WO2020080170A1 - Failure diagnosis method, power conversion device, motor module, and electric power steering device - Google Patents

Failure diagnosis method, power conversion device, motor module, and electric power steering device Download PDF

Info

Publication number
WO2020080170A1
WO2020080170A1 PCT/JP2019/039574 JP2019039574W WO2020080170A1 WO 2020080170 A1 WO2020080170 A1 WO 2020080170A1 JP 2019039574 W JP2019039574 W JP 2019039574W WO 2020080170 A1 WO2020080170 A1 WO 2020080170A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
inverter
switch element
low
Prior art date
Application number
PCT/JP2019/039574
Other languages
French (fr)
Japanese (ja)
Inventor
アハマッド ガデリー
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201980066683.1A priority Critical patent/CN112840557B/en
Publication of WO2020080170A1 publication Critical patent/WO2020080170A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Definitions

  • the present disclosure relates to a failure diagnosis method, a power conversion device, a motor module, and an electric power steering device.
  • Patent Document 1 discloses a motor drive device having a first system and a second system.
  • the first system is connected to the first winding group of the motor and has a first inverter section, a power supply relay, a reverse connection protection relay, and the like.
  • the second system is connected to the second winding group of the motor and has a second inverter section, a power supply relay, a reverse connection protection relay, and the like. It is possible to drive the motor using both the first system and the second system when no failure occurs in the motor drive device.
  • the power relay relays the power to the failed system or the failure.
  • the power supply to the system connected to the winding set is cut off. It is possible to continue driving the motor using the other system that has not failed. ..
  • Patent Documents 2 and 3 also disclose a motor drive device having a first system and a second system. Even if one system or one winding group fails, the motor drive can be continued by the system that has not failed.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2016-34204 Japanese Patent Publication: Japanese Patent Laid-Open No. 2016-32977 Japanese Patent Publication: Japanese Patent Laid-Open No. 2008-132919
  • Embodiments of the present disclosure provide a failure diagnosis method capable of appropriately diagnosing a phase failure in a power conversion device.
  • An exemplary failure diagnosis method of the present disclosure is a failure diagnosis for diagnosing a failure of a power conversion device that converts electric power from a power supply into electric power supplied to a motor having n-phase (n is an integer of 3 or more) windings.
  • the power converter includes a first inverter connected to a first end of each phase winding of the motor, and a second inverter connected to a second end of each phase winding of the motor.
  • N number of H-bridges each having a first high-side switching element, a first low-side switching element, a second high-side switching element and a second low-side switching element, the n-phase being the first phase and the second phase.
  • the failure diagnosis method comprises: a voltage across the first-phase low-side switch element in the first inverter and a voltage across the first-phase low-side switch element in the second inverter. And a step of determining a magnitude relationship with the first saturation voltage; a step of determining a magnitude relationship between the interphase voltage between the second phase and the third phase and a second saturation voltage; Determining the presence or absence of the failure of the first phase based on the determination result of the magnitude relationship between the sum and the first saturation voltage and the determination result of the magnitude relationship between the interphase voltage and the second saturation voltage. . ..
  • An exemplary power conversion device is a power conversion device that converts power from a power source into power to be supplied to a motor having n-phase (n is an integer of 3 or more) windings.
  • the apparatus includes a first inverter connected to a first end of each phase winding of the motor, a second inverter connected to a second end of each phase winding, and a first high side switch.
  • An n-phase H-bridge having an element, a first low-side switch element, a second high-side switch element, and a second low-side switch element, and a control circuit for controlling the operation of the first and second inverters.
  • the control circuit is configured such that the control circuit has a voltage across the low-side switching element of the first phase in the first inverter and a low-side voltage of the first phase in the second inverter.
  • the sum of the voltage across the switch element and the first saturation voltage is determined, and the interphase voltage between the second phase and the third phase and the second saturation voltage are determined.
  • the presence or absence of the failure of the first phase is determined based on the determination result of the magnitude relationship between the sum of the voltage across both ends and the first saturation voltage and the determination result of the magnitude relationship between the interphase voltage and the second saturation voltage.
  • a failure diagnosis method capable of appropriately diagnosing a phase failure in a power conversion device, a power conversion device, a motor module including the power conversion device, and an electric motor including the motor module.
  • a power steering device is provided.
  • FIG. 1 is a block diagram schematically showing a motor module according to an embodiment.
  • FIG. 2 is a circuit diagram schematically showing the inverter unit according to the embodiment.
  • FIG. 3A is a schematic diagram showing an A-phase H bridge.
  • FIG. 3B is a schematic diagram showing a B-phase H bridge.
  • FIG. 3C is a schematic diagram showing a C-phase H bridge.
  • FIG. 4 is a functional block diagram showing a controller that performs overall motor control.
  • FIG. 5 is a functional block diagram showing functional blocks for performing high-side failure diagnosis of each phase.
  • FIG. 6 is a functional block diagram showing functional blocks for performing low-side failure diagnosis of each phase.
  • FIG. 5 is a functional block diagram showing functional blocks for performing high-side failure diagnosis of each phase.
  • FIG. 7 is a schematic diagram showing a lookup table for determining the constants Ksat1 and Ksat2 from the rotation speed ⁇ and the current amplitude value.
  • FIG. 8 is a graph which illustrates the current waveform (sine wave) obtained by plotting the current value which flows into each winding of A-phase, B-phase, and C-phase of a motor when controlling a power converter device according to three-phase electricity supply control. Is.
  • FIG. 9 is a graph exemplifying a current waveform obtained by plotting current values flowing in the windings of the B-phase and C-phase of the motor when the power converter is controlled according to the two-phase energization control when the A-phase fails. Is. FIG.
  • FIG. 10 is a graph exemplifying a current waveform obtained by plotting a current value flowing in each winding of the C phase and A phase of the motor when the power converter is controlled according to the two-phase energization control when the B phase fails.
  • FIG. 11 is a graph exemplifying current waveforms obtained by plotting current values flowing in windings of the A phase and B phase of the motor when the power converter is controlled according to the two-phase energization control when the C phase fails.
  • FIG. 12 is a graph showing the waveform of the simulation result of the sum of the actual voltages VA1 and VA2 when the high-side switch element SW_A1H has an open failure.
  • FIG. 13 is a graph showing a waveform of a simulation result of the sum of the actual voltages VB1 and VB2 when the high side switch element SW_A1H has an open failure.
  • FIG. 14 is a graph showing a waveform of a simulation result of the sum of the actual voltages VC1 and VC2 when the high side switch element SW_A1H has an open failure.
  • FIG. 15 is a graph showing the waveform of the simulation result of the interphase voltage VBC when the high side switch element SW_A1H has an open failure.
  • FIG. 16 is a graph showing a waveform of a simulation result of the interphase voltage VCA when the high side switch element SW_A1H has an open failure.
  • FIG. 17 is a graph showing the waveform of the simulation result of the interphase voltage VAB when the high side switch element SW_A1H has an open failure.
  • FIG. 18 is a functional block diagram showing functional blocks for performing failure diagnosis of the second inverter.
  • FIG. 19 is a functional block diagram showing functional blocks for performing failure diagnosis of the first inverter.
  • FIG. 20 is a schematic diagram showing a lookup table for determining the saturation voltage Vsat from the rotation speed ⁇ and the current amplitude value.
  • FIG. 21 is a graph showing waveforms of simulation results of the actual voltage VA1 (upper side) and the actual voltage VA2 (lower side) when the low side switch element SW_A1L has an open failure.
  • FIG. 22 is a graph showing waveforms of simulation results of the actual voltage VB1 (upper side) and the actual voltage VB2 (lower side) when the low side switch element SW_A1L has an open failure.
  • FIG. 23 is a graph showing waveforms of simulation results of the actual voltage VC1 (upper side) and the actual voltage VC2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • FIG. 24 is a schematic diagram showing an electric power steering device according to an exemplary embodiment.
  • the present disclosure will be described with an example of a power converter that converts electric power from a power supply into electric power supplied to a three-phase motor having three-phase (A-phase, B-phase, and C-phase) windings.
  • the form will be described.
  • the failure diagnosis method is also within the scope of the present disclosure. ..
  • FIG. 1 schematically shows a typical block configuration of the motor module 2000 according to the present embodiment. ..
  • the motor module 2000 typically includes a power converter 1000 having an inverter unit 100 and a control circuit 300, and a motor 200.
  • the motor module 2000 is modularized and may be manufactured and sold, for example, as an electromechanical integrated motor having a motor, a sensor, a driver and a controller. ..
  • the power converter 1000 can convert the power from the power supply 101 (see FIG. 2) into the power to be supplied to the motor 200.
  • the power converter 1000 is connected to the motor 200.
  • the power converter 1000 can convert DC power into three-phase AC power that is a pseudo sine wave of A phase, B phase, and C phase.
  • “connection” between parts (components) mainly means electrical connection. ..
  • the motor 200 is, for example, a three-phase AC motor.
  • the motor 200 includes an A-phase winding M1, a B-phase winding M2, and a C-phase winding M3, and is connected to the first inverter 120 and the second inverter 130 of the inverter unit 100. More specifically, the first inverter 120 is connected to one end of each phase winding of the motor 200, and the second inverter 130 is connected to the other end of each phase winding. ..
  • the control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360. Each component of the control circuit 300 is mounted on, for example, one circuit board (typically a printed board).
  • the control circuit 300 is connected to the inverter unit 100 and controls the inverter unit 100 based on the input signals from the current sensor 150 and the angle sensor 320.
  • the control method includes vector control, pulse width modulation (PWM) or direct torque control (DTC), for example.
  • PWM pulse width modulation
  • DTC direct torque control
  • the angle sensor 320 may be unnecessary.
  • the control circuit 300 can realize the closed loop control by controlling the target position, rotation speed, current, and the like of the rotor of the motor 200.
  • the control circuit 300 may include a torque sensor instead of the angle sensor 320. In this case, the control circuit 300 can control the target motor torque. ..
  • the power supply circuit 310 generates a power supply voltage (eg, 3V, 5V) required for each block in the circuit based on the voltage of the power supply 101, for example, 12V. ..
  • the angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects a rotation angle of the rotor (hereinafter referred to as “rotation signal”) and outputs the rotation signal to the controller 340. ..
  • rotation signal a rotation angle of the rotor
  • the input circuit 330 receives the phase current detected by the current sensor 150 (hereinafter sometimes referred to as “actual current value”), and sets the level of the actual current value to the input level of the controller 340 as necessary. The actual current value is converted and output to the controller 340.
  • the input circuit 330 is, for example, an analog-digital (AD) conversion circuit. ..
  • the controller 340 is an integrated circuit that controls the entire power conversion apparatus 1000, and is, for example, a microcontroller or an FPGA (Field Programmable Gate Array).
  • the controller 340 controls the switching operation (turn-on or turn-off) of each switch element (typically a semiconductor switch element) in the first and second inverters 120 and 130 of the inverter unit 100.
  • the controller 340 sets a target current value according to the actual current value and the rotor rotation signal, generates a PWM signal, and outputs the PWM signal to the drive circuit 350. ..
  • the drive circuit 350 is typically a pre-driver (sometimes called a “gate driver”).
  • the drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each switch element in the first and second inverters 120 and 130 of the inverter unit 100 according to the PWM signal, and outputs a control signal to the gate of each switch element.
  • gate control signal gate control signal
  • the pre-driver may not be necessarily required. In that case, the function of the pre-driver may be implemented in the controller 340. ..
  • the ROM 360 is, for example, a writable memory (for example, PROM), a rewritable memory (for example, flash memory), or a read-only memory.
  • the ROM 360 stores a control program including a command group for causing the controller 340 to control the power conversion device 1000.
  • the control program is once expanded in the RAM (not shown) at the time of booting. ..
  • FIG. 2 schematically shows the circuit configuration of the inverter unit 100 according to this embodiment. ..
  • the power supply 101 generates a predetermined power supply voltage (for example, 12V).
  • a DC power supply is used.
  • the power supply 101 may be an AC-DC converter or a DC-DC converter, or a battery (storage battery).
  • the power supply 101 may be a single power supply common to the first and second inverters 120 and 130 as shown, or may be a first power supply (not shown) for the first inverter 120 and a second power supply for the second inverter 130. Second power source (not shown) may be provided. ..
  • coils are provided between the power supply 101 and the first inverter 120 and between the power supply 101 and the second inverter 130.
  • the coil functions as a noise filter and smoothes high frequency noise included in the voltage waveform supplied to each inverter or high frequency noise generated in each inverter so as not to flow out to the power supply 101 side.
  • a capacitor is connected to the power supply terminal of each inverter.
  • the capacitor is a so-called bypass capacitor and suppresses voltage ripple.
  • the capacitor is, for example, an electrolytic capacitor, and the capacity and the number of capacitors used are appropriately determined according to design specifications and the like. ..
  • the first inverter 120 has a bridge circuit composed of three legs. Each leg has a high side switch element, a low side switch element, and a shunt resistor.
  • the A-phase leg has a high side switch element SW_A1H, a low side switch element SW_A1L, and a first shunt resistor S_A1.
  • the B-phase leg has a high side switch element SW_B1H, a low side switch element SW_B1L, and a first shunt resistor S_B1.
  • the C-phase leg has a high side switch element SW_C1H, a low side switch element SW_C1L, and a first shunt resistor S_C1. ..
  • a field effect transistor typically MOSFET having a parasitic diode formed therein, or a combination of an insulated gate bipolar transistor (IGBT) and a free wheeling diode connected in parallel thereto can be used. . ..
  • MOSFET field effect transistor
  • IGBT insulated gate bipolar transistor
  • the first shunt resistor S_A1 is used to detect the A-phase current IA1 flowing through the A-phase winding M1 and is connected, for example, between the low-side switch element SW_A1L and the GND line GL.
  • the first shunt resistor S_B1 is used to detect the B-phase current IB1 flowing through the B-phase winding M2, and is connected, for example, between the low-side switch element SW_B1L and the GND line GL.
  • the first shunt resistor S_C1 is used to detect the C-phase current IC1 flowing through the C-phase winding M3, and is connected, for example, between the low-side switch element SW_C1L and the GND line GL.
  • the three shunt resistors S_A1, S_B1 and S_C1 are commonly connected to the GND line GL of the first inverter 120. ..
  • the second inverter 130 has a bridge circuit composed of three legs. Each leg has a high side switch element, a low side switch element, and a shunt resistor.
  • the A-phase leg has a high-side switch element SW_A2H, a low-side switch element SW_A2L, and a shunt resistor S_A2.
  • the B-phase leg has a high-side switch element SW_B2H, a low-side switch element SW_B2L, and a shunt resistor S_B2.
  • the C-phase leg has a high-side switch element SW_C2H, a low-side switch element SW_C2L, and a shunt resistor S_C2. ..
  • the shunt resistor S_A2 is used to detect the A-phase current IA2, and is connected, for example, between the low-side switch element SW_A2L and the GND line GL.
  • the shunt resistor S_B2 is used to detect the B-phase current IB2, and is connected, for example, between the low side switch element SW_B2L and the GND line GL.
  • the shunt resistor S_C2 is used to detect the C-phase current IC2, and is connected, for example, between the low-side switch element SW_C2L and the GND line GL.
  • the three shunt resistors S_A2, S_B2, and S_C2 are commonly connected to the GND line GL of the second inverter 130. ..
  • the current sensor 150 described above includes, for example, shunt resistors S_A1, S_B1, S_C1, S_A2, S_B2, S_C2 and a current detection circuit (not shown) that detects a current flowing through each shunt resistor. ..
  • the A-phase leg of the first inverter 120 (specifically, the node between the high-side switch element SW_A1H and the low-side switch element SW_A1L) is connected to one end A1 of the A-phase winding M1 of the motor 200, and is connected to the second inverter.
  • the A-phase leg of 130 is connected to the other end A2 of the A-phase winding M1.
  • the B-phase leg of the first inverter 120 is connected to one end B1 of the B-phase winding M2 of the motor 200, and the B-phase leg of the second inverter 130 is connected to the other end B2 of the winding M2.
  • the C-phase leg of the first inverter 120 is connected to one end C1 of the C-phase winding M3 of the motor 200, and the C-phase leg of the second inverter 130 is connected to the other end C2 of the winding M3. .
  • FIG. 3A schematically shows the configuration of the phase A H-bridge BA.
  • FIG. 3B schematically shows the configuration of the B-phase H bridge BB.
  • FIG. 3C schematically shows the configuration of the C-phase H bridge BC. ..
  • the inverter unit 100 includes H bridges BA, BB and BC of A phase, B phase and C phase.
  • the A-phase H bridge BA includes a high-side switch element SW_A1H and a low-side switch element SW_A1L in the leg on the first inverter 120 side, a high-side switch element SW_A2H, a low-side switch element SW_A2L in the leg on the second inverter 130 side, and a winding.
  • the B-phase H bridge BB includes a high-side switch element SW_B1H, a low-side switch element SW_B1L in the leg on the first inverter 120 side, a high-side switch element SW_B2H, a low-side switch element SW_B2L in the leg on the second inverter 130 side, and a winding.
  • the C-phase H bridge BC includes a high-side switch element SW_C1H and a low-side switch element SW_C1L in the leg on the first inverter 120 side, a high-side switch element SW_C2H, a low-side switch element SW_C2L in the leg on the second inverter 130 side, and a winding.
  • the control circuit 300 (specifically, the controller 340) can identify the faulty inverter of the first inverter 120 and the second inverter 130 by executing the fault diagnosis of the inverter described below. The details of the failure diagnosis of the inverter will be described below. ..
  • phase Failure Diagnosis Method A specific example of a failure diagnosis method for diagnosing a phase failure in the power conversion apparatus 1000 shown in FIG. 1 will be described with reference to FIGS. 4 to 7. As a result of earnest research, the inventor of the present application has found that a phase failure in a power conversion device can be diagnosed by the following method.
  • the failure diagnosis method of the present disclosure can be suitably used for a power conversion device including a plurality of H bridges, for example, a full bridge type power conversion device.
  • the failure in this specification refers to an open failure of the switch element.
  • the open failure is a failure in which the switch element always has a high impedance.
  • the occurrence of an open failure in the high-side switch element SW_A1H or SW_A2H of the first inverter 120 may be referred to as an A-phase high-side failure. ..
  • the current and voltage expressed in the dq coordinate system the actual voltage indicating the voltage across the low-side switch element, and the motor rotation speed ⁇ are acquired.
  • the current and voltage expressed in the dq coordinate system include the d-axis voltage Vd, the q-axis voltage Vq, the d-axis current Id, and the q-axis current Iq.
  • the axis corresponding to the zero phase is represented as the z axis.
  • the rotation speed ⁇ is represented by a rotation speed (rpm) at which the rotor of the motor rotates in a unit time (for example, 1 minute) or a rotation speed (rps) at which the rotor rotates in a unit time (for example, 1 second). ..
  • a first actual voltage and a second actual voltage are defined for each of the H bridges BA, BB, and BC of the A phase, the B phase, and the C phase.
  • the first actual voltage indicates the voltage across the first low-side switch element in the leg on the first inverter 120 side in each phase H-bridge. In other words, the first actual voltage corresponds to the node potential between the first high side switch element and the first low side switch element in the leg on the first inverter 120 side.
  • the second actual voltage indicates the voltage across the second low-side switch element in the leg on the second inverter 130 side. In other words, the second actual voltage corresponds to the node potential between the second high side switch element and the second low side switch element in the leg on the second inverter 130 side.
  • the voltage across the switch element is equal to the source-drain voltage Vds of the FET that is the switch element.
  • the first actual voltage refers to the voltage VA1 across the low-side switching element SW_A1L shown in FIG. 3A
  • the second actual voltage refers to the voltage VA2 across the low-side switching element SW_A2L shown in FIG. 3A.
  • the first actual voltage refers to the voltage VB1 across the low-side switching element SW_B1L shown in FIG. 3B
  • the second actual voltage refers to the voltage VB2 across the low-side switching element SW_B2L shown in FIG. 3B.
  • the first actual voltage refers to the voltage VC1 across the low-side switch element SW_C1L shown in FIG. 3C
  • the second actual voltage refers to the voltage VC2 across the low-side switch element SW_C2L shown in FIG. 3C. . ..
  • the phase failure is diagnosed. ..
  • a failure signal indicating the failure of the phase is generated and output to the motor control unit described later.
  • a failure signal is a signal that is asserted when a failure occurs. ..
  • the above-mentioned failure diagnosis is repeatedly executed, for example, in synchronization with the cycle of measuring each phase current by the current sensor 150, that is, the cycle of AD conversion. ..
  • the algorithm for realizing the failure diagnosis method according to the present embodiment can be realized only by hardware such as an application specific integrated circuit (ASIC) or FPGA, or by a combination of a microcontroller and software. You can In the present embodiment, the operation subject of the failure diagnosis is the controller 340 of the control circuit 300. ..
  • FIG. 4 exemplifies the functional blocks of the controller 340 for performing overall motor control.
  • FIG. 5 exemplifies functional blocks for performing high-side failure diagnosis of each phase.
  • FIG. 6 exemplifies functional blocks for performing low-side failure diagnosis of each phase. ..
  • each block in the functional block diagram is shown in a functional block unit rather than in a hardware unit.
  • the software used for motor control and failure diagnosis may be, for example, a module forming a computer program for executing a specific process corresponding to each functional block.
  • Such a computer program is stored in the ROM 360, for example.
  • the controller 340 can read an instruction from the ROM 360 and sequentially execute each process. ..
  • the controller 340 has, for example, a failure diagnosis unit 700 and a motor control unit 900.
  • the failure diagnosis of the present disclosure can be suitably combined with motor control (for example, vector control), and can be incorporated in a series of processes of motor control. ..
  • the failure diagnosis unit 700 acquires the d-axis current Id, the q-axis current Iq, the d-axis voltage Vd, the q-axis voltage Vq, and the rotation speed ⁇ of the motor 200 in the dq coordinate system. Fault diagnosis unit 700 further obtains first actual voltages VA1, VB1, VC1 and second actual voltages VA2, VB2 and VC2. ..
  • the fault diagnosis unit 700 may include a pre-calculation unit (not shown) that acquires Vpeak.
  • the pre-computation unit uses the Clark transform to convert the three-phase currents Ia, Ib, and Ic acquired based on the measurement values of the current sensor 150 into the currents I ⁇ and ⁇ on the ⁇ axis in the ⁇ ⁇ fixed coordinate system. Of the current I ⁇ .
  • the pre-calculation unit converts the currents I ⁇ and I ⁇ into the d-axis current Id and the q-axis current Iq in the dq coordinate system by using the Park transformation (dq coordinate transformation).
  • the pre-calculation unit acquires the d-axis voltage Vd and the q-axis voltage Vq based on the currents Id and Iq, and calculates the voltage peak value Vpeak from the acquired Vd and Vq based on the following equation (1).
  • the pre-calculation unit can also receive Vd and Vq necessary for calculating Vpeak from the motor control unit 900 that performs vector control.
  • the pre-computation unit acquires Vpeak in synchronization with the cycle in which the current sensor 150 measures each phase current.
  • Vpeak (2/3) 1/2 (Vd 2 + Vq 2 ) 1/2 Formula (1)
  • Fault diagnosis unit 700 refers to lookup table 740 (FIG. 7) to determine constants Ksat1 and Ksat2 based on currents Id and Iq and rotation speed ⁇ . ..
  • FIG. 7 schematically shows a look-up table (LUT) 740 that determines the constants Ksat1 and Ksat2 from the rotation speed ⁇ and the current amplitude value.
  • the LUT 740 associates the current amplitude value (Id 2 + Iq 2 ) 1/2 determined based on the d-axis current and the q-axis current and the input of the rotation speed ⁇ of the motor 200 with the constants Ksat1 and Ksat2.
  • the rotation speed ⁇ is calculated based on the rotation signal from the angle sensor 320, for example.
  • the rotation speed ⁇ can be estimated by using, for example, a known sensorless control method.
  • the actual voltage of each switch element is measured by, for example, a drive circuit (pre-driver) 350. ..
  • the current amplitude value becomes equal to Iq.
  • the constants Ksat1 and Ksat2 are determined from the obtained current amplitude value Iq and the rotation speed ⁇ .
  • preset values before driving may be used.
  • constant values depending on the system may be used as the constants Ksat1 and Ksat2.
  • Ksat1 and Ksat2 may have the same value. ..
