優れた塗膜密着性を得る場合、内部酸化層の熱延鋼板の表面からの平均深さを5.0μm以上、20.0μm以下とすることが好ましい。
 このSi、Al等の内部酸化層の平均深さが5.0μm未満では、内部酸化が不十分であり、ジルコニウム系化成処理皮膜が付着しない「スケ」を抑制する効果が小さい。一方、平均深さが20.0μm超ではジルコニウム系化成処理皮膜が付着しない「スケ」を抑制する効果が飽和するだけでなく、内部酸化と同時に起こる脱炭層の生成により表層の硬度が低下して疲労耐久性が劣化する懸念がある。
 内部酸化層の平均深さは、酸洗板の板幅方向1/4または3/4の位置において圧延方向および板厚方向に平行な面を埋め込み用サンプルとして切り出し、樹脂試料への埋め込み後に鏡面研磨を施し、エッチングせずに光学顕微鏡で195μm×240μmの視野(倍率400倍に相当)にて12視野以上観察する。板厚方向に直線を引いた場合に鋼板表面と交わる位置を表面とし、その表面を基準とする各視野の内部酸化層の深さ(下端の位置)を1視野につき5点測定して平均し、各視野の平均値のうち最大値と最小値とを除いたもので平均値を算出し、これを、内部酸化層の平均深さとする。
 所定条件での酸洗後の、熱延鋼板の表面の算術平均粗さRaの標準偏差:10.0μm以上、50.0μm以下
 ジルコニウム系化成処理皮膜では、膜厚が数μmである従来のリン酸亜鉛皮膜と比較して膜厚が非常に薄く、数十nm程度である。この膜厚の違いはジルコニウム系化成処理結晶が非常に微細であることに起因している。化成処理結晶が微細であると、その化成処理表面が非常に平滑であるため、リン酸亜鉛処理皮膜に見られるようなアンカー効果に起因した、強固な塗装膜との密着性を得ることは難しい。
 しかしながら、本発明者らの検討の結果、鋼板表面に凹凸を形成すれば、化成処理皮膜と塗装膜との密着性を高めることができることが分かった。
 本発明者らは、このような知見に基づいて、平均Ni濃度が7.0%以上かつ内部酸化層の平均深さが5.0μm以上のサンプルについて、ジルコニウム系化成処理前の酸洗板の表面の算術平均粗さRaの標準偏差と塗膜密着性との関係を調べた。その結果、酸洗板の表面の算術平均粗さRaの標準偏差が10.0μm以上、50.0μm以下であるすべてのサンプルが、塗装剥離幅が3.0mm以内であったのに対して、酸洗板の表面の算術平均粗さRaの標準偏差が10.0μm未満もしくは、50.0μm超のすべてのサンプルで塗装剥離幅が3.0mm超、3.5mm以内であった。
 そのため、酸洗後の鋼板表面の算術平均粗さRaの標準偏差が10.0μm以上、50.0μm以下であることが好ましい。
 鋼板表面の算術平均粗さRaの標準偏差が10.0μm未満では十分なアンカー効果が得られない。一方、酸洗後の鋼板表面の算術平均粗さRaの標準偏差が50.0μm超ではアンカー効果が飽和するだけでなく、酸洗後の鋼板表面の凹凸の谷や、山部の側面にジルコニウム系化成処理結晶が付着しにくく「スケ」が発生しやすくなる。
 鋼板の表面の粗さは酸洗条件によって大きく変化するが、本実施形態に係る熱延鋼板では、20~95℃の温度の1~10wt%の塩酸溶液を用いて30~60秒未満の酸洗時間の条件で酸洗した後の、熱延鋼板の表面の算術平均粗さRaの標準偏差が10.0μm以上、50.0μm以下であることが好ましい。
 算術平均粗さRaの標準偏差は、酸洗板の表面粗さをJIS B 0601:2013に記載の測定方法により測定した値を採用する。12サンプル以上の表裏の算術平均粗さRaをそれぞれ測定した後に、各サンプルの算術平均粗さRaの標準偏差を算出して、その標準偏差のうち最大値と最小値とを除いたもので平均値を算出する。
 上述した化学組成および金属組織を有する本実施形態に係る熱延鋼板は、表面に耐食性の向上等を目的としてめっき層を備えさせて表面処理鋼板としてもよい。めっき層は電気めっき層であってもよく溶融めっき層であってもよい。電気めっき層としては、電気亜鉛めっき、電気Zn-Ni合金めっき等が例示される。溶融めっき層としては、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっき、溶融Zn-Al合金めっき、溶融Zn-Al-Mg合金めっき、溶融Zn-Al-Mg-Si合金めっき等が例示される。めっき付着量は特に制限されず、従来と同様としてよい。また、めっき後に適当な化成処理(例えば、シリケート系のクロムフリー化成処理液の塗布と乾燥)を施して、耐食性をさらに高めることも可能である。
[鋼板の製造方法]
 本実施形態に係る熱延鋼板は、製造方法によらず、上述の特徴を有していれば効果は得られる。しかしながら、以下に示す製造方法によれば、安定して製造できるので好ましい。
[スラブ製造工程(鋳造工程)]
 熱間圧延に先行する、鋳造などのスラブ製造工程は特に限定するものではない。すなわち、高炉や電炉等による溶製に引き続き各種の2次製錬を行って上述した成分となるように調整し、次いで、通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で鋳造すればよい。
 連続鋳造の場合には一度低温まで冷却したのち、再度加熱してから熱間圧延に供しても良いし、インゴットを室温まで冷却することなく熱間圧延に供して良いし、あるいは、鋳造スラブを連続的に熱間圧延に供しても良い。原料にはスクラップを使用しても構わない。
[加熱工程]
[熱間圧延工程]
 本実施形態に係る熱延鋼板の製造に際しては、所定の化学成分を有する鋳造スラブ(鋼片)を、予加熱ゾーン、加熱ゾーン、均熱ゾーンの3つのゾーンを有する加熱炉を用いて1100℃以上に加熱して、熱間圧延を行い、850℃以上で熱間圧延を完了することが好ましい。
 熱間圧延のスラブ加熱温度は、1100℃以上にする。スラブ加熱温度が1100℃未満であると、続く熱間圧延において圧延反力が増加して、十分な熱間圧延が行えず、目的とする製品厚が得られないばかりか、板形状が悪化することにより巻き取ることができなくなる恐れがある。また、オーステナイト粒径が小さくなり、焼入れ性が低下して目的とするミクロ組織が得られなくなる恐れがある。Ti等の鋼中で炭窒化物を形成する元素を含む場合は、そのオーステナイトでの溶体化温度以上に加熱することが好ましい。
 一方、スラブ加熱温度の上限は特に定めることなく、効果は得られるが、加熱温度を過度に高温にすることは、経済上好ましくない。このことから、スラブ加熱温度の上限は1300℃未満とすることが望ましい。
 仕上げ圧延温度は、850℃以上とすることが好ましい。本実施形態に係る熱延鋼板は、850℃未満の温度域での仕上げ圧延では、焼入れ性が低下して目的とする焼き戻しマルテンサイト及び下部ベイナイトのいずれか一方あるいは両方を、体積率の合計で90%以上含有するミクロ組織が得られなくなる。そのため、仕上げ圧延温度は850℃以上である。
 優れた塗膜密着性を得るためにはスラブ加熱における加熱炉の各ゾーンの空気比を制御することが重要である。各ゾーンの空気比を制御するためには、加熱炉のバーナー設備は蓄熱式バーナーとすることが好ましい。これは、蓄熱体を内蔵したバーナーを搭載した「リジェネレイティブバーナー」を用いて「交番燃焼」させる場合、排気から熱回収をしない従来型のバーナーと比較して、蓄熱式バーナーは、炉内温度の均熱性が高いこと、各ゾーンのコントロール性が高く、特に各ゾーンにおける空気比のコントロールが厳密にできることで、後述する加熱炉の制御が可能となるからである。
 好ましい各ゾーンの空気比について説明する。
<予加熱ゾーンでの空気比:1.1以上、1.9以下>
 予加熱ゾーンの空気比を1.1以上とすることで、熱延鋼板表面にNiを濃化させて、酸洗後の熱延鋼板表面における平均Ni濃度を7.0%以上とすることができる。
 加熱炉内のスラブ表面のスケール成長挙動は、生成スケール厚みで評価するとその空気比(酸素分圧)により、スラブ表面における雰囲気からの酸素供給律速である直線則と、スケール中の鉄イオンの拡散律速である放物線則とに分類される。加熱炉内での限られた材炉時間においてスラブのスケールの成長をある程度促進して表層に十分なNiの濃化層を形成するためには、スケール厚みの成長が放物線則に従う必要がある。
 予加熱ゾーンの空気比が1.1未満であるとスケールの成長が放物線則とならず、加熱炉内での限られた材炉時間においてスラブの表層に十分なNiの濃化層を形成することができない。この場合、酸洗後の熱延鋼板表面における平均Ni濃度が7.0%以上とならず、その結果、良好な塗膜密着性が得られない。
 一方、予加熱ゾーンの空気比が1.9超であるとスケールオフ量が増加して歩留まりが悪化するだけでなく、排ガスの増加による熱損失が大きくなり熱効率が悪化して生産コストが増加する。
 加熱炉内のスケールの生成量は加熱炉挿入直後の予加熱ゾーンの雰囲気に支配され、その後に続くゾーンの雰囲気が変化してもそのスケール厚みはほとんど影響を受けない。従って、予加熱ゾーンでのスケール成長挙動の制御が非常に重要である。
<加熱ゾーンでの空気比:0.9以上、1.3以下>
 内部酸化層の形成には加熱炉工程における加熱ゾーンでの空気比の制御が必要であり、加熱ゾーンでの空気比を0.9以上、1.3以下とすることで、内部酸化層の平均深さを5.0~20.0μmにすることができる。
 加熱ゾーンでの空気比が0.9未満であると内部酸化層の平均深さが5.0μm以上とならない。一方、加熱ゾーンでの空気比が1.3超であると、内部酸化層の平均深さが20.0μm超となるばかりでなく、脱炭層の生成により表層の硬度が低下して疲労耐久性が劣化することが懸念される。
<均熱ゾーンでの空気比:0.9以上、1.9以下>
 酸洗後の鋼板表面の凹凸を制御するためには、加熱炉工程の抽出直前のゾーンである均熱ゾーンにおける空気比を制御することが有効である。予加熱ゾーンではFeよりも酸化され難いNiがスケールと地鉄の界面の地鉄側に濃化する。このNi濃化部を有するNi濃化層により、表層では酸化が抑制されるようになるが、続く加熱ゾーンでは外部酸化を抑制し、内部酸化が促進される。その後、均熱ゾーンで空気比を制御することで、例えば図3に示すように、拡散が容易な結晶粒界5等にスケール2が侵食したり、Niの濃化度の違い等によって生じる地鉄1表面のNi濃度の違いによって、スケール2と地鉄1との界面の酸化のされ方が不均一となったりすることで、スケール2と地鉄1との界面の凹凸が大きくなる。また、図3には図示しないが、内部酸化物6の周囲のNi濃化部3がスケール2による粒界の侵食を抑制することでも凹凸が生じる。この鋼板を酸洗するとスケール2が除去され、熱延鋼板の表面が所定の粗さを有することになる。
 均熱ゾーンでの空気比を0.9以上、1.9以下とすることで、熱間圧延後、例えば20~95℃の温度の1~10wt%の塩酸溶液を用いて30~60秒未満の酸洗時間の条件で酸洗した後の、熱延鋼板の表面の算術平均粗さRaの標準偏差を10.0μm以上、50.0μm以下とすることができる。
 均熱ゾーンの空気比が0.9未満であると、拡散が容易な結晶粒界に選択的に酸化物の核を生成させるだけの酸素ポテンシャルに達しない。そのため、酸洗後の鋼板表面の算術平均粗さRaの標準偏差が10.0μm以上とならない。一方、均熱ゾーンの空気比が1.9超では、選択的に酸化された結晶粒界の板厚方向の深さが深くなりすぎて酸洗後の鋼板表面の算術平均粗さRaの標準偏差が50.0μm超となる。
予加熱ゾーンの空気比>加熱ゾーンの空気比
 予加熱ゾーンでの空気比の制御は、酸洗後の熱延鋼板表面のNi濃度を制御するために重要である。一方、加熱ゾーンでの空気比の制御は、内部酸化層の形成度合いを制御するために重要である。そのため、予加熱ゾーンにおいて限られた材炉時間においてスラブのスケールの成長をある程度促進して表層に十分なNiの濃化層を形成する必要がある。そのためには、スケール厚みの成長が放物線則に従う比較的高い空気比が必要である。一方、内部酸化層の平均深さを好ましい範囲に制御するためには、加熱ゾーンにおいて比較的低い空気比に抑え、急激な内部酸化層の成長を押さえる必要がある。また、加熱ゾーンにおいて空気比が高いと脱炭層が生成・成長して表層の硬度が低下して疲労耐久性が劣化することが懸念される。従って、予加熱ゾーンの空気比は加熱ゾーンの空気比よりも高くすることが好ましい。
[冷却工程]
 仕上げ圧延温度からMs点温度の平均冷却速度:50℃/秒以上、Ms点温度未満での最大冷却速度:50℃/秒未満
 冷却工程においては、仕上げ圧延温度からMs点温度までの平均冷却速度が50℃/秒以上となるように、Ms点温度以下の温度域まで冷却する(一次冷却)。Ms点温度までの平均冷却速度が50℃/秒未満では、冷却途中にフェライトや上部ベイナイトが形成してしまい、主相である焼き戻しマルテンサイトや下部ベイナイトの体積率を合計で90%以上とすることが難しい。ただし、冷却過程でフェライトが形成しないのであれば、途中の温度域で空冷を行っても良い。冷却工程において空冷を行う場合は、その温度域を下部ベイナイト生成温度未満とすることが望ましい。空冷を実施する温度が下部ベイナイト生成温度以上であると上部ベイナイトが生成してしまう。また、空冷温度域までの冷却速度を、50℃/秒以上とする事が好ましい。これは上部ベイナイトの形成を避けるためである。Bs点温度~下部ベイナイトの生成温度間の冷却速度が50℃/秒未満であると、上部ベイナイトが形成されるとともに、ベイナイトのラス間にフレッシュマルテンサイトが形成してしまうか、あるいは、残留オーステナイト(加工時に転位密度の高いマルテンサイトになる)が存在し、低温靭性が低下することがある。Bs点温度は成分によって定められる上部ベイナイトの生成開始温度であり、便宜的には550℃である。また、下部ベイナイトの生成温度も成分によって定められるが、便宜的には400℃である。すなわち、仕上げ圧延温度から400℃間では、特に550~400℃間の冷却速度を50℃/秒以上とし、仕上げ圧延温度から400℃間の平均冷却速度を50℃/秒以上とすることが好ましい。
 上記一次冷却をMs点温度未満、350℃以上の温度域で停止した後、一次冷却停止温度から350℃未満の温度域までの最大冷却速度を50℃/秒未満として冷却(二次冷却)することが好ましい。これは、焼き戻しマルテンサイトあるいは下部ベイナイト中の鉄系炭化物の平均個数密度を好ましい範囲に制御するためである。この温度域における最大冷却速度が50℃/秒以上では、鉄系炭化物を好ましい範囲とすることが難しい。このことから、最大冷却速度を50℃/秒未満とすることが好ましい。
 ここで、Ms点温度未満~350℃未満の温度域における最大冷却速度50℃/秒未満の冷却は、例えば空冷により実現できる。また、冷却のみを意味するのではなく、等温保持等も含む。さらには、この温度域での冷却速度制御は、鋼板組織中の鉄系炭化物の個数密度の制御が目的であるので、一旦、以下の式(5)によって求められるマルテンサイト変態終了温度(Mf点)以下に冷却した後、温度を上げて、再加熱してもよい。
Mf=0.285×Ms-460×C+232・・・(5)
[巻き取り工程]
巻き取り温度:350℃未満
 一般的に、マルテンサイトを得るためにはフェライト変態を抑制する必要があり、50℃/秒以上での冷却が必要であるとされている。加えて、低温では膜沸騰領域と呼ばれる熱伝達係数が比較的低く冷え難い温度域から、核沸騰温度域と呼ばれる熱伝達係数が大きく、冷えやすい温度域に遷移する。400℃未満の温度域を冷却停止温度とする場合、巻き取り温度が変動し易く、それに伴い材質も変動する。このことから、通常の巻き取り温度は、400℃超、あるいは、室温巻き取りのいずれかにする場合が多かった。
 この結果、400℃未満での巻き取りや冷却速度低下により、980MPa以上の引張強さと優れた低温靭性とを同時に確保できることが、従来では見出され難かったものと推定される。
 本実施形態に係る熱延鋼板では、上述のように冷却を行うことで、350℃未満で巻き取りを行っても980MPa以上の引張強さと優れた低温靭性とを同時に確保できる。
 巻き取り後は必要に応じてスキンパス圧延による形状矯正や400℃未満のひずみ取り熱処理を施しても構わない。
[酸洗工程]
[スキンパス工程]
 鋼板形状の矯正や可動転位導入により延性の向上を図ることを目的として、圧下率0.1%以上2.0%以下のスキンパス圧延を施してもよい。また、得られた熱延鋼板の表面に付着しているスケールの除去を目的として、必要に応じて得られた熱延鋼板に対して酸洗してもよい。酸洗する場合、20~95℃の温度の1~10wt%の塩酸溶液を用いて30~60秒未満の酸洗時間の条件で酸洗することが好ましい。
 更に、酸洗した後に、得られた熱延鋼板に対してインライン又はオフラインで圧下率10%以下のスキンパス又は冷間圧延を施しても構わない。
 本実施形態に係る熱延鋼板は通常の熱延工程である連続鋳造、粗圧延、仕上げ圧延、冷却、巻き取り、酸洗等を経て製造されるが、その一部を抜いて製造を行ったとしても、980MPa以上の引張強さと優れた低温靭性とを確保可能である。また、一旦、熱延鋼板を製造した後、炭化物の析出を目的に、オンラインあるいはオフラインで、100~600℃の温度範囲で熱処理を行ったとしても、低温靭性や980MPa以上の引張強さは確保可能である。
 本実施形態において、引張強さ980MPa以上の鋼板とは、熱延の圧延方向に対し垂直方向に切り出したJIS5号試験片を用いて、JIS Z 2241:2011に準拠して行う引張試験による引張強さが、980MPa以上の鋼板を意味する。
 本実施形態において、低温での靭性に優れた鋼板とは、JIS Z 2242:2005に準拠して行うシャルピー試験の破面遷移温度(vTrs)が-40℃以下の鋼板をさす。対象となる鋼板が主に自動車用途に用いられる場合、板厚0.8~8.0mm前後であるが、3.0mm前後の板厚となる場合が多い。そこで、本実施形態では、熱延鋼板表面を研削し、鋼板を2.5mmサブサイズ試験片に加工して行う。
 上記の製造方法によれば、本実施形態に係る熱延鋼板を得られる。本実施形態に係る熱延鋼板によれば、980MPa以上の引張強さを有する超高強度鋼板であって、ジルコニウム系化成処理液を用いた場合でも、リン酸亜鉛化成処理液を用いた場合と同等以上の化成処理性と塗膜密着性とが得られる。そのため、本実施形態に係る熱延鋼板は、高強度及び塗装後耐食性を要する自動車用部品に好適である。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1A、表1B(表1Bは表1Aの続き)の鋼No.A~Vに示す化学組成を有する鋼を溶製し、連続鋳造により厚みが240~300mmのスラブを製造した。得られたスラブを、蓄熱式バーナーを用いて表2A、表2Bに示す温度に加熱した。その際、予加熱ゾーン(予加熱帯)、加熱ゾーン(加熱帯)、均熱ゾーン(均熱帯)における空気比を表2A、表2Bの通り制御した。
 加熱されたスラブを、表2A、表2Bに示すような仕上げ温度で熱間圧延を行った。熱間圧延後、表2A、表2Bに示す冷却条件で冷却を行い、冷却後、巻き取りを行った。
 得られた製造No.1~35の熱延鋼板に対し、ミクロ組織の観察を行い、各相の体積率及び平均有効結晶粒径等を求めた。
 各相の体積率は以下の方法で求めた。
 まず、試料をナイタールエッチングし、エッチング後に光学顕微鏡を用いて300μm×300μmの視野で得られた組織写真に対し、画像解析を行うことによって、フェライト及びパーライトそれぞれの面積率、およびベイナイト、マルテンサイト、残留オーステナイトの合計面積率を得た。次に、ナイタールエッチングした部分をレペラエッチングし、光学顕微鏡を用いて300μm×300μmの視野で得られた組織写真を、画像解析を行うことによって、残留オーステナイトとマルテンサイトとの合計面積率を算出した。さらに圧延面法線方向から板厚の1/4深さまで面削した試料を用い、X線回折測定により残留オーステナイト面積率を求め、フェライト、ベイナイト、マルテンサイト、残留オーステナイト、パーライトそれぞれの面積率を得た。その後、鋼板表面から板厚の1/4深さ位置において、走査型電子顕微鏡を用いて倍率1000~100000倍で、40μm×30μmの領域を少なくとも3領域観察し、上述した特徴を含むかどうかに基づいて、ベイナイトにおける下部ベイナイト及び上部ベイナイトの割合、マルテンサイトにおける焼戻しマルテンサイト及びフレッシュマルテンサイトの割合を求めた。これらから、各相の面積率を算出し、これを体積率とした。
 平均有効結晶粒径は、鋼板表面から板厚の1/4深さ位置において、EBSP-OIMTM(Electron Back Scatter Diffraction Pattern-Orientation Image Microscopy)を用い、結晶粒の方位差を一般的に結晶粒界として認識されている大角粒界の閾値である15°と定義してマッピングした画像より粒を可視化して求めた。また、合わせてアスペクト比も測定した。
 表面におけるNi濃度は以下の方法で求めた。
 対象とする熱延鋼板を、JXA-8530Fフィールドエミッション電子プローブマイクロアナライザ(FE-EPMA)を用いて、鋼板の表面に垂直な方向から、測定面積900μm以上に対してNi濃度の分析を行い、測定範囲におけるNi濃度を平均した。この際、測定条件は、加速電圧:15kV、照射電流:6×10-8A、照射時間:30ms、ビーム径:1μmとした。
 鉄系炭化物の個数密度は以下の方法で求めた。
 鋼板の圧延方向に平行な断面を観察面として試料を採取し、観察面を研磨し、ナイタールエッチングし、鋼板表面から板厚の1/4深さ位置を中心とする板厚1/8~3/8の範囲を電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)を用いて倍率200000倍で10視野、観察を行い、鉄系炭化物の個数密度を測定した。
 内部酸化層の平均深さは以下の方法で求めた。
 酸洗板の板幅方向1/4または3/4の位置において圧延方向および板厚方向に平行な面を埋め込み用サンプルとして切り出し、樹脂試料への埋め込み後に鏡面研磨を施し、エッチングせずに光学顕微鏡で195μm×240μmの視野(倍率400倍に相当)にて12視野観察した。板厚方向に直線を引いた場合に鋼板表面と交わる位置を表面とし、その表面を基準とする各視野の内部酸化層の深さ(下端の位置)を1視野につき5点測定して平均し、各視野の平均値のうち最大値と最小値とを除いたもので平均値を算出し、これを、内部酸化層の平均深さとした。
 表面の算術平均粗さの標準偏差は以下の方法で求めた。
 酸洗板の表面粗さをJIS B 0601:2013に記載の測定方法により、12サンプルの表裏の算術平均粗さRaをそれぞれ測定した後に、各サンプルの算術平均粗さRaの標準偏差を算出して、その標準偏差のうち最大値と最小値を除いたもので平均値を算出して求めた。
 また、得られた製造No.1~35の鋼板について、機械的特性として、引張強さ、靭性(vTrs)を求めた。
 引張強さは、熱延の圧延方向に対し垂直方向に切り出したJIS5号試験片を用いて、JIS Z 2241に準拠して行う引張試験を行って求めた。
 引張強さが980MPa以上であれば好ましい特性が得られていると判断した。
 靭性は、熱延鋼板表面を研削し、鋼板を2.5mmサブサイズ試験片に加工し、JIS Z 2242に準拠して行うシャルピー試験を行って破面遷移温度(vTrs)を求めた。
 vTrsが-40℃以下であれば、好ましい特性が得られていると判断した。
 化成処理性は、以下の方法で評価した。
 化成処理後の鋼板表面を電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)で観察することで行った。具体的には、倍率10000倍で10視野観察を行い、化成処理結晶が付着していない「スケ」の有無を観察した。観察に際しては、加速電圧5kV、プローブ径:30mm、傾斜角度45°及び60°で観察をおこなった。試料に導電性を付与するため、タングステンコーティング(ESC-101,エリオニクス)を150秒行った。
 全ての視野でスケが観察されなかった場合に、化成処理性に優れる(表中“OK”)と判断した。
 塗膜密着性は以下の方法で評価した。
 化成処理後の熱延鋼板の上面に25μm厚の電着塗装を行い、170℃×20分の塗装焼き付け処理を行った後、先端の尖ったナイフで電着塗膜を地鉄に達するまで長さ130mmの切りこみを入れた。そして、JIS Z 2371に示される塩水噴霧条件にて、35℃の温度での5%塩水噴霧を700時間継続実施した後に切り込み部の上に幅24mmのテープ(ニチバン 405A-24 JIS Z 1522)を切り込み部に平行に130mm長さ貼り、これを剥離させた場合の最大塗膜剥離幅を測定した。
 最大塗膜剥離幅が4.0mm以下であれば、塗膜密着性に優れると判断した。
 結果を表3A、表3Bに示す。
 表3A、表3Bから分かるように、本発明例である製造No.1~3、7~10、14、17~28では、引張強さが980MPaであっても、優れた靭性を有し、ジルコニウム系化成処理液を用いた化成処理性を行っても化成処理性が良好であり、塗膜密着性に優れた化成処理性皮膜が得られた。
 これに対し、成分、金属組織、または表面におけるNi濃度が本発明範囲内にない製造No.4~6、11~13、15、16、29~35では、機械的特性が十分ではないか、化成処理性及び/または塗膜密着性に劣っていた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明によれば、980MPa以上の引張強さを有する超高強度鋼板であって、ジルコニウム系化成処理液を用いた場合でも、リン酸亜鉛化成処理液を用いた場合と同等以上の化成処理性と塗膜密着性とを有する熱延鋼板を得ることができる。本発明に係る鋼板は、化成処理性と塗膜密着性とに優れるので、塗装後耐食性に優れる。そのため、本発明は、高強度及び塗装後耐食性を要する自動車用部品に好適である。
 1  地鉄(鋼板)
 2  スケール
 3  Ni濃化部
 4  ジルコニウム系化成結晶
 5  結晶粒界
 6  内部酸化物

Claims (14)

  1.  板厚方向全体の平均値で表される化学組成が、質量%で、
      C :0.050%以上、0.200%以下、
      Si:0.05%以上、3.00%以下、
      Mn:1.00%以上、4.00%以下、
      Al:0.001%以上、2.000%以下、
      N :0.0005%以上、0.1000%以下、
      Ni:0.02%以上、2.00%以下、
      Nb:0%以上、0.300%以下、
      Ti:0%以上、0.300%以下、
      Cu:0%以上、2.00%以下、
      Mo:0%以上、1.000%以下、
      V :0%以上、0.300%以下、
      Cr:0%以上、2.00%以下、
      Mg:0%以上、0.0100%以下、
      Ca:0%以上、0.0100%以下、
      REM:0%以上、0.1000%以下、
      B :0%以上、0.0100%以下、
      Zr、Co、Zn、およびWのうち1種または2種以上:合計で0~1.000%、
      Sn:0~0.050%、
      P :0.100%以下、
      S :0.0300%以下、
      O :0.0100%以下を含有し、
      残部がFeおよび不純物からなり、かつ、下記式(1)を満たし、
     下記(2)で示されるPCMが0.20以上であり、かつ、下記(3)で示されるMsが400℃以上であり、
     厚さをtとしたとき、表面からt/4の位置における金属組織が、焼き戻しマルテンサイト及び下部ベイナイトのいずれか一方あるいは両方を、体積率の合計で90%以上含有し、
     引張強さが980MPa以上であり、
     前記表面における平均Ni濃度が7.0%以上である
    ことを特徴とする熱延鋼板。
     0.05%≦Si+Al≦2.50%・ ・ ・ 式(1)
     PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Mo/15+Cr/20+V/10+5×B・ ・ ・ 式(2)
     Ms=561-474×C-33×Mn-17×Ni-17×Cr-21×Mo ・ ・ ・ 式(3)
     上記式中に示す元素は前記熱延鋼板中に含有されている元素の質量%である。
  2.  前記化学組成が、質量%で、
     Ni:0.02%以上、0.05%以下
     を含有することを特徴とする請求項1に記載の熱延鋼板。
  3.  前記焼き戻しマルテンサイトおよび前記下部ベイナイト中に存在する鉄系炭化物の平均個数密度が1.0×10個/mm以上である
    ことを特徴とする請求項1または2に記載の熱延鋼板。
  4.  前記熱延鋼板に内部酸化層が存在し、前記内部酸化層の平均深さが前記熱延鋼板の前記表面から5.0μm以上、20.0μm以下である
    ことを特徴とする請求項1~3のいずれか1項に記載の熱延鋼板。
  5.  前記熱延鋼板の前記表面の算術平均粗さRaの標準偏差が10.0μm以上、50.0μm以下である
    ことを特徴とする請求項1~4のいずれか1項に記載の熱延鋼板。
  6. [規則91に基づく訂正 24.04.2020] 
     前記化学組成が、質量%で、
    B :0.0001%以上0.0100%以下、
    Ti:0.015%以上0.300%以下、
    のうち1種または2種を含有する
    ことを特徴とする請求項1~5のいずれか1項に記載の熱延鋼板。
  7.  前記化学組成が、質量%で、
    Nb:0.005%以上、0.300%以下、
    Cu:0.010%以上、2.00%以下、
    Mo:0.010%以上、1.000%以下、
    V :0.010%以上、0.300%以下、
    Cr:0.01%以上、2.00%以下、
    のうち1種または2種以上を含有することを特徴とする請求項1~6のいずれか1項に記載の熱延鋼板。
  8.  前記化学組成が、質量%で、
    Mg:0.0005%以上、0.0100%以下、
    Ca:0.0005%以上、0.0100%以下、
    REM:0.0005%以上、0.1000%以下、
    のうち1種または2種以上を含有する
    ことを特徴とする請求項1~7のいずれか1項に記載の熱延鋼板。
  9.  請求項1に記載の化学組成を有する溶鋼を鋳造して鋼片を得る鋳造工程と、
     前記鋼片を、少なくとも予加熱ゾーン、加熱ゾーン及び均熱ゾーンを有する、蓄熱式バーナーを備えた加熱炉で加熱する加熱工程と、
     加熱された前記鋼片に、仕上げ圧延温度が850℃以上になるように熱間圧延を行って熱延鋼板を得る熱延工程と、
     前記仕上げ圧延温度から下記式(4)で計算されるMs点温度までの平均冷却速度が50℃/秒以上となるように、前記Ms点温度以下の温度域まで前記熱延鋼板を一次冷却する一次冷却工程と、
     前記熱延鋼板を350℃未満の温度で巻き取る巻き取り工程と、
    を有し、
     前記加熱工程において、前記予加熱ゾーンでの空気比を1.1以上、1.9以下とする
    ことを特徴とする熱延鋼板の製造方法。
     Ms=561-474×C-33×Mn-17×Ni-17×Cr-21×Mo ・ ・ ・ 式(4)
  10.  前記一次冷却を前記Ms点温度未満、350℃以上の温度で停止し、前記一次冷却後の前記熱延鋼板を、最大冷却速度が50℃/秒未満となるように350℃未満まで冷却する、
    ことを特徴とする請求項9に記載の熱延鋼板の製造方法。
  11.  前記加熱工程において、前記加熱ゾーンでの空気比を0.9以上、1.3以下とする
    ことを特徴とする請求項9または10に記載の熱延鋼板の製造方法。
  12.  前記加熱工程において、前記均熱ゾーンでの空気比を0.9以上、1.9以下とする
    ことを特徴とする請求項9~11のいずれか1項に記載の熱延鋼板の製造方法。
  13.  前記予加熱ゾーンでの空気比が、前記加熱ゾーンでの空気比よりも大きい
    ことを特徴とする請求項11または12に記載の熱延鋼板の製造方法。
  14.  前記巻き取り工程後の前記熱延鋼板に、20~95℃の温度の1~10wt%の塩酸溶液を用いて30~60秒未満の酸洗時間の条件で酸洗する酸洗工程を備える、
    ことを特徴とする請求項9~13のいずれか1項に記載の熱延鋼板の製造方法。
PCT/JP2019/041314 2018-10-19 2019-10-21 熱延鋼板およびその製造方法 WO2020080553A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980066651.1A CN112805395B (zh) 2018-10-19 2019-10-21 热轧钢板及其制造方法
KR1020217009676A KR102529040B1 (ko) 2018-10-19 2019-10-21 열연 강판 및 그 제조 방법
JP2020542670A JP6897882B2 (ja) 2018-10-19 2019-10-21 熱延鋼板およびその製造方法
EP19873240.6A EP3868903A4 (en) 2018-10-19 2019-10-21 HOT ROLLED STEEL SHEET AND METHOD FOR MAKING THE SAME
US17/283,476 US20220010396A1 (en) 2018-10-19 2019-10-21 Hot-rolled steel sheet and method for manufacturing same
MX2021003895A MX2021003895A (es) 2018-10-19 2019-10-21 Lamina de acero laminada en caliente y metodo para fabricar la misma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-197935 2018-10-19
JP2018197935 2018-10-19

Publications (2)

Publication Number Publication Date
WO2020080553A1 WO2020080553A1 (ja) 2020-04-23
WO2020080553A9 true WO2020080553A9 (ja) 2020-09-17

Family

ID=70284730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041314 WO2020080553A1 (ja) 2018-10-19 2019-10-21 熱延鋼板およびその製造方法

Country Status (8)

Country Link
US (1) US20220010396A1 (ja)
EP (1) EP3868903A4 (ja)
JP (1) JP6897882B2 (ja)
KR (1) KR102529040B1 (ja)
CN (1) CN112805395B (ja)
MX (1) MX2021003895A (ja)
TW (1) TW202022139A (ja)
WO (1) WO2020080553A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3868908A4 (en) * 2018-10-19 2022-04-13 Nippon Steel Corporation HOT ROLLED STEEL SHEET
JP7368763B2 (ja) * 2020-02-06 2023-10-25 日本製鉄株式会社 熱延鋼板及びその製造方法
KR20230041055A (ko) * 2020-08-27 2023-03-23 닛폰세이테츠 가부시키가이샤 열연 강판
EP4206344A4 (en) * 2020-08-27 2023-12-13 Nippon Steel Corporation HOT ROLLED STEEL SHEET
CN116113716B (zh) * 2020-08-27 2024-10-11 日本制铁株式会社 热轧钢板
KR20230036137A (ko) * 2020-08-27 2023-03-14 닛폰세이테츠 가부시키가이샤 열연 강판
EP4321646A1 (en) * 2021-05-17 2024-02-14 JFE Steel Corporation High-strength hot-rolled steel plate and method for manufacturing high-strength hot-rolled steel plate
KR20240059935A (ko) * 2022-10-28 2024-05-08 현대제철 주식회사 열연 강판, 차량용 부품 및 이를 제조하는 방법

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219473A (ja) 1983-05-26 1984-12-10 Nippon Steel Corp カラ−エツチング液及びエツチング方法
JP2950199B2 (ja) * 1995-06-12 1999-09-20 株式会社神戸製鋼所 耐木目状疵性に優れた電気亜鉛めっき用鋼板および電気亜鉛めっき鋼板、並びにそれらの製造方法
AU744962B2 (en) * 1999-02-22 2002-03-07 Nippon Steel & Sumitomo Metal Corporation High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
JP3917901B2 (ja) * 2002-06-06 2007-05-23 新日本製鐵株式会社 表面疵の少ない熱延板を得るための普通鋼スラブの加熱方法
JP4276530B2 (ja) 2002-12-24 2009-06-10 日本ペイント株式会社 化成処理剤及び表面処理金属
JP4502886B2 (ja) * 2005-06-02 2010-07-14 株式会社神戸製鋼所 化成処理性に優れた高強度高延性鋼板
DE102006005063A1 (de) * 2006-02-03 2007-08-09 Linde Ag Verfahren zur Wärmebehandlung von Stahlbändern
JP5215043B2 (ja) 2008-06-02 2013-06-19 日本パーカライジング株式会社 金属の表面処理用処理液及び表面処理方法
JP5515411B2 (ja) * 2009-05-18 2014-06-11 新日鐵住金株式会社 鋼材加熱方法、加熱制御装置およびプログラム
JP5083354B2 (ja) * 2010-03-29 2012-11-28 Jfeスチール株式会社 化成処理性に優れた高Si冷延鋼板の製造方法
JP5655712B2 (ja) * 2011-06-02 2015-01-21 新日鐵住金株式会社 熱延鋼板の製造方法
JP5640898B2 (ja) * 2011-06-02 2014-12-17 新日鐵住金株式会社 熱延鋼板
US8932729B2 (en) * 2011-09-30 2015-01-13 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet excellent in impact resistance property and high-strength alloyed hot-dip galvanized steel sheet
JP5838708B2 (ja) * 2011-10-12 2016-01-06 Jfeスチール株式会社 表面性状に優れた鋼板およびその製造方法
RU2587003C2 (ru) * 2012-01-05 2016-06-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Горячекатаный стальной лист и способ его изготовления
BR112015013061B1 (pt) * 2012-12-11 2018-11-21 Nippon Steel & Sumitomo Metal Corporation chapa de aço laminada a quente e método de produção da mesma
PL2907886T3 (pl) 2013-02-26 2019-04-30 Nippon Steel & Sumitomo Metal Corp Blacha stalowa cienka walcowana na gorąco o dużej wytrzymałości mająca maksymalną wytrzymałość na rozciąganie wynoszącą 980 MPa lub więcej oraz mająca doskonałą utwardzalność przy wypalaniu i wiązkość w niskiej temperaturze
KR101516302B1 (ko) 2013-05-09 2015-05-04 김한기 배터리 일체형 전기식 흡입 장치
ES2759051T3 (es) * 2013-05-21 2020-05-07 Nippon Steel Corp Chapa de acero laminada en caliente y método de fabricación de la misma
WO2016016676A1 (fr) * 2014-07-30 2016-02-04 ArcelorMittal Investigación y Desarrollo, S.L. Procédé de fabrication de tôles d'acier, pour durcissement sous presse, et pièces obtenues par ce procédé
JP6390274B2 (ja) * 2014-08-29 2018-09-19 新日鐵住金株式会社 熱延鋼板
EP3342893A4 (en) * 2015-08-24 2019-01-16 Nippon Steel & Sumitomo Metal Corporation ALLOY-FILLED ZINC PLATED STEEL SHEET AND METHOD FOR MANUFACTURING SAME
AU2016393486B2 (en) * 2016-02-16 2019-07-18 Nippon Steel Corporation Seamless steel pipe and method of manufacturing the same
JP7050271B2 (ja) 2017-05-23 2022-04-08 日本アイラック株式会社 情報処理装置
WO2020080552A1 (ja) * 2018-10-19 2020-04-23 日本製鉄株式会社 熱延鋼板およびその製造方法

Also Published As

Publication number Publication date
EP3868903A4 (en) 2022-05-18
CN112805395B (zh) 2023-03-28
MX2021003895A (es) 2021-06-04
CN112805395A (zh) 2021-05-14
TW202022139A (zh) 2020-06-16
KR20210053957A (ko) 2021-05-12
KR102529040B1 (ko) 2023-05-10
US20220010396A1 (en) 2022-01-13
EP3868903A1 (en) 2021-08-25
JP6897882B2 (ja) 2021-07-07
WO2020080553A1 (ja) 2020-04-23
JPWO2020080553A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
JP6897882B2 (ja) 熱延鋼板およびその製造方法
US9109275B2 (en) High-strength galvanized steel sheet and method of manufacturing the same
WO2020162560A1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
CN114502759B (zh) 热轧钢板
CN112996938B (zh) 高强度钢板
WO2020162561A1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP6787532B2 (ja) 熱延鋼板およびその製造方法
MX2014003715A (es) Placa de acero galvanizado por inmersion en caliente, de alta resistencia, que tiene excelente resistencia al impacto y metodo para producir la misma, y lamina de acero galvanizado por inmersion en caliente, aleada, de alta resistencia y metodo para producir la misma.
KR102333410B1 (ko) 고강도 냉연 강판
WO2013005670A1 (ja) 溶融めっき冷延鋼板およびその製造方法
CN114981457A (zh) 高强度镀锌钢板及其制造方法
WO2021141006A1 (ja) 鋼板およびその製造方法
JP7553837B2 (ja) ホットスタンプ用鋼板及びその製造方法、並びに、ホットスタンプ部材及びその製造方法
WO2022071305A1 (ja) 鋼板
JP5609793B2 (ja) 溶融めっき冷延鋼板の製造方法
WO2023095870A1 (ja) 亜鉛めっき鋼板
WO2023013372A1 (ja) 高強度鋼板
KR20190045310A (ko) 강판
CN115003835A (zh) 热轧钢板
JP7303460B2 (ja) 鋼板およびその製造方法
WO2024190769A1 (ja) 鋼部材及び鋼板
WO2024166881A1 (ja) ホットスタンプ成形体及び鋼板、並びにこれらの製造方法
WO2024166891A1 (ja) ホットスタンプ成形体及び鋼板、並びにこれらの製造方法
CN118284713A (zh) 镀锌钢板和部件以及它们的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542670

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217009676

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019873240

Country of ref document: EP

Effective date: 20210519