WO2019064748A1 - Fault diagnosis method, power conversion device, motor module and electric power steering device - Google Patents

Fault diagnosis method, power conversion device, motor module and electric power steering device Download PDF

Info

Publication number
WO2019064748A1
WO2019064748A1 PCT/JP2018/023721 JP2018023721W WO2019064748A1 WO 2019064748 A1 WO2019064748 A1 WO 2019064748A1 JP 2018023721 W JP2018023721 W JP 2018023721W WO 2019064748 A1 WO2019064748 A1 WO 2019064748A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switch element
side switch
failure
fault
Prior art date
Application number
PCT/JP2018/023721
Other languages
French (fr)
Japanese (ja)
Inventor
アハマッド ガデリー
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019064748A1 publication Critical patent/WO2019064748A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a failure diagnosis method, a power conversion device, a motor module, and an electric power steering device.
  • Patent Document 1 discloses a motor drive device having a first system and a second system.
  • the first system is connected to a first winding set of the motor, and includes a first inverter unit, a power supply relay, a reverse connection protection relay, and the like.
  • the second system is connected to a second winding set of the motor, and includes a second inverter unit, a power supply relay, a reverse connection protection relay, and the like.
  • the power supply relay is operated from the power supply, the failed system or the failure. Shut off the power supply to the grid connected to the set of windings. It is possible to continue motor drive using the other system which has not failed.
  • Patent documents 2 and 3 also disclose a motor drive device having a first system and a second system. Even if one system or one winding set fails, the motor drive can be continued by the system which has not failed.
  • Patent Document 4 discloses a motor drive device having four electrical separation means and two inverters and converting power supplied to a three-phase motor.
  • one electrical separation means is provided between the power supply and the inverter, and one electrical separation means is provided between the inverter and the ground (hereinafter referred to as GND).
  • GND ground
  • Embodiments of the present disclosure provide a fault diagnosis method capable of appropriately diagnosing a fault of the H bridge.
  • Exemplary fault diagnosis methods of the present disclosure convert power from a power supply into power supplied to a motor having at least one phase winding, each of which is a first high side switch element, a second high side switch element,
  • a fault diagnostic method for diagnosing a fault in an H bridge for use in a power converter comprising at least one H bridge having a first low side switch element and a second low side switch element, the current / voltage represented in the dq coordinate system And the first actual voltage indicating the voltage across the first low side switch element and the second actual voltage indicating the voltage across the second low side switch element, and the rotational speed of the motor Acquiring the current and voltage of the dq coordinate system, the first actual voltage, the second actual voltage, and the rotation speed.
  • An exemplary power converter of the present disclosure is a power converter that converts power from a power source to power supplied to a motor having at least one phase winding, each of which is a first high side switch element, 2) at least one H bridge having a high side switching device, a first low side switching device, and a second low side switching device, and a control circuit for controlling the switching operation of the switching devices of the at least one H bridge;
  • the circuit acquires a current / voltage represented in a dq coordinate system, and acquires a first actual voltage indicating a voltage across the first low side switch element and a second actual voltage indicating a voltage across the second low side switch element.
  • Another exemplary power converter of the present disclosure is a power converter that converts power from a power supply to power supplied to a motor having n-phase (n is an integer of 3 or more) windings.
  • a first inverter connected to one end of a winding of each phase of the motor and having n legs each including a first high side switching device and a first low side switching device, and the winding of each phase of the motor
  • a second inverter connected to the end and having n legs each including a second high side switch element and a second low side switch element, a winding of the n phase, the n legs of the first inverter,
  • n H bridges having the n legs of the second inverter, and a control circuit for controlling the switching operation of the switch elements of the n H bridges, the control circuit having dq coordinates system Obtaining a current / voltage expressed in the equation, and acquiring a first actual voltage indicating the voltage across the first low side switch element and a second actual voltage indicating the voltage across
  • a failure diagnosis method capable of appropriately diagnosing a failure of an H bridge, a power conversion device, a motor module including the power conversion device, and an electric power steering device including the motor module Is provided.
  • FIG. 1 is a block diagram schematically showing a typical block configuration of a motor module 2000 according to an exemplary embodiment 1.
  • FIG. 2 is a circuit diagram schematically showing a circuit configuration of the inverter unit 100 according to the exemplary embodiment 1.
  • FIG. 3A is a schematic view showing the configuration of the A-phase H bridge BA.
  • FIG. 3B is a schematic view showing the configuration of the B-phase H bridge BB.
  • FIG. 3C is a schematic view showing the configuration of the C-phase H bridge BC.
  • FIG. 4 is a functional block diagram illustrating functional blocks of the controller 340 for performing motor control in general.
  • FIG. 5A is a functional block diagram illustrating functional blocks for performing failure diagnosis of the A-phase H bridge BA.
  • FIG. 5A is a functional block diagram illustrating functional blocks for performing failure diagnosis of the A-phase H bridge BA.
  • FIG. 5B is a functional block diagram illustrating functional blocks for performing failure diagnosis of B-phase H bridge BB.
  • FIG. 5C is a functional block diagram illustrating functional blocks for performing failure diagnosis of the C-phase H bridge BC.
  • FIG. 6 is a schematic diagram showing a look-up table 840 for determining the saturation voltage Vsat from the rotational speed ⁇ and the current amplitude value.
  • FIG. 7 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to three-phase conduction control. Is a graph.
  • FIG. 8A is obtained by plotting the current values flowing in the B-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the A-phase H bridge BA fails. It is a graph which illustrates a current waveform.
  • FIG. 8B can be obtained by plotting the current values flowing through the A-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the B-phase H bridge BB fails. It is a graph which illustrates a current waveform.
  • FIG. 8A is obtained by plotting the current values flowing in the B-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the B-phase H bridge BB fails. It is a graph which illustrates a current waveform.
  • FIG. 8C is obtained by plotting the current values flowing in the A-phase and B-phase windings of the motor 200 when the power conversion apparatus 1000 is controlled according to the two-phase energization control when the C-phase H bridge BC fails. It is a graph which illustrates a current waveform.
  • FIG. 9A is a graph showing a waveform (upper side) of a simulation result of motor rotation speed and a waveform (lower side) of a simulation result of rotor angle.
  • FIG. 9B is a graph showing the waveform of the simulation result of the A-phase current Ia.
  • FIG. 9C is a graph showing the waveform of the simulation result of the B phase current Ib.
  • FIG. 9D is a graph showing the waveform of the simulation result of the C-phase current Ic.
  • FIG. 9E is a graph showing the waveform of the simulation result of the zero phase current Iz.
  • FIG. 9F shows waveforms of simulation results of the first actual voltage VA1 (upper side) and the second actual voltage VA2 (lower side) of the A phase when the high side switch element SW_A1H in the H bridge BA of the A phase has an open failure. It is a graph.
  • FIG. 9G shows waveforms of simulation results of the first real voltage VB1 (upper side) and the second real voltage VB2 (lower side) of the B phase when the high side switch element SW_A1H in the H bridge BA of the A phase has an open failure. It is a graph.
  • FIG. 9G shows waveforms of simulation results of the first real voltage VB1 (upper side) and the second real voltage VB2 (lower side) of the B phase when the high side switch element SW_A1H in the H bridge BA of the A phase has an open failure. It is a graph.
  • FIG. 9H shows waveforms of simulation results of the first actual voltage VC1 (upper side) and the second actual voltage VC2 (lower side) of the C phase when the high side switch element SW_A1H in the H bridge BA of the A phase has an open failure. It is a graph.
  • FIG. 9I is a graph showing waveforms of simulation results of the first actual voltage VA1 (upper side) and the second actual voltage VA2 (lower side) of the A phase when the low side switch element SW_A1L in the H bridge BA of the A phase has an open failure. It is.
  • FIG. 9H shows waveforms of simulation results of the first actual voltage VC1 (upper side) and the second actual voltage VC2 (lower side) of the C phase when the high side switch element SW_A1H in the H bridge BA of the A phase has an open failure. It is a graph.
  • FIG. 9I is a graph showing waveforms of simulation results of the first actual voltage VA1 (upper side) and the second actual voltage VA2 (lower
  • FIG. 9J is a graph showing waveforms of simulation results of the first actual voltage VB1 (upper side) and the second actual voltage VB2 (lower side) of the B phase when the low side switch element SW_A1L in the H bridge BA of the A phase has an open failure. It is.
  • FIG. 9K is a graph showing waveforms of simulation results of the first actual voltage VC1 (upper side) and the second actual voltage VC2 (lower side) of the C phase when the low side switch element SW_A1L in the H bridge BA of the A phase has an open failure.
  • FIG. 9L is a graph showing a waveform of a simulation result of the failure signal A_FD.
  • FIG. 10 is a schematic view showing a typical configuration of an electric power steering apparatus 3000 according to the second embodiment.
  • the implementation of the present disclosure will be exemplified taking a power conversion device that converts power from a power supply into power supplied to a three-phase motor having three-phase (A-phase, B-phase, C-phase) windings.
  • the form will be described.
  • a power converter for converting power from a power supply into power for supplying to an n-phase motor having n-phase (n is an integer of 4 or more) windings such as four-phase or five-phase, and H used for the apparatus
  • the fault diagnosis method of the bridge is also within the scope of the present disclosure.
  • FIG. 1 schematically shows a typical block configuration of a motor module 2000 according to the present embodiment.
  • Motor module 2000 typically includes a power conversion device 1000 having an inverter unit 100 and a control circuit 300, and a motor 200.
  • the motor module 2000 may be modularized and manufactured and sold as an electromechanical integrated motor having, for example, a motor, a sensor, a driver and a controller.
  • Power converter 1000 can convert power from power source 101 (see FIG. 2) into power to be supplied to motor 200. Power converter 1000 is connected to motor 200. For example, power conversion apparatus 1000 can convert DC power into three-phase AC power which is pseudo sine waves of A-phase, B-phase and C-phase.
  • connection between components (components) mainly means electrical connection.
  • the motor 200 is, for example, a three-phase alternating current motor.
  • Motor 200 includes A-phase winding M1, B-phase winding M2 and C-phase winding M3, and is connected to first inverter 120 and second inverter 130 of inverter unit 100.
  • the first inverter 120 is connected to one end of the winding of each phase of the motor 200
  • the second inverter 130 is connected to the other end of the winding of each phase.
  • the control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360. Each component of the control circuit 300 is mounted on, for example, a single circuit board (typically, a printed circuit board). Control circuit 300 is connected to inverter unit 100, and controls inverter unit 100 based on input signals from current sensor 150 and angle sensor 320. As the control method, there are, for example, vector control, pulse width modulation (PWM) or direct torque control (DTC). However, depending on the motor control method (for example, sensorless control), the angle sensor 320 may not be necessary.
  • PWM pulse width modulation
  • DTC direct torque control
  • the control circuit 300 can achieve closed loop control by controlling the target position, rotational speed, current, and the like of the rotor of the motor 200.
  • Control circuit 300 may include a torque sensor instead of angle sensor 320. In this case, the control circuit 300 can control the target motor torque.
  • the power supply circuit 310 generates power supply voltages (for example, 3 V, 5 V) necessary for each block in the circuit based on, for example, a voltage of 12 V of the power supply 101.
  • the angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects a rotation angle of the rotor (hereinafter referred to as “rotation signal”), and outputs a rotation signal to the controller 340.
  • rotation signal a rotation angle of the rotor
  • the input circuit 330 receives the phase current detected by the current sensor 150 (hereinafter may be referred to as “actual current value”), and the level of the actual current value corresponds to the input level of the controller 340 as necessary. It converts and outputs an actual current value to the controller 340.
  • the input circuit 330 is, for example, an analog-to-digital (AD) conversion circuit.
  • the controller 340 is an integrated circuit that controls the entire power conversion apparatus 1000, and is, for example, a microcontroller or a field programmable gate array (FPGA).
  • the controller 340 controls the switching operation (turn on or off) of each switch element (typically, semiconductor switch element) in the first and second inverters 120 and 130 of the inverter unit 100.
  • the controller 340 sets a target current value according to the actual current value, the rotation signal of the rotor, etc. to generate a PWM signal, and outputs it to the drive circuit 350.
  • the drive circuit 350 is typically a predriver (sometimes referred to as a "gate driver").
  • the drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each switch element in the first and second inverters 120 and 130 of the inverter unit 100 according to the PWM signal, and controls the gate of each switch element give.
  • gate control signal gate control signal
  • the pre-driver may not be required. In that case, the function of the pre-driver may be implemented in the controller 340.
  • the ROM 360 is, for example, a writable memory (for example, a PROM), a rewritable memory (for example, a flash memory), or a read only memory.
  • the ROM 360 stores a control program including instructions for causing the controller 340 to control the power conversion apparatus 1000.
  • the control program is temporarily expanded in a RAM (not shown) at boot time.
  • FIG. 2 schematically shows the circuit configuration of the inverter unit 100 according to the present embodiment.
  • the power supply 101 generates a predetermined power supply voltage (for example, 12 V).
  • a DC power supply is used as the power supply 101.
  • the power supply 101 may be an AC-DC converter or a DC-DC converter, or may be a battery (storage battery).
  • the power supply 101 may be a single power supply common to the first and second inverters 120, 130 as shown, or for the first power supply (not shown) for the first inverter 120 and for the second inverter 130.
  • the fuses ISW_ 11 and ISW_ 12 are connected between the power supply 101 and the first inverter 120.
  • the fuses ISW_11 and ISW_12 can interrupt a large current that can flow from the power supply 101 to the first inverter 120.
  • the fuses ISW 21 and ISW 22 are connected between the power supply 101 and the second inverter 130.
  • the fuses ISW_ 21 and ISW_ 22 can interrupt a large current that can flow from the power supply 101 to the second inverter 130.
  • a relay or the like may be used instead of the fuse.
  • coils are provided between the power supply 101 and the first inverter 120 and between the power supply 101 and the second inverter 130.
  • the coil functions as a noise filter, and smoothes high frequency noise included in the voltage waveform supplied to each inverter or high frequency noise generated in each inverter so as not to flow out to the power supply 101 side.
  • a capacitor is connected to the power supply terminal of each inverter.
  • the capacitor is a so-called bypass capacitor, which suppresses voltage ripple.
  • the capacitor is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to design specifications and the like.
  • the first inverter 120 has a bridge circuit composed of three legs. Each leg has a high side switch element, a low side switch element and a shunt resistor.
  • the A-phase leg has a high side switch element SW_A1H, a low side switch element SW_A1L, and a first shunt resistor S_A1.
  • the B-phase leg has a high side switch element SW_B1H, a low side switch element SW_B1L, and a first shunt resistor S_B1.
  • the C-phase leg has a high side switch element SW_C1H, a low side switch element SW_C1L, and a first shunt resistor S_C1.
  • a switch element for example, a field effect transistor (typically, a MOSFET) in which a parasitic diode is formed, or a combination of an insulated gate bipolar transistor (IGBT) and a free wheeling diode connected in parallel thereto can be used.
  • a field effect transistor typically, a MOSFET
  • IGBT insulated gate bipolar transistor
  • the first shunt resistor S_A1 is used to detect an A-phase current IA1 flowing through the A-phase winding M1, and is connected, for example, between the low side switch element SW_A1L and the GND line GL.
  • the first shunt resistor S_B1 is used to detect the B-phase current IB1 flowing through the B-phase winding M2, and is connected, for example, between the low side switch element SW_B1L and the GND line GL.
  • the first shunt resistor S_C1 is used to detect a C-phase current IC1 flowing through the C-phase winding M3, and is connected, for example, between the low side switch element SW_C1L and the GND line GL.
  • the three shunt resistors S_A1, S_B1 and S_C1 are commonly connected to the GND line GL of the first inverter 120.
  • the second inverter 130 has a bridge circuit composed of three legs. Each leg has a high side switch element, a low side switch element and a shunt resistor.
  • the A-phase leg has a high side switch element SW_A2H, a low side switch element SW_A2L, and a shunt resistor S_A2.
  • the B-phase leg has a high side switch element SW_B2H, a low side switch element SW_B2L, and a shunt resistor S_B2.
  • the C-phase leg has a high side switch element SW_C2H, a low side switch element SW_C2L, and a shunt resistor S_C2.
  • the shunt resistor S_A2 is used to detect the A-phase current IA2, and is connected, for example, between the low side switch element SW_A2L and the GND line GL.
  • the shunt resistor S_B2 is used to detect the B-phase current IB2, and is connected, for example, between the low side switch element SW_B2L and the GND line GL.
  • the shunt resistor S_C2 is used to detect the C-phase current IC2, and is connected, for example, between the low side switch element SW_C2L and the GND line GL.
  • the three shunt resistors S_A2, S_B2 and S_C2 are commonly connected to the GND line GL of the second inverter 130.
  • the above-described current sensor 150 includes, for example, shunt resistors S_A1, S_B1, S_C1, S_A2, S_B2 and S_C2 and a current detection circuit (not shown) that detects the current flowing in each shunt resistor.
  • the A-phase leg of the first inverter 120 (specifically, the node between the high-side switch element SW_A1H and the low-side switch element SW_A1L) is connected to one end A1 of the A-phase winding M1 of the motor 200.
  • the 130 A-phase leg is connected to the other end A2 of the A-phase winding M1.
  • the B-phase leg of the first inverter 120 is connected to one end B1 of the B-phase winding M2 of the motor 200, and the B-phase leg of the second inverter 130 is connected to the other end B2 of the winding M2.
  • the C-phase leg of the first inverter 120 is connected to one end C1 of the C-phase winding M3 of the motor 200, and the C-phase leg of the second inverter 130 is connected to the other end C2 of the winding M3.
  • FIG. 3A schematically shows the configuration of the A-phase H bridge BA.
  • FIG. 3B schematically shows the configuration of the B-phase H bridge BB.
  • FIG. 3C schematically shows the configuration of the C-phase H bridge BC.
  • the inverter unit 100 includes A-phase, B-phase and C-phase H bridges BA, BB, BC.
  • the A-phase H bridge BA includes a high side switch element SW_A1H and a low side switch element SW_A1L in the leg on the first inverter 120 side, a high side switch element SW_A2H in the leg on the second inverter 130 side, a low side switch element SW_A2L, and a winding It has M1.
  • the B-phase H bridge BB includes a high side switch element SW_B1H and a low side switch element SW_B1L in a leg on the first inverter 120 side, a high side switch element SW_B2H in a leg on the second inverter 130 side, a low side switch element SW_B2L, and a winding It has M2.
  • the C-phase H bridge BC includes a high side switching device SW_C1H and a low side switching device SW_C1L in the leg on the first inverter 120 side, a high side switching device SW_C2H in the leg on the second inverter 130 side, a low side switching device SW_C2L, and a winding It has M3.
  • the control circuit 300 (specifically, the controller 340) can identify the failed H bridge from among the three-phase H bridges by performing the failure diagnosis of the H bridge described below. Furthermore, the control circuit 300 can identify an open failure switch element from among the four switch elements of the failed H bridge. For example, when the control circuit 300 identifies a failed H bridge, it is possible to switch to motor control in which a two-phase winding is energized using a two-phase H bridge other than the failed H bridge.
  • energization of a three-phase winding is referred to as "three-phase energization control”
  • energization of a two-phase winding is referred to as "two-phase energization control”.
  • failure diagnosis method of H bridge With reference to FIGS. 4 to 6, for example, a specific example of a failure diagnosis method for diagnosing a failure of the H bridge, which is used for the power conversion device 1000 shown in FIG. However, as will be described later, the failure diagnosis method of the present disclosure can be suitably used for a power converter including at least one H bridge, for example, a full bridge type power converter.
  • the failure of the H bridge will be described.
  • the failure of the H bridge refers to the open failure of the switch element.
  • the occurrence of an open failure in the high-side switch element SW_A1H of the A-phase H bridge BA may be referred to as a failure of the A-phase H bridge BA.
  • the H-bridge failure diagnosis method of the present disclosure it is possible to identify an open-failed switch element among the four switch elements of the failed H-bridge.
  • the H-bridge failure diagnosis method includes a method of identifying an open failure switch element.
  • the outline of the failure diagnosis method for diagnosing the failure of the H bridge is as follows.
  • a current / voltage expressed in the dq coordinate system is acquired, and a first actual voltage indicating a voltage across the first low side switch element and a second actual voltage indicating a voltage across the second low side switch element are And the motor rotation speed ⁇ (acquisition step).
  • the current / voltage represented in the dq coordinate system includes the d-axis voltage Vd, the q-axis voltage Vq, the d-axis current Id and the q-axis current Iq.
  • an axis corresponding to the zero phase is represented as az axis.
  • the rotational speed ⁇ is represented by the number of revolutions (rpm) at which the rotor of the motor rotates per unit time (for example, one minute) or the number of revolutions (rps) at which the rotor rotates per unit time (for example, one second).
  • the first actual voltage and the second actual voltage will be described with reference to FIGS. 3A to 3C.
  • a first actual voltage and a second actual voltage are defined for the A-phase, B-phase and C-phase H bridges BA, BB and BC, respectively.
  • the first actual voltage indicates the voltage across the first low-side switch element in the leg on the first inverter 120 side in the H bridge of each phase. In other words, the first actual voltage corresponds to the node potential between the first high side switching device and the first low side switching device in the leg on the first inverter 120 side.
  • the second actual voltage indicates the voltage across the second low side switch element in the leg on the second inverter 130 side. In other words, the second actual voltage corresponds to the node potential between the second high side switching device and the second low side switching device in the leg on the second inverter 130 side.
  • the voltage across the switch element is equal to the voltage Vds between the source and drain of the FET which is the switch element.
  • the first actual voltage indicates the voltage VA1 across the low-side switch element SW_A1L shown in FIG. 3A
  • the second actual voltage indicates the voltage VA2 across the low-side switch element SW_A2L shown in FIG. 3A.
  • the first actual voltage indicates the voltage VB1 across the low side switch device SW_B1L shown in FIG. 3B