  • the failure diagnosis unit 700 calculates the saturation voltages Vsat1 and Vsat2 from the acquired constants Ksat1 and Ksat2 based on the following equations (2) and (3).
  • Vsat1 Vpeak / Ksat1 formula (2)
  • Vsat2 Vpeak / Ksat2 formula (3)
  • the values of the saturation voltages Vsat1 and Vsat2 are 0.3-0.4 (V). This value is an example, and the present embodiment is not limited to this value.
  • the failure diagnosis unit 700 diagnoses the presence or absence of a phase failure based on the above-described actual voltage, voltage peak value Vpeak, and saturation voltages Vsat1 and Vsat2. ..
  • the failure diagnosis unit 700 generates a failure signal indicating a phase failure based on the diagnosis result and outputs it to the motor control unit 900. ..
  • the motor control unit 900 uses, for example, vector control to generate a PWM signal that controls the overall switching operation of the switch elements of the first and second inverters 120 and 130.
  • the motor control unit 900 outputs the PWM signal to the drive circuit 350. Further, the motor control unit 900 can switch the motor control from the three-phase energization control to the two-phase energization control when, for example, a failure signal is asserted. ..
  • each functional block may be referred to as a unit for convenience of description. Naturally, these notations are not used with the intention of limiting each functional block to hardware or software. ..
  • each functional block is implemented as software in the controller 340
  • the execution subject of the software may be the core of the controller 340, for example.
  • the controller 340 may be implemented by an FPGA. In that case, all or some of the functional blocks may be implemented in hardware. ..
  • the plurality of FPGAs are communicably connected to each other by, for example, a vehicle-mounted control area network (CAN), and can send and receive data. ..
  • CAN vehicle-mounted control area network
  • the failure diagnosis unit 700 includes a failure diagnosis unit 701 for diagnosing the high-side failure of each phase shown in FIGS. 5 and 6, and a failure diagnosis unit 702 for diagnosing the low-side failure of each phase.
  • Functional blocks of the failure diagnosis units 701 and 702 having substantially the same functions are designated by the same reference numerals, and detailed description thereof will not be repeated. ..
  • the failure diagnosis unit 701 has absolute value calculators 711, 712, 713, comparators 721, 722, 723, 724, 725, 726, and logic circuits AND731, 732, 733.
  • the failure diagnosis unit 702 includes absolute value calculators 711, 712, 713, comparators 721, 723, 725, 727, 728, 729, and logic circuits AND731, 732, 733. ..
  • the absolute value calculator 711 of the failure diagnosis unit 701 calculates the absolute value of the interphase voltage VBC between the B phase and the C phase. ..
  • VBC (VB1 + VB2)-(VC1 + VC2) Formula (4)
  • the interphase voltage VBC is the difference between the sum of the voltage VB1 across the low-side switch element SW_B1L and the voltage VB2 across the low-side switch element SW_B2L, and the sum of the voltage VC1 across the low-side switch element SW_C1L and the voltage VC2 across the low-side switch element SW_C2L. Is. ..
  • the comparator 721 compares the absolute value of the interphase voltage VBC with the saturation voltage Vsat2. When it is determined that the absolute value of VBC is Vsat2 or more (
  • the comparator 722 compares the sum “VA1 + VA2” of the voltage VA1 across the low-side switch element SW_A1L and the voltage VA2 across the low-side switch element SW_A2L with the negative value “ ⁇ Vsat1” of the saturation voltage Vsat1. ..
  • the comparator 722 determines that “VA1 + VA2” is “ ⁇ Vsat1” or more ((VA1 + VA2) ⁇ ⁇ Vsat1), it outputs “0” indicating that the high side of the A phase is normal to the logic circuit AND731.
  • the comparator 722 determines that “VA1 + VA2” is less than “ ⁇ Vsat1” ((VA1 + VA2) ⁇ Vsat1), it outputs “1” indicating that the high side of the phase A is abnormal to the logic circuit AND731. ..
  • the logic circuit AND731 takes the logical product of the output signals of the comparators 721 and 722.
  • the logic circuit AND731 outputs a logical product to the motor control unit 900 as a failure signal AH_FD indicating the presence / absence of a failure on the high side of the A phase. ..
  • the logic circuit AND731 When at least one of the output signals of the comparators 721 and 722 is “0", the logic circuit AND731 outputs "0" indicating that the high side of the A phase is normal as the failure signal AH_FD. When both of the output signals of the comparators 721 and 722 are “1”, the logic circuit AND731 outputs "1" indicating that the high side of the A phase has a failure as the failure signal AH_FD. ..
  • the absolute value calculator 712 calculates the absolute value of the interphase voltage VCA between the C phase and the A phase. ..
  • VCA (VC1 + VC2)-(VA1 + VA2) Formula (5)
  • the interphase voltage VCA is the difference between the sum of the voltage VC1 across the low-side switch element SW_C1L and the voltage VC2 across the low-side switch element SW_C2L, and the sum of the voltage VA1 across the low-side switch element SW_A1L and the voltage VA2 across the low-side switch element SW_A2L. Is. ..
  • the comparator 723 calculates the absolute value of the interphase voltage VCA and the saturation voltage Vs. Compare the magnitude relationship with at2. When it is determined that the absolute value of VCA is Vsat2 or more (
  • the comparator 724 compares the sum “VB1 + VB2” of the voltage VB1 across the low-side switch element SW_B1L and the voltage VB2 across the low-side switch element SW_B2L with the negative value “ ⁇ Vsat1” of the saturation voltage Vsat1. ..
  • the comparator 724 determines that “VB1 + VB2” is greater than or equal to “ ⁇ Vsat1” ((VB1 + VB2) ⁇ ⁇ Vsat1), the comparator 724 outputs “0” indicating that the high side of phase B is normal to the logic circuit AND732.
  • the comparator 724 determines that “VB1 + VB2” is less than “ ⁇ Vsat1” ((VB1 + VB2) ⁇ Vsat1), it outputs “1” indicating that the high side of phase B is abnormal to the logic circuit AND732. ..
  • the logic circuit AND732 takes the logical product of the output signals of the comparators 723 and 724.
  • the logic circuit AND732 outputs a logical product to the motor control unit 900 as a failure signal BH_FD indicating whether or not there is a failure on the high side of the B phase. ..
  • the logic circuit AND732 When at least one of the output signals of the comparators 723 and 724 is “0”, the logic circuit AND732 outputs “0” indicating that the high side of the B phase is normal as the failure signal BH_FD. When both the output signals of the comparators 723 and 724 are “1”, the logic circuit AND732 outputs "1” indicating that the high side of the B phase has a failure as the failure signal BH_FD. ..
  • the absolute value calculator 713 calculates the absolute value of the interphase voltage VAB between the A phase and the B phase. ..
  • VAB (VA1 + VA2)-(VB1 + VB2) Formula (6)
  • the interphase voltage VAB is the difference between the sum of the voltage VA1 across the low-side switching element SW_A1L and the voltage VA2 across the low-side switching element SW_A2L, and the sum of the voltage VB1 across the low-side switching element SW_B1L and the voltage VB2 across the low-side switching element SW_B2L. Is. ..
  • the comparator 725 compares the absolute value of the interphase voltage VAB with the saturation voltage Vsat2. When it is determined that the absolute value of VAB is Vsat2 or more (
  • the comparator 726 compares the sum “VC1 + VC2” of the voltage VC1 across the low-side switch element SW_C1L and the voltage VC2 across the low-side switch element SW_C2L with the negative value “ ⁇ Vsat1” of the saturation voltage Vsat1. ..
  • the comparator 726 determines that “VC1 + VC2” is greater than or equal to “ ⁇ Vsat1” ((VC1 + VC2) ⁇ ⁇ Vsat1), the comparator 726 outputs “0” indicating that the high side of the C phase is normal to the logic circuit AND733.
  • the comparator 726 outputs “1” indicating that the high side of the C phase is abnormal to the logic circuit AND733. ..
  • the logic circuit AND733 takes the logical product of the output signals of the comparators 725 and 726.
  • the logic circuit AND733 outputs a logical product to the motor control unit 900 as a failure signal CH_FD indicating whether or not there is a failure on the high side of the C phase. ..
  • the logic circuit AND733 When at least one of the output signals of the comparators 725 and 726 is “0”, the logic circuit AND733 outputs “0” indicating that the high side of the C phase is normal as the failure signal CH_FD. When both the output signals of the comparators 725 and 726 are “1”, the logic circuit AND733 outputs "1” indicating that the high side of the C phase has a failure as the failure signal CH_FD. ..
  • the failure diagnosis unit 702 executes the diagnosis of the presence or absence of the low side failure. In order to avoid repetition of description of the same processing, here, of the processing executed by the failure diagnosis unit 702, processing different from the failure diagnosis unit 701 will be described. ..
  • the fault diagnosis unit 702 has comparators 727, 728, 729 instead of the comparators 722, 724, 726. ..
  • the comparator 727 compares the sum “VA1 + VA2” of the voltage VA1 across the low-side switch element SW_A1L and the voltage VA2 across the low-side switch element SW_A2L with the saturation voltage Vsat1. ..
  • the comparator 727 determines that “VA1 + VA2” is equal to or smaller than “Vsat1” ((VA1 + VA2) ⁇ Vsat1), it outputs “0” indicating that the low side of the A phase is normal to the logic circuit AND731.
  • the comparator 727 determines that “VA1 + VA2” is larger than “Vsat1” ((VA1 + VA2)> Vsat1), it outputs “1” indicating that the low side of the phase A is abnormal to the logic circuit AND731. ..
  • the logic circuit AND731 takes the logical product of the output signals of the comparators 721 and 727.
  • the logic circuit AND731 outputs a logical product to the motor control unit 900 as a failure signal AL_FD indicating the presence / absence of a failure on the low side of the phase A. ..
  • the logic circuit AND731 When at least one of the output signals of the comparators 721 and 727 is “0", the logic circuit AND731 outputs "0" indicating that the low side of the A phase is normal as the failure signal AL_FD. When both the output signals of the comparators 721 and 727 are “1”, the logic circuit AND731 outputs "1" indicating that the low side of the phase A has a failure as the failure signal AL_FD. ..
  • the comparator 728 compares the sum “VB1 + VB2” of the voltage VB1 across the low-side switch element SW_B1L and the voltage VB2 across the low-side switch element SW_B2L with the saturation voltage Vsat1. ..
  • the comparator 728 determines that “VB1 + VB2” is “Vsat1” or less ((VB1 + VB2) ⁇ Vsat1), it outputs “0” indicating that the low side of the B phase is normal to the logic circuit AND732.
  • the comparator 728 outputs “1” indicating that the low side of the B phase is abnormal to the logic circuit AND732. ..
  • the logic circuit AND732 takes the logical product of the output signals of the comparators 723 and 728.
  • the logic circuit AND732 outputs a logical product to the motor control unit 900 as a failure signal BL_FD indicating the presence or absence of a B-phase low-side failure. ..
  • the logic circuit AND732 When at least one of the output signals of the comparators 723 and 728 is “0”, the logic circuit AND732 outputs "0" indicating that the low side of the B phase is normal as the failure signal BL_FD. When both the output signals of the comparators 723 and 728 are “1”, the logic circuit AND732 outputs “1” indicating that the low side of the B phase has a failure as the failure signal BL_FD. ..
  • the comparator 729 compares the sum “VC1 + VC2” of the voltage VC1 across the low-side switch element SW_C1L and the voltage VC2 across the low-side switch element SW_C2L with the saturation voltage Vsat1. ..
  • the comparator 729 determines that “VC1 + VC2” is less than or equal to “Vsat1” ((VC1 + VC2) ⁇ Vsat1), it outputs “0” indicating that the low side of the C phase is normal to the logic circuit AND733.
  • the comparator 729 outputs “1” indicating that the low side of the C phase is abnormal to the logic circuit AND733. ..
  • the logic circuit AND733 takes the logical product of the output signals of the comparators 725 and 729.
  • the logic circuit AND733 outputs a logical product to the motor control unit 900 as a failure signal CL_FD indicating the presence or absence of a C-phase low-side failure. ..
  • the logic circuit AND733 When at least one of the output signals of the comparators 725 and 729 is “0", the logic circuit AND733 outputs "0" indicating that the low side of the C phase is normal as the failure signal CL_FD. When both the output signals of the comparators 725 and 729 are “1”, the logic circuit AND733 outputs "1" indicating that the low side of the C phase has a failure as the failure signal CL_FD. ..
  • the motor control unit 900 changes the motor control according to the failure signal output from the failure diagnosis unit 700. For example, the motor control is switched from the three-phase energization control to the two-phase energization control. For example, when a failed phase is specified, two-phase energization control using the remaining two phases other than the phase including the failed switch element is performed. For example, when at least one of the failure signals AH_FD and AL_FD indicates “1” and it is determined that the phase A has failed, the motor control unit 900 turns off all the switch elements of the phase A H-bridge BA. . Then, the two-phase energization control using the remaining B-phase and C-phase H bridges BB and BC is performed. Thereby, even if one of the three phases fails, the power conversion apparatus 1000 can continue to drive the motor. ..
  • FIG. 8 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the three-phase energization control. is doing.
  • FIG. 9 is obtained by plotting current values flowing in the B-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the A-phase H bridge BA fails.
  • the current waveform is illustrated.
  • the horizontal axis represents the motor electrical angle (deg), and the vertical axis represents the current value (A).
  • I pk represents the maximum current value (peak current value) of each phase.
  • FIG. 10 when the B-phase H bridge BB fails, the current values flowing in the A-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control are plotted.
  • the current waveform obtained by the above is illustrated.
  • FIG. 11 when the C-phase H bridge BC fails, it is obtained by plotting the current values flowing in the A-phase and B-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control.
  • a current waveform is illustrated. ..
  • the order of the processes of the failure diagnosis units 701 and 702 described above is arbitrary.
  • the processing of the comparators 721, 723, 725 may be performed after the processing of the comparators 722, 724, 726, 727, 728, 729. ..
  • the processing of the comparators 722, 724, 726, 727, 728, 729 may be performed, and the processing of the comparators 721, 723, 725 may be performed only when an abnormality is detected.
  • the presence / absence of an abnormality can be determined only by the processing of the comparators 722, 724, 726, 727, 728, 729.
  • the comparators 721, 723, and 725 can perform the processing to further improve the accuracy of determining the presence or absence of the abnormality.
  • the amount of calculation can be reduced by performing the processing of the comparators 721, 723, and 725 only when an abnormality is detected. By reducing the calculation amount, when a failure occurs, the failure can be dealt with in a shorter time. ..
  • the processing of the comparators 721, 723, 725 and the processing of the comparators 722, 724, 726, 727, 728, 729 may be performed at the same time.
  • the presence / absence of abnormality can be accurately determined. For example, even in a use environment where noise is mixed in the voltage signal, it is possible to highly accurately determine whether or not there is an abnormality.
  • each graph represents voltage (V)
  • the horizontal axis represents time (s). ..
  • FIG. 12 shows a waveform of the sum of the actual voltages VA1 and VA2 when the high side switch element SW_A1H has an open failure.
  • FIG. 13 shows a waveform of the sum of the actual voltages VB1 and VB2 when the high-side switch element SW_A1H has an open failure.
  • FIG. 14 shows a waveform of the sum of the actual voltages VC1 and VC2 when the high side switch element SW_A1H has an open failure. ..
  • the absolute value of the interphase voltage VBC is less than Vsat2, as shown in FIG.
  • the absolute value of interphase voltage VCA and the absolute value of interphase voltage VAB are not less than Vsat2. ..
  • the failure diagnosis of the present disclosure can be realized by a simple algorithm. Therefore, for example, in mounting the controller 340 on the controller, advantages such as reduction of the circuit size or the memory size can be obtained. Further, since the monitoring of the interphase voltage requires a small amount of calculation, it is possible to shorten the time until failure detection. ..
  • the failure diagnosis described above may not be performed for all three phases, and the failure diagnosis may be performed for only one phase or two phases.
  • the failure diagnosis is performed only for the A phase, only the process related to the A phase among the processes described above may be performed, and the process related to the B phase and the C phase may not be performed. ..
  • FIG. 18 exemplifies a functional block for performing a failure diagnosis of the second inverter 130.
  • FIG. 19 exemplifies a functional block for performing a failure diagnosis of the first inverter 120. ..
  • the failure diagnosis unit 700 refers to the lookup table 840 (FIG. 20) and determines the saturation voltage Vsat based on the currents Id and Iq and the rotation speed ⁇ . ..
  • FIG. 20 schematically shows a lookup table (LUT) 840 that determines the saturation voltage Vsat from the rotation speed ⁇ and the current amplitude value.
  • the LUT 840 associates the relationship between the saturation voltage Vsat and the input of the current amplitude value (Id 2 + Iq 2 ) 1/2 determined based on the d-axis current and the q-axis current and the rotation speed ⁇ of the motor 200.
  • Table 1 illustrates the configuration of the LUT 840 that can be used for failure diagnosis.
  • Id is generally treated as zero. Therefore, the current amplitude value becomes equal to Iq.
  • Table 1 shows Iq (A).
  • the saturation voltage Vsat is determined from the obtained current amplitude value Iq and the rotation speed ⁇ .
  • a value set in advance before driving may be used.
  • the saturation voltage Vsat a constant value depending on the system (for example, about 0.1 V) may be used. ..
  • the failure diagnosis unit 700 diagnoses whether or not there is a failure in the inverter based on the above-mentioned actual voltage, voltage peak value Vpeak, and saturation voltage Vsat. ..
  • the failure diagnosis unit 700 generates a failure signal 1_FD indicating a failure of the first inverter 120 and a failure signal 2_FD indicating a failure of the second inverter 130 based on the diagnosis result, and outputs the failure signal 1_FD to the motor control unit 900. ..
  • the failure diagnosis unit 700 has a failure diagnosis unit 801 for diagnosing the presence / absence of a failure in the second inverter 130 and a failure diagnosis unit 802 for diagnosing the presence / absence of a failure in the first inverter 120 shown in FIGS. 18 and 19.
  • Fault diagnosis units 801 and 802 have substantially the same functional blocks, but the input actual voltages are different from each other. ..
  • Each of the failure diagnosis units 801 and 802 includes an absolute value calculator 811, 814, 817, a multiplier 812, 813, 815, 816, 818, 819, an adder 831, 832, 833, and a comparator 851, 852. , 853 and a logic circuit OR871. ..
  • the absolute value calculator 811 of the failure diagnosis unit 801 calculates the absolute value of the actual voltage VA1.
  • the multiplier 812 multiplies the voltage peak value Vpeak by a constant “ ⁇ 1 ⁇ 2”.
  • the multiplier 813 multiplies the saturation voltage Vsat by a constant “ ⁇ 1”.
  • the adder 831 adds the output values of the absolute value calculator 811, the multipliers 812 and 813 to calculate the fault diagnosis voltage VA1_FD represented by the following equation (7).
  • VA1_FD
  • the comparator 851 compares “VA1_FD” with “zero”. When VA1_FD is less than or equal to zero (VA1_FD ⁇ 0), the comparator 851 outputs “0” indicating that the actual voltage VA1 is normal to the logic circuit OR871. When VA1_FD is greater than zero (VA1_FD> 0), the comparator 851 outputs “1” indicating that the actual voltage VA1 is abnormal to the logic circuit OR871. ..
  • the absolute value calculator 814 of the failure diagnosis unit 801 calculates the absolute value of the actual voltage VB1.
  • the multiplier 815 multiplies the voltage peak value Vpeak by a constant “ ⁇ 1 ⁇ 2”.
  • the multiplier 816 multiplies the saturation voltage Vsat by a constant “ ⁇ 1”.
  • the adder 832 adds the output values of the absolute value calculator 814 and the multipliers 815 and 816 to calculate the fault diagnosis voltage VB1_FD represented by the following equation (8).
  • VB1_FD
  • the comparator 852 compares “VB1_FD” with “zero”. When VB1_FD is less than or equal to zero, the comparator 852 outputs “0” indicating that the actual voltage VB1 is normal to the logic circuit OR871. When VB1_FD is greater than zero, the comparator 852 outputs "1” indicating that the actual voltage VB1 is abnormal to the logic circuit OR871. ..
  • the absolute value calculator 817 of the failure diagnosis unit 801 calculates the absolute value of the actual voltage VC1.
  • the multiplier 818 multiplies the voltage peak value Vpeak by a constant “ ⁇ 1 ⁇ 2”.
  • the multiplier 819 multiplies the saturation voltage Vsat by a constant “ ⁇ 1”.
  • the adder 833 adds the output values of the absolute value calculator 817 and the multipliers 818 and 819 to calculate the fault diagnosis voltage VC1_FD represented by the following equation (9).
  • VC1_FD
  • the comparator 853 compares “VC1_FD” with “zero”. When VC1_FD is less than or equal to zero, the comparator 853 outputs “0” indicating that the actual voltage VC1 is normal to the logic circuit OR871. When VC1_FD is greater than zero, the comparator 853 outputs “1” indicating that the actual voltage VC1 is abnormal to the logic circuit OR871. ..
  • the logic circuit OR871 takes the logical sum of the output signals of the comparators 851, 852 and 853.
  • the logic circuit OR871 outputs a logical sum to the motor control unit 900 as a failure signal 2_FD indicating the presence / absence of a failure of the second inverter 130. ..
  • the logic circuit OR871 When the output signals of the comparators 851, 852, 853 are all “0”, the logic circuit OR871 outputs "0" indicating that the second inverter 130 is normal as the failure signal 2_FD. When at least one of the output signals of the comparators 851, 852, 853 is “1”, the logic circuit OR871 outputs “1” indicating that the second inverter 130 has a failure as the failure signal 2_FD. ..
  • the failure diagnosis unit 802 shown in FIG. 19 executes the same processing as the failure diagnosis unit 801, and diagnoses the presence or absence of a failure in the first inverter 120. Instead of the actual voltages VA1, VB1 and VC1, the actual voltages VA2, VB2 and VC2 are input to the failure diagnosis unit 802. Since the other processes of the failure diagnosis unit 802 are the same as those of the failure diagnosis unit 801, detailed description thereof will be omitted here. ..
  • the fault diagnosis voltage may be obtained by a method other than the above calculation.
  • the fault diagnosis voltage VA1_FD may be obtained by the calculation of the following formula (10).
  • VA1_FD VA1 2 ⁇ [(Vpeak / 2) + Vsat] 2 Formula (10)
  • the failure diagnosis voltage VA1_FD may be calculated by the following equation (11).
  • A1_FD [VA1 + (Vpeak / 2) + Vsat] [VA1- (Vpeak / 2) -Vsat] Formula (11): ‘A1_FD’
  • 21 to 23 show simulation results of the waveform of each signal.
  • the vertical axis of each graph represents voltage (V), and the horizontal axis represents time (s). ..
  • FIG. 21 shows waveforms of the actual voltage VA1 (upper side) and the actual voltage VA2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • FIG. 22 shows waveforms of the actual voltage VB1 (upper side) and the actual voltage VB2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • FIG. 23 shows waveforms of the actual voltage VC1 (upper side) and the actual voltage VC2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • the actual voltage becomes slightly higher than Vpeak / 2.
  • the value obtained by adding the saturation voltage Vsat to Vpeak / 2 is compared with the actual voltage. Therefore, it is possible to determine that a failure occurs only when a greatly changed actual voltage such as the actual voltage VA2 shown in FIG. 21 is generated.
  • the failure determination is not performed and the accuracy of the failure determination can be improved. ..
  • the motor control unit 900 determines which of the twelve switch elements included in the first and second inverters. It is possible to identify whether the car has failed. By being able to specify which switch element has failed, it is possible to change the control according to the position of the failed switch element. ..
  • a neutral point may be formed on the high side of the first inverter.
  • a neutral point may be formed on the low side of the first inverter.
  • the low side switch element SW_A1L fails, the low side switch elements SW_B1L and SW_C1L are turned off. Then, the high side switch elements SW_A1H, SW_B1H and SW_C1H are turned on. Accordingly, a neutral point is formed on the high side of the first inverter 120. By operating the second inverter 130 using this neutral point, the driving of the motor 200 can be continued. ..
  • the high-side switch element SW_A1H fails, the high-side switch elements SW_B1H and SW_C1H are turned off. Then, the low side switch elements SW_A1L, SW_B1L and SW_C1L are turned on. Accordingly, a neutral point is formed on the low side of the first inverter 120. By operating the second inverter 130 using this neutral point, the driving of the motor 200 can be continued. ..
  • FIG. 24 schematically shows a typical configuration of an electric power steering apparatus 3000 according to the present embodiment. ..
  • Vehicles such as automobiles generally have an electric power steering device.
  • the electric power steering device 3000 according to the present embodiment has a steering system 520 and an auxiliary torque mechanism 540 that generates an auxiliary torque.
  • the electric power steering device 3000 generates an auxiliary torque that assists the steering torque of the steering system generated by the driver operating the steering wheel.
  • the auxiliary torque reduces the driver's operational burden. ..
  • the steering system 520 includes, for example, a steering handle 521, a steering shaft 522, universal joints 523A and 523B, a rotary shaft 524, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, and knuckles. 528A, 528B, and left and right steered wheels 529A, 529B. ..
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, a vehicle electronic control unit (ECU) 542, a motor 543, a speed reduction mechanism 544, and the like.
  • the steering torque sensor 541 detects the steering torque in the steering system 520.
  • the ECU 542 generates a drive signal based on the detection signal of the steering torque sensor 541.
  • the motor 543 generates an auxiliary torque according to the steering torque based on the drive signal.
  • the motor 543 transmits the generated auxiliary torque to the steering system 520 via the speed reduction mechanism 544. ..
  • the ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment.
  • an electronic control system centered on the ECU is built.
  • a motor drive unit is constructed by the ECU 542, the motor 543, and the inverter 545.
  • the motor module 2000 according to the first embodiment can be preferably used in the system. ..
  • an EPS that implements the failure diagnosis method according to the embodiment of the present disclosure is an autonomous vehicle that corresponds to levels 0 to 5 (automation standard) defined by the Government of Japan and the US Department of Transportation Highway Traffic Safety Administration (NHTSA). Can be installed.
  • the embodiments of the present disclosure can be widely used for various devices including various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.
  • various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.

Abstract

The failure diagnosis method according to an embodiment of the present disclosure diagnoses a failure of a power conversion device 1000 for converting the power from a power supply 101 to a power supplied to a motor 200 having n-phase (n is an integer of 3 or more) windings. The failure diagnosis method includes steps of: determining the magnitude relationship between the sum of the voltage VA1 between both ends of an A-phase low-side switch element of a first inverter 120 and the voltage VA2 between both ends of an A-phase low-side switch element of a second inverter 130 and a saturation voltage Vsat1; determining the magnitude relationship between the inter-phase voltage VBC between B-phase and C-phase and a saturation voltage Vsat2; and determining the presence or absence of a failure of the A-phase on the basis of the determination result of the magnitude relationship between the sum of the voltages between both ends and the saturation voltage Vsat1 and the determination result of the magnitude relationship between the inter-phase voltage and the saturation voltage Vsat2.

Description

故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置Failure diagnosis method, power converter, motor module and electric power steering device
本開示は、故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置に関する。 The present disclosure relates to a failure diagnosis method, a power conversion device, a motor module, and an electric power steering device.
近年、電動モータ(以下、単に「モータ」と表記する。)、インバータおよびECUが一体化された機電一体型モータが開発されている。特に車載分野において、安全性の観点から高い品質保証が要求される。そのため、部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として、1つのモータに対して2つの電力変換装置を設けることが検討されている。他の一例として、メインのマイクロコントローラにバックアップ用マイクロコントローラを設けることが検討されている。  In recent years, an electromechanical integrated motor in which an electric motor (hereinafter, simply referred to as “motor”), an inverter and an ECU are integrated has been developed. Particularly in the field of vehicles, high quality assurance is required from the viewpoint of safety. Therefore, a redundant design has been introduced that allows safe operation to continue even if some of the parts fail. As an example of the redundant design, it is considered to provide two power conversion devices for one motor. As another example, providing a backup microcontroller in the main microcontroller is being considered. ‥
特許文献1は、第1系統および第2系統を有するモータ駆動装置を開示する。第1系統は、モータの第1巻線組に接続され、第1インバータ部、電源リレーおよび逆接続保護リレーなどを有する。第2系統は、モータの第2巻線組に接続され、第2インバータ部、電源リレーおよび逆接続保護リレーなどを有する。モータ駆動装置に故障が生じていないとき、第1系統および第2系統の両方を用いてモータを駆動することが可能である。これに対し、第1系統および第2系統の一方、または、第1巻線組および第2巻線組の一方に故障が生じたとき、電源リレーは、電源から、故障した系統、または、故障した巻線組に接続された系統への電力供給を遮断する。故障していない他方の系統を用いてモータ駆動を継続させることが可能である。  Patent Document 1 discloses a motor drive device having a first system and a second system. The first system is connected to the first winding group of the motor and has a first inverter section, a power supply relay, a reverse connection protection relay, and the like. The second system is connected to the second winding group of the motor and has a second inverter section, a power supply relay, a reverse connection protection relay, and the like. It is possible to drive the motor using both the first system and the second system when no failure occurs in the motor drive device. On the other hand, when a failure occurs in one of the first system and the second system, or in one of the first winding set and the second winding set, the power relay relays the power to the failed system or the failure. The power supply to the system connected to the winding set is cut off. It is possible to continue driving the motor using the other system that has not failed. ‥
特許文献2および3も、第1系統および第2系統を有するモータ駆動装置を開示する。一方の系統または一方の巻線組が故障したとしても、故障していない系統によってモータ駆動を継続させることができる。 Patent Documents 2 and 3 also disclose a motor drive device having a first system and a second system. Even if one system or one winding group fails, the motor drive can be continued by the system that has not failed.
日本国公開公報:特開2016-34204号公報Japanese Patent Publication: Japanese Patent Laid-Open No. 2016-34204 日本国公開公報:特開2016-32977号公報Japanese Patent Publication: Japanese Patent Laid-Open No. 2016-32977 日本国公開公報:特開2008-132919号公報Japanese Patent Publication: Japanese Patent Laid-Open No. 2008-132919
上述した従来の技術では、電力変換装置の故障を適切に検出することが求められていた。  In the above-mentioned conventional technique, it is required to properly detect the failure of the power conversion device. ‥
本開示の実施形態は、電力変換装置における相の故障を適切に診断することが可能な故障診断方法を提供する。 Embodiments of the present disclosure provide a failure diagnosis method capable of appropriately diagnosing a phase failure in a power conversion device.
本開示の例示的な故障診断方法は、電源からの電力を、n相(nは3以上の整数)の巻線を有するモータへ供給する電力に変換する電力変換装置の故障を診断する故障診断方法であって、前記電力変換装置は、前記モータの各相の巻線の第1端に接続される第1インバータと、前記各相の巻線の第2端に接続される第2インバータと、各々が第1ハイサイドスイッチ素子、第1ローサイドスイッチ素子、第2ハイサイドスイッチ素子および第2ローサイドスイッチ素子を有するn個のHブリッジとを備え、前記n相は、第1相、第2相および第3相を含み、前記故障診断方法は、前記第1インバータにおける前記第1相のローサイドスイッチ素子の両端電圧と前記第2インバータにおける前記第1相のローサイドスイッチ素子の両端電圧との和と、第1飽和電圧との大小関係を判定するステップと、前記第2相と前記第3相の間の相間電圧と、第2飽和電圧との大小関係を判定するステップと、前記両端電圧の和と前記第1飽和電圧との大小関係の判定結果および前記相間電圧と前記第2飽和電圧との大小関係の判定結果に基づいて、前記第1相の故障の有無を判定するステップとを含む。  An exemplary failure diagnosis method of the present disclosure is a failure diagnosis for diagnosing a failure of a power conversion device that converts electric power from a power supply into electric power supplied to a motor having n-phase (n is an integer of 3 or more) windings. A method, wherein the power converter includes a first inverter connected to a first end of each phase winding of the motor, and a second inverter connected to a second end of each phase winding of the motor. , N number of H-bridges each having a first high-side switching element, a first low-side switching element, a second high-side switching element and a second low-side switching element, the n-phase being the first phase and the second phase. Phase and a third phase, the failure diagnosis method comprises: a voltage across the first-phase low-side switch element in the first inverter and a voltage across the first-phase low-side switch element in the second inverter. And a step of determining a magnitude relationship with the first saturation voltage; a step of determining a magnitude relationship between the interphase voltage between the second phase and the third phase and a second saturation voltage; Determining the presence or absence of the failure of the first phase based on the determination result of the magnitude relationship between the sum and the first saturation voltage and the determination result of the magnitude relationship between the interphase voltage and the second saturation voltage. . ‥
本開示の例示的な電力変換装置は、電源からの電力を、n相(nは3以上の整数)の巻線を有するモータへ供給する電力に変換する電力変換装置であって、前記電力変換装置は、前記モータの各相の巻線の第1端に接続される第1インバータと、前記各相の巻線の第2端に接続される第2インバータと、各々が第1ハイサイドスイッチ素子、第1ローサイドスイッチ素子、第2ハイサイドスイッチ素子および第2ローサイドスイッチ素子を有するn個のHブリッジと、前記第1および第2インバータの動作を制御する制御回路とを備え、前記n相は、第1相、第2相および第3相を含み、前記制御回路は、前記第1インバータにおける前記第1相のローサイドスイッチ素子の両端電圧と前記第2インバータにおける前記第1相のローサイドスイッチ素子の両端電圧との和と、第1飽和電圧との大小関係を判定し、前記第2相と前記第3相の間の相間電圧と、第2飽和電圧との大小関係を判定し、前記両端電圧の和と前記第1飽和電圧との大小関係の判定結果および前記相間電圧と前記第2飽和電圧との大小関係の判定結果に基づいて、前記第1相の故障の有無を判定する。 An exemplary power conversion device according to the present disclosure is a power conversion device that converts power from a power source into power to be supplied to a motor having n-phase (n is an integer of 3 or more) windings. The apparatus includes a first inverter connected to a first end of each phase winding of the motor, a second inverter connected to a second end of each phase winding, and a first high side switch. An n-phase H-bridge having an element, a first low-side switch element, a second high-side switch element, and a second low-side switch element, and a control circuit for controlling the operation of the first and second inverters. Includes a first phase, a second phase and a third phase, and the control circuit is configured such that the control circuit has a voltage across the low-side switching element of the first phase in the first inverter and a low-side voltage of the first phase in the second inverter. The sum of the voltage across the switch element and the first saturation voltage is determined, and the interphase voltage between the second phase and the third phase and the second saturation voltage are determined. , The presence or absence of the failure of the first phase is determined based on the determination result of the magnitude relationship between the sum of the voltage across both ends and the first saturation voltage and the determination result of the magnitude relationship between the interphase voltage and the second saturation voltage. To do.
本開示の例示的な実施形態によると、電力変換装置における相の故障を適切に診断することが可能な故障診断方法、電力変換装置、当該電力変換装置を備えるモータモジュールおよび当該モータモジュールを備える電動パワーステアリング装置が提供される。 According to an exemplary embodiment of the present disclosure, a failure diagnosis method capable of appropriately diagnosing a phase failure in a power conversion device, a power conversion device, a motor module including the power conversion device, and an electric motor including the motor module. A power steering device is provided.
図1は、実施形態に係るモータモジュールを模式的に示すブロック図である。FIG. 1 is a block diagram schematically showing a motor module according to an embodiment. 図2は、実施形態に係るインバータユニットを模式的に示す回路図である。FIG. 2 is a circuit diagram schematically showing the inverter unit according to the embodiment. 図3Aは、A相のHブリッジを示す模式図である。FIG. 3A is a schematic diagram showing an A-phase H bridge. 図3Bは、B相のHブリッジを示す模式図である。FIG. 3B is a schematic diagram showing a B-phase H bridge. 図3Cは、C相のHブリッジを示す模式図である。FIG. 3C is a schematic diagram showing a C-phase H bridge. 図4は、モータ制御全般を行うコントローラを示す機能ブロック図である。FIG. 4 is a functional block diagram showing a controller that performs overall motor control. 図5は、各相のハイサイドの故障診断を行うための機能ブロックを示す機能ブロック図である。FIG. 5 is a functional block diagram showing functional blocks for performing high-side failure diagnosis of each phase. 図6は、各相のローサイドの故障診断を行うための機能ブロックを示す機能ブロック図である。FIG. 6 is a functional block diagram showing functional blocks for performing low-side failure diagnosis of each phase. 図7は、回転速度ωおよび電流振幅値から定数Ksat1、Ksat2を決定するルックアップテーブルを示す模式図である。FIG. 7 is a schematic diagram showing a lookup table for determining the constants Ksat1 and Ksat2 from the rotation speed ω and the current amplitude value. 図8は、三相通電制御に従って電力変換装置を制御したときにモータのA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示するグラフである。FIG. 8: is a graph which illustrates the current waveform (sine wave) obtained by plotting the current value which flows into each winding of A-phase, B-phase, and C-phase of a motor when controlling a power converter device according to three-phase electricity supply control. Is. 図9は、A相が故障した場合、二相通電制御に従って電力変換装置を制御したときにモータのB相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。FIG. 9 is a graph exemplifying a current waveform obtained by plotting current values flowing in the windings of the B-phase and C-phase of the motor when the power converter is controlled according to the two-phase energization control when the A-phase fails. Is. 図10は、B相が故障した場合、二相通電制御に従って電力変換装置を制御したときにモータのC相、A相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。FIG. 10 is a graph exemplifying a current waveform obtained by plotting a current value flowing in each winding of the C phase and A phase of the motor when the power converter is controlled according to the two-phase energization control when the B phase fails. Is. 図11は、C相が故障した場合、二相通電制御に従って電力変換装置を制御したときにモータのA相、B相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。FIG. 11 is a graph exemplifying current waveforms obtained by plotting current values flowing in windings of the A phase and B phase of the motor when the power converter is controlled according to the two-phase energization control when the C phase fails. Is. 図12は、ハイサイドスイッチ素子SW_A1Hがオープン故障した場合の実電圧VA1およびVA2の和のシミュレーション結果の波形を示すグラフである。FIG. 12 is a graph showing the waveform of the simulation result of the sum of the actual voltages VA1 and VA2 when the high-side switch element SW_A1H has an open failure. 図13は、ハイサイドスイッチ素子SW_A1Hがオープン故障した場合の実電圧VB1およびVB2の和のシミュレーション結果の波形を示すグラフである。FIG. 13 is a graph showing a waveform of a simulation result of the sum of the actual voltages VB1 and VB2 when the high side switch element SW_A1H has an open failure. 図14は、ハイサイドスイッチ素子SW_A1Hがオープン故障した場合の実電圧VC1およびVC2の和のシミュレーション結果の波形を示すグラフである。FIG. 14 is a graph showing a waveform of a simulation result of the sum of the actual voltages VC1 and VC2 when the high side switch element SW_A1H has an open failure. 図15は、ハイサイドスイッチ素子SW_A1Hがオープン故障した場合の相間電圧VBCのシミュレーション結果の波形を示すグラフである。FIG. 15 is a graph showing the waveform of the simulation result of the interphase voltage VBC when the high side switch element SW_A1H has an open failure. 図16は、ハイサイドスイッチ素子SW_A1Hがオープン故障した場合の相間電圧VCAのシミュレーション結果の波形を示すグラフである。FIG. 16 is a graph showing a waveform of a simulation result of the interphase voltage VCA when the high side switch element SW_A1H has an open failure. 図17は、ハイサイドスイッチ素子SW_A1Hがオープン故障した場合の相間電圧VABのシミュレーション結果の波形を示すグラフである。FIG. 17 is a graph showing the waveform of the simulation result of the interphase voltage VAB when the high side switch element SW_A1H has an open failure. 図18は、第2インバータの故障診断を行うための機能ブロックを示す機能ブロック図である。FIG. 18 is a functional block diagram showing functional blocks for performing failure diagnosis of the second inverter. 図19は、第1インバータの故障診断を行うための機能ブロックを示す機能ブロック図である。FIG. 19 is a functional block diagram showing functional blocks for performing failure diagnosis of the first inverter. 図20は、回転速度ωおよび電流振幅値から飽和電圧Vsatを決定するルックアップテーブルを示す模式図である。FIG. 20 is a schematic diagram showing a lookup table for determining the saturation voltage Vsat from the rotation speed ω and the current amplitude value. 図21は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VA1(上側)および実電圧VA2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 21 is a graph showing waveforms of simulation results of the actual voltage VA1 (upper side) and the actual voltage VA2 (lower side) when the low side switch element SW_A1L has an open failure. 図22は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VB1(上側)および実電圧VB2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 22 is a graph showing waveforms of simulation results of the actual voltage VB1 (upper side) and the actual voltage VB2 (lower side) when the low side switch element SW_A1L has an open failure. 図23は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VC1(上側)および実電圧VC2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 23 is a graph showing waveforms of simulation results of the actual voltage VC1 (upper side) and the actual voltage VC2 (lower side) when the low-side switch element SW_A1L has an open failure. 図24は、例示的な実施形態に係る電動パワーステアリング装置を示す模式図である。FIG. 24 is a schematic diagram showing an electric power steering device according to an exemplary embodiment.
以下、添付の図面を参照しながら、本開示のインバータの故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。  Hereinafter, embodiments of a failure diagnosis method for an inverter, a power conversion device, a motor module, and an electric power steering device according to the present disclosure will be described in detail with reference to the accompanying drawings. However, in order to avoid unnecessary redundancy in the following description and facilitate understanding by those skilled in the art, detailed description may be omitted more than necessary. For example, detailed description of well-known matters and repeated description of substantially the same configuration may be omitted. ‥
本明細書において、電源からの電力を、三相(A相、B相、C相)の巻線を有する三相モータに供給する電力に変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置、およびその装置に用いるインバータの故障診断方法も本開示の範疇である。  In the present specification, the present disclosure will be described with an example of a power converter that converts electric power from a power supply into electric power supplied to a three-phase motor having three-phase (A-phase, B-phase, and C-phase) windings. The form will be described. However, a power converter for converting power from a power source into power supplied to an n-phase motor having n-phase (n is an integer of 4 or more) winding such as four-phase or five-phase, and an inverter used in the device. The failure diagnosis method is also within the scope of the present disclosure. ‥
(実施形態1) 〔1.モータモジュール2000および電力変換装置1000の構造〕 図1は、本実施形態によるモータモジュール2000の典型的なブロック構成を模式的に示している。  (Embodiment 1) [1. Structures of Motor Module 2000 and Power Converter 1000] FIG. 1 schematically shows a typical block configuration of the motor module 2000 according to the present embodiment. ‥
モータモジュール2000は、典型的に、インバータユニット100と制御回路300とを有する電力変換装置1000およびモータ200を備える。モータモジュール2000は、モジュール化され、例えば、モータ、センサ、ドライバおよびコントローラを有する機電一体型モータとして製造および販売され得る。  The motor module 2000 typically includes a power converter 1000 having an inverter unit 100 and a control circuit 300, and a motor 200. The motor module 2000 is modularized and may be manufactured and sold, for example, as an electromechanical integrated motor having a motor, a sensor, a driver and a controller. ‥
電力変換装置1000は、電源101(図2を参照)からの電力をモータ200に供給する電力に変換することが可能である。電力変換装置1000は、モータ200に接続される。例えば、電力変換装置1000は、直流電力を、A相、B相およびC相の擬似正弦波である三相交流電力に変換することが可能である。本明細書において、部品(構成要素)同士の間の「接続」とは、主に電気的な接続を意味する。  The power converter 1000 can convert the power from the power supply 101 (see FIG. 2) into the power to be supplied to the motor 200. The power converter 1000 is connected to the motor 200. For example, the power converter 1000 can convert DC power into three-phase AC power that is a pseudo sine wave of A phase, B phase, and C phase. In the present specification, “connection” between parts (components) mainly means electrical connection. ‥
モータ200は、例えば三相交流モータである。モータ200は、A相の巻線M1、B相の巻線M2およびC相の巻線M3を備え、インバータユニット100の第1インバータ120と第2インバータ130とに接続される。具体的に説明すると、第1インバータ120はモータ200の各相の巻線の一端に接続され、第2インバータ130は各相の巻線の他端に接続される。  The motor 200 is, for example, a three-phase AC motor. The motor 200 includes an A-phase winding M1, a B-phase winding M2, and a C-phase winding M3, and is connected to the first inverter 120 and the second inverter 130 of the inverter unit 100. More specifically, the first inverter 120 is connected to one end of each phase winding of the motor 200, and the second inverter 130 is connected to the other end of each phase winding. ‥
制御回路300は、例えば、電源回路310と、角度センサ320と、入力回路330と、コントローラ340と、駆動回路350と、ROM360とを備える。制御回路300の各部品は、例えば1枚の回路基板(典型的にはプリント基板)に実装される。制御回路300は、インバータユニット100に接続され、電流センサ150および角度センサ320からの入力信号に基づいてインバータユニット100を制御する。その制御手法として、例えばベクトル制御、パルス幅変調(PWM)または直接トルク制
御(DTC)がある。ただし、モータ制御手法(例えばセンサレス制御)によっては、角度センサ320は不要な場合がある。 
The control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360. Each component of the control circuit 300 is mounted on, for example, one circuit board (typically a printed board). The control circuit 300 is connected to the inverter unit 100 and controls the inverter unit 100 based on the input signals from the current sensor 150 and the angle sensor 320. The control method includes vector control, pulse width modulation (PWM) or direct torque control (DTC), for example. However, depending on the motor control method (for example, sensorless control), the angle sensor 320 may be unnecessary.
制御回路300は、目的とする、モータ200のロータの位置、回転速度、および電流などを制御してクローズドループ制御を実現することができる。なお、制御回路300は、角度センサ320に代えてトルクセンサを備えてもよい。この場合、制御回路300は、目的とするモータトルクを制御することができる。  The control circuit 300 can realize the closed loop control by controlling the target position, rotation speed, current, and the like of the rotor of the motor 200. The control circuit 300 may include a torque sensor instead of the angle sensor 320. In this case, the control circuit 300 can control the target motor torque. ‥
電源回路310は、電源101の例えば12Vの電圧に基づいて回路内の各ブロックに必要な電源電圧(例えば3V、5V)を生成する。  The power supply circuit 310 generates a power supply voltage (eg, 3V, 5V) required for each block in the circuit based on the voltage of the power supply 101, for example, 12V. ‥
角度センサ320は、例えばレゾルバまたはホールICである。または、角度センサ320は、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ320は、ロータの回転角(以下、「回転信号」と表記する。)を検出し、回転信号をコントローラ340に出力する。  The angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects a rotation angle of the rotor (hereinafter referred to as “rotation signal”) and outputs the rotation signal to the controller 340. ‥
入力回路330は、電流センサ150によって検出された相電流(以下、「実電流値」と表記する場合がある。)を受け取って、実電流値のレベルをコントローラ340の入力レベルに必要に応じて変換し、実電流値をコントローラ340に出力する。入力回路330は、例えばアナログデジタル(AD)変換回路である。  The input circuit 330 receives the phase current detected by the current sensor 150 (hereinafter sometimes referred to as “actual current value”), and sets the level of the actual current value to the input level of the controller 340 as necessary. The actual current value is converted and output to the controller 340. The input circuit 330 is, for example, an analog-digital (AD) conversion circuit. ‥
コントローラ340は、電力変換装置1000の全体を制御する集積回路であり、例えば、マイクロコントローラまたはFPGA(Field Programmable Gate Array)である。コントローラ340は、インバータユニット100の第1および第2インバータ120、130における各スイッチ素子(典型的には半導体スイッチ素子)のスイッチング動作(ターンオンまたはターンオフ)を制御する。コントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路350に出力する。  The controller 340 is an integrated circuit that controls the entire power conversion apparatus 1000, and is, for example, a microcontroller or an FPGA (Field Programmable Gate Array). The controller 340 controls the switching operation (turn-on or turn-off) of each switch element (typically a semiconductor switch element) in the first and second inverters 120 and 130 of the inverter unit 100. The controller 340 sets a target current value according to the actual current value and the rotor rotation signal, generates a PWM signal, and outputs the PWM signal to the drive circuit 350. ‥
駆動回路350は、典型的にはプリドライバ(「ゲートドライバ」と呼ばれることもある。)である。駆動回路350は、インバータユニット100の第1および第2インバータ120、130における各スイッチ素子のスイッチング動作を制御する制御信号(ゲート制御信号)をPWM信号に従って生成し、各スイッチ素子のゲートに制御信号を与える。駆動対象が低電圧で駆動可能なモータであるとき、プリドライバは必ずしも必要とされない場合がある。その場合、プリドライバの機能は、コントローラ340に実装され得る。  The drive circuit 350 is typically a pre-driver (sometimes called a “gate driver”). The drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each switch element in the first and second inverters 120 and 130 of the inverter unit 100 according to the PWM signal, and outputs a control signal to the gate of each switch element. give. When the drive target is a motor that can be driven at a low voltage, the pre-driver may not be necessarily required. In that case, the function of the pre-driver may be implemented in the controller 340. ‥
ROM360は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM360は、コントローラ340に電力変換装置1000を制御させるための命令群を含む制御プログラムを格納している。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。  The ROM 360 is, for example, a writable memory (for example, PROM), a rewritable memory (for example, flash memory), or a read-only memory. The ROM 360 stores a control program including a command group for causing the controller 340 to control the power conversion device 1000. For example, the control program is once expanded in the RAM (not shown) at the time of booting. ‥
図2を参照して、インバータユニット100の具体的な回路構成を説明する。  A specific circuit configuration of the inverter unit 100 will be described with reference to FIG. ‥
図2は、本実施形態によるインバータユニット100の回路構成を模式的に示している。  FIG. 2 schematically shows the circuit configuration of the inverter unit 100 according to this embodiment. ‥
電源101は、所定の電源電圧(例えば12V)を生成する。電源101として、例えば直流電源が用いられる。ただし、電源101は、AC-DCコンバータまたはDC―DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。電源101は、図示するように、第1および第2インバータ120、130に共通の単一電源であってもよいし、第1インバータ120用の第1電源(不図示)および第2インバータ130用の第2電源(不図示)を備えていてもよい。  The power supply 101 generates a predetermined power supply voltage (for example, 12V). As the power supply 101, for example, a DC power supply is used. However, the power supply 101 may be an AC-DC converter or a DC-DC converter, or a battery (storage battery). The power supply 101 may be a single power supply common to the first and second inverters 120 and 130 as shown, or may be a first power supply (not shown) for the first inverter 120 and a second power supply for the second inverter 130. Second power source (not shown) may be provided. ‥
図示されていないが、電源101と第1インバータ120の間、および、電源101と第2インバータ130の間にコイルが設けられる。コイルは、ノイズフィルタとして機能し、各インバータに供給する電圧波形に含まれる高周波ノイズ、または各インバータで発生する高周波ノイズを電源101側に流出させないように平滑化する。また、各インバータの電源端子には、コンデンサが接続される。コンデンサは、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサは、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。  Although not shown, coils are provided between the power supply 101 and the first inverter 120 and between the power supply 101 and the second inverter 130. The coil functions as a noise filter and smoothes high frequency noise included in the voltage waveform supplied to each inverter or high frequency noise generated in each inverter so as not to flow out to the power supply 101 side. A capacitor is connected to the power supply terminal of each inverter. The capacitor is a so-called bypass capacitor and suppresses voltage ripple. The capacitor is, for example, an electrolytic capacitor, and the capacity and the number of capacitors used are appropriately determined according to design specifications and the like. ‥
第1インバータ120は、3個のレグから構成されるブリッジ回路を有する。各レグは、ハイサイドスイッチ素子、ローサイドスイッチ素子およびシャント抵抗を有する。A相レグは、ハイサイドスイッチ素子SW_A1H、ローサイドスイッチ素子SW_A1Lおよび第1シャント抵抗S_A1を有する。B相レグは、ハイサイドスイッチ素子SW_B1H、ローサイドスイッチ素子SW_B1Lおよび第1シャント抵抗S_B1を有する。C相レグは、ハイサイドスイッチ素子SW_C1H、ローサイドスイッチ素子SW_C1Lおよび第1シャント抵抗S_C1を有する。  The first inverter 120 has a bridge circuit composed of three legs. Each leg has a high side switch element, a low side switch element, and a shunt resistor. The A-phase leg has a high side switch element SW_A1H, a low side switch element SW_A1L, and a first shunt resistor S_A1. The B-phase leg has a high side switch element SW_B1H, a low side switch element SW_B1L, and a first shunt resistor S_B1. The C-phase leg has a high side switch element SW_C1H, a low side switch element SW_C1L, and a first shunt resistor S_C1. ‥
スイッチ素子として、例えば、寄生ダイオードが内部に形成された電界効果トランジスタ(典型的にはMOSFET)、または、絶縁ゲートバイポーラトランジスタ(IGBT)とそれに並列接続された還流ダイオードとの組み合わせを用いることができる。  As the switch element, for example, a field effect transistor (typically MOSFET) having a parasitic diode formed therein, or a combination of an insulated gate bipolar transistor (IGBT) and a free wheeling diode connected in parallel thereto can be used. . ‥
第1シャント抵抗S_A1は、A相の巻線M1を流れるA相電流IA1を検出するために用いられ、例えば、ローサイドスイッチ素子SW_A1LとGNDラインGLの間に接続される。第1シャント抵抗S_B1は、B相の巻線M2を流れるB相電流IB1を検出するために用いられ、例えば、ローサイドスイッチ素子SW_B1LとGNDラインGLの間に接続される。第1シャント抵抗S_C1は、C相の巻線M3を流れるC相電流IC1を検出するために用いられ、例えば、ローサイドスイッチ素子SW_C1LとGNDラインGLの間に接続される。3個のシャント抵抗S_A1、S_B1およびS_C1は、第1インバータ120のGNDラインGLと共通に接続されている。  The first shunt resistor S_A1 is used to detect the A-phase current IA1 flowing through the A-phase winding M1 and is connected, for example, between the low-side switch element SW_A1L and the GND line GL. The first shunt resistor S_B1 is used to detect the B-phase current IB1 flowing through the B-phase winding M2, and is connected, for example, between the low-side switch element SW_B1L and the GND line GL. The first shunt resistor S_C1 is used to detect the C-phase current IC1 flowing through the C-phase winding M3, and is connected, for example, between the low-side switch element SW_C1L and the GND line GL. The three shunt resistors S_A1, S_B1 and S_C1 are commonly connected to the GND line GL of the first inverter 120. ‥
第2インバータ130は、3個のレグから構成されるブリッジ回路を有する。各レグは、ハイサイドスイッチ素子、ローサイドスイッチ素子およびシャント抵抗を有する。A相レグは、ハイサイドスイッチ素子SW_A2H、ローサイドスイッチ素子SW_A2Lおよびシャント抵抗S_A2を有する。B相レグは、ハイサイドスイッチ素子SW_B2H、ローサイドスイッチ素子SW_B2Lおよびシャント抵抗S_B2を有する。C相レグは、ハイサイドスイッチ素子SW_C2H、ローサイドスイッチ素子SW_C2Lおよびシャント抵抗S_C2を有する。  The second inverter 130 has a bridge circuit composed of three legs. Each leg has a high side switch element, a low side switch element, and a shunt resistor. The A-phase leg has a high-side switch element SW_A2H, a low-side switch element SW_A2L, and a shunt resistor S_A2. The B-phase leg has a high-side switch element SW_B2H, a low-side switch element SW_B2L, and a shunt resistor S_B2. The C-phase leg has a high-side switch element SW_C2H, a low-side switch element SW_C2L, and a shunt resistor S_C2. ‥
シャント抵抗S_A2は、A相電流IA2を検出するために用いられ、例えば、ローサイドスイッチ素子SW_A2LとGNDラインGLの間に接続される。シャント抵抗S_B2は、B相電流IB2を検出するために用いられ、例えば、ローサイドスイッチ素子SW_B2LとGNDラインGLの間に接続される。シャント抵抗S_C2は、C相電流IC2を検出するために用いられ、例えば、ローサイドスイッチ素子SW_C2LとGNDラインGLの間に接続される。3個のシャント抵抗S_A2、S_B2およびS_C2は、第2インバータ130のGNDラインGLと共通に接続されている。  The shunt resistor S_A2 is used to detect the A-phase current IA2, and is connected, for example, between the low-side switch element SW_A2L and the GND line GL. The shunt resistor S_B2 is used to detect the B-phase current IB2, and is connected, for example, between the low side switch element SW_B2L and the GND line GL. The shunt resistor S_C2 is used to detect the C-phase current IC2, and is connected, for example, between the low-side switch element SW_C2L and the GND line GL. The three shunt resistors S_A2, S_B2, and S_C2 are commonly connected to the GND line GL of the second inverter 130. ‥
上述した電流センサ150は、例えば、シャント抵抗S_A1、S_B1、S_C1、S_A2、S_B2、S_C2および各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を備える。  The current sensor 150 described above includes, for example, shunt resistors S_A1, S_B1, S_C1, S_A2, S_B2, S_C2 and a current detection circuit (not shown) that detects a current flowing through each shunt resistor. ‥
第1インバータ120のA相レグ(具体的には、ハイサイドスイッチ素子SW_A1Hおよびローサイドスイッチ素子SW_A1Lの間のノード)は、モータ200のA相の巻線M1の一端A1に接続され、第2インバータ130のA相レグは、A相の巻線M1の他端A2に接続される。第1インバータ120のB相レグは、モータ200のB相の巻線M2の一端B1に接続され、第2インバータ130のB相レグは、巻線M2の他端B2に接続される。第1インバータ120のC相レグは、モータ200のC相の巻線M3の一端C1に接続され、第2インバータ130のC相レグは、巻線M3の他端C2に接続される。  The A-phase leg of the first inverter 120 (specifically, the node between the high-side switch element SW_A1H and the low-side switch element SW_A1L) is connected to one end A1 of the A-phase winding M1 of the motor 200, and is connected to the second inverter. The A-phase leg of 130 is connected to the other end A2 of the A-phase winding M1. The B-phase leg of the first inverter 120 is connected to one end B1 of the B-phase winding M2 of the motor 200, and the B-phase leg of the second inverter 130 is connected to the other end B2 of the winding M2. The C-phase leg of the first inverter 120 is connected to one end C1 of the C-phase winding M3 of the motor 200, and the C-phase leg of the second inverter 130 is connected to the other end C2 of the winding M3. ‥
図3Aは、A相のHブリッジBAの構成を模式的に示している。図3Bは、B相のHブリッジBBの構成を模式的に示している。図3Cは、C相のHブリッジBCの構成を模式的に示している。  FIG. 3A schematically shows the configuration of the phase A H-bridge BA. FIG. 3B schematically shows the configuration of the B-phase H bridge BB. FIG. 3C schematically shows the configuration of the C-phase H bridge BC. ‥
インバータユニット100は、A相、B相およびC相のHブリッジBA、BBおよびBCを備える。A相のHブリッジBAは、第1インバータ120側のレグにおけるハイサイドスイッチ素子SW_A1H、ローサイドスイッチ素子SW_A1L、第2インバータ130側のレグにおけるハイサイドスイッチ素子SW_A2H、ローサイドスイッチ素子SW_A2L、および、巻線M1を有する。  The inverter unit 100 includes H bridges BA, BB and BC of A phase, B phase and C phase. The A-phase H bridge BA includes a high-side switch element SW_A1H and a low-side switch element SW_A1L in the leg on the first inverter 120 side, a high-side switch element SW_A2H, a low-side switch element SW_A2L in the leg on the second inverter 130 side, and a winding. With M1. ‥
B相のHブリッジBBは、第1インバータ120側のレグにおけるハイサイドスイッチ素子SW_B1H、ローサイドスイッチ素子SW_B1L、第2インバータ130側のレグにおけるハイサイドスイッチ素子SW_B2H、ローサイドスイッチ素子SW_B2L、および、巻線M2を有する。  The B-phase H bridge BB includes a high-side switch element SW_B1H, a low-side switch element SW_B1L in the leg on the first inverter 120 side, a high-side switch element SW_B2H, a low-side switch element SW_B2L in the leg on the second inverter 130 side, and a winding. With M2. ‥
C相のHブリッジBCは、第1インバータ120側のレグにおけるハイサイドスイッチ素子SW_C1H、ローサイドスイッチ素子SW_C1L、第2インバータ130側のレグにおけるハイサイドスイッチ素子SW_C2H、ローサイドスイッチ素子SW_C2L、および、巻線M3を有する。  The C-phase H bridge BC includes a high-side switch element SW_C1H and a low-side switch element SW_C1L in the leg on the first inverter 120 side, a high-side switch element SW_C2H, a low-side switch element SW_C2L in the leg on the second inverter 130 side, and a winding. With M3. ‥
制御回路300(具体的にはコントローラ340)は、以下で説明するインバータの故障診断を実行することにより、第1インバータ120および第2インバータ130のうちの故障したインバータを特定することができる。以下、インバータの故障診断の詳細を説明する。  The control circuit 300 (specifically, the controller 340) can identify the faulty inverter of the first inverter 120 and the second inverter 130 by executing the fault diagnosis of the inverter described below. The details of the failure diagnosis of the inverter will be described below. ‥
〔2.相の故障診断方法〕 図4から図7を参照しながら、例えば、図1に示す電力変換装置1000における相の故障を診断する故障診断方法の具体例を説明する。本願発明者は、鋭意研究の結果、下記の方法により電力変換装置における相の故障を診断できることを見出した。本開示の故障診断方法は、複数のHブリッジを備える電力変換装置、例えばフルブリッジタイプの電力変換装置に好適に用いることができる。本明細書中における故障はスイッチ素子のオープン故障を指す。オープン故障とは、スイッチ素子が常時ハイインピーダンスになる故障である。本明細書では、例えば第1インバータ120のハイサイドスイッチ素子SW_A1HまたはSW_A2Hにオープン故障が生じることを、A相のハイサイドの故障と呼ぶ場合がある。  [2. Phase Failure Diagnosis Method] A specific example of a failure diagnosis method for diagnosing a phase failure in the power conversion apparatus 1000 shown in FIG. 1 will be described with reference to FIGS. 4 to 7. As a result of earnest research, the inventor of the present application has found that a phase failure in a power conversion device can be diagnosed by the following method. The failure diagnosis method of the present disclosure can be suitably used for a power conversion device including a plurality of H bridges, for example, a full bridge type power conversion device. The failure in this specification refers to an open failure of the switch element. The open failure is a failure in which the switch element always has a high impedance. In this specification, the occurrence of an open failure in the high-side switch element SW_A1H or SW_A2H of the first inverter 120 may be referred to as an A-phase high-side failure. ‥
故障診断では、例えば、dq座標系において表現される電流および電圧と、ローサイドスイッチ素子の両端電圧を示す実電圧と、モータの回転速度ωとを獲得する。dq座標系において表現される電流および電圧は、d軸電圧Vd、q軸電圧Vq、d軸電流Idおよびq軸電流Iqを含む。なお、dq座標系において、零相に対応した軸をz軸として表している。回転速度ωは、単位時間(例えば1分間)にモータのロータが回転する回転数(rpm)または単位時間(例えば1秒間)にロータが回転する回転数(rps)で表される。  In the failure diagnosis, for example, the current and voltage expressed in the dq coordinate system, the actual voltage indicating the voltage across the low-side switch element, and the motor rotation speed ω are acquired. The current and voltage expressed in the dq coordinate system include the d-axis voltage Vd, the q-axis voltage Vq, the d-axis current Id, and the q-axis current Iq. In the dq coordinate system, the axis corresponding to the zero phase is represented as the z axis. The rotation speed ω is represented by a rotation speed (rpm) at which the rotor of the motor rotates in a unit time (for example, 1 minute) or a rotation speed (rps) at which the rotor rotates in a unit time (for example, 1 second). ‥
図3Aから図3Cを用いて、スイッチ素子の実電圧を説明する。  The actual voltage of the switch element will be described with reference to FIGS. 3A to 3C. ‥
A相、B相およびC相のHブリッジBA、BBおよびBCのそれぞれに対し、第1実電圧および第2実電圧を定義する。第1実電圧は、各相のHブリッジにおいて、第1インバータ120側のレグにおける第1ローサイドスイッチ素子の両端電圧を示す。換言すると、第1実電圧は、第1インバータ120側のレグにおける第1ハイサイドスイッチ素子と第1ローサイドスイッチ素子の間のノード電位に相当する。第2実電圧は、第2インバータ130側のレグにおける第2ローサイドスイッチ素子の両端電圧を示す。換言すると、第2実電圧は、第2インバータ130側のレグにおける第2ハイサイドスイッチ素子と第2ローサイドス
イッチ素子の間のノード電位に相当する。スイッチ素子の両端電圧は、スイッチ素子であるFETのソース-ドレイン間の電圧Vdsに等しい。 
A first actual voltage and a second actual voltage are defined for each of the H bridges BA, BB, and BC of the A phase, the B phase, and the C phase. The first actual voltage indicates the voltage across the first low-side switch element in the leg on the first inverter 120 side in each phase H-bridge. In other words, the first actual voltage corresponds to the node potential between the first high side switch element and the first low side switch element in the leg on the first inverter 120 side. The second actual voltage indicates the voltage across the second low-side switch element in the leg on the second inverter 130 side. In other words, the second actual voltage corresponds to the node potential between the second high side switch element and the second low side switch element in the leg on the second inverter 130 side. The voltage across the switch element is equal to the source-drain voltage Vds of the FET that is the switch element.
A相のHブリッジBAに対し、第1実電圧は、図3Aに示すローサイドスイッチ素子SW_A1Lの両端電圧VA1を指し、第2実電圧は、図3Aに示すローサイドスイッチ素子SW_A2Lの両端電圧VA2を指す。B相のHブリッジBBに対し、第1実電圧は、図3Bに示すローサイドスイッチ素子SW_B1Lの両端電圧VB1を指し、第2実電圧は、図3Bに示すローサイドスイッチ素子SW_B2Lの両端電圧VB2を指す。C相のHブリッジBCに対し、第1実電圧は、図3Cに示すローサイドスイッチ素子SW_C1Lの両端電圧VC1を指し、第2実電圧は、図3Cに示すローサイドスイッチ素子SW_C2Lの両端電圧VC2を指す。  For the A-phase H bridge BA, the first actual voltage refers to the voltage VA1 across the low-side switching element SW_A1L shown in FIG. 3A, and the second actual voltage refers to the voltage VA2 across the low-side switching element SW_A2L shown in FIG. 3A. . For the B-phase H bridge BB, the first actual voltage refers to the voltage VB1 across the low-side switching element SW_B1L shown in FIG. 3B, and the second actual voltage refers to the voltage VB2 across the low-side switching element SW_B2L shown in FIG. 3B. . For the C-phase H bridge BC, the first actual voltage refers to the voltage VC1 across the low-side switch element SW_C1L shown in FIG. 3C, and the second actual voltage refers to the voltage VC2 across the low-side switch element SW_C2L shown in FIG. 3C. . ‥
次に、獲得した、dq座標系の電流および電圧、第1実電圧、第2実電圧および回転速度に基づいて、相の故障を診断する。  Next, based on the acquired current and voltage of the dq coordinate system, the first actual voltage, the second actual voltage, and the rotation speed, the phase failure is diagnosed. ‥
故障した相があると判定した場合、相の故障を示す故障信号を生成し、後述するモータ制御ユニットに出力する。例えば、故障信号は、故障が生じるとアサートされる信号である。  When it is determined that there is a failed phase, a failure signal indicating the failure of the phase is generated and output to the motor control unit described later. For example, a failure signal is a signal that is asserted when a failure occurs. ‥
上記の故障診断は、例えば、電流センサ150によって各相電流を測定する周期、すなわちAD変換の周期に同期して繰り返し実行される。  The above-mentioned failure diagnosis is repeatedly executed, for example, in synchronization with the cycle of measuring each phase current by the current sensor 150, that is, the cycle of AD conversion. ‥
本実施形態による故障診断方法を実現するためのアルゴリズムは、例えば特定用途向け集積回路(ASIC)またはFPGAなどのハードウェアのみで実現することもできるし、マイクロコントローラおよびソフトウェアの組み合わせによっても実現することができる。本実施形態では、故障診断の動作主体を制御回路300のコントローラ340とする。  The algorithm for realizing the failure diagnosis method according to the present embodiment can be realized only by hardware such as an application specific integrated circuit (ASIC) or FPGA, or by a combination of a microcontroller and software. You can In the present embodiment, the operation subject of the failure diagnosis is the controller 340 of the control circuit 300. ‥
図4は、モータ制御全般を行うためのコントローラ340の機能ブロックを例示している。図5は、各相のハイサイドの故障診断を行うための機能ブロックを例示している。図6は、各相のローサイドの故障診断を行うための機能ブロックを例示している。  FIG. 4 exemplifies the functional blocks of the controller 340 for performing overall motor control. FIG. 5 exemplifies functional blocks for performing high-side failure diagnosis of each phase. FIG. 6 exemplifies functional blocks for performing low-side failure diagnosis of each phase. ‥
本明細書において、機能ブロック図における各ブロックは、ハードウェア単位ではなく機能ブロック単位で示される。モータ制御および故障診断に用いるソフトウェアは、例えば、各機能ブロックに対応した特定の処理を実行させるためのコンピュータプログラムを構成するモジュールであり得る。そのようなコンピュータプログラムは、例えばROM360に格納される。コントローラ340は、ROM360から命令を読み出して各処理を逐次実行することができる。  In this specification, each block in the functional block diagram is shown in a functional block unit rather than in a hardware unit. The software used for motor control and failure diagnosis may be, for example, a module forming a computer program for executing a specific process corresponding to each functional block. Such a computer program is stored in the ROM 360, for example. The controller 340 can read an instruction from the ROM 360 and sequentially execute each process. ‥
コントローラ340は、例えば、故障診断ユニット700およびモータ制御ユニット900を有する。このように、本開示の故障診断は、モータ制御(例えばベクトル制御)と好適に組み合わせることができ、モータ制御の一連の処理の中に組み込むことが可能である。  The controller 340 has, for example, a failure diagnosis unit 700 and a motor control unit 900. As described above, the failure diagnosis of the present disclosure can be suitably combined with motor control (for example, vector control), and can be incorporated in a series of processes of motor control. ‥
故障診断ユニット700は、dq座標系におけるd軸電流Id、q軸電流Iq、d軸電圧Vd、q軸電圧Vq、およびモータ200の回転速度ωを獲得する。故障診断ユニット700は、さらに、第1実電圧VA1、VB1、VC1、第2実電圧VA2、VB2およびVC2を獲得する。  The failure diagnosis unit 700 acquires the d-axis current Id, the q-axis current Iq, the d-axis voltage Vd, the q-axis voltage Vq, and the rotation speed ω of the motor 200 in the dq coordinate system. Fault diagnosis unit 700 further obtains first actual voltages VA1, VB1, VC1 and second actual voltages VA2, VB2 and VC2. ‥
例えば、故障診断ユニット700は、Vpeakを獲得するプレ演算ユニット(不図示)を有し得る。プレ演算ユニットは、クラーク変換を用いて、電流センサ150の測定値に基づいて取得された三相電流Ia、IbおよびIcを、αβ固定座標系における、α軸上の電流Iαおよびβ軸上の電流Iβに変換する。プレ演算ユニットは、パーク変換(dq座標変換)を用いて、電流Iα、Iβを、dq座標系におけるd軸電流Idおよびq軸電流Iqに変換する。プレ演算ユニットは、電流IdおよびIqに基づいてd軸電圧Vdおよびq軸電圧Vqを取得し、取得したVd、Vqから下記式(1)に基づいて電圧ピーク値Vpeakを算出する。または、プレ演算ユニットは、ベクトル制御を行うモータ制御ユニット900から、Vpeakの算出に必要なVd、Vqを受け取ることも可能である。例えば、プレ演算ユニットは、電流センサ150によって各相電流を測定する周期に同期してVpeakを獲得する。  Vpeak=(2/3)1/2(Vd+Vq1/2   式(1)  For example, the fault diagnosis unit 700 may include a pre-calculation unit (not shown) that acquires Vpeak. The pre-computation unit uses the Clark transform to convert the three-phase currents Ia, Ib, and Ic acquired based on the measurement values of the current sensor 150 into the currents I α and β on the α axis in the α β fixed coordinate system. Of the current I β . The pre-calculation unit converts the currents I α and I β into the d-axis current Id and the q-axis current Iq in the dq coordinate system by using the Park transformation (dq coordinate transformation). The pre-calculation unit acquires the d-axis voltage Vd and the q-axis voltage Vq based on the currents Id and Iq, and calculates the voltage peak value Vpeak from the acquired Vd and Vq based on the following equation (1). Alternatively, the pre-calculation unit can also receive Vd and Vq necessary for calculating Vpeak from the motor control unit 900 that performs vector control. For example, the pre-computation unit acquires Vpeak in synchronization with the cycle in which the current sensor 150 measures each phase current. Vpeak = (2/3) 1/2 (Vd 2 + Vq 2 ) 1/2 Formula (1)
故障診断ユニット700は、ルックアップテーブル740(図7)を参照して、電流Id、Iqおよび回転速度ωに基づいて定数Ksat1、Ksat2を決定する。  Fault diagnosis unit 700 refers to lookup table 740 (FIG. 7) to determine constants Ksat1 and Ksat2 based on currents Id and Iq and rotation speed ω. ‥
図7は、回転速度ωおよび電流振幅値から定数Ksat1、Ksat2を決定するルックアップテーブル(LUT)740を模式的に示している。LUT740は、d軸電流およびq軸電流に基づいて決定される電流振幅値(Id+Iq1/2およびモータ200の回転速度ωの入力と、定数Ksat1、Ksat2との関係を関連付ける。  FIG. 7 schematically shows a look-up table (LUT) 740 that determines the constants Ksat1 and Ksat2 from the rotation speed ω and the current amplitude value. The LUT 740 associates the current amplitude value (Id 2 + Iq 2 ) 1/2 determined based on the d-axis current and the q-axis current and the input of the rotation speed ω of the motor 200 with the constants Ksat1 and Ksat2.
回転速度ωは、例えば角度センサ320からの回転信号に基づいて算出される。または、回転速度ωは、例えば公知のセンサレス制御手法を用いて推定することができる。各スイッチ素子の実電圧は、例えば駆動回路(プリドライバ)350によって測定される。  The rotation speed ω is calculated based on the rotation signal from the angle sensor 320, for example. Alternatively, the rotation speed ω can be estimated by using, for example, a known sensorless control method. The actual voltage of each switch element is measured by, for example, a drive circuit (pre-driver) 350. ‥
モータ制御では、一般的にIdはゼロとして扱われる。そのため、電流振幅値はIqに等しくなる。例えば、定数Ksat1、Ksat2は、獲得された電流振幅値Iqおよび回転速度ωから決定される。あるいは、定数Ksat1、Ksat2として、例えば、駆動前に予め設定した値を用いてもよい。例えば、定数Ksat1、Ksat2として、システムに依存する一定の値を用いてもよい。また、Ksat1とKsat2とは同じ値であってもよい。  In motor control, Id is generally treated as zero. Therefore, the current amplitude value becomes equal to Iq. For example, the constants Ksat1 and Ksat2 are determined from the obtained current amplitude value Iq and the rotation speed ω. Alternatively, as the constants Ksat1 and Ksat2, for example, preset values before driving may be used. For example, constant values depending on the system may be used as the constants Ksat1 and Ksat2. Further, Ksat1 and Ksat2 may have the same value. ‥
故障診断ユニット700は、取得した定数Ksat1、Ksat2から下記式(2)、(3)に基づいて飽和電圧Vsat1およびVsat2を算出する。  Vsat1=Vpeak/Ksat1   式(2)  Vsat2=Vpeak/Ksat2   式(3)  The failure diagnosis unit 700 calculates the saturation voltages Vsat1 and Vsat2 from the acquired constants Ksat1 and Ksat2 based on the following equations (2) and (3). Vsat1 = Vpeak / Ksat1 formula (2) Vsat2 = Vpeak / Ksat2 formula (3)
例えば、飽和電圧Vsat1およびVsat2の値は0.3-0.4(V)である。この値は一例であり、本実施形態はこの値に限定されない。故障診断ユニット700は、上述した実電圧、電圧ピーク値Vpeak、飽和電圧Vsat1およびVsat2に基づいて相の故障の有無を診断する。  For example, the values of the saturation voltages Vsat1 and Vsat2 are 0.3-0.4 (V). This value is an example, and the present embodiment is not limited to this value. The failure diagnosis unit 700 diagnoses the presence or absence of a phase failure based on the above-described actual voltage, voltage peak value Vpeak, and saturation voltages Vsat1 and Vsat2. ‥
故障診断ユニット700は、相の故障を示す故障信号を診断結果に基づいて生成し、モータ制御ユニット900に出力する。  The failure diagnosis unit 700 generates a failure signal indicating a phase failure based on the diagnosis result and outputs it to the motor control unit 900. ‥
モータ制御ユニット900は、例えばベクトル制御を用いて、第1および第2インバータ120、130のスイッチ素子のスイッチング動作の全般を制御するPWM信号を生成する。モータ制御ユニット900は、PWM信号を駆動回路350に出力する。また、モータ制御ユニット900は、例えば故障信号がアサートされると、モータ制御を三相通電制御から二相通電制御に切替えることが可能である。  The motor control unit 900 uses, for example, vector control to generate a PWM signal that controls the overall switching operation of the switch elements of the first and second inverters 120 and 130. The motor control unit 900 outputs the PWM signal to the drive circuit 350. Further, the motor control unit 900 can switch the motor control from the three-phase energization control to the two-phase energization control when, for example, a failure signal is asserted. ‥
本明細書において、説明の便宜上、各機能ブロックをユニットと表記する場合がある。当然に、各機能ブロックをハードウェアまたはソフトウェアに限定解釈する意図で、これらの表記を用いてはいない。  In this specification, each functional block may be referred to as a unit for convenience of description. Naturally, these notations are not used with the intention of limiting each functional block to hardware or software. ‥
各機能ブロックはソフトウェアとしてコントローラ340に実装される場合、そのソフトウェアの実行主体は、例えばコントローラ340のコアであり得る。上述したように、コントローラ340は、FPGAによって実現され得る。その場合、全てまたは一部の機能ブロックは、ハードウェアで実現され得る。  When each functional block is implemented as software in the controller 340, the execution subject of the software may be the core of the controller 340, for example. As mentioned above, the controller 340 may be implemented by an FPGA. In that case, all or some of the functional blocks may be implemented in hardware. ‥
複数のFPGAを用いて処理を分散させることにより、特定のコンピュータの演算負荷を分散させることができる。その場合、図4から図6に示される機能ブロックの全てまたは一部は、複数のFPGAに分散して実装され得る。複数のFPGAは、例えば車載のコントロールエリアネットワーク(CAN)によって互いに通信可能に接続され、データの送受信を行うことが可能である。  By distributing the processing using a plurality of FPGAs, it is possible to distribute the calculation load of a specific computer. In that case, all or a part of the functional blocks illustrated in FIGS. 4 to 6 may be distributed and implemented in a plurality of FPGAs. The plurality of FPGAs are communicably connected to each other by, for example, a vehicle-mounted control area network (CAN), and can send and receive data. ‥
故障診断ユニット700は、図5および図6に示す各相のハイサイドの故障の有無を診断する故障診断ユニット701、各相のローサイドの故障の有無を診断する故障診断ユニット702を有する。故障診断ユニット701および702の実質的に同じ機能を果たす機能ブロックには同じ参照符号を付して、詳細な説明の繰り返しは省略する。  The failure diagnosis unit 700 includes a failure diagnosis unit 701 for diagnosing the high-side failure of each phase shown in FIGS. 5 and 6, and a failure diagnosis unit 702 for diagnosing the low-side failure of each phase. Functional blocks of the failure diagnosis units 701 and 702 having substantially the same functions are designated by the same reference numerals, and detailed description thereof will not be repeated. ‥
故障診断ユニット701は、絶対値演算器711、712、713と、比較器721、722、723、724、725、726と、論理回路AND731、732、733とを有する。故障診断ユニット702は、絶対値演算器711、712、713と、比較器721、723、725、727、728、729と、論理回路AND731、732、733とを有する。  The failure diagnosis unit 701 has absolute value calculators 711, 712, 713, comparators 721, 722, 723, 724, 725, 726, and logic circuits AND731, 732, 733. The failure diagnosis unit 702 includes absolute value calculators 711, 712, 713, comparators 721, 723, 725, 727, 728, 729, and logic circuits AND731, 732, 733. ‥
まず、各相のハイサイドの故障の有無の診断処理を説明する。  First, the diagnosis process for the presence or absence of a high-side failure in each phase will be described. ‥
故障診断ユニット701の絶対値演算器711は、B相とC相との間の相間電圧VBCの絶対値を演算する。  The absolute value calculator 711 of the failure diagnosis unit 701 calculates the absolute value of the interphase voltage VBC between the B phase and the C phase. ‥
相間電圧VBCは、下記式(4)で表される。  VBC=(VB1+VB2)-(VC1+VC2)   式(4)  The interphase voltage VBC is represented by the following formula (4). VBC = (VB1 + VB2)-(VC1 + VC2) Formula (4)
相間電圧VBCは、ローサイドスイッチ素子SW_B1Lの両端電圧VB1とローサイドスイッチ素子SW_B2Lの両端電圧VB2との和と、ローサイドスイッチ素子SW_C1Lの両端電圧VC1とローサイドスイッチ素子SW_C2Lの両端電圧VC2との和との差である。  The interphase voltage VBC is the difference between the sum of the voltage VB1 across the low-side switch element SW_B1L and the voltage VB2 across the low-side switch element SW_B2L, and the sum of the voltage VC1 across the low-side switch element SW_C1L and the voltage VC2 across the low-side switch element SW_C2L. Is. ‥
比較器721は、相間電圧VBCの絶対値と飽和電圧Vsat2との大小関係を比較する。比較器721は、VBCの絶対値がVsat2以上(|VBC|≧Vsat2)と判定した場合、A相は正常であることを示す“0”を論理回路AND731に出力する。比較器721は、VBCの絶対値がVsat2未満(|VBC|<Vsat2)と判定した場合、A相は異常であることを示す“1”を論理回路AND731に出力する。  The comparator 721 compares the absolute value of the interphase voltage VBC with the saturation voltage Vsat2. When it is determined that the absolute value of VBC is Vsat2 or more (| VBC | ≧ Vsat2), the comparator 721 outputs “0” indicating that the phase A is normal to the logic circuit AND731. When the comparator 721 determines that the absolute value of VBC is less than Vsat2 (| VBC | <Vsat2), the comparator 721 outputs "1" indicating that the A phase is abnormal to the logic circuit AND731. ‥
比較器722は、ローサイドスイッチ素子SW_A1Lの両端電圧VA1とローサイドスイッチ素子SW_A2Lの両端電圧VA2との和“VA1+VA2”と、飽和電圧Vsat1の負の値“-Vsat1”との大小関係を比較する。  The comparator 722 compares the sum “VA1 + VA2” of the voltage VA1 across the low-side switch element SW_A1L and the voltage VA2 across the low-side switch element SW_A2L with the negative value “−Vsat1” of the saturation voltage Vsat1. ‥
比較器722は、“VA1+VA2”が“-Vsat1”以上((VA1+VA2)≧-Vsat1)と判定した場合、A相のハイサイドは正常であることを示す“0”を論理回路AND731に出力する。比較器722は、“VA1+VA2”が“-Vsat1”未満((VA1+VA2)<-Vsat1)と判定した場合、A相のハイサイドは異常であることを示す“1”を論理回路AND731に出力する。  When the comparator 722 determines that “VA1 + VA2” is “−Vsat1” or more ((VA1 + VA2) ≧ −Vsat1), it outputs “0” indicating that the high side of the A phase is normal to the logic circuit AND731. When the comparator 722 determines that “VA1 + VA2” is less than “−Vsat1” ((VA1 + VA2) <− Vsat1), it outputs “1” indicating that the high side of the phase A is abnormal to the logic circuit AND731. ‥
論理回路AND731は、比較器721、722の出力信号の論理積をとる。論理回路AND731は、A相のハイサイドの故障の有無を示す故障信号AH_FDとして、論理積をモータ制御ユニット900に出力する。  The logic circuit AND731 takes the logical product of the output signals of the comparators 721 and 722. The logic circuit AND731 outputs a logical product to the motor control unit 900 as a failure signal AH_FD indicating the presence / absence of a failure on the high side of the A phase. ‥
比較器721、722の出力信号の少なくとも一方が“0”である場合、論理回路AND731は、A相のハイサイドは正常であることを示す“0”を故障信号AH_FDとして出力する。比較器721、722の出力信号の両方が“1”である場合、論理回路AND731は、A相のハイサイドは故障していることを示す“1”を故障信号AH_FDとして出力する。  When at least one of the output signals of the comparators 721 and 722 is "0", the logic circuit AND731 outputs "0" indicating that the high side of the A phase is normal as the failure signal AH_FD. When both of the output signals of the comparators 721 and 722 are "1", the logic circuit AND731 outputs "1" indicating that the high side of the A phase has a failure as the failure signal AH_FD. ‥
絶対値演算器712は、C相とA相との間の相間電圧VCAの絶対値を演算する。  The absolute value calculator 712 calculates the absolute value of the interphase voltage VCA between the C phase and the A phase. ‥
相間電圧VCAは、下記式(5)で表される。  VCA=(VC1+VC2)-(VA1+VA2)   式(5)  The interphase voltage VCA is represented by the following equation (5). VCA = (VC1 + VC2)-(VA1 + VA2) Formula (5)
相間電圧VCAは、ローサイドスイッチ素子SW_C1Lの両端電圧VC1とローサイドスイッチ素子SW_C2Lの両端電圧VC2との和と、ローサイドスイッチ素子SW_A1Lの両端電圧VA1とローサイドスイッチ素子SW_A2Lの両端電圧VA2との和との差である。  The interphase voltage VCA is the difference between the sum of the voltage VC1 across the low-side switch element SW_C1L and the voltage VC2 across the low-side switch element SW_C2L, and the sum of the voltage VA1 across the low-side switch element SW_A1L and the voltage VA2 across the low-side switch element SW_A2L. Is. ‥
比較器723は、相間電圧VCAの絶対値と飽和電圧Vs
at2との大小関係を比較する。比較器723は、VCAの絶対値がVsat2以上(|VCA|≧Vsat2)と判定した場合、B相は正常であることを示す“0”を論理回路AND732に出力する。比較器723は、VCAの絶対値がVsat2未満(|VCA|<Vsat2)と判定した場合、B相は異常であることを示す“1”を論理回路AND732に出力する。 
The comparator 723 calculates the absolute value of the interphase voltage VCA and the saturation voltage Vs.
Compare the magnitude relationship with at2. When it is determined that the absolute value of VCA is Vsat2 or more (| VCA | ≧ Vsat2), the comparator 723 outputs “0” indicating that the B phase is normal to the logic circuit AND732. When it is determined that the absolute value of VCA is less than Vsat2 (| VCA | <Vsat2), the comparator 723 outputs “1” indicating that the B phase is abnormal to the logic circuit AND732.
比較器724は、ローサイドスイッチ素子SW_B1Lの両端電圧VB1とローサイドスイッチ素子SW_B2Lの両端電圧VB2との和“VB1+VB2”と、飽和電圧Vsat1の負の値“-Vsat1”との大小関係を比較する。  The comparator 724 compares the sum “VB1 + VB2” of the voltage VB1 across the low-side switch element SW_B1L and the voltage VB2 across the low-side switch element SW_B2L with the negative value “−Vsat1” of the saturation voltage Vsat1. ‥
比較器724は、“VB1+VB2”が“-Vsat1”以上((VB1+VB2)≧-Vsat1)と判定した場合、B相のハイサイドは正常であることを示す“0”を論理回路AND732に出力する。比較器724は、“VB1+VB2”が“-Vsat1”未満((VB1+VB2)<-Vsat1)と判定した場合、B相のハイサイドは異常であることを示す“1”を論理回路AND732に出力する。  When the comparator 724 determines that “VB1 + VB2” is greater than or equal to “−Vsat1” ((VB1 + VB2) ≧ −Vsat1), the comparator 724 outputs “0” indicating that the high side of phase B is normal to the logic circuit AND732. When the comparator 724 determines that “VB1 + VB2” is less than “−Vsat1” ((VB1 + VB2) <− Vsat1), it outputs “1” indicating that the high side of phase B is abnormal to the logic circuit AND732. ‥
論理回路AND732は、比較器723、724の出力信号の論理積をとる。論理回路AND732は、B相のハイサイドの故障の有無を示す故障信号BH_FDとして、論理積をモータ制御ユニット900に出力する。  The logic circuit AND732 takes the logical product of the output signals of the comparators 723 and 724. The logic circuit AND732 outputs a logical product to the motor control unit 900 as a failure signal BH_FD indicating whether or not there is a failure on the high side of the B phase. ‥
比較器723、724の出力信号の少なくとも一方が“0”である場合、論理回路AND732は、B相のハイサイドは正常であることを示す“0”を故障信号BH_FDとして出力する。比較器723、724の出力信号の両方が“1”である場合、論理回路AND732は、B相のハイサイドは故障していることを示す“1”を故障信号BH_FDとして出力する。  When at least one of the output signals of the comparators 723 and 724 is “0”, the logic circuit AND732 outputs “0” indicating that the high side of the B phase is normal as the failure signal BH_FD. When both the output signals of the comparators 723 and 724 are "1", the logic circuit AND732 outputs "1" indicating that the high side of the B phase has a failure as the failure signal BH_FD. ‥
絶対値演算器713は、A相とB相との間の相間電圧VABの絶対値を演算する。  The absolute value calculator 713 calculates the absolute value of the interphase voltage VAB between the A phase and the B phase. ‥
相間電圧VABは、下記式(6)で表される。  VAB=(VA1+VA2)-(VB1+VB2)   式(6)  The interphase voltage VAB is expressed by the following equation (6). VAB = (VA1 + VA2)-(VB1 + VB2) Formula (6)
相間電圧VABは、ローサイドスイッチ素子SW_A1Lの両端電圧VA1とローサイドスイッチ素子SW_A2Lの両端電圧VA2との和と、ローサイドスイッチ素子SW_B1Lの両端電圧VB1とローサイドスイッチ素子SW_B2Lの両端電圧VB2との和との差である。  The interphase voltage VAB is the difference between the sum of the voltage VA1 across the low-side switching element SW_A1L and the voltage VA2 across the low-side switching element SW_A2L, and the sum of the voltage VB1 across the low-side switching element SW_B1L and the voltage VB2 across the low-side switching element SW_B2L. Is. ‥
比較器725は、相間電圧VABの絶対値と飽和電圧Vsat2との大小関係を比較する。比較器725は、VABの絶対値がVsat2以上(|VAB|≧Vsat2)と判定した場合、C相は正常であることを示す“0”を論理回路AND733に出力する。比較器725は、VABの絶対値がVsat2未満(|VAB|<Vsat2)と判定した場合、C相は異常であることを示す“1”を論理回路AND733に出力する。  The comparator 725 compares the absolute value of the interphase voltage VAB with the saturation voltage Vsat2. When it is determined that the absolute value of VAB is Vsat2 or more (| VAB | ≧ Vsat2), the comparator 725 outputs “0” indicating that the C phase is normal to the logic circuit AND733. When the comparator 725 determines that the absolute value of VAB is less than Vsat2 (| VAB | <Vsat2), the comparator 725 outputs "1" indicating that the C phase is abnormal to the logic circuit AND733. ‥
比較器726は、ローサイドスイッチ素子SW_C1Lの両端電圧VC1とローサイドスイッチ素子SW_C2Lの両端電圧VC2との和“VC1+VC2”と、飽和電圧Vsat1の負の値“-Vsat1”との大小関係を比較する。  The comparator 726 compares the sum “VC1 + VC2” of the voltage VC1 across the low-side switch element SW_C1L and the voltage VC2 across the low-side switch element SW_C2L with the negative value “−Vsat1” of the saturation voltage Vsat1. ‥
比較器726は、“VC1+VC2”が“-Vsat1”以上((VC1+VC2)≧-Vsat1)と判定した場合、C相のハイサイドは正常であることを示す“0”を論理回路AND733に出力する。比較器726は、“VC1+VC2”が“-Vsat1”未満((VC1+VC2)<-Vsat1)と判定した場合、C相のハイサイドは異常であることを示す“1”を論理回路AND733に出力する。  When the comparator 726 determines that “VC1 + VC2” is greater than or equal to “−Vsat1” ((VC1 + VC2) ≧ −Vsat1), the comparator 726 outputs “0” indicating that the high side of the C phase is normal to the logic circuit AND733. When it is determined that “VC1 + VC2” is less than “−Vsat1” ((VC1 + VC2) <− Vsat1), the comparator 726 outputs “1” indicating that the high side of the C phase is abnormal to the logic circuit AND733. ‥
論理回路AND733は、比較器725、726の出力信号の論理積をとる。論理回路AND733は、C相のハイサイドの故障の有無を示す故障信号CH_FDとして、論理積をモータ制御ユニット900に出力する。  The logic circuit AND733 takes the logical product of the output signals of the comparators 725 and 726. The logic circuit AND733 outputs a logical product to the motor control unit 900 as a failure signal CH_FD indicating whether or not there is a failure on the high side of the C phase. ‥
比較器725、726の出力信号の少なくとも一方が“0”である場合、論理回路AND733は、C相のハイサイドは正常であることを示す“0”を故障信号CH_FDとして出力する。比較器725、726の出力信号の両方が“1”である場合、論理回路AND733は、C相のハイサイドは故障していることを示す“1”を故障信号CH_FDとして出力する。  When at least one of the output signals of the comparators 725 and 726 is “0”, the logic circuit AND733 outputs “0” indicating that the high side of the C phase is normal as the failure signal CH_FD. When both the output signals of the comparators 725 and 726 are "1", the logic circuit AND733 outputs "1" indicating that the high side of the C phase has a failure as the failure signal CH_FD. ‥
次に、各相のローサイドの故障の有無の診断処理を説明する。  Next, a diagnosis process for the presence or absence of a low side failure in each phase will be described. ‥
ローサイドの故障の有無の診断は、故障診断ユニット702が実行する。同じ処理の説明の繰り返しを避けるために、ここでは、故障診断ユニット702が実行する処理のうちの故障診断ユニット701と異なる処理について説明する。  The failure diagnosis unit 702 executes the diagnosis of the presence or absence of the low side failure. In order to avoid repetition of description of the same processing, here, of the processing executed by the failure diagnosis unit 702, processing different from the failure diagnosis unit 701 will be described. ‥
故障診断ユニット702は、比較器722、724、726の代わりに、比較器727、728、729を有する。  The fault diagnosis unit 702 has comparators 727, 728, 729 instead of the comparators 722, 724, 726. ‥
比較器727は、ローサイドスイッチ素子SW_A1Lの両端電圧VA1とローサイドスイッチ素子SW_A2Lの両端電圧VA2との和“VA1+VA2”と、飽和電圧Vsat1との大小関係を比較する。  The comparator 727 compares the sum “VA1 + VA2” of the voltage VA1 across the low-side switch element SW_A1L and the voltage VA2 across the low-side switch element SW_A2L with the saturation voltage Vsat1. ‥
比較器727は、“VA1+VA2”が“Vsat1”以下((VA1+VA2)≦Vsat1)と判定した場合、A相のローサイドは正常であることを示す“0”を論理回路AND731に出力する。比較器727は、“VA1+VA2”が“Vsat1”より大きい((VA1+VA2)>Vsat1)と判定した場合、A相のローサイドは異常であることを示す“1”を論理回路AND731に出力する。  When the comparator 727 determines that “VA1 + VA2” is equal to or smaller than “Vsat1” ((VA1 + VA2) ≦ Vsat1), it outputs “0” indicating that the low side of the A phase is normal to the logic circuit AND731. When the comparator 727 determines that “VA1 + VA2” is larger than “Vsat1” ((VA1 + VA2)> Vsat1), it outputs “1” indicating that the low side of the phase A is abnormal to the logic circuit AND731. ‥
論理回路AND731は、比較器721、727の出力信号の論理積をとる。論理回路AND731は、A相のローサイドの故障の有無を示す故障信号AL_FDとして、論理積をモータ制御ユニット900に出力する。  The logic circuit AND731 takes the logical product of the output signals of the comparators 721 and 727. The logic circuit AND731 outputs a logical product to the motor control unit 900 as a failure signal AL_FD indicating the presence / absence of a failure on the low side of the phase A. ‥
比較器721、727の出力信号の少なくとも一方が“0”である場合、論理回路AND731は、A相のローサイドは正常であることを示す“0”を故障信号AL_FDとして出力する。比較器721、727の出力信号の両方が“1”である場合、論理回路AND731は、A相のローサイドは故障していることを示す“1”を故障信号AL_FDとして出力する。  When at least one of the output signals of the comparators 721 and 727 is "0", the logic circuit AND731 outputs "0" indicating that the low side of the A phase is normal as the failure signal AL_FD. When both the output signals of the comparators 721 and 727 are "1", the logic circuit AND731 outputs "1" indicating that the low side of the phase A has a failure as the failure signal AL_FD. ‥
比較器728は、ローサイドスイッチ素子SW_B1Lの両端電圧VB1とローサイドスイッチ素子SW_B2Lの両端電圧VB2との和“VB1+VB2”と、飽和電圧Vsat1との大小関係を比較する。  The comparator 728 compares the sum “VB1 + VB2” of the voltage VB1 across the low-side switch element SW_B1L and the voltage VB2 across the low-side switch element SW_B2L with the saturation voltage Vsat1. ‥
比較器728は、“VB1+VB2”が“Vsat1”以下((VB1+VB2)≦Vsat1)と判定した場合、B相のローサイドは正常であることを示す“0”を論理回路AND732に出力する。比較器728は、“VB1+VB2”が“Vsat1”より大きい((VB1+VB2)>Vsat1)と判定した場合、B相のローサイドは異常であることを示す“1”を論理回路AND732に出力する。  When the comparator 728 determines that “VB1 + VB2” is “Vsat1” or less ((VB1 + VB2) ≦ Vsat1), it outputs “0” indicating that the low side of the B phase is normal to the logic circuit AND732. When it is determined that “VB1 + VB2” is larger than “Vsat1” ((VB1 + VB2)> Vsat1), the comparator 728 outputs “1” indicating that the low side of the B phase is abnormal to the logic circuit AND732. ‥
論理回路AND732は、比較器723、728の出力信号の論理積をとる。論理回路AND732は、B相のローサイドの故障の有無を示す故障信号BL_FDとして、論理積をモータ制御ユニット900に出力する。  The logic circuit AND732 takes the logical product of the output signals of the comparators 723 and 728. The logic circuit AND732 outputs a logical product to the motor control unit 900 as a failure signal BL_FD indicating the presence or absence of a B-phase low-side failure. ‥
比較器723、728の出力信号の少なくとも一方が“0”である場合、論理回路AND732は、B相のローサイドは正常であることを示す“0”を故障信号BL_FDとして出力する。比較器723、728の出力信号の両方が“1”である場合、論理回路AND732は、B相のローサイドは故障していることを示す“1”を故障信号BL_FDとして出力する。  When at least one of the output signals of the comparators 723 and 728 is "0", the logic circuit AND732 outputs "0" indicating that the low side of the B phase is normal as the failure signal BL_FD. When both the output signals of the comparators 723 and 728 are “1”, the logic circuit AND732 outputs “1” indicating that the low side of the B phase has a failure as the failure signal BL_FD. ‥
比較器729は、ローサイドスイッチ素子SW_C1Lの両端電圧VC1とローサイドスイッチ素子SW_C2Lの両端電圧VC2との和“VC1+VC2”と、飽和電圧Vsat1との大小関係を比較する。  The comparator 729 compares the sum “VC1 + VC2” of the voltage VC1 across the low-side switch element SW_C1L and the voltage VC2 across the low-side switch element SW_C2L with the saturation voltage Vsat1. ‥
比較器729は、“VC1+VC2”が“Vsat1”以下((VC1+VC2)≦Vsat1)と判定した場合、C相のローサイドは正常であることを示す“0”を論理回路AND733に出力する。比較器729は、“VC1+VC2”が“Vsat1”より大きい((VC1+VC2)>Vsat1)と判定した場合、C相のローサイドは異常であることを示す“1”を論理回路AND733に出力する。  When the comparator 729 determines that “VC1 + VC2” is less than or equal to “Vsat1” ((VC1 + VC2) ≦ Vsat1), it outputs “0” indicating that the low side of the C phase is normal to the logic circuit AND733. When it is determined that “VC1 + VC2” is larger than “Vsat1” ((VC1 + VC2)> Vsat1), the comparator 729 outputs “1” indicating that the low side of the C phase is abnormal to the logic circuit AND733. ‥
論理回路AND733は、比較器725、729の出力信号の論理積をとる。論理回路AND733は、C相のローサイドの故障の有無を示す故障信号CL_FDとして、論理積をモータ制御ユニット900に出力する。  The logic circuit AND733 takes the logical product of the output signals of the comparators 725 and 729. The logic circuit AND733 outputs a logical product to the motor control unit 900 as a failure signal CL_FD indicating the presence or absence of a C-phase low-side failure. ‥
比較器725、729の出力信号の少なくとも一方が“0”である場合、論理回路AND733は、C相のローサイドは正常であることを示す“0”を故障信号CL_FDとして出力する。比較器725、729の出力信号の両方が“1”である場合、論理回路AND733は、C相のローサイドは故障していることを示す“1”を故障信号CL_FDとして出力する。  When at least one of the output signals of the comparators 725 and 729 is "0", the logic circuit AND733 outputs "0" indicating that the low side of the C phase is normal as the failure signal CL_FD. When both the output signals of the comparators 725 and 729 are "1", the logic circuit AND733 outputs "1" indicating that the low side of the C phase has a failure as the failure signal CL_FD. ‥
モータ制御ユニット900は、故障診断ユニット700が出力する故障信号に応じてモータ制御を変更する。例えば、モータ制御を三相通電制御から二相通電制御に切替える。例えば、故障した相が特定されると、その故障したスイッチ素子を含む相以外の残りの二相を用いた二相通電制御を行う。例えば、故障信号AH_FDおよびAL_FDの少なくとも一方が“1”を示し、A相が故障したことが特定されると、モータ制御ユニット900は、A相のHブリッジBAの全てのスイッチ素子をオフにする。そして、残りのB相およびC相のHブリッジBBおよびBCを用いた二相通電制御を行う。これにより、三相のうちの一相が故障したとしても、電力変換装置1000はモータ駆動を継続することができる。  The motor control unit 900 changes the motor control according to the failure signal output from the failure diagnosis unit 700. For example, the motor control is switched from the three-phase energization control to the two-phase energization control. For example, when a failed phase is specified, two-phase energization control using the remaining two phases other than the phase including the failed switch element is performed. For example, when at least one of the failure signals AH_FD and AL_FD indicates “1” and it is determined that the phase A has failed, the motor control unit 900 turns off all the switch elements of the phase A H-bridge BA. . Then, the two-phase energization control using the remaining B-phase and C-phase H bridges BB and BC is performed. Thereby, even if one of the three phases fails, the power conversion apparatus 1000 can continue to drive the motor. ‥
図8は、三相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示している。図9は、A相のHブリッジBAが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のB相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示している。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。図8、図9の電流波形において、電気角30°毎に電流値をプロットしている。Ipkは各相の最大電流値(ピーク電流値)を表す。  FIG. 8 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the three-phase energization control. is doing. FIG. 9 is obtained by plotting current values flowing in the B-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the A-phase H bridge BA fails. The current waveform is illustrated. The horizontal axis represents the motor electrical angle (deg), and the vertical axis represents the current value (A). In the current waveforms of FIGS. 8 and 9, current values are plotted for each 30 electrical degrees. I pk represents the maximum current value (peak current value) of each phase.
参考として、図10に、B相のHブリッジBBが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示する。図11に、C相のHブリッジBCが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相の各巻線に流れる電流値をプロットして得られる電流波形を例示する。  For reference, in FIG. 10, when the B-phase H bridge BB fails, the current values flowing in the A-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control are plotted. The current waveform obtained by the above is illustrated. In FIG. 11, when the C-phase H bridge BC fails, it is obtained by plotting the current values flowing in the A-phase and B-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control. A current waveform is illustrated. ‥
本実施形態において、上述した故障診断ユニット701および702の各処理の順番は任意である。例えば、比較器722、724、726、727、728、729の処理を行った後に、比較器721、723、725の処理を行ってもよい。  In the present embodiment, the order of the processes of the failure diagnosis units 701 and 702 described above is arbitrary. For example, the processing of the comparators 721, 723, 725 may be performed after the processing of the comparators 722, 724, 726, 727, 728, 729. ‥
また、例えば、比較器722、724、726、727、728、729の処理を行い、異常が検出された場合にのみ、比較器721、723、725の処理を行ってもよい。ノイズが少ない使用環境下では、比較器722、724、726、727、728、729の処理のみでも、異常の有無を判定することができる。異常が検出された場合、比較器721、723、725の処理を行うことで、異常の有無の判定精度をさらに高くすることができる。また、異常が検出された場合にのみ、比較器721、723、725の処理を行うことで、演算量を削減することができる。演算量削減により、故障が発生したときに、故障に対してより短い時間で対応することができる。  Further, for example, the processing of the comparators 722, 724, 726, 727, 728, 729 may be performed, and the processing of the comparators 721, 723, 725 may be performed only when an abnormality is detected. In a use environment with little noise, the presence / absence of an abnormality can be determined only by the processing of the comparators 722, 724, 726, 727, 728, 729. If an abnormality is detected, the comparators 721, 723, and 725 can perform the processing to further improve the accuracy of determining the presence or absence of the abnormality. Moreover, the amount of calculation can be reduced by performing the processing of the comparators 721, 723, and 725 only when an abnormality is detected. By reducing the calculation amount, when a failure occurs, the failure can be dealt with in a shorter time. ‥
また、比較器721、723、725の処理と、比較器722、724、726、727、728、729の処理とは同時に行われてもよい。これらの処理を同時に行い、それぞれの処理結果を用いて異常の有無を判定することにより、異常の有無を精度良く判定することができる。例えば
、電圧信号にノイズが混入する使用環境下においても、高い精度で異常の有無を判定することができる。 
Further, the processing of the comparators 721, 723, 725 and the processing of the comparators 722, 724, 726, 727, 728, 729 may be performed at the same time. By performing these processes at the same time and determining the presence / absence of abnormality using the respective processing results, the presence / absence of abnormality can be accurately determined. For example, even in a use environment where noise is mixed in the voltage signal, it is possible to highly accurately determine whether or not there is an abnormality.
以下に、本開示による故障診断に用いられるアルゴリズムの妥当性を、dSPACE社の“ラピッドコントロールプロトタイピング(RCP)システム”およびMathWorks社のMatlab/Simulinkを用いて検証した結果を示す。この検証には、ベクトル制御により制御を受ける、電動パワーステアリング(EPS)装置に用いる表面磁石型(SPM)モータのモデルが用いられた。検証においてq軸の電流指令値Iq_refを3Aに設定し、d軸の電流指令値Id_refおよび零相の電流指令値Iz_refを0Aに設定した。モータの回転速度ωは1200rpmに設定した。シミュレーションでは、第1インバータ120のハイサイドスイッチ素子SW_A1Hにオープン故障を時刻1.54sで発生させている。  Below, the validity of the algorithm used for the fault diagnosis according to the present disclosure is verified by using the “Rapid Control Prototyping (RCP) System” of dSPACE and the Matlab / Simlink of MathWorks. A model of a surface magnet type (SPM) motor used in an electric power steering (EPS) device, which is controlled by vector control, was used for this verification. In the verification, the q-axis current command value Iq_ref was set to 3A, and the d-axis current command value Id_ref and the zero-phase current command value Iz_ref were set to 0A. The rotation speed ω of the motor was set to 1200 rpm. In the simulation, an open failure is generated in the high-side switch element SW_A1H of the first inverter 120 at time 1.54s. ‥
図12から図17に、各信号の波形のシミュレーション結果を示している。各グラフの縦軸は電圧(V)を示し、横軸は時間(s)を示している。  12 to 17 show simulation results of the waveform of each signal. The vertical axis of each graph represents voltage (V), and the horizontal axis represents time (s). ‥
図12は、ハイサイドスイッチ素子SW_A1Hがオープン故障した場合の実電圧VA1およびVA2の和の波形を示している。図13は、ハイサイドスイッチ素子SW_A1Hがオープン故障した場合の実電圧VB1およびVB2の和の波形を示している。図14は、ハイサイドスイッチ素子SW_A1Hがオープン故障した場合の実電圧VC1およびVC2の和の波形を示している。  FIG. 12 shows a waveform of the sum of the actual voltages VA1 and VA2 when the high side switch element SW_A1H has an open failure. FIG. 13 shows a waveform of the sum of the actual voltages VB1 and VB2 when the high-side switch element SW_A1H has an open failure. FIG. 14 shows a waveform of the sum of the actual voltages VC1 and VC2 when the high side switch element SW_A1H has an open failure. ‥
時刻1.54sでハイサイドスイッチ素子SW_A1Hがオープン故障した後、図12に示すように、“VA1+VA2”は“-Vsat1”未満になっていることが分かる。一方、図13および図14に示すように、“VB1+VB2”および“VC1+VC2”は、“-Vsat1”未満になっていない。  After the high-side switch element SW_A1H has an open failure at time 1.54s, it can be seen that “VA1 + VA2” is less than “−Vsat1” as shown in FIG. On the other hand, as shown in FIGS. 13 and 14, “VB1 + VB2” and “VC1 + VC2” are not less than “−Vsat1”. ‥
時刻1.54sでハイサイドスイッチ素子SW_A1Hがオープン故障した後、図15に示すように、相間電圧VBCの絶対値はVsat2未満になっていることが分かる。一方、図16および図17に示すように、相間電圧VCAの絶対値および相間電圧VABの絶対値は、Vsat2未満になっていない。  After the open failure of the high-side switch element SW_A1H at time 1.54s, it can be seen that the absolute value of the interphase voltage VBC is less than Vsat2, as shown in FIG. On the other hand, as shown in FIGS. 16 and 17, the absolute value of interphase voltage VCA and the absolute value of interphase voltage VAB are not less than Vsat2. ‥
上記のように、本開示の故障診断は、簡易なアルゴリズムにより実現できる。そのため、例えばコントローラへ340の実装において回路規模またはメモリサイズの縮小といった利点が得られる。また、相間電圧の監視は少ない演算量で済むため、故障検知までの時間を短くすることができる。  As described above, the failure diagnosis of the present disclosure can be realized by a simple algorithm. Therefore, for example, in mounting the controller 340 on the controller, advantages such as reduction of the circuit size or the memory size can be obtained. Further, since the monitoring of the interphase voltage requires a small amount of calculation, it is possible to shorten the time until failure detection. ‥
本実施形態においては、三相全てについて上述した故障診断を行わなくてもよく、一相または二相についてのみ故障診断を行ってもよい。例えば、A相についてのみ故障診断を行う場合は、上記で説明した処理のうちのA相に関する処理のみを行い、B相およびC相に関する処理は行わなくてもよい。  In the present embodiment, the failure diagnosis described above may not be performed for all three phases, and the failure diagnosis may be performed for only one phase or two phases. For example, when the failure diagnosis is performed only for the A phase, only the process related to the A phase among the processes described above may be performed, and the process related to the B phase and the C phase may not be performed. ‥
次に、インバータの故障診断を説明する。  Next, the failure diagnosis of the inverter will be described. ‥
図18は、第2インバータ130の故障診断を行うための機能ブロックを例示している。図19は、第1インバータ120の故障診断を行うための機能ブロックを例示している。  FIG. 18 exemplifies a functional block for performing a failure diagnosis of the second inverter 130. FIG. 19 exemplifies a functional block for performing a failure diagnosis of the first inverter 120. ‥
故障診断ユニット700は、ルックアップテーブル840(図20)を参照して、電流Id、Iqおよび回転速度ωに基づいて飽和電圧Vsatを決定する。  The failure diagnosis unit 700 refers to the lookup table 840 (FIG. 20) and determines the saturation voltage Vsat based on the currents Id and Iq and the rotation speed ω. ‥
図20は、回転速度ωおよび電流振幅値から飽和電圧Vsatを決定するルックアップテーブル(LUT)840を模式的に示している。LUT840は、d軸電流およびq軸電流に基づいて決定される電流振幅値(Id+Iq1/2およびモータ200の回転速度ωの入力と、飽和電圧Vsatとの関係を関連付ける。  FIG. 20 schematically shows a lookup table (LUT) 840 that determines the saturation voltage Vsat from the rotation speed ω and the current amplitude value. The LUT 840 associates the relationship between the saturation voltage Vsat and the input of the current amplitude value (Id 2 + Iq 2 ) 1/2 determined based on the d-axis current and the q-axis current and the rotation speed ω of the motor 200.
表1は、故障診断に用いることが可能なLUT840の構成を例示している。モータ制御では、一般的にIdはゼロとして扱われる。そのため、電流振幅値はIqに等しくなる。表1には、Iq(A)を記載している。飽和電圧Vsatは、獲得された電流振幅値Iqおよび回転速度ωから決定される。あるいは、飽和電圧Vsatとして、例えば、駆動前に予め設定した値を用いてもよい。例えば、飽和電圧Vsatとして、システムに依存する一定の値(例えば0.1V程度)を用いてもよい。  Table 1 illustrates the configuration of the LUT 840 that can be used for failure diagnosis. In motor control, Id is generally treated as zero. Therefore, the current amplitude value becomes equal to Iq. Table 1 shows Iq (A). The saturation voltage Vsat is determined from the obtained current amplitude value Iq and the rotation speed ω. Alternatively, as the saturation voltage Vsat, for example, a value set in advance before driving may be used. For example, as the saturation voltage Vsat, a constant value depending on the system (for example, about 0.1 V) may be used. ‥
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
故障診断ユニット700は、上述した実電圧、電圧ピーク値Vpeak、飽和電圧Vsatに基づいてインバータの故障の有無を診断する。  The failure diagnosis unit 700 diagnoses whether or not there is a failure in the inverter based on the above-mentioned actual voltage, voltage peak value Vpeak, and saturation voltage Vsat. ‥
故障診断ユニット700は、第1インバータ120の故障を示す故障信号1_FD、第2インバータ130の故障を示す故障信号2_FDを診断結果に基づいて生成し、モータ制御ユニット900に出力する。  The failure diagnosis unit 700 generates a failure signal 1_FD indicating a failure of the first inverter 120 and a failure signal 2_FD indicating a failure of the second inverter 130 based on the diagnosis result, and outputs the failure signal 1_FD to the motor control unit 900. ‥
故障診断ユニット700は、図18および図19に示す第2インバータ130の故障の有無を診断する故障診断ユニット801、第1インバータ120の故障の有無を診断する故障診断ユニット802を有する。故障診断ユニット801および802は、実質的に同じ機能ブロックを有するが、入力される実電圧が互いに異なる。  The failure diagnosis unit 700 has a failure diagnosis unit 801 for diagnosing the presence / absence of a failure in the second inverter 130 and a failure diagnosis unit 802 for diagnosing the presence / absence of a failure in the first inverter 120 shown in FIGS. 18 and 19. Fault diagnosis units 801 and 802 have substantially the same functional blocks, but the input actual voltages are different from each other. ‥
故障診断ユニット801および802のそれぞれは、絶対値演算器811、814、817と、乗算器812、813、815、816、818、819と、加算器831、832、833と、比較器851、852、853と、論理回路OR871とを有する。  Each of the failure diagnosis units 801 and 802 includes an absolute value calculator 811, 814, 817, a multiplier 812, 813, 815, 816, 818, 819, an adder 831, 832, 833, and a comparator 851, 852. , 853 and a logic circuit OR871. ‥
まず、第2インバータ130の故障の有無の診断処理を説明する。  First, the diagnosis processing for the presence / absence of a failure in the second inverter 130 will be described. ‥
故障診断ユニット801の絶対値演算器811は、実電圧VA1の絶対値を演算する。乗算器812は、電圧ピーク値Vpeakに定数「-1/2」を乗算する。乗算器813は、飽和電圧Vsatに定数「-1」を乗算する。加算器831は、絶対値演算器811、乗算器812および813の出力値を加算して、下記式(7)で表される故障診断電圧VA1_FDを算出する。  VA1_FD=|VA1|-〔(Vpeak/2)+Vsat〕   式(7)  The absolute value calculator 811 of the failure diagnosis unit 801 calculates the absolute value of the actual voltage VA1. The multiplier 812 multiplies the voltage peak value Vpeak by a constant “−½”. The multiplier 813 multiplies the saturation voltage Vsat by a constant “−1”. The adder 831 adds the output values of the absolute value calculator 811, the multipliers 812 and 813 to calculate the fault diagnosis voltage VA1_FD represented by the following equation (7). VA1_FD = | VA1 |-[(Vpeak / 2) + Vsat] Formula (7)
比較器851は、“VA1_FD”と“ゼロ”とを比較する。比較器851は、VA1_FDがゼロ以下である(VA1_FD≦0)場合、実電圧VA1は正常であることを示す“0”を論理回路OR871に出力する。比較器851は、VA1_FDがゼロより大きい(VA1_FD>0)場合、実電圧VA1は異常であることを示す“1”を論理回路OR871に出力する。  The comparator 851 compares “VA1_FD” with “zero”. When VA1_FD is less than or equal to zero (VA1_FD ≦ 0), the comparator 851 outputs “0” indicating that the actual voltage VA1 is normal to the logic circuit OR871. When VA1_FD is greater than zero (VA1_FD> 0), the comparator 851 outputs “1” indicating that the actual voltage VA1 is abnormal to the logic circuit OR871. ‥
同様に、故障診断ユニット801の絶対値演算器814は、実電圧VB1の絶対値を演算する。乗算器815は、電圧ピーク値Vpeakに定数「-1/2」を乗算する。乗算器816は、飽和電圧Vsatに定数「-1」を乗算する。加算器832は、絶対値演算器814、乗算器815および816の出力値を加算して、下記式(8)で表される故障診断電圧VB1_FDを算出する。  VB1_FD=|VB1|-〔(Vpeak/2)+Vsat〕   式(8)  Similarly, the absolute value calculator 814 of the failure diagnosis unit 801 calculates the absolute value of the actual voltage VB1. The multiplier 815 multiplies the voltage peak value Vpeak by a constant “−½”. The multiplier 816 multiplies the saturation voltage Vsat by a constant “−1”. The adder 832 adds the output values of the absolute value calculator 814 and the multipliers 815 and 816 to calculate the fault diagnosis voltage VB1_FD represented by the following equation (8). VB1_FD = | VB1 |-[(Vpeak / 2) + Vsat] Formula (8)
比較器852は、“VB1_FD”と“ゼロ”とを比較する。比較器852は、VB1_FDがゼロ以下である場合、実電圧VB1は正常であることを示す“0”を論理回路OR871に出力する。比較器852は、VB1_FDがゼロより大きい場合、実電圧VB1は異常であることを示す“1”を論理回路OR871に出力する。  The comparator 852 compares “VB1_FD” with “zero”. When VB1_FD is less than or equal to zero, the comparator 852 outputs “0” indicating that the actual voltage VB1 is normal to the logic circuit OR871. When VB1_FD is greater than zero, the comparator 852 outputs "1" indicating that the actual voltage VB1 is abnormal to the logic circuit OR871. ‥
故障診断ユニット801の絶対値演算器817は、実電圧VC1の絶対値を演算する。乗算器818は、電圧ピーク値Vpeakに定数「-1/2」を乗算する。乗算器819は、飽和電圧Vsatに定数「-1」を乗算する。加算器833は、絶対値演算器817、乗算器818および819の出力値を加算して、下記式(9)で表される故障診断電圧VC1_FDを算出する。  VC1_FD=|VC1|-〔(Vpeak/2)+Vsat〕   式(9)  The absolute value calculator 817 of the failure diagnosis unit 801 calculates the absolute value of the actual voltage VC1. The multiplier 818 multiplies the voltage peak value Vpeak by a constant “−½”. The multiplier 819 multiplies the saturation voltage Vsat by a constant “−1”. The adder 833 adds the output values of the absolute value calculator 817 and the multipliers 818 and 819 to calculate the fault diagnosis voltage VC1_FD represented by the following equation (9). VC1_FD = | VC1 |-[(Vpeak / 2) + Vsat] Formula (9)
比較器853は、“VC1_FD”と“ゼロ”とを比較する。比較器853は、VC1_FDがゼロ以下である場合、実電圧VC1は正常であることを示す“0”を論理回路OR871に出力する。比較器853は、VC1_FDがゼロより大きい場合、実電圧VC1は異常であることを示す“1”を論理回路OR871に出力する。  The comparator 853 compares “VC1_FD” with “zero”. When VC1_FD is less than or equal to zero, the comparator 853 outputs “0” indicating that the actual voltage VC1 is normal to the logic circuit OR871. When VC1_FD is greater than zero, the comparator 853 outputs “1” indicating that the actual voltage VC1 is abnormal to the logic circuit OR871. ‥
論理回路OR871は、比較器851、852、853の出力信号の論理和をとる。論理回路OR871は、第2インバータ130の故障の有無を示す故障信号2_FDとして、論理和をモータ制御ユニット900に出力する。  The logic circuit OR871 takes the logical sum of the output signals of the comparators 851, 852 and 853. The logic circuit OR871 outputs a logical sum to the motor control unit 900 as a failure signal 2_FD indicating the presence / absence of a failure of the second inverter 130. ‥
比較器851、852、853の出力信号が全て“0”である場合、論理回路OR871は、第2インバータ130は正常であることを示す“0”を故障信号2_FDとして出力する。比較器851、852、853の出力信号の少なくとも1つが“1”である場合、論理回路OR871は、第2インバータ130は故障していることを示す“1”を故障信号2_FDとして出力する。  When the output signals of the comparators 851, 852, 853 are all "0", the logic circuit OR871 outputs "0" indicating that the second inverter 130 is normal as the failure signal 2_FD. When at least one of the output signals of the comparators 851, 852, 853 is “1”, the logic circuit OR871 outputs “1” indicating that the second inverter 130 has a failure as the failure signal 2_FD. ‥
例えば、ローサイドスイッチ素子SW_A2Lがオープン故障すると、そのスイッチ素子に電流は流れない。その結果、モータ200の逆起電力の影響を受けて、実電圧VA2の下側ピーク値(負の値)は上がり、その絶対値は小さくなる。ローサイドスイッチ素子SW_A2Lにオープン故障が生じていないとき、VA1≒〔(Vpeak/2)+Vsat〕となり、実電圧VA1の大きさは、|(Vpeak/2)+Vsat|に等しくなる。これに対し、ローサイドスイッチ素子SW_A2Lにオープン故障が生じると、この均衡が崩れる。例えば、スイッチ素子SW_A2Lに電流が流れないためにスイッチ素子SW_A1Lに余分な電圧が掛かる。実電圧VA1は大きくなり、VA1_FD>0となる。  For example, when the low-side switch element SW_A2L has an open failure, no current flows through the switch element. As a result, the lower peak value (negative value) of the actual voltage VA2 increases and its absolute value decreases due to the influence of the counter electromotive force of the motor 200. When no open failure has occurred in the low-side switch element SW_A2L, VA1≈ [(Vpeak / 2) + Vsat], and the magnitude of the actual voltage VA1 becomes equal to | (Vpeak / 2) + Vsat |. On the other hand, when an open failure occurs in the low side switch element SW_A2L, this balance is lost. For example, since no current flows through the switch element SW_A2L, an extra voltage is applied to the switch element SW_A1L. The actual voltage VA1 increases and VA1_FD> 0. ‥
図19に示す故障診断ユニット802は、故障診断ユニット801と同様の処理を実行し、第1インバータ120の故障の有無を診断する。故障診断ユニット802には、実電圧VA1、VB1、VC1の代わりに、実電圧VA2、VB2、VC2が入力される。故障診断ユニット802のそれ以外の処理は故障診断ユニット801と同様であるため、ここでは詳細な説明は省略する。  The failure diagnosis unit 802 shown in FIG. 19 executes the same processing as the failure diagnosis unit 801, and diagnoses the presence or absence of a failure in the first inverter 120. Instead of the actual voltages VA1, VB1 and VC1, the actual voltages VA2, VB2 and VC2 are input to the failure diagnosis unit 802. Since the other processes of the failure diagnosis unit 802 are the same as those of the failure diagnosis unit 801, detailed description thereof will be omitted here. ‥
また、上記の演算以外の方法により故障診断電圧を求めてもよい。例えば、故障診断電圧VA1_FDは、以下の式(10)の演算により求めてもよい。  VA1_FD=VA1-〔(Vpeak/2)+Vsat〕   式(10)  Further, the fault diagnosis voltage may be obtained by a method other than the above calculation. For example, the fault diagnosis voltage VA1_FD may be obtained by the calculation of the following formula (10). VA1_FD = VA1 2 − [(Vpeak / 2) + Vsat] 2 Formula (10)
また、例えば、故障診断電圧VA1_FDは、以下の式(11)の演算により求めてもよい。  A1_FD=〔VA1+(Vpeak/2)+Vsat〕〔VA1-(Vpeak/2)-Vsat〕   式(11)                                  Further, for example, the failure diagnosis voltage VA1_FD may be calculated by the following equation (11). A1_FD = [VA1 + (Vpeak / 2) + Vsat] [VA1- (Vpeak / 2) -Vsat] Formula (11): ‘A1_FD’
これらの演算を用いても、上記と同様にインバータの故障の有無を診断することができる。  By using these calculations, it is possible to diagnose whether or not there is a failure in the inverter as in the above. ‥
以下に、本開示による故障診断に用いられるアルゴリズムの妥当性を、dSPACE社の“ラピッドコントロールプロトタイピング(RCP)システム”およびMathWorks社のMatlab/Simulinkを用いて検証した結果を示す。この検証には、ベクトル制御により制御を受ける、電動パワーステアリング(EPS)装置に用いる表面磁石型(SPM)モータのモデルが用いられた。検証においてq軸の電流指令値Iq_refを3Aに設定し、d軸の電流指令値Id_refおよび零相の電流指令値Iz_refを0Aに設定した。モータの回転速度ωは1200rpmに設定した。シミュレーションでは、第1インバータ120のローサイドスイッチ素子SW_A1Lにオープン故障を時刻1.641sで発生させている。  Below, the validity of the algorithm used for the fault diagnosis according to the present disclosure is verified by using the “Rapid Control Prototyping (RCP) System” of dSPACE and the Matlab / Simlink of MathWorks. A model of a surface magnet type (SPM) motor used in an electric power steering (EPS) device, which is controlled by vector control, was used for this verification. In the verification, the q-axis current command value Iq_ref was set to 3A, and the d-axis current command value Id_ref and the zero-phase current command value Iz_ref were set to 0A. The rotation speed ω of the motor was set to 1200 rpm. In the simulation, an open failure is caused in the low side switch element SW_A1L of the first inverter 120 at time 1.641s. ‥
図21から図23に、各信号の波形のシミュレーション結果を示している。各グラフの縦軸は電圧(V)を示し、横軸は時間(s)を示している。  21 to 23 show simulation results of the waveform of each signal. The vertical axis of each graph represents voltage (V), and the horizontal axis represents time (s). ‥
図21は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VA1(上側)および実電圧VA2(下側)の波形を示している。図22は、ローサイドスイ
ッチ素子SW_A1Lがオープン故障した場合の実電圧VB1(上側)および実電圧VB2(下側)の波形を示している。図23は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VC1(上側)および実電圧VC2(下側)の波形を示している。 
FIG. 21 shows waveforms of the actual voltage VA1 (upper side) and the actual voltage VA2 (lower side) when the low-side switch element SW_A1L has an open failure. FIG. 22 shows waveforms of the actual voltage VB1 (upper side) and the actual voltage VB2 (lower side) when the low-side switch element SW_A1L has an open failure. FIG. 23 shows waveforms of the actual voltage VC1 (upper side) and the actual voltage VC2 (lower side) when the low-side switch element SW_A1L has an open failure.
時刻1.641sでローサイドスイッチ素子SW_A1Lがオープン故障した後、図21に示すように実電圧VA1の下側ピーク値は上昇していることが分かる。また、実電圧VA2の上側ピーク値は上昇していることが分かる。すなわち、実電圧VA2の上側ピーク値の絶対値は大きくなる。図22、図23に示すように、実電圧VB1、VB2、VC1、VC2は変化の度合いは小さい。  It can be seen that after the open failure of the low-side switch element SW_A1L at time 1.641s, the lower peak value of the actual voltage VA1 rises as shown in FIG. Further, it can be seen that the upper peak value of the actual voltage VA2 is increasing. That is, the absolute value of the upper peak value of the actual voltage VA2 becomes large. As shown in FIGS. 22 and 23, the actual voltages VB1, VB2, VC1 and VC2 have a small degree of change. ‥
正常時の動作においても、実電圧がVpeak/2よりもわずかに大きくなることは発生し得る。しかし、本実施形態では、Vpeak/2に飽和電圧Vsatを加算した値と、実電圧との比較を行う。このため、図21に示す実電圧VA2のように大きく変化した実電圧が発生した場合にのみ、故障と判定することができる。正常時の動作において実電圧がVpeak/2より大きくなる場合は故障と判定しないことにより、故障判定の精度を高めることができる。  Even in the normal operation, it is possible that the actual voltage becomes slightly higher than Vpeak / 2. However, in the present embodiment, the value obtained by adding the saturation voltage Vsat to Vpeak / 2 is compared with the actual voltage. Therefore, it is possible to determine that a failure occurs only when a greatly changed actual voltage such as the actual voltage VA2 shown in FIG. 21 is generated. When the actual voltage is higher than Vpeak / 2 in the normal operation, the failure determination is not performed and the accuracy of the failure determination can be improved. ‥
図5および図6を用いて説明した上記処理により、どの相が故障したか、およびハイサイドとローサイドのどちらが故障したかについて特定することができる。また、図18および図19を用いて説明した上記処理により、第1および第2インバータのどちらが故障したかについて特定することができる。すなわち、図5、図6、図18および図19に示すそれぞれの処理の判定結果に基づいて、モータ制御ユニット900は、第1および第2インバータが備える12個のスイッチ素子のうちのどのスイッチ素子が故障したか特定することができる。どのスイッチ素子が故障したか特定できることにより、故障したスイッチ素子の位置に応じた制御の変更を行うことができる。  By the above-described processing described with reference to FIGS. 5 and 6, it is possible to identify which phase has failed and which of the high side and the low side has failed. In addition, it is possible to identify which of the first and second inverters has failed by the processing described with reference to FIGS. 18 and 19. That is, based on the determination results of the processes shown in FIGS. 5, 6, 18, and 19, the motor control unit 900 determines which of the twelve switch elements included in the first and second inverters. It is possible to identify whether the car has failed. By being able to specify which switch element has failed, it is possible to change the control according to the position of the failed switch element. ‥
例えば、第1相のローサイドが故障しており、且つ第1インバータが故障していると判定した場合、第1インバータのハイサイドに中性点を構成してもよい。また、第1相のハイサイドが故障しており、且つ第1インバータが故障していると判定した場合、第1インバータのローサイドに中性点を構成してもよい。例えば、ローサイドスイッチ素子SW_A1Lが故障した場合、ローサイドスイッチ素子SW_B1LおよびSW_C1Lをオフにする。そして、ハイサイドスイッチ素子SW_A1H、SW_B1HおよびSW_C1Hをオンにする。これにより、第1インバータ120のハイサイドに中性点が構成される。この中性点を用いて第2インバータ130を動作させることにより、モータ200の駆動を継続することができる。  For example, when it is determined that the low side of the first phase is out of order and the first inverter is out of order, a neutral point may be formed on the high side of the first inverter. When it is determined that the high side of the first phase is out of order and the first inverter is out of order, a neutral point may be formed on the low side of the first inverter. For example, when the low side switch element SW_A1L fails, the low side switch elements SW_B1L and SW_C1L are turned off. Then, the high side switch elements SW_A1H, SW_B1H and SW_C1H are turned on. Accordingly, a neutral point is formed on the high side of the first inverter 120. By operating the second inverter 130 using this neutral point, the driving of the motor 200 can be continued. ‥
また、例えば、ハイサイドスイッチ素子SW_A1Hが故障した場合、ハイサイドスイッチ素子SW_B1HおよびSW_C1Hをオフにする。そして、ローサイドスイッチ素子SW_A1L、SW_B1LおよびSW_C1Lをオンにする。これにより、第1インバータ120のローサイドに中性点が構成される。この中性点を用いて第2インバータ130を動作させることにより、モータ200の駆動を継続することができる。  Further, for example, when the high-side switch element SW_A1H fails, the high-side switch elements SW_B1H and SW_C1H are turned off. Then, the low side switch elements SW_A1L, SW_B1L and SW_C1L are turned on. Accordingly, a neutral point is formed on the low side of the first inverter 120. By operating the second inverter 130 using this neutral point, the driving of the motor 200 can be continued. ‥
(実施形態2) 図24は、本実施形態による電動パワーステアリング装置3000の典型的な構成を模式的に示す。  (Second Embodiment) FIG. 24 schematically shows a typical configuration of an electric power steering apparatus 3000 according to the present embodiment. ‥
自動車等の車両は一般に、電動パワーステアリング装置を有する。本実施形態による電動パワーステアリング装置3000は、ステアリングシステム520、および補助トルクを生成する補助トルク機構540を有する。電動パワーステアリング装置3000は、運転者がステアリングハンドルを操作することによって発生するステアリングシステムの操舵トルクを補助する補助トルクを生成する。補助トルクにより、運転者の操作の負担は軽減される。  Vehicles such as automobiles generally have an electric power steering device. The electric power steering device 3000 according to the present embodiment has a steering system 520 and an auxiliary torque mechanism 540 that generates an auxiliary torque. The electric power steering device 3000 generates an auxiliary torque that assists the steering torque of the steering system generated by the driver operating the steering wheel. The auxiliary torque reduces the driver's operational burden. ‥
ステアリングシステム520は、例えば、ステアリングハンドル521、ステアリングシャフト522、自在軸継手523A、523B、回転軸524、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪529A、529Bから構成され得る。  The steering system 520 includes, for example, a steering handle 521, a steering shaft 522, universal joints 523A and 523B, a rotary shaft 524, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, and knuckles. 528A, 528B, and left and right steered wheels 529A, 529B. ‥
補助トルク機構540は、例えば、操舵トルクセンサ541、自動車用電子制御ユニット(ECU)542、モータ543および減速機構544などから構成される。操舵トルクセンサ541は、ステアリングシステム520における操舵トルクを検出する。ECU542は、操舵トルクセンサ541の検出信号に基づいて駆動信号を生成する。モータ543は、駆動信号に基づいて操舵トルクに応じた補助トルクを生成する。モータ543は、減速機構544を介してステアリングシステム520に、生成した補助トルクを伝達する。  The auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, a vehicle electronic control unit (ECU) 542, a motor 543, a speed reduction mechanism 544, and the like. The steering torque sensor 541 detects the steering torque in the steering system 520. The ECU 542 generates a drive signal based on the detection signal of the steering torque sensor 541. The motor 543 generates an auxiliary torque according to the steering torque based on the drive signal. The motor 543 transmits the generated auxiliary torque to the steering system 520 via the speed reduction mechanism 544. ‥
ECU542は、例えば、実施形態1によるコントローラ340および駆動回路350などを有する。自動車ではECUを核とした電子制御システムが構築される。電動パワーステアリング装置3000では、例えば、ECU542、モータ543およびインバータ545によって、モータ駆動ユニットが構築される。そのシステムに、実施形態1によるモータモジュール2000を好適に用いることができる。  The ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment. In automobiles, an electronic control system centered on the ECU is built. In the electric power steering device 3000, for example, a motor drive unit is constructed by the ECU 542, the motor 543, and the inverter 545. The motor module 2000 according to the first embodiment can be preferably used in the system. ‥
本開示の実施形態は、シフトバイワイヤ、ステアリングバイワイヤ、ブレーキバイワイヤなどのエックスバイワイヤおよびトラクションモータなどのモータ制御システムにも好適に用いられる。例えば、本開示の実施形態による故障診断方法を実装したEPSは、日本政府および米国運輸省道路交通安全局(NHTSA)によって定められたレベル0から5(自動化の基準)に対応した自動運転車に搭載され得る。 The embodiments of the present disclosure are also suitably used for X-by-wire such as shift-by-wire, steering-by-wire, and brake-by-wire, and motor control systems such as traction motors. For example, an EPS that implements the failure diagnosis method according to the embodiment of the present disclosure is an autonomous vehicle that corresponds to levels 0 to 5 (automation standard) defined by the Government of Japan and the US Department of Transportation Highway Traffic Safety Administration (NHTSA). Can be installed.
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。 The embodiments of the present disclosure can be widely used for various devices including various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.
100:インバータユニット、 101:電源、 120:第1インバータ、 130:第2インバータ、 140:インバータ、 150:電流センサ、 200:モータ、 300:制御回路、 310:電源回路、 320:角度センサ、 330:入力回路、 340:マイクロコントローラ、 350:駆動回路、 360:ROM、 1000:電力変換装置、 2000:モータモジュール、 3000:電動パワーステアリング装置
 
100: Inverter unit, 101: Power supply, 120: First inverter, 130: Second inverter, 140: Inverter, 150: Current sensor, 200: Motor, 300: Control circuit, 310: Power supply circuit, 320: Angle sensor, 330 : Input circuit, 340: micro controller, 350: drive circuit, 360: ROM, 1000: power converter, 2000: motor module, 3000: electric power steering device

Claims (16)

  1. 電源からの電力を、n相(nは3以上の整数)の巻線を有するモータへ供給する電力に変換する電力変換装置の故障を診断する故障診断方法であって、 前記電力変換装置は、 前記モータの各相の巻線の第1端に接続される第1インバータと、 前記各相の巻線の第2端に接続される第2インバータと、 各々が第1ハイサイドスイッチ素子、第1ローサイドスイッチ素子、第2ハイサイドスイッチ素子および第2ローサイドスイッチ素子を有するn個のHブリッジと、 を備え、 前記n相は、第1相、第2相および第3相を含み、 前記故障診断方法は、 前記第1インバータにおける前記第1相のローサイドスイッチ素子の両端電圧と前記第2インバータにおける前記第1相のローサイドスイッチ素子の両端電圧との和と、第1飽和電圧との大小関係を判定するステップと、 前記第2相と前記第3相の間の相間電圧と、第2飽和電圧との大小関係を判定するステップと、 前記両端電圧の和と前記第1飽和電圧との大小関係の判定結果および前記相間電圧と前記第2飽和電圧との大小関係の判定結果に基づいて、前記第1相の故障の有無を判定するステップと、 を含む、故障診断方法。 A failure diagnosis method for diagnosing a failure of a power conversion device that converts power from a power supply into power supplied to a motor having n-phase (n is an integer of 3 or more) windings, wherein the power conversion device comprises: A first inverter connected to the first end of each phase winding of the motor, a second inverter connected to the second end of each phase winding, and a first high-side switching element, It is provided with n H bridges having one low-side switch element, a second high-side switch element and a second low-side switch element, and the n-phase includes a first phase, a second phase and a third phase, and the failure The diagnostic method is the sum of the voltage across the low-side switching element of the first phase in the first inverter and the voltage across the low-side switching element of the first phase in the second inverter, and the first saturation. Determining the magnitude relationship with the pressure, determining the magnitude relationship between the interphase voltage between the second phase and the third phase, and the second saturation voltage, the sum of the voltage across both ends, and the first A failure diagnosis method comprising: a step of judging whether or not there is a failure of the first phase based on a result of judgment of a magnitude relationship with a saturation voltage and a result of judgment of a magnitude relationship between the interphase voltage and the second saturation voltage. .
  2. 前記相間電圧は、前記第1インバータにおける前記第2相のローサイドスイッチ素子の両端電圧と前記第2インバータにおける前記第2相のローサイドスイッチ素子の両端電圧との和と、前記第1インバータにおける前記第3相のローサイドスイッチ素子の両端電圧と前記第2インバータにおける前記第3相のローサイドスイッチ素子の両端電圧との和との差である、請求項1に記載の故障診断方法。 The interphase voltage is the sum of the voltage across the second-phase low-side switch element in the first inverter and the voltage across the second-phase low-side switch element in the second inverter, and the first voltage in the first inverter. The fault diagnosis method according to claim 1, wherein the difference is the difference between the voltage across the three-phase low-side switch element and the voltage across the third-phase low-side switch element in the second inverter.
  3. 前記相間電圧と前記第2飽和電圧との大小関係を判定するステップは、下記式で表される前記相間電圧VBCを用いて、前記大小関係を判定するステップを含み、 VBC=(VB1+VB2)-(VC1+VC2) ここで、VB1は前記第1インバータにおける前記第2相のローサイドスイッチ素子の両端電圧を示し、 VB2は前記第2インバータにおける前記第2相のローサイドスイッチ素子の両端電圧を示し、 VC1は前記第1インバータにおける前記第3相のローサイドスイッチ素子の両端電圧を示し、 VC2は前記第2インバータにおける前記第3相のローサイドスイッチ素子の両端電圧を示す、請求項1または2に記載の故障診断方法。 The step of determining the magnitude relationship between the interphase voltage and the second saturation voltage includes the step of determining the magnitude relationship by using the interphase voltage VBC represented by the following equation, and VBC = (VB1 + VB2)-( VC1 + VC2) where VB1 indicates the voltage across the second phase low-side switch element in the first inverter, VB2 indicates the voltage across the second phase low-side switch element in the second inverter, and VC1 indicates the voltage The fault diagnosis method according to claim 1 or 2, wherein a voltage across the third-phase low-side switch element in the first inverter is shown, and VC2 is a voltage across the third-phase low-side switch element in the second inverter. .
  4. 前記故障の有無を判定するステップは、 前記第1インバータにおける前記第1相のローサイドスイッチ素子の両端電圧と前記第2インバータにおける前記第1相のローサイドスイッチ素子の両端電圧との和が、前記第1飽和電圧よりも大きく、且つ前記相間電圧の絶対値が前記第2飽和電圧よりも小さい場合、前記第1相のローサイドが故障していると判定するステップを含む、請求項1から3のいずれかに記載の故障診断方法。 The step of determining the presence or absence of the failure is that the sum of the voltage across the first-phase low-side switch element in the first inverter and the voltage across the first-phase low-side switch element in the second inverter is the 4. The method according to claim 1, further comprising a step of determining that the low side of the first phase is out of order if the absolute value of the interphase voltage is larger than one saturation voltage and the absolute value of the interphase voltage is smaller than the second saturation voltage. The failure diagnosis method described in.
  5. 前記故障の有無を判定するステップは、 前記第1インバータにおける前記第1相のローサイドスイッチ素子の両端電圧と前記第2インバータにおける前記第1相のローサイドスイッチ素子の両端電圧との和が、負の値の前記第1飽和電圧よりも小さく、且つ前記相間電圧の絶対値が前記第2飽和電圧よりも小さい場合、前記第1相のハイサイドが故障していると判定するステップを含む、請求項1から3のいずれかに記載の故障診断方法。 The step of determining the presence or absence of the failure is that the sum of the voltage across the first-phase low-side switching element in the first inverter and the voltage across the first-phase low-side switching element in the second inverter is negative. If the value is smaller than the first saturation voltage and the absolute value of the inter-phase voltage is smaller than the second saturation voltage, it is determined that the high side of the first phase has a failure. 5. The failure diagnosis method according to any one of 1 to 3.
  6. 前記第1インバータにおける前記第1相のローサイドスイッチ素子の両端電圧と前記第2インバータにおける前記第1相のローサイドスイッチ素子の両端電圧との和と前記第1飽和電圧との大小関係を判定するステップを実行した後に、前記相間電圧と前記第2飽和電圧との大小関係を判定するステップを実行する、請求項1から5のいずれかに記載の故障診断方法。 Determining a magnitude relationship between a sum of a voltage across the first-phase low-side switch element in the first inverter and a voltage across the first-phase low-side switch element in the second inverter and the first saturation voltage. The fault diagnosis method according to claim 1, further comprising: performing a step of determining a magnitude relationship between the interphase voltage and the second saturation voltage after performing the above step.
  7. 前記第1インバータにおける前記第1相のローサイドスイッチ素子の両端電圧と前記第2インバータにおける前記第1相のローサイドスイッチ素子の両端電圧との和と前記第1飽和電圧との大小関係を判定するステップと、前記相間電圧と前記第2飽和電圧との大小関係を判定するステップとは同時に実行される、請求項1から5のいずれかに記載の故障診断方法。 Determining a magnitude relationship between a sum of a voltage across the first-phase low-side switch element in the first inverter and a voltage across the first-phase low-side switch element in the second inverter and the first saturation voltage. 6. The failure diagnosis method according to claim 1, wherein the step of determining the magnitude relationship between the interphase voltage and the second saturation voltage is performed simultaneously.
  8. 前記第1相は故障していると判定した場合、前記第1および第2インバータの制御を、n相通電制御から、前記n相のうちの前記第1相と異なる他のm相(mは2以上n未満の整数)を用いたm相通電制御に変更するステップをさらに含む、請求項1から7のいずれかに記載の故障診断方法。 When it is determined that the first phase is out of order, the control of the first and second inverters is changed from the n-phase energization control to another m phase (m is different from the first phase of the n phases). The fault diagnosis method according to claim 1, further comprising a step of changing to m-phase energization control using an integer of 2 or more and less than n).
  9. 前記第1および第2インバータの少なくとも一方の故障の有無を判定するステップをさらに含む、請求項4に記載の故障診断方法。 The fault diagnosis method according to claim 4, further comprising a step of determining whether or not there is a fault in at least one of the first and second inverters.
  10. 前記第1相のローサイドが故障しており、且つ前記第1インバータが故障していると判定した場合、前記第1インバータのハイサイドに中性点を構成するステップをさらに含む、請求項9に記載の故障診断方法。 10. The method according to claim 9, further comprising configuring a neutral point on a high side of the first inverter when it is determined that the low side of the first phase has a failure and the first inverter has a failure. Fault diagnosis method described.
  11. 前記第1および第2インバータの少なくとも一方の故障の有無を判定するステップをさらに含む、請求項5に記載の故障診断方法。 The failure diagnosis method according to claim 5, further comprising a step of determining whether or not there is a failure in at least one of the first and second inverters.
  12. 前記第1相のハイサイドが故障しており、且つ前記第1インバータが故障していると判定した場合、前記第1インバータのローサイドに中性点を構成するステップをさらに含む、請求項11に記載の故障診断方法。 12. The method according to claim 11, further comprising configuring a neutral point on a low side of the first inverter when it is determined that the high side of the first phase has a failure and the first inverter has a failure. Fault diagnosis method described.
  13. dq座標系におけるd軸電流およびq軸電流に基づいて決定される電流値と前記モータの回転速度とを入力とするルックアップテーブルを用いて、前記第1飽和電圧および前記第2飽和電圧を決定するステップをさらに含む、請求項1から12のいずれかに記載の故障診断方法。 The first saturation voltage and the second saturation voltage are determined by using a look-up table having a current value determined based on the d-axis current and the q-axis current in the dq coordinate system and the rotation speed of the motor as inputs. The fault diagnosis method according to claim 1, further comprising a step of performing.
  14. 電源からの電力を、n相(nは3以上の整数)の巻線を有するモータへ供給する電力に変換する電力変換装置であって、 前記電力変換装置は、 前記モータの各相の巻線の第1端に接続される第1インバータと、 前記各相の巻線の第2端に接続される第2インバータと、 各々が第1ハイサイドスイッチ素子、第1ローサイドスイッチ素子、第2ハイサイドスイッチ素子および第2ローサイドスイッチ素子を有するn個のHブリッジと、 前記第1および第2インバータの動作を制御する制御回路と、 を備え、 前記n相は、第1相、第2相および第3相を含み、 前記制御回路は、  前記第1インバータにおける前記第1相のローサイドスイッチ素子の両端電圧と前記第2インバータにおける前記第1相のローサイドスイッチ素子の両端電圧との和と、第1飽和電圧との大小関係を判定し、  前記第2相と前記第3相の間の相間電圧と、第2飽和電圧との大小関係を判定し、  前記両端電圧の和と前記第1飽和電圧との大小関係の判定結果および前記相間電圧と前記第2飽和電圧との大小関係の判定結果に基づいて、前記第1相の故障の有無を判定する、電力変換装置。 A power conversion device for converting power from a power source into power supplied to a motor having n-phase (n is an integer of 3 or more) winding, wherein the power conversion device is a winding for each phase of the motor. A first inverter connected to the first end of the, and a second inverter connected to the second end of the winding of each phase, a first high-side switch element, a first low-side switch element, a second high It is provided with n H bridges having a side switch element and a second low side switch element, and a control circuit for controlling the operation of the first and second inverters, wherein the n phase is a first phase, a second phase and The control circuit includes a third phase, and the control circuit includes a voltage across the low-side switching element of the first phase in the first inverter and the low-side switching element of the first phase in the second inverter. The magnitude relationship between the sum of the both-end voltage and the first saturation voltage is determined, and the magnitude relationship between the interphase voltage between the second phase and the third phase and the second saturation voltage is determined, and the both-end voltage is determined. Of the first phase based on the determination result of the magnitude relationship between the sum of the above and the first saturation voltage and the determination result of the magnitude relationship between the interphase voltage and the second saturation voltage, power conversion apparatus.
  15. モータと、 請求項14に記載の電力変換装置と、を備えるモータモジュール。 A motor module comprising a motor and the power conversion device according to claim 14.
  16. 請求項15に記載のモータモジュールを備える電動パワーステアリング装置。
     
    An electric power steering apparatus comprising the motor module according to claim 15.
PCT/JP2019/039574 2018-10-15 2019-10-08 Failure diagnosis method, power conversion device, motor module, and electric power steering device WO2020080170A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980066683.1A CN112840557B (en) 2018-10-15 2019-10-08 Fault diagnosis method, power conversion device, motor module, and electric power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018194183 2018-10-15
JP2018-194183 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020080170A1 true WO2020080170A1 (en) 2020-04-23

Family

ID=70284281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039574 WO2020080170A1 (en) 2018-10-15 2019-10-08 Failure diagnosis method, power conversion device, motor module, and electric power steering device

Country Status (2)

Country Link
CN (1) CN112840557B (en)
WO (1) WO2020080170A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111884565A (en) * 2020-08-04 2020-11-03 中国船舶科学研究中心 High-power driver of deep sea motor
JP7086358B1 (en) 2021-05-20 2022-06-20 国立大学法人大阪大学 Motor device and how to drive the motor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333467A (en) * 1999-05-20 2000-11-30 Denso Corp Inverter apparatus
JP5797751B2 (en) * 2010-06-14 2015-10-21 イスパノ・シユイザ Voltage inverter and method for controlling such an inverter
WO2017150638A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device
WO2018180274A1 (en) * 2017-03-31 2018-10-04 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4049091B2 (en) * 2003-12-09 2008-02-20 トヨタ自動車株式会社 Power conversion device and automobile equipped with the same
JP2007060866A (en) * 2005-08-26 2007-03-08 Mitsubishi Electric Corp On-vehicle motor controller
JP5882691B2 (en) * 2011-11-21 2016-03-09 サンデンホールディングス株式会社 Fault detection device for inverter system
JP5594312B2 (en) * 2012-04-02 2014-09-24 株式会社デンソー Motor drive device
JP6979767B2 (en) * 2014-11-05 2021-12-15 日本電産株式会社 Motor drive and electric power steering
JP6156458B2 (en) * 2015-08-12 2017-07-05 日本精工株式会社 Motor control device, electric power steering device, and vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333467A (en) * 1999-05-20 2000-11-30 Denso Corp Inverter apparatus
JP5797751B2 (en) * 2010-06-14 2015-10-21 イスパノ・シユイザ Voltage inverter and method for controlling such an inverter
WO2017150638A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device
WO2018180274A1 (en) * 2017-03-31 2018-10-04 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111884565A (en) * 2020-08-04 2020-11-03 中国船舶科学研究中心 High-power driver of deep sea motor
CN111884565B (en) * 2020-08-04 2022-04-08 中国船舶科学研究中心 High-power driver of deep sea motor
JP7086358B1 (en) 2021-05-20 2022-06-20 国立大学法人大阪大学 Motor device and how to drive the motor device
JP2022178731A (en) * 2021-05-20 2022-12-02 国立大学法人大阪大学 Motor device and method for driving the same

Also Published As

Publication number Publication date
CN112840557B (en) 2023-10-20
CN112840557A (en) 2021-05-25

Similar Documents

Publication Publication Date Title
US8037964B2 (en) Electric power steering apparatus
JP7088200B2 (en) Motor control method, power converter, motor module and electric power steering device
US11063545B2 (en) Power conversion device, motor module, and electric power steering device
WO2019064749A1 (en) Fault diagnosis method, power conversion device, motor module and electric power steering device
US20200274461A1 (en) Electric power conversion device, motor driver, and electric power steering device
US11095233B2 (en) Electric power conversion apparatus, motor drive unit and electric motion power steering apparatus
CN109804551B (en) Motor control method, motor control system, and electric power steering system
US20200247464A1 (en) Power conversion device, motor module, and electric power steering device
JP6939793B2 (en) Motor control method, motor control system and electric power steering system
WO2020080170A1 (en) Failure diagnosis method, power conversion device, motor module, and electric power steering device
US11476777B2 (en) Power conversion device, driving device, and power steering device
WO2018159101A1 (en) Motor control method, motor control system, and electric power steering system
WO2019220780A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
WO2018159103A1 (en) Motor control method, motor control system, and electric power steering system
WO2019240004A1 (en) Failure diagnosis method, power conversion device, motor module, and electric power steering device
WO2019064748A1 (en) Fault diagnosis method, power conversion device, motor module and electric power steering device
WO2019220781A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
WO2019220782A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
WO2019220783A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
CN115516758A (en) Control device for AC rotating machine
WO2019058671A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2018056046A1 (en) Power conversion device, motor drive unit, and electric power steering device
WO2019058677A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2019058672A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2019058676A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP