WO2019220780A1 - Failure diagnostic method, power converting device, motor module, and electric power steering device - Google Patents

Failure diagnostic method, power converting device, motor module, and electric power steering device Download PDF

Info

Publication number
WO2019220780A1
WO2019220780A1 PCT/JP2019/013060 JP2019013060W WO2019220780A1 WO 2019220780 A1 WO2019220780 A1 WO 2019220780A1 JP 2019013060 W JP2019013060 W JP 2019013060W WO 2019220780 A1 WO2019220780 A1 WO 2019220780A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switch element
side switch
failure
inverter
Prior art date
Application number
PCT/JP2019/013060
Other languages
French (fr)
Japanese (ja)
Inventor
アハマッド ガデリー
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2020519493A priority Critical patent/JPWO2019220780A1/en
Priority to CN201980031754.4A priority patent/CN112119580A/en
Publication of WO2019220780A1 publication Critical patent/WO2019220780A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a failure diagnosis method, a power conversion device, a motor module, and an electric power steering device.
  • Patent Document 1 discloses a motor drive device having a first system and a second system.
  • the first system is connected to the first winding set of the motor and includes a first inverter unit, a power supply relay, a reverse connection protection relay, and the like.
  • the second system is connected to the second winding set of the motor and includes a second inverter unit, a power supply relay, a reverse connection protection relay, and the like.
  • the power relay is connected to the failed system or from the power source. The power supply to the system connected to the winding set is cut off. It is possible to continue motor driving using the other system that has not failed.
  • Patent Documents 2 and 3 also disclose a motor drive device having a first system and a second system. Even if one system or one winding set fails, motor drive can be continued by a system that does not fail.
  • the embodiment of the present disclosure provides a failure diagnosis method capable of appropriately diagnosing an inverter failure.
  • An exemplary failure diagnosis method of the present disclosure is a failure diagnosis method for diagnosing a failure in a power conversion device that converts electric power from a power source into electric power supplied to a motor having at least one phase winding, the electric power
  • the converter is connected to one end of the at least one-phase winding, connected to a first inverter having a first high-side switch element and a first low-side switch element, and to the other end of the at least one-phase winding,
  • a second inverter including a second high-side switch element and a second low-side switch element; and the first high-side switch element, the first low-side switch element, the second high-side switch element, and the second low-side switch element.
  • An H-bridge, and the failure diagnosis method includes a first actual voltage indicating a voltage across the first low-side switch element. Obtaining a saturation voltage of the first low-side switch element and a voltage peak value determined based on a d-axis voltage and a q-axis voltage in a dq coordinate system; the first actual voltage; the saturation voltage; Diagnosing whether or not the second inverter has failed based on the voltage peak value.
  • An exemplary power conversion device of the present disclosure is a power conversion device that converts power from a power source into power supplied to a motor having at least one phase winding, the power conversion device including the at least one phase.
  • a first inverter having a first high-side switch element and a first low-side switch element, and a second high-side switch element connected to the other end of the at least one-phase winding;
  • a second inverter having two low-side switch elements; an H bridge including the first high-side switch element; the first low-side switch element; the second high-side switch element; and the second low-side switch element;
  • a control circuit for controlling the operation of the second inverter wherein the control circuit includes a first low-side switch element.
  • a failure diagnosis method capable of appropriately diagnosing an inverter failure, a power conversion device, a motor module including the power conversion device, and an electric power steering device including the motor module. Provided.
  • FIG. 1 is a block diagram schematically illustrating a motor module according to an embodiment.
  • FIG. 2 is a circuit diagram schematically showing the inverter unit according to the embodiment.
  • FIG. 3A is a schematic diagram showing an A-phase H-bridge.
  • FIG. 3B is a schematic diagram showing a B-phase H-bridge.
  • FIG. 3C is a schematic diagram showing a C-phase H-bridge.
  • FIG. 4 is a functional block diagram showing a controller that performs overall motor control.
  • FIG. 5 is a functional block diagram showing functional blocks for performing failure diagnosis of the second inverter.
  • FIG. 6 is a functional block diagram showing functional blocks for performing failure diagnosis of the first inverter.
  • FIG. 1 is a block diagram schematically illustrating a motor module according to an embodiment.
  • FIG. 2 is a circuit diagram schematically showing the inverter unit according to the embodiment.
  • FIG. 3A is a schematic diagram showing an A-phase H-bridge.
  • FIG. 3B is a schematic
  • FIG. 7 is a schematic diagram showing a lookup table for determining the saturation voltage Vsat from the rotation speed ⁇ and the current amplitude value.
  • FIG. 8 is a graph showing waveforms of simulation results of the actual voltage VA1 (upper side) and the actual voltage VA2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • FIG. 9 is a graph showing waveforms of simulation results of the actual voltage VB1 (upper side) and the actual voltage VB2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • FIG. 8 is a graph showing waveforms of simulation results of the actual voltage VA1 (upper side) and the actual voltage VA2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • FIG. 9 is a graph showing waveforms of simulation results of the actual voltage VB1 (upper side) and the actual voltage VB2 (lower side) when the low-side switch element SW_A1L has an
  • FIG. 10 is a graph showing waveforms of simulation results of the actual voltage VC1 (upper side) and the actual voltage VC2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • FIG. 11 is a schematic diagram illustrating an electric power steering apparatus according to an exemplary embodiment.
  • a power conversion device that converts power from a power source into power to be supplied to a three-phase motor having three-phase (A-phase, B-phase, and C-phase) windings.
  • a form is demonstrated.
  • a power conversion device that converts power from a power source into power to be supplied to an n-phase motor having n-phase (four or more) windings such as four-phase or five-phase, and an inverter used in the device
  • the fault diagnosis method is also within the scope of the present disclosure.
  • FIG. 1 schematically shows a typical block configuration of a motor module 2000 according to the present embodiment.
  • the motor module 2000 typically includes a power converter 1000 having the inverter unit 100 and a control circuit 300 and a motor 200.
  • the motor module 2000 is modularized and can be manufactured and sold as, for example, an electromechanically integrated motor having a motor, a sensor, a driver, and a controller.
  • the power conversion apparatus 1000 can convert power from the power source 101 (see FIG. 2) into power supplied to the motor 200.
  • the power conversion apparatus 1000 is connected to the motor 200.
  • the power conversion apparatus 1000 can convert DC power into three-phase AC power that is pseudo-sine waves of A phase, B phase, and C phase.
  • connection between components (components) mainly means electrical connection.
  • the motor 200 is, for example, a three-phase AC motor.
  • the motor 200 includes an A-phase winding M1, a B-phase winding M2, and a C-phase winding M3, and is connected to the first inverter 120 and the second inverter 130 of the inverter unit 100. More specifically, the first inverter 120 is connected to one end of each phase winding of the motor 200, and the second inverter 130 is connected to the other end of each phase winding.
  • the control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360. Each component of the control circuit 300 is mounted on, for example, one circuit board (typically a printed board).
  • the control circuit 300 is connected to the inverter unit 100 and controls the inverter unit 100 based on input signals from the current sensor 150 and the angle sensor 320. Examples of the control method include vector control, pulse width modulation (PWM), and direct torque control (DTC). However, the angle sensor 320 may be unnecessary depending on the motor control method (for example, sensorless control).
  • the control circuit 300 can realize the closed loop control by controlling the target position, rotation speed, current, and the like of the motor 200.
  • the control circuit 300 may include a torque sensor instead of the angle sensor 320. In this case, the control circuit 300 can control the target motor torque.
  • the power supply circuit 310 generates a power supply voltage (for example, 3V, 5V) necessary for each block in the circuit based on the voltage of the power supply 101, for example, 12V.
  • a power supply voltage for example, 3V, 5V
  • the angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects the rotation angle of the rotor (hereinafter referred to as “rotation signal”) and outputs the rotation signal to the controller 340.
  • rotation signal the rotation angle of the rotor
  • the input circuit 330 receives the phase current detected by the current sensor 150 (hereinafter sometimes referred to as “actual current value”), and changes the level of the actual current value to the input level of the controller 340 as necessary.
  • the actual current value is output to the controller 340.
  • the input circuit 330 is, for example, an analog / digital (AD) conversion circuit.
  • the controller 340 is an integrated circuit that controls the entire power conversion apparatus 1000, and is, for example, a microcontroller or an FPGA (Field Programmable Gate Array).
  • the controller 340 controls the switching operation (turn-on or turn-off) of each switch element (typically a semiconductor switch element) in the first and second inverters 120 and 130 of the inverter unit 100.
  • the controller 340 sets the target current value according to the actual current value and the rotation signal of the rotor, generates a PWM signal, and outputs it to the drive circuit 350.
  • the drive circuit 350 is typically a pre-driver (sometimes called a “gate driver”).
  • the drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each switch element in the first and second inverters 120 and 130 of the inverter unit 100 according to the PWM signal, and supplies a control signal to the gate of each switch element.
  • gate control signal gate control signal
  • the pre-driver is not necessarily required. In that case, the function of the pre-driver can be implemented in the controller 340.
  • the ROM 360 is, for example, a writable memory (for example, PROM), a rewritable memory (for example, flash memory), or a read-only memory.
  • the ROM 360 stores a control program including a command group for causing the controller 340 to control the power conversion apparatus 1000.
  • the control program is temporarily expanded in a RAM (not shown) at the time of booting.
  • FIG. 2 schematically shows a circuit configuration of the inverter unit 100 according to the present embodiment.
  • the power supply 101 generates a predetermined power supply voltage (for example, 12V).
  • a DC power source is used as the power source 101.
  • the power source 101 may be an AC-DC converter, a DC-DC converter, or a battery (storage battery).
  • the power source 101 may be a single power source common to the first and second inverters 120 and 130 as shown in the figure, or may be a first power source (not shown) for the first inverter 120 and for the second inverter 130.
  • a second power source (not shown) may be provided.
  • coils are provided between the power source 101 and the first inverter 120 and between the power source 101 and the second inverter 130.
  • the coil functions as a noise filter, and smoothes the high frequency noise included in the voltage waveform supplied to each inverter or the high frequency noise generated by each inverter so as not to flow out to the power supply 101 side.
  • a capacitor is connected to the power supply terminal of each inverter.
  • the capacitor is a so-called bypass capacitor and suppresses voltage ripple.
  • the capacitor is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to design specifications.
  • the first inverter 120 has a bridge circuit composed of three legs. Each leg has a high-side switch element, a low-side switch element, and a shunt resistor.
  • the A-phase leg includes a high-side switch element SW_A1H, a low-side switch element SW_A1L, and a first shunt resistor S_A1.
  • the B-phase leg has a high-side switch element SW_B1H, a low-side switch element SW_B1L, and a first shunt resistor S_B1.
  • the C-phase leg has a high-side switch element SW_C1H, a low-side switch element SW_C1L, and a first shunt resistor S_C1.
  • a field effect transistor typically MOSFET having a parasitic diode formed therein, or a combination of an insulated gate bipolar transistor (IGBT) and a free-wheeling diode connected in parallel thereto can be used.
  • MOSFET field effect transistor
  • IGBT insulated gate bipolar transistor
  • the first shunt resistor S_A1 is used to detect the A-phase current IA1 flowing through the A-phase winding M1, and is connected, for example, between the low-side switch element SW_A1L and the GND line GL.
  • the first shunt resistor S_B1 is used to detect the B-phase current IB1 flowing through the B-phase winding M2, and is connected between the low-side switch element SW_B1L and the GND line GL, for example.
  • the first shunt resistor S_C1 is used to detect the C-phase current IC1 flowing through the C-phase winding M3, and is connected between, for example, the low-side switch element SW_C1L and the GND line GL.
  • the three shunt resistors S_A1, S_B1, and S_C1 are connected in common with the GND line GL of the first inverter 120.
  • the second inverter 130 has a bridge circuit composed of three legs. Each leg has a high-side switch element, a low-side switch element, and a shunt resistor.
  • the A-phase leg has a high-side switch element SW_A2H, a low-side switch element SW_A2L, and a shunt resistor S_A2.
  • the B-phase leg has a high-side switch element SW_B2H, a low-side switch element SW_B2L, and a shunt resistor S_B2.
  • the C-phase leg has a high-side switch element SW_C2H, a low-side switch element SW_C2L, and a shunt resistor S_C2.
  • the shunt resistor S_A2 is used to detect the A-phase current IA2, and is connected, for example, between the low-side switch element SW_A2L and the GND line GL.
  • the shunt resistor S_B2 is used to detect the B-phase current IB2, and is connected between, for example, the low-side switch element SW_B2L and the GND line GL.
  • the shunt resistor S_C2 is used to detect the C-phase current IC2, and is connected, for example, between the low-side switch element SW_C2L and the GND line GL.
  • the three shunt resistors S_A2, S_B2, and S_C2 are connected in common with the GND line GL of the second inverter 130.
  • the current sensor 150 described above includes, for example, a shunt resistor S_A1, S_B1, S_C1, S_A2, S_B2, S_C2, and a current detection circuit (not shown) that detects a current flowing through each shunt resistor.
  • the A-phase leg of the first inverter 120 (specifically, a node between the high-side switch element SW_A1H and the low-side switch element SW_A1L) is connected to one end A1 of the A-phase winding M1 of the motor 200, and the second inverter The 130 A-phase leg is connected to the other end A2 of the A-phase winding M1.
  • the B-phase leg of the first inverter 120 is connected to one end B1 of the B-phase winding M2 of the motor 200, and the B-phase leg of the second inverter 130 is connected to the other end B2 of the winding M2.
  • the C-phase leg of the first inverter 120 is connected to one end C1 of the C-phase winding M3 of the motor 200, and the C-phase leg of the second inverter 130 is connected to the other end C2 of the winding M3.
  • FIG. 3A schematically shows the configuration of the A-phase H-bridge BA.
  • FIG. 3B schematically shows the configuration of a B-phase H-bridge BB.
  • FIG. 3C schematically shows the configuration of a C-phase H-bridge BC.
  • the inverter unit 100 includes A-phase, B-phase, and C-phase H-bridges BA, BB, and BC.
  • the A-phase H bridge BA includes a high-side switch element SW_A1H and a low-side switch element SW_A1L in the leg on the first inverter 120 side, a high-side switch element SW_A2H, a low-side switch element SW_A2L in the leg on the second inverter 130 side, and a winding Has M1.
  • the B-phase H-bridge BB includes a high-side switch element SW_B1H and a low-side switch element SW_B1L in the leg on the first inverter 120 side, a high-side switch element SW_B2H, a low-side switch element SW_B2L in the leg on the second inverter 130 side, and a winding Has M2.
  • the C-phase H-bridge BC includes a high-side switch element SW_C1H and a low-side switch element SW_C1L in the leg on the first inverter 120 side, a high-side switch element SW_C2H, a low-side switch element SW_C2L in the leg on the second inverter 130 side, and a winding M3.
  • the control circuit 300 (specifically, the controller 340) can identify a faulty inverter of the first inverter 120 and the second inverter 130 by executing an inverter fault diagnosis described below. The details of inverter failure diagnosis will be described below.
  • the failure diagnosis method of the present disclosure can be suitably used for a power conversion device including at least one H bridge, for example, a full bridge type power conversion device.
  • the failure of the inverter indicates an open failure of the switch element.