  • the second actual voltage indicates the voltage VB2 across the low side switch device SW_B2L shown in FIG. 3B.
  • the first actual voltage indicates the voltage VC1 across the low-side switch element SW_C1L shown in FIG. 3C
  • the second actual voltage indicates the voltage VC2 across the low-side switch element SW_C2L shown in FIG. 3C. .
  • the failure signal indicating the failure of the H bridge is phase-by-phase based on the diagnosis result of the open failure of each of the first high side switching device, the second high side switching device, the first low side switching device and the second low side switching device. And output to a motor control unit described later (fault signal generation step).
  • a fault signal is a signal that is asserted when a fault occurs.
  • the above acquisition step, diagnosis step and fault signal generation step are repeatedly performed, for example, in synchronization with the cycle of measuring each phase current by the current sensor 150, that is, the cycle of AD conversion.
  • the algorithm for realizing the fault diagnosis method according to the present embodiment can be realized only by hardware such as an application specific integrated circuit (ASIC) or an FPGA, for example, or realized by a combination of a microcontroller and software.
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • the operation subject of failure diagnosis is the controller 340 of the control circuit 300.
  • FIG. 4 exemplifies functional blocks of the controller 340 for performing motor control in general.
  • FIG. 5A illustrates functional blocks for performing failure diagnosis of the A-phase H bridge BA.
  • FIG. 5B illustrates functional blocks for performing failure diagnosis of the B-phase H bridge BB.
  • FIG. 5C illustrates functional blocks for performing failure diagnosis of the C-phase H bridge BC.
  • each block in the functional block diagram is shown not in hardware but in functional block.
  • the software used for motor control and fault diagnosis of the H bridge may be, for example, a module constituting a computer program for executing a specific process corresponding to each functional block.
  • Such computer programs are stored, for example, in the ROM 360.
  • the controller 340 can read an instruction from the ROM 360 and sequentially execute each process.
  • the controller 340 includes, for example, a fault diagnosis unit 800 and a motor control unit 900.
  • the fault diagnosis of the present disclosure can be suitably combined with motor control (for example, vector control) and can be incorporated into a series of processes of motor control.
  • the failure diagnosis unit 800 obtains, as input signals, a voltage peak value Vpeak expressed in the dq coordinate system, a current amplitude value (Id 2 + Iq 2 ) 1/2, and a rotational speed ⁇ of the motor 200.
  • the failure diagnosis unit 800 refers to the look-up table 840 to determine the saturation voltage Vsat based on the acquired current amplitude value and rotational speed ⁇ .
  • the fault diagnosis unit 800 further obtains the first actual voltages VA1, VB1, VC1, and the second actual voltages VA2, VB2, and VC2.
  • the failure diagnosis unit 800 diagnoses a failure of the A-phase H bridge BA based on the acquired voltage peak value Vpeak, the saturation voltage Vsat, the first actual voltage VA1 and the second actual voltage VA2.
  • the failure diagnosis unit 800 diagnoses a failure of the B-phase H bridge B based on the acquired voltage peak value Vpeak, the saturation voltage Vsat, the first actual voltage VB1 and the second actual voltage VB2.
  • the failure diagnosis unit 800 diagnoses a failure of the C-phase H bridge BC based on the acquired voltage peak value Vpeak, the saturation voltage Vsat, the first actual voltage VC1 and the second actual voltage VC2.
  • the failure diagnosis unit 800 generates failure signals A_FD, B_FD and C_FD indicating a failure of the H bridge for each phase based on the diagnosis result, and outputs the signals to a motor control unit 900 that controls the motor 200.
  • the motor control unit 900 generates a PWM signal that controls the overall switching operation of the switch elements of the first and second inverters 120 and 130 using, for example, vector control.
  • the motor control unit 900 outputs a PWM signal to the drive circuit 350. Further, the motor control unit 900 can switch the motor control from the three-phase energization control to the two-phase energization control, for example, when a failure signal is asserted.
  • each functional block may be referred to as a unit for convenience of explanation. Naturally, these notations should not be used with the intention of limiting interpretation of each functional block to hardware or software.
  • controller 340 When each functional block is implemented as software in the controller 340, the execution subject of the software may be, for example, the core of the controller 340. As described above, controller 340 may be implemented by an FPGA. In that case, all or part of the functional blocks can be realized in hardware.
  • the computing load of a specific computer can be distributed.
  • all or part of the functional blocks shown in FIG. 4 and FIGS. 5A to C may be distributed and implemented in a plurality of FPGAs.
  • the plurality of FPGAs are communicably connected to one another by, for example, a vehicle-mounted control area network (CAN), and can transmit and receive data.
  • CAN vehicle-mounted control area network
  • the failure diagnosis unit 800 is a failure diagnosis unit 800A (see FIG. 5A) for diagnosing a failure of the A-phase H bridge BA, and a failure diagnosis unit 800B for diagnosing a failure of the B-phase H bridge BB (FIG. 5B). And a failure diagnosis unit 800C (see FIG. 5C) for diagnosing a failure of the C-phase H bridge BC.
  • the failure diagnosis units 800A, B, C are configured by substantially the same functional blocks. However, the input signals of the first actual voltage and the second actual voltage are different among the blocks.
  • the fault diagnosis of the H-bridge will be described in detail with reference to FIG. 5A, taking the fault diagnosis of the A-phase H bridge BA as an example.
  • the fault diagnosis unit 800A is a low side fault diagnosis unit including multipliers 810, 811, adders 812, 813_1, 813_2, signal generation units 814_1 and 814_2, multipliers 820, 821, adders 822, 823_1, 823_2, signal generation. It has a high side fault diagnosis unit including units 824_1 and 824_2, and a logic circuit OR 830.
  • the low side fault diagnosis unit identifies open faults of the low side switch elements SW_A1L and SW_A2L.
  • the high side fault diagnosis unit identifies open faults of the high side switch elements SW_A1H and SW_A2H.
  • the high side fault diagnosis unit performs a first fault diagnosis for diagnosing an open fault of the high side switch element SW_A1H based on the voltage peak value Vpeak, the saturation voltage Vsat and the first actual voltage VA1, a voltage peak value Vpeak, a saturation voltage Vsat and A second failure diagnosis for diagnosing an open failure of the high side switch element SW_A2H is performed based on the second actual voltage VA2.
  • the multiplier 820 multiplies the voltage peak value Vpeak by a constant "1/2".
  • the voltage peak value Vpeak is calculated based on the equation (1).
  • Vd indicates the d-axis voltage in the dq coordinate system
  • Vq indicates the q-axis voltage.
  • Vpeak (2/3) 1/2 (Vd 2 + Vq 2 ) 1/2 equation (1)
  • the failure diagnosis unit 800 may have a pre-operation unit (not shown) for acquiring Vpeak.
  • the pre-arithmetic unit uses three-phase currents Ia, Ib and Ic obtained based on the measurement values of the current sensor 150 using Clarke transformation to generate currents I ⁇ and ⁇ on the ⁇ axis in the ⁇ fixed coordinate system. Current I.sub..beta .
  • the pre-arithmetic unit further converts the currents I ⁇ and I ⁇ into the d-axis current Id and the q-axis current Iq in the dq coordinate system, using Park transformation (dq coordinate transformation).
  • the pre-arithmetic unit acquires the d-axis voltage Vd and the q-axis voltage Vq based on Id and Iq, and calculates the voltage peak value Vpeak from the acquired Vd and Vq based on Expression (1).
  • the pre-arithmetic unit can also receive Vd and Vq necessary for calculation of Vpeak from the motor control unit 900 performing vector control.
  • the pre-arithmetic unit acquires Vpeak in synchronization with the cycle of measuring each phase current by the current sensor 150.
  • the multiplier 821 multiplies the saturation voltage Vsat by a constant "1".
  • FIG. 6 schematically shows a look-up table (LUT) 840 for determining the saturation voltage Vsat from the rotational speed ⁇ and the current amplitude value.
  • the LUT 840 relates the relationship between the saturation voltage Vsat and the input of the current amplitude value (Id 2 + Iq 2 ) 1/2 determined based on the d-axis current and the q-axis current and the rotational speed ⁇ of the motor 200.
  • Id and Iq are input from, for example, a pre-operation unit.
  • the rotation speed ⁇ is calculated based on, for example, a rotation signal from the angle sensor 320.
  • the rotational speed ⁇ can be estimated, for example, using a known sensorless control method.
  • Table 1 illustrates the configuration of the LUT 840 that can be used for the H-bridge failure diagnosis method.
  • Iq (A) In Table 1, Iq (A) is described.
  • the saturation voltage Vsat is determined from the acquired current amplitude value Iq and the rotational speed ⁇ .
  • a constant value for example, about 0.1 V) depending on the system can be used as the saturation voltage Vsat.
  • the adder 822 adds the output Vsat of the multiplier 821 to the output Vpeak / 2 of the multiplier 820.
  • the adder 823_1 calculates the first failure diagnosis voltage VA1H_FD by adding the first actual voltage VA1 to the output (Vpeak / 2) + Vsat from the adder 822 in the first failure diagnosis (Equation (2)) .
  • the adder 823_2 calculates the second fault diagnosis voltage VA2H_FD by adding the second actual voltage VA2 to the output (Vpeak / 2) + Vsat from the adder 822 in the second fault diagnosis (Equation (3)) .
  • the first actual voltage VA1 and the second actual voltage VA2 are measured by, for example, a drive circuit (predriver) 350.
  • VA1H_FD VA1 + [(Vpeak / 2) + Vsat]
  • VA2H_FD VA2 + [(Vpeak / 2) + Vsat] Formula (3)
  • the signal generation unit 824_1 diagnoses an open failure of the high side switch element SW_A1H based on the first failure diagnosis voltage VA1H_FD. Specifically, when the first failure diagnosis voltage VA1H_FD is less than zero (VA1H_FD ⁇ 0), the signal generation unit 824_1 identifies an open failure of the high side switch element SW_A1H. When the first failure diagnosis voltage VA1H_FD is greater than or equal to zero (VA1H_FD ⁇ 0), the signal generation unit 824_1 determines that an open failure has not occurred in the high side switch element SW_A1H.
  • the signal generation unit 824_1 generates a first failure signal A1H_FD indicating an open failure of the high side switch element SW_A1H based on the diagnosis result in the first failure diagnosis.
  • the first failure signal A1H_FD can be assigned to a 1-bit signal.
  • the level of the first failure signal A1H_FD is Low.
  • the signal generation unit 824_1 identifies the open failure of the high side switch element SW_A1H, it asserts the first failure signal A1H_FD.
  • the signal generation unit 824_2 diagnoses an open fault of the high side switch element SW_A2H based on the second fault diagnosis voltage VA2H_FD. Specifically, when the second failure diagnosis voltage VA2H_FD is less than zero (VA2H_FD ⁇ 0), the signal generation unit 824_2 specifies an open failure of the high side switch element SW_A2H. When the second failure diagnosis voltage VA2H_FD is greater than or equal to zero (VA2H_FD ⁇ 0), the signal generation unit 824_2 determines that an open failure has not occurred in the high side switch element SW_A2H.
  • the signal generation unit 824_2 generates a second failure signal A2H_FD indicating an open failure of the high side switch element SW_A2H based on the diagnosis result in the second failure diagnosis.
  • the second failure signal A2H_FD can be assigned to a 1-bit signal.
  • the level of the second failure signal A2H_FD is Low.
  • the signal generation unit 824_2 identifies the open failure of the high side switch element SW_A2H, it asserts the second failure signal A2H_FD.
  • the low side fault diagnosis unit performs third fault diagnosis that diagnoses an open fault of the low side switch element SW_A1L based on the voltage peak value Vpeak, the saturation voltage Vsat and the first actual voltage VA1, and the voltage peak value Vpeak, the saturation voltage Vsat and the second fault diagnosis unit.
  • a fourth failure diagnosis is performed to diagnose an open failure of the low side switch element SW_A2L based on the actual voltage VA2.
  • the multiplier 810 multiplies the voltage peak value Vpeak by a constant “ ⁇ 1 ⁇ 2”.
  • the multiplier 811 multiplies the saturation voltage Vsat by a constant “ ⁇ 1”.
  • the low side fault diagnosis unit has the opposite sign of the multipliers 810 and 811 of the high side fault diagnosis unit. A constant is used.
  • the adder 812 adds the output (-Vsat) of the multiplier 811 to the output (-Vpeak / 2) of the multiplier 810.
  • the adder 813_1 calculates the third fault diagnosis voltage VA1L_FD by adding the first actual voltage VA1 to the output from the adder 812:-[(Vpeak / 2) + Vsat] in the third fault diagnosis (formula (4)).
  • the adder 813_2 calculates the fourth failure diagnosis voltage VA2L_FD by adding the second actual voltage VA2 to the output from the adder 812:-[(Vpeak / 2) + Vsat] in the fourth failure diagnosis.
  • VA1L_FD VA1-[(Vpeak / 2) + Vsat] formula (4)
  • VA2L_FD VA2-[(Vpeak / 2) + Vsat] formula (5)
  • the signal generation unit 814_1 diagnoses an open failure of the low side switch element SW_A1L based on the third failure diagnosis voltage VA1L_FD. Specifically, when the third failure diagnosis voltage VA1L_FD is larger than zero (VA1L_FD> 0), the signal generation unit 814_1 identifies an open failure of the low side switch element SW_A1L. When the third failure diagnosis voltage VA1L_FD is equal to or less than zero (VA1L_FD ⁇ 0), the signal generation unit 814_1 determines that the open failure does not occur in the low side switch element SW_A1L.
  • the signal generation unit 814_1 generates a third failure signal A1L_FD indicating an open failure of the low side switch element SW_A1L based on the diagnosis result in the third failure diagnosis.
  • the third fault signal A1L_FD can be assigned to a 1-bit signal.
  • the level of the third failure signal A1L_FD is Low.
  • the signal generation unit 814_1 asserts the third failure signal A1L_FD upon identifying the open failure of the low side switch element SW_A1L.
  • the signal generation unit 814_2 diagnoses an open fault of the low-side switch element SW_A2L based on the fourth fault diagnostic voltage VA2L_FD. Specifically, when the fourth failure diagnosis voltage VA2L_FD is larger than zero (VA2L_FD> 0), the signal generation unit 814_2 identifies an open failure of the low side switch element SW_A2L. When the fourth failure diagnosis voltage VA2L_FD is less than or equal to zero (VA2L_FD ⁇ 0), the signal generation unit 814_2 determines that the open failure does not occur in the low side switch element SW_A2L.
  • the signal generation unit 814_2 generates a fourth failure signal A2L_FD indicating an open failure of the low side switch element SW_A2L based on the diagnosis result in the fourth failure diagnosis.
  • the fourth failure signal A2L_FD can be assigned to a 1-bit signal.
  • the level of the fourth failure signal A2L_FD is Low.
  • the signal generation unit 814_2 identifies the open failure of the low side switch element SW_A2L, it asserts a fourth failure signal A2L_FD.
  • the failure diagnosis unit 800A can specify the open failure switch element among the high side switch elements SW_A1H and SW_A2H, and the low side switch elements SW_A1L and SW_A2L.
  • the logic circuit OR 830 logically ORs the first to fourth failure signals A1H_FD, A2H_FD, A1L_FD and A2L_FD.
  • the logic circuit OR 830 outputs a logical sum to the motor control unit 900 as a failure signal A_FD indicating a failure of the A-phase H bridge BA.
  • the failure signal A_FD can be assigned to a 1-bit signal.
  • the failure diagnosis unit 800B When the failure diagnosis unit 800B identifies at least one open failure of the high side switch devices SW_B1H and SW_B2H, and the low side switch devices SW_B1L and SW_B2L, the failure diagnosis unit 800B asserts the failure signal B_FD.
  • the failure diagnosis unit 800C identifies at least one open failure of the high side switch devices SW_C1H and SW_C2H, and the low side switch devices SW_C1L and SW_C2L, the failure diagnosis unit 800C asserts the failure signal C_FD.
  • FIG. 7 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to three-phase conduction control.
  • FIG. 8A is obtained by plotting the current values flowing in the B-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the A-phase H bridge BA fails.
  • the current waveform is illustrated.
  • the horizontal axis indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A).
  • I pk represents the maximum current value (peak current value) of each phase.
  • FIG. 8B plots the current values flowing in the A-phase and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to the two-phase energization control.
  • the current waveform obtained by In FIG. 8C when the C-phase H bridge BC fails, it is obtained by plotting the current values flowing in the A-phase and B-phase windings of the motor 200 when the power conversion device 1000 is controlled according to the two-phase energization control.
  • the current waveform is illustrated.
  • Motor control unit 900 performs three-phase energization control when normal, that is, when the levels of failure signals A_FD, B_FD and C_FD are all low.
  • the motor control unit 900 performs two-phase energization to energize the windings M2 and M3 using the two-phase H bridges BB and BC other than the failed H bridge BA. Control can be performed. Thus, even if one of the three phases of the H bridge is broken, power conversion device 1000 can continue motor driving.
  • the following shows the results of verification of the validity of the algorithm used for fault diagnosis of the H bridge according to the present disclosure, using dSPACE's "Rapid Control Prototyping (RCP) system” and Matlab / Simulink from MathWorks.
  • RCP Rapid Control Prototyping
  • EPS electric power steering
  • the q-axis current command value Iqref is set to 3A
  • the d-axis current command value Idref and the zero-phase current command value Iz_ref are set to 0A.
  • the motor rotational speed ⁇ was set to 1190 rpm, and a simulation was performed in which an open failure was generated at time 1.543 s in the high side switch element SW_A1H of the A-phase H bridge BA. Also, a simulation was performed in which an open failure was generated at time 1.641 s in the low-side switch element SW_A1L of the A-phase H bridge BA.
  • FIG. 9A shows the waveform (upper side) of the rotational speed ⁇ of the motor and the waveform (lower side) of the rotor angle.
  • the upper vertical axis of the graph indicates the rotational speed (rpm), and the lower vertical axis indicates the rotor angle (rad).
  • the horizontal axis shows time (s). The horizontal axis of all the waveforms of this simulation result indicates time.
  • FIG. 9B shows the waveform of the A phase current Ia
  • FIG. 9C shows the waveform of the B phase current Ib
  • FIG. 9D shows the waveform of the C phase current Ic.
  • the vertical axis shows the current (A).
  • waveforms of the respective phases waveforms of actual current values and waveforms of current command values are shown.
  • FIG. 9E shows the waveform of the zero phase current Iz.
  • the vertical axis shows the current (A).
  • FIG. 9F shows the waveforms of the first actual voltage VA1 (upper side) and the second actual voltage VA2 (lower side) of the A phase when the high side switch element SW_A1H in the A bridge H of the A phase has an open failure.
  • FIG. 9G shows waveforms of the first actual voltage VB1 (upper side) and the second actual voltage VB2 (lower side) of the B phase when the high side switch element SW_A1H in the A bridge H of the A phase is open-circuited.
  • FIG. 9H shows waveforms of the first actual voltage VC1 (upper side) and the second actual voltage VC2 (lower side) of the C phase when the high side switch element SW_A1H in the H bridge BA of the A phase has an open failure.
  • the vertical axis represents voltage (V).
  • FIG. 9I shows waveforms of the first actual voltage VA1 (upper side) and the second actual voltage VA2 (lower side) of the A phase when the low side switch element SW_A1L in the H bridge BA of the A phase has an open failure.
  • FIG. 9J shows the waveforms of the first actual voltage VB1 (upper side) and the second actual voltage VB2 (lower side) of the B phase when the low side switch element SW_A1L in the H bridge BA of the A phase has an open failure.
  • FIG. 9K shows waveforms of the first actual voltage VC1 (upper side) and the second actual voltage VC2 (lower side) of the C phase when the low side switch element SW_A1L in the H bridge BA of the A phase has an open failure.
  • the vertical axis represents voltage (V).
  • FIG. 9L shows the waveform of the failure signal A_FD.
  • the vertical axis indicates the failure signal level.
  • FIG. 9F After the open failure of the high-side switch element SW_A1H of the A-phase H bridge BA at time 1.543 s, as shown in FIG. 9F, it can be seen that the upper peak value of the first actual voltage VA1 decreases. Further, it can be seen that the lower peak value of the second actual voltage VA2 is decreasing (the absolute value of the lower peak value is increased). As shown in FIGS. 9G and 9H, the first actual voltages VB1 and VC1 and the second actual voltages VB2 and VC2 do not change. Further, as shown in FIG.
  • an open failure switch element can be identified among the four switch elements of the H bridge.
  • the failed H bridge of the three-phase H bridge can be identified.
  • the fault diagnosis of the present disclosure can be realized by a simple algorithm. Therefore, for example, advantages such as circuit size reduction or memory size reduction can be obtained in the implementation of the controller 340.
  • the failure diagnosis method of the present disclosure can also be suitably used for a full bridge type power converter.
  • the full bridge comprises a one-phase H-bridge structure, for example the circuit structure shown in FIG. 3A.
  • the failure of the full bridge can be detected by utilizing the above-described failure diagnosis method for the failure diagnosis of the full bridge.
  • a full bridge type power converter controls the switching operation of the H bridge BA having the high side switch element SW_A1H, the high side switch element SW_A2H, the low side switch element SW_A1L and the low side switch element SW_A2L, and the switch elements of the H bridge BA And a control circuit 300.
  • the control circuit 300 acquires the current / voltage represented in the dq coordinate system, and acquires the first actual voltage VA1 indicating the voltage across the low side switch element SW_A1L and the second actual voltage VA2 indicating the voltage across the low side switch element SW_A2L. To obtain the rotational speed ⁇ of the motor.
  • the control circuit 300 controls the high side switch element SW_A1H, the high side switch element SW_A2H, and the low side switch element based on the acquired current / voltage in the dq coordinate system, the first actual voltage VA1, the second actual voltage VA2 and the rotational speed ⁇ . Diagnose open faults of SW_A1L and low side switch element SW_A2L.
  • FIG. 10 schematically shows a typical configuration of the electric power steering apparatus 3000 according to the present embodiment.
  • Vehicles such as automobiles generally have an electric power steering device.
  • the electric power steering apparatus 3000 according to the present embodiment has a steering system 520 and an auxiliary torque mechanism 540 that generates an auxiliary torque.
  • Electric power steering apparatus 3000 generates an assist torque that assists the steering torque of the steering system generated by the driver operating the steering wheel.
  • the assist torque reduces the burden on the driver's operation.
  • the steering system 520 includes, for example, a steering handle 521, a steering shaft 522, free shaft joints 523A and 523B, a rotating shaft 524, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, and knuckles 528A. , 528B, and left and right steering wheels 529A, 529B.
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an electronic control unit (ECU) 542 for a car, a motor 543, a reduction mechanism 544, and the like.
  • the steering torque sensor 541 detects a steering torque in the steering system 520.
  • the ECU 542 generates a drive signal based on the detection signal of the steering torque sensor 541.
  • the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
  • the motor 543 transmits the generated assist torque to the steering system 520 via the reduction mechanism 544.
  • the ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment.
  • an electronic control system is built around an ECU.
  • a motor drive unit is constructed by the ECU 542, the motor 543 and the inverter 545.
  • the motor module 2000 by Embodiment 1 can be used suitably for the system.
  • Embodiments of the present disclosure are also suitably used in motor control systems such as shift by wire, steering by wire, X by wire such as brake by wire, and traction motors.
  • an EPS implementing a failure diagnosis method according to an embodiment of the present disclosure is an autonomous vehicle corresponding to levels 0 to 4 (standards of automation) defined by the Government of Japan and the Road Traffic Safety Administration (NHTSA) of the US Department of Transportation. It can be loaded.
  • Embodiments of the present disclosure can be widely used in a variety of devices equipped with various motors, such as vacuum cleaners, dryers, ceiling fans, washing machines, refrigerators, and electric power steering devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

A fault diagnosis method of the present disclosure diagnoses a fault of an H bridge having 4 switch elements. The fault diagnosis method includes: an acquisition step for acquiring a current/voltage represented in a dq coordinate system, acquiring a first actual voltage indicating a voltage across terminals of one low side switch element and a second actual voltage indicating a voltage across terminals of the other low side switch element, and acquires a rotation speed of the motor; and a diagnosis step for diagnosing a fault of the 4 switch elements on the basis of the acquired current/voltage in the dq coordinate system, the first actual voltage, the second actual voltage, and the acquired rotation speed.

Description

故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置Failure diagnosis method, power conversion device, motor module and electric power steering device
本開示は、故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置に関する。
The present disclosure relates to a failure diagnosis method, a power conversion device, a motor module, and an electric power steering device.

 近年、電動モータ(以下、単に「モータ」と表記する。)、インバータおよびECUが一体化された機電一体型モータが開発されている。特に車載分野において、安全性の観点から高い品質保証が要求される。そのため、部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として、1つのモータに対して2つの電力変換装置を設けることが検討されている。他の一例として、メインのマイクロコントローラにバックアップ用マイクロコントローラを設けることが検討されている。

2. Description of the Related Art In recent years, an electromechanical integrated motor has been developed in which an electric motor (hereinafter simply referred to as a "motor"), an inverter and an ECU are integrated. Particularly in the automotive field, high quality assurance is required from the viewpoint of safety. Therefore, a redundant design is adopted that can continue safe operation even if part of the part fails. As an example of redundant design, it is considered to provide two power converters for one motor. As another example, it is considered to provide a backup microcontroller on the main microcontroller.
特許文献1は、第1系統および第2系統を有するモータ駆動装置を開示する。第1系統は、モータの第1巻線組に接続され、第1インバータ部、電源リレーおよび逆接続保護リレーなどを有する。第2系統は、モータの第2巻線組に接続され、第2インバータ部、電源リレーおよび逆接続保護リレーなどを有する。モータ駆動装置に故障が生じていないとき、第1系統および第2系統の両方を用いてモータを駆動することが可能である。これに対し、第1系統および第2系統の一方、または、第1巻線組および第2巻線組の一方に故障が生じたとき、電源リレーは、電源から、故障した系統、または、故障した巻線組に接続された系統への電力供給を遮断する。故障していない他方の系統を用いてモータ駆動を継続させることが可能である。  Patent Document 1 discloses a motor drive device having a first system and a second system. The first system is connected to a first winding set of the motor, and includes a first inverter unit, a power supply relay, a reverse connection protection relay, and the like. The second system is connected to a second winding set of the motor, and includes a second inverter unit, a power supply relay, a reverse connection protection relay, and the like. When no failure occurs in the motor drive device, it is possible to drive the motor using both the first system and the second system. On the other hand, when a failure occurs in one of the first system and the second system, or one of the first winding set and the second winding set, the power supply relay is operated from the power supply, the failed system or the failure. Shut off the power supply to the grid connected to the set of windings. It is possible to continue motor drive using the other system which has not failed.
特許文献2および3も、第1系統および第2系統を有するモータ駆動装置を開示する。一方の系統または一方の巻線組が故障したとしても、故障していない系統によってモータ駆動を継続させることができる。  Patent documents 2 and 3 also disclose a motor drive device having a first system and a second system. Even if one system or one winding set fails, the motor drive can be continued by the system which has not failed.
特許文献4は、4つの電気的分離手段、および、2つのインバータを有し、三相モータに供給する電力を変換するモータ駆動装置を開示する。1つのインバータに対し、電源およびインバータの間に1つの電気的分離手段が設けられ、インバータおよびグランド(以下、GNDと表記する。)の間に1つの電気的分離手段が設けられている。故障したインバータにおける巻線の中性点を用いて、故障していないインバータによってモータを駆動することが可能である。そのとき、故障したインバータに接続された2つの電気的分離手段を遮断状態にすることによって、故障したインバータは電源およびGNDから分離される。 Patent Document 4 discloses a motor drive device having four electrical separation means and two inverters and converting power supplied to a three-phase motor. For one inverter, one electrical separation means is provided between the power supply and the inverter, and one electrical separation means is provided between the inverter and the ground (hereinafter referred to as GND). It is possible to drive the motor with a non-faulty inverter using the neutral point of the winding in the faulted inverter. At that time, the failed inverter is separated from the power supply and GND by putting the two electrical separation means connected to the failed inverter into the cut off state.
特開2016-34204号公報JP, 2016-34204, A 特開2016-32977号公報JP, 2016-32977, A 特開2008-132919号公報JP 2008-132919 A 特許第5797751号公報Patent No. 5779751
上述した従来の技術では、Hブリッジの故障を適切に検出することが求められていた。  In the above-described prior art, it has been required to properly detect the failure of the H bridge.
本開示の実施形態は、Hブリッジの故障を適切に診断することが可能な故障診断方法を提供する。 Embodiments of the present disclosure provide a fault diagnosis method capable of appropriately diagnosing a fault of the H bridge.
本開示の例示的な故障診断方法は、電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換し、各々が第1ハイサイドスイッチ素子、第2ハイサイドスイッチ素子、第1ローサイドスイッチ素子および第2ローサイドスイッチ素子を有する少なくとも1つのHブリッジを備える電力変換装置に用いる、Hブリッジの故障を診断する故障診断方法であって、dq座標系において表現される電流・電圧を獲得し、かつ、前記第1ローサイドスイッチ素子の両端電圧を示す第1実電圧および前記第2ローサイドスイッチ素子の両端電圧を示す第2実電圧を獲得し、かつ、前記モータの回転速度を獲得する獲得ステップと、獲得した、前記dq座標系の電流・電圧、前記第1実電圧、第2実電圧および前記回転速度に基づいて、前記第1ハイサイドスイッチ素子、前記第2ハイサイドスイッチ素子、前記第1ローサイドスイッチ素子および前記第2ローサイドスイッチ素子の故障を診断する診断ステップと、を包含する。  Exemplary fault diagnosis methods of the present disclosure convert power from a power supply into power supplied to a motor having at least one phase winding, each of which is a first high side switch element, a second high side switch element, A fault diagnostic method for diagnosing a fault in an H bridge, for use in a power converter comprising at least one H bridge having a first low side switch element and a second low side switch element, the current / voltage represented in the dq coordinate system And the first actual voltage indicating the voltage across the first low side switch element and the second actual voltage indicating the voltage across the second low side switch element, and the rotational speed of the motor Acquiring the current and voltage of the dq coordinate system, the first actual voltage, the second actual voltage, and the rotation speed. Including the first high side switching device, the second high side switching device, and a diagnostic step for diagnosing a failure of the first low side switching device and said second low-side switch elements.
本開示の例示的な電力変換装置は、電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換する電力変換装置であって、各々が第1ハイサイドスイッチ素子、第2ハイサイドスイッチ素子、第1ローサイドスイッチ素子および第2ローサイドスイッチ素子を有する少なくとも1つのHブリッジと、前記少なくとも1つのHブリッジのスイッチ素子のスイッチング動作を制御する制御回路と、を備え、前記制御回路は、dq座標系において表現される電流・電圧を獲得し、前記第1ローサイドスイッチ素子の両端電圧を示す第1実電圧および前記第2ローサイドスイッチ素子の両端電圧を示す第2実電圧を獲得し、前記モータの回転速度を獲得し、獲得した、前記dq座標系の電流・電圧、前記第1実電圧、第2実電圧および前記回転速度に基づいて、前記第1ハイサイドスイッチ素子、前記第2ハイサイドスイッチ素子、前記第1ローサイドスイッチ素子および前記第2ローサイドスイッチ素子の故障を診断する。  An exemplary power converter of the present disclosure is a power converter that converts power from a power source to power supplied to a motor having at least one phase winding, each of which is a first high side switch element, 2) at least one H bridge having a high side switching device, a first low side switching device, and a second low side switching device, and a control circuit for controlling the switching operation of the switching devices of the at least one H bridge; The circuit acquires a current / voltage represented in a dq coordinate system, and acquires a first actual voltage indicating a voltage across the first low side switch element and a second actual voltage indicating a voltage across the second low side switch element. Current speed of the dq coordinate system, the first actual voltage, and the second actual voltage, which are obtained by acquiring the rotational speed of the motor. Preliminary on the basis of the rotational speed, the first high side switching device, the second high side switching device, for diagnosing a failure of the first low side switching device and said second low-side switch elements.
本開示の例示的な他の電力変換装置は、電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置であって、前記モータの各相の巻線の一端に接続され、各々が第1ハイサイドスイッチ素子および第1ローサイドスイッチ素子を含むn個のレグを有する第1インバータと、前記モータの各相の巻線の他端に接続され、各々が第2ハイサイドスイッチ素子および第2ローサイドスイッチ素子を含むn個のレグを有する第2インバータと、前記n相の巻線、前記第1インバータの前記n個のレグ、および、前記第2インバータの前記n個のレグを有するn個のHブリッジと、前記n個のHブリッジのスイッチ素子のスイッチング動作を制御する制御回路と、を備え、前記制御回路は、dq座標系において表現される電流・電圧を獲得し、前記第1ローサイドスイッチ素子の両端電圧を示す第1実電圧および前記第2ローサイドスイッチ素子の両端電圧を示す第2実電圧を相毎に獲得し、前記モータの回転速度を獲得し、獲得した、前記dq座標系の電流・電圧、前記第1実電圧、第2実電圧および前記回転速度に基づいて、前記第1ハイサイドスイッチ素子、前記第2ハイサイドスイッチ素子、前記第1ローサイドスイッチ素子および前記第2ローサイドスイッチ素子の故障を相毎に診断する。 Another exemplary power converter of the present disclosure is a power converter that converts power from a power supply to power supplied to a motor having n-phase (n is an integer of 3 or more) windings. A first inverter connected to one end of a winding of each phase of the motor and having n legs each including a first high side switching device and a first low side switching device, and the winding of each phase of the motor A second inverter connected to the end and having n legs each including a second high side switch element and a second low side switch element, a winding of the n phase, the n legs of the first inverter, And n H bridges having the n legs of the second inverter, and a control circuit for controlling the switching operation of the switch elements of the n H bridges, the control circuit having dq coordinates system Obtaining a current / voltage expressed in the equation, and acquiring a first actual voltage indicating the voltage across the first low side switch element and a second actual voltage indicating the voltage across the second low side switch element for each phase, Based on the current / voltage of the dq coordinate system, the first actual voltage, the second actual voltage, and the rotational speed acquired and acquired, the rotational speed of the motor, and the second high side switch element, the second Failures of the high side switching device, the first low side switching device, and the second low side switching device are diagnosed for each phase.
本開示の例示的な実施形態によると、Hブリッジの故障を適切に診断することが可能な故障診断方法、電力変換装置、当該電力変換装置を備えるモータモジュールおよび当該モータモジュールを備える電動パワーステアリング装置が提供される。 According to an exemplary embodiment of the present disclosure, a failure diagnosis method capable of appropriately diagnosing a failure of an H bridge, a power conversion device, a motor module including the power conversion device, and an electric power steering device including the motor module Is provided.
図1は、例示的な実施形態1によるモータモジュール2000の典型的なブロック構成を模式的に示すブロック図である。FIG. 1 is a block diagram schematically showing a typical block configuration of a motor module 2000 according to an exemplary embodiment 1. As shown in FIG. 図2は、例示的な実施形態1によるインバータユニット100の回路構成を模式的に示す回路図である。FIG. 2 is a circuit diagram schematically showing a circuit configuration of the inverter unit 100 according to the exemplary embodiment 1. As shown in FIG. 図3Aは、A相のHブリッジBAの構成を示す模式図である。FIG. 3A is a schematic view showing the configuration of the A-phase H bridge BA. 図3Bは、B相のHブリッジBBの構成を示す模式図である。FIG. 3B is a schematic view showing the configuration of the B-phase H bridge BB. 図3Cは、C相のHブリッジBCの構成を示す模式図である。FIG. 3C is a schematic view showing the configuration of the C-phase H bridge BC. 図4は、モータ制御全般を行うためのコントローラ340の機能ブロックを例示する機能ブロック図である。FIG. 4 is a functional block diagram illustrating functional blocks of the controller 340 for performing motor control in general. 図5Aは、A相のHブリッジBAの故障診断を行うための機能ブロックを例示する機能ブロック図である。FIG. 5A is a functional block diagram illustrating functional blocks for performing failure diagnosis of the A-phase H bridge BA. 図5Bは、B相のHブリッジBBの故障診断を行うための機能ブロックを例示する機能ブロック図である。FIG. 5B is a functional block diagram illustrating functional blocks for performing failure diagnosis of B-phase H bridge BB. 図5Cは、C相のHブリッジBCの故障診断を行うための機能ブロックを例示する機能ブロック図である。FIG. 5C is a functional block diagram illustrating functional blocks for performing failure diagnosis of the C-phase H bridge BC. 図6は、回転速度ωおよび電流振幅値からサチュレーション電圧Vsatを決定するルックアップテーブル840を示す模式図である。FIG. 6 is a schematic diagram showing a look-up table 840 for determining the saturation voltage Vsat from the rotational speed ω and the current amplitude value. 図7は、三相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示するグラフである。FIG. 7 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to three-phase conduction control. Is a graph. 図8Aは、A相のHブリッジBAが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のB相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。FIG. 8A is obtained by plotting the current values flowing in the B-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the A-phase H bridge BA fails. It is a graph which illustrates a current waveform. 図8Bは、B相のHブリッジBBが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。FIG. 8B can be obtained by plotting the current values flowing through the A-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the B-phase H bridge BB fails. It is a graph which illustrates a current waveform. 図8Cは、C相のHブリッジBCが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。FIG. 8C is obtained by plotting the current values flowing in the A-phase and B-phase windings of the motor 200 when the power conversion apparatus 1000 is controlled according to the two-phase energization control when the C-phase H bridge BC fails. It is a graph which illustrates a current waveform. 図9Aは、モータ回転数のシミュレーション結果の波形(上側)およびロータ角のシミュレーション結果の波形(下側)を示すグラフである。FIG. 9A is a graph showing a waveform (upper side) of a simulation result of motor rotation speed and a waveform (lower side) of a simulation result of rotor angle. 図9Bは、A相電流Iaのシミュレーション結果の波形を示すグラフである。FIG. 9B is a graph showing the waveform of the simulation result of the A-phase current Ia. 図9Cは、B相電流Ibのシミュレーション結果の波形を示すグラフである。FIG. 9C is a graph showing the waveform of the simulation result of the B phase current Ib. 図9Dは、C相電流Icのシミュレーション結果の波形を示すグラフである。FIG. 9D is a graph showing the waveform of the simulation result of the C-phase current Ic. 図9Eは、零相電流Izのシミュレーション結果の波形を示すグラフである。FIG. 9E is a graph showing the waveform of the simulation result of the zero phase current Iz. 図9Fは、A相のHブリッジBAにおけるハイサイドスイッチ素子SW_A1Hがオープン故障した場合のA相の第1実電圧VA1(上側)および第2実電圧VA2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 9F shows waveforms of simulation results of the first actual voltage VA1 (upper side) and the second actual voltage VA2 (lower side) of the A phase when the high side switch element SW_A1H in the H bridge BA of the A phase has an open failure. It is a graph. 図9Gは、A相のHブリッジBAにおけるハイサイドスイッチ素子SW_A1Hがオープン故障した場合のB相の第1実電圧VB1(上側)および第2実電圧VB2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 9G shows waveforms of simulation results of the first real voltage VB1 (upper side) and the second real voltage VB2 (lower side) of the B phase when the high side switch element SW_A1H in the H bridge BA of the A phase has an open failure. It is a graph. 図9Hは、A相のHブリッジBAにおけるハイサイドスイッチ素子SW_A1Hがオープン故障した場合のC相の第1実電圧VC1(上側)および第2実電圧VC2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 9H shows waveforms of simulation results of the first actual voltage VC1 (upper side) and the second actual voltage VC2 (lower side) of the C phase when the high side switch element SW_A1H in the H bridge BA of the A phase has an open failure. It is a graph. 図9Iは、A相のHブリッジBAにおけるローサイドスイッチ素子SW_A1Lがオープン故障した場合のA相の第1実電圧VA1(上側)および第2実電圧VA2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 9I is a graph showing waveforms of simulation results of the first actual voltage VA1 (upper side) and the second actual voltage VA2 (lower side) of the A phase when the low side switch element SW_A1L in the H bridge BA of the A phase has an open failure. It is. 図9Jは、A相のHブリッジBAにおけるローサイドスイッチ素子SW_A1Lがオープン故障した場合のB相の第1実電圧VB1(上側)および第2実電圧VB2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 9J is a graph showing waveforms of simulation results of the first actual voltage VB1 (upper side) and the second actual voltage VB2 (lower side) of the B phase when the low side switch element SW_A1L in the H bridge BA of the A phase has an open failure. It is. 図9Kは、A相のHブリッジBAにおけるローサイドスイッチ素子SW_A1Lがオープン故障した場合のC相の第1実電圧VC1(上側)および第2実電圧VC2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 9K is a graph showing waveforms of simulation results of the first actual voltage VC1 (upper side) and the second actual voltage VC2 (lower side) of the C phase when the low side switch element SW_A1L in the H bridge BA of the A phase has an open failure. It is. 図9Lは、故障信号A_FDのシミュレーション結果の波形を示すグラフである。FIG. 9L is a graph showing a waveform of a simulation result of the failure signal A_FD. 図10は、例示的な実施形態2による電動パワーステアリング装置3000の典型的な構成を示す模式図である。FIG. 10 is a schematic view showing a typical configuration of an electric power steering apparatus 3000 according to the second embodiment.
以下、添付の図面を参照しながら、本開示のHブリッジの故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。  Hereinafter, with reference to the accompanying drawings, embodiments of the H-bridge failure diagnosis method, the power conversion device, the motor module, and the electric power steering device of the present disclosure will be described in detail. However, in order to facilitate the understanding of the person skilled in the art, the following description may be omitted unnecessarily to avoid redundant description. For example, detailed description of already well-known matters and redundant description of substantially the same configuration may be omitted.
本明細書において、電源からの電力を、三相(A相、B相、C相)の巻線を有する三相モータに供給する電力に変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置、およびその装置に用いるHブリッジの故障診断方法も本開示の範疇である。  In the present specification, the implementation of the present disclosure will be exemplified taking a power conversion device that converts power from a power supply into power supplied to a three-phase motor having three-phase (A-phase, B-phase, C-phase) windings. The form will be described. However, a power converter for converting power from a power supply into power for supplying to an n-phase motor having n-phase (n is an integer of 4 or more) windings such as four-phase or five-phase, and H used for the apparatus The fault diagnosis method of the bridge is also within the scope of the present disclosure.

(実施形態1)

〔1.モータモジュール2000および電力変換装置1000の構造〕

図1は、本実施形態によるモータモジュール2000の典型的なブロック構成を模式的に示している。 

(Embodiment 1)

[1. Structure of motor module 2000 and power converter 1000]

FIG. 1 schematically shows a typical block configuration of a motor module 2000 according to the present embodiment.
モータモジュール2000は、典型的に、インバータユニット100と制御回路300とを有する電力変換装置1000およびモータ200を備える。モータモジュール2000は、モジュール化され、例えば、モータ、センサ、ドライバおよびコントローラを有する機電一体型モータとして製造および販売され得る。  Motor module 2000 typically includes a power conversion device 1000 having an inverter unit 100 and a control circuit 300, and a motor 200. The motor module 2000 may be modularized and manufactured and sold as an electromechanical integrated motor having, for example, a motor, a sensor, a driver and a controller.
電力変換装置1000は、電源101(図2を参照)からの電力をモータ200に供給する電力に変換することが可能である。電力変換装置1000は、モータ200に接続される。例えば、電力変換装置1000は、直流電力を、A相、B相およびC相の擬似正弦波である三相交流電力に変換することが可能である。本明細書において、部品(構成要素)同士の間の「接続」とは、主に電気的な接続を意味する。  Power converter 1000 can convert power from power source 101 (see FIG. 2) into power to be supplied to motor 200. Power converter 1000 is connected to motor 200. For example, power conversion apparatus 1000 can convert DC power into three-phase AC power which is pseudo sine waves of A-phase, B-phase and C-phase. In the present specification, “connection” between components (components) mainly means electrical connection.
モータ200は、例えば三相交流モータである。モータ200は、A相の巻線M1、B相の巻線M2およびC相の巻線M3を備え、インバータユニット100の第1インバータ120と第2インバータ130とに接続される。具体的に説明すると、第1インバータ120はモータ200の各相の巻線の一端に接続され、第2インバータ130は各相の巻線の他端に接続される。  The motor 200 is, for example, a three-phase alternating current motor. Motor 200 includes A-phase winding M1, B-phase winding M2 and C-phase winding M3, and is connected to first inverter 120 and second inverter 130 of inverter unit 100. Specifically, the first inverter 120 is connected to one end of the winding of each phase of the motor 200, and the second inverter 130 is connected to the other end of the winding of each phase.
制御回路300は、例えば、電源回路310と、角度センサ320と、入力回路330と、コントローラ340と、駆動回路350と、ROM360とを備える。制御回路300の各部品は、例えば1枚の回路基板(典型的にはプリント基板)に実装される。制御回路300は、インバータユニット100に接続され、電流センサ150および角度センサ320からの入力信号に基づいてインバータユニット100を制御する。その制御手法として、例えばベクトル制御、パルス幅変調(PWM)または直接トルク制御(DTC)がある。ただし、モータ制御手法(例えばセンサレス制御)によっては、角度センサ320は不要な場合がある。  The control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360. Each component of the control circuit 300 is mounted on, for example, a single circuit board (typically, a printed circuit board). Control circuit 300 is connected to inverter unit 100, and controls inverter unit 100 based on input signals from current sensor 150 and angle sensor 320. As the control method, there are, for example, vector control, pulse width modulation (PWM) or direct torque control (DTC). However, depending on the motor control method (for example, sensorless control), the angle sensor 320 may not be necessary.
制御回路300は、目的とする、モータ200のロータの位置、回転速度、および電流などを制御してクローズドループ制御を実現することができる。なお、制御回路300は、角度センサ320に代えてトルクセンサを備えてもよい。この場合、制御回路300は、目的とするモータトルクを制御することができる。  The control circuit 300 can achieve closed loop control by controlling the target position, rotational speed, current, and the like of the rotor of the motor 200. Control circuit 300 may include a torque sensor instead of angle sensor 320. In this case, the control circuit 300 can control the target motor torque.
電源回路310は、電源101の例えば12Vの電圧に基づいて回路内の各ブロックに必要な電源電圧(例えば3V、5V)を生成する。  The power supply circuit 310 generates power supply voltages (for example, 3 V, 5 V) necessary for each block in the circuit based on, for example, a voltage of 12 V of the power supply 101.
角度センサ320は、例えばレゾルバまたはホールICである。または、角度センサ320は、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ320は、ロータの回転角(以下、「回転信号」と表記する。)を検出し、回転信号をコントローラ340に出力する。  The angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects a rotation angle of the rotor (hereinafter referred to as “rotation signal”), and outputs a rotation signal to the controller 340.
入力回路330は、電流センサ150によって検出された相電流(以下、「実電流値」と表記する場合がある。)を受け取って、実電流値のレベルをコントローラ340の入力レベルに必要に応じて変換し、実電流値をコントローラ340に出力する。入力回路330は、例えばアナログデジタル(AD)変換回路である。  The input circuit 330 receives the phase current detected by the current sensor 150 (hereinafter may be referred to as “actual current value”), and the level of the actual current value corresponds to the input level of the controller 340 as necessary. It converts and outputs an actual current value to the controller 340. The input circuit 330 is, for example, an analog-to-digital (AD) conversion circuit.
コントローラ340は、電力変換装置1000の全体を制御する集積回路であり、例えば、マイクロコントローラまたはFPGA(Field Programmable Gate Array)である。コントローラ340は、インバータユニット100の第1および第2インバータ120、130における各スイッチ素子(典型的には半導体スイッチ素子)のスイッチング動作(ターンオンまたはターンオフ)を制御する。コントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路350に出力する。
The controller 340 is an integrated circuit that controls the entire power conversion apparatus 1000, and is, for example, a microcontroller or a field programmable gate array (FPGA). The controller 340 controls the switching operation (turn on or off) of each switch element (typically, semiconductor switch element) in the first and second inverters 120 and 130 of the inverter unit 100. The controller 340 sets a target current value according to the actual current value, the rotation signal of the rotor, etc. to generate a PWM signal, and outputs it to the drive circuit 350.

駆動回路350は典型的にはプリドライバ(「ゲートドライバ」と呼ばれることもある。)である。駆動回路350は、インバータユニット100の第1および第2インバータ120、130における各スイッチ素子のスイッチング動作を制御する制御信号(ゲート制御信号)をPWM信号に従って生成し、各スイッチ素子のゲートに制御信号を与える。駆動対象が低電圧で駆動可能なモータであるとき、プリドライバは必ずしも必要とされない場合がある。その場合プリドライバの機能は、コントローラ340に実装され得る。

The drive circuit 350 is typically a predriver (sometimes referred to as a "gate driver"). The drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each switch element in the first and second inverters 120 and 130 of the inverter unit 100 according to the PWM signal, and controls the gate of each switch element give. When the object to be driven is a low-voltage drivable motor, the pre-driver may not be required. In that case, the function of the pre-driver may be implemented in the controller 340.
ROM360は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM360は、コントローラ340に電力変換装置1000を制御させるための命令群を含む制御プログラムを格納している。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。
The ROM 360 is, for example, a writable memory (for example, a PROM), a rewritable memory (for example, a flash memory), or a read only memory. The ROM 360 stores a control program including instructions for causing the controller 340 to control the power conversion apparatus 1000. For example, the control program is temporarily expanded in a RAM (not shown) at boot time.

図2を参照し、インバータユニット100の具体的な回路構成を説明する。

A specific circuit configuration of the inverter unit 100 will be described with reference to FIG.
図2は、本実施形態によるインバータユニット100の回路構成を模式的に示している。  FIG. 2 schematically shows the circuit configuration of the inverter unit 100 according to the present embodiment.
電源101は、所定の電源電圧(例えば12V)を生成する。電源101として、例えば直流電源が用いられる。ただし、電源101は、AC-DCコンバータまたはDC―DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。電源101は、図示するように、第1および第2インバータ120、130に共通の単一電源であってもよいし、第1インバータ120用の第1電源(不図示)および第2インバータ130用の第2電源(不図示)を備えていてもよい。  The power supply 101 generates a predetermined power supply voltage (for example, 12 V). For example, a DC power supply is used as the power supply 101. However, the power supply 101 may be an AC-DC converter or a DC-DC converter, or may be a battery (storage battery). The power supply 101 may be a single power supply common to the first and second inverters 120, 130 as shown, or for the first power supply (not shown) for the first inverter 120 and for the second inverter 130. A second power source (not shown) of
ヒューズISW_11、ISW_12が、電源101と第1インバータ120との間に接続される。ヒューズISW_11、ISW_12は、電源101から第1インバータ120に流れ得る大電流を遮断することができる。ヒューズISW_21、ISW_22が、電源101と第2インバータ130との間に接続される。ヒューズISW_21、ISW_22は、電源101から第2インバータ130に流れ得る大電流を遮断することができる。ヒューズの代わりにリレーなどを用いてもよい。  The fuses ISW_ 11 and ISW_ 12 are connected between the power supply 101 and the first inverter 120. The fuses ISW_11 and ISW_12 can interrupt a large current that can flow from the power supply 101 to the first inverter 120. The fuses ISW 21 and ISW 22 are connected between the power supply 101 and the second inverter 130. The fuses ISW_ 21 and ISW_ 22 can interrupt a large current that can flow from the power supply 101 to the second inverter 130. A relay or the like may be used instead of the fuse.
図示されていないが、電源101と第1インバータ120の間、および、電源101と第2インバータ130の間にコイルが設けられる。コイルは、ノイズフィルタとして機能し、各インバータに供給する電圧波形に含まれる高周波ノイズ、または各インバータで発生する高周波ノイズを電源101側に流出させないように平滑化する。また、各インバータの電源端子には、コンデンサが接続される。コンデンサは、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサは、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。  Although not shown, coils are provided between the power supply 101 and the first inverter 120 and between the power supply 101 and the second inverter 130. The coil functions as a noise filter, and smoothes high frequency noise included in the voltage waveform supplied to each inverter or high frequency noise generated in each inverter so as not to flow out to the power supply 101 side. Further, a capacitor is connected to the power supply terminal of each inverter. The capacitor is a so-called bypass capacitor, which suppresses voltage ripple. The capacitor is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to design specifications and the like.
第1インバータ120は、3個のレグから構成されるブリッジ回路を有する。各レグは、ハイサイドスイッチ素子、ローサイドスイッチ素子およびシャント抵抗を有する。A相レグは、ハイサイドスイッチ素子SW_A1H、ローサイドスイッチ素子SW_A1Lおよび第1シャント抵抗S_A1を有する。B相レグは、ハイサイドスイッチ素子SW_B1H、ローサイドスイッチ素子SW_B1Lおよび第1シャント抵抗S_B1を有する。C相レグは、ハイサイドスイッチ素子SW_C1H、ローサイドスイッチ素子SW_C1Lおよび第1シャント抵抗S_C1を有する。  The first inverter 120 has a bridge circuit composed of three legs. Each leg has a high side switch element, a low side switch element and a shunt resistor. The A-phase leg has a high side switch element SW_A1H, a low side switch element SW_A1L, and a first shunt resistor S_A1. The B-phase leg has a high side switch element SW_B1H, a low side switch element SW_B1L, and a first shunt resistor S_B1. The C-phase leg has a high side switch element SW_C1H, a low side switch element SW_C1L, and a first shunt resistor S_C1.
スイッチ素子として、例えば、寄生ダイオードが内部に形成された電界効果トランジスタ(典型的にはMOSFET)、または、絶縁ゲートバイポーラトランジスタ(IGBT)とそれに並列接続された還流ダイオードとの組み合わせを用いることができる。  As a switch element, for example, a field effect transistor (typically, a MOSFET) in which a parasitic diode is formed, or a combination of an insulated gate bipolar transistor (IGBT) and a free wheeling diode connected in parallel thereto can be used. .
第1シャント抵抗S_A1は、A相の巻線M1を流れるA相電流IA1を検出するために用いられ、例えばローサイドスイッチ素子SW_A1LとGNDラインGLの間に接続される。第1シャント抵抗S_B1は、B相の巻線M2を流れるB相電流IB1を検出するために用いられ、例えばローサイドスイッチ素子SW_B1LとGNDラインGLの間に接続される。第1シャント抵抗S_C1は、C相の巻線M3を流れるC相電流IC1を検出するために用いられ、例えばローサイドスイッチ素子SW_C1LとGNDラインGLの間に接続される。3個のシャント抵抗S_A1、S_B1およびS_C1は、第1インバータ120のGNDラインGLと共通に接続されている。
The first shunt resistor S_A1 is used to detect an A-phase current IA1 flowing through the A-phase winding M1, and is connected, for example, between the low side switch element SW_A1L and the GND line GL. The first shunt resistor S_B1 is used to detect the B-phase current IB1 flowing through the B-phase winding M2, and is connected, for example, between the low side switch element SW_B1L and the GND line GL. The first shunt resistor S_C1 is used to detect a C-phase current IC1 flowing through the C-phase winding M3, and is connected, for example, between the low side switch element SW_C1L and the GND line GL. The three shunt resistors S_A1, S_B1 and S_C1 are commonly connected to the GND line GL of the first inverter 120.
第2インバータ130は、3個のレグから構成されるブリッジ回路を有する。各レグは、ハイサイドスイッチ素子、ローサイドスイッチ素子およびシャント抵抗を有する。A相レグは、ハイサイドスイッチ素子SW_A2H、ローサイドスイッチ素子SW_A2Lおよびシャント抵抗S_A2を有する。B相レグは、ハイサイドスイッチ素子SW_B2H、ローサイドスイッチ素子SW_B2Lおよびシャント抵抗S_B2を有する。C相レグは、ハイサイドスイッチ素子SW_C2H、ローサイドスイッチ素子SW_C2Lおよびシャント抵抗S_C2を有する。  The second inverter 130 has a bridge circuit composed of three legs. Each leg has a high side switch element, a low side switch element and a shunt resistor. The A-phase leg has a high side switch element SW_A2H, a low side switch element SW_A2L, and a shunt resistor S_A2. The B-phase leg has a high side switch element SW_B2H, a low side switch element SW_B2L, and a shunt resistor S_B2. The C-phase leg has a high side switch element SW_C2H, a low side switch element SW_C2L, and a shunt resistor S_C2.
シャント抵抗S_A2は、A相電流IA2を検出するために用いられ、例えば、ローサイドスイッチ素子SW_A2LとGNDラインGLの間に接続される。シャント抵抗S_B2は、B相電流IB2を検出するために用いられ、例えば、ローサイドスイッチ素子SW_B2LとGNDラインGLの間に接続される。シャント抵抗S_C2は、C相電流IC2を検出するために用いられ、例えば、ローサイドスイッチ素子SW_C2LとGNDラインGLの間に接続される。3個のシャント抵抗S_A2、S_B2およびS_C2は、第2インバータ130のGNDラインGLと共通に接続されている。  The shunt resistor S_A2 is used to detect the A-phase current IA2, and is connected, for example, between the low side switch element SW_A2L and the GND line GL. The shunt resistor S_B2 is used to detect the B-phase current IB2, and is connected, for example, between the low side switch element SW_B2L and the GND line GL. The shunt resistor S_C2 is used to detect the C-phase current IC2, and is connected, for example, between the low side switch element SW_C2L and the GND line GL. The three shunt resistors S_A2, S_B2 and S_C2 are commonly connected to the GND line GL of the second inverter 130.
上述した電流センサ150は、例えば、シャント抵抗S_A1、S_B1、S_C1、S_A2、S_B2、S_C2および各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を備える。  The above-described current sensor 150 includes, for example, shunt resistors S_A1, S_B1, S_C1, S_A2, S_B2 and S_C2 and a current detection circuit (not shown) that detects the current flowing in each shunt resistor.
第1インバータ120のA相レグ(具体的には、ハイサイドスイッチ素子SW_A1Hおよびローサイドスイッチ素子SW_A1Lの間のノード)は、モータ200のA相の巻線M1の一端A1に接続され、第2インバータ130のA相レグは、A相の巻線M1の他端A2に接続される。第1インバータ120のB相レグは、モータ200のB相の巻線M2の一端B1に接続され、第2インバータ130のB相レグは、巻線M2の他端B2に接続される。第1インバータ120のC相レグは、モータ200のC相の巻線M3の一端C1に接続され、第2インバータ130のC相レグは、巻線M3の他端C2に接続される。  The A-phase leg of the first inverter 120 (specifically, the node between the high-side switch element SW_A1H and the low-side switch element SW_A1L) is connected to one end A1 of the A-phase winding M1 of the motor 200. The 130 A-phase leg is connected to the other end A2 of the A-phase winding M1. The B-phase leg of the first inverter 120 is connected to one end B1 of the B-phase winding M2 of the motor 200, and the B-phase leg of the second inverter 130 is connected to the other end B2 of the winding M2. The C-phase leg of the first inverter 120 is connected to one end C1 of the C-phase winding M3 of the motor 200, and the C-phase leg of the second inverter 130 is connected to the other end C2 of the winding M3.
図3Aは、A相のHブリッジBAの構成を模式的に示している。図3Bは、B相のHブリッジBBの構成を模式的に示している。図3Cは、C相のHブリッジBCの構成を模式的に示している。  FIG. 3A schematically shows the configuration of the A-phase H bridge BA. FIG. 3B schematically shows the configuration of the B-phase H bridge BB. FIG. 3C schematically shows the configuration of the C-phase H bridge BC.
インバータユニット100はA相、B相およびC相のHブリッジBA、BB、BCを備える。A相のHブリッジBAは、第1インバータ120側のレグにおけるハイサイドスイッチ素子SW_A1H、ローサイドスイッチ素子SW_A1L、第2インバータ130側のレグにおけるハイサイドスイッチ素子SW_A2H、ローサイドスイッチ素子SW_A2L、および、巻線M1を有する。B相のHブリッジBBは、第1インバータ120側のレグにおけるハイサイドスイッチ素子SW_B1H、ローサイドスイッチ素子SW_B1L、第2インバータ130側のレグにおけるハイサイドスイッチ素子SW_B2H、ローサイドスイッチ素子SW_B2L、および、巻線M2を有する。C相のHブリッジBCは、第1インバータ120側のレグにおけるハイサイドスイッチ素子SW_C1H、ローサイドスイッチ素子SW_C1L、第2インバータ130側のレグにおけるハイサイドスイッチ素子SW_C2H、ローサイドスイッチ素子SW_C2L、および、巻線M3を有する。
The inverter unit 100 includes A-phase, B-phase and C-phase H bridges BA, BB, BC. The A-phase H bridge BA includes a high side switch element SW_A1H and a low side switch element SW_A1L in the leg on the first inverter 120 side, a high side switch element SW_A2H in the leg on the second inverter 130 side, a low side switch element SW_A2L, and a winding It has M1. The B-phase H bridge BB includes a high side switch element SW_B1H and a low side switch element SW_B1L in a leg on the first inverter 120 side, a high side switch element SW_B2H in a leg on the second inverter 130 side, a low side switch element SW_B2L, and a winding It has M2. The C-phase H bridge BC includes a high side switching device SW_C1H and a low side switching device SW_C1L in the leg on the first inverter 120 side, a high side switching device SW_C2H in the leg on the second inverter 130 side, a low side switching device SW_C2L, and a winding It has M3.

 制御回路300(具体的にはコントローラ340)は、以下で説明するHブリッジの故障診断を実行することにより、三相のHブリッジの中から故障したHブリッジを特定することができる。さらに、制御回路300は、故障したHブリッジの4つのスイッチ素子の中からオープン故障しているスイッチ素子を特定することができる。例えば、制御回路300は、故障したHブリッジを特定すると、故障したHブリッジ以外の二相のHブリッジを用いて二相の巻線を通電するモータ制御に切替えることが可能である。本明細書において、三相の巻線を通電することを「三相通電制御」と呼び、二相の巻線を通電することを「二相通電制御」と呼ぶこととする。

The control circuit 300 (specifically, the controller 340) can identify the failed H bridge from among the three-phase H bridges by performing the failure diagnosis of the H bridge described below. Furthermore, the control circuit 300 can identify an open failure switch element from among the four switch elements of the failed H bridge. For example, when the control circuit 300 identifies a failed H bridge, it is possible to switch to motor control in which a two-phase winding is energized using a two-phase H bridge other than the failed H bridge. In the present specification, energization of a three-phase winding is referred to as "three-phase energization control", and energization of a two-phase winding is referred to as "two-phase energization control".

〔2.Hブリッジの故障診断方法〕

図4から図6を参照しながら、例えば、図1に示す電力変換装置1000に用いる、Hブリッジの故障を診断する故障診断方法の具体例を説明する。ただし、本開示の故障診断方法は、後述するように、少なくとも1つのHブリッジを備える電力変換装置、例えばフルブリッジタイプの電力変換装置に好適に用いることができる。ここで、Hブリッジの故障を説明する。Hブリッジの故障は、スイッチ素子のオープン故障を指す。本明細書では、例えばA相のHブリッジBAのハイサイドスイッチ素子SW_A1Hにオープン故障が生じることを、A相のHブリッジBAの故障と呼ぶ場合がある。 

[2. Failure diagnosis method of H bridge]

With reference to FIGS. 4 to 6, for example, a specific example of a failure diagnosis method for diagnosing a failure of the H bridge, which is used for the power conversion device 1000 shown in FIG. However, as will be described later, the failure diagnosis method of the present disclosure can be suitably used for a power converter including at least one H bridge, for example, a full bridge type power converter. Here, the failure of the H bridge will be described. The failure of the H bridge refers to the open failure of the switch element. In this specification, for example, the occurrence of an open failure in the high-side switch element SW_A1H of the A-phase H bridge BA may be referred to as a failure of the A-phase H bridge BA.
本開示のHブリッジの故障診断方法によれば、故障したHブリッジの4つのスイッチ素子の中からオープン故障しているスイッチ素子を特定することができる。その点において、Hブリッジの故障診断方法は、オープン故障しているスイッチ素子を特定する方法を包含する。
According to the H-bridge failure diagnosis method of the present disclosure, it is possible to identify an open-failed switch element among the four switch elements of the failed H-bridge. In that respect, the H-bridge failure diagnosis method includes a method of identifying an open failure switch element.

 Hブリッジの故障を診断する故障診断方法の概要は、下記のとおりである。

The outline of the failure diagnosis method for diagnosing the failure of the H bridge is as follows.
まず、dq座標系において表現される電流・電圧を獲得し、かつ、第1ローサイドスイッチ素子の両端電圧を示す第1実電圧および第2ローサイドスイッチ素子の両端電圧を示す第2実電圧を相毎に獲得し、かつ、モータの回転速度ωを獲得する(獲得ステップ)。dq座標系において表現される電流・電圧は、d軸電圧Vd、q軸電圧Vq、d軸電流Idおよびq軸電流Iqを含む。なお、dq座標系において、零相に対応した軸をz軸として表している。回転速度ωは、単位時間(例えば1分間)にモータのロータが回転する回転数(rpm)または単位時間(例えば1秒間)にロータが回転する回転数(rps)で表される。  First, a current / voltage expressed in the dq coordinate system is acquired, and a first actual voltage indicating a voltage across the first low side switch element and a second actual voltage indicating a voltage across the second low side switch element are And the motor rotation speed ω (acquisition step). The current / voltage represented in the dq coordinate system includes the d-axis voltage Vd, the q-axis voltage Vq, the d-axis current Id and the q-axis current Iq. In the dq coordinate system, an axis corresponding to the zero phase is represented as az axis. The rotational speed ω is represented by the number of revolutions (rpm) at which the rotor of the motor rotates per unit time (for example, one minute) or the number of revolutions (rps) at which the rotor rotates per unit time (for example, one second).
図3Aから図3Cを参照して、第1実電圧および第2実電圧を説明する。  The first actual voltage and the second actual voltage will be described with reference to FIGS. 3A to 3C.
A相、B相およびC相のHブリッジBA、BBおよびBCのそれぞれに対し、第1実電圧および第2実電圧を定義する。第1実電圧は、各相のHブリッジにおいて、第1インバータ120側のレグにおける第1ローサイドスイッチ素子の両端電圧を示す。換言すると、第1実電圧は、第1インバータ120側のレグにおける第1ハイサイドスイッチ素子と第1ローサイドスイッチ素子の間のノード電位に相当する。第2実電圧は、第2インバータ130側のレグにおける第2ローサイドスイッチ素子の両端電圧を示す。換言すると、第2実電圧は、第2インバータ130側のレグにおける第2ハイサイドスイッチ素子と第2ローサイドスイッチ素子の間のノード電位に相当する。スイッチ素子の両端電圧は、スイッチ素子であるFETのソース-ドレイン間の電圧Vdsに等しい。  A first actual voltage and a second actual voltage are defined for the A-phase, B-phase and C-phase H bridges BA, BB and BC, respectively. The first actual voltage indicates the voltage across the first low-side switch element in the leg on the first inverter 120 side in the H bridge of each phase. In other words, the first actual voltage corresponds to the node potential between the first high side switching device and the first low side switching device in the leg on the first inverter 120 side. The second actual voltage indicates the voltage across the second low side switch element in the leg on the second inverter 130 side. In other words, the second actual voltage corresponds to the node potential between the second high side switching device and the second low side switching device in the leg on the second inverter 130 side. The voltage across the switch element is equal to the voltage Vds between the source and drain of the FET which is the switch element.
A相のHブリッジBAに対し、第1実電圧は、図3Aに示すローサイドスイッチ素子SW_A1Lの両端電圧VA1を指し、第2実電圧は、図3Aに示すローサイドスイッチ素子SW_A2Lの両端電圧VA2を指す。B相のHブリッジBBに対し、第1実電圧は、図3Bに示すローサイドスイッチ素子SW_B1Lの両端電圧VB1を指し、第2実電圧は、図3Bに示すローサイドスイッチ素子SW_B2Lの両端電圧VB2を指す。C相のHブリッジBCに対し、第1実電圧は、図3Cに示すローサイドスイッチ素子SW_C1Lの両端電圧VC1を指し、第2実電圧は、図3Cに示すローサイドスイッチ素子SW_C2Lの両端電圧VC2を指す。  For the A-phase H bridge BA, the first actual voltage indicates the voltage VA1 across the low-side switch element SW_A1L shown in FIG. 3A, and the second actual voltage indicates the voltage VA2 across the low-side switch element SW_A2L shown in FIG. 3A. . For the B-phase H bridge BB, the first actual voltage indicates the voltage VB1 across the low side switch device SW_B1L shown in FIG. 3B, and the second actual voltage indicates the voltage VB2 across the low side switch device SW_B2L shown in FIG. 3B. . For the C-phase H bridge BC, the first actual voltage indicates the voltage VC1 across the low-side switch element SW_C1L shown in FIG. 3C, and the second actual voltage indicates the voltage VC2 across the low-side switch element SW_C2L shown in FIG. 3C. .
次に、獲得した、dq座標系の電流・電圧、第1実電圧、第2実電圧および回転速度に基づいて、第1ハイサイドスイッチ素子、第2ハイサイドスイッチ素子、第1ローサイドスイッチ素子および第2ローサイドスイッチ素子の故障を相毎に診断する(診断ステップ)。  Next, based on the acquired current / voltage in the dq coordinate system, the first actual voltage, the second actual voltage, and the rotation speed, the first high side switch element, the second high side switch element, the first low side switch element, The failure of the second low side switch element is diagnosed for each phase (diagnosis step).
次に、第1ハイサイドスイッチ素子、第2ハイサイドスイッチ素子、第1ローサイドスイッチ素子および第2ローサイドスイッチ素子の各々のオープン故障の診断結果に基づいてHブリッジの故障を示す故障信号を相毎に生成し、後述するモータ制御ユニットに出力する(故障信号生成ステップ)。例えば、故障信号は、故障が生じるとアサートされる信号である。  Next, the failure signal indicating the failure of the H bridge is phase-by-phase based on the diagnosis result of the open failure of each of the first high side switching device, the second high side switching device, the first low side switching device and the second low side switching device. And output to a motor control unit described later (fault signal generation step). For example, a fault signal is a signal that is asserted when a fault occurs.
上記の獲得ステップ、診断ステップおよび故障信号生成ステップは、例えば、電流センサ150によって各相電流を測定する周期、すなわちAD変換の周期に同期して繰り返し実行される。  The above acquisition step, diagnosis step and fault signal generation step are repeatedly performed, for example, in synchronization with the cycle of measuring each phase current by the current sensor 150, that is, the cycle of AD conversion.
本実施形態による故障診断方法を実現するためのアルゴリズムは、例えば特定用途向け集積回路(ASIC)またはFPGAなどのハードウェアのみで実現することもできるし、マイクロコントローラおよびソフトウェアの組み合わせによっても実現することができる。本実施形態では、故障診断の動作主体を制御回路300のコントローラ340とする。  The algorithm for realizing the fault diagnosis method according to the present embodiment can be realized only by hardware such as an application specific integrated circuit (ASIC) or an FPGA, for example, or realized by a combination of a microcontroller and software. Can. In the present embodiment, the operation subject of failure diagnosis is the controller 340 of the control circuit 300.
図4は、モータ制御全般を行うためのコントローラ340の機能ブロックを例示している。図5Aは、A相のHブリッジBAの故障診断を行うための機能ブロックを例示している。図5Bは、B相のHブリッジBBの故障診断を行うための機能ブロックを例示している。図5Cは、C相のHブリッジBCの故障診断を行うための機能ブロックを例示している。  FIG. 4 exemplifies functional blocks of the controller 340 for performing motor control in general. FIG. 5A illustrates functional blocks for performing failure diagnosis of the A-phase H bridge BA. FIG. 5B illustrates functional blocks for performing failure diagnosis of the B-phase H bridge BB. FIG. 5C illustrates functional blocks for performing failure diagnosis of the C-phase H bridge BC.
本明細書において、機能ブロック図における各ブロックは、ハードウェア単位ではなく機能ブロック単位で示される。モータ制御およびHブリッジの故障診断に用いるソフトウェアは、例えば、各機能ブロックに対応した特定の処理を実行させるためのコンピュータプログラムを構成するモジュールであり得る。そのようなコンピュータプログラムは、例えばROM360に格納される。コントローラ340は、ROM360から命令を読み出して各処理を逐次実行することができる。  In the present specification, each block in the functional block diagram is shown not in hardware but in functional block. The software used for motor control and fault diagnosis of the H bridge may be, for example, a module constituting a computer program for executing a specific process corresponding to each functional block. Such computer programs are stored, for example, in the ROM 360. The controller 340 can read an instruction from the ROM 360 and sequentially execute each process.
コントローラ340は、例えば、故障診断ユニット800およびモータ制御ユニット900を有する。このように、本開示の故障診断は、モータ制御(例えばベクトル制御)と好適に組み合わせることができ、モータ制御の一連の処理の中に組み込むことが可能である。  The controller 340 includes, for example, a fault diagnosis unit 800 and a motor control unit 900. Thus, the fault diagnosis of the present disclosure can be suitably combined with motor control (for example, vector control) and can be incorporated into a series of processes of motor control.
故障診断ユニット800は、入力信号として、dq座標系において表現される電圧ピーク値Vpeak、電流振幅値(Id+Iq1/2およびモータ200の回転速度ωを獲得する。故障診断ユニット800は、ルックアップテーブル840を参照して、獲得した電流振幅値および回転速度ωに基づいてサチュレーション電圧Vsatを決定する。故障診断ユニット800は、さらに、第1実電圧VA1、VB1、VC1、第2実電圧VA2、VB2およびVC2を獲得する。  The failure diagnosis unit 800 obtains, as input signals, a voltage peak value Vpeak expressed in the dq coordinate system, a current amplitude value (Id 2 + Iq 2 ) 1/2, and a rotational speed ω of the motor 200. The failure diagnosis unit 800 refers to the look-up table 840 to determine the saturation voltage Vsat based on the acquired current amplitude value and rotational speed ω. The fault diagnosis unit 800 further obtains the first actual voltages VA1, VB1, VC1, and the second actual voltages VA2, VB2, and VC2.
故障診断ユニット800は、獲得した電圧ピーク値Vpeak、サチュレーション電圧Vsat、第1実電圧VA1および第2実電圧VA2に基づいてA相のHブリッジBAの故障を診断する。故障診断ユニット800は、獲得した電圧ピーク値Vpeak、サチュレーション電圧Vsat、第1実電圧VB1および第2実電圧VB2に基づいてB相のHブリッジBの故障を診断する。故障診断ユニット800は、獲得した電圧ピーク値Vpeak、サチュレーション電圧Vsat、第1実電圧VC1および第2実電圧VC2に基づいてC相のHブリッジBCの故障を診断する。  The failure diagnosis unit 800 diagnoses a failure of the A-phase H bridge BA based on the acquired voltage peak value Vpeak, the saturation voltage Vsat, the first actual voltage VA1 and the second actual voltage VA2. The failure diagnosis unit 800 diagnoses a failure of the B-phase H bridge B based on the acquired voltage peak value Vpeak, the saturation voltage Vsat, the first actual voltage VB1 and the second actual voltage VB2. The failure diagnosis unit 800 diagnoses a failure of the C-phase H bridge BC based on the acquired voltage peak value Vpeak, the saturation voltage Vsat, the first actual voltage VC1 and the second actual voltage VC2.
故障診断ユニット800は、Hブリッジの故障を示す故障信号A_FD、B_FDおよびC_FDを診断結果に基づいて相毎に生成し、モータ200を制御するモータ制御ユニット900に出力する。  The failure diagnosis unit 800 generates failure signals A_FD, B_FD and C_FD indicating a failure of the H bridge for each phase based on the diagnosis result, and outputs the signals to a motor control unit 900 that controls the motor 200.
モータ制御ユニット900は、例えばベクトル制御を用いて、第1および第2インバータ120、130のスイッチ素子のスイッチング動作の全般を制御するPWM信号を生成する。モータ制御ユニット900は、PWM信号を駆動回路350に出力する。また、モータ制御ユニット900は、例えば故障信号がアサートされると、モータ制御を三相通電制御から二相通電制御に切替えることが可能である。  The motor control unit 900 generates a PWM signal that controls the overall switching operation of the switch elements of the first and second inverters 120 and 130 using, for example, vector control. The motor control unit 900 outputs a PWM signal to the drive circuit 350. Further, the motor control unit 900 can switch the motor control from the three-phase energization control to the two-phase energization control, for example, when a failure signal is asserted.
本明細書において、説明の便宜上、各機能ブロックをユニットと表記する場合がある。当然に、各機能ブロックをハードウェアまたはソフトウェアに限定解釈する意図で、これらの表記を用いてはならない。  In the present specification, each functional block may be referred to as a unit for convenience of explanation. Naturally, these notations should not be used with the intention of limiting interpretation of each functional block to hardware or software.
各機能ブロックはソフトウェアとしてコントローラ340に実装される場合、そのソフトウェアの実行主体は例えばコントローラ340のコアであり得る。上述したようにコントローラ340はFPGAによって実現され得る。その場合、全てまたは一部の機能ブロックはハードウェアで実現され得る。
When each functional block is implemented as software in the controller 340, the execution subject of the software may be, for example, the core of the controller 340. As described above, controller 340 may be implemented by an FPGA. In that case, all or part of the functional blocks can be realized in hardware.
複数のFPGAを用いて処理を分散させることにより、特定のコンピュータの演算負荷を分散させることができる。その場合、図4および図5A~Cに示される機能ブロックの全てまたは一部は、複数のFPGAに分散して実装され得る。複数のFPGAは、例えば車載のコントロールエリアネットワーク(CAN)によって互いに通信可能に接続され、データの送受信を行うことが可能である。  By distributing the processing using a plurality of FPGAs, the computing load of a specific computer can be distributed. In that case, all or part of the functional blocks shown in FIG. 4 and FIGS. 5A to C may be distributed and implemented in a plurality of FPGAs. The plurality of FPGAs are communicably connected to one another by, for example, a vehicle-mounted control area network (CAN), and can transmit and receive data.
故障診断ユニット800は、A相のHブリッジBAの故障を診断するための故障診断ユニット800A(図5Aを参照)、B相のHブリッジBBの故障を診断するための故障診断ユニット800B(図5Bを参照)、および、C相のHブリッジBCの故障を診断するための故障診断ユニット800C(図5Cを参照)を有する。故障診断ユニット800A、B、Cは、実質的に同じ機能ブロックから構成される。ただし、第1実電圧および第2実電圧の入力信号は各ブロック間で異なる。以下、図5Aを参照しながら、A相のHブリッジBAの故障診断を例に、Hブリッジの故障診断を詳細に説明する。
The failure diagnosis unit 800 is a failure diagnosis unit 800A (see FIG. 5A) for diagnosing a failure of the A-phase H bridge BA, and a failure diagnosis unit 800B for diagnosing a failure of the B-phase H bridge BB (FIG. 5B). And a failure diagnosis unit 800C (see FIG. 5C) for diagnosing a failure of the C-phase H bridge BC. The failure diagnosis units 800A, B, C are configured by substantially the same functional blocks. However, the input signals of the first actual voltage and the second actual voltage are different among the blocks. Hereinafter, the fault diagnosis of the H-bridge will be described in detail with reference to FIG. 5A, taking the fault diagnosis of the A-phase H bridge BA as an example.
故障診断ユニット800Aは、乗算器810、811、加算器812、813_1、813_2、信号生成ユニット814_1および814_2を含むローサイド故障診断ユニットと、乗算器820、821、加算器822、823_1、823_2、信号生成ユニット824_1および824_2を含むハイサイド故障診断ユニットと、論理回路OR830とを有する。  The fault diagnosis unit 800A is a low side fault diagnosis unit including multipliers 810, 811, adders 812, 813_1, 813_2, signal generation units 814_1 and 814_2, multipliers 820, 821, adders 822, 823_1, 823_2, signal generation. It has a high side fault diagnosis unit including units 824_1 and 824_2, and a logic circuit OR 830.
ローサイド故障診断ユニットはローサイドスイッチ素子SW_A1L、SW_A2Lのオープン故障を特定する。ハイサイド故障診断ユニットはハイサイドスイッチ素子SW_A1H、SW_A2Hのオープン故障を特定する。
The low side fault diagnosis unit identifies open faults of the low side switch elements SW_A1L and SW_A2L. The high side fault diagnosis unit identifies open faults of the high side switch elements SW_A1H and SW_A2H.
まず、ハイサイド故障診断ユニットを説明する。  First, the high side fault diagnosis unit will be described.
ハイサイド故障診断ユニットは、電圧ピーク値Vpeak、サチュレーション電圧Vsatおよび第1実電圧VA1に基づいてハイサイドスイッチ素子SW_A1Hのオープン故障を診断する第1故障診断と、電圧ピーク値Vpeak、サチュレーション電圧Vsatおよび第2実電圧VA2に基づいてハイサイドスイッチ素子SW_A2Hのオープン故障を診断する第2故障診断とを行う。  The high side fault diagnosis unit performs a first fault diagnosis for diagnosing an open fault of the high side switch element SW_A1H based on the voltage peak value Vpeak, the saturation voltage Vsat and the first actual voltage VA1, a voltage peak value Vpeak, a saturation voltage Vsat and A second failure diagnosis for diagnosing an open failure of the high side switch element SW_A2H is performed based on the second actual voltage VA2.
乗算器820は、電圧ピーク値Vpeakに定数「1/2」を乗算する。電圧ピーク値Vpeakは、式(1)に基づいて算出される。ここで、Vdは、dq座標系におけるd軸電圧を示し、Vqはq軸電圧を示す。

  Vpeak=(2/3)1/2(Vd+Vq1/2   式(1)
The multiplier 820 multiplies the voltage peak value Vpeak by a constant "1/2". The voltage peak value Vpeak is calculated based on the equation (1). Here, Vd indicates the d-axis voltage in the dq coordinate system, and Vq indicates the q-axis voltage.

Vpeak = (2/3) 1/2 (Vd 2 + Vq 2 ) 1/2 equation (1)
例えば、故障診断ユニット800は、Vpeakを獲得するプレ演算ユニット(不図示)を有し得る。プレ演算ユニットは、クラーク変換を用いて、電流センサ150の測定値に基づいて取得された三相電流Ia、IbおよびIcを、αβ固定座標系における、α軸上の電流Iαおよびβ軸上の電流Iβに変換する。プレ演算ユニットは、さらに、パーク変換(dq座標変換)を用いて、電流Iα、Iβを、dq座標系における、d軸電流Idおよびq軸電流Iqに変換する。プレ演算ユニットは、IdおよびIqに基づいてd軸電圧Vdおよびq軸電圧Vqを取得し、取得したVd、Vqから式(1)に基づいて電圧ピーク値Vpeakを算出する。または、プレ演算ユニットは、ベクトル制御を行うモータ制御ユニット900から、Vpeakの算出に必要なVd、Vqを受け取ることも可能である。例えば、プレ演算ユニットは、電流センサ150によって各相電流を測定する周期に同期してVpeakを獲得する。
For example, the failure diagnosis unit 800 may have a pre-operation unit (not shown) for acquiring Vpeak. The pre-arithmetic unit uses three-phase currents Ia, Ib and Ic obtained based on the measurement values of the current sensor 150 using Clarke transformation to generate currents I α and β on the α axis in the αβ fixed coordinate system. Current I.sub..beta . The pre-arithmetic unit further converts the currents I α and I β into the d-axis current Id and the q-axis current Iq in the dq coordinate system, using Park transformation (dq coordinate transformation). The pre-arithmetic unit acquires the d-axis voltage Vd and the q-axis voltage Vq based on Id and Iq, and calculates the voltage peak value Vpeak from the acquired Vd and Vq based on Expression (1). Alternatively, the pre-arithmetic unit can also receive Vd and Vq necessary for calculation of Vpeak from the motor control unit 900 performing vector control. For example, the pre-arithmetic unit acquires Vpeak in synchronization with the cycle of measuring each phase current by the current sensor 150.

 乗算器821はサチュレーション電圧Vsatに定数「1」を乗算する。

The multiplier 821 multiplies the saturation voltage Vsat by a constant "1".
図6は、回転速度ωおよび電流振幅値からサチュレーション電圧Vsatを決定するルックアップテーブル(LUT)840を模式的に示している。LUT840は、d軸電流およびq軸電流に基づいて決定される電流振幅値(Id+Iq1/2およびモータ200の回転速度ωの入力と、サチュレーション電圧Vsatとの関係を関連付ける。  FIG. 6 schematically shows a look-up table (LUT) 840 for determining the saturation voltage Vsat from the rotational speed ω and the current amplitude value. The LUT 840 relates the relationship between the saturation voltage Vsat and the input of the current amplitude value (Id 2 + Iq 2 ) 1/2 determined based on the d-axis current and the q-axis current and the rotational speed ω of the motor 200.
IdおよびIqは例えばプレ演算ユニットから入力される。回転速度ωは例えば角度センサ320からの回転信号に基づいて算出される。または回転速度ωは、例えば公知のセンサレス制御手法を用いて推定することができる。
Id and Iq are input from, for example, a pre-operation unit. The rotation speed ω is calculated based on, for example, a rotation signal from the angle sensor 320. Alternatively, the rotational speed ω can be estimated, for example, using a known sensorless control method.
表1は、Hブリッジの故障診断方法に用いることが可能なLUT840の構成を例示している。モータ制御では、一般的にIdはゼロとして扱われる。そのため、電流振幅値=Iqに等しくなる。表1には、Iq(A)を記載している。このように、サチュレーション電圧Vsatは、獲得された電流振幅値Iqおよび回転速度ωから決定される。または、サチュレーション電圧Vsatとして、システムに依存する一定の値(例えば0.1V程度)を用いることができる。  Table 1 illustrates the configuration of the LUT 840 that can be used for the H-bridge failure diagnosis method. In motor control, Id is generally treated as zero. Therefore, it becomes equal to current amplitude value = Iq. In Table 1, Iq (A) is described. Thus, the saturation voltage Vsat is determined from the acquired current amplitude value Iq and the rotational speed ω. Alternatively, a constant value (for example, about 0.1 V) depending on the system can be used as the saturation voltage Vsat.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
再び、図5Aを参照する。  Refer again to FIG. 5A.
加算器822は、乗算器820の出力Vpeak/2に乗算器821の出力Vsatを加算する。  The adder 822 adds the output Vsat of the multiplier 821 to the output Vpeak / 2 of the multiplier 820.
加算器823_1は、第1故障診断において、加算器822からの出力(Vpeak/2)+Vsatに第1実電圧VA1を加算することにより、第1故障診断電圧VA1H_FDを算出する(式(2))。加算器823_2は、第2故障診断において、加算器822からの出力(Vpeak/2)+Vsatに第2実電圧VA2を加算することにより、第2故障診断電圧VA2H_FDを算出する(式(3))。第1実電圧VA1および第2実電圧VA2は、例えば駆動回路(プリドライバ)350によって測定される。

 VA1H_FD=VA1+〔(Vpeak/2)+Vsat〕 式(2)

 VA2H_FD=VA2+〔(Vpeak/2)+Vsat〕 式(3)
The adder 823_1 calculates the first failure diagnosis voltage VA1H_FD by adding the first actual voltage VA1 to the output (Vpeak / 2) + Vsat from the adder 822 in the first failure diagnosis (Equation (2)) . The adder 823_2 calculates the second fault diagnosis voltage VA2H_FD by adding the second actual voltage VA2 to the output (Vpeak / 2) + Vsat from the adder 822 in the second fault diagnosis (Equation (3)) . The first actual voltage VA1 and the second actual voltage VA2 are measured by, for example, a drive circuit (predriver) 350.

VA1H_FD = VA1 + [(Vpeak / 2) + Vsat] Formula (2)

VA2H_FD = VA2 + [(Vpeak / 2) + Vsat] Formula (3)
第1故障診断において、信号生成ユニット824_1は、第1故障診断電圧VA1H_FDに基づいてハイサイドスイッチ素子SW_A1Hのオープン故障を診断する。具体的に説明すると、信号生成ユニット824_1は、第1故障診断電圧VA1H_FDがゼロ未満(VA1H_FD<0)である場合、ハイサイドスイッチ素子SW_A1Hのオープン故障を特定する。信号生成ユニット824_1は、第1故障診断電圧VA1H_FDがゼロ以上である場合(VA1H_FD≧0)、ハイサイドスイッチ素子SW_A1Hにオープン故障は生じていないと判定する。  In the first failure diagnosis, the signal generation unit 824_1 diagnoses an open failure of the high side switch element SW_A1H based on the first failure diagnosis voltage VA1H_FD. Specifically, when the first failure diagnosis voltage VA1H_FD is less than zero (VA1H_FD <0), the signal generation unit 824_1 identifies an open failure of the high side switch element SW_A1H. When the first failure diagnosis voltage VA1H_FD is greater than or equal to zero (VA1H_FD ≧ 0), the signal generation unit 824_1 determines that an open failure has not occurred in the high side switch element SW_A1H.

信号生成ユニット824_1は、第1故障診断における診断結果に基づいてハイサイドスイッチ素子SW_A1Hのオープン故障を示す第1故障信号A1H_FDを生成する。例えば、第1故障信号A1H_FDを1ビットの信号に割り当てることができる。ハイサイドスイッチ素子SW_A1Hにオープン故障は生じていないとき、第1故障信号A1H_FDのレベルはLowである。信号生成ユニット824_1は、ハイサイドスイッチ素子SW_A1Hのオープン故障を特定すると、第1故障信号A1H_FDをアサートする。

The signal generation unit 824_1 generates a first failure signal A1H_FD indicating an open failure of the high side switch element SW_A1H based on the diagnosis result in the first failure diagnosis. For example, the first failure signal A1H_FD can be assigned to a 1-bit signal. When the open failure does not occur in the high side switch element SW_A1H, the level of the first failure signal A1H_FD is Low. When the signal generation unit 824_1 identifies the open failure of the high side switch element SW_A1H, it asserts the first failure signal A1H_FD.
例えば、ハイサイドスイッチ素子SW_A1Hがオープン故障すると、そのスイッチ素子に電流は流れない。その結果、モータ200の逆起電力の影響を受けて、第1実電圧の上側ピーク値(正の値)は下がる。ハイサイドスイッチ素子SW_A1Hにオープン故障は生じていないとき、VA1≒-〔(Vpeak/2)+Vsat〕となり、第1実電圧VA1の大きさは、|(Vpeak/2)+Vsat|に等しくなる。これに対し、ハイサイドスイッチ素子SW_A1Hにオープン故障が生じると、この均衡が崩れる。VA1は下がるために、第1故障診断電圧VA1H_FD<0となる。本開示は、この現象を利用してスイッチ素子のオープン故障を特定する。  For example, when the high side switch element SW_A1H is in open failure, no current flows in the switch element. As a result, under the influence of the back electromotive force of the motor 200, the upper peak value (positive value) of the first actual voltage decreases. When no open failure occurs in the high side switch element SW_A1H, VA1 ≒ − [(Vpeak / 2) + Vsat], and the magnitude of the first actual voltage VA1 is equal to | (Vpeak / 2) + Vsat |. On the other hand, when an open failure occurs in the high side switch element SW_A1H, this balance is broken. In order to lower VA1, the first failure diagnosis voltage VA1H_FD becomes <0. The present disclosure uses this phenomenon to identify the open failure of the switch element.
第1故障診断と同様に第2故障診断において、信号生成ユニット824_2は、第2故障診断電圧VA2H_FDに基づいてハイサイドスイッチ素子SW_A2Hのオープン故障を診断する。具体的に説明すると、信号生成ユニット824_2は、第2故障診断電圧VA2H_FDがゼロ未満(VA2H_FD<0)である場合、ハイサイドスイッチ素子SW_A2Hのオープン故障を特定する。信号生成ユニット824_2は、第2故障診断電圧VA2H_FDがゼロ以上である場合(VA2H_FD≧0)、ハイサイドスイッチ素子SW_A2Hにオープン故障は生じていないと判定する。  As in the first fault diagnosis, in the second fault diagnosis, the signal generation unit 824_2 diagnoses an open fault of the high side switch element SW_A2H based on the second fault diagnosis voltage VA2H_FD. Specifically, when the second failure diagnosis voltage VA2H_FD is less than zero (VA2H_FD <0), the signal generation unit 824_2 specifies an open failure of the high side switch element SW_A2H. When the second failure diagnosis voltage VA2H_FD is greater than or equal to zero (VA2H_FD ≧ 0), the signal generation unit 824_2 determines that an open failure has not occurred in the high side switch element SW_A2H.

信号生成ユニット824_2は、第2故障診断における診断結果に基づいてハイサイドスイッチ素子SW_A2Hのオープン故障を示す第2故障信号A2H_FDを生成する。例えば、第2故障信号A2H_FDを1ビットの信号に割り当てることができる。ハイサイドスイッチ素子SW_A2Hにオープン故障は生じていないとき、第2故障信号A2H_FDのレベルはLowである。信号生成ユニット824_2は、ハイサイドスイッチ素子SW_A2Hのオープン故障を特定すると、第2故障信号A2H_FDをアサートする。

The signal generation unit 824_2 generates a second failure signal A2H_FD indicating an open failure of the high side switch element SW_A2H based on the diagnosis result in the second failure diagnosis. For example, the second failure signal A2H_FD can be assigned to a 1-bit signal. When the open failure does not occur in the high side switch element SW_A2H, the level of the second failure signal A2H_FD is Low. When the signal generation unit 824_2 identifies the open failure of the high side switch element SW_A2H, it asserts the second failure signal A2H_FD.
次に、ローサイド故障診断ユニットを説明する。  Next, the low side fault diagnosis unit will be described.
ローサイド故障診断ユニットは、電圧ピーク値Vpeak、サチュレーション電圧Vsatおよび第1実電圧VA1に基づいてローサイドスイッチ素子SW_A1Lのオープン故障を診断する第3故障診断と、電圧ピーク値Vpeak、サチュレーション電圧Vsatおよび第2実電圧VA2に基づいてローサイドスイッチ素子SW_A2Lのオープン故障を診断する第4故障診断とを行う。  The low side fault diagnosis unit performs third fault diagnosis that diagnoses an open fault of the low side switch element SW_A1L based on the voltage peak value Vpeak, the saturation voltage Vsat and the first actual voltage VA1, and the voltage peak value Vpeak, the saturation voltage Vsat and the second fault diagnosis unit. A fourth failure diagnosis is performed to diagnose an open failure of the low side switch element SW_A2L based on the actual voltage VA2.
乗算器810は、電圧ピーク値Vpeakに定数「-1/2」を乗算する。乗算器811は、サチュレーション電圧Vsatに定数「-1」を乗算する。ローサイド側のスイッチ素子とハイサイド側のスイッチ素子の間で流れる電流などが逆になることを考慮し、ローサイド故障診断ユニットでは、ハイサイド故障診断ユニットの乗算器810、811とは逆の符号の定数が用いられる。  The multiplier 810 multiplies the voltage peak value Vpeak by a constant “−1⁄2”. The multiplier 811 multiplies the saturation voltage Vsat by a constant “−1”. In view of the fact that the current flowing between the low side switch element and the high side switch element is reversed, the low side fault diagnosis unit has the opposite sign of the multipliers 810 and 811 of the high side fault diagnosis unit. A constant is used.
加算器812は、乗算器810の出力(-Vpeak/2)に乗算器811の出力(-Vsat)を加算する。  The adder 812 adds the output (-Vsat) of the multiplier 811 to the output (-Vpeak / 2) of the multiplier 810.
加算器813_1は、第3故障診断において、加算器812からの出力:-〔(Vpeak/2)+Vsat〕に第1実電圧VA1を加算することにより、第3故障診断電圧VA1L_FDを算出する(式(4))。加算器813_2は、第4故障診断において、加算器812からの出力:-〔(Vpeak/2)+Vsat〕に第2実電圧VA2を加算することにより、第4故障診断電圧VA2L_FDを算出する(式(5))。 VA1L_FD=VA1-〔(Vpeak/2)+Vsat〕   式(4) VA2L_FD=VA2-〔(Vpeak/2)+Vsat〕   式(5)  The adder 813_1 calculates the third fault diagnosis voltage VA1L_FD by adding the first actual voltage VA1 to the output from the adder 812:-[(Vpeak / 2) + Vsat] in the third fault diagnosis (formula (4)). The adder 813_2 calculates the fourth failure diagnosis voltage VA2L_FD by adding the second actual voltage VA2 to the output from the adder 812:-[(Vpeak / 2) + Vsat] in the fourth failure diagnosis. (5). VA1L_FD = VA1-[(Vpeak / 2) + Vsat] formula (4) VA2L_FD = VA2-[(Vpeak / 2) + Vsat] formula (5)
第3故障診断において、信号生成ユニット814_1は、第3故障診断電圧VA1L_FDに基づいてローサイドスイッチ素子SW_A1Lのオープン故障を診断する。具体的に説明すると、信号生成ユニット814_1は、第3故障診断電圧VA1L_FDがゼロよりも大きい場合(VA1L_FD>0)、ローサイドスイッチ素子SW_A1Lのオープン故障を特定する。信号生成ユニット814_1は、第3故障診断電圧VA1L_FDがゼロ以下である場合(VA1L_FD≦0)、ローサイドスイッチ素子SW_A1Lにオープン故障は生じていないと判定する。  In the third failure diagnosis, the signal generation unit 814_1 diagnoses an open failure of the low side switch element SW_A1L based on the third failure diagnosis voltage VA1L_FD. Specifically, when the third failure diagnosis voltage VA1L_FD is larger than zero (VA1L_FD> 0), the signal generation unit 814_1 identifies an open failure of the low side switch element SW_A1L. When the third failure diagnosis voltage VA1L_FD is equal to or less than zero (VA1L_FD ≦ 0), the signal generation unit 814_1 determines that the open failure does not occur in the low side switch element SW_A1L.

信号生成ユニット814_1は、第3故障診断における診断結果に基づいてローサイドスイッチ素子SW_A1Lのオープン故障を示す第3故障信号A1L_FDを生成する。例えば第3故障信号A1L_FDを1ビットの信号に割り当てることができる。ローサイドスイッチ素子SW_A1Lにオープン故障は生じていないとき、第3故障信号A1L_FDのレベルはLowである。信号生成ユニット814_1は、ローサイドスイッチ素子SW_A1Lのオープン故障を特定すると、第3故障信号A1L_FDをアサートする。

The signal generation unit 814_1 generates a third failure signal A1L_FD indicating an open failure of the low side switch element SW_A1L based on the diagnosis result in the third failure diagnosis. For example, the third fault signal A1L_FD can be assigned to a 1-bit signal. When no open failure occurs in the low side switch element SW_A1L, the level of the third failure signal A1L_FD is Low. The signal generation unit 814_1 asserts the third failure signal A1L_FD upon identifying the open failure of the low side switch element SW_A1L.
例えば、ローサイドスイッチ素子SW_A1Lがオープン故障すると、そのスイッチ素子に電流は流れない。その結果、モータ200の逆起電力の影響を受けて、第1実電圧の下側ピーク値(負の値)は上がり、その絶対値は小さくなる。ローサイドスイッチ素子SW_A1Lにオープン故障は生じていないとき、VA1≒〔(Vpeak/2)+Vsat〕となり、第1実電圧VA1の大きさは、|(Vpeak/2)+Vsat|に等しくなる。これに対し、ローサイドスイッチ素子SW_A1Lにオープン故障が生じると、この均衡が崩れる。VA1は上がるために、第3故障診断電圧VA1L_FD>0となる。  For example, when the low side switch element SW_A1L is in open failure, no current flows in the switch element. As a result, under the influence of the back electromotive force of the motor 200, the lower peak value (negative value) of the first actual voltage increases and its absolute value decreases. When no open failure occurs in the low side switch element SW_A1L, VA1 ≒ [(Vpeak / 2) + Vsat], and the magnitude of the first actual voltage VA1 is equal to | (Vpeak / 2) + Vsat |. On the other hand, when an open failure occurs in the low side switch element SW_A1L, this balance is broken. The third failure diagnosis voltage VA1L_FD> 0 is obtained in order to increase VA1.
第3故障診断と同様に第4故障診断において、信号生成ユニット814_2は、第4故障診断電圧VA2L_FDに基づいてローサイドスイッチ素子SW_A2Lのオープン故障を診断する。具体的に説明すると、信号生成ユニット814_2は、第4故障診断電圧VA2L_FDがゼロよりも大きい場合(VA2L_FD>0)、ローサイドスイッチ素子SW_A2Lのオープン故障を特定する。信号生成ユニット814_2は、第4故障診断電圧VA2L_FDがゼロ以下である場合(VA2L_FD≦0)、ローサイドスイッチ素子SW_A2Lにオープン故障は生じていないと判定する。  As in the third fault diagnosis, in the fourth fault diagnosis, the signal generation unit 814_2 diagnoses an open fault of the low-side switch element SW_A2L based on the fourth fault diagnostic voltage VA2L_FD. Specifically, when the fourth failure diagnosis voltage VA2L_FD is larger than zero (VA2L_FD> 0), the signal generation unit 814_2 identifies an open failure of the low side switch element SW_A2L. When the fourth failure diagnosis voltage VA2L_FD is less than or equal to zero (VA2L_FD ≦ 0), the signal generation unit 814_2 determines that the open failure does not occur in the low side switch element SW_A2L.

