WO2020080553A1 - 熱延鋼板およびその製造方法 - Google Patents
熱延鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2020080553A1 WO2020080553A1 PCT/JP2019/041314 JP2019041314W WO2020080553A1 WO 2020080553 A1 WO2020080553 A1 WO 2020080553A1 JP 2019041314 W JP2019041314 W JP 2019041314W WO 2020080553 A1 WO2020080553 A1 WO 2020080553A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- hot
- rolled steel
- sheet according
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 216
- 239000010959 steel Substances 0.000 title claims abstract description 216
- 238000000034 method Methods 0.000 title claims description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 36
- 239000000126 substance Substances 0.000 claims abstract description 99
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 77
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 76
- 239000000203 mixture Substances 0.000 claims abstract description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 80
- 238000010438 heat treatment Methods 0.000 claims description 63
- 238000001816 cooling Methods 0.000 claims description 59
- 238000005554 pickling Methods 0.000 claims description 39
- 229910052742 iron Inorganic materials 0.000 claims description 37
- 229910052726 zirconium Inorganic materials 0.000 claims description 34
- 150000001247 metal acetylides Chemical class 0.000 claims description 32
- 238000005096 rolling process Methods 0.000 claims description 31
- 238000005098 hot rolling Methods 0.000 claims description 28
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 238000004804 winding Methods 0.000 claims description 14
- 238000002791 soaking Methods 0.000 claims description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 12
- 238000005266 casting Methods 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 7
- 230000001172 regenerating effect Effects 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 description 73
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 55
- 239000011248 coating agent Substances 0.000 description 48
- 238000000576 coating method Methods 0.000 description 48
- 239000010410 layer Substances 0.000 description 43
- 230000000694 effects Effects 0.000 description 38
- 239000013078 crystal Substances 0.000 description 37
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 30
- 229910000859 α-Fe Inorganic materials 0.000 description 22
- 239000000523 sample Substances 0.000 description 21
- 229910001566 austenite Inorganic materials 0.000 description 20
- 239000007788 liquid Substances 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 13
- 239000011572 manganese Substances 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 230000000717 retained effect Effects 0.000 description 12
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 230000007797 corrosion Effects 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 10
- 229920006395 saturated elastomer Polymers 0.000 description 10
- 239000002344 surface layer Substances 0.000 description 10
- 230000009466 transformation Effects 0.000 description 10
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 10
- 229910000165 zinc phosphate Inorganic materials 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 229910052761 rare earth metal Inorganic materials 0.000 description 9
- 230000000007 visual effect Effects 0.000 description 9
- 238000007739 conversion coating Methods 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 229910001562 pearlite Inorganic materials 0.000 description 8
- 238000001556 precipitation Methods 0.000 description 8
- 239000010953 base metal Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 229910001567 cementite Inorganic materials 0.000 description 6
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 238000004070 electrodeposition Methods 0.000 description 4
- 238000005246 galvanizing Methods 0.000 description 4
- 238000010191 image analysis Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- -1 ferrous carbides Chemical class 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 238000010422 painting Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000001887 electron backscatter diffraction Methods 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000007542 hardness measurement Methods 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000003954 pattern orientation Effects 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910021365 Al-Mg-Si alloy Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910007570 Zn-Al Inorganic materials 0.000 description 1
- 229910007567 Zn-Ni Inorganic materials 0.000 description 1
- 229910007614 Zn—Ni Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/02—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/02—Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/52—Methods of heating with flames
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/021—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0081—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
- C22C38/105—Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/02—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
- B21B2001/028—Slabs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C47/00—Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
- B21C47/02—Winding-up or coiling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a hot rolled steel sheet and a method for manufacturing the hot rolled steel sheet.
- the present application claims priority based on Japanese Patent Application No. 2018-197935 filed in Japan on October 19, 2018, the contents of which are incorporated herein by reference.
- a high strength steel plate of 780 MPa class has been conventionally used for a center pillar that is a skeletal component, but in recent years, in order to further reduce the weight of a car body, a thin plate thickness of 1180 MPa class has been used. Ultra-high strength steel sheets are being adopted. Further, although a 590 MPa-class high-strength hot-rolled steel sheet has been conventionally used for a lower arm that is an underbody component, for example, an ultra-high-strength hot-rolled steel sheet of 980 MPa class or higher as described in Patent Document 1 is used. It has been demanded.
- LCA Life Cycle Assessment
- zinc phosphate treatment which is a type of chemical conversion treatment
- the zinc phosphate treatment is low in cost and excellent in coating film adhesion and corrosion resistance.
- the zinc phosphate treatment liquid contains phosphoric acid as a main component and metal components such as zinc salt, nickel salt, and manganese salt. Therefore, there has been concern about the environmental load due to phosphorus and metals in the waste liquid discarded after use.
- a large amount of sludge containing iron phosphate as a main component, which precipitates in the chemical conversion treatment tank has become a large environmental load as industrial waste.
- Patent Documents 2 and 3 describe a technique of forming a chemical conversion treatment film on a metal surface using a zirconium chemical conversion treatment liquid.
- the present invention has been devised in view of the above-mentioned problems, and an object thereof is an ultrahigh-strength steel sheet having a tensile strength of 980 MPa or more and sufficient low temperature toughness, which is a zirconium-based chemical conversion treatment. Even when using a liquid, a hot-rolled steel sheet having chemical conversion treatability and coating film adhesion equal to or higher than when a zinc phosphate chemical conversion treatment liquid is used, and a manufacturing method capable of stably producing the hot-rolled steel sheet. Is to provide.
- the inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as described later, have found that the oxide on the surface layer of the steel sheet has a great influence on the chemical conversion treatment property and the coating film adhesion.
- the chemical composition represented by the average value in the entire plate thickness direction is% by mass, C: 0.050% or more, 0.200% or less, Si: 0.05% or more, 3.00% or less, Mn: 1.00% or more, 4.00% or less, Al: 0.001% or more, 2.000% or less, N: 0.0005% or more, 0. 1000% or less, Ni: 0.02% or more, 2.00% or less, Nb: 0% or more, 0.300% or less, Ti: 0% or more, 0.300% or less, Cu: 0% or more, 2.
- PCM C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Mo / 15 + Cr / 20 + V / 10 + 5 ⁇ B ...
- Formula (ii) Ms 561-474 ⁇ C-33 ⁇ Mn-17 ⁇ Ni-17 ⁇ Cr-21 ⁇ Mo ⁇
- the elements shown in the above formula are mass% of the elements contained in the hot rolled steel sheet.
- the chemical composition may contain, by mass%, Ni: 0.02% or more and 0.05% or less.
- the average number density of iron-based carbides present in the tempered martensite and the lower bainite is 1.0 ⁇ 10 6 pieces / mm 2. It may be more than.
- the hot-rolled steel sheet has an internal oxide layer, and the average depth of the internal oxide layer is the surface of the hot-rolled steel sheet. To 5.0 ⁇ m or more and 20.0 ⁇ m or less.
- the standard deviation of the arithmetic average roughness Ra of the surface of the hot-rolled steel sheet is 10.0 ⁇ m or more and 50.0 ⁇ m or less. May be.
- the chemical composition is% by mass, B: 0.0001% or less and 0.0100% or less, Ti: 0.015%.
- the chemical composition is% by mass, Nb: 0.005% or more, 0.300% or less, Cu: 0.01 % Or more, 2.00% or less, Mo: 0.010% or more, 1.000% or less, V: 0.010% or more, 0.300% or less, Cr: 0.01% or more, 2.00% or less Of these, one kind or two or more kinds may be contained.
- the chemical composition is, in mass%, Mg: 0.0005% or more and 0.0100% or less, Ca: 0.0005.
- a method for manufacturing a hot-rolled steel sheet according to another aspect of the present invention includes a casting step of casting a molten steel having the chemical composition according to (1) above to obtain a billet, and at least a pre-casting of the billet.
- the hot rolling step of carrying out the hot rolled steel sheet, and the average cooling rate from the finish rolling temperature to the Ms point temperature calculated by the following formula (iv) is 50 ° C./sec or more so that the Ms point temperature or less.
- the air ratio in the soaking zone is 0.9 or more and 1.9 or less. May be (13)
- the air ratio in the preheating zone may be higher than the air ratio in the heating zone.
- the hot rolled steel sheet after the winding step has 1 to 10 wt% hydrochloric acid at a temperature of 20 to 95 ° C.
- a pickling step of pickling with a solution under the condition of pickling time of 30 to less than 60 seconds may be provided.
- an ultrahigh-strength steel sheet having a tensile strength of 980 MPa or more and a good low-temperature toughness wherein a zinc phosphate chemical conversion treatment liquid is used even when a zirconium-based chemical conversion treatment liquid is used. It is possible to obtain a hot-rolled steel sheet having chemical conversion treatability and coating film adhesion that are equal to or higher than the case.
- the steel sheet according to the present invention is excellent in chemical conversion treatment property and coating film adhesion, and therefore is excellent in corrosion resistance after coating. Therefore, the steel sheet according to the present invention is suitable for automobile parts that require high strength and corrosion resistance after painting.
- the inventors of the present invention have diligently studied conditions under which ultra-high-strength steel sheets having a tensile strength of 980 MPa or more can stably obtain good chemical conversion treatability and coating adhesion by chemical conversion treatment using a zirconium-based chemical conversion treatment liquid. Layered. As a result of the study, it was found that the oxide on the surface layer of the steel sheet had a great influence on the chemical conversion treatment property and the coating film adhesion. Specifically, it is as follows. The steel sheet is usually pickled before being subjected to chemical conversion treatment.
- oxides such as Si and Al are formed on the surface of the ultra-high-strength steel sheet, which deteriorates the chemical conversion treatability and coating adhesion in the zirconium-based chemical conversion treatment. I understood.
- Si in order to improve the chemical conversion treatment property and the coating film adhesion, Si, while suppressing the formation of oxides such as Al, the surface of the steel sheet as a precipitation nucleus of the zirconium-based chemical conversion crystal It has been discovered that it is effective to form a layer having a Ni-enriched portion in the vicinity (sometimes referred to as Ni-enriched layer).
- the present inventors in the process of manufacturing a general hot-rolled steel sheet, if it is cheap and mass-produced, limit the Ni content in a trace amount and the heating conditions in the heating process prior to hot rolling. By doing so, it was found that it is possible to form a Ni-enriched layer in the vicinity of the surface of the steel sheet after pickling (before chemical conversion treatment).
- C 0.050% or more and 0.200% or less C is one of the important elements in the hot-rolled steel sheet according to the present embodiment.
- C is an element that contributes to the strength increase and the hardenability of the steel sheet. If the C content is less than 0.050%, it is not possible to obtain the effect of improving the strength by strengthening the structure of the low-temperature transformation forming phase. Therefore, the C content is 0.050% or more. It is preferably 0.070% or more.
- C produces iron-based carbides such as cementite (Fe 3 C) that precipitates when bainite and martensite are tempered.
- the C content exceeds 0.200%, ferrous carbides such as cementite (Fe 3 C), which becomes a crack starting point of the secondary shear surface during punching, increase, and the formability such as hole expandability deteriorates. To do. Therefore, the C content is 0.200% or less. It is preferably 0.180% or less.
- Si 0.05% or more and 3.00% or less Si is one of the important elements in the hot rolled steel sheet according to the present embodiment.
- Si is an element that contributes to an increase in the strength of the base material by improving the temper softening resistance, and is also an effective element as a deoxidizing material for molten steel.
- Si is an element effective in suppressing the generation of scale-based defects such as scales and spindle scales.
- the Si content is 0.05% or more.
- the Si content is preferably 0.10% or more.
- the Si content is 3.00% or less. It is preferably 2.50% or less.
- Mn 1.00% or more and 4.00% or less
- Mn is an element that contributes to solid solution strengthening. Further, Mn is an element that enhances the hardenability, and is included to make the steel sheet structure a tempered martensite or a lower bainite main phase.
- the Mn content is set to 1.00% or more.
- the Mn content is set to 4.00% or less. If the Mn content exceeds 3.00%, slab cracks are likely to occur during casting. Therefore, the Mn content is preferably 3.00% or less.
- Al 0.001% or more and 2.000% or less
- Al is one of the important elements in the hot rolled steel sheet according to the present embodiment.
- Al is an element that suppresses the formation of coarse cementite when bainite and martensite are tempered and improves the hole expandability. It can also be used as a deoxidizer.
- the Al content is set to 0.001% or more.
- excessive inclusion of Al increases the number of coarse Al-based inclusions, which causes deterioration of hole expandability and surface defects. Therefore, the Al content is set to 2.000% or less. Further, if the Al content is high, the tundish nozzle is likely to be clogged during casting, so the Al content is preferably 1.500% or less.
- N 0.0005% or more and 0.1000% or less
- solid solution N remains in the steel and ductility decreases.
- coarse TiN is deposited and the hole expandability deteriorates. Therefore, the smaller the N content, the more preferable. If the N content exceeds 0.1000%, the ductility and hole expansibility are particularly deteriorated, so the N content is set to 0.1000% or less. It is preferably 0.0100% or less. On the other hand, it is economically undesirable to set the N content to less than 0.0005%. Therefore, the N content is set to 0.0005% or more.
- Ni 0.02% or more and 2.00% or less
- Ni is one of the important elements in the hot rolled steel sheet according to the present embodiment.
- Ni is concentrated in the vicinity of the steel sheet surface near the interface between the steel sheet surface and the scale under specific conditions mainly in the heating step of the hot rolling step.
- This Ni serves as a precipitation nucleus of the zirconium-based chemical conversion coating when the zirconium-based chemical conversion treatment is performed on the surface of the steel sheet, and promotes the formation of a coating having no scaling and good adhesion. If the Ni content is less than 0.02%, the effect is not obtained, so the Ni content is set to 0.02% or more.
- the effect of improving the adhesion can be obtained not only for the zirconium-based chemical conversion coating but also for the conventional zinc phosphate chemical conversion coating. Further, the adhesion between the hot dip galvanized layer by the hot dip galvanizing treatment and the alloyed galvanized layer after the alloying treatment after plating with the base material is also improved. Further, Ni is an element that enhances hardenability and is an element effective for suppressing ferrite transformation during cooling and for making the steel sheet structure a tempered martensite or a lower bainite structure. On the other hand, even if the Ni content exceeds 2.00%, not only the effect is saturated, but also the alloy cost increases. Therefore, the Ni content is set to 2.00% or less. It is preferably 0.50% or less, more preferably 0.05% or less.
- the hot-rolled steel sheet according to the present embodiment may contain the above elements and the balance being Fe and impurities. However, the following components may be further contained for the purpose of improving various properties. Since the following elements are not necessarily contained, the lower limit of the content is 0%.
- Nb 0% or more and 0.300% or less Nb forms carbonitrides, or solid solution Nb delays grain growth during hot rolling, thereby reducing the grain size of the hot rolled steel sheet. Is an element that contributes to the improvement of low temperature toughness. To obtain this effect, the Nb content is preferably 0.005% or more. On the other hand, even if the Nb content exceeds 0.300%, the above effect is saturated and the economical efficiency is lowered. Therefore, if necessary, the Nb content is 0.300% or less even when Nb is contained.
- Ti 0% or more and 0.300% or less Ti forms carbonitrides, or solid solution Ti delays grain growth during hot rolling, thereby reducing the grain size of the hot rolled steel sheet. Is an element that contributes to the improvement of low temperature toughness. To obtain this effect, the Ti content is preferably 0.005% or more. In addition, in order to contain B and bring out the effect of improving the hardenability, it is necessary to minimize the amount of B precipitated as BN. When the Ti content is 0.015% or more, stable TiN precipitates at a temperature higher than BN, and it is expected that the solid solution B improves the hardenability. Therefore, when B is contained at the same time, the Ti content is preferably 0.015% or more. On the other hand, even if the Ti content exceeds 0.300%, the above effect is saturated and the economical efficiency is lowered. Therefore, the Ti content is set to 0.300% or less even when Ti is contained as necessary.
- Mo, V, Cr is an element that enhances hardenability, and may contain one or more of any one of them in order to suppress ferrite transformation during cooling and to make the steel sheet structure a tempered martensite or lower bainite structure. Further, these elements are elements having an effect of improving the strength of the hot-rolled steel sheet by precipitation strengthening or solid solution strengthening, and one kind or two or more kinds may be contained in order to obtain this effect. When obtaining the above effect, it is preferable that the content of Mo and V is 0.010% or more and the content of Cu and Cr is 0.01% or more.
- the Cu content exceeds 2.00%, the Mo content exceeds 1.000%, the V content exceeds 0.300%, and the Cr content exceeds 2.00%, the above effect is saturated. In addition, the economic efficiency is reduced. Therefore, even if Cu, Mo, V, and Cr are contained as necessary, the Cu content is 2.00% or less, the Mo content is 1.000% or less, and the V content is 0.300% or less, The Cr content is 2.00% or less.
- Mg 0% or more, 0.0100% or less Ca: 0% or more, 0.0100% or less REM: 0% or more, 0.1000% or less
- Mg, Ca and REM rare earth elements
- the Ca, REM and Mg contents are preferably 0.0005% or more.
- the content of Mg exceeds 0.0100%, the content of Ca exceeds 0.0100%, and the content of REM exceeds 0.1000%, the above effect is saturated and the economical efficiency deteriorates.
- the Mg content is 0.0100% or less
- the Ca content is 0.0100% or less
- the REM content is 0.1000% or less.
- REM refers to a total of 17 elements consisting of Sc, Y and lanthanoids
- the content of REM refers to the total content of these elements.
- lanthanoid it is industrially added in the form of misch metal.
- B 0% or more and 0.0100% or less
- B is an element that enhances hardenability and is effective for delaying the ferrite transformation during cooling to make the steel sheet structure a tempered martensite or a lower bainite structure. It is an element and may be contained to obtain this effect.
- the B content is preferably 0.0001% or more. It is more preferably 0.0005% or more, still more preferably 0.0007% or more.
- the B content exceeds 0.0100%, not only the effect is saturated but also the economical efficiency is deteriorated. Therefore, even if it is contained, the B content is 0.0100% or less. It is preferably 0.0050% or less, more preferably 0.0030% or less.
- Zr, Co, Zn, and W 1 type or 2 or more types in total of 0 to 1.000% Sn: 0.050% or less
- Sn 0.050% or less
- the Sn content exceeds 0.050%, flaws may occur during hot rolling, so it is preferable to set the Sn content to 0.050% or less.
- P 0.100% or less
- P is an impurity contained in the hot metal, and is an element that segregates at the grain boundaries of the steel sheet and reduces the low temperature toughness as the content increases. Therefore, the lower the P content, the more desirable. If the P content exceeds 0.100%, the workability and weldability are adversely affected, so the P content is set to 0.100% or less. Particularly, when considering weldability, the P content is preferably 0.030% or less. On the other hand, it is preferable that the amount of P is small, but reducing P more than necessary puts a large load on the steelmaking process. Therefore, the P content may be 0.001% or more.
- S 0.0300% or less
- S is an impurity contained in the hot metal, and is an element that causes cracking during hot rolling if the content is too large. Further, S is an element that produces inclusions such as MnS that deteriorate the hole expandability. Therefore, the S content should be reduced as much as possible. However, if the S content is 0.0300% or less, it is in an allowable range, so the S content is 0.0300% or less. However, from the viewpoint of hole expandability, the S content is preferably 0.0100% or less, and more preferably 0.0050% or less. On the other hand, it is preferable that the S content is small, but if the S content is reduced more than necessary, a great load is applied to the steelmaking process. Therefore, the S content may be 0.0001% or more.
- O 0.0100% or less
- O is an element that forms a coarse oxide that becomes a starting point of fracture in steel when the content is too large, and causes brittle fracture and hydrogen-induced cracking. Therefore, the O content is set to 0.0100% or less. From the viewpoint of field weldability, the O content is preferably 0.0030% or less.
- O is an element that disperses many fine oxides when deoxidizing molten steel. Therefore, the O content may be 0.0005% or more.
- the hot-rolled steel sheet according to the present embodiment contains the basic element, optionally the optional element, and the balance Fe and impurities.
- Impurity refers to a component that is unintentionally included from a raw material or another manufacturing process in the process of manufacturing a steel sheet.
- PCM PCM ⁇ 0.20 Ms ⁇ 400 (°C)
- PCM C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Mo / 15 + Cr / 20 + V / 10 + 5 ⁇ B ... Formula (2) If the PCM is less than 0.20, the hardenability is insufficient, and a microstructure having tempered martensite and / or lower bainite as a main phase cannot be obtained. Further, in the hot-rolled steel sheet according to this embodiment, Ms represented by the following formula (3) needs to be 400 (° C) or more.
- Ms is less than 400 (° C)
- the auto tempering (automatic tempering) during cooling becomes insufficient and the stretch flangeability deteriorates.
- Ms 561-474 ⁇ C-33 ⁇ Mn-17 ⁇ Ni-17 ⁇ Cr-21 ⁇ Mo ⁇ Formula (3)
- the above-mentioned content of each element in the hot-rolled steel sheet is the average content in all plate thicknesses, which is obtained by ICP emission spectroscopic analysis with chips according to JIS G1201: 2014.
- the metal structure at a position of t / 4 (t: plate thickness) from the surface of the steel plate is either or both of tempered martensite and lower bainite: 90% or more in total of volume ratio. Then, the main phase is tempered martensite and / or lower bainite, and the total volume ratio thereof is 90% or more.
- the lower limit of the total volume ratio of tempered martensite and lower bainite is 90%. Even if the volume ratio is 100%, high strength and excellent low temperature toughness can be obtained.
- tempered martensite is the most important microstructure in order to have high strength and excellent low temperature toughness.
- Tempered martensite is an aggregate of lath-shaped crystal grains, contains iron-based carbides having a major axis of 5 nm or more, and the carbides are a plurality of variants, that is, a plurality of iron-based carbide groups that extend in different directions. Is an organization belonging to.
- Tempered martensite has a structure in which the cooling rate at the time of cooling below the Ms point (martensite transformation start temperature) is decreased, or when the martensite structure is once formed and then tempered at 100 to 600 ° C. Can be obtained.
- precipitation is controlled by cooling control of less than 400 ° C.
- the lower bainite is also an aggregate of lath-like crystal grains similar to tempered martensite, and contains iron-based carbides with a major axis of 5 nm or more inside.
- the carbides belong to a single variant, namely the group of iron-based carbides elongated in the same direction.
- tempered martensite and lower bainite can be distinguished.
- the iron-based carbide group elongated in the same direction means that the difference in the elongation direction of the iron-based carbide group is within 5 °.
- the microstructure may include one or more of ferrite, fresh martensite, upper bainite, pearlite, and retained austenite as a structure other than tempered martensite and lower bainite in a total volume ratio of 10% or less. .
- fresh martensite is martensite that does not contain carbide inside. Therefore, tempered martensite and fresh martensite can be easily distinguished from the viewpoint of carbides. That is, the inside of the lath-shaped crystal grains can be observed using FE-SEM, and the presence or absence of the iron-based carbides can be used for discrimination.
- Fresh martensite has high strength but is inferior in low temperature toughness. From this, the volume ratio must be limited to 10% or less.
- Residual austenite is a structure in which austenite generated during heating remains without transformation to normal temperature, but steel is plastically deformed during press forming, or when an automobile member is plastically deformed at the time of collision, it transforms into fresh martensite. To do.
- the crystal structure of the retained austenite is FCC and the other microstructure is BCC, which are different from each other. Therefore, the volume ratio can be easily obtained by the X-ray diffraction method.
- the upper bainite is an aggregate of lath-shaped crystal grains containing carbides between laths.
- carbide precipitates at the lath interface, which is clearly different from the case where the lower bainite precipitates carbide inside the lath. Therefore, it can be easily determined. That is, the interface of the lath-shaped crystal grains can be observed by using FE-SEM, and the presence or absence of the iron-based carbide can be used for discrimination. Since the carbide contained in the lath becomes the starting point of fracture, if the volume ratio of the upper bainite is large, the low temperature toughness decreases.
- the upper bainite is formed at a higher temperature than the lower bainite, it has low strength, and excessive formation makes it difficult to secure a tensile strength of 980 MPa or more. Since this adverse effect becomes remarkable when the volume ratio of the upper bainite exceeds 10%, it is necessary to limit the volume ratio to 10% or less.
- Ferrite is a lump-shaped crystal grain, and is a structure that does not include a substructure such as lath inside. Ferrite is the softest structure, and it is necessary to limit it to 10% or less in order to secure tensile strength of 980 MPa or more. Further, since it is extremely softer than tempered martensite or lower bainite, which is the main phase, deformation is concentrated at the interface between ferrite and tempered martensite or lower bainite, which is likely to be a starting point of fracture. Since this adverse effect becomes remarkable when the volume ratio exceeds 10%, it is necessary to limit the volume ratio to 10% or less.
- pearlite is a lamellar metallic structure in which cementite is deposited in layers between ferrites and causes a decrease in strength and deterioration of low temperature toughness like ferrite, it is necessary to limit the volume ratio to 10% or less. There is.
- Tempered martensite constituting the microstructure of the hot-rolled steel sheet according to the present embodiment as described above, fresh martensite, upper bainite, lower bainite, ferrite, pearlite, residual austenite and the identification of the remaining structure, the existence position confirmation, Further, the volume ratio is measured by using a Nital reagent and the reagent disclosed in Japanese Patent Laid-Open No. 219473/1984 to corrode the cross section of the steel sheet in the rolling direction or the cross section in the direction perpendicular to the rolling direction, and the scanning type of 1000 to 100000 times and It is possible by observing with a transmission electron microscope.
- the structure can be discriminated from the crystal orientation analysis using the FESEM-EBSP method and the hardness measurement of a micro area such as the micro Vickers hardness measurement.
- tempered martensite, upper bainite, and lower bainite have different carbide formation sites and crystal orientation relationships (stretching directions).
- Lower bainite and tempered martensite can be easily distinguished by observing carbides and examining their elongation direction.
- the total volume ratio of tempered martensite and lower bainite may be controlled, and thus these structures do not necessarily have to be distinguished.
- the volume ratio of ferrite, pearlite, upper bainite, lower bainite, and tempered martensite is t / t from the steel sheet surface in the thickness direction of the steel sheet, where t is the thickness of the steel sheet. It is obtained by taking a sample from the portion including the position 4 (generally t / 8 to 3t / 8) and observing the rolling direction cross section of the steel sheet (so-called L direction cross section).
- the sample is subjected to a nital etching, and after the etching, an image analysis is performed on a structure photograph obtained in a visual field of 300 ⁇ m ⁇ 300 ⁇ m by using an optical microscope, whereby the area ratio of ferrite and pearlite, And the total area ratio of bainite, martensite, retained austenite.
- the nital-etched portion is repeller-etched, and the structure photograph obtained in a visual field of 300 ⁇ m ⁇ 300 ⁇ m using an optical microscope is subjected to image analysis to determine the total area ratio of retained austenite and martensite. calculate.
- the retained austenite area ratio is obtained by X-ray diffraction measurement described below using a sample which is chamfered from the rolling surface normal direction to a depth of 1/4 of the plate thickness.
- bainite is a set of lath-shaped crystal grains.
- Bainite includes upper bainite, which is an aggregate of laths containing carbides between laths, and lower bainite, which internally contains iron-based carbides having a major axis of 5 nm or more.
- the iron-based carbides precipitated in the lower bainite belong to a single variant, that is, a group of iron-based carbides extending in the same direction.
- Tempered martensite is a set of lath-shaped crystal grains, and internally contains iron-based carbides having a major axis of 5 nm or more.
- the iron-based carbides in the tempered martensite belong to a plurality of variants, that is, a plurality of iron-based carbide groups that extend in different directions.
- martensite that is not tempered martensite is defined as a metal structure in which carbides having a diameter of 5 nm or more are not precipitated between the laths and in the laths.
- the volume ratio of retained austenite can be obtained by X-ray diffraction.
- Austenite has a different crystal structure from ferrite and can be easily identified crystallographically. For example, it is a method of simply obtaining the volume ratio by using the following formula from the difference in the reflecting surface strength between austenite and ferrite using the K ⁇ ray of Mo.
- V ⁇ (2/3) ⁇ 100 / (0.7 ⁇ ⁇ (211) / ⁇ (220) +1) ⁇ + (1/3) ⁇ 100 / (0.78 ⁇ ⁇ (211) / ⁇ (311) +1) ⁇
- ⁇ (211), ⁇ (220) and ⁇ (311) are X-ray reflection surface intensities of ferrite ( ⁇ ) and austenite ( ⁇ ), respectively.
- the tempered martensite and the lower bainite contained in the microstructure should contain iron-based carbides in an average number density of 1.0 ⁇ 10 6 (pieces / mm 2 ) or more. Is desirable. As-quenched martensite (fresh martensite) has excellent strength but poor toughness. On the other hand, tempered martensite in which iron-based carbides such as cementite are precipitated provides an excellent balance between strength and low temperature toughness. The present inventors investigated the relationship between low temperature toughness and the number density of iron-based carbides, and found that the number density of carbides in tempered martensite and lower bainite was 1.0 ⁇ 10 6 (pieces / mm 2 ) or more.
- the average number density of the iron-based carbides contained in the tempered martensite and the lower bainite be 1.0 ⁇ 10 6 (pieces / mm 2 ). It is more preferably 5.0 ⁇ 10 6 (pieces / mm 2 ) or more, and even more preferably 1.0 ⁇ 10 7 (pieces / mm 2 ) or more.
- the size of the carbides precipitated on the hot-rolled steel sheet according to this embodiment obtained by the method described below is as small as 300 nm or less, and most of them are precipitated in the lath of martensite or bainite. Therefore, it is presumed that the low temperature toughness is not deteriorated.
- a sample is taken with the plate thickness cross section parallel to the rolling direction of the steel plate as the observation surface, the observation surface is polished, and nital etching is performed to obtain 1/4 (t / 4) of the plate thickness. Is observed by a field emission scanning electron microscope (FE-SEM: Field Emission Scanning Electron Microscope) centering on the position of. Each of 10 field-of-view observations was performed at 200,000 times, and the number densities of the iron-based carbides contained in the tempered martensite and the lower bainite in the field of view were measured, and the number densities in each field were averaged to obtain the average number density. To do.
- tempered martensite or lower bainite as the main phase, and to set the average effective crystal grain size to 10 ⁇ m or less. More preferably, it is 8 ⁇ m or less.
- the effective grain size described here means a region surrounded by grain boundaries having a crystal orientation difference of 15 ° or more as described in the following method, and corresponds to a block grain size in martensite and bainite.
- EBSP-OIM TM Electro Back Scatter Diffraction Pattern-Orientation Image Microscopy
- the orientation difference of the crystal grains is a threshold value of the large angle grain boundaries, which is generally recognized as the crystal grain boundaries, which is 15 °. Grain is visualized from the image defined and mapped.
- the EBSP-OIM TM method irradiates by irradiating a highly inclined sample with an electron beam in a scanning electron microscope (SEM), capturing the Kikuchi pattern formed by backscattering with a high-sensitivity camera, and performing computer image processing. It consists of equipment and software for measuring the crystal orientation of a point in a short time.
- the EBSP method enables quantitative analysis of the fine structure and crystallographic orientation of the bulk sample surface, and the analysis area is an area that can be observed by SEM, and can be analyzed at a resolution of at least 20 nm, although it depends on the resolution of the SEM.
- the aspect ratio of the effective crystal grains of tempered martensite and bainite (here, the region surrounded by grain boundaries of 15 ° or more) is preferably 2.0 or less. Grains flattened in a specific direction have large anisotropy, and cracks propagate along grain boundaries during the Charpy test, which often causes a decrease in toughness. Therefore, the effective crystal grains are preferably equiaxed grains as much as possible.
- Oxides such as Si and Al on the surface of the pickled plate are preferably reduced to a harmless level.
- Ar, He, N 2 in the preheating zone of the heating furnace are used. It is necessary to make a substantially non-oxidizing atmosphere using an inert gas such as, or to make incomplete combustion with an air ratio of less than 0.9.
- the inventors of the present invention on the premise of applying a manufacturing process that is inexpensive and capable of mass production, use the zirconium-based chemical conversion steel in the ultrahigh-strength steel sheet having the above-described chemical composition, structure, and tensile strength and toughness of 980 MPa or more.
- the coating film adhesion after chemical conversion treatment using the treatment liquid was examined.
- the hot rolled steel sheet is subjected to chemical conversion treatment after pickling, and therefore, in the present embodiment, the steel sheet after pickling was also evaluated.
- the pickling was performed using a 1 to 10 wt% (wt%) hydrochloric acid solution at a temperature of 20 to 95 ° C. and a pickling time of 30 to less than 60 seconds. When no scale is formed on the surface, it may be evaluated without performing pickling.
- the Ni enriched portion 3 is formed on the surface of the steel sheet, so that a potential difference occurs between the Ni locally concentrated on the surface and the base iron 1, and It is considered that this is because Ni serves as a precipitation nucleus of the zirconium-based chemical conversion crystal 4 and thus promotes the production of the zirconium-based chemical conversion crystal 4.
- the base metal 1 refers to the steel plate portion excluding the scale 2.
- the average Ni concentration on the surface (the surface after pickling and before chemical conversion treatment) is 7.0% or more.
- the average Ni concentration on the surface is 7.0% or more, even if oxides of Si, Al, etc. remain on the surface, they are sufficient to serve as precipitation nuclei for zirconium-based chemical conversion crystals.
- Fe is selectively oxidized on the surface of the steel sheet to some extent, so that the interface between the scale and the base iron is on the base iron side. In addition, it is necessary to concentrate Ni, which is less likely to be oxidized than Fe.
- the average Ni concentration on the surface of the steel sheet is measured using a JXA-8530F field emission electron probe microanalyzer (FE-EPMA).
- the measurement conditions are: acceleration voltage: 15 kV, irradiation current: 6 ⁇ 10 ⁇ 8 A, irradiation time: 30 ms, beam diameter: 1 ⁇ m.
- the measurement is performed on the measurement area of 900 ⁇ m 2 or more from the direction perpendicular to the surface of the steel sheet, and the Ni concentration in the measurement range is averaged (the Ni concentration at all measurement points is averaged).
- FIG. 1 shows an example of the EPMA measurement result on the surface.
- Ni mainly concentrates on the side of the base metal at the interface between the scale and the base metal.
- pickling is usually performed before the chemical conversion treatment. Therefore, when a scale is formed on the surface of the target steel sheet, it is measured after performing the same pickling as in the case of being subjected to chemical conversion treatment.
- a tape (Nichiban 405A-24 JIS Z 1522) with a width of 24 mm is formed on the cut portion. : 2009) is attached in parallel to the notch with a length of 130 mm, and the maximum width of peeling of the coating film is measured when peeling this.
- the hot-rolled steel sheet has an internal oxide layer (a region where oxides are formed inside the base steel), and the average depth of the internal oxide layer from the surface of the hot-rolled steel sheet is 5.0 ⁇ m or more and 20.0 ⁇ m or less. Even if there is a thickened part, if the coverage of oxides of Si, Al, etc. on the surface of the hot rolled steel sheet is too large, "scale" where the zirconium-based chemical conversion coating does not adhere tends to occur. In order to suppress this, it is desirable that the oxidation of Si, Al, etc. is not an external oxidation that forms an oxide outside the base iron but an internal oxidation that forms an oxide inside.
- the inventors performed an optical microscope observation of a cross section only on a sample having an average Ni concentration on the surface of 7.0% or more, and observed the coating peeling width and the average depth of the internal oxide layer from the steel sheet surface (internal oxide layer). The average of the positions of the lower ends of the) was investigated. As a result, in all the samples having an average depth of the internal oxide layer of 5.0 ⁇ m or more, the coating peeling width was within 3.5 mm, whereas the average depth of the internal oxide layer was less than 5.0 ⁇ m. In all the samples, the paint peeling width was more than 3.5 mm and 4.0 mm or less.
- the average depth of the internal oxide layer from the surface of the hot-rolled steel sheet is preferably 5.0 ⁇ m or more and 20.0 ⁇ m or less.
- the average depth of the internal oxide layer of Si, Al or the like is less than 5.0 ⁇ m, the internal oxidation is insufficient, and the effect of suppressing “scaling” where the zirconium-based chemical conversion coating does not adhere is small.
- the average depth exceeds 20.0 ⁇ m not only is the effect of suppressing the “scale” in which the zirconium-based chemical conversion coating does not adhere saturated, but also the hardness of the surface layer decreases due to the formation of a decarburized layer that occurs simultaneously with internal oxidation. Fatigue durability may deteriorate.
- the average depth of the internal oxide layer was determined by cutting out a plane parallel to the rolling direction and the thickness direction at a position 1/4 or 3/4 in the width direction of the pickled plate as a sample for embedding, and mirror-finishing after embedding in the resin sample. 12 fields or more are observed in a field of 195 ⁇ m ⁇ 240 ⁇ m (corresponding to a magnification of 400 times) with an optical microscope after polishing and without etching. When a straight line is drawn in the plate thickness direction, the position where it intersects with the steel plate surface is taken as the surface, and the depth of the internal oxide layer (the position of the lower end) of each field of view with respect to that surface is measured and averaged at 5 points per field of view. The average value is calculated by removing the maximum value and the minimum value among the average values of the respective visual fields, and this is used as the average depth of the internal oxide layer.
- Standard deviation of arithmetic mean roughness Ra of the surface of the hot-rolled steel sheet after pickling under predetermined conditions 10.0 ⁇ m or more and 50.0 ⁇ m or less
- a conventional phosphorus having a film thickness of several ⁇ m is used.
- the film thickness is much thinner than the zinc oxide film, which is about several tens of nm. This difference in film thickness is due to the extremely fine zirconium-based chemical conversion treatment crystals. If the chemical conversion treatment crystal is fine, the chemical conversion treatment surface is very smooth, so it is difficult to obtain strong adhesion to the coating film due to the anchor effect as seen in the zinc phosphate treatment film. .
- the coating peeling width was within 3.0 mm, whereas The paint peeling width was more than 3.0 mm and less than 3.5 mm in all the samples having a standard deviation of arithmetic mean roughness Ra of the surface of the pickled plate of less than 10.0 ⁇ m or more than 50.0 ⁇ m. Therefore, the standard deviation of the arithmetic average roughness Ra of the steel sheet surface after pickling is preferably 10.0 ⁇ m or more and 50.0 ⁇ m or less.
- the standard deviation of the arithmetic average roughness Ra of the steel sheet surface is less than 10.0 ⁇ m, a sufficient anchor effect cannot be obtained.
- the standard deviation of the arithmetic mean roughness Ra of the steel sheet surface after pickling exceeds 50.0 ⁇ m, not only the anchor effect is saturated, but also the valleys of irregularities on the surface of the steel sheet after pickling and the zirconium on the side surface of the mountain portion It is difficult for the chemical conversion treatment crystals to adhere, and "scale" tends to occur.
- the surface roughness of the steel sheet largely changes depending on the pickling condition.
- a hydrochloric acid solution of 1 to 10 wt% at a temperature of 20 to 95 ° C. is used, and the acidity of 30 to less than 60 seconds is used.
- the standard deviation of the arithmetic average roughness Ra of the surface of the hot-rolled steel sheet after pickling under the washing time condition is preferably 10.0 ⁇ m or more and 50.0 ⁇ m or less.
- the standard deviation of the arithmetic mean roughness Ra the value obtained by measuring the surface roughness of the pickled plate by the measuring method described in JIS B 0601: 2013 is adopted. After measuring the arithmetic mean roughness Ra of the front and back of 12 samples or more, respectively, the standard deviation of the arithmetic mean roughness Ra of each sample is calculated, and the standard deviation is averaged by removing the maximum value and the minimum value. Calculate the value.
- the hot-rolled steel sheet according to this embodiment having the above-described chemical composition and metal structure may be a surface-treated steel sheet having a plating layer on the surface for the purpose of improving corrosion resistance and the like.
- the plated layer may be an electroplated layer or a hot-dip plated layer.
- the electroplating layer include electrogalvanizing and electroplating Zn—Ni alloy.
- the hot-dip galvanizing layer include hot-dip galvanizing, alloying hot-dip galvanizing, hot-dip aluminum coating, hot-dip Zn-Al alloy plating, hot-dip Zn-Al-Mg alloy plating, hot-dip Zn-Al-Mg-Si alloy plating and the like.
- the coating amount is not particularly limited and may be the same as the conventional one. Further, it is possible to further enhance the corrosion resistance by performing an appropriate chemical conversion treatment (for example, application and drying of a silicate-based chromium-free chemical conversion treatment liquid) after plating.
- the hot-rolled steel sheet according to the present embodiment has the above-mentioned characteristics regardless of the manufacturing method, and the effect can be obtained.
- the following manufacturing method is preferable because stable manufacturing is possible.
- the slab manufacturing process such as casting that precedes hot rolling is not particularly limited. That is, various secondary smelting is performed following smelting in a blast furnace or an electric furnace to adjust to the above-mentioned components, and then, in addition to ordinary continuous casting, casting by the ingot method, thin slab casting and other methods. It can be cast in.
- continuous casting after cooling to a low temperature once, it may be heated again and then subjected to hot rolling, or the ingot may be subjected to hot rolling without cooling to room temperature, or the cast slab is It may be continuously subjected to hot rolling.
- Scrap may be used as a raw material.
- a cast slab (steel piece) having a predetermined chemical composition is used at a temperature of 1100 ° C. using a heating furnace having three zones of a preheating zone, a heating zone, and a soaking zone. It is preferable that heating is performed as described above, hot rolling is performed, and hot rolling is completed at 850 ° C. or higher.
- the slab heating temperature for hot rolling is set to 1100 ° C or higher. If the slab heating temperature is lower than 1100 ° C., the rolling reaction force increases in the subsequent hot rolling, sufficient hot rolling cannot be performed, the desired product thickness cannot be obtained, and the plate shape deteriorates.
- the grain size of austenite becomes small, and the hardenability is deteriorated, so that the desired microstructure may not be obtained.
- an element such as Ti forming carbonitride is contained in the steel, it is preferably heated to the solutionizing temperature of austenite or higher.
- the upper limit of the slab heating temperature is not particularly specified, the effect can be obtained, but it is economically unfavorable to raise the heating temperature excessively high. From this, it is desirable that the upper limit of the slab heating temperature is less than 1300 ° C.
- the finish rolling temperature is preferably 850 ° C. or higher.
- the hot-rolled steel sheet according to the present embodiment in the finish rolling in a temperature range of less than 850 ° C., has one or both of the target tempered martensite and the lower bainite, which are hardenability, and has a total volume ratio. However, a microstructure containing 90% or more cannot be obtained. Therefore, the finish rolling temperature is 850 ° C or higher.
- the burner equipment of the heating furnace is a regenerative burner. This is because when using "regenerative burner” equipped with a burner with a built-in heat storage body to perform "alternative combustion", the regenerative burner is more effective than the conventional burner that does not recover heat from the exhaust. This is because the temperature uniformity is high, the controllability of each zone is high, and the air ratio in each zone can be strictly controlled, so that the heating furnace described later can be controlled.
- Air ratio in preheating zone 1.1 or more and 1.9 or less>
- Ni can be concentrated on the surface of the hot rolled steel sheet, and the average Ni concentration on the surface of the hot rolled steel sheet after pickling can be 7.0% or more. it can.
- the scale growth behavior on the surface of the slab in the heating furnace is evaluated by the thickness of the produced scale, and depending on the air ratio (oxygen partial pressure), the linear law that is the rate of oxygen supply from the atmosphere on the surface of the slab and the diffusion of iron ions in the scale. It is classified as the rate-limiting parabolic law.
- the growth of the scale thickness needs to follow the parabolic law. If the air ratio in the preheating zone is less than 1.1, the growth of the scale does not follow the parabolic law, and a sufficient Ni enriched layer is formed on the surface layer of the slab in the limited furnace time in the heating furnace. I can't. In this case, the average Ni concentration on the surface of the hot-rolled steel sheet after pickling does not exceed 7.0%, and as a result, good coating film adhesion cannot be obtained.
- the air ratio in the preheating zone is more than 1.9, not only the scale-off amount increases and the yield deteriorates, but also the heat loss due to the increase of exhaust gas increases and the thermal efficiency deteriorates and the production cost increases. .
- the amount of scale produced in the heating furnace is governed by the atmosphere in the preheating zone immediately after the heating furnace is inserted, and even if the atmosphere in subsequent zones changes, the scale thickness is hardly affected. Therefore, controlling the scale growth behavior in the preheating zone is very important.
- Air ratio in heating zone 0.9 or more and 1.3 or less> It is necessary to control the air ratio in the heating zone in the heating furnace process to form the internal oxide layer.
- the average of the internal oxide layer is The depth can be 5.0 to 20.0 ⁇ m. If the air ratio in the heating zone is less than 0.9, the average depth of the internal oxide layer does not exceed 5.0 ⁇ m. On the other hand, if the air ratio in the heating zone is more than 1.3, not only the average depth of the internal oxide layer becomes more than 20.0 ⁇ m, but also the hardness of the surface layer decreases due to the formation of the decarburized layer, and the fatigue durability Is likely to deteriorate.
- Air ratio in soaking zone 0.9 or more, 1.9 or less>
- Ni which is more difficult to oxidize than Fe, concentrates on the side of the base metal at the interface between the scale and the base iron.
- the Ni-enriched layer having the Ni-enriched portion suppresses oxidation in the surface layer, but suppresses external oxidation and promotes internal oxidation in the subsequent heating zone.
- the scale 2 erodes the crystal grain boundaries 5 and the like, which are easily diffused, or the ground is generated due to the difference in the concentration of Ni. Due to the difference in the Ni concentration on the surface of the iron 1, the interface between the scale 2 and the base metal 1 becomes non-uniform, so that the unevenness at the interface between the scale 2 and the base iron 1 becomes large. Further, although not shown in FIG. 3, the Ni-enriched portion 3 around the internal oxide 6 suppresses the erosion of the grain boundary by the scale 2 so that the unevenness occurs. When this steel sheet is pickled, the scale 2 is removed and the surface of the hot rolled steel sheet has a predetermined roughness.
- the standard deviation of the arithmetic mean roughness Ra of the surface of the hot-rolled steel sheet after pickling under the condition of the pickling time can be 10.0 ⁇ m or more and 50.0 ⁇ m or less. If the air ratio in the soaking zone is less than 0.9, the oxygen potential is insufficient to selectively generate nuclei of oxides at crystal grain boundaries that are easily diffused. Therefore, the standard deviation of the arithmetic mean roughness Ra of the steel sheet surface after pickling does not become 10.0 ⁇ m or more.
- the air ratio in the soaking zone exceeds 1.9, the depth of the selectively oxidized grain boundaries in the plate thickness direction becomes too deep, and the arithmetic mean roughness Ra of the steel plate surface after pickling is standard.
- the deviation is more than 50.0 ⁇ m.
- control of the air ratio in the heating zone is important for controlling the degree of formation of the internal oxide layer. Therefore, it is necessary to promote the growth of the slab scale to some extent in a limited furnace time in the preheating zone to form a sufficient Ni enriched layer on the surface layer. For that purpose, a relatively high air ratio in which the growth of the scale thickness follows the parabolic law is required.
- the air ratio in the preheating zone is preferably higher than that in the heating zone.
- Average cooling rate from finish rolling temperature to Ms point temperature 50 ° C / sec or more, maximum cooling rate below Ms point temperature: less than 50 ° C / sec
- average cooling rate from finish rolling temperature to Ms point temperature Is 50 ° C./sec or more, and is cooled to a temperature range below the Ms point temperature (primary cooling).
- the average cooling rate up to the Ms point temperature is less than 50 ° C./sec, ferrite and upper bainite are formed during cooling, and the volume ratio of tempered martensite and lower bainite which are main phases is 90% or more in total. Difficult to do.
- air cooling may be performed in a temperature range in the middle.
- the temperature range be lower than the lower bainite formation temperature. If the temperature at which air cooling is performed is higher than the lower bainite formation temperature, upper bainite will be generated. Further, it is preferable that the cooling rate to the air cooling temperature range is 50 ° C./sec or more. This is to avoid the formation of upper bainite.
- the cooling rate between the Bs point temperature and the formation temperature of the lower bainite is less than 50 ° C./sec, the upper bainite is formed and the fresh martensite is formed between the laths of the bainite, or the retained austenite is formed.
- the Bs point temperature is the temperature at which the upper bainite starts to be formed, which is determined by the components, and is conveniently 550 ° C. Further, the formation temperature of the lower bainite is also determined by the component, but is 400 ° C. for convenience. That is, between the finish rolling temperature and 400 ° C., it is preferable that the cooling rate between 550 and 400 ° C. is 50 ° C./sec or more, and the average cooling rate between the finish rolling temperature and 400 ° C. is 50 ° C./sec or more. .
- cooling is performed (secondary cooling) with the maximum cooling rate from the primary cooling stop temperature to a temperature range of less than 350 ° C. being less than 50 ° C./sec. It is preferable. This is for controlling the average number density of iron-based carbides in tempered martensite or lower bainite within a preferable range.
- the maximum cooling rate in this temperature range is 50 ° C./sec or more, it is difficult to set the iron-based carbide in the preferable range. From this, it is preferable to set the maximum cooling rate to less than 50 ° C./sec.
- Winding temperature less than 350 ° C.
- a temperature range called a film boiling region where the heat transfer coefficient is relatively low and it is difficult to cool is changed to a temperature region where the heat transfer coefficient called a nucleate boiling temperature region is large and the temperature is easily cooled.
- the cooling stop temperature is set in the temperature range of less than 400 ° C., the winding temperature tends to fluctuate, and the material also fluctuates accordingly. From this, the usual winding temperature is often over 400 ° C. or at room temperature.
- [Pickling process] For the purpose of improving the ductility by correcting the shape of the steel sheet and introducing movable dislocations, skin pass rolling with a rolling reduction of 0.1% or more and 2.0% or less may be performed. Further, the hot-rolled steel sheet obtained may be subjected to pickling, if necessary, for the purpose of removing the scale adhering to the surface of the obtained hot-rolled steel sheet. In the case of pickling, it is preferable to perform pickling using a hydrochloric acid solution of 1 to 10 wt% at a temperature of 20 to 95 ° C. for a pickling time of 30 to less than 60 seconds. Further, after pickling, the obtained hot-rolled steel sheet may be subjected to in-line or off-line skin pass with a rolling reduction of 10% or less or cold rolling.
- the hot-rolled steel sheet according to the present embodiment is manufactured through normal hot-rolling steps such as continuous casting, rough rolling, finish rolling, cooling, winding, pickling, etc. Even so, it is possible to secure a tensile strength of 980 MPa or more and excellent low temperature toughness. Even after the hot-rolled steel sheet is once manufactured, the low temperature toughness and the tensile strength of 980 MPa or more are secured even if heat treatment is performed in the temperature range of 100 to 600 ° C for the purpose of precipitating carbides online or offline. It is possible.
- a steel plate having a tensile strength of 980 MPa or more is a tensile strength obtained by a tensile test performed according to JIS Z 2241: 2011 using a JIS No. 5 test piece cut out in a direction perpendicular to the rolling direction of hot rolling. Means a steel plate of 980 MPa or more.
- the steel plate excellent in toughness at low temperature refers to a steel plate having a fracture surface transition temperature (vTrs) of ⁇ 40 ° C. or less in the Charpy test performed according to JIS Z 2242: 2005.
- the plate thickness is about 0.8 to 8.0 mm, but it is often about 3.0 mm. Therefore, in the present embodiment, the surface of the hot rolled steel sheet is ground and the steel sheet is processed into a 2.5 mm subsize test piece.
- the hot rolled steel sheet according to the present embodiment can be obtained.
- the hot-rolled steel sheet according to the present embodiment it is an ultrahigh-strength steel sheet having a tensile strength of 980 MPa or more, and even when a zirconium-based chemical conversion treatment solution is used, a zinc phosphate chemical conversion treatment solution is used. Equivalent or better chemical conversion treatability and coating adhesion can be obtained. Therefore, the hot-rolled steel sheet according to the present embodiment is suitable for automobile parts that require high strength and corrosion resistance after painting.
- Table 1A and 1B (Table 1B is a continuation of Table 1A) Steels having chemical compositions shown in A to V were melted and continuously cast into slabs having a thickness of 240 to 300 mm. The obtained slab was heated to the temperature shown in Table 2A and Table 2B using a regenerative burner. At that time, the air ratios in the preheating zone (preheating zone), the heating zone (heating zone), and the soaking zone (soaking zone) were controlled as shown in Tables 2A and 2B.
- the heated slab was hot-rolled at the finishing temperatures shown in Tables 2A and 2B. After hot rolling, cooling was performed under the cooling conditions shown in Tables 2A and 2B, and after cooling, winding was performed.
- the volume ratio of each phase was determined by the following method. First, the sample was subjected to nital etching, and after the etching, an image analysis was performed on a microstructure photograph obtained in a visual field of 300 ⁇ m ⁇ 300 ⁇ m using an optical microscope, whereby the area ratios of ferrite and pearlite, and bainite and martensite were measured. , The total area ratio of retained austenite was obtained. Next, the nital-etched portion is repeller-etched, and the structure photograph obtained in a visual field of 300 ⁇ m ⁇ 300 ⁇ m using an optical microscope is subjected to image analysis to determine the total area ratio of retained austenite and martensite. It was calculated.
- the retained austenite area ratio was obtained by X-ray diffraction measurement, and the area ratios of ferrite, bainite, martensite, retained austenite, and pearlite were calculated. Obtained.
- at a depth of 1/4 of the plate thickness from the surface of the steel plate at least three regions of 40 ⁇ m ⁇ 30 ⁇ m were observed with a scanning electron microscope at a magnification of 1000 to 100,000, and whether or not the above characteristics were included Based on this, the proportions of lower bainite and upper bainite in bainite, and the proportions of tempered martensite and fresh martensite in martensite were determined. From these, the area ratio of each phase was calculated and used as the volume ratio.
- the average effective crystal grain size is generally determined by using EBSP-OIM TM (Electron Back Scatter Diffraction Pattern-Orientation Image Microscopy) at a position 1 ⁇ 4 depth from the surface of the steel plate. It was determined by visualizing grains from an image mapped by defining as 15 ° which is a threshold value of a large angle grain boundary recognized as a boundary. In addition, the aspect ratio was also measured.
- the Ni concentration on the surface was determined by the following method. Using a JXA-8530F field emission electron probe microanalyzer (FE-EPMA), the hot-rolled steel sheet of interest was analyzed for the Ni concentration for a measurement area of 900 ⁇ m 2 or more from the direction perpendicular to the surface of the steel sheet. The Ni concentrations in the measurement range were averaged. At this time, the measurement conditions were: acceleration voltage: 15 kV, irradiation current: 6 ⁇ 10 ⁇ 8 A, irradiation time: 30 ms, beam diameter: 1 ⁇ m.
- FE-EPMA JXA-8530F field emission electron probe microanalyzer
- the number density of iron-based carbide was determined by the following method. A sample is taken with a cross section parallel to the rolling direction of the steel sheet as the observation surface, the observation surface is polished, and nital etching is performed. The field density of 3/8 was observed with a field emission scanning electron microscope (FE-SEM: Field Emission Scanning Electron Microscope) at a magnification of 200,000 for 10 fields of view to measure the number density of iron-based carbides.
- FE-SEM Field Emission Scanning Electron Microscope
- the average depth of the internal oxide layer was determined by the following method. A surface parallel to the rolling direction and the plate thickness direction is cut out as a sample for embedding at a position of 1/4 or 3/4 in the width direction of the pickled plate, which is mirror-polished after embedding in a resin sample and is optically processed without etching. Twelve visual fields were observed with a microscope in a visual field of 195 ⁇ m ⁇ 240 ⁇ m (corresponding to a magnification of 400 times). When a straight line is drawn in the plate thickness direction, the position where it intersects with the steel plate surface is taken as the surface, and the depth of the internal oxide layer (the position of the lower end) of each field of view with respect to that surface is measured and averaged at 5 points per field of view. The average value was calculated by removing the maximum value and the minimum value from the average values of the respective visual fields, and this was used as the average depth of the internal oxide layer.
- the standard deviation of the arithmetic mean roughness of the surface was obtained by the following method.
- the surface roughness of the pickled plate was measured by the measurement method described in JIS B 0601: 2013 to measure the arithmetic mean roughness Ra of the front and back of 12 samples, and then the standard deviation of the arithmetic mean roughness Ra of each sample was calculated. Then, the standard deviation was calculated by removing the maximum and minimum values and calculating the average value.
- the tensile strength was obtained by performing a tensile test according to JIS Z 2241 using a JIS No. 5 test piece cut out in a direction perpendicular to the rolling direction of hot rolling. When the tensile strength was 980 MPa or more, it was judged that preferable characteristics were obtained.
- the toughness was obtained by grinding the surface of a hot-rolled steel sheet, processing the steel sheet into a 2.5 mm subsize test piece, and performing a Charpy test according to JIS Z 2242 to determine the fracture surface transition temperature (vTrs). When vTrs was ⁇ 40 ° C. or lower, it was judged that favorable characteristics were obtained.
- the chemical conversion treatability was evaluated by the following method.
- the surface of the steel sheet after the chemical conversion treatment was observed with a field emission scanning electron microscope (FE-SEM: Field Emission Scanning Electron Microscope). Specifically, 10 fields of view were observed at a magnification of 10000 times, and the presence or absence of "scale” in which the chemical conversion treatment crystals did not adhere was observed.
- the accelerating voltage was 5 kV
- the probe diameter was 30 mm
- the inclination angles were 45 ° and 60 °.
- Tungsten coating (ESC-101, Elionix) was performed for 150 seconds in order to impart conductivity to the sample. When no scaling was observed in all visual fields, it was judged that the chemical conversion treatment was excellent (“OK” in the table).
- the coating film adhesion was evaluated by the following method. After applying the electro-deposition coating of 25 ⁇ m thickness on the upper surface of the hot rolled steel sheet after chemical conversion treatment and baking the coating at 170 ° C for 20 minutes, the electro-deposition coating film is extended until it reaches the base metal with a sharp knife. A cut of 130 mm was made. Then, under the salt spray conditions shown in JIS Z2371, after continuously performing 5% salt spray at a temperature of 35 ° C. for 700 hours, a tape (Nichiban 405A-24 JIS Z 1522) having a width of 24 mm was cut on the cut portion. A maximum length of peeling of the coating film was measured when 130 mm long was stuck in parallel with the cut portion and peeled off. When the maximum coating peeling width was 4.0 mm or less, it was judged that the coating adhesion was excellent.
- an ultrahigh-strength steel sheet having a tensile strength of 980 MPa or more and even when using a zirconium-based chemical conversion treatment liquid, chemical conversion treatability equal to or higher than that when a zinc phosphate chemical conversion treatment liquid is used. It is possible to obtain a hot-rolled steel sheet having a coating film adhesion.
- the steel sheet according to the present invention is excellent in chemical conversion treatment property and coating film adhesion, and therefore is excellent in corrosion resistance after coating. Therefore, the present invention is suitable for automobile parts that require high strength and corrosion resistance after painting.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
本願は、2018年10月19日に、日本に出願された特願2018-197935号に基づき優先権を主張し、その内容をここに援用する。
(1)本発明の一態様に係る熱延鋼板は、板厚方向全体の平均値で表される化学組成が、質量%で、C:0.050%以上、0.200%以下、Si:0.05%以上、3.00%以下、Mn:1.00%以上、4.00%以下、Al:0.001%以上、2.000%以下、N:0.0005%以上、0.1000%以下、Ni:0.02%以上、2.00%以下、Nb:0%以上、0.300%以下、Ti:0%以上、0.300%以下、Cu:0%以上、2.00%以下、Mo:0%以上、1.000%以下、V:0%以上、0.300%以下、Cr:0%以上、2.00%以下、Mg:0%以上、0.0100%以下、Ca:0%以上、0.0100%以下、REM:0%以上、0.1000%以下、B:0%以上、0.0100%以下、Zr、Co、Zn、およびWのうち1種または2種以上:合計で0~1.000%、Sn:0~0.050%、P:0.100%以下、S:0.0300%以下、O:0.0100%以下を含有し、残部がFeおよび不純物からなり、かつ、下記式(i)を満たし、下記(ii)で示されるPCMが0.20以上であり、かつ、下記(iii)で示されるMsが400℃以上であり、厚さをtとしたとき、表面からt/4の位置における金属組織が、焼き戻しマルテンサイト及び下部ベイナイトのいずれか一方あるいは両方を、体積率の合計で90%以上含有し、引張強さが980MPa以上であり、前記表面における平均Ni濃度が7.0%以上である。
0.05%≦Si+Al≦2.50%・ ・ ・ 式(i)
PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Mo/15+Cr/20+V/10+5×B・ ・ ・ 式(ii)
Ms=561-474×C-33×Mn-17×Ni-17×Cr-21×Mo・ ・ ・ 式(iii)
上記式中に示す元素は前記熱延鋼板中に含有されている元素の質量%である。
(2)上記(1)に記載の熱延鋼板は、前記化学組成が、質量%で、Ni:0.02%以上、0.05%以下を含有してもよい。
(3)上記(1)または(2)に記載の熱延鋼板は、前記焼き戻しマルテンサイトおよび前記下部ベイナイト中に存在する鉄系炭化物の平均個数密度が1.0×106個/mm2以上であってもよい。
(4)上記(1)~(3)のいずれかに記載の熱延鋼板は、前記熱延鋼板に内部酸化層が存在し、前記内部酸化層の平均深さが前記熱延鋼板の前記表面から5.0μm以上、20.0μm以下であってもよい。
(5)上記(1)~(4)のいずれかに記載の熱延鋼板は、前記熱延鋼板の前記表面の算術平均粗さRaの標準偏差が10.0μm以上、50.0μm以下であってもよい。
(6)上記(1)~(5)のいずれかに記載の熱延鋼板は、前記化学組成が、質量%で、B:0.0001%以下0.0100%以下、Ti:0.015%以下0.300%以下、のうち1種または2種を含有してもよい。
(7)上記(1)~(6)のいずれかに記載の熱延鋼板は、前記化学組成が、質量%で、Nb:0.005%以上、0.300%以下、Cu:0.01%以上、2.00%以下、Mo:0.010%以上、1.000%以下、V :0.010%以上、0.300%以下、Cr:0.01%以上、2.00%以下、のうち1種または2種以上を含有してもよい。
(8)上記(1)~(7)のいずれかに記載の熱延鋼板は、前記化学組成が、質量%で、Mg:0.0005%以上、0.0100%以下、Ca:0.0005%以上、0.0100%以下、REM:0.0005%以上、0.1000%以下、のうち1種または2種以上を含有してもよい。
(9)本発明の別の態様に係る熱延鋼板の製造方法は、上記(1)に記載の化学組成を有する溶鋼を鋳造して鋼片を得る鋳造工程と、前記鋼片を、少なくとも予加熱ゾーン、加熱ゾーン及び均熱ゾーンを有する、蓄熱式バーナーを備えた加熱炉で加熱する加熱工程と、加熱された前記鋼片に、仕上げ圧延温度が850℃以上になるように熱間圧延を行って熱延鋼板を得る熱延工程と、前記仕上げ圧延温度から下記式(iv)で計算されるMs点温度までの平均冷却速度が50℃/秒以上となるように、前記Ms点温度以下の温度域まで前記熱延鋼板を一次冷却する一次冷却工程と、前記熱延鋼板を350℃未満の温度で巻き取る巻き取り工程と、を有し、前記加熱工程において、前記予加熱ゾーンでの空気比を1.1以上、1.9以下とする。
Ms=561-474×C-33×Mn-17×Ni-17×Cr-21×Mo ・ ・ ・ 式(iv)
(10)上記(9)に記載の熱延鋼板の製造方法は、前記一次冷却を前記Ms点温度未満、350℃以上の温度で停止し、前記一次冷却後の前記熱延鋼板を、最大冷却速度が50℃/秒未満となるように350℃未満まで冷却してもよい。
(11)上記(9)または(10)に記載の熱延鋼板の製造方法は、前記加熱工程において、前記加熱ゾーンでの空気比を0.9以上、1.3以下とする。
(12)上記(9)~(11)のいずれか1項に記載の熱延鋼板の製造方法は、前記加熱工程において、前記均熱ゾーンでの空気比を0.9以上、1.9以下としてもよい。
(13)上記(11)または(12)に記載の熱延鋼板の製造方法は、前記予加熱ゾーンでの空気比が、前記加熱ゾーンでの空気比よりも大きくてもよい。
(14)上記(9)~(13)のいずれかに記載の熱延鋼板の製造方法は、前記巻き取り工程後の前記熱延鋼板に、20~95℃の温度の1~10wt%の塩酸溶液を用いて30~60秒未満の酸洗時間の条件で酸洗する酸洗工程を備えてもよい。
鋼板は、通常、化成処理を行う前に酸洗される。しかしながら、通常の酸洗を行っても超高強度鋼板の表面には、Si、Al等の酸化物が形成されており、これがジルコニウム系化成処理における化成処理性や塗膜密着性を劣化させることが分かった。本発明者らがさらに検討を行った結果、化成処理性及び塗膜密着性の向上には、Si、Al等の酸化物の形成を抑制するとともに、ジルコニウム系化成結晶の析出核として鋼板の表面近傍にNi濃化部を有する層(Ni濃化層という場合がある)を形成することが、効果的であることを発見した。
また、本発明者らは、一般的な熱延鋼板を製造する工程において安価でかつ大量生産を前提とした場合、微量なNi含有と、熱間圧延に先立つ加熱工程での加熱条件とを限定することとによって、酸洗後(化成処理前)の鋼板の表面近傍にNiの濃化層を形成することが可能であることを見出した。
[鋼板の成分]
まず、本実施形態に係る熱延鋼板の化学成分の限定理由を説明する。特に断りのない限り、成分の含有量に関する%は質量%を示す。
また、本明細書中の各式において用いる元素名の表示は、当該元素の鋼板中の含有量(質量%)を示すものとし、含有していない場合は0を代入するものとする。
Cは、本実施形態に係る熱延鋼板において重要な元素のひとつである。Cは、鋼板の強度上昇や焼入れ性の向上に寄与する元素である。C含有量が、0.050%未満では、低温変態生成相の組織強化による強度向上の効果を得ることが出来ない。そのため、C含有量は、0.050%以上とする。好ましくは0.070%以上である。
一方、Cは、ベイナイトやマルテンサイトが焼き戻される際に析出するセメンタイト(Fe3C)等の鉄系炭化物を生成させる。C含有量が0.200%超であると、打ち抜き加工時の二次せん断面の割れ起点となるセメンタイト(Fe3C)等の鉄系炭化物が増加し、穴広げ性等の成形性が劣化する。このため、C含有量は、0.200%以下とする。好ましくは、0.180%以下である。
Siは、本実施形態に係る熱延鋼板において重要な元素のひとつである。Siは、焼き戻し軟化抵抗を向上させることで母材の強度上昇に寄与する元素であり、溶鋼の脱酸材としても有効な元素である。また、Siは、ウロコ、紡錘スケールといったスケール系欠陥の発生の抑制にも有効な元素である。これらの効果を得るため、Si含有量は0.05%以上とする。また、Si含有量の増加に伴い、材料組織中におけるセメンタイト等の鉄系炭化物の析出が抑制され、強度と穴広げ性とが向上する。そのため、Si含有量を0.10%以上とすることが好ましい。
一方、Si含有量が3.00%を超えても強度上昇に寄与する効果が飽和する。そのため、Si含有量は3.00%以下とする。好ましくは2.50%以下である。
Mnは、固溶強化に寄与する元素である。また、Mnは、焼入れ性を高める元素であり、鋼板組織を焼き戻しマルテンサイトあるいは下部ベイナイト主相とするために含有させる。Mn含有量が1.00%未満では、冷却中のフェライト変態やベイナイト変態の抑制効果が十分に発揮されず、鋼板組織を下部ベイナイト及び/またはマルテンサイト主相にできない。そのため、Mn含有量を1.00%以上とする。
一方、Mn含有量が4.00%を超えてもこの効果が飽和する。そのため、Mn含有量を4.00%以下とする。また、Mn含有量が3.00%超となると鋳造時にスラブ割れが発生しやすくなる。そのため、好ましくは、Mn含有量は3.00%以下である。
Alは、本実施形態に係る熱延鋼板において重要な元素のひとつである。Alは、ベイナイトやマルテンサイトが焼き戻される際に粗大なセメンタイトの形成を抑制し、穴広げ性を向上させる元素である。また、脱酸材としても活用可能である。この効果を得るため、Al含有量を0.001%以上とする。
一方で、Alの過剰な含有はAl系の粗大介在物の個数を増大させ、穴拡げ性の劣化や表面疵の原因になる。このことから、Al含有量を2.000%以下とする。また、Al含有量が多いと、鋳造時にタンディッシュノズルが閉塞し易くなるので、Al含有量は、好ましくは、1.500%以下である。
N含有が多いと、鋼中に固溶Nが残存して延性が低下する。また、Tiが含有されている場合には、粗大なTiNが析出して穴広げ性が低下する。そのため、N含有量は少ないほど好ましい。N含有量が0.1000%を超えると、特に延性、穴広げ性の低下が顕著になるので、N含有量を0.1000%以下とする。好ましくは、0.0100%以下である。
一方、N含有量を0.0005%未満とすることは経済的に望ましくない。そのため、N含有量を0.0005%以上とする。
Niは、本実施形態に係る熱延鋼板において重要な元素のひとつである。Niは、主に熱間圧延工程の加熱工程において、特定の条件下で鋼板表面とスケールとの界面近傍の鋼板表面近傍に濃化する。このNiが、鋼板表面にジルコニウム系化成処理を行う際に、ジルコニウム系化成処理皮膜の析出核となり、スケがなく密着性のよい皮膜の形成を促進する。Ni含有量が0.02%未満ではその効果がないので、Ni含有量を0.02%以上とする。上記密着性向上効果は、ジルコニウム系化成処理皮膜だけでなく、従来のリン酸亜鉛化成処理皮膜に対しても同様に得られる。また、溶融亜鉛めっき処理による溶融亜鉛めっき層や、さらには、めっき後合金化処理された合金化亜鉛めっき層の母材との密着性も向上させる。
さらに、Niは、焼き入れ性を高める元素として冷却時のフェライト変態を抑制し、鋼板組織を焼き戻しマルテンサイトあるいは下部ベイナイト組織とするために有効な元素である。
一方、Ni含有量が2.00%を超えてもその効果が飽和するだけでなく、合金コストが上昇する。従って、Ni含有量を、2.00%以下とする。好ましくは0.50%以下、より好ましくは0.05%以下である。
Nbは、炭窒化物を形成して、あるいは、固溶Nbが熱間圧延時の粒成長を遅延させることで、熱延鋼板の粒径の微細化を通じて低温靭性の向上に寄与する元素である。この効果を得る場合、Nb含有量は0.005%以上とすることが好ましい。
一方、Nb含有量が0.300%を超えても上記効果は飽和して経済性が低下する。そのため、必要に応じて、Nbを含有させる場合でも、Nb含有量は0.300%以下とする。
Tiは、炭窒化物を形成して、あるいは、固溶Tiが熱間圧延時の粒成長を遅延させることで、熱延鋼板の粒径の微細化を通じて、低温靭性の向上に寄与する元素である。この効果を得る場合、Ti含有量を0.005%以上とすることが好ましい。また、Bを含有させてその焼き入れ性向上効果を発現させるためには、BNとして析出するBを極力少なくする必要がある。Ti含有量を0.015%以上とすればBNよりも高温で安定なTiNが析出して、十分な固溶Bによる焼き入れ性の向上が期待できる。そのため、同時にBを含有させる場合には、Ti含有量を0.015%以上とすることが好ましい。
一方、Ti含有量が0.300%を超えても上記効果は飽和して経済性が低下する。そのため、必要に応じてTiを含有させる場合でも、Ti含有量は0.300%以下とする。
Mo:0%以上、1.000%以下
V:0%以上、0.300%以下
Cr:0%以上、2.00%以下
Cu、Mo、V、Crは、焼き入れ性を高める元素として、冷却時のフェライト変態を抑制し、鋼板組織を焼き戻しマルテンサイトあるいは下部ベイナイト組織とするために、いずれか一種又は二種以上を含有させてもよい。また、これらの元素は、析出強化もしくは固溶強化により熱延鋼板の強度を向上させる効果を有する元素であり、この効果を得るために一種又は二種以上を含有させてもよい。上記効果を得る場合、Mo、Vのそれぞれの含有量を0.010%以上、Cu、Crの含有量を0.01%以上とすることが好ましい。
一方、Cu含有量が2.00%超、Mo含有量が1.000%超、V含有量が0.300%超、Cr含有量が2.00%超であっても上記効果は飽和する上、経済性が低下する。従って、必要に応じて、Cu、Mo、V、Crを含有させる場合でも、Cu含有量は2.00%以下、Mo含有量は1.000%以下、V含有量は0.300%以下、Cr含有量は2.00%以下とする。
Ca:0%以上、0.0100%以下
REM:0%以上、0.1000%以下
Mg、CaおよびREM(希土類元素)は、破壊の起点となり鋼板の加工性を劣化させる原因となる非金属介在物の形態を制御し、鋼板の加工性を向上させる元素である。そのため、これらのいずれか一種又は二種以上を含有させてもよい。この効果を得る場合、Ca、REMおよびMgの含有量は、それぞれ0.0005%以上とすることが好ましい。
一方、Mgの含有量を0.0100%超、Caの含有量を0.0100%超、REMの含有量を0.1000%超としても上記効果が飽和する上、経済性が低下する。従って、含有させる場合でも、Mg含有量は0.0100%以下、Ca含有量は0.0100%以下、REM含有量は、0.1000%以下であることが望ましい。
ここで、REMは、Sc、Yおよびランタノイドからなる合計17元素を指し、上記REMの含有量は、これらの元素の合計含有量を指す。ランタノイドの場合、工業的にはミッシュメタルの形で添加される。
Bは、焼き入れ性を高める元素として、冷却時のフェライト変態を遅延させることで鋼板組織を、焼き戻しマルテンサイトあるいは下部ベイナイト組織とするために有効な元素であり、この効果を得るために含有させても良い。この効果を得る場合、B含有量を0.0001%以上とすることが好ましい。より好ましくは0.0005%以上、さらに好ましくは0.0007%以上である。
一方では、B含有量が0.0100%を超えると、その効果が飽和するばかりでなく、経済性が低下する。そのため、含有させる場合でも、B含有量を0.0100%以下とする。好ましくは0.0050%以下、より好ましくは0.0030%以下である。
Sn:0.050%以下
その他の元素について、Zr、Co、Zn、Wを合計で1.000%以下含有しても本実施形態に係る熱延鋼板の効果は損なわれない。そのため、これらの元素を合計で1.0000%以下含有させてもよい。
また、Snを少量含有させても本実施形態に係る熱延鋼板の効果は損なわれない。しかしながら、Sn含有量が0.050%を超えると熱間圧延時に疵が発生する恐れがあるので、Sn含有量を0.050%以下とすることが望ましい。
Pは、溶銑に含まれる不純物であり、鋼板の粒界に偏析し、含有量の増加に伴い低温靭性を低下させる元素である。このため、P含有量は、低いほど望ましい。P含有量が0.100%超であると加工性や溶接性への悪影響が著しいので、P含有量を0.100%以下とする。特に、溶接性を考慮する場合、P含有量は、0.030%以下であることが望ましい。
一方、Pは少ない方が好ましいが、必要以上に低減することは製鋼工程に多大な負荷を掛ける。そのため、P含有量を0.001%以上としても良い。
Sは、溶銑に含まれている不純物であり、含有量が多すぎると、熱間圧延時の割れを引き起こす元素である。また、Sは、穴広げ性を劣化させるMnSなどの介在物を生成させる元素である。このため、S含有量は、極力低減させるべきである。しかしながら、S含有量が0.0300%以下ならば許容できる範囲であるので、S含有量を0.0300%以下とする。ただし、穴広げ性の観点からはS含有量を、0.0100%以下とすることが好ましく、0.0050%以下とすることがより好ましい。
一方、S含有量は少ない方が好ましいが、必要以上に低減することは製鋼工程に多大な負荷がかかる。そのため、S含有量を0.0001%以上としてもよい。
Oは、含有量が多すぎると鋼中で破壊の起点となる粗大な酸化物を形成し、脆性破壊や水素誘起割れを引き起こす元素である。そのため、O含有量を0.0100%以下とする。現地溶接性の観点からは、O含有量を0.0030%以下とすることが好ましい。
一方、Oは、溶鋼の脱酸時に微細な酸化物を多数分散させる元素である。そのため、O含有量を0.0005%以上としても良い。
本実施形態に係る熱延鋼板では、各元素の含有量を上記の範囲に制御した上で、Si+Alが下記式(1)を満足するように制御する必要がある。
0.05%≦Si+Al≦2.50%・ ・ ・ 式(1)
Si+Alが0.05%未満であると、ウロコ、紡錘スケールといったスケール系欠陥が発生する。
一方、Si+Alが2.50%超であると、Niを含有させて表層に十分にNiを濃化させても、化成処理結晶の核となる効果が得られず、化成処理性、塗膜密着性を改善する効果が得られなくなる。
Ms≧400(℃)
また、本実施形態に係る熱延鋼板では、各元素の含有量を上記の範囲に制御した上で、下記式(2)で求められるPCMを0.20以上にする必要がある。
PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Mo/15+Cr/20+V/10+5×B・ ・ ・ 式(2)
PCMが0.20未満であると、焼入れ性が不足し、主相を焼き戻しマルテンサイト及び/または下部ベイナイトとするミクロ組織が得られなくなる。
また、本実施形態に係る熱延鋼板では、下記式(3)で表されるMsを400(℃)以上にする必要がある。
Msが400(℃)未満であると、冷却中のオートテンパー(自動焼き戻し)が不十分となり伸びフランジ性が劣化する。
Ms=561-474×C-33×Mn-17×Ni-17×Cr-21×Mo ・ ・ ・ 式(3)
本実施形態に係る熱延鋼板のミクロ組織(金属組織)について説明する。特に断りのない限り、ミクロ組織に関する%は体積率での%を示す。
本実施形態に係る熱延鋼板では、主相を焼き戻しマルテンサイト及び/または下部ベイナイトとし、その合計の体積率を90%以上とする。
焼き戻しマルテンサイトは、Ms点(マルテンサイト変態開始温度)以下の冷却時の冷却速度を低下させた場合や、一旦、マルテンサイト組織とした後、100~600℃で焼き戻すことで、その組織を得ることが出来る。本実施形態に係る熱延鋼板では400℃未満の冷却制御にて析出を制御している。
残留オーステナイトは、加熱時に生成したオーステナイトが常温まで変態せずに残存した組織であるが、プレス成形時に鋼材が塑性変形する、あるいは、衝突時に自動車部材が塑性変形することで、フレッシュマルテンサイトに変態する。そのため、上記で述べたフレッシュマルテンサイトと同様の悪影響を及ぼす。このことから、体積率を10%以下に制限する必要がある。また、残留オーステナイトは結晶構造がFCCであり他のミクロ組織がBCCであり互いに異なるためにX線回折法で容易にその体積率を求めることが可能である。
パーライトはフェライト同士の間にセメンタイトが層状に析出したラメラ状の金属組織であり、フェライトと同様に、強度低下や低温靭性の劣化の原因となるので、その体積率を10%以下に制限する必要がある。
また、FESEM-EBSP法を用いた結晶方位解析や、マイクロビッカース硬度測定等の微小領域の硬度測定からも、組織の判別は可能である。
例えば、上述したように、焼き戻しマルテンサイト、上部ベイナイトおよび下部ベイナイトは、炭化物の形成サイトや結晶方位関係(伸長方向)が異なることから、FE-SEMを用いてラス状結晶粒内部の鉄系炭化物を観察し、その伸長方向を調べることにより、下部ベイナイトと焼き戻しマルテンサイトを容易に区別することができる。ただし、本実施形態に係る熱延鋼板では、焼き戻しマルテンサイトと下部ベイナイトとの合計の体積率を制御すればよいので、これらの組織を必ずしも区別しなくてもよい。
上述の通り、ベイナイトはラス状の結晶粒の集合である。ベイナイトには、ラス間に炭化物を含む、ラスの集合体である上部ベイナイトと、内部に長径5nm以上の鉄系炭化物を含む下部ベイナイトとがある。下部ベイナイトに析出する鉄系炭化物は、単一のバリアント、即ち、同一方向に伸長した鉄系炭化物群に属する。焼き戻しマルテンサイトは、ラス状の結晶粒の集合であり、内部に長径5nm以上の鉄系炭化物を含む。焼き戻しマルテンサイト内の鉄系炭化物は、複数のバリアント、即ち、異なる方向に伸長した複数の鉄系炭化物群に属する。また、本実施形態において、焼き戻しマルテンサイトではないマルテンサイトは直径5nm以上の炭化物がラス間とラス内に析出していない金属組織と定義する。このことから、鋼板表面から板厚の1/4深さ位置において、走査型電子顕微鏡を用いて倍率1000~100000倍で、40μm×30μmの領域を少なくとも3領域観察し、上述した特徴を含むかどうかに基づいて、ベイナイトにおける下部ベイナイト及び上部ベイナイトの割合、マルテンサイトにおける焼戻しマルテンサイト及びフレッシュマルテンサイトの割合を求め、各相の面積率を算出する。面積率は体積率と等しいとして、これを体積率とする。
Vγ=(2/3){100/(0.7×α(211)/γ(220)+1)}+(1/3){100/(0.78×α(211)/γ(311)+1)}
ただし、α(211)、γ(220)およびγ(311)は、それぞれフェライト(α)、オーステナイト(γ)のX線反射面強度である。
焼き入れたままのマルテンサイト(フレッシュマルテンサイト)は、強度は優れるものの靭性に乏しい。これに対し、セメンタイトなどの鉄系炭化物が析出した焼き戻しマルテンサイトでは優れた強度と低温靭性とのバランスが得られる。
本発明者らが、低温靭性と鉄系炭化物の個数密度との関係を調査したところ、焼き戻しマルテンサイト及び下部ベイナイト中の炭化物の個数密度を1.0×106(個/mm2)以上とすることで、より優れた低温靭性が確保可能なことが明らかとなった。このことから、焼き戻しマルテンサイト及び下部ベイナイトに含まれる鉄系炭化物の平均個数密度を、1.0×106(個/mm2)以上とすることが好ましい。より好ましくは、5.0×106(個/mm2)以上であり、更に好ましくは、1.0×107(個/mm2)以上である。
後述する方法で得られる本実施形態に係る熱延鋼板に析出した炭化物のサイズは、300nm以下と小さく、ほとんどがマルテンサイトやベイナイトのラス内に析出する。そのため、低温靭性を劣化させないものと推定される。
酸洗後(化成処理前)の超高強度鋼板の表面においても優れたジルコニウム系化成処理皮膜の化成処理性及び塗膜密着性を得るためには、酸洗板表面のSi、Al等の酸化物が無害なレベルまで低減されることが好ましい。Si、Al等の酸化物の制御だけで、上記効果を得るためには、熱間圧延の加熱工程においてスラブ表面の酸化を極力抑えるために、加熱炉の予加熱ゾーンにおいてAr、He、N2等の不活性ガスを使用した実質的な無酸化雰囲気とするか、もしくは空気比を0.9未満の不完全燃焼とする必要がある。しかしながら、一般的な熱延鋼板を製造する工程において安価でかつ大量生産を前提とした場合においては、熱間圧延の加熱工程において不活性ガスを使用した実質的な無酸化雰囲気とすることは不可能である。また、Si、Al等の酸化物の制御のために空気比を0.9未満としても、不完全燃焼による熱損失が著しく増大して、加熱炉そのものの熱効率が低下して生産コストが増加する等の問題が生じる。
本発明者らは、安価でかつ大量生産が可能な製造工程の適用を前提として、上述した化学成分、組織、及び980MPa以上の引張強さ、及び靭性を有する超高強度鋼板において、ジルコニウム系化成処理液を用いた化成処理後の塗膜密着性について検討した。通常、熱延鋼板は、酸洗後に化成処理が行われるので、本実施形態においても、酸洗後の鋼板について評価した。酸洗は、20~95℃の温度の1~10wt%(重量%)の塩酸溶液を用いて30~60秒未満の酸洗時間の条件で行った。表面にスケールが形成されていない場合には、酸洗を行わずに評価してもよい。
検討の結果、FE-EPMAを用いた測定において、表面における平均Ni濃度が質量%で7.0%以上であれば、酸洗板表面にSi、Al等の酸化物が残留していても、すべてのサンプルで後述する方法で評価する塗装剥離幅が、基準である4.0mm以内となり、塗膜密着性に優れることが分かった。また、このような場合には、化成処理皮膜において、スケが観察されなかった。一方、表面における平均Ni濃度が7.0%未満のすべてのサンプルで塗装剥離幅が4.0mm超であった。
これは、図2に示すように、鋼板の表面にNi濃化部3が形成されることで、表面に局部的に濃化したNiと地鉄1との間に電位差が生じ、また、このNiがジルコニウム系化成結晶4の析出核となるため、ジルコニウム系化成結晶4の生成が促進されるためであると考えられる。なお、地鉄1とは、スケール2を除いた鋼板部分を指す。
図1に表面のEPMA測定結果の例を示す。
Niは、主にスケールと地鉄との界面の地鉄側に濃化する。また、化成処理を行う前には通常酸洗が行われる。そのため、対象とする鋼板は、表面にスケールが形成されている場合には、化成処理に供する場合と同様の酸洗を行った後に測定する。
表面にNi濃化部があっても、熱延鋼板表面においてSi、Al等の酸化物の被覆割合が大きすぎるとジルコニウム系化成処理皮膜が付着しない「スケ」が発生しやすくなる。これを抑制するためにはSi、Al等の酸化を地鉄よりも外部に酸化物を形成する外部酸化ではなく、内部に酸化物を形成する内部酸化にすることが望ましい。
本発明者らは、表面における平均Ni濃度が7.0%以上であるサンプルのみについて、断面の光学顕微鏡観察を行い、塗装剥離幅と内部酸化層の鋼板表面からの平均深さ(内部酸化層の下端の位置の平均)の関係を調べた。その結果、内部酸化層の平均深さが5.0μm以上のすべてのサンプルが、塗装剥離幅が3.5mm以内であったのに対して、内部酸化層の平均深さが5.0μm未満のすべてのサンプルで塗装剥離幅が3.5mm超4.0mm以下であった。
そのため、より優れた塗膜密着性を得る場合、内部酸化層の熱延鋼板の表面からの平均深さを5.0μm以上、20.0μm以下とすることが好ましい。
このSi、Al等の内部酸化層の平均深さが5.0μm未満では、内部酸化が不十分であり、ジルコニウム系化成処理皮膜が付着しない「スケ」を抑制する効果が小さい。一方、平均深さが20.0μm超ではジルコニウム系化成処理皮膜が付着しない「スケ」を抑制する効果が飽和するだけでなく、内部酸化と同時に起こる脱炭層の生成により表層の硬度が低下して疲労耐久性が劣化する懸念がある。
ジルコニウム系化成処理皮膜では、膜厚が数μmである従来のリン酸亜鉛皮膜と比較して膜厚が非常に薄く、数十nm程度である。この膜厚の違いはジルコニウム系化成処理結晶が非常に微細であることに起因している。化成処理結晶が微細であると、その化成処理表面が非常に平滑であるため、リン酸亜鉛処理皮膜に見られるようなアンカー効果に起因した、強固な塗装膜との密着性を得ることは難しい。
しかしながら、本発明者らの検討の結果、鋼板表面に凹凸を形成すれば、化成処理皮膜と塗装膜との密着性を高めることができることが分かった。
本発明者らは、このような知見に基づいて、平均Ni濃度が7.0%以上かつ内部酸化層の平均深さが5.0μm以上のサンプルについて、ジルコニウム系化成処理前の酸洗板の表面の算術平均粗さRaの標準偏差と塗膜密着性との関係を調べた。その結果、酸洗板の表面の算術平均粗さRaの標準偏差が10.0μm以上、50.0μm以下であるすべてのサンプルが、塗装剥離幅が3.0mm以内であったのに対して、酸洗板の表面の算術平均粗さRaの標準偏差が10.0μm未満もしくは、50.0μm超のすべてのサンプルで塗装剥離幅が3.0mm超、3.5mm以内であった。
そのため、酸洗後の鋼板表面の算術平均粗さRaの標準偏差が10.0μm以上、50.0μm以下であることが好ましい。
鋼板表面の算術平均粗さRaの標準偏差が10.0μm未満では十分なアンカー効果が得られない。一方、酸洗後の鋼板表面の算術平均粗さRaの標準偏差が50.0μm超ではアンカー効果が飽和するだけでなく、酸洗後の鋼板表面の凹凸の谷や、山部の側面にジルコニウム系化成処理結晶が付着しにくく「スケ」が発生しやすくなる。
鋼板の表面の粗さは酸洗条件によって大きく変化するが、本実施形態に係る熱延鋼板では、20~95℃の温度の1~10wt%の塩酸溶液を用いて30~60秒未満の酸洗時間の条件で酸洗した後の、熱延鋼板の表面の算術平均粗さRaの標準偏差が10.0μm以上、50.0μm以下であることが好ましい。
本実施形態に係る熱延鋼板は、製造方法によらず、上述の特徴を有していれば効果は得られる。しかしながら、以下に示す製造方法によれば、安定して製造できるので好ましい。
熱間圧延に先行する、鋳造などのスラブ製造工程は特に限定するものではない。すなわち、高炉や電炉等による溶製に引き続き各種の2次製錬を行って上述した成分となるように調整し、次いで、通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で鋳造すればよい。
連続鋳造の場合には一度低温まで冷却したのち、再度加熱してから熱間圧延に供しても良いし、インゴットを室温まで冷却することなく熱間圧延に供して良いし、あるいは、鋳造スラブを連続的に熱間圧延に供しても良い。原料にはスクラップを使用しても構わない。
[熱間圧延工程]
本実施形態に係る熱延鋼板の製造に際しては、所定の化学成分を有する鋳造スラブ(鋼片)を、予加熱ゾーン、加熱ゾーン、均熱ゾーンの3つのゾーンを有する加熱炉を用いて1100℃以上に加熱して、熱間圧延を行い、850℃以上で熱間圧延を完了することが好ましい。
熱間圧延のスラブ加熱温度は、1100℃以上にする。スラブ加熱温度が1100℃未満であると、続く熱間圧延において圧延反力が増加して、十分な熱間圧延が行えず、目的とする製品厚が得られないばかりか、板形状が悪化することにより巻き取ることができなくなる恐れがある。また、オーステナイト粒径が小さくなり、焼入れ性が低下して目的とするミクロ組織が得られなくなる恐れがある。Ti等の鋼中で炭窒化物を形成する元素を含む場合は、そのオーステナイトでの溶体化温度以上に加熱することが好ましい。
一方、スラブ加熱温度の上限は特に定めることなく、効果は得られるが、加熱温度を過度に高温にすることは、経済上好ましくない。このことから、スラブ加熱温度の上限は1300℃未満とすることが望ましい。
仕上げ圧延温度は、850℃以上とすることが好ましい。本実施形態に係る熱延鋼板は、850℃未満の温度域での仕上げ圧延では、焼入れ性が低下して目的とする焼き戻しマルテンサイト及び下部ベイナイトのいずれか一方あるいは両方を、体積率の合計で90%以上含有するミクロ組織が得られなくなる。そのため、仕上げ圧延温度は850℃以上である。
<予加熱ゾーンでの空気比:1.1以上、1.9以下>
予加熱ゾーンの空気比を1.1以上とすることで、熱延鋼板表面にNiを濃化させて、酸洗後の熱延鋼板表面における平均Ni濃度を7.0%以上とすることができる。
加熱炉内のスラブ表面のスケール成長挙動は、生成スケール厚みで評価するとその空気比(酸素分圧)により、スラブ表面における雰囲気からの酸素供給律速である直線則と、スケール中の鉄イオンの拡散律速である放物線則とに分類される。加熱炉内での限られた材炉時間においてスラブのスケールの成長をある程度促進して表層に十分なNiの濃化層を形成するためには、スケール厚みの成長が放物線則に従う必要がある。
予加熱ゾーンの空気比が1.1未満であるとスケールの成長が放物線則とならず、加熱炉内での限られた材炉時間においてスラブの表層に十分なNiの濃化層を形成することができない。この場合、酸洗後の熱延鋼板表面における平均Ni濃度が7.0%以上とならず、その結果、良好な塗膜密着性が得られない。
加熱炉内のスケールの生成量は加熱炉挿入直後の予加熱ゾーンの雰囲気に支配され、その後に続くゾーンの雰囲気が変化してもそのスケール厚みはほとんど影響を受けない。従って、予加熱ゾーンでのスケール成長挙動の制御が非常に重要である。
内部酸化層の形成には加熱炉工程における加熱ゾーンでの空気比の制御が必要であり、加熱ゾーンでの空気比を0.9以上、1.3以下とすることで、内部酸化層の平均深さを5.0~20.0μmにすることができる。
加熱ゾーンでの空気比が0.9未満であると内部酸化層の平均深さが5.0μm以上とならない。一方、加熱ゾーンでの空気比が1.3超であると、内部酸化層の平均深さが20.0μm超となるばかりでなく、脱炭層の生成により表層の硬度が低下して疲労耐久性が劣化することが懸念される。
酸洗後の鋼板表面の凹凸を制御するためには、加熱炉工程の抽出直前のゾーンである均熱ゾーンにおける空気比を制御することが有効である。予加熱ゾーンではFeよりも酸化され難いNiがスケールと地鉄の界面の地鉄側に濃化する。このNi濃化部を有するNi濃化層により、表層では酸化が抑制されるようになるが、続く加熱ゾーンでは外部酸化を抑制し、内部酸化が促進される。その後、均熱ゾーンで空気比を制御することで、例えば図3に示すように、拡散が容易な結晶粒界5等にスケール2が侵食したり、Niの濃化度の違い等によって生じる地鉄1表面のNi濃度の違いによって、スケール2と地鉄1との界面の酸化のされ方が不均一となったりすることで、スケール2と地鉄1との界面の凹凸が大きくなる。また、図3には図示しないが、内部酸化物6の周囲のNi濃化部3がスケール2による粒界の侵食を抑制することでも凹凸が生じる。この鋼板を酸洗するとスケール2が除去され、熱延鋼板の表面が所定の粗さを有することになる。
均熱ゾーンでの空気比を0.9以上、1.9以下とすることで、熱間圧延後、例えば20~95℃の温度の1~10wt%の塩酸溶液を用いて30~60秒未満の酸洗時間の条件で酸洗した後の、熱延鋼板の表面の算術平均粗さRaの標準偏差を10.0μm以上、50.0μm以下とすることができる。
均熱ゾーンの空気比が0.9未満であると、拡散が容易な結晶粒界に選択的に酸化物の核を生成させるだけの酸素ポテンシャルに達しない。そのため、酸洗後の鋼板表面の算術平均粗さRaの標準偏差が10.0μm以上とならない。一方、均熱ゾーンの空気比が1.9超では、選択的に酸化された結晶粒界の板厚方向の深さが深くなりすぎて酸洗後の鋼板表面の算術平均粗さRaの標準偏差が50.0μm超となる。
予加熱ゾーンでの空気比の制御は、酸洗後の熱延鋼板表面のNi濃度を制御するために重要である。一方、加熱ゾーンでの空気比の制御は、内部酸化層の形成度合いを制御するために重要である。そのため、予加熱ゾーンにおいて限られた材炉時間においてスラブのスケールの成長をある程度促進して表層に十分なNiの濃化層を形成する必要がある。そのためには、スケール厚みの成長が放物線則に従う比較的高い空気比が必要である。一方、内部酸化層の平均深さを好ましい範囲に制御するためには、加熱ゾーンにおいて比較的低い空気比に抑え、急激な内部酸化層の成長を押さえる必要がある。また、加熱ゾーンにおいて空気比が高いと脱炭層が生成・成長して表層の硬度が低下して疲労耐久性が劣化することが懸念される。従って、予加熱ゾーンの空気比は加熱ゾーンの空気比よりも高くすることが好ましい。
仕上げ圧延温度からMs点温度の平均冷却速度:50℃/秒以上、Ms点温度未満での最大冷却速度:50℃/秒未満
冷却工程においては、仕上げ圧延温度からMs点温度までの平均冷却速度が50℃/秒以上となるように、Ms点温度以下の温度域まで冷却する(一次冷却)。Ms点温度までの平均冷却速度が50℃/秒未満では、冷却途中にフェライトや上部ベイナイトが形成してしまい、主相である焼き戻しマルテンサイトや下部ベイナイトの体積率を合計で90%以上とすることが難しい。ただし、冷却過程でフェライトが形成しないのであれば、途中の温度域で空冷を行っても良い。冷却工程において空冷を行う場合は、その温度域を下部ベイナイト生成温度未満とすることが望ましい。空冷を実施する温度が下部ベイナイト生成温度以上であると上部ベイナイトが生成してしまう。また、空冷温度域までの冷却速度を、50℃/秒以上とする事が好ましい。これは上部ベイナイトの形成を避けるためである。Bs点温度~下部ベイナイトの生成温度間の冷却速度が50℃/秒未満であると、上部ベイナイトが形成されるとともに、ベイナイトのラス間にフレッシュマルテンサイトが形成してしまうか、あるいは、残留オーステナイト(加工時に転位密度の高いマルテンサイトになる)が存在し、低温靭性が低下することがある。Bs点温度は成分によって定められる上部ベイナイトの生成開始温度であり、便宜的には550℃である。また、下部ベイナイトの生成温度も成分によって定められるが、便宜的には400℃である。すなわち、仕上げ圧延温度から400℃間では、特に550~400℃間の冷却速度を50℃/秒以上とし、仕上げ圧延温度から400℃間の平均冷却速度を50℃/秒以上とすることが好ましい。
ここで、Ms点温度未満~350℃未満の温度域における最大冷却速度50℃/秒未満の冷却は、例えば空冷により実現できる。また、冷却のみを意味するのではなく、等温保持等も含む。さらには、この温度域での冷却速度制御は、鋼板組織中の鉄系炭化物の個数密度の制御が目的であるので、一旦、以下の式(5)によって求められるマルテンサイト変態終了温度(Mf点)以下に冷却した後、温度を上げて、再加熱してもよい。
Mf=0.285×Ms-460×C+232・・・(5)
巻き取り温度:350℃未満
一般的に、マルテンサイトを得るためにはフェライト変態を抑制する必要があり、50℃/秒以上での冷却が必要であるとされている。加えて、低温では膜沸騰領域と呼ばれる熱伝達係数が比較的低く冷え難い温度域から、核沸騰温度域と呼ばれる熱伝達係数が大きく、冷えやすい温度域に遷移する。400℃未満の温度域を冷却停止温度とする場合、巻き取り温度が変動し易く、それに伴い材質も変動する。このことから、通常の巻き取り温度は、400℃超、あるいは、室温巻き取りのいずれかにする場合が多かった。
この結果、400℃未満での巻き取りや冷却速度低下により、980MPa以上の引張強さと優れた低温靭性とを同時に確保できることが、従来では見出され難かったものと推定される。
本実施形態に係る熱延鋼板では、上述のように冷却を行うことで、350℃未満で巻き取りを行っても980MPa以上の引張強さと優れた低温靭性とを同時に確保できる。
巻き取り後は必要に応じてスキンパス圧延による形状矯正や400℃未満のひずみ取り熱処理を施しても構わない。
[スキンパス工程]
鋼板形状の矯正や可動転位導入により延性の向上を図ることを目的として、圧下率0.1%以上2.0%以下のスキンパス圧延を施してもよい。また、得られた熱延鋼板の表面に付着しているスケールの除去を目的として、必要に応じて得られた熱延鋼板に対して酸洗してもよい。酸洗する場合、20~95℃の温度の1~10wt%の塩酸溶液を用いて30~60秒未満の酸洗時間の条件で酸洗することが好ましい。
更に、酸洗した後に、得られた熱延鋼板に対してインライン又はオフラインで圧下率10%以下のスキンパス又は冷間圧延を施しても構わない。
本実施形態において、低温での靭性に優れた鋼板とは、JIS Z 2242:2005に準拠して行うシャルピー試験の破面遷移温度(vTrs)が-40℃以下の鋼板をさす。対象となる鋼板が主に自動車用途に用いられる場合、板厚0.8~8.0mm前後であるが、3.0mm前後の板厚となる場合が多い。そこで、本実施形態では、熱延鋼板表面を研削し、鋼板を2.5mmサブサイズ試験片に加工して行う。
まず、試料をナイタールエッチングし、エッチング後に光学顕微鏡を用いて300μm×300μmの視野で得られた組織写真に対し、画像解析を行うことによって、フェライト及びパーライトそれぞれの面積率、およびベイナイト、マルテンサイト、残留オーステナイトの合計面積率を得た。次に、ナイタールエッチングした部分をレペラエッチングし、光学顕微鏡を用いて300μm×300μmの視野で得られた組織写真を、画像解析を行うことによって、残留オーステナイトとマルテンサイトとの合計面積率を算出した。さらに圧延面法線方向から板厚の1/4深さまで面削した試料を用い、X線回折測定により残留オーステナイト面積率を求め、フェライト、ベイナイト、マルテンサイト、残留オーステナイト、パーライトそれぞれの面積率を得た。その後、鋼板表面から板厚の1/4深さ位置において、走査型電子顕微鏡を用いて倍率1000~100000倍で、40μm×30μmの領域を少なくとも3領域観察し、上述した特徴を含むかどうかに基づいて、ベイナイトにおける下部ベイナイト及び上部ベイナイトの割合、マルテンサイトにおける焼戻しマルテンサイト及びフレッシュマルテンサイトの割合を求めた。これらから、各相の面積率を算出し、これを体積率とした。
対象とする熱延鋼板を、JXA-8530Fフィールドエミッション電子プローブマイクロアナライザ(FE-EPMA)を用いて、鋼板の表面に垂直な方向から、測定面積900μm2以上に対してNi濃度の分析を行い、測定範囲におけるNi濃度を平均した。この際、測定条件は、加速電圧:15kV、照射電流:6×10-8A、照射時間:30ms、ビーム径:1μmとした。
鋼板の圧延方向に平行な断面を観察面として試料を採取し、観察面を研磨し、ナイタールエッチングし、鋼板表面から板厚の1/4深さ位置を中心とする板厚1/8~3/8の範囲を電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)を用いて倍率200000倍で10視野、観察を行い、鉄系炭化物の個数密度を測定した。
酸洗板の板幅方向1/4または3/4の位置において圧延方向および板厚方向に平行な面を埋め込み用サンプルとして切り出し、樹脂試料への埋め込み後に鏡面研磨を施し、エッチングせずに光学顕微鏡で195μm×240μmの視野(倍率400倍に相当)にて12視野観察した。板厚方向に直線を引いた場合に鋼板表面と交わる位置を表面とし、その表面を基準とする各視野の内部酸化層の深さ(下端の位置)を1視野につき5点測定して平均し、各視野の平均値のうち最大値と最小値とを除いたもので平均値を算出し、これを、内部酸化層の平均深さとした。
酸洗板の表面粗さをJIS B 0601:2013に記載の測定方法により、12サンプルの表裏の算術平均粗さRaをそれぞれ測定した後に、各サンプルの算術平均粗さRaの標準偏差を算出して、その標準偏差のうち最大値と最小値を除いたもので平均値を算出して求めた。
引張強さが980MPa以上であれば好ましい特性が得られていると判断した。
vTrsが-40℃以下であれば、好ましい特性が得られていると判断した。
化成処理後の鋼板表面を電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)で観察することで行った。具体的には、倍率10000倍で10視野観察を行い、化成処理結晶が付着していない「スケ」の有無を観察した。観察に際しては、加速電圧5kV、プローブ径:30mm、傾斜角度45°及び60°で観察をおこなった。試料に導電性を付与するため、タングステンコーティング(ESC-101,エリオニクス)を150秒行った。
全ての視野でスケが観察されなかった場合に、化成処理性に優れる(表中“OK”)と判断した。
化成処理後の熱延鋼板の上面に25μm厚の電着塗装を行い、170℃×20分の塗装焼き付け処理を行った後、先端の尖ったナイフで電着塗膜を地鉄に達するまで長さ130mmの切りこみを入れた。そして、JIS Z 2371に示される塩水噴霧条件にて、35℃の温度での5%塩水噴霧を700時間継続実施した後に切り込み部の上に幅24mmのテープ(ニチバン 405A-24 JIS Z 1522)を切り込み部に平行に130mm長さ貼り、これを剥離させた場合の最大塗膜剥離幅を測定した。
最大塗膜剥離幅が4.0mm以下であれば、塗膜密着性に優れると判断した。
表3A、表3Bから分かるように、本発明例である製造No.1~3、7~10、14、17~28では、引張強さが980MPaであっても、優れた靭性を有し、ジルコニウム系化成処理液を用いた化成処理性を行っても化成処理性が良好であり、塗膜密着性に優れた化成処理性皮膜が得られた。
これに対し、成分、金属組織、または表面におけるNi濃度が本発明範囲内にない製造No.4~6、11~13、15、16、29~35では、機械的特性が十分ではないか、化成処理性及び/または塗膜密着性に劣っていた。
2 スケール
3 Ni濃化部
4 ジルコニウム系化成結晶
5 結晶粒界
6 内部酸化物
Claims (14)
- 板厚方向全体の平均値で表される化学組成が、質量%で、
C :0.050%以上、0.200%以下、
Si:0.05%以上、3.00%以下、
Mn:1.00%以上、4.00%以下、
Al:0.001%以上、2.000%以下、
N :0.0005%以上、0.1000%以下、
Ni:0.02%以上、2.00%以下、
Nb:0%以上、0.300%以下、
Ti:0%以上、0.300%以下、
Cu:0%以上、2.00%以下、
Mo:0%以上、1.000%以下、
V :0%以上、0.300%以下、
Cr:0%以上、2.00%以下、
Mg:0%以上、0.0100%以下、
Ca:0%以上、0.0100%以下、
REM:0%以上、0.1000%以下、
B :0%以上、0.0100%以下、
Zr、Co、Zn、およびWのうち1種または2種以上:合計で0~1.000%、
Sn:0~0.050%、
P :0.100%以下、
S :0.0300%以下、
O :0.0100%以下を含有し、
残部がFeおよび不純物からなり、かつ、下記式(1)を満たし、
下記(2)で示されるPCMが0.20以上であり、かつ、下記(3)で示されるMsが400℃以上であり、
厚さをtとしたとき、表面からt/4の位置における金属組織が、焼き戻しマルテンサイト及び下部ベイナイトのいずれか一方あるいは両方を、体積率の合計で90%以上含有し、
引張強さが980MPa以上であり、
前記表面における平均Ni濃度が7.0%以上である
ことを特徴とする熱延鋼板。
0.05%≦Si+Al≦2.50%・ ・ ・ 式(1)
PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Mo/15+Cr/20+V/10+5×B・ ・ ・ 式(2)
Ms=561-474×C-33×Mn-17×Ni-17×Cr-21×Mo ・ ・ ・ 式(3)
上記式中に示す元素は前記熱延鋼板中に含有されている元素の質量%である。 - 前記化学組成が、質量%で、
Ni:0.02%以上、0.05%以下
を含有することを特徴とする請求項1に記載の熱延鋼板。 - 前記焼き戻しマルテンサイトおよび前記下部ベイナイト中に存在する鉄系炭化物の平均個数密度が1.0×106個/mm2以上である
ことを特徴とする請求項1または2に記載の熱延鋼板。 - 前記熱延鋼板に内部酸化層が存在し、前記内部酸化層の平均深さが前記熱延鋼板の前記表面から5.0μm以上、20.0μm以下である
ことを特徴とする請求項1~3のいずれか1項に記載の熱延鋼板。 - 前記熱延鋼板の前記表面の算術平均粗さRaの標準偏差が10.0μm以上、50.0μm以下である
ことを特徴とする請求項1~4のいずれか1項に記載の熱延鋼板。 - 前記化学組成が、質量%で、
B :0.0001%以下0.0100%以下、
Ti:0.015%以下0.300%以下、
のうち1種または2種を含有する
ことを特徴とする請求項1~5のいずれか1項に記載の熱延鋼板。 - 前記化学組成が、質量%で、
Nb:0.005%以上、0.300%以下、
Cu:0.010%以上、2.00%以下、
Mo:0.010%以上、1.000%以下、
V :0.010%以上、0.300%以下、
Cr:0.01%以上、2.00%以下、
のうち1種または2種以上を含有することを特徴とする請求項1~6のいずれか1項に記載の熱延鋼板。 - 前記化学組成が、質量%で、
Mg:0.0005%以上、0.0100%以下、
Ca:0.0005%以上、0.0100%以下、
REM:0.0005%以上、0.1000%以下、
のうち1種または2種以上を含有する
ことを特徴とする請求項1~7のいずれか1項に記載の熱延鋼板。 - 請求項1に記載の化学組成を有する溶鋼を鋳造して鋼片を得る鋳造工程と、
前記鋼片を、少なくとも予加熱ゾーン、加熱ゾーン及び均熱ゾーンを有する、蓄熱式バーナーを備えた加熱炉で加熱する加熱工程と、
加熱された前記鋼片に、仕上げ圧延温度が850℃以上になるように熱間圧延を行って熱延鋼板を得る熱延工程と、
前記仕上げ圧延温度から下記式(4)で計算されるMs点温度までの平均冷却速度が50℃/秒以上となるように、前記Ms点温度以下の温度域まで前記熱延鋼板を一次冷却する一次冷却工程と、
前記熱延鋼板を350℃未満の温度で巻き取る巻き取り工程と、
を有し、
前記加熱工程において、前記予加熱ゾーンでの空気比を1.1以上、1.9以下とする
ことを特徴とする熱延鋼板の製造方法。
Ms=561-474×C-33×Mn-17×Ni-17×Cr-21×Mo ・ ・ ・ 式(4) - 前記一次冷却を前記Ms点温度未満、350℃以上の温度で停止し、前記一次冷却後の前記熱延鋼板を、最大冷却速度が50℃/秒未満となるように350℃未満まで冷却する、
ことを特徴とする請求項9に記載の熱延鋼板の製造方法。 - 前記加熱工程において、前記加熱ゾーンでの空気比を0.9以上、1.3以下とする
ことを特徴とする請求項9または10に記載の熱延鋼板の製造方法。 - 前記加熱工程において、前記均熱ゾーンでの空気比を0.9以上、1.9以下とする
ことを特徴とする請求項9~11のいずれか1項に記載の熱延鋼板の製造方法。 - 前記予加熱ゾーンでの空気比が、前記加熱ゾーンでの空気比よりも大きい
ことを特徴とする請求項11または12に記載の熱延鋼板の製造方法。 - 前記巻き取り工程後の前記熱延鋼板に、20~95℃の温度の1~10wt%の塩酸溶液を用いて30~60秒未満の酸洗時間の条件で酸洗する酸洗工程を備える、
ことを特徴とする請求項9~13のいずれか1項に記載の熱延鋼板の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980066651.1A CN112805395B (zh) | 2018-10-19 | 2019-10-21 | 热轧钢板及其制造方法 |
KR1020217009676A KR102529040B1 (ko) | 2018-10-19 | 2019-10-21 | 열연 강판 및 그 제조 방법 |
JP2020542670A JP6897882B2 (ja) | 2018-10-19 | 2019-10-21 | 熱延鋼板およびその製造方法 |
EP19873240.6A EP3868903A4 (en) | 2018-10-19 | 2019-10-21 | HOT ROLLED STEEL SHEET AND METHOD FOR MAKING THE SAME |
US17/283,476 US20220010396A1 (en) | 2018-10-19 | 2019-10-21 | Hot-rolled steel sheet and method for manufacturing same |
MX2021003895A MX2021003895A (es) | 2018-10-19 | 2019-10-21 | Lamina de acero laminada en caliente y metodo para fabricar la misma. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-197935 | 2018-10-19 | ||
JP2018197935 | 2018-10-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2020080553A1 true WO2020080553A1 (ja) | 2020-04-23 |
WO2020080553A9 WO2020080553A9 (ja) | 2020-09-17 |
Family
ID=70284730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/041314 WO2020080553A1 (ja) | 2018-10-19 | 2019-10-21 | 熱延鋼板およびその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20220010396A1 (ja) |
EP (1) | EP3868903A4 (ja) |
JP (1) | JP6897882B2 (ja) |
KR (1) | KR102529040B1 (ja) |
CN (1) | CN112805395B (ja) |
MX (1) | MX2021003895A (ja) |
TW (1) | TW202022139A (ja) |
WO (1) | WO2020080553A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021157692A1 (ja) * | 2020-02-06 | 2021-08-12 | 日本製鉄株式会社 | 熱延鋼板及びその製造方法 |
WO2022244707A1 (ja) * | 2021-05-17 | 2022-11-24 | Jfeスチール株式会社 | 高強度熱延鋼板及び高強度熱延鋼板の製造方法 |
EP4180546A4 (en) * | 2020-08-27 | 2023-12-06 | Nippon Steel Corporation | HOT ROLLED STEEL SHEET |
EP4180545A4 (en) * | 2020-08-27 | 2023-12-06 | Nippon Steel Corporation | HOT ROLLED STEEL SHEET |
EP4206344A4 (en) * | 2020-08-27 | 2023-12-13 | Nippon Steel Corporation | HOT ROLLED STEEL SHEET |
EP4206343A4 (en) * | 2020-08-27 | 2023-12-13 | Nippon Steel Corporation | HOT ROLLED STEEL SHEET |
WO2024090727A1 (ko) * | 2022-10-28 | 2024-05-02 | 현대제철 주식회사 | 열연 강판, 차량용 부품 및 이를 제조하는 방법 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3868908A4 (en) * | 2018-10-19 | 2022-04-13 | Nippon Steel Corporation | HOT ROLLED STEEL SHEET |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59219473A (ja) | 1983-05-26 | 1984-12-10 | Nippon Steel Corp | カラ−エツチング液及びエツチング方法 |
JP2004218074A (ja) | 2002-12-24 | 2004-08-05 | Nippon Paint Co Ltd | 化成処理剤及び表面処理金属 |
JP2006336074A (ja) * | 2005-06-02 | 2006-12-14 | Kobe Steel Ltd | 化成処理性に優れた高強度高延性鋼板 |
JP2008202149A (ja) | 2008-06-02 | 2008-09-04 | Nippon Parkerizing Co Ltd | 金属の表面処理用処理液及び表面処理方法 |
WO2014132968A1 (ja) | 2013-02-26 | 2014-09-04 | 新日鐵住金株式会社 | 焼き付け硬化性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板 |
WO2014188966A1 (ja) * | 2013-05-21 | 2014-11-27 | 新日鐵住金株式会社 | 熱延鋼板及びその製造方法 |
JP2018197935A (ja) | 2017-05-23 | 2018-12-13 | 日本アイラック株式会社 | 情報処理装置 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2950199B2 (ja) * | 1995-06-12 | 1999-09-20 | 株式会社神戸製鋼所 | 耐木目状疵性に優れた電気亜鉛めっき用鋼板および電気亜鉛めっき鋼板、並びにそれらの製造方法 |
AU744962B2 (en) * | 1999-02-22 | 2002-03-07 | Nippon Steel & Sumitomo Metal Corporation | High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof |
JP3917901B2 (ja) * | 2002-06-06 | 2007-05-23 | 新日本製鐵株式会社 | 表面疵の少ない熱延板を得るための普通鋼スラブの加熱方法 |
DE102006005063A1 (de) * | 2006-02-03 | 2007-08-09 | Linde Ag | Verfahren zur Wärmebehandlung von Stahlbändern |
JP5515411B2 (ja) * | 2009-05-18 | 2014-06-11 | 新日鐵住金株式会社 | 鋼材加熱方法、加熱制御装置およびプログラム |
JP5083354B2 (ja) * | 2010-03-29 | 2012-11-28 | Jfeスチール株式会社 | 化成処理性に優れた高Si冷延鋼板の製造方法 |
JP5655712B2 (ja) * | 2011-06-02 | 2015-01-21 | 新日鐵住金株式会社 | 熱延鋼板の製造方法 |
JP5640898B2 (ja) * | 2011-06-02 | 2014-12-17 | 新日鐵住金株式会社 | 熱延鋼板 |
US8932729B2 (en) * | 2011-09-30 | 2015-01-13 | Nippon Steel & Sumitomo Metal Corporation | High-strength hot-dip galvanized steel sheet excellent in impact resistance property and high-strength alloyed hot-dip galvanized steel sheet |
JP5838708B2 (ja) * | 2011-10-12 | 2016-01-06 | Jfeスチール株式会社 | 表面性状に優れた鋼板およびその製造方法 |
RU2587003C2 (ru) * | 2012-01-05 | 2016-06-10 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Горячекатаный стальной лист и способ его изготовления |
BR112015013061B1 (pt) * | 2012-12-11 | 2018-11-21 | Nippon Steel & Sumitomo Metal Corporation | chapa de aço laminada a quente e método de produção da mesma |
KR101516302B1 (ko) | 2013-05-09 | 2015-05-04 | 김한기 | 배터리 일체형 전기식 흡입 장치 |
WO2016016676A1 (fr) * | 2014-07-30 | 2016-02-04 | ArcelorMittal Investigación y Desarrollo, S.L. | Procédé de fabrication de tôles d'acier, pour durcissement sous presse, et pièces obtenues par ce procédé |
JP6390274B2 (ja) * | 2014-08-29 | 2018-09-19 | 新日鐵住金株式会社 | 熱延鋼板 |
EP3342893A4 (en) * | 2015-08-24 | 2019-01-16 | Nippon Steel & Sumitomo Metal Corporation | ALLOY-FILLED ZINC PLATED STEEL SHEET AND METHOD FOR MANUFACTURING SAME |
AU2016393486B2 (en) * | 2016-02-16 | 2019-07-18 | Nippon Steel Corporation | Seamless steel pipe and method of manufacturing the same |
WO2020080552A1 (ja) * | 2018-10-19 | 2020-04-23 | 日本製鉄株式会社 | 熱延鋼板およびその製造方法 |
-
2019
- 2019-10-21 CN CN201980066651.1A patent/CN112805395B/zh active Active
- 2019-10-21 KR KR1020217009676A patent/KR102529040B1/ko active IP Right Grant
- 2019-10-21 MX MX2021003895A patent/MX2021003895A/es unknown
- 2019-10-21 JP JP2020542670A patent/JP6897882B2/ja active Active
- 2019-10-21 TW TW108137914A patent/TW202022139A/zh unknown
- 2019-10-21 WO PCT/JP2019/041314 patent/WO2020080553A1/ja unknown
- 2019-10-21 US US17/283,476 patent/US20220010396A1/en active Pending
- 2019-10-21 EP EP19873240.6A patent/EP3868903A4/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59219473A (ja) | 1983-05-26 | 1984-12-10 | Nippon Steel Corp | カラ−エツチング液及びエツチング方法 |
JP2004218074A (ja) | 2002-12-24 | 2004-08-05 | Nippon Paint Co Ltd | 化成処理剤及び表面処理金属 |
JP2006336074A (ja) * | 2005-06-02 | 2006-12-14 | Kobe Steel Ltd | 化成処理性に優れた高強度高延性鋼板 |
JP2008202149A (ja) | 2008-06-02 | 2008-09-04 | Nippon Parkerizing Co Ltd | 金属の表面処理用処理液及び表面処理方法 |
WO2014132968A1 (ja) | 2013-02-26 | 2014-09-04 | 新日鐵住金株式会社 | 焼き付け硬化性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板 |
WO2014188966A1 (ja) * | 2013-05-21 | 2014-11-27 | 新日鐵住金株式会社 | 熱延鋼板及びその製造方法 |
JP2018197935A (ja) | 2017-05-23 | 2018-12-13 | 日本アイラック株式会社 | 情報処理装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3868903A4 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021157692A1 (ja) * | 2020-02-06 | 2021-08-12 | 日本製鉄株式会社 | 熱延鋼板及びその製造方法 |
EP4180546A4 (en) * | 2020-08-27 | 2023-12-06 | Nippon Steel Corporation | HOT ROLLED STEEL SHEET |
EP4180545A4 (en) * | 2020-08-27 | 2023-12-06 | Nippon Steel Corporation | HOT ROLLED STEEL SHEET |
EP4206344A4 (en) * | 2020-08-27 | 2023-12-13 | Nippon Steel Corporation | HOT ROLLED STEEL SHEET |
EP4206343A4 (en) * | 2020-08-27 | 2023-12-13 | Nippon Steel Corporation | HOT ROLLED STEEL SHEET |
WO2022244707A1 (ja) * | 2021-05-17 | 2022-11-24 | Jfeスチール株式会社 | 高強度熱延鋼板及び高強度熱延鋼板の製造方法 |
JP7239071B1 (ja) * | 2021-05-17 | 2023-03-14 | Jfeスチール株式会社 | 高強度熱延鋼板及び高強度熱延鋼板の製造方法 |
WO2024090727A1 (ko) * | 2022-10-28 | 2024-05-02 | 현대제철 주식회사 | 열연 강판, 차량용 부품 및 이를 제조하는 방법 |
Also Published As
Publication number | Publication date |
---|---|
EP3868903A4 (en) | 2022-05-18 |
CN112805395B (zh) | 2023-03-28 |
MX2021003895A (es) | 2021-06-04 |
CN112805395A (zh) | 2021-05-14 |
TW202022139A (zh) | 2020-06-16 |
KR20210053957A (ko) | 2021-05-12 |
KR102529040B1 (ko) | 2023-05-10 |
US20220010396A1 (en) | 2022-01-13 |
EP3868903A1 (en) | 2021-08-25 |
JP6897882B2 (ja) | 2021-07-07 |
WO2020080553A9 (ja) | 2020-09-17 |
JPWO2020080553A1 (ja) | 2021-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108495943B (zh) | 高强度钢板及高强度镀锌钢板 | |
WO2020080553A1 (ja) | 熱延鋼板およびその製造方法 | |
US9109275B2 (en) | High-strength galvanized steel sheet and method of manufacturing the same | |
CN111936656B (zh) | 高强度钢板及其制造方法 | |
CN111936658A (zh) | 高强度钢板及其制造方法 | |
KR20160132926A (ko) | 연성 및 굽힘성이 우수한 고강도 냉연 강판 및 고강도 용융 아연도금 강판, 및 그들의 제조 방법 | |
CN111527223B (zh) | 高强度冷轧钢板及其制造方法 | |
JP6787532B2 (ja) | 熱延鋼板およびその製造方法 | |
CN111511945A (zh) | 高强度冷轧钢板及其制造方法 | |
KR20190023093A (ko) | 고강도 박강판 및 그 제조 방법 | |
EP2243852A1 (en) | High-strength hot-dip zinc coated steel sheet excellent in workability and process for production thereof | |
CN114981457A (zh) | 高强度镀锌钢板及其制造方法 | |
WO2018030502A1 (ja) | 高強度鋼板およびその製造方法 | |
WO2022071305A1 (ja) | 鋼板 | |
WO2021125283A1 (ja) | 鋼板及びその製造方法 | |
CN114585758A (zh) | 高强度钢板和碰撞吸收构件以及高强度钢板的制造方法 | |
JP7303460B2 (ja) | 鋼板およびその製造方法 | |
WO2024190769A1 (ja) | 鋼部材及び鋼板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19873240 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020542670 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20217009676 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019873240 Country of ref document: EP Effective date: 20210519 |