  • An open failure is a failure in which the switch element always has a high impedance.
  • an open failure occurring in the high-side switch element SW_A1H or SW_A1L of the first inverter 120 may be referred to as a failure of the first inverter 120.
  • the current and voltage expressed in the dq coordinate system the actual voltage indicating the voltage across the low-side switch element, and the rotational speed ⁇ of the motor are acquired.
  • the current and voltage expressed in the dq coordinate system include a d-axis voltage Vd, a q-axis voltage Vq, a d-axis current Id, and a q-axis current Iq.
  • the axis corresponding to the zero phase is represented as the z axis.
  • the rotation speed ⁇ is represented by a rotation speed (rpm) at which the rotor of the motor rotates per unit time (for example, 1 minute) or a rotation speed (rps) at which the rotor rotates at unit time (for example, 1 second).
  • a first actual voltage and a second actual voltage are defined for each of the A-phase, B-phase, and C-phase H-bridges BA, BB, and BC.
  • the first actual voltage indicates the voltage across the first low-side switch element in the leg on the first inverter 120 side in the H bridge of each phase. In other words, the first actual voltage corresponds to the node potential between the first high-side switch element and the first low-side switch element in the leg on the first inverter 120 side.
  • the second actual voltage indicates the voltage across the second low-side switch element in the leg on the second inverter 130 side. In other words, the second actual voltage corresponds to the node potential between the second high-side switch element and the second low-side switch element in the leg on the second inverter 130 side.
  • the voltage across the switch element is equal to the voltage Vds between the source and drain of the FET that is the switch element.
  • the first actual voltage indicates the voltage VA1 across the low-side switch element SW_A1L shown in FIG. 3A, and the second actual voltage points across the voltage VA2 across the low-side switch element SW_A2L shown in FIG. 3A.
  • the first actual voltage indicates the voltage VB1 across the low-side switch element SW_B1L shown in FIG. 3B
  • the second actual voltage indicates the voltage VB2 across the low-side switch element SW_B2L shown in FIG. 3B.
  • the first actual voltage indicates the voltage VC1 across the low-side switch element SW_C1L illustrated in FIG. 3C
  • the second actual voltage indicates the voltage VC2 across the low-side switch element SW_C2L illustrated in FIG. 3C. .
  • the inverter failure is diagnosed.
  • a failure signal indicating the failure of the inverter is generated and output to a motor control unit described later.
  • a failure signal is a signal that is asserted when a failure occurs.
  • the above-described failure diagnosis is repeatedly executed in synchronization with, for example, a period in which each phase current is measured by the current sensor 150, that is, an AD conversion period.
  • the algorithm for realizing the fault diagnosis method according to the present embodiment can be realized only by hardware such as an application specific integrated circuit (ASIC) or FPGA, or can be realized by a combination of a microcontroller and software. Can do.
  • the operation subject of failure diagnosis is the controller 340 of the control circuit 300.
  • FIG. 4 exemplifies functional blocks of the controller 340 for performing overall motor control.
  • FIG. 5 illustrates functional blocks for performing failure diagnosis of the second inverter 130.
  • FIG. 6 illustrates functional blocks for performing failure diagnosis of the first inverter 120.
  • each block in the functional block diagram is shown not in hardware units but in functional block units.
  • the software used for motor control and failure diagnosis may be a module constituting a computer program for executing specific processing corresponding to each functional block, for example.
  • Such a computer program is stored in the ROM 360, for example.
  • the controller 340 can read out commands from the ROM 360 and sequentially execute each process.
  • the controller 340 includes, for example, a failure diagnosis unit 800 and a motor control unit 900.
  • the failure diagnosis of the present disclosure can be suitably combined with motor control (for example, vector control), and can be incorporated into a series of processes of motor control.
  • Failure diagnosis unit 800 obtains d-axis current Id, q-axis current Iq, d-axis voltage Vd, q-axis voltage Vq, and rotation speed ⁇ of motor 200 in the dq coordinate system.
  • the fault diagnosis unit 800 further obtains the first actual voltages VA1, VB1, VC1, and the second actual voltages VA2, VB2, and VC2.
  • the failure diagnosis unit 800 may include a pre-computation unit (not shown) that acquires Vpeak.
  • the pre-computation unit uses the Clark transformation to convert the three-phase currents Ia, Ib and Ic obtained based on the measured values of the current sensor 150 into the currents I ⁇ and ⁇ on the ⁇ axis in the ⁇ fixed coordinate system. Convert to current I ⁇ .
  • the pre-arithmetic unit converts the currents I ⁇ and I ⁇ into a d-axis current Id and a q-axis current Iq in the dq coordinate system by using park conversion (dq coordinate conversion).
  • the pre-calculation unit acquires the d-axis voltage Vd and the q-axis voltage Vq based on the currents Id and Iq, and calculates the voltage peak value Vpeak from the acquired Vd and Vq based on the following formula (1).
  • the pre-computation unit can also receive Vd and Vq necessary for calculating Vpeak from the motor control unit 900 that performs vector control.
  • the pre-computation unit acquires Vpeak in synchronization with the period in which each phase current is measured by the current sensor 150.
  • Vpeak (2/3) 1/2 (Vd 2 + Vq 2 ) 1/2 formula (1)
  • Failure diagnosis unit 800 refers to look-up table 840 (FIG. 7) and determines saturation voltage Vsat based on currents Id, Iq and rotation speed ⁇ .
  • FIG. 7 schematically shows a look-up table (LUT) 840 that determines the saturation voltage Vsat from the rotational speed ⁇ and the current amplitude value.
  • the LUT 840 associates the relationship between the saturation voltage Vsat and the input of the current amplitude value (Id 2 + Iq 2 ) 1/2 determined based on the d-axis current and the q-axis current and the rotational speed ⁇ of the motor 200.
  • the rotation speed ⁇ is calculated based on, for example, a rotation signal from the angle sensor 320.
  • the rotational speed ⁇ can be estimated using, for example, a known sensorless control method.
  • the actual voltage of each switch element is measured by a drive circuit (predriver) 350, for example.
  • Table 1 illustrates the configuration of the LUT 840 that can be used for failure diagnosis.
  • Id is generally treated as zero. Therefore, the current amplitude value is equal to Iq.
  • Table 1 lists Iq (A).
  • the saturation voltage Vsat is determined from the acquired current amplitude value Iq and the rotational speed ⁇ .
  • a value set in advance before driving may be used as the saturation voltage Vsat.
  • a constant value for example, about 0.1 V) depending on the system may be used as the saturation voltage Vsat.
  • Failure diagnosis unit 800 diagnoses the presence or absence of an inverter failure based on the above-described actual voltage, voltage peak value Vpeak, and saturation voltage Vsat.
  • the failure diagnosis unit 800 generates a failure signal 1_FD indicating a failure of the first inverter 120 and a failure signal 2_FD indicating a failure of the second inverter 130 based on the diagnosis result, and outputs them to the motor control unit 900.
  • the motor control unit 900 generates a PWM signal that controls the overall switching operation of the switch elements of the first and second inverters 120 and 130 using, for example, vector control.
  • the motor control unit 900 outputs a PWM signal to the drive circuit 350.
  • the motor control unit 900 stops the torque assist of the motor 200, for example.
  • power conversion device 1000 may output a notification signal for alerting a human to a notification device (not shown).
  • the notification device alerts a person using at least one of light, sound, and display. Thereby, a human can recognize that the torque assist of the motor 200 has stopped.
  • the driver of the automobile can recognize that the torque assist of the motor that assists the steering operation has stopped. The driver can stop the car on the road shoulder, for example, according to the alert by the notification device.
  • each functional block may be expressed as a unit. Naturally, these notations are not used with the intention of restricting each functional block to hardware or software.
  • the execution subject of the software may be the core of the controller 340, for example.
  • the controller 340 can be realized by an FPGA. In that case, all or some of the functional blocks may be realized by hardware.
  • the plurality of FPGAs are communicably connected to each other by, for example, an in-vehicle control area network (CAN), and can transmit and receive data.
  • CAN in-vehicle control area network
  • the failure diagnosis unit 800 includes a failure diagnosis unit 801 for diagnosing the presence or absence of a failure in the second inverter 130 and a failure diagnosis unit 802 for diagnosing the presence or absence of a failure in the first inverter 120 shown in FIGS.
  • Fault diagnosis units 801 and 802 have substantially the same functional blocks, but input actual voltages are different from each other.
  • Each of the fault diagnosis units 801 and 802 includes absolute value calculators 811, 814, and 817, multipliers 812, 813, 815, 816, 818, and 819, adders 831, 832, and 833, and comparators 851 and 852. , 853 and a logic circuit OR871.
  • the absolute value calculator 811 of the failure diagnosis unit 801 calculates the absolute value of the actual voltage VA1.
  • the multiplier 812 multiplies the voltage peak value Vpeak by a constant “ ⁇ 1/2”.
  • the multiplier 813 multiplies the saturation voltage Vsat by a constant “ ⁇ 1”.
  • the adder 831 adds the output values of the absolute value calculator 811 and the multipliers 812 and 813, and calculates the failure diagnosis voltage VA1_FD represented by the following formula (2).
  • VA1_FD
  • the comparator 851 compares “VA1_FD” with “zero”. When VA1_FD is equal to or smaller than zero (VA1_FD ⁇ 0), the comparator 851 outputs “0” indicating that the actual voltage VA1 is normal to the logic circuit OR871. When VA1_FD is larger than zero (VA1_FD> 0), the comparator 851 outputs “1” indicating that the actual voltage VA1 is abnormal to the logic circuit OR871.
  • the absolute value calculator 814 of the failure diagnosis unit 801 calculates the absolute value of the actual voltage VB1.
  • the multiplier 815 multiplies the voltage peak value Vpeak by a constant “ ⁇ 1/2”.
  • the multiplier 816 multiplies the saturation voltage Vsat by a constant “ ⁇ 1”.
  • the adder 832 adds the output values of the absolute value calculator 814 and the multipliers 815 and 816 to calculate a failure diagnosis voltage VB1_FD represented by the following equation (3).
  • VB1_FD
  • the comparator 852 compares “VB1_FD” with “zero”. When VB1_FD is equal to or less than zero, the comparator 852 outputs “0” indicating that the actual voltage VB1 is normal to the logic circuit OR871. When VB1_FD is greater than zero, the comparator 852 outputs “1” indicating that the actual voltage VB1 is abnormal to the logic circuit OR871.
  • the absolute value calculator 817 of the failure diagnosis unit 801 calculates the absolute value of the actual voltage VC1.
  • the multiplier 818 multiplies the voltage peak value Vpeak by a constant “ ⁇ 1/2”.
  • the multiplier 819 multiplies the saturation voltage Vsat by a constant “ ⁇ 1”.
  • the adder 833 adds the output values of the absolute value calculator 817 and the multipliers 818 and 819 to calculate a failure diagnosis voltage VC1_FD represented by the following formula (4).
  • VC1_FD
  • the comparator 853 compares “VC1_FD” with “zero”. When VC1_FD is equal to or smaller than zero, the comparator 853 outputs “0” indicating that the actual voltage VC1 is normal to the logic circuit OR871. When VC1_FD is larger than zero, the comparator 853 outputs “1” indicating that the actual voltage VC1 is abnormal to the logic circuit OR871.
  • the logic circuit OR871 takes the logical sum of the output signals of the comparators 851, 852, 853.
  • the logic circuit OR871 outputs a logical sum to the motor control unit 900 as a failure signal 2_FD indicating whether or not the second inverter 130 has failed.
  • the logic circuit OR871 When the output signals of the comparators 851, 852, and 853 are all “0”, the logic circuit OR871 outputs “0” indicating that the second inverter 130 is normal as the failure signal 2_FD. When at least one of the output signals of the comparators 851, 852, and 853 is “1”, the logic circuit OR871 outputs “1” indicating that the second inverter 130 has failed as the failure signal 2_FD.
  • the failure diagnosis unit 802 shown in FIG. 6 performs the same processing as the failure diagnosis unit 801, and diagnoses the presence or absence of a failure of the first inverter 120. Instead of the actual voltages VA1, VB1, and VC1, actual voltages VA2, VB2, and VC2 are input to the failure diagnosis unit 802. Since the other processing of the failure diagnosis unit 802 is the same as that of the failure diagnosis unit 801, detailed description is omitted here.
  • the failure diagnosis voltage may be obtained by a method other than the above calculation.
  • the failure diagnosis voltage VA1_FD may be obtained from the calculation of the following equation (5).
  • VA1_FD VA1 2 ⁇ [(Vpeak / 2) + Vsat] 2 formula (5)
  • the failure diagnosis voltage VA1_FD may be obtained by the calculation of the following equation (6).
  • VA1_FD [VA1 + (Vpeak / 2) + Vsat] [VA1- (Vpeak / 2) ⁇ Vsat] Equation (6)
  • each graph represents voltage (V)
  • the horizontal axis represents time (s).
  • FIG. 8 shows waveforms of the actual voltage VA1 (upper side) and the actual voltage VA2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • FIG. 9 shows waveforms of the actual voltage VB1 (upper side) and the actual voltage VB2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • FIG. 10 shows waveforms of the actual voltage VC1 (upper side) and the actual voltage VC2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • the low-side switch element SW_A1L After the low-side switch element SW_A1L has an open failure at time 1.641s, it can be seen that the lower peak value of the actual voltage VA1 increases as shown in FIG. It can also be seen that the upper peak value of the actual voltage VA2 is increasing. That is, the absolute value of the upper peak value of the actual voltage VA2 increases. As shown in FIGS. 9 and 10, the actual voltages VB1, VB2, VC1, and VC2 have a small degree of change.
  • the failure diagnosis of the present disclosure can be realized by a simple algorithm. For this reason, for example, an advantage of reducing the circuit size or the memory size can be obtained in mounting 340 to the controller.
  • the failure diagnosis method of the present disclosure can be suitably used for a full bridge type power conversion device.
  • the full bridge includes a one-phase H-bridge structure, for example, the circuit structure shown in FIG. 3A.
  • the above-described failure diagnosis need not be performed for all three phases, and the failure diagnosis may be performed only for one phase or two phases.
  • the failure diagnosis may be performed only for the A phase, only the process related to the A phase among the processes described with reference to FIGS. 5 and 6 may be performed, and the process related to the B phase and the C phase may not be performed.
  • FIG. 11 schematically shows a typical configuration of the electric power steering apparatus 3000 according to the present embodiment.
  • a vehicle such as an automobile generally has an electric power steering device.
  • the electric power steering apparatus 3000 includes a steering system 520 and an auxiliary torque mechanism 540 that generates auxiliary torque.
  • the electric power steering device 3000 generates auxiliary torque that assists the steering torque of the steering system that is generated when the driver operates the steering wheel. The burden on the driver's operation is reduced by the auxiliary torque.
  • the steering system 520 includes, for example, a steering handle 521, a steering shaft 522, universal shaft joints 523A and 523B, a rotating shaft 524, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, and a knuckle. 528A and 528B, and left and right steering wheels 529A and 529B.
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an automotive electronic control unit (ECU) 542, a motor 543, a speed reduction mechanism 544, and the like.
  • the steering torque sensor 541 detects the steering torque in the steering system 520.
  • the ECU 542 generates a drive signal based on the detection signal of the steering torque sensor 541.
  • the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
  • the motor 543 transmits the generated auxiliary torque to the steering system 520 via the speed reduction mechanism 544.
  • the ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment.
  • an electronic control system with an ECU as a core is constructed.
  • a motor drive unit is constructed by the ECU 542, the motor 543, and the inverter 545.
  • the motor module 2000 according to the first embodiment can be suitably used for the system.
  • an EPS that implements a fault diagnosis method according to an embodiment of the present disclosure is an autonomous driving vehicle that corresponds to levels 0 to 5 (standards for automation) defined by the Japanese government and the US Department of Transportation's Road Traffic Safety Administration (NHTSA). Can be mounted.
  • levels 0 to 5 standards for automation
  • NHTSA US Department of Transportation's Road Traffic Safety Administration
  • the embodiment of the present disclosure can be widely used in various devices including various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.
  • various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

This failure diagnostic method according to an embodiment of the present disclosure diagnoses a failure in a power converting device 1000 that converts power from a power source 101 into power to be supplied to a motor 200. The failure diagnostic method includes: an acquisition step for acquiring a first actual voltage VA1 which indicates the voltage at both ends of a first low-side switching element SW_A1L, a saturation voltage Vsat of the first low-side switching element, and a voltage peak value Vpeak determined on the basis of a d-axis voltage and a q-axis voltage in a dq-coordinate system; and a diagnosis step for diagnosing the presence of a failure of a second inverter 130 on the basis of the first actual voltage, the saturation voltage, and the voltage peak value.

Description

故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置Failure diagnosis method, power conversion device, motor module, and electric power steering device
 本開示は、故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置に関する。 The present disclosure relates to a failure diagnosis method, a power conversion device, a motor module, and an electric power steering device.
 近年、電動モータ(以下、単に「モータ」と表記する)、インバータおよびECUが一体化された機電一体型モータが開発されている。特に車載分野において、安全性の観点から高い品質保証が要求される。そのため、部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として1つのモータに対して2つの電力変換装置を設けることが検討されている。他の一例として、メインのマイクロコントローラにバックアップ用マイクロコントローラを設けることが検討されている。 In recent years, an electromechanical integrated motor in which an electric motor (hereinafter simply referred to as “motor”), an inverter, and an ECU are integrated has been developed. Particularly in the in-vehicle field, high quality assurance is required from the viewpoint of safety. Therefore, a redundant design that can continue safe operation even when a part of the component fails is adopted. As an example of a redundant design, it is considered to provide two power conversion devices for one motor. As another example, it is considered to provide a backup microcontroller in the main microcontroller.
 特許文献1は、第1系統および第2系統を有するモータ駆動装置を開示する。第1系統は、モータの第1巻線組に接続され、第1インバータ部、電源リレーおよび逆接続保護リレーなどを有する。第2系統は、モータの第2巻線組に接続され、第2インバータ部、電源リレーおよび逆接続保護リレーなどを有する。モータ駆動装置に故障が生じていないとき、第1系統および第2系統の両方を用いてモータを駆動することが可能である。これに対し、第1系統および第2系統の一方、または、第1巻線組および第2巻線組の一方に故障が生じたとき、電源リレーは、電源から、故障した系統、または、故障した巻線組に接続された系統への電力供給を遮断する。故障していない他方の系統を用いてモータ駆動を継続させることが可能である。 Patent Document 1 discloses a motor drive device having a first system and a second system. The first system is connected to the first winding set of the motor and includes a first inverter unit, a power supply relay, a reverse connection protection relay, and the like. The second system is connected to the second winding set of the motor and includes a second inverter unit, a power supply relay, a reverse connection protection relay, and the like. When there is no failure in the motor drive device, it is possible to drive the motor using both the first system and the second system. On the other hand, when a failure occurs in one of the first system and the second system, or one of the first winding group and the second winding group, the power relay is connected to the failed system or from the power source. The power supply to the system connected to the winding set is cut off. It is possible to continue motor driving using the other system that has not failed.
 特許文献2および3も、第1系統および第2系統を有するモータ駆動装置を開示する。
一方の系統または一方の巻線組が故障したとしても、故障していない系統によってモータ駆動を継続させることができる。
Patent Documents 2 and 3 also disclose a motor drive device having a first system and a second system.
Even if one system or one winding set fails, motor drive can be continued by a system that does not fail.
日本国公開公報:特開2016-34204号公報Japan Publication: JP-A-2016-34204 日本国公開公報:特開2016-32977号公報Japan publication: JP-A-2016-32977 日本国公開公報:特開2008-132919号公報Japanese publication: JP-A-2008-132919
 上述した従来の技術では、インバータの故障を適切に検出することが求められていた。 In the above-described conventional technology, it has been required to appropriately detect the failure of the inverter.
 本開示の実施形態は、インバータの故障を適切に診断することが可能な故障診断方法を提供する。 The embodiment of the present disclosure provides a failure diagnosis method capable of appropriately diagnosing an inverter failure.
 本開示の例示的な故障診断方法は、電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換する電力変換装置の故障を診断する故障診断方法であって、前記電力変換装置は、前記少なくとも一相の巻線の一端に接続され、第1ハイサイドスイッチ素子および第1ローサイドスイッチ素子を備える第1インバータと、前記少なくとも一相の巻線の他端に接続され、第2ハイサイドスイッチ素子および第2ローサイドスイッチ素子を備える第2インバータと、前記第1ハイサイドスイッチ素子、前記第1ローサイドスイッチ素子、前記第2ハイサイドスイッチ素子および前記第2ローサイドスイッチ素子を含むHブリッジと、を備え、前記故障診断方法は、前記第1ローサイドスイッチ素子の両端電圧を示す第1実電圧と、前記第1ローサイドスイッチ素子の飽和電圧と、dq座標系におけるd軸電圧およびq軸電圧に基づいて決定される電圧ピーク値とを獲得する獲得ステップと、前記第1実電圧、前記飽和電圧および前記電圧ピーク値に基づいて、前記第2インバータの故障の有無を診断する診断ステップと、を包含する。 An exemplary failure diagnosis method of the present disclosure is a failure diagnosis method for diagnosing a failure in a power conversion device that converts electric power from a power source into electric power supplied to a motor having at least one phase winding, the electric power The converter is connected to one end of the at least one-phase winding, connected to a first inverter having a first high-side switch element and a first low-side switch element, and to the other end of the at least one-phase winding, A second inverter including a second high-side switch element and a second low-side switch element; and the first high-side switch element, the first low-side switch element, the second high-side switch element, and the second low-side switch element. An H-bridge, and the failure diagnosis method includes a first actual voltage indicating a voltage across the first low-side switch element. Obtaining a saturation voltage of the first low-side switch element and a voltage peak value determined based on a d-axis voltage and a q-axis voltage in a dq coordinate system; the first actual voltage; the saturation voltage; Diagnosing whether or not the second inverter has failed based on the voltage peak value.
 本開示の例示的な電力変換装置は、電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換する電力変換装置であって、前記電力変換装置は、前記少なくとも一相の巻線の一端に接続され、第1ハイサイドスイッチ素子および第1ローサイドスイッチ素子を備える第1インバータと、前記少なくとも一相の巻線の他端に接続され、第2ハイサイドスイッチ素子および第2ローサイドスイッチ素子を備える第2インバータと、前記第1ハイサイドスイッチ素子、前記第1ローサイドスイッチ素子、前記第2ハイサイドスイッチ素子および前記第2ローサイドスイッチ素子を含むHブリッジと、前記第1および第2インバータの動作を制御する制御回路と、を備え、前記制御回路は、前記第1ローサイドスイッチ素子の両端電圧を示す第1実電圧と、前記第1ローサイドスイッチ素子の飽和電圧と、dq座標系におけるd軸電圧およびq軸電圧に基づいて決定される電圧ピーク値とを獲得し、前記第1実電圧、前記飽和電圧および前記電圧ピーク値に基づいて、前記第2インバータの故障の有無を診断する。 An exemplary power conversion device of the present disclosure is a power conversion device that converts power from a power source into power supplied to a motor having at least one phase winding, the power conversion device including the at least one phase. A first inverter having a first high-side switch element and a first low-side switch element, and a second high-side switch element connected to the other end of the at least one-phase winding; A second inverter having two low-side switch elements; an H bridge including the first high-side switch element; the first low-side switch element; the second high-side switch element; and the second low-side switch element; A control circuit for controlling the operation of the second inverter, wherein the control circuit includes a first low-side switch element. Obtaining a first actual voltage indicating an end voltage, a saturation voltage of the first low-side switch element, and a voltage peak value determined based on a d-axis voltage and a q-axis voltage in a dq coordinate system; Based on the voltage, the saturation voltage, and the voltage peak value, the presence or absence of a failure of the second inverter is diagnosed.
 本開示の例示的な実施形態によると、インバータの故障を適切に診断することが可能な故障診断方法、電力変換装置、当該電力変換装置を備えるモータモジュールおよび当該モータモジュールを備える電動パワーステアリング装置が提供される。 According to an exemplary embodiment of the present disclosure, there is provided a failure diagnosis method capable of appropriately diagnosing an inverter failure, a power conversion device, a motor module including the power conversion device, and an electric power steering device including the motor module. Provided.
図1は、実施形態に係るモータモジュールを模式的に示すブロック図である。FIG. 1 is a block diagram schematically illustrating a motor module according to an embodiment. 図2は、実施形態に係るインバータユニットを模式的に示す回路図である。FIG. 2 is a circuit diagram schematically showing the inverter unit according to the embodiment. 図3Aは、A相のHブリッジを示す模式図である。FIG. 3A is a schematic diagram showing an A-phase H-bridge. 図3Bは、B相のHブリッジを示す模式図である。FIG. 3B is a schematic diagram showing a B-phase H-bridge. 図3Cは、C相のHブリッジを示す模式図である。FIG. 3C is a schematic diagram showing a C-phase H-bridge. 図4は、モータ制御全般を行うコントローラを示す機能ブロック図である。FIG. 4 is a functional block diagram showing a controller that performs overall motor control. 図5は、第2インバータの故障診断を行うための機能ブロックを示す機能ブロック図である。FIG. 5 is a functional block diagram showing functional blocks for performing failure diagnosis of the second inverter. 図6は、第1インバータの故障診断を行うための機能ブロックを示す機能ブロック図である。FIG. 6 is a functional block diagram showing functional blocks for performing failure diagnosis of the first inverter. 図7は、回転速度ωおよび電流振幅値から飽和電圧Vsatを決定するルックアップテーブルを示す模式図である。FIG. 7 is a schematic diagram showing a lookup table for determining the saturation voltage Vsat from the rotation speed ω and the current amplitude value. 図8は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VA1(上側)および実電圧VA2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 8 is a graph showing waveforms of simulation results of the actual voltage VA1 (upper side) and the actual voltage VA2 (lower side) when the low-side switch element SW_A1L has an open failure. 図9は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VB1(上側)および実電圧VB2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 9 is a graph showing waveforms of simulation results of the actual voltage VB1 (upper side) and the actual voltage VB2 (lower side) when the low-side switch element SW_A1L has an open failure. 図10は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VC1(上側)および実電圧VC2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 10 is a graph showing waveforms of simulation results of the actual voltage VC1 (upper side) and the actual voltage VC2 (lower side) when the low-side switch element SW_A1L has an open failure. 図11は、例示的な実施形態に係る電動パワーステアリング装置を示す模式図である。FIG. 11 is a schematic diagram illustrating an electric power steering apparatus according to an exemplary embodiment.
 以下、添付の図面を参照しながら、本開示のインバータの故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。 Hereinafter, embodiments of an inverter failure diagnosis method, a power conversion device, a motor module, and an electric power steering device according to the present disclosure will be described in detail with reference to the accompanying drawings. However, in order to avoid the following description from being unnecessarily redundant and to facilitate understanding by those skilled in the art, a more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted.
 本明細書において、電源からの電力を、三相(A相、B相、C相)の巻線を有する三相モータに供給する電力に変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置、およびその装置に用いるインバータの故障診断方法も本開示の範疇である。 In the present specification, implementation of the present disclosure will be described by taking, as an example, a power conversion device that converts power from a power source into power to be supplied to a three-phase motor having three-phase (A-phase, B-phase, and C-phase) windings. A form is demonstrated. However, a power conversion device that converts power from a power source into power to be supplied to an n-phase motor having n-phase (four or more) windings such as four-phase or five-phase, and an inverter used in the device The fault diagnosis method is also within the scope of the present disclosure.
 (実施形態1)
 〔1.モータモジュール2000および電力変換装置1000の構造〕
 図1は、本実施形態によるモータモジュール2000の典型的なブロック構成を模式的に示している。
(Embodiment 1)
[1. Structure of motor module 2000 and power conversion apparatus 1000]
FIG. 1 schematically shows a typical block configuration of a motor module 2000 according to the present embodiment.
 モータモジュール2000は、典型的に、インバータユニット100と制御回路300とを有する電力変換装置1000およびモータ200を備える。モータモジュール2000は、モジュール化され、例えば、モータ、センサ、ドライバおよびコントローラを有する機電一体型モータとして製造および販売され得る。 The motor module 2000 typically includes a power converter 1000 having the inverter unit 100 and a control circuit 300 and a motor 200. The motor module 2000 is modularized and can be manufactured and sold as, for example, an electromechanically integrated motor having a motor, a sensor, a driver, and a controller.
 電力変換装置1000は、電源101(図2を参照)からの電力をモータ200に供給する電力に変換することが可能である。電力変換装置1000は、モータ200に接続される。例えば、電力変換装置1000は、直流電力を、A相、B相およびC相の擬似正弦波である三相交流電力に変換することが可能である。本明細書において、部品(構成要素)同士の間の「接続」とは、主に電気的な接続を意味する。 The power conversion apparatus 1000 can convert power from the power source 101 (see FIG. 2) into power supplied to the motor 200. The power conversion apparatus 1000 is connected to the motor 200. For example, the power conversion apparatus 1000 can convert DC power into three-phase AC power that is pseudo-sine waves of A phase, B phase, and C phase. In this specification, “connection” between components (components) mainly means electrical connection.
 モータ200は、例えば三相交流モータである。モータ200は、A相の巻線M1、B相の巻線M2およびC相の巻線M3を備え、インバータユニット100の第1インバータ120と第2インバータ130とに接続される。具体的に説明すると、第1インバータ120はモータ200の各相の巻線の一端に接続され、第2インバータ130は各相の巻線の他端に接続される。 The motor 200 is, for example, a three-phase AC motor. The motor 200 includes an A-phase winding M1, a B-phase winding M2, and a C-phase winding M3, and is connected to the first inverter 120 and the second inverter 130 of the inverter unit 100. More specifically, the first inverter 120 is connected to one end of each phase winding of the motor 200, and the second inverter 130 is connected to the other end of each phase winding.
 制御回路300は、例えば、電源回路310と、角度センサ320と、入力回路330と、コントローラ340と、駆動回路350と、ROM360とを備える。制御回路300の各部品は、例えば1枚の回路基板(典型的にはプリント基板)に実装される。制御回路300は、インバータユニット100に接続され、電流センサ150および角度センサ320からの入力信号に基づいてインバータユニット100を制御する。その制御手法として、例えばベクトル制御、パルス幅変調(PWM)または直接トルク制御(DTC)がある。ただし、モータ制御手法(例えばセンサレス制御)によっては、角度センサ320は不要な場合がある。 The control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360. Each component of the control circuit 300 is mounted on, for example, one circuit board (typically a printed board). The control circuit 300 is connected to the inverter unit 100 and controls the inverter unit 100 based on input signals from the current sensor 150 and the angle sensor 320. Examples of the control method include vector control, pulse width modulation (PWM), and direct torque control (DTC). However, the angle sensor 320 may be unnecessary depending on the motor control method (for example, sensorless control).
 制御回路300は、目的とする、モータ200のロータの位置、回転速度、および電流などを制御してクローズドループ制御を実現できる。なお、制御回路300は、角度センサ320に代えてトルクセンサを備えてもよい。この場合、制御回路300は、目的とするモータトルクを制御できる。 The control circuit 300 can realize the closed loop control by controlling the target position, rotation speed, current, and the like of the motor 200. Note that the control circuit 300 may include a torque sensor instead of the angle sensor 320. In this case, the control circuit 300 can control the target motor torque.
 電源回路310は、電源101の例えば12Vの電圧に基づいて回路内の各ブロックに必要な電源電圧(例えば3V、5V)を生成する。 The power supply circuit 310 generates a power supply voltage (for example, 3V, 5V) necessary for each block in the circuit based on the voltage of the power supply 101, for example, 12V.
 角度センサ320は、例えばレゾルバまたはホールICである。または、角度センサ320は、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ320は、ロータの回転角(以下、「回転信号」と表記する。)を検出し、回転信号をコントローラ340に出力する。 The angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects the rotation angle of the rotor (hereinafter referred to as “rotation signal”) and outputs the rotation signal to the controller 340.
 入力回路330は、電流センサ150によって検出された相電流(以下、「実電流値」と表記する場合がある。)を受け取って、実電流値のレベルをコントローラ340の入力レベルに必要に応じて変換し、実電流値をコントローラ340に出力する。入力回路330は、例えばアナログデジタル(AD)変換回路である。 The input circuit 330 receives the phase current detected by the current sensor 150 (hereinafter sometimes referred to as “actual current value”), and changes the level of the actual current value to the input level of the controller 340 as necessary. The actual current value is output to the controller 340. The input circuit 330 is, for example, an analog / digital (AD) conversion circuit.
 コントローラ340は、電力変換装置1000の全体を制御する集積回路であり、例えば、マイクロコントローラまたはFPGA(Field Programmable Gate Array)である。コントローラ340は、インバータユニット100の第1および第2インバータ120、130における各スイッチ素子(典型的には半導体スイッチ素子)のスイッチング動作(ターンオンまたはターンオフ)を制御する。コントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路350に出力する。 The controller 340 is an integrated circuit that controls the entire power conversion apparatus 1000, and is, for example, a microcontroller or an FPGA (Field Programmable Gate Array). The controller 340 controls the switching operation (turn-on or turn-off) of each switch element (typically a semiconductor switch element) in the first and second inverters 120 and 130 of the inverter unit 100. The controller 340 sets the target current value according to the actual current value and the rotation signal of the rotor, generates a PWM signal, and outputs it to the drive circuit 350.
 駆動回路350は、典型的にはプリドライバ(「ゲートドライバ」と呼ばれることもある)である。駆動回路350は、インバータユニット100の第1および第2インバータ120、130における各スイッチ素子のスイッチング動作を制御する制御信号(ゲート制御信号)をPWM信号に従って生成し、各スイッチ素子のゲートに制御信号を与える。駆動対象が低電圧で駆動可能なモータであるとき、プリドライバは必ずしも必要とされない。その場合、プリドライバの機能は、コントローラ340に実装され得る。 The drive circuit 350 is typically a pre-driver (sometimes called a “gate driver”). The drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each switch element in the first and second inverters 120 and 130 of the inverter unit 100 according to the PWM signal, and supplies a control signal to the gate of each switch element. give. When the driving target is a motor that can be driven at a low voltage, the pre-driver is not necessarily required. In that case, the function of the pre-driver can be implemented in the controller 340.
 ROM360は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM360は、コントローラ340に電力変換装置1000を制御させるための命令群を含む制御プログラムを格納している。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。 The ROM 360 is, for example, a writable memory (for example, PROM), a rewritable memory (for example, flash memory), or a read-only memory. The ROM 360 stores a control program including a command group for causing the controller 340 to control the power conversion apparatus 1000. For example, the control program is temporarily expanded in a RAM (not shown) at the time of booting.
 図2を参照して、インバータユニット100の具体的な回路構成を説明する。 A specific circuit configuration of the inverter unit 100 will be described with reference to FIG.
 図2は、本実施形態によるインバータユニット100の回路構成を模式的に示している。 FIG. 2 schematically shows a circuit configuration of the inverter unit 100 according to the present embodiment.
 電源101は、所定の電源電圧(例えば12V)を生成する。電源101として、例えば直流電源が用いられる。ただし、電源101は、AC-DCコンバータまたはDC―DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。電源101は、図示するように、第1および第2インバータ120、130に共通の単一電源であってもよいし、第1インバータ120用の第1電源(不図示)および第2インバータ130用の第2電源(不図示)を備えていてもよい。 The power supply 101 generates a predetermined power supply voltage (for example, 12V). As the power source 101, for example, a DC power source is used. However, the power source 101 may be an AC-DC converter, a DC-DC converter, or a battery (storage battery). The power source 101 may be a single power source common to the first and second inverters 120 and 130 as shown in the figure, or may be a first power source (not shown) for the first inverter 120 and for the second inverter 130. A second power source (not shown) may be provided.
 図示されていないが、電源101と第1インバータ120の間、および、電源101と第2インバータ130の間にコイルが設けられる。コイルは、ノイズフィルタとして機能し、各インバータに供給する電圧波形に含まれる高周波ノイズ、または各インバータで発生する高周波ノイズを電源101側に流出させないように平滑化する。また、各インバータの電源端子には、コンデンサが接続される。コンデンサは、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサは、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。 Although not shown, coils are provided between the power source 101 and the first inverter 120 and between the power source 101 and the second inverter 130. The coil functions as a noise filter, and smoothes the high frequency noise included in the voltage waveform supplied to each inverter or the high frequency noise generated by each inverter so as not to flow out to the power supply 101 side. A capacitor is connected to the power supply terminal of each inverter. The capacitor is a so-called bypass capacitor and suppresses voltage ripple. The capacitor is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to design specifications.
 第1インバータ120は、3個のレグから構成されるブリッジ回路を有する。各レグは、ハイサイドスイッチ素子、ローサイドスイッチ素子およびシャント抵抗を有する。A相レグは、ハイサイドスイッチ素子SW_A1H、ローサイドスイッチ素子SW_A1Lおよび第1シャント抵抗S_A1を有する。B相レグは、ハイサイドスイッチ素子SW_B1H、ローサイドスイッチ素子SW_B1Lおよび第1シャント抵抗S_B1を有する。C相レグは、ハイサイドスイッチ素子SW_C1H、ローサイドスイッチ素子SW_C1Lおよび第1シャント抵抗S_C1を有する。 The first inverter 120 has a bridge circuit composed of three legs. Each leg has a high-side switch element, a low-side switch element, and a shunt resistor. The A-phase leg includes a high-side switch element SW_A1H, a low-side switch element SW_A1L, and a first shunt resistor S_A1. The B-phase leg has a high-side switch element SW_B1H, a low-side switch element SW_B1L, and a first shunt resistor S_B1. The C-phase leg has a high-side switch element SW_C1H, a low-side switch element SW_C1L, and a first shunt resistor S_C1.
 スイッチ素子として、例えば、寄生ダイオードが内部に形成された電界効果トランジスタ(典型的にはMOSFET)、または、絶縁ゲートバイポーラトランジスタ(IGBT)とそれに並列接続された還流ダイオードとの組み合わせを用いることができる。 As the switch element, for example, a field effect transistor (typically MOSFET) having a parasitic diode formed therein, or a combination of an insulated gate bipolar transistor (IGBT) and a free-wheeling diode connected in parallel thereto can be used. .
 第1シャント抵抗S_A1は、A相の巻線M1を流れるA相電流IA1を検出するために用いられ、例えば、ローサイドスイッチ素子SW_A1LとGNDラインGLの間に接続される。第1シャント抵抗S_B1は、B相の巻線M2を流れるB相電流IB1を検出するために用いられ、例えば、ローサイドスイッチ素子SW_B1LとGNDラインGLの間に接続される。第1シャント抵抗S_C1は、C相の巻線M3を流れるC相電流IC1を検出するために用いられ、例えば、ローサイドスイッチ素子SW_C1LとGNDラインGLの間に接続される。3個のシャント抵抗S_A1、S_B1およびS_C1は、第1インバータ120のGNDラインGLと共通に接続されている。 The first shunt resistor S_A1 is used to detect the A-phase current IA1 flowing through the A-phase winding M1, and is connected, for example, between the low-side switch element SW_A1L and the GND line GL. The first shunt resistor S_B1 is used to detect the B-phase current IB1 flowing through the B-phase winding M2, and is connected between the low-side switch element SW_B1L and the GND line GL, for example. The first shunt resistor S_C1 is used to detect the C-phase current IC1 flowing through the C-phase winding M3, and is connected between, for example, the low-side switch element SW_C1L and the GND line GL. The three shunt resistors S_A1, S_B1, and S_C1 are connected in common with the GND line GL of the first inverter 120.
 第2インバータ130は、3個のレグから構成されるブリッジ回路を有する。各レグは、ハイサイドスイッチ素子、ローサイドスイッチ素子およびシャント抵抗を有する。A相レグは、ハイサイドスイッチ素子SW_A2H、ローサイドスイッチ素子SW_A2Lおよびシャント抵抗S_A2を有する。B相レグは、ハイサイドスイッチ素子SW_B2H、ローサイドスイッチ素子SW_B2Lおよびシャント抵抗S_B2を有する。C相レグは、ハイサイドスイッチ素子SW_C2H、ローサイドスイッチ素子SW_C2Lおよびシャント抵抗S_C2を有する。 The second inverter 130 has a bridge circuit composed of three legs. Each leg has a high-side switch element, a low-side switch element, and a shunt resistor. The A-phase leg has a high-side switch element SW_A2H, a low-side switch element SW_A2L, and a shunt resistor S_A2. The B-phase leg has a high-side switch element SW_B2H, a low-side switch element SW_B2L, and a shunt resistor S_B2. The C-phase leg has a high-side switch element SW_C2H, a low-side switch element SW_C2L, and a shunt resistor S_C2.
 シャント抵抗S_A2は、A相電流IA2を検出するために用いられ、例えば、ローサイドスイッチ素子SW_A2LとGNDラインGLの間に接続される。シャント抵抗S_B2は、B相電流IB2を検出するために用いられ、例えば、ローサイドスイッチ素子SW_B2LとGNDラインGLの間に接続される。シャント抵抗S_C2は、C相電流IC2を検出するために用いられ、例えば、ローサイドスイッチ素子SW_C2LとGNDラインGLの間に接続される。3個のシャント抵抗S_A2、S_B2およびS_C2は、第2インバータ130のGNDラインGLと共通に接続されている。 The shunt resistor S_A2 is used to detect the A-phase current IA2, and is connected, for example, between the low-side switch element SW_A2L and the GND line GL. The shunt resistor S_B2 is used to detect the B-phase current IB2, and is connected between, for example, the low-side switch element SW_B2L and the GND line GL. The shunt resistor S_C2 is used to detect the C-phase current IC2, and is connected, for example, between the low-side switch element SW_C2L and the GND line GL. The three shunt resistors S_A2, S_B2, and S_C2 are connected in common with the GND line GL of the second inverter 130.
 上述した電流センサ150は、例えば、シャント抵抗S_A1、S_B1、S_C1、S_A2、S_B2、S_C2および各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を備える。 The current sensor 150 described above includes, for example, a shunt resistor S_A1, S_B1, S_C1, S_A2, S_B2, S_C2, and a current detection circuit (not shown) that detects a current flowing through each shunt resistor.
 第1インバータ120のA相レグ(具体的には、ハイサイドスイッチ素子SW_A1Hおよびローサイドスイッチ素子SW_A1Lの間のノード)は、モータ200のA相の巻線M1の一端A1に接続され、第2インバータ130のA相レグは、A相の巻線M1の他端A2に接続される。第1インバータ120のB相レグは、モータ200のB相の巻線M2の一端B1に接続され、第2インバータ130のB相レグは、巻線M2の他端B2に接続される。第1インバータ120のC相レグは、モータ200のC相の巻線M3の一端C1に接続され、第2インバータ130のC相レグは、巻線M3の他端C2に接続される。 The A-phase leg of the first inverter 120 (specifically, a node between the high-side switch element SW_A1H and the low-side switch element SW_A1L) is connected to one end A1 of the A-phase winding M1 of the motor 200, and the second inverter The 130 A-phase leg is connected to the other end A2 of the A-phase winding M1. The B-phase leg of the first inverter 120 is connected to one end B1 of the B-phase winding M2 of the motor 200, and the B-phase leg of the second inverter 130 is connected to the other end B2 of the winding M2. The C-phase leg of the first inverter 120 is connected to one end C1 of the C-phase winding M3 of the motor 200, and the C-phase leg of the second inverter 130 is connected to the other end C2 of the winding M3.
 図3Aは、A相のHブリッジBAの構成を模式的に示している。図3Bは、B相のHブリッジBBの構成を模式的に示している。図3Cは、C相のHブリッジBCの構成を模式的に示している。 FIG. 3A schematically shows the configuration of the A-phase H-bridge BA. FIG. 3B schematically shows the configuration of a B-phase H-bridge BB. FIG. 3C schematically shows the configuration of a C-phase H-bridge BC.
 インバータユニット100は、A相、B相およびC相のHブリッジBA、BBおよびBCを備える。A相のHブリッジBAは、第1インバータ120側のレグにおけるハイサイドスイッチ素子SW_A1H、ローサイドスイッチ素子SW_A1L、第2インバータ130側のレグにおけるハイサイドスイッチ素子SW_A2H、ローサイドスイッチ素子SW_A2L、および、巻線M1を有する。 The inverter unit 100 includes A-phase, B-phase, and C-phase H-bridges BA, BB, and BC. The A-phase H bridge BA includes a high-side switch element SW_A1H and a low-side switch element SW_A1L in the leg on the first inverter 120 side, a high-side switch element SW_A2H, a low-side switch element SW_A2L in the leg on the second inverter 130 side, and a winding Has M1.
 B相のHブリッジBBは、第1インバータ120側のレグにおけるハイサイドスイッチ素子SW_B1H、ローサイドスイッチ素子SW_B1L、第2インバータ130側のレグにおけるハイサイドスイッチ素子SW_B2H、ローサイドスイッチ素子SW_B2L、および、巻線M2を有する。 The B-phase H-bridge BB includes a high-side switch element SW_B1H and a low-side switch element SW_B1L in the leg on the first inverter 120 side, a high-side switch element SW_B2H, a low-side switch element SW_B2L in the leg on the second inverter 130 side, and a winding Has M2.
 C相のHブリッジBCは、第1インバータ120側のレグにおけるハイサイドスイッチ素子SW_C1H、ローサイドスイッチ素子SW_C1L、第2インバータ130側のレグにおけるハイサイドスイッチ素子SW_C2H、ローサイドスイッチ素子SW_C2L、および、巻線M3を有する。 The C-phase H-bridge BC includes a high-side switch element SW_C1H and a low-side switch element SW_C1L in the leg on the first inverter 120 side, a high-side switch element SW_C2H, a low-side switch element SW_C2L in the leg on the second inverter 130 side, and a winding M3.
 制御回路300(具体的にはコントローラ340)は、以下で説明するインバータの故障診断を実行することにより、第1インバータ120および第2インバータ130のうちの故障したインバータを特定することができる。以下、インバータの故障診断の詳細を説明する。 The control circuit 300 (specifically, the controller 340) can identify a faulty inverter of the first inverter 120 and the second inverter 130 by executing an inverter fault diagnosis described below. The details of inverter failure diagnosis will be described below.
 〔2.インバータの故障診断方法〕
 図4から図7を参照しながら、例えば、図1に示す電力変換装置1000に用いる、インバータの故障を診断する故障診断方法の具体例を説明する。本開示の故障診断方法は、少なくとも1つのHブリッジを備える電力変換装置、例えばフルブリッジタイプの電力変換装置に好適に用いることができる。本明細書中において、インバータの故障は、スイッチ素子のオープン故障を指す。オープン故障とは、スイッチ素子が常時ハイインピーダンスになる故障である。本明細書では、例えば第1インバータ120のハイサイドスイッチ素子SW_A1HまたはSW_A1Lにオープン故障が生じることを、第1インバータ120の故障と呼ぶ場合がある。
[2. (Inverter failure diagnosis method)
A specific example of a failure diagnosis method for diagnosing an inverter failure, for example, used in the power conversion apparatus 1000 shown in FIG. 1 will be described with reference to FIGS. The failure diagnosis method of the present disclosure can be suitably used for a power conversion device including at least one H bridge, for example, a full bridge type power conversion device. In the present specification, the failure of the inverter indicates an open failure of the switch element. An open failure is a failure in which the switch element always has a high impedance. In this specification, for example, an open failure occurring in the high-side switch element SW_A1H or SW_A1L of the first inverter 120 may be referred to as a failure of the first inverter 120.
 故障診断では、例えば、dq座標系において表現される電流および電圧と、ローサイドスイッチ素子の両端電圧を示す実電圧と、モータの回転速度ωとを獲得する。dq座標系において表現される電流および電圧は、d軸電圧Vd、q軸電圧Vq、d軸電流Idおよびq軸電流Iqを含む。なお、dq座標系において、零相に対応した軸をz軸として表している。回転速度ωは、単位時間(例えば1分間)にモータのロータが回転する回転数(rpm)または単位時間(例えば1秒間)にロータが回転する回転数(rps)で表される。 In the failure diagnosis, for example, the current and voltage expressed in the dq coordinate system, the actual voltage indicating the voltage across the low-side switch element, and the rotational speed ω of the motor are acquired. The current and voltage expressed in the dq coordinate system include a d-axis voltage Vd, a q-axis voltage Vq, a d-axis current Id, and a q-axis current Iq. In the dq coordinate system, the axis corresponding to the zero phase is represented as the z axis. The rotation speed ω is represented by a rotation speed (rpm) at which the rotor of the motor rotates per unit time (for example, 1 minute) or a rotation speed (rps) at which the rotor rotates at unit time (for example, 1 second).
 図3Aから図3Cを用いて、スイッチ素子の実電圧を説明する。 The actual voltage of the switch element will be described with reference to FIGS. 3A to 3C.
 A相、B相およびC相のHブリッジBA、BBおよびBCのそれぞれに対し、第1実電圧および第2実電圧を定義する。第1実電圧は、各相のHブリッジにおいて、第1インバータ120側のレグにおける第1ローサイドスイッチ素子の両端電圧を示す。換言すると、第1実電圧は、第1インバータ120側のレグにおける第1ハイサイドスイッチ素子と第1ローサイドスイッチ素子の間のノード電位に相当する。第2実電圧は、第2インバータ130側のレグにおける第2ローサイドスイッチ素子の両端電圧を示す。換言すると、第2実電圧は、第2インバータ130側のレグにおける第2ハイサイドスイッチ素子と第2ローサイドスイッチ素子の間のノード電位に相当する。スイッチ素子の両端電圧は、スイッチ素子であるFETのソース-ドレイン間の電圧Vdsに等しい。 A first actual voltage and a second actual voltage are defined for each of the A-phase, B-phase, and C-phase H-bridges BA, BB, and BC. The first actual voltage indicates the voltage across the first low-side switch element in the leg on the first inverter 120 side in the H bridge of each phase. In other words, the first actual voltage corresponds to the node potential between the first high-side switch element and the first low-side switch element in the leg on the first inverter 120 side. The second actual voltage indicates the voltage across the second low-side switch element in the leg on the second inverter 130 side. In other words, the second actual voltage corresponds to the node potential between the second high-side switch element and the second low-side switch element in the leg on the second inverter 130 side. The voltage across the switch element is equal to the voltage Vds between the source and drain of the FET that is the switch element.
 A相のHブリッジBAに対し、第1実電圧は、図3Aに示すローサイドスイッチ素子SW_A1Lの両端電圧VA1を指し、第2実電圧は、図3Aに示すローサイドスイッチ素子SW_A2Lの両端電圧VA2を指す。B相のHブリッジBBに対し、第1実電圧は、図3Bに示すローサイドスイッチ素子SW_B1Lの両端電圧VB1を指し、第2実電圧は、図3Bに示すローサイドスイッチ素子SW_B2Lの両端電圧VB2を指す。C相のHブリッジBCに対し、第1実電圧は、図3Cに示すローサイドスイッチ素子SW_C1Lの両端電圧VC1を指し、第2実電圧は、図3Cに示すローサイドスイッチ素子SW_C2Lの両端電圧VC2を指す。 For the A-phase H bridge BA, the first actual voltage indicates the voltage VA1 across the low-side switch element SW_A1L shown in FIG. 3A, and the second actual voltage points across the voltage VA2 across the low-side switch element SW_A2L shown in FIG. 3A. . For the B-phase H-bridge BB, the first actual voltage indicates the voltage VB1 across the low-side switch element SW_B1L shown in FIG. 3B, and the second actual voltage indicates the voltage VB2 across the low-side switch element SW_B2L shown in FIG. 3B. . For the C-phase H-bridge BC, the first actual voltage indicates the voltage VC1 across the low-side switch element SW_C1L illustrated in FIG. 3C, and the second actual voltage indicates the voltage VC2 across the low-side switch element SW_C2L illustrated in FIG. 3C. .
 次に、獲得した、dq座標系の電流および電圧、第1実電圧、第2実電圧および回転速度に基づいて、インバータの故障を診断する。 Next, based on the acquired current and voltage in the dq coordinate system, the first actual voltage, the second actual voltage, and the rotation speed, the inverter failure is diagnosed.
 インバータが故障していると判定した場合、インバータの故障を示す故障信号を生成し、後述するモータ制御ユニットに出力する。例えば、故障信号は、故障が生じるとアサートされる信号である。 When it is determined that the inverter has failed, a failure signal indicating the failure of the inverter is generated and output to a motor control unit described later. For example, a failure signal is a signal that is asserted when a failure occurs.
 上記の故障診断は、例えば、電流センサ150によって各相電流を測定する周期、すなわちAD変換の周期に同期して繰り返し実行される。 The above-described failure diagnosis is repeatedly executed in synchronization with, for example, a period in which each phase current is measured by the current sensor 150, that is, an AD conversion period.
 本実施形態による故障診断方法を実現するためのアルゴリズムは、例えば特定用途向け集積回路(ASIC)またはFPGAなどのハードウェアのみで実現することもできるし、マイクロコントローラおよびソフトウェアの組み合わせによっても実現することができる。本実施形態では、故障診断の動作主体を制御回路300のコントローラ340とする。 The algorithm for realizing the fault diagnosis method according to the present embodiment can be realized only by hardware such as an application specific integrated circuit (ASIC) or FPGA, or can be realized by a combination of a microcontroller and software. Can do. In the present embodiment, the operation subject of failure diagnosis is the controller 340 of the control circuit 300.
 図4は、モータ制御全般を行うためのコントローラ340の機能ブロックを例示している。図5は、第2インバータ130の故障診断を行うための機能ブロックを例示している。図6は、第1インバータ120の故障診断を行うための機能ブロックを例示している。 FIG. 4 exemplifies functional blocks of the controller 340 for performing overall motor control. FIG. 5 illustrates functional blocks for performing failure diagnosis of the second inverter 130. FIG. 6 illustrates functional blocks for performing failure diagnosis of the first inverter 120.
 本明細書において、機能ブロック図における各ブロックは、ハードウェア単位ではなく機能ブロック単位で示される。モータ制御および故障診断に用いるソフトウェアは、例えば、各機能ブロックに対応した特定の処理を実行させるためのコンピュータプログラムを構成するモジュールであり得る。そのようなコンピュータプログラムは、例えばROM360に格納される。コントローラ340は、ROM360から命令を読み出して各処理を逐次実行することができる。 In this specification, each block in the functional block diagram is shown not in hardware units but in functional block units. The software used for motor control and failure diagnosis may be a module constituting a computer program for executing specific processing corresponding to each functional block, for example. Such a computer program is stored in the ROM 360, for example. The controller 340 can read out commands from the ROM 360 and sequentially execute each process.
 コントローラ340は、例えば、故障診断ユニット800およびモータ制御ユニット900を有する。このように、本開示の故障診断は、モータ制御(例えばベクトル制御)と好適に組み合わせることができ、モータ制御の一連の処理の中に組み込むことが可能である。 The controller 340 includes, for example, a failure diagnosis unit 800 and a motor control unit 900. As described above, the failure diagnosis of the present disclosure can be suitably combined with motor control (for example, vector control), and can be incorporated into a series of processes of motor control.
 故障診断ユニット800は、dq座標系におけるd軸電流Id、q軸電流Iq、d軸電圧Vd、q軸電圧Vq、およびモータ200の回転速度ωを獲得する。故障診断ユニット800は、さらに、第1実電圧VA1、VB1、VC1、第2実電圧VA2、VB2およびVC2を獲得する。 Failure diagnosis unit 800 obtains d-axis current Id, q-axis current Iq, d-axis voltage Vd, q-axis voltage Vq, and rotation speed ω of motor 200 in the dq coordinate system. The fault diagnosis unit 800 further obtains the first actual voltages VA1, VB1, VC1, and the second actual voltages VA2, VB2, and VC2.
 例えば、故障診断ユニット800は、Vpeakを獲得するプレ演算ユニット(不図示)を有し得る。プレ演算ユニットは、クラーク変換を用いて、電流センサ150の測定値に基づいて取得された三相電流Ia、IbおよびIcを、αβ固定座標系における、α軸上の電流Iαおよびβ軸上の電流Iβに変換する。プレ演算ユニットは、パーク変換(dq座標変換)を用いて、電流Iα、Iβを、dq座標系におけるd軸電流Idおよびq軸電流Iqに変換する。プレ演算ユニットは、電流IdおよびIqに基づいてd軸電圧Vdおよびq軸電圧Vqを取得し、取得したVd、Vqから下記式(1)に基づいて電圧ピーク値Vpeakを算出する。または、プレ演算ユニットは、ベクトル制御を行うモータ制御ユニット900から、Vpeakの算出に必要なVd、Vqを受け取ることも可能である。例えば、プレ演算ユニットは、電流センサ150によって各相電流を測定する周期に同期してVpeakを獲得する。
  Vpeak=(2/3)1/2(Vd2+Vq21/2   式(1)
For example, the failure diagnosis unit 800 may include a pre-computation unit (not shown) that acquires Vpeak. The pre-computation unit uses the Clark transformation to convert the three-phase currents Ia, Ib and Ic obtained based on the measured values of the current sensor 150 into the currents Iα and β on the α axis in the αβ fixed coordinate system. Convert to current Iβ. The pre-arithmetic unit converts the currents Iα and Iβ into a d-axis current Id and a q-axis current Iq in the dq coordinate system by using park conversion (dq coordinate conversion). The pre-calculation unit acquires the d-axis voltage Vd and the q-axis voltage Vq based on the currents Id and Iq, and calculates the voltage peak value Vpeak from the acquired Vd and Vq based on the following formula (1). Alternatively, the pre-computation unit can also receive Vd and Vq necessary for calculating Vpeak from the motor control unit 900 that performs vector control. For example, the pre-computation unit acquires Vpeak in synchronization with the period in which each phase current is measured by the current sensor 150.
Vpeak = (2/3) 1/2 (Vd 2 + Vq 2 ) 1/2 formula (1)
 故障診断ユニット800は、ルックアップテーブル840(図7)を参照して、電流Id、Iqおよび回転速度ωに基づいて飽和電圧Vsatを決定する。 Failure diagnosis unit 800 refers to look-up table 840 (FIG. 7) and determines saturation voltage Vsat based on currents Id, Iq and rotation speed ω.
 図7は、回転速度ωおよび電流振幅値から飽和電圧Vsatを決定するルックアップテーブル(LUT)840を模式的に示している。LUT840は、d軸電流およびq軸電流に基づいて決定される電流振幅値(Id2+Iq21/2およびモータ200の回転速度ωの入力と、飽和電圧Vsatとの関係を関連付ける。 FIG. 7 schematically shows a look-up table (LUT) 840 that determines the saturation voltage Vsat from the rotational speed ω and the current amplitude value. The LUT 840 associates the relationship between the saturation voltage Vsat and the input of the current amplitude value (Id 2 + Iq 2 ) 1/2 determined based on the d-axis current and the q-axis current and the rotational speed ω of the motor 200.
 回転速度ωは、例えば角度センサ320からの回転信号に基づいて算出される。または、回転速度ωは、例えば公知のセンサレス制御手法を用いて推定することができる。各スイッチ素子の実電圧は、例えば駆動回路(プリドライバ)350によって測定される。 The rotation speed ω is calculated based on, for example, a rotation signal from the angle sensor 320. Alternatively, the rotational speed ω can be estimated using, for example, a known sensorless control method. The actual voltage of each switch element is measured by a drive circuit (predriver) 350, for example.
 表1は、故障診断に用いることが可能なLUT840の構成を例示している。モータ制御では、一般的にIdはゼロとして扱われる。そのため、電流振幅値はIqに等しくなる。表1には、Iq(A)を記載している。飽和電圧Vsatは、獲得された電流振幅値Iqおよび回転速度ωから決定される。あるいは、飽和電圧Vsatとして、例えば、駆動前に予め設定した値を用いてもよい。例えば、飽和電圧Vsatとして、システムに依存する一定の値(例えば0.1V程度)を用いてもよい。 Table 1 illustrates the configuration of the LUT 840 that can be used for failure diagnosis. In motor control, Id is generally treated as zero. Therefore, the current amplitude value is equal to Iq. Table 1 lists Iq (A). The saturation voltage Vsat is determined from the acquired current amplitude value Iq and the rotational speed ω. Alternatively, for example, a value set in advance before driving may be used as the saturation voltage Vsat. For example, a constant value (for example, about 0.1 V) depending on the system may be used as the saturation voltage Vsat.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 故障診断ユニット800は、上述した実電圧、電圧ピーク値Vpeak、飽和電圧Vsatに基づいてインバータの故障の有無を診断する。 Failure diagnosis unit 800 diagnoses the presence or absence of an inverter failure based on the above-described actual voltage, voltage peak value Vpeak, and saturation voltage Vsat.
 故障診断ユニット800は、第1インバータ120の故障を示す故障信号1_FD、第2インバータ130の故障を示す故障信号2_FDを診断結果に基づいて生成し、モータ制御ユニット900に出力する。 The failure diagnosis unit 800 generates a failure signal 1_FD indicating a failure of the first inverter 120 and a failure signal 2_FD indicating a failure of the second inverter 130 based on the diagnosis result, and outputs them to the motor control unit 900.
 モータ制御ユニット900は、例えばベクトル制御を用いて、第1および第2インバータ120、130のスイッチ素子のスイッチング動作の全般を制御するPWM信号を生成する。モータ制御ユニット900は、PWM信号を駆動回路350に出力する。 The motor control unit 900 generates a PWM signal that controls the overall switching operation of the switch elements of the first and second inverters 120 and 130 using, for example, vector control. The motor control unit 900 outputs a PWM signal to the drive circuit 350.
 故障信号がアサートされ、モータ200のトルクアシスト継続が困難な場合は、モータ制御ユニット900は、例えばモータ200のトルクアシストを停止させる。この場合、電力変換装置1000は、人間に注意を喚起するための報知信号を報知装置(図示せず)に出力してもよい。報知装置は、例えば、光、音、表示の少なくとも1つを用いて、人間に注意を喚起する。これにより、人間はモータ200のトルクアシストが停止したことを認識することができる。モータ200が電動パワーステアリング装置に搭載されている場合においては、自動車の運転者は、ステアリング操作を補助するモータのトルクアシストが停止したことを認識することができる。運転者は報知装置による注意喚起に従い、例えば路肩に自動車を停止できる。 When the failure signal is asserted and it is difficult to continue the torque assist of the motor 200, the motor control unit 900 stops the torque assist of the motor 200, for example. In this case, power conversion device 1000 may output a notification signal for alerting a human to a notification device (not shown). For example, the notification device alerts a person using at least one of light, sound, and display. Thereby, a human can recognize that the torque assist of the motor 200 has stopped. When the motor 200 is mounted on the electric power steering apparatus, the driver of the automobile can recognize that the torque assist of the motor that assists the steering operation has stopped. The driver can stop the car on the road shoulder, for example, according to the alert by the notification device.
 本明細書において、説明の便宜上、各機能ブロックをユニットと表記する場合がある。当然に、各機能ブロックをハードウェアまたはソフトウェアに限定解釈する意図で、これらの表記を用いてはいない。 In this specification, for convenience of explanation, each functional block may be expressed as a unit. Naturally, these notations are not used with the intention of restricting each functional block to hardware or software.
 各機能ブロックはソフトウェアとしてコントローラ340に実装される場合、そのソフトウェアの実行主体は、例えばコントローラ340のコアであり得る。上述のようにコントローラ340はFPGAによって実現され得る。その場合、全てまたは一部の機能ブロックはハードウェアで実現され得る。 When each functional block is implemented as software in the controller 340, the execution subject of the software may be the core of the controller 340, for example. As described above, the controller 340 can be realized by an FPGA. In that case, all or some of the functional blocks may be realized by hardware.
 複数のFPGAを用いて処理を分散させることにより、特定のコンピュータの演算負荷を分散させることができる。その場合、図4から図6に示される機能ブロックの全てまたは一部は、複数のFPGAに分散して実装され得る。複数のFPGAは、例えば車載のコントロールエリアネットワーク(CAN)によって互いに通信可能に接続され、データの送受信を行うことが可能である。 By distributing processing using a plurality of FPGAs, it is possible to distribute the computation load of a specific computer. In that case, all or some of the functional blocks shown in FIG. 4 to FIG. 6 may be distributed and implemented in a plurality of FPGAs. The plurality of FPGAs are communicably connected to each other by, for example, an in-vehicle control area network (CAN), and can transmit and receive data.
 故障診断ユニット800は、図5および図6に示す第2インバータ130の故障の有無を診断する故障診断ユニット801、第1インバータ120の故障の有無を診断する故障診断ユニット802を有する。故障診断ユニット801および802は、実質的に同じ機能ブロックを有するが、入力される実電圧が互いに異なる。 The failure diagnosis unit 800 includes a failure diagnosis unit 801 for diagnosing the presence or absence of a failure in the second inverter 130 and a failure diagnosis unit 802 for diagnosing the presence or absence of a failure in the first inverter 120 shown in FIGS. Fault diagnosis units 801 and 802 have substantially the same functional blocks, but input actual voltages are different from each other.
 故障診断ユニット801および802のそれぞれは、絶対値演算器811、814、817と、乗算器812、813、815、816、818、819と、加算器831、832、833と、比較器851、852、853と、論理回路OR871とを有する。 Each of the fault diagnosis units 801 and 802 includes absolute value calculators 811, 814, and 817, multipliers 812, 813, 815, 816, 818, and 819, adders 831, 832, and 833, and comparators 851 and 852. , 853 and a logic circuit OR871.
 まず、第2インバータ130の故障の有無の診断処理を説明する。 First, diagnosis processing for the presence or absence of a failure of the second inverter 130 will be described.
 故障診断ユニット801の絶対値演算器811は、実電圧VA1の絶対値を演算する。乗算器812は、電圧ピーク値Vpeakに定数「-1/2」を乗算する。乗算器813は、飽和電圧Vsatに定数「-1」を乗算する。加算器831は、絶対値演算器811、乗算器812および813の出力値を加算して、下記式(2)で表される故障診断電圧VA1_FDを算出する。
  VA1_FD=|VA1|-〔(Vpeak/2)+Vsat〕   式(2)
The absolute value calculator 811 of the failure diagnosis unit 801 calculates the absolute value of the actual voltage VA1. The multiplier 812 multiplies the voltage peak value Vpeak by a constant “−1/2”. The multiplier 813 multiplies the saturation voltage Vsat by a constant “−1”. The adder 831 adds the output values of the absolute value calculator 811 and the multipliers 812 and 813, and calculates the failure diagnosis voltage VA1_FD represented by the following formula (2).
VA1_FD = | VA1 | − [(Vpeak / 2) + Vsat] Equation (2)
 比較器851は“VA1_FD”と“ゼロ”とを比較する。比較器851はVA1_FDがゼロ以下である(VA1_FD≦0)場合、実電圧VA1は正常であることを示す“0”を論理回路OR871に出力する。比較器851はVA1_FDがゼロより大きい(VA1_FD>0)場合、実電圧VA1は異常であることを示す“1”を論理回路OR871に出力する。 The comparator 851 compares “VA1_FD” with “zero”. When VA1_FD is equal to or smaller than zero (VA1_FD ≦ 0), the comparator 851 outputs “0” indicating that the actual voltage VA1 is normal to the logic circuit OR871. When VA1_FD is larger than zero (VA1_FD> 0), the comparator 851 outputs “1” indicating that the actual voltage VA1 is abnormal to the logic circuit OR871.
 同様に、故障診断ユニット801の絶対値演算器814は、実電圧VB1の絶対値を演算する。乗算器815は、電圧ピーク値Vpeakに定数「-1/2」を乗算する。乗算器816は、飽和電圧Vsatに定数「-1」を乗算する。加算器832は、絶対値演算器814、乗算器815および816の出力値を加算して、下記式(3)で表される故障診断電圧VB1_FDを算出する。
  VB1_FD=|VB1|-〔(Vpeak/2)+Vsat〕   式(3)
Similarly, the absolute value calculator 814 of the failure diagnosis unit 801 calculates the absolute value of the actual voltage VB1. The multiplier 815 multiplies the voltage peak value Vpeak by a constant “−1/2”. The multiplier 816 multiplies the saturation voltage Vsat by a constant “−1”. The adder 832 adds the output values of the absolute value calculator 814 and the multipliers 815 and 816 to calculate a failure diagnosis voltage VB1_FD represented by the following equation (3).
VB1_FD = | VB1 | − [(Vpeak / 2) + Vsat] Equation (3)
 比較器852は、“VB1_FD”と“ゼロ”とを比較する。比較器852は、VB1_FDがゼロ以下である場合、実電圧VB1は正常であることを示す“0”を論理回路OR871に出力する。比較器852は、VB1_FDがゼロより大きい場合、実電圧VB1は異常であることを示す“1”を論理回路OR871に出力する。 The comparator 852 compares “VB1_FD” with “zero”. When VB1_FD is equal to or less than zero, the comparator 852 outputs “0” indicating that the actual voltage VB1 is normal to the logic circuit OR871. When VB1_FD is greater than zero, the comparator 852 outputs “1” indicating that the actual voltage VB1 is abnormal to the logic circuit OR871.
 故障診断ユニット801の絶対値演算器817は、実電圧VC1の絶対値を演算する。乗算器818は、電圧ピーク値Vpeakに定数「-1/2」を乗算する。乗算器819は、飽和電圧Vsatに定数「-1」を乗算する。加算器833は、絶対値演算器817、乗算器818および819の出力値を加算して、下記式(4)で表される故障診断電圧VC1_FDを算出する。
  VC1_FD=|VC1|-〔(Vpeak/2)+Vsat〕   式(4)
The absolute value calculator 817 of the failure diagnosis unit 801 calculates the absolute value of the actual voltage VC1. The multiplier 818 multiplies the voltage peak value Vpeak by a constant “−1/2”. The multiplier 819 multiplies the saturation voltage Vsat by a constant “−1”. The adder 833 adds the output values of the absolute value calculator 817 and the multipliers 818 and 819 to calculate a failure diagnosis voltage VC1_FD represented by the following formula (4).
VC1_FD = | VC1 | − [(Vpeak / 2) + Vsat] Equation (4)
 比較器853は、“VC1_FD”と“ゼロ”とを比較する。比較器853は、VC1_FDがゼロ以下である場合、実電圧VC1は正常であることを示す“0”を論理回路OR871に出力する。比較器853は、VC1_FDがゼロより大きい場合、実電圧VC1は異常であることを示す“1”を論理回路OR871に出力する。 The comparator 853 compares “VC1_FD” with “zero”. When VC1_FD is equal to or smaller than zero, the comparator 853 outputs “0” indicating that the actual voltage VC1 is normal to the logic circuit OR871. When VC1_FD is larger than zero, the comparator 853 outputs “1” indicating that the actual voltage VC1 is abnormal to the logic circuit OR871.
 論理回路OR871は比較器851、852、853の出力信号の論理和をとる。論理回路OR871は、第2インバータ130の故障の有無を示す故障信号2_FDとして論理和をモータ制御ユニット900に出力する。 The logic circuit OR871 takes the logical sum of the output signals of the comparators 851, 852, 853. The logic circuit OR871 outputs a logical sum to the motor control unit 900 as a failure signal 2_FD indicating whether or not the second inverter 130 has failed.
 比較器851、852、853の出力信号が全て“0”である場合、論理回路OR871は、第2インバータ130は正常であることを示す“0”を故障信号2_FDとして出力する。比較器851、852、853の出力信号の少なくとも1つが“1”である場合、論理回路OR871は、第2インバータ130は故障していることを示す“1”を故障信号2_FDとして出力する。 When the output signals of the comparators 851, 852, and 853 are all “0”, the logic circuit OR871 outputs “0” indicating that the second inverter 130 is normal as the failure signal 2_FD. When at least one of the output signals of the comparators 851, 852, and 853 is “1”, the logic circuit OR871 outputs “1” indicating that the second inverter 130 has failed as the failure signal 2_FD.
 例えば、ローサイドスイッチ素子SW_A2Lがオープン故障すると、そのスイッチ素子に電流は流れない。その結果、モータ200の逆起電力の影響を受けて、実電圧VA2の下側ピーク値(負の値)は上がり、その絶対値は小さくなる。ローサイドスイッチ素子SW_A2Lにオープン故障が生じていないとき、VA1≒〔(Vpeak/2)+Vsat〕となり、実電圧VA1の大きさは、|(Vpeak/2)+Vsat|に等しくなる。これに対し、ローサイドスイッチ素子SW_A2Lにオープン故障が生じると、この均衡が崩れる。例えば、スイッチ素子SW_A2Lに電流が流れないためにスイッチ素子SW_A1Lに余分な電圧が掛かる。実電圧VA1は大きくなり、VA1_FD>0となる。 For example, when the low-side switch element SW_A2L has an open failure, no current flows through the switch element. As a result, under the influence of the counter electromotive force of the motor 200, the lower peak value (negative value) of the actual voltage VA2 increases and the absolute value thereof decreases. When an open failure has not occurred in the low-side switch element SW_A2L, VA1≈ [(Vpeak / 2) + Vsat], and the magnitude of the actual voltage VA1 is equal to | (Vpeak / 2) + Vsat |. On the other hand, when an open failure occurs in the low-side switch element SW_A2L, this balance is lost. For example, since no current flows through the switch element SW_A2L, an extra voltage is applied to the switch element SW_A1L. The actual voltage VA1 increases and VA1_FD> 0.
 図6に示す故障診断ユニット802は、故障診断ユニット801と同様の処理を実行し、第1インバータ120の故障の有無を診断する。故障診断ユニット802には、実電圧VA1、VB1、VC1の代わりに、実電圧VA2、VB2、VC2が入力される。故障診断ユニット802のそれ以外の処理は故障診断ユニット801と同様であるため、ここでは詳細な説明は省略する。 The failure diagnosis unit 802 shown in FIG. 6 performs the same processing as the failure diagnosis unit 801, and diagnoses the presence or absence of a failure of the first inverter 120. Instead of the actual voltages VA1, VB1, and VC1, actual voltages VA2, VB2, and VC2 are input to the failure diagnosis unit 802. Since the other processing of the failure diagnosis unit 802 is the same as that of the failure diagnosis unit 801, detailed description is omitted here.
 また、上記の演算以外の方法により故障診断電圧を求めてもよい。例えば故障診断電圧VA1_FDは、以下の式(5)の演算から求めてもよい。
  VA1_FD=VA12-〔(Vpeak/2)+Vsat〕2   式(5)
Further, the failure diagnosis voltage may be obtained by a method other than the above calculation. For example, the failure diagnosis voltage VA1_FD may be obtained from the calculation of the following equation (5).
VA1_FD = VA1 2 − [(Vpeak / 2) + Vsat] 2 formula (5)
 また、例えば、故障診断電圧VA1_FDは、以下の式(6)の演算により求めてもよい。
  VA1_FD=〔VA1+(Vpeak/2)+Vsat〕〔VA1-(Vpeak/2)-Vsat〕                                 式(6)
Further, for example, the failure diagnosis voltage VA1_FD may be obtained by the calculation of the following equation (6).
VA1_FD = [VA1 + (Vpeak / 2) + Vsat] [VA1- (Vpeak / 2) −Vsat] Equation (6)
 これらの演算を用いても、上記と同様にインバータの故障の有無を診断することができる。 Even if these calculations are used, it is possible to diagnose the presence or absence of an inverter failure in the same manner as described above.
 以下に、本開示による故障診断に用いられるアルゴリズムの妥当性を、dSPACE社の“ラピッドコントロールプロトタイピング(RCP)システム”およびMathWorks社のMatlab/Simulinkを用いて検証した結果を示す。この検証には、ベクトル制御により制御を受ける、電動パワーステアリング(EPS)装置に用いる表面磁石型(SPM)モータのモデルが用いられた。検証においてq軸の電流指令値Iq_refを3Aに設定し、d軸の電流指令値Id_refおよび零相の電流指令値Iz_refを0Aに設定した。モータの回転速度ωは1200rpmに設定した。シミュレーションでは、第1インバータ120のローサイドスイッチ素子SW_A1Lにオープン故障を時刻1.641sで発生させている。 Hereinafter, the validity of the algorithm used for the failure diagnosis according to the present disclosure will be shown using the “Rapid Control Prototyping (RCP) System” of dSPACE and the Matlab / Simlink of MathWorks. For this verification, a model of a surface magnet type (SPM) motor used in an electric power steering (EPS) apparatus, which is controlled by vector control, was used. In the verification, the q-axis current command value Iq_ref was set to 3A, and the d-axis current command value Id_ref and the zero-phase current command value Iz_ref were set to 0A. The rotation speed ω of the motor was set to 1200 rpm. In the simulation, an open failure occurs in the low-side switch element SW_A1L of the first inverter 120 at time 1.641s.
 図8から図10に、各信号の波形のシミュレーション結果を示している。各グラフの縦軸は電圧(V)を示し、横軸は時間(s)を示している。 8 to 10 show the simulation results of the waveform of each signal. The vertical axis of each graph represents voltage (V), and the horizontal axis represents time (s).
 図8は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VA1(上側)および実電圧VA2(下側)の波形を示している。図9は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VB1(上側)および実電圧VB2(下側)の波形を示している。図10は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VC1(上側)および実電圧VC2(下側)の波形を示している。 FIG. 8 shows waveforms of the actual voltage VA1 (upper side) and the actual voltage VA2 (lower side) when the low-side switch element SW_A1L has an open failure. FIG. 9 shows waveforms of the actual voltage VB1 (upper side) and the actual voltage VB2 (lower side) when the low-side switch element SW_A1L has an open failure. FIG. 10 shows waveforms of the actual voltage VC1 (upper side) and the actual voltage VC2 (lower side) when the low-side switch element SW_A1L has an open failure.
 時刻1.641sでローサイドスイッチ素子SW_A1Lがオープン故障した後、図8に示すように実電圧VA1の下側ピーク値は上昇していることが分かる。また、実電圧VA2の上側ピーク値は上昇していることが分かる。すなわち、実電圧VA2の上側ピーク値の絶対値は大きくなる。図9、図10に示すように、実電圧VB1、VB2、VC1、VC2は変化の度合いは小さい。 After the low-side switch element SW_A1L has an open failure at time 1.641s, it can be seen that the lower peak value of the actual voltage VA1 increases as shown in FIG. It can also be seen that the upper peak value of the actual voltage VA2 is increasing. That is, the absolute value of the upper peak value of the actual voltage VA2 increases. As shown in FIGS. 9 and 10, the actual voltages VB1, VB2, VC1, and VC2 have a small degree of change.
 正常時の動作においても、実電圧がVpeak/2よりもわずかに大きくなることは発生し得る。しかし、本実施形態では、Vpeak/2に飽和電圧Vsatを加算した値と、実電圧との比較を行う。このため、図8に示す実電圧VA2のように大きく変化した実電圧が発生した場合にのみ、故障と判定することができる。正常時の動作において実電圧がVpeak/2より大きくなる場合は故障と判定しないことにより、故障判定の精度を高めることができる。 Even in normal operation, it may occur that the actual voltage becomes slightly higher than Vpeak / 2. However, in this embodiment, the value obtained by adding the saturation voltage Vsat to Vpeak / 2 is compared with the actual voltage. For this reason, it can be determined that a failure has occurred only when an actual voltage that has changed significantly, such as the actual voltage VA2 shown in FIG. When the actual voltage is higher than Vpeak / 2 in the normal operation, the failure determination accuracy can be improved by not determining the failure.
 上記のように、本開示の故障診断は、簡易なアルゴリズムにより実現できる。そのため、例えばコントローラへ340の実装において回路規模またはメモリサイズの縮小といった利点が得られる。 As described above, the failure diagnosis of the present disclosure can be realized by a simple algorithm. For this reason, for example, an advantage of reducing the circuit size or the memory size can be obtained in mounting 340 to the controller.
 本開示の故障診断方法は、フルブリッジタイプの電力変換装置にも好適に用いることができる。フルブリッジは、一相のHブリッジ構造、例えば図3Aに示す回路構造を備える。上述した故障診断方法をフルブリッジの故障診断に利用することにより、フルブリッジの故障を検知することができる。 The failure diagnosis method of the present disclosure can be suitably used for a full bridge type power conversion device. The full bridge includes a one-phase H-bridge structure, for example, the circuit structure shown in FIG. 3A. By utilizing the above-described failure diagnosis method for full bridge failure diagnosis, a full bridge failure can be detected.
 本実施形態においては、三相全てについて上述した故障診断を行わなくてもよく、一相または二相についてのみ故障診断を行ってもよい。例えば、A相についてのみ故障診断を行う場合は、図5および図6を用いて説明した処理のうちのA相に関する処理のみを行い、B相およびC相に関する処理は行わなくてもよい。 In the present embodiment, the above-described failure diagnosis need not be performed for all three phases, and the failure diagnosis may be performed only for one phase or two phases. For example, when failure diagnosis is performed only for the A phase, only the process related to the A phase among the processes described with reference to FIGS. 5 and 6 may be performed, and the process related to the B phase and the C phase may not be performed.
 (実施形態2)
 図11は、本実施形態による電動パワーステアリング装置3000の典型的な構成を模式的に示す。
(Embodiment 2)
FIG. 11 schematically shows a typical configuration of the electric power steering apparatus 3000 according to the present embodiment.
 自動車等の車両は一般に、電動パワーステアリング装置を有する。本実施形態による電動パワーステアリング装置3000は、ステアリングシステム520、および補助トルクを生成する補助トルク機構540を有する。電動パワーステアリング装置3000は、運転者がステアリングハンドルを操作することによって発生するステアリングシステムの操舵トルクを補助する補助トルクを生成する。補助トルクにより運転者の操作の負担は軽減される。 A vehicle such as an automobile generally has an electric power steering device. The electric power steering apparatus 3000 according to the present embodiment includes a steering system 520 and an auxiliary torque mechanism 540 that generates auxiliary torque. The electric power steering device 3000 generates auxiliary torque that assists the steering torque of the steering system that is generated when the driver operates the steering wheel. The burden on the driver's operation is reduced by the auxiliary torque.
 ステアリングシステム520は、例えば、ステアリングハンドル521、ステアリングシャフト522、自在軸継手523A、523B、回転軸524、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪529A、529Bから構成され得る。 The steering system 520 includes, for example, a steering handle 521, a steering shaft 522, universal shaft joints 523A and 523B, a rotating shaft 524, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, and a knuckle. 528A and 528B, and left and right steering wheels 529A and 529B.
 補助トルク機構540は、例えば、操舵トルクセンサ541、自動車用電子制御ユニット(ECU)542、モータ543および減速機構544などから構成される。操舵トルクセンサ541は、ステアリングシステム520における操舵トルクを検出する。ECU542は、操舵トルクセンサ541の検出信号に基づいて駆動信号を生成する。モータ543は、駆動信号に基づいて操舵トルクに応じた補助トルクを生成する。モータ543は、減速機構544を介してステアリングシステム520に、生成した補助トルクを伝達する。 The auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an automotive electronic control unit (ECU) 542, a motor 543, a speed reduction mechanism 544, and the like. The steering torque sensor 541 detects the steering torque in the steering system 520. The ECU 542 generates a drive signal based on the detection signal of the steering torque sensor 541. The motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal. The motor 543 transmits the generated auxiliary torque to the steering system 520 via the speed reduction mechanism 544.
 ECU542は、例えば、実施形態1によるコントローラ340および駆動回路350などを有する。自動車ではECUを核とした電子制御システムが構築される。電動パワーステアリング装置3000では、例えば、ECU542、モータ543およびインバータ545によって、モータ駆動ユニットが構築される。そのシステムに、実施形態1によるモータモジュール2000を好適に用いることができる。 The ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment. In an automobile, an electronic control system with an ECU as a core is constructed. In the electric power steering apparatus 3000, for example, a motor drive unit is constructed by the ECU 542, the motor 543, and the inverter 545. The motor module 2000 according to the first embodiment can be suitably used for the system.
 本開示の実施形態は、シフトバイワイヤ、ステアリングバイワイヤ、ブレーキバイワイヤなどのエックスバイワイヤおよびトラクションモータなどのモータ制御システムにも好適に用いられる。例えば、本開示の実施形態による故障診断方法を実装したEPSは、日本政府および米国運輸省道路交通安全局(NHTSA)によって定められたレベル0から5(自動化の基準)に対応した自動運転車に搭載され得る。 The embodiment of the present disclosure is also suitably used for motor control systems such as X-by-wire such as shift-by-wire, steering-by-wire, and brake-by-wire, and a traction motor. For example, an EPS that implements a fault diagnosis method according to an embodiment of the present disclosure is an autonomous driving vehicle that corresponds to levels 0 to 5 (standards for automation) defined by the Japanese government and the US Department of Transportation's Road Traffic Safety Administration (NHTSA). Can be mounted.
 本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。 The embodiment of the present disclosure can be widely used in various devices including various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.
 100:インバータユニット、 101:電源、 120:第1インバータ、 130:第2インバータ、 140:インバータ、 150:電流センサ、 200:モータ、 300:制御回路、 310:電源回路、 320:角度センサ、 330:入力回路、 340:マイクロコントローラ、 350:駆動回路、 360:ROM、 1000:電力変換装置、 2000:モータモジュール、 3000:電動パワーステアリング装置 100: Inverter unit, 101: Power supply, 120: First inverter, 130: Second inverter, 140: Inverter, 150: Current sensor, 200: Motor, 300: Control circuit, 310: Power supply circuit, 320: Angle sensor, 330 : Input circuit, 340: microcontroller, 350: drive circuit, 360: ROM, 1000: power conversion device, 2000: motor module, 3000: electric power steering device

Claims (12)

  1.  電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換する電力変換装置の故障を診断する故障診断方法であって、
     前記電力変換装置は、
     前記少なくとも一相の巻線の一端に接続され、第1ハイサイドスイッチ素子および第1ローサイドスイッチ素子を備える第1インバータと、
     前記少なくとも一相の巻線の他端に接続され、第2ハイサイドスイッチ素子および第2ローサイドスイッチ素子を備える第2インバータと、
     前記第1ハイサイドスイッチ素子、前記第1ローサイドスイッチ素子、前記第2ハイサイドスイッチ素子および前記第2ローサイドスイッチ素子を含むHブリッジと、
     を備え、
     前記故障診断方法は、
     前記第1ローサイドスイッチ素子の両端電圧を示す第1実電圧と、前記第1ローサイドスイッチ素子の飽和電圧と、dq座標系におけるd軸電圧およびq軸電圧に基づいて決定される電圧ピーク値とを獲得する獲得ステップと、
     前記第1実電圧、前記飽和電圧および前記電圧ピーク値に基づいて、前記第2インバータの故障の有無を診断する診断ステップと、
     を包含する故障診断方法。
    A failure diagnosis method for diagnosing a failure of a power conversion device that converts power from a power source into power supplied to a motor having at least one phase winding,
    The power converter is
    A first inverter connected to one end of the at least one phase winding and comprising a first high-side switch element and a first low-side switch element;
    A second inverter connected to the other end of the at least one-phase winding and comprising a second high-side switch element and a second low-side switch element;
    An H bridge including the first high-side switch element, the first low-side switch element, the second high-side switch element, and the second low-side switch element;
    With
    The failure diagnosis method includes:
    A first actual voltage indicating a voltage across the first low-side switch element; a saturation voltage of the first low-side switch element; and a voltage peak value determined based on a d-axis voltage and a q-axis voltage in a dq coordinate system. An acquisition step to acquire,
    A diagnostic step of diagnosing the presence or absence of a failure of the second inverter based on the first actual voltage, the saturation voltage, and the voltage peak value;
    A fault diagnosis method including:
  2.  前記診断ステップは、下記式で表される前記第1故障診断電圧VA1_FDに基づいて、前記第2インバータの故障の有無を診断するステップを含み、
     VA1_FD=|VA1|-〔(Vpeak/2)+Vsat〕
     ここで、VA1は前記第1実電圧を示し、Vpeakは前記電圧ピーク値を示し、Vsatは前記飽和電圧を示す、請求項1に記載の故障診断方法。
    The diagnosis step includes a step of diagnosing the presence or absence of a failure of the second inverter based on the first failure diagnosis voltage VA1_FD represented by the following equation:
    VA1_FD = | VA1 | − [(Vpeak / 2) + Vsat]
    2. The failure diagnosis method according to claim 1, wherein VA <b> 1 indicates the first actual voltage, Vpeak indicates the voltage peak value, and Vsat indicates the saturation voltage.
  3.  前記診断ステップは、下記式で表される前記第1故障診断電圧VA1_FDに基づいて、前記第2インバータの故障の有無を診断するステップを含み、
     VA1_FD=VA12-〔(Vpeak/2)+Vsat〕2
     ここで、VA1は前記第1実電圧を示し、Vpeakは前記電圧ピーク値を示し、Vsatは前記飽和電圧を示す、請求項1に記載の故障診断方法。
    The diagnosis step includes a step of diagnosing the presence or absence of a failure of the second inverter based on the first failure diagnosis voltage VA1_FD represented by the following equation:
    VA1_FD = VA1 2 -[(Vpeak / 2) + Vsat] 2
    2. The failure diagnosis method according to claim 1, wherein VA <b> 1 indicates the first actual voltage, Vpeak indicates the voltage peak value, and Vsat indicates the saturation voltage.
  4.  前記診断ステップは、下記式で表される前記第1故障診断電圧VA1_FDに基づいて、前記第2インバータの故障の有無を診断するステップを含み、
     VA1_FD=〔VA1+(Vpeak/2)+Vsat〕〔VA1-(Vpeak/2)-Vsat〕
     ここで、VA1は前記第1実電圧を示し、Vpeakは前記電圧ピーク値を示し、Vsatは前記飽和電圧を示す、請求項1に記載の故障診断方法。
    The diagnosis step includes a step of diagnosing the presence or absence of a failure of the second inverter based on the first failure diagnosis voltage VA1_FD represented by the following equation:
    VA1_FD = [VA1 + (Vpeak / 2) + Vsat] [VA1- (Vpeak / 2) −Vsat]
    2. The failure diagnosis method according to claim 1, wherein VA <b> 1 indicates the first actual voltage, Vpeak indicates the voltage peak value, and Vsat indicates the saturation voltage.
  5.  前記第1故障診断電圧VA1_FDがゼロ以下の場合、前記第2インバータは正常と診断し、
     前記第1故障診断電圧VA1_FDがゼロよりも大きい場合、前記第2インバータは故障していると診断する、請求項2から4のいずれかに記載の故障診断方法。
    When the first failure diagnosis voltage VA1_FD is less than or equal to zero, the second inverter is diagnosed as normal;
    5. The failure diagnosis method according to claim 2, wherein when the first failure diagnosis voltage VA <b> 1 </ b> _FD is greater than zero, the second inverter is diagnosed as having failed.
  6.  前記第2インバータは故障していると診断した場合に、前記第2インバータは故障していることを示す故障信号を出力するステップをさらに包含する、請求項1から5のいずれかに記載の故障診断方法。 The failure according to any one of claims 1 to 5, further comprising a step of outputting a failure signal indicating that the second inverter has failed when the second inverter is diagnosed as having failed. Diagnostic method.
  7.  前記飽和電圧は、前記dq座標系におけるd軸電流、q軸電流および前記モータの回転速度に基づいて決定される、請求項1から6のいずれかに記載の故障診断方法。 7. The failure diagnosis method according to claim 1, wherein the saturation voltage is determined based on a d-axis current, a q-axis current in the dq coordinate system, and a rotation speed of the motor.
  8.  前記獲得ステップにおいて、前記d軸電流および前記q軸電流に基づいて決定される電流値および前記モータの回転速度の入力と、前記飽和電圧とを関連付けるルックアップテーブルを用いて、前記飽和電圧を決定する、請求項1から7のいずれかに記載の故障診断方法。 In the acquisition step, the saturation voltage is determined using a lookup table that associates the saturation voltage with the input of the current value determined based on the d-axis current and the q-axis current and the rotational speed of the motor. The failure diagnosis method according to any one of claims 1 to 7.
  9.  前記モータはn相(nは3以上の整数)の巻線を有し、
     前記電力変換装置はn個のHブリッジを有し、
     前記n個のHブリッジのそれぞれにおいて、前記獲得ステップおよび前記診断ステップを実行する、請求項1から8のいずれかに記載の故障診断方法。
    The motor has n-phase windings (n is an integer of 3 or more),
    The power conversion device has n H bridges,
    The failure diagnosis method according to claim 1, wherein the acquisition step and the diagnosis step are executed in each of the n H bridges.
  10.  電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換する電力変換装置であって、
     前記電力変換装置は、
     前記少なくとも一相の巻線の一端に接続され、第1ハイサイドスイッチ素子および第1ローサイドスイッチ素子を備える第1インバータと、
     前記少なくとも一相の巻線の他端に接続され、第2ハイサイドスイッチ素子および第2ローサイドスイッチ素子を備える第2インバータと、
     前記第1ハイサイドスイッチ素子、前記第1ローサイドスイッチ素子、前記第2ハイサイドスイッチ素子および前記第2ローサイドスイッチ素子を含むHブリッジと、
     前記第1および第2インバータの動作を制御する制御回路と、
     を備え、
     前記制御回路は、
     前記第1ローサイドスイッチ素子の両端電圧を示す第1実電圧と、前記第1ローサイドスイッチ素子の飽和電圧と、dq座標系におけるd軸電圧およびq軸電圧に基づいて決定される電圧ピーク値とを獲得し、
     前記第1実電圧、前記飽和電圧および前記電圧ピーク値に基づいて、前記第2インバータの故障の有無を診断する、電力変換装置。
    A power conversion device that converts electric power from a power source into electric power to be supplied to a motor having at least one phase winding,
    The power converter is
    A first inverter connected to one end of the at least one phase winding and comprising a first high-side switch element and a first low-side switch element;
    A second inverter connected to the other end of the at least one-phase winding and comprising a second high-side switch element and a second low-side switch element;
    An H bridge including the first high-side switch element, the first low-side switch element, the second high-side switch element, and the second low-side switch element;
    A control circuit for controlling the operation of the first and second inverters;
    With
    The control circuit includes:
    A first actual voltage indicating a voltage across the first low-side switch element; a saturation voltage of the first low-side switch element; and a voltage peak value determined based on a d-axis voltage and a q-axis voltage in a dq coordinate system. Earn,
    A power converter that diagnoses the presence or absence of a failure of the second inverter based on the first actual voltage, the saturation voltage, and the voltage peak value.
  11.  モータと、
     請求項10に記載の電力変換装置と、
    を備えるモータモジュール。
    A motor,
    The power conversion device according to claim 10;
    A motor module comprising:
  12.  請求項11に記載のモータモジュールを備える電動パワーステアリング装置。 An electric power steering apparatus comprising the motor module according to claim 11.
PCT/JP2019/013060 2018-05-15 2019-03-27 Failure diagnostic method, power converting device, motor module, and electric power steering device WO2019220780A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020519493A JPWO2019220780A1 (en) 2018-05-15 2019-03-27 Failure diagnosis method, power conversion device, motor module and electric power steering device
CN201980031754.4A CN112119580A (en) 2018-05-15 2019-03-27 Fault diagnosis method, power conversion device, motor module, and electric power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018093824 2018-05-15
JP2018-093824 2018-05-15

Publications (1)

Publication Number Publication Date
WO2019220780A1 true WO2019220780A1 (en) 2019-11-21

Family

ID=68540092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013060 WO2019220780A1 (en) 2018-05-15 2019-03-27 Failure diagnostic method, power converting device, motor module, and electric power steering device

Country Status (3)

Country Link
JP (1) JPWO2019220780A1 (en)
CN (1) CN112119580A (en)
WO (1) WO2019220780A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948509A (en) * 2020-08-19 2020-11-17 上海海事大学 Composite IGBT structure, simulation system based on composite IGBT structure and control method of simulation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060866A (en) * 2005-08-26 2007-03-08 Mitsubishi Electric Corp On-vehicle motor controller
JP2013215040A (en) * 2012-04-02 2013-10-17 Denso Corp Motor drive device
WO2017150638A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060866A (en) * 2005-08-26 2007-03-08 Mitsubishi Electric Corp On-vehicle motor controller
JP2013215040A (en) * 2012-04-02 2013-10-17 Denso Corp Motor drive device
WO2017150638A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948509A (en) * 2020-08-19 2020-11-17 上海海事大学 Composite IGBT structure, simulation system based on composite IGBT structure and control method of simulation system

Also Published As

Publication number Publication date
JPWO2019220780A1 (en) 2021-05-27
CN112119580A (en) 2020-12-22

Similar Documents

Publication Publication Date Title
US8436568B2 (en) Motor drive apparatus and electric power steering system using the same
US8659260B2 (en) Motor drive apparatus and electric power steering apparatus using the same
US20130207586A1 (en) Control apparatus for multi-phase rotary machine and electric power steering system using the same
JP7088200B2 (en) Motor control method, power converter, motor module and electric power steering device
WO2018021176A1 (en) Sensor failure detection method, motor drive system, and electric power steering system
WO2019064749A1 (en) Fault diagnosis method, power conversion device, motor module and electric power steering device
JP5252190B2 (en) Motor control device
US11095233B2 (en) Electric power conversion apparatus, motor drive unit and electric motion power steering apparatus
JP6939793B2 (en) Motor control method, motor control system and electric power steering system
CN109804551B (en) Motor control method, motor control system, and electric power steering system
US11476777B2 (en) Power conversion device, driving device, and power steering device
WO2020080170A1 (en) Failure diagnosis method, power conversion device, motor module, and electric power steering device
WO2019240004A1 (en) Failure diagnosis method, power conversion device, motor module, and electric power steering device
WO2019220780A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
WO2019220781A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
WO2019064748A1 (en) Fault diagnosis method, power conversion device, motor module and electric power steering device
WO2019220782A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
JP2004312930A (en) Motor controller
WO2019220783A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
WO2018056046A1 (en) Power conversion device, motor drive unit, and electric power steering device
WO2019058671A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2018173587A1 (en) Motor control method, motor control system, and electric power steering system
CN117501618A (en) Motor control device, electric power steering device, and motor control method
WO2019058677A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2019058672A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519493

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803751

Country of ref document: EP

Kind code of ref document: A1