信号生成ユニット814_2は、第4故障診断における診断結果に基づいてローサイドスイッチ素子SW_A2Lのオープン故障を示す第4故障信号A2L_FDを生成する。例えば、第4故障信号A2L_FDを1ビットの信号に割り当てることができる。ローサイドスイッチ素子SW_A2Lにオープン故障は生じていないとき、第4故障信号A2L_FDのレベルはLowである。信号生成ユニット814_2は、ローサイドスイッチ素子SW_A2Lのオープン故障を特定すると、第4故障信号A2L_FDをアサートする。

The signal generation unit 814_2 generates a fourth failure signal A2L_FD indicating an open failure of the low side switch element SW_A2L based on the diagnosis result in the fourth failure diagnosis. For example, the fourth failure signal A2L_FD can be assigned to a 1-bit signal. When the open failure does not occur in the low side switch element SW_A2L, the level of the fourth failure signal A2L_FD is Low. When the signal generation unit 814_2 identifies the open failure of the low side switch element SW_A2L, it asserts a fourth failure signal A2L_FD.
このように、故障診断ユニット800Aは、ハイサイドスイッチ素子SW_A1H、SW_A2H、ローサイドスイッチ素子SW_A1LおよびSW_A2Lの中でオープン故障したスイッチ素子を特定することができる。
As described above, the failure diagnosis unit 800A can specify the open failure switch element among the high side switch elements SW_A1H and SW_A2H, and the low side switch elements SW_A1L and SW_A2L.
論理回路OR830は、第1から第4故障信号A1H_FD、A2H_FD、A1L_FDおよびA2L_FDの論理和をとる。論理回路OR830は、A相のHブリッジBAの故障を示す故障信号A_FDとして論理和をモータ制御ユニット900に出力する。例えば、故障信号A_FDを1ビットの信号に割り当てることができる。ハイサイドスイッチ素子SW_A1H、SW_A2H、ローサイドスイッチ素子SW_A1LおよびSW_A2Lの少なくとも1つがオープン故障すると、故障信号A_FDはアサートされる。
The logic circuit OR 830 logically ORs the first to fourth failure signals A1H_FD, A2H_FD, A1L_FD and A2L_FD. The logic circuit OR 830 outputs a logical sum to the motor control unit 900 as a failure signal A_FD indicating a failure of the A-phase H bridge BA. For example, the failure signal A_FD can be assigned to a 1-bit signal. When at least one of the high side switch elements SW_A1H and SW_A2H and the low side switch elements SW_A1L and SW_A2L is open, the failure signal A_FD is asserted.
故障診断ユニット800Bは、ハイサイドスイッチ素子SW_B1H、SW_B2H、ローサイドスイッチ素子SW_B1L、SW_B2Lの少なくとも1つのオープン故障を特定すると、故障信号B_FDをアサートする。故障診断ユニット800Cは、ハイサイドスイッチ素子SW_C1H、SW_C2H、ローサイドスイッチ素子SW_C1L、SW_C2Lの少なくとも1つのオープン故障を特定すると、故障信号C_FDをアサートする。
When the failure diagnosis unit 800B identifies at least one open failure of the high side switch devices SW_B1H and SW_B2H, and the low side switch devices SW_B1L and SW_B2L, the failure diagnosis unit 800B asserts the failure signal B_FD. When the failure diagnosis unit 800C identifies at least one open failure of the high side switch devices SW_C1H and SW_C2H, and the low side switch devices SW_C1L and SW_C2L, the failure diagnosis unit 800C asserts the failure signal C_FD.
図7は、三相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示する。図8Aは、A相のHブリッジBAが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のB相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示している。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。図7、図8Aの電流波形において、電気角30°毎に電流値をプロットしている。Ipkは各相の最大電流値(ピーク電流値)を表す。
FIG. 7 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to three-phase conduction control. Do. FIG. 8A is obtained by plotting the current values flowing in the B-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the A-phase H bridge BA fails. The current waveform is illustrated. The horizontal axis indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A). In the current waveforms of FIG. 7 and FIG. 8A, current values are plotted at every electrical angle of 30 °. I pk represents the maximum current value (peak current value) of each phase.
参考として、図8Bに、B相のHブリッジBBが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示する。図8Cに、C相のHブリッジBCが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相の各巻線に流れる電流値をプロットして得られる電流波形を例示する。  As a reference, when the B-phase H bridge BB fails, FIG. 8B plots the current values flowing in the A-phase and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to the two-phase energization control. The current waveform obtained by In FIG. 8C, when the C-phase H bridge BC fails, it is obtained by plotting the current values flowing in the A-phase and B-phase windings of the motor 200 when the power conversion device 1000 is controlled according to the two-phase energization control. The current waveform is illustrated.
モータ制御ユニット900は、正常時、つまり、故障信号A_FD、B_FDおよびC_FDのレベルが全てLowであるとき、三相通電制御を行う。これに対し、例えば、故障信号A_FDがアサートされると、モータ制御ユニット900は、故障したHブリッジBA以外の二相のHブリッジBB、BCを用いて巻線M2、M3を通電する二相通電制御を行うことができる。これにより、三相のうちの一相のHブリッジが故障したとしても、電力変換装置1000はモータ駆動を継続することができる。  Motor control unit 900 performs three-phase energization control when normal, that is, when the levels of failure signals A_FD, B_FD and C_FD are all low. On the other hand, for example, when the failure signal A_FD is asserted, the motor control unit 900 performs two-phase energization to energize the windings M2 and M3 using the two-phase H bridges BB and BC other than the failed H bridge BA. Control can be performed. Thus, even if one of the three phases of the H bridge is broken, power conversion device 1000 can continue motor driving.
以下に、本開示によるHブリッジの故障診断に用いられるアルゴリズムの妥当性を、dSPACE社の”ラピッドコントロールプロトタイピング(RCP)システム”およびMathWorks社のMatlab/Simulinkを用いて検証した結果を示す。この検証には、ベクトル制御により制御を受ける、電動パワーステアリング(EPS)装置に用いる表面磁石型(SPM)モータのモデルが用いられた。検証においてq軸の電流指令値Iqrefを3Aに設定し、d軸の電流指令値Idrefおよび零相の電流指令値Iz_refを0Aに設定した。  The following shows the results of verification of the validity of the algorithm used for fault diagnosis of the H bridge according to the present disclosure, using dSPACE's "Rapid Control Prototyping (RCP) system" and Matlab / Simulink from MathWorks. For this verification, a model of a surface magnet type (SPM) motor used in an electric power steering (EPS) device, which is controlled by vector control, is used. In the verification, the q-axis current command value Iqref is set to 3A, and the d-axis current command value Idref and the zero-phase current command value Iz_ref are set to 0A.
モータの回転速度ωを1190rpmに設定し、A相のHブリッジBAのハイサイドスイッチ素子SW_A1Hにオープン故障を時刻1.543sで発生させたシミュレーションを行った。また、A相のHブリッジBAのローサイドスイッチ素子SW_A1Lにオープン故障を時刻1.641sで発生させたシミュレーションを行った。  The motor rotational speed ω was set to 1190 rpm, and a simulation was performed in which an open failure was generated at time 1.543 s in the high side switch element SW_A1H of the A-phase H bridge BA. Also, a simulation was performed in which an open failure was generated at time 1.641 s in the low-side switch element SW_A1L of the A-phase H bridge BA.
図9Aから図9Lに、各信号の波形のシミュレーション結果を示す。  The simulation result of the waveform of each signal is shown to FIG. 9A-FIG. 9L.
図9Aは、モータの回転速度ωの波形(上側)およびロータ角の波形(下側)を示している。グラフの上側の縦軸は、回転速度(rpm)を示し、下側の縦軸は、ロータ角(rad)を示している。横軸は時間(s)を示している。本シミュレーション結果の全波形の横軸は時間を示している。  FIG. 9A shows the waveform (upper side) of the rotational speed ω of the motor and the waveform (lower side) of the rotor angle. The upper vertical axis of the graph indicates the rotational speed (rpm), and the lower vertical axis indicates the rotor angle (rad). The horizontal axis shows time (s). The horizontal axis of all the waveforms of this simulation result indicates time.
図9Bは、A相電流Iaの波形を示し、図9Cは、B相電流Ibの波形を示し、図9Dは、C相電流Icの波形を示している。縦軸は、電流(A)を示す。各相の波形において、実電流値の波形および電流指令値の波形を示す。
FIG. 9B shows the waveform of the A phase current Ia, FIG. 9C shows the waveform of the B phase current Ib, and FIG. 9D shows the waveform of the C phase current Ic. The vertical axis shows the current (A). In the waveforms of the respective phases, waveforms of actual current values and waveforms of current command values are shown.
図9Eは、零相電流Izの波形を示している。縦軸は、電流(A)を示す。
FIG. 9E shows the waveform of the zero phase current Iz. The vertical axis shows the current (A).
図9Fは、A相のHブリッジBAにおけるハイサイドスイッチ素子SW_A1Hがオープン故障した場合のA相の第1実電圧VA1(上側)および第2実電圧VA2(下側)の波形を示している。図9Gは、A相のHブリッジBAにおけるハイサイドスイッチ素子SW_A1Hがオープン故障した場合のB相の第1実電圧VB1(上側)および第2実電圧VB2(下側)の波形を示している。図9Hは、A相のHブリッジBAにおけるハイサイドスイッチ素子SW_A1Hがオープン故障した場合のC相の第1実電圧VC1(上側)および第2実電圧VC2(下側)の波形を示している。縦軸は、電圧(V)を示す。  FIG. 9F shows the waveforms of the first actual voltage VA1 (upper side) and the second actual voltage VA2 (lower side) of the A phase when the high side switch element SW_A1H in the A bridge H of the A phase has an open failure. FIG. 9G shows waveforms of the first actual voltage VB1 (upper side) and the second actual voltage VB2 (lower side) of the B phase when the high side switch element SW_A1H in the A bridge H of the A phase is open-circuited. FIG. 9H shows waveforms of the first actual voltage VC1 (upper side) and the second actual voltage VC2 (lower side) of the C phase when the high side switch element SW_A1H in the H bridge BA of the A phase has an open failure. The vertical axis represents voltage (V).
図9Iは、A相のHブリッジBAにおけるローサイドスイッチ素子SW_A1Lがオープン故障した場合のA相の第1実電圧VA1(上側)および第2実電圧VA2(下側)の波形を示している。図9Jは、A相のHブリッジBAにおけるローサイドスイッチ素子SW_A1Lがオープン故障した場合のB相の第1実電圧VB1(上側)および第2実電圧VB2(下側)の波形を示している。図9Kは、A相のHブリッジBAにおけるローサイドスイッチ素子SW_A1Lがオープン故障した場合のC相の第1実電圧VC1(上側)および第2実電圧VC2(下側)の波形を示している。縦軸は、電圧(V)を示す。  FIG. 9I shows waveforms of the first actual voltage VA1 (upper side) and the second actual voltage VA2 (lower side) of the A phase when the low side switch element SW_A1L in the H bridge BA of the A phase has an open failure. FIG. 9J shows the waveforms of the first actual voltage VB1 (upper side) and the second actual voltage VB2 (lower side) of the B phase when the low side switch element SW_A1L in the H bridge BA of the A phase has an open failure. FIG. 9K shows waveforms of the first actual voltage VC1 (upper side) and the second actual voltage VC2 (lower side) of the C phase when the low side switch element SW_A1L in the H bridge BA of the A phase has an open failure. The vertical axis represents voltage (V).
図9Lは、故障信号A_FDの波形を示す。縦軸は故障信号レベルを示す。
FIG. 9L shows the waveform of the failure signal A_FD. The vertical axis indicates the failure signal level.
時刻1.543sでA相のHブリッジBAのハイサイドスイッチ素子SW_A1Hがオープン故障した後、図9Fに示すように第1実電圧VA1の上側ピーク値は低下していることが分かる。また、第2実電圧VA2の下側ピーク値は低下していることが分かる(下側ピーク値の絶対値は大きくなる)。図9G、図9Hに示すように、第1実電圧VB1、VC1、第2実電圧VB2、VC2は変化していない。また、図9Lに示すように、A相のHブリッジBAのハイサイドスイッチ素子SW_A1Hがオープン故障してから3.2ms経過した後、第1実電圧VA1の降下に伴い、故障信号A_FDは適切にアサートされていることが分かる。なお、故障信号B_FD、C_FDはアサートされていない。  After the open failure of the high-side switch element SW_A1H of the A-phase H bridge BA at time 1.543 s, as shown in FIG. 9F, it can be seen that the upper peak value of the first actual voltage VA1 decreases. Further, it can be seen that the lower peak value of the second actual voltage VA2 is decreasing (the absolute value of the lower peak value is increased). As shown in FIGS. 9G and 9H, the first actual voltages VB1 and VC1 and the second actual voltages VB2 and VC2 do not change. Further, as shown in FIG. 9L, after 3.2 ms have elapsed since the open failure of the high-side switch element SW_A1H of the A-phase H bridge BA, the fault signal A_FD is properly reduced with the drop of the first actual voltage VA1. It can be seen that it is asserted. The fault signals B_FD and C_FD are not asserted.
時刻1.641sでA相のHブリッジBAのローサイドスイッチ素子SW_A1Lがオープン故障した後、図9Iに示すように第1実電圧VA1の下側ピーク値は上昇していることが分かる。また、第2実電圧VA2の上側ピーク値は上昇していることが分かる(上側ピーク値の絶対値は大きくなる)。図9J、図9Kに示すように、第1実電圧VB1、VC1、第2実電圧VB2、VC2は変化していない。  After the open failure of the low-side switch element SW_A1L of the A-phase H bridge BA at time 1.641 s, it can be seen that the lower peak value of the first actual voltage VA1 is rising as shown in FIG. 9I. Further, it can be seen that the upper peak value of the second actual voltage VA2 is rising (the absolute value of the upper peak value is increased). As shown in FIGS. 9J and 9K, the first actual voltages VB1 and VC1 and the second actual voltages VB2 and VC2 do not change.
本実施形態では、Hブリッジの4つのスイッチ素子のうちオープン故障したスイッチ素子を特定することができる。さらに、三相のHブリッジのうちの故障したHブリッジを特定することができる。本開示の故障診断は、簡易なアルゴリズムにより実現できる。そのため、例えばコントローラへ340の実装において回路規模またはメモリサイズの縮小といった利点が得られる。
In this embodiment, an open failure switch element can be identified among the four switch elements of the H bridge. In addition, the failed H bridge of the three-phase H bridge can be identified. The fault diagnosis of the present disclosure can be realized by a simple algorithm. Therefore, for example, advantages such as circuit size reduction or memory size reduction can be obtained in the implementation of the controller 340.
本開示の故障診断方法は、フルブリッジタイプの電力変換装置にも好適に用いることができる。フルブリッジは、一相のHブリッジ構造、例えば図3Aに示す回路構造を備える。上述した故障診断方法をフルブリッジの故障診断に利用することにより、フルブリッジの故障を検知することができる。  The failure diagnosis method of the present disclosure can also be suitably used for a full bridge type power converter. The full bridge comprises a one-phase H-bridge structure, for example the circuit structure shown in FIG. 3A. The failure of the full bridge can be detected by utilizing the above-described failure diagnosis method for the failure diagnosis of the full bridge.
例えば、フルブリッジタイプの電力変換装置は、ハイサイドスイッチ素子SW_A1H、ハイサイドスイッチ素子SW_A2H、ローサイドスイッチ素子SW_A1Lおよびローサイドスイッチ素子SW_A2Lを有するHブリッジBAと、HブリッジBAのスイッチ素子のスイッチング動作を制御する制御回路300と、を備える。制御回路300は、dq座標系において表現される電流・電圧を獲得し、ローサイドスイッチ素子SW_A1Lの両端電圧を示す第1実電圧VA1およびローサイドスイッチ素子SW_A2Lの両端電圧を示す第2実電圧VA2を獲得し、モータの回転速度ωを獲得する。制御回路300は、獲得した、dq座標系の電流・電圧、第1実電圧VA1、第2実電圧VA2および回転速度ωに基づいて、ハイサイドスイッチ素子SW_A1H、ハイサイドスイッチ素子SW_A2H、ローサイドスイッチ素子SW_A1Lおよびローサイドスイッチ素子SW_A2Lのオープン故障を診断する。  For example, a full bridge type power converter controls the switching operation of the H bridge BA having the high side switch element SW_A1H, the high side switch element SW_A2H, the low side switch element SW_A1L and the low side switch element SW_A2L, and the switch elements of the H bridge BA And a control circuit 300. The control circuit 300 acquires the current / voltage represented in the dq coordinate system, and acquires the first actual voltage VA1 indicating the voltage across the low side switch element SW_A1L and the second actual voltage VA2 indicating the voltage across the low side switch element SW_A2L. To obtain the rotational speed ω of the motor. The control circuit 300 controls the high side switch element SW_A1H, the high side switch element SW_A2H, and the low side switch element based on the acquired current / voltage in the dq coordinate system, the first actual voltage VA1, the second actual voltage VA2 and the rotational speed ω. Diagnose open faults of SW_A1L and low side switch element SW_A2L.

(実施形態2)

 図10は、本実施形態による電動パワーステアリング装置3000の典型的な構成を模式的に示す。

Second Embodiment

FIG. 10 schematically shows a typical configuration of the electric power steering apparatus 3000 according to the present embodiment.
自動車等の車両は一般に、電動パワーステアリング装置を有する。本実施形態による電動パワーステアリング装置3000は、ステアリングシステム520、および補助トルクを生成する補助トルク機構540を有する。電動パワーステアリング装置3000は、運転者がステアリングハンドルを操作することによって発生するステアリングシステムの操舵トルクを補助する補助トルクを生成する。補助トルクにより、運転者の操作の負担は軽減される。
Vehicles such as automobiles generally have an electric power steering device. The electric power steering apparatus 3000 according to the present embodiment has a steering system 520 and an auxiliary torque mechanism 540 that generates an auxiliary torque. Electric power steering apparatus 3000 generates an assist torque that assists the steering torque of the steering system generated by the driver operating the steering wheel. The assist torque reduces the burden on the driver's operation.

ステアリングシステム520は、例えばステアリングハンドル521、ステアリングシャフト522、自在軸継手523A、523B、回転軸524、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪529A、529Bから構成され得る。

The steering system 520 includes, for example, a steering handle 521, a steering shaft 522, free shaft joints 523A and 523B, a rotating shaft 524, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, and knuckles 528A. , 528B, and left and right steering wheels 529A, 529B.
補助トルク機構540は、例えば操舵トルクセンサ541、自動車用電子制御ユニット(ECU)542、モータ543および減速機構544などから構成される。操舵トルクセンサ541は、ステアリングシステム520における操舵トルクを検出する。ECU542は操舵トルクセンサ541の検出信号に基づいて駆動信号を生成する。モータ543は駆動信号に基づいて操舵トルクに応じた補助トルクを生成する。モータ543は、減速機構544を介してステアリングシステム520に、生成した補助トルクを伝達する。
The auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an electronic control unit (ECU) 542 for a car, a motor 543, a reduction mechanism 544, and the like. The steering torque sensor 541 detects a steering torque in the steering system 520. The ECU 542 generates a drive signal based on the detection signal of the steering torque sensor 541. The motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal. The motor 543 transmits the generated assist torque to the steering system 520 via the reduction mechanism 544.
ECU542は、例えば、実施形態1によるコントローラ340および駆動回路350などを有する。自動車ではECUを核とした電子制御システムが構築される。電動パワーステアリング装置3000では、例えば、ECU542、モータ543およびインバータ545によって、モータ駆動ユニットが構築される。そのシステムに、実施形態1によるモータモジュール2000を好適に用いることができる。  The ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment. In automobiles, an electronic control system is built around an ECU. In the electric power steering apparatus 3000, for example, a motor drive unit is constructed by the ECU 542, the motor 543 and the inverter 545. The motor module 2000 by Embodiment 1 can be used suitably for the system.
本開示の実施形態は、シフトバイワイヤ、ステアリングバイワイヤ、ブレーキバイワイヤなどのエックスバイワイヤおよびトラクションモータなどのモータ制御システムにも好適に用いられる。例えば、本開示の実施形態による故障診断方法を実装したEPSは、日本政府および米国運輸省道路交通安全局(NHTSA)によって定められたレベル0から4(自動化の基準)に対応した自動運転車に搭載され得る。 Embodiments of the present disclosure are also suitably used in motor control systems such as shift by wire, steering by wire, X by wire such as brake by wire, and traction motors. For example, an EPS implementing a failure diagnosis method according to an embodiment of the present disclosure is an autonomous vehicle corresponding to levels 0 to 4 (standards of automation) defined by the Government of Japan and the Road Traffic Safety Administration (NHTSA) of the US Department of Transportation. It can be loaded.
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。 Embodiments of the present disclosure can be widely used in a variety of devices equipped with various motors, such as vacuum cleaners, dryers, ceiling fans, washing machines, refrigerators, and electric power steering devices.
100:インバータユニット、101:電源、120:第1インバータ、130:第2インバータ、140:インバータ、150:電流センサ、200:モータ、300:制御回路、310:電源回路、320:角度センサ、330:入力回路、340:マイクロコントローラ、350:駆動回路、360:ROM、1000:電力変換装置、2000:モータモジュール、3000:電動パワーステアリング装置 100: inverter unit, 101: power supply, 120: first inverter, 130: second inverter, 140: inverter, 150: current sensor, 200: motor, 300: control circuit, 310: power circuit, 320: angle sensor, 330 : Input circuit, 340: Micro controller, 350: Drive circuit, 360: ROM, 1000: Power converter, 2000: Motor module, 3000: Electric power steering device

Claims (12)

  1. 電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換し、各々が第1ハイサイドスイッチ素子、第2ハイサイドスイッチ素子、第1ローサイドスイッチ素子および第2ローサイドスイッチ素子を有する少なくとも1つのHブリッジを備える電力変換装置に用いる、Hブリッジの故障を診断する故障診断方法であって、

     dq座標系において表現される電流・電圧を獲得し、かつ、前記第1ローサイドスイッチ素子の両端電圧を示す第1実電圧および前記第2ローサイドスイッチ素子の両端電圧を示す第2実電圧を獲得し、かつ、前記モータの回転速度を獲得する獲得ステップと、

     獲得した、前記dq座標系の電流・電圧、前記第1実電圧、第2実電圧および前記回転速度に基づいて、前記第1ハイサイドスイッチ素子、前記第2ハイサイドスイッチ素子、前記第1ローサイドスイッチ素子および前記第2ローサイドスイッチ素子の故障を診断する診断ステップと、を包含する故障診断方法。
    The power from the power supply is converted into power to be supplied to a motor having at least one phase winding, each of which is a first high side switching device, a second high side switching device, a first low side switching device and a second low side switching device What is claimed is: 1. A fault diagnostic method for diagnosing a fault in an H bridge, for use in a power conversion device comprising at least one H bridge having:

    acquiring a current / voltage expressed in a dq coordinate system, and acquiring a first actual voltage indicating a voltage across the first low side switch element and a second actual voltage indicating a voltage across the second low side switch element And an acquiring step of acquiring the rotational speed of the motor,

    The first high side switch element, the second high side switch element, and the first low side based on the acquired current / voltage of the dq coordinate system, the first actual voltage, the second actual voltage, and the rotational speed. A diagnosis step of diagnosing a failure of the switch element and the second low side switch element.
  2. 前記獲得ステップにおいて、 前記dq座標系におけるd軸電圧およびq軸電圧に基づいて決定される電圧ピーク値と、 前記dq座標系におけるd軸電流、q軸電流および前記回転速度に基づいて決定されるサチュレーション電圧と、を獲得し、

    前記診断ステップは、

     前記電圧ピーク値、前記サチュレーション電圧および前記第1実電圧に基づいて前記第1ハイサイドスイッチ素子のオープン故障を診断する第1故障診断と、

     前記電圧ピーク値、前記サチュレーション電圧および前記第2実電圧に基づいて前記第2ハイサイドスイッチ素子のオープン故障を診断する第2故障診断と、

     前記電圧ピーク値、前記サチュレーション電圧および前記第1実電圧に基づいて前記第1ローサイドスイッチ素子のオープン故障を診断する第3故障診断と、

     前記電圧ピーク値、前記サチュレーション電圧および前記第2実電圧に基づいて前記第2ローサイドスイッチ素子のオープン故障を診断する第4故障診断と、を包含する、請求項1に記載の故障診断方法。
    In the acquisition step, a voltage peak value determined based on the d-axis voltage and the q-axis voltage in the dq coordinate system, and a d-axis current in the dq coordinate system, the q-axis current, and the rotation speed are determined. To achieve the saturation voltage,

    The diagnostic step

    A first failure diagnosis for diagnosing an open failure of the first high side switch element based on the voltage peak value, the saturation voltage and the first actual voltage;

    A second fault diagnosis for diagnosing an open fault of the second high side switch element based on the voltage peak value, the saturation voltage and the second actual voltage;

    A third fault diagnosis that diagnoses an open fault of the first low side switch element based on the voltage peak value, the saturation voltage, and the first actual voltage;

    The fault diagnosis method according to claim 1, further comprising: a fourth fault diagnosis that diagnoses an open fault of the second low side switch element based on the voltage peak value, the saturation voltage, and the second actual voltage.
  3. 前記獲得ステップにおいて、前記d軸電流および前記q軸電流に基づいて決定される電流値および前記モータの回転速度の入力と、前記サチュレーション電圧との関係を関連付けるルックアップテーブルを参照して、獲得した、前記d軸電流、前記q軸電流および前記回転速度に基づいて前記サチュレーション電圧を決定する、請求項2に記載の故障診断方法。
    In the acquisition step, the current value determined based on the d-axis current and the q-axis current and the rotational speed of the motor are acquired with reference to a lookup table that relates the relationship between the saturation voltage The fault diagnosis method according to claim 2, wherein the saturation voltage is determined based on the d-axis current, the q-axis current, and the rotation speed.
  4. 前記第1故障診断において、式(1)に基づいて第1故障診断電圧VA1H_FDを算出し、前記第1故障診断電圧VA1H_FDに基づいて前記第1ハイサイドスイッチ素子のオープン故障を診断し、

     前記第2故障診断において、式(2)に基づいて第2故障診断電圧VA2H_FDを算出し、前記第2故障診断電圧VA2H_FDに基づいて前記第2ハイサイドスイッチ素子のオープン故障を診断し、

     前記第3故障診断において、式(3)に基づいて第3故障診断電圧VA1L_FDを算出し、前記第3故障診断電圧VA1L_FDに基づいて前記第1ローサイドスイッチ素子のオープン故障を診断し、

     前記第4故障診断において、式(4)に基づいて第4故障診断電圧VA2L_FDを算出し、前記第4故障診断電圧VA2L_FDに基づいて前記第2ローサイドスイッチ素子のオープン故障を診断し、

    VA1H_FD=VA1+〔(Vpeak/2)+Vsat〕式(1)

    VA2H_FD=VA2+〔(Vpeak/2)+Vsat〕式(2)

    VA1L_FD=VA1-〔(Vpeak/2)+Vsat〕式(3)

    VA2L_FD=VA2-〔(Vpeak/2)+Vsat〕式(4)

    ここで、Vpeakは前記電圧ピーク値を示し、Vsatは前記サチュレーション電圧を示し、VA1は前記第1実電圧を示し、VA2は前記第2実電圧を示す、請求項3に記載の故障診断方法。
    In the first fault diagnosis, a first fault diagnostic voltage VA1H_FD is calculated based on the equation (1), and an open fault of the first high side switch element is diagnosed based on the first fault diagnostic voltage VA1H_FD,

    In the second fault diagnosis, a second fault diagnostic voltage VA2H_FD is calculated based on the equation (2), and an open fault of the second high side switch element is diagnosed based on the second fault diagnostic voltage VA2H_FD,

    In the third fault diagnosis, a third fault diagnostic voltage VA1L_FD is calculated based on the equation (3), and an open fault of the first low side switch element is diagnosed based on the third fault diagnostic voltage VA1L_FD,

    In the fourth fault diagnosis, a fourth fault diagnostic voltage VA2L_FD is calculated based on the equation (4), and an open fault of the second low side switch element is diagnosed based on the fourth fault diagnostic voltage VA2L_FD,

    VA1H_FD = VA1 + [(Vpeak / 2) + Vsat] Formula (1)

    VA2H_FD = VA2 + [(Vpeak / 2) + Vsat] Formula (2)

    VA1L_FD = VA1-[(Vpeak / 2) + Vsat] formula (3)

    VA2L_FD = VA2-[(Vpeak / 2) + Vsat] formula (4)

    The fault diagnostic method according to claim 3, wherein Vpeak indicates the voltage peak value, Vsat indicates the saturation voltage, VA1 indicates the first actual voltage, and VA2 indicates the second actual voltage.
  5. 前記第1故障診断において、前記第1故障診断電圧VA1H_FDがゼロ未満である場合、前記第1ハイサイドスイッチ素子のオープン故障を特定し、

     前記第2故障診断において、前記第2故障診断電圧VA2H_FDがゼロ未満である場合、前記第2ハイサイドスイッチ素子のオープン故障を特定し、

     前記第3故障診断において、前記第3故障診断電圧VA1L_FDがゼロよりも大きい場合、前記第1ローサイドスイッチ素子のオープン故障を特定し、

     前記第4故障診断において、前記第4故障診断電圧VA2L_FDがゼロよりも大きい場合、前記第2ローサイドスイッチ素子のオープン故障を特定する、請求項4に記載の故障診断方法。
    In the first failure diagnosis, when the first failure diagnosis voltage VA1H_FD is less than zero, an open failure of the first high side switch element is specified;

    In the second failure diagnosis, when the second failure diagnosis voltage VA2H_FD is less than zero, an open failure of the second high side switch element is identified,

    In the third fault diagnosis, when the third fault diagnosis voltage VA1L_FD is larger than zero, an open fault of the first low side switch element is identified,

    The failure diagnosis method according to claim 4, wherein in the fourth failure diagnosis, an open failure of the second low side switch element is identified when the fourth failure diagnosis voltage VA2L_FD is larger than zero.
  6. 前記第1故障診断における診断結果に基づいて前記第1ハイサイドスイッチ素子のオープン故障を示す第1故障信号を生成し、

     前記第2故障診断における診断結果に基づいて前記第2ハイサイドスイッチ素子のオープン故障を示す第2故障信号を生成し、

     前記第3故障診断における診断結果に基づいて前記第1ローサイドスイッチ素子のオープン故障を示す第3故障信号を生成し、

     前記第4故障診断における診断結果に基づいて前記第2ローサイドスイッチ素子のオープン故障を示す第4故障信号を生成する、故障信号生成ステップをさらに包含する、請求項2から5のいずれかに記載の故障診断方法。
    Generating a first failure signal indicating an open failure of the first high side switch element based on a diagnosis result in the first failure diagnosis;

    Generating a second failure signal indicating an open failure of the second high side switch element based on the diagnosis result in the second failure diagnosis;

    Generating a third failure signal indicating an open failure of the first low side switch element based on a diagnosis result in the third failure diagnosis;

    The fault signal generating step according to any one of claims 2 to 5, further comprising a fourth fault signal generating step indicating a fourth fault signal indicating an open fault of said second low side switch element based on a diagnosis result in said fourth fault diagnosis. Failure diagnosis method.
  7. 前記故障信号生成ステップにおいて、前記第1から第4故障信号の論理和を、前記モータを制御する制御ユニットに出力する、請求項6に記載の故障診断方法。
    The fault diagnostic method according to claim 6, wherein in the fault signal generating step, a logical sum of the first to fourth fault signals is output to a control unit that controls the motor.
  8. 電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換し、前記n相の巻線の一端に接続される第1インバータおよび前記n相の巻線の他端に接続される第2インバータを備える電力変換装置に用いる、前記n相の巻線、前記第1インバータのn個のレグ、および前記第2インバータのn個のレグを有するn個のHブリッジにおいてHブリッジの故障を相毎に診断する故障診断方法であって、

     請求項7に記載の故障診断方法を前記n個のHブリッジに実行することにより、Hブリッジの故障を相毎に診断する、故障診断方法。
    The first inverter connected to one end of the n-phase winding and the n-phase are converted into power to be supplied to a motor having an n-phase (n is an integer of 3 or more) windings from a power source. The n-phase winding, n legs of the first inverter, and n legs of the second inverter, for use in a power conversion device including a second inverter connected to the other end of the winding A failure diagnosis method for diagnosing failure of an H bridge in each H bridge phase by phase,

    A failure diagnosis method of diagnosing a failure of an H bridge on a phase-by-phase basis by executing the failure diagnosis method according to claim 7 on the n H bridges.
  9. 電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換する電力変換装置であって、

     各々が第1ハイサイドスイッチ素子、第2ハイサイドスイッチ素子、第1ローサイドスイッチ素子および第2ローサイドスイッチ素子を有する少なくとも1つのHブリッジと、

     前記少なくとも1つのHブリッジのスイッチ素子のスイッチング動作を制御する制御回路と、を備え、

    前記制御回路は、

     dq座標系において表現される電流・電圧を獲得し、

     前記第1ローサイドスイッチ素子の両端電圧を示す第1実電圧および前記第2ローサイドスイッチ素子の両端電圧を示す第2実電圧を獲得し、

     前記モータの回転速度を獲得し、

     獲得した、前記dq座標系の電流・電圧、前記第1実電圧、第2実電圧および前記回転速度に基づいて、前記第1ハイサイドスイッチ素子、前記第2ハイサイドスイッチ素子、前記第1ローサイドスイッチ素子および前記第2ローサイドスイッチ素子の故障を診断する、電力変換装置。
    What is claimed is: 1. A power conversion device for converting power from a power supply into power supplied to a motor having at least one phase winding,

    At least one H-bridge, each having a first high side switch element, a second high side switch element, a first low side switch element and a second low side switch element;

    A control circuit that controls the switching operation of the switch element of the at least one H bridge;

    The control circuit

    acquire the current and voltage represented in the dq coordinate system,

    A first actual voltage indicating a voltage across the first low side switch element and a second actual voltage indicating a voltage across the second low side switch element are obtained.

    Obtain the rotational speed of the motor,

    The first high side switch element, the second high side switch element, and the first low side based on the acquired current / voltage of the dq coordinate system, the first actual voltage, the second actual voltage, and the rotational speed. A power conversion device that diagnoses a failure of a switch element and the second low side switch element.
  10. 電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置であって、

    前記モータの各相の巻線の一端に接続され、各々が第1ハイサイドスイッチ素子および第1ローサイドスイッチ素子を含むn個のレグを有する第1インバータと、

     前記モータの各相の巻線の他端に接続され、各々が第2ハイサイドスイッチ素子および第2ローサイドスイッチ素子を含むn個のレグを有する第2インバータと、

     前記n相の巻線、前記第1インバータの前記n個のレグ、および、前記第2インバータの前記n個のレグを有するn個のHブリッジと、

     前記n個のHブリッジのスイッチ素子のスイッチング動作を制御する制御回路と、を備え、

    前記制御回路は、

     dq座標系において表現される電流・電圧を獲得し、

     前記第1ローサイドスイッチ素子の両端電圧を示す第1実電圧および前記第2ローサイドスイッチ素子の両端電圧を示す第2実電圧を相毎に獲得し、

     前記モータの回転速度を獲得し、

     獲得した、前記dq座標系の電流・電圧、前記第1実電圧、第2実電圧および前記回転速度に基づいて、前記第1ハイサイドスイッチ素子、前記第2ハイサイドスイッチ素子、前記第1ローサイドスイッチ素子および前記第2ローサイドスイッチ素子の故障を相毎に診断する、電力変換装置。
    A power converter that converts power from a power supply into power supplied to a motor having n-phase (n is an integer of 3 or more) windings,

    A first inverter connected to one end of a winding of each phase of the motor and having n legs each including a first high side switching device and a first low side switching device;

    A second inverter having n legs connected to the other ends of the windings of each phase of the motor and each including a second high side switch element and a second low side switch element;

    N H-bridges comprising the n-phase winding, the n legs of the first inverter, and the n legs of the second inverter;

    A control circuit that controls the switching operation of the switch elements of the n H bridges,

    The control circuit

    acquire the current and voltage represented in the dq coordinate system,

    A first actual voltage indicating a voltage across the first low side switching device and a second actual voltage indicating a voltage across the second low side switching device are obtained for each phase,

    Obtain the rotational speed of the motor,

    The first high side switch element, the second high side switch element, and the first low side based on the acquired current / voltage of the dq coordinate system, the first actual voltage, the second actual voltage, and the rotational speed. The power converter device which diagnoses the failure of a switch element and said 2nd low side switch element for every phase.
  11. モータと、請求項9または10に記載の電力変換装置と、を備えるモータモジュール。
    A motor module, comprising: a motor; and the power conversion device according to claim 9.
  12. 請求項11に記載のモータモジュールを備える電動パワーステアリング装置。 An electric power steering apparatus comprising the motor module according to claim 11.
PCT/JP2018/023721 2017-09-28 2018-06-22 Fault diagnosis method, power conversion device, motor module and electric power steering device WO2019064748A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-188091 2017-09-28
JP2017188091 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019064748A1 true WO2019064748A1 (en) 2019-04-04

Family

ID=65901275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023721 WO2019064748A1 (en) 2017-09-28 2018-06-22 Fault diagnosis method, power conversion device, motor module and electric power steering device

Country Status (1)

Country Link
WO (1) WO2019064748A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220783A1 (en) * 2018-05-15 2019-11-21 日本電産株式会社 Failure diagnostic method, power converting device, motor module, and electric power steering device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025872A (en) * 2009-07-28 2011-02-10 Jtekt Corp Electric power steering device
JP2011078221A (en) * 2009-09-30 2011-04-14 Denso Corp Controller of multi-phase rotating machine, and electric power steering device using the same
JP2016019385A (en) * 2014-07-09 2016-02-01 株式会社ジェイテクト Motor device
WO2016152523A1 (en) * 2015-03-23 2016-09-29 日本精工株式会社 Motor control device, electric power steering device and vehicle mounted with same
WO2017150638A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025872A (en) * 2009-07-28 2011-02-10 Jtekt Corp Electric power steering device
JP2011078221A (en) * 2009-09-30 2011-04-14 Denso Corp Controller of multi-phase rotating machine, and electric power steering device using the same
JP2016019385A (en) * 2014-07-09 2016-02-01 株式会社ジェイテクト Motor device
WO2016152523A1 (en) * 2015-03-23 2016-09-29 日本精工株式会社 Motor control device, electric power steering device and vehicle mounted with same
WO2017150638A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220783A1 (en) * 2018-05-15 2019-11-21 日本電産株式会社 Failure diagnostic method, power converting device, motor module, and electric power steering device
JPWO2019220783A1 (en) * 2018-05-15 2021-06-17 日本電産株式会社 Failure diagnosis method, power conversion device, motor module and electric power steering device

Similar Documents

Publication Publication Date Title
KR101793581B1 (en) Control system for inverter
JP7088200B2 (en) Motor control method, power converter, motor module and electric power steering device
JP6217554B2 (en) Inverter device
US11063545B2 (en) Power conversion device, motor module, and electric power steering device
JP7070420B2 (en) Power converter, motor drive unit and electric power steering device
WO2019064749A1 (en) Fault diagnosis method, power conversion device, motor module and electric power steering device
US20200274461A1 (en) Electric power conversion device, motor driver, and electric power steering device
JPWO2018061818A1 (en) Power converter, motor drive unit and electric power steering apparatus
US20200247464A1 (en) Power conversion device, motor module, and electric power steering device
US11476777B2 (en) Power conversion device, driving device, and power steering device
CN112840557B (en) Fault diagnosis method, power conversion device, motor module, and electric power steering device
WO2019064748A1 (en) Fault diagnosis method, power conversion device, motor module and electric power steering device
WO2019220780A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
WO2019240004A1 (en) Failure diagnosis method, power conversion device, motor module, and electric power steering device
US11420672B2 (en) Power conversion device, motor drive unit, and electric power steering device
WO2019220781A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
WO2019220782A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
WO2019220783A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
JP2022048606A (en) Motor control device, motor unit, and vehicle
WO2019058671A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
JP2021013209A (en) Power conversion device, driving apparatus, and power steering apparatus
US20240136957A1 (en) Device and method for controlling inverter, and steering system
WO2019058677A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2019058672A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2019058676A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP