WO2019240004A1 - Failure diagnosis method, power conversion device, motor module, and electric power steering device - Google Patents
Failure diagnosis method, power conversion device, motor module, and electric power steering device Download PDFInfo
- Publication number
- WO2019240004A1 WO2019240004A1 PCT/JP2019/022507 JP2019022507W WO2019240004A1 WO 2019240004 A1 WO2019240004 A1 WO 2019240004A1 JP 2019022507 W JP2019022507 W JP 2019022507W WO 2019240004 A1 WO2019240004 A1 WO 2019240004A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- failure
- phase
- signal
- current
- bridge
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
Definitions
- the present disclosure relates to a failure diagnosis method, a power conversion device, a motor module, and an electric power steering device.
- Patent Document 1 discloses a motor drive device having a first system and a second system.
- the first system is connected to the first winding set of the motor and includes a first inverter unit, a power supply relay, a reverse connection protection relay, and the like.
- the second system is connected to the second winding set of the motor and includes a second inverter unit, a power supply relay, a reverse connection protection relay, and the like.
- the power relay is connected to the failed system or from the power source. The power supply to the system connected to the winding set is cut off. It is possible to continue motor driving using the other system that has not failed.
- Patent Documents 2 and 3 also disclose a motor drive device having a first system and a second system. Even if one system or one winding set fails, motor drive can be continued by a system that does not fail.
- the embodiment of the present disclosure provides a failure diagnosis method capable of appropriately diagnosing an open failure of a switch element in an H bridge.
- An exemplary fault diagnosis method of the present disclosure uses an H-bridge for use in a power converter that includes at least one H-bridge that converts power from a power source into power supplied to a motor having at least one phase winding.
- a failure diagnosis method for diagnosing a failure comprising: a first current sine wave of a phase current measured by a current sensor; a second current sine wave obtained by shifting the phase of the first current sine wave by 90 °; and the motor Generating a monitoring signal for monitoring a failure of the H-bridge based on the rotation speed, and generating a pre-failure signal based on a comparison result between the monitoring signal and a threshold of the failure level; Whether or not the H-bridge has failed by calculating a logical product of the pre-failure signal and an activation signal that enables or disables the pre-failure signal Including the steps of: generating a fault signal indicating a.
- An exemplary power converter of the present disclosure is a power converter that converts power from a power source into power supplied to a motor having at least one phase winding, the power converter including at least one H-bridge and the at least one A control circuit for controlling the switching operation of the switching elements of the two H-bridges, wherein the control circuit sets the phase of the first current sine wave of the phase current measured by the current sensor to 90 °. Based on the second current sine wave obtained by shifting and the rotational speed of the motor, a monitoring signal for monitoring the H-bridge failure is generated, and the comparison result between the monitoring signal and the failure level threshold value is obtained.
- pre-failure signal By generating a pre-failure signal based on and calculating a logical product of the pre-failure signal and an activation signal that enables or disables the pre-failure signal H-bridge to generate a fault signal indicating whether or not a failure.
- a failure diagnosis method a power conversion device, a motor module including the power conversion device, and the motor module capable of appropriately diagnosing an open failure of a switch element in an H-bridge An electric power steering apparatus is provided.
- FIG. 1 is a block diagram schematically showing a typical block configuration of a motor module 2000 according to an exemplary embodiment 1.
- FIG. 2 is a circuit diagram schematically showing a circuit configuration of the inverter unit 100 according to the exemplary embodiment 1.
- FIG. 3 is a functional block diagram illustrating functional blocks of the controller 340 for performing overall motor control.
- FIG. 4A is a functional block diagram illustrating functional blocks of the monitoring signal unit 810A.
- FIG. 4B is a functional block diagram illustrating functional blocks of the monitoring signal unit 810B.
- FIG. 4C is a functional block diagram illustrating functional blocks of the monitoring signal unit 810C.
- FIG. 5 is a functional block diagram illustrating functional blocks of the cut-off frequency unit 820, the threshold unit 830, and the activation signal unit 840.
- FIG. 6 is a functional block diagram illustrating the pre-fault signal unit 850 and the fault signal unit 860.
- FIG. 7 is a functional block diagram illustrating another functional block of the monitoring signal unit 810A.
- FIG. 8 is a schematic diagram showing a change in the level of the A-phase monitoring signal ⁇ 2Ia_Peak2 when a failure occurs in the H-bridge.
- FIG. 9 exemplifies a current waveform (sine wave) obtained by plotting the current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion apparatus 1000 is controlled according to the three-phase energization control It is a graph to do.
- FIG. 10A shows a current waveform obtained by plotting the current values flowing in the B-phase and C-phase windings of the motor 200 when the power conversion apparatus 1000 is controlled according to the two-phase energization control when the A-phase H bridge fails.
- FIG. 10B shows a current waveform obtained by plotting the current values flowing in the A-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the B-phase H-bridge fails.
- FIG. 10C shows a current waveform obtained by plotting the values of current flowing through the A-phase and B-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the C-phase H-bridge fails.
- FIG. 11A is a graph showing a simulation result of the detection time with respect to the reference current Iq_ref when the motor is rotated at 250 rpm.
- FIG. 11B is a graph showing a simulation result of the detection time with respect to the reference current Iq_ref when the motor is rotated at 500 rpm.
- FIG. 11C is a graph showing a simulation result of the detection time with respect to the reference current Iq_ref when the motor is rotated at 750 rpm.
- FIG. 11D is a graph showing a simulation result of the detection time with respect to the reference current Iq_ref when the motor is rotated at 1000 rpm.
- FIG. 11E is a graph showing a simulation result of the detection time with respect to the reference current Iq_ref when the motor is rotated at 1500 rpm.
- FIG. 11F is a graph showing a simulation result of the detection time for the reference current Iq_ref when the motor is rotated at 1700 rpm.
- FIG. 12 is a schematic diagram illustrating a typical configuration of the electric power steering apparatus 3000 according to Exemplary Embodiment 2. As illustrated in FIG.
- an embodiment of the present disclosure is described by taking, as an example, a power conversion device that converts power from a power source into power supplied to a three-phase motor having three-phase (A-phase, B-phase, and C-phase) windings. Will be explained. However, power from the power source is supplied to a motor having one-phase or two-phase windings, or an n-phase motor having n-phase windings such as four-phase or five-phase (n is an integer of 4 or more).
- a power conversion device that converts power and an H-bridge fault diagnosis method that is used in the power conversion device are also included in the scope of the present disclosure.
- FIG. 1 schematically shows a typical block configuration of a motor module 2000 according to the present embodiment.
- the motor module 2000 typically includes a power converter 1000 having the inverter unit 100 and a control circuit 300 and a motor 200.
- the motor module 2000 is modularized and can be manufactured and sold as, for example, an electromechanically integrated motor having a motor, a sensor, a driver, and a controller.
- the power conversion apparatus 1000 can convert power from the power source 101 (see FIG. 2) into power supplied to the motor 200.
- the power conversion apparatus 1000 is connected to the motor 200.
- the power conversion apparatus 1000 can convert DC power into three-phase AC power that is pseudo-sine waves of A phase, B phase, and C phase.
- connection between components (components) mainly means electrical connection.
- the motor 200 is, for example, a three-phase AC motor such as a permanent magnet synchronous motor.
- the motor 200 includes an A-phase winding M1, a B-phase winding M2, and a C-phase winding M3, and is connected to the first inverter 120 and the second inverter 130 of the inverter unit 100. More specifically, the first inverter 120 is connected to one end of each phase winding of the motor 200, and the second inverter 130 is connected to the other end of each phase winding.
- the control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360. Each component of the control circuit 300 is mounted on, for example, one circuit board (typically a printed board).
- the control circuit 300 is connected to the inverter unit 100 and controls the inverter unit 100 based on input signals from the current sensor 150 and the angle sensor 320. Examples of the control method include vector control, pulse width modulation (PWM), and direct torque control (DTC). However, the angle sensor 320 may be unnecessary depending on the motor control method (for example, sensorless control).
- the control circuit 300 can realize the closed loop control by controlling the target position, rotation speed, current, and the like of the motor 200.
- the control circuit 300 may include a torque sensor instead of the angle sensor 320. In this case, the control circuit 300 can control the target motor torque.
- the present disclosure is not limited to the block configuration of the motor module illustrated in FIG. 1, and has, for example, a block configuration including a first control circuit that controls the first inverter 120 and a second control circuit that controls the second inverter 130. Can do.
- the power supply circuit 310 generates a power supply voltage (for example, 3V, 5V) necessary for each block in the circuit based on the voltage of the power supply 101, for example, 12V.
- a power supply voltage for example, 3V, 5V
- the angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects the rotation angle of the rotor (hereinafter referred to as “rotation signal”) and outputs the rotation signal to the controller 340.
- rotation signal the rotation angle of the rotor
- the input circuit 330 receives the phase current detected by the current sensor 150 (hereinafter sometimes referred to as “actual current value”), and changes the level of the actual current value to the input level of the controller 340 as necessary.
- the actual current value is output to the controller 340.
- the input circuit 330 is, for example, an analog / digital (AD) conversion circuit.
- the controller 340 is an integrated circuit that controls the entire power conversion apparatus 1000, and is, for example, a microcontroller or an FPGA (Field Programmable Gate Array).
- the controller 340 controls the switching operation (turn-on or turn-off) of each switch element (typically a semiconductor switch element) in the first and second inverters 120 and 130 of the inverter unit 100.
- the controller 340 sets the target current value according to the actual current value and the rotation signal of the rotor, generates a PWM signal, and outputs it to the drive circuit 350.
- the drive circuit 350 is typically a pre-driver (sometimes called a “gate driver”).
- the drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each switch element in the first and second inverters 120 and 130 of the inverter unit 100 according to the PWM signal, and supplies a control signal to the gate of each switch element.
- the pre-driver may not be necessarily required. In that case, the function of the pre-driver can be implemented in the controller 340.
- the ROM 360 is, for example, a writable memory (for example, PROM), a rewritable memory (for example, flash memory), or a read-only memory.
- the ROM 360 stores a control program including a command group for causing the controller 340 to control the power conversion apparatus 1000.
- the control program is temporarily expanded in a RAM (not shown) at the time of booting.
- FIG. 2 schematically shows a circuit configuration of the inverter unit 100 according to the present embodiment.
- the power supply 101 generates a predetermined power supply voltage (for example, 12V).
- a DC power source is used as the power source 101.
- the power source 101 may be an AC-DC converter, a DC-DC converter, or a battery (storage battery).
- the power source 101 may be a single power source common to the first and second inverters 120 and 130 as shown in the figure, or may be a first power source (not shown) for the first inverter 120 and for the second inverter 130.
- a second power source (not shown) may be provided.
- coils are provided between the power source 101 and the first inverter 120 and between the power source 101 and the second inverter 130.
- the coil functions as a noise filter, and smoothes the high frequency noise included in the voltage waveform supplied to each inverter or the high frequency noise generated by each inverter so as not to flow out to the power supply 101 side.
- a capacitor is connected to the power supply terminal of each inverter.
- the capacitor is a so-called bypass capacitor and suppresses voltage ripple.
- the capacitor is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to design specifications.
- the first inverter 120 has a bridge circuit composed of three legs. Each leg has a high-side switch element, a low-side switch element, and a shunt resistor.
- the A-phase leg includes a high-side switch element SW_A1H, a low-side switch element SW_A1L, and a first shunt resistor S_A1.
- the B-phase leg has a high-side switch element SW_B1H, a low-side switch element SW_B1L, and a first shunt resistor S_B1.
- the C-phase leg has a high-side switch element SW_C1H, a low-side switch element SW_C1L, and a first shunt resistor S_C1.
- a field effect transistor typically MOSFET having a parasitic diode formed therein, or a combination of an insulated gate bipolar transistor (IGBT) and a free-wheeling diode connected in parallel thereto can be used.
- MOSFET field effect transistor
- IGBT insulated gate bipolar transistor
- the first shunt resistor S_A1 is used to detect the A-phase current IA flowing through the A-phase winding M1, and is connected between, for example, the low-side switch element SW_A1L and the GND line GL.
- the first shunt resistor S_B1 is used to detect the B-phase current IB flowing through the B-phase winding M2, and is connected between, for example, the low-side switch element SW_B1L and the GND line GL.
- the first shunt resistor S_C1 is used to detect a C-phase current IC flowing through the C-phase winding M3, and is connected between, for example, the low-side switch element SW_C1L and the GND line GL.
- the three shunt resistors S_A1, S_B1, and S_C1 are connected in common with the GND line GL of the first inverter 120.
- the second inverter 130 has a bridge circuit composed of three legs. Each leg has a high-side switch element, a low-side switch element, and a shunt resistor.
- the A-phase leg has a high-side switch element SW_A2H, a low-side switch element SW_A2L, and a shunt resistor S_A2.
- the B-phase leg has a high-side switch element SW_B2H, a low-side switch element SW_B2L, and a shunt resistor S_B2.
- the C-phase leg has a high-side switch element SW_C2H, a low-side switch element SW_C2L, and a shunt resistor S_C2.
- the shunt resistor S_A2 is used to detect the A-phase current IA, and is connected, for example, between the low-side switch element SW_A2L and the GND line GL.
- the shunt resistor S_B2 is used for detecting the B-phase current IB, and is connected, for example, between the low-side switch element SW_B2L and the GND line GL.
- the shunt resistor S_C2 is used to detect the C-phase current IC, and is connected, for example, between the low-side switch element SW_C2L and the GND line GL.
- the three shunt resistors S_A2, S_B2, and S_C2 are connected in common with the GND line GL of the second inverter 130.
- the current sensor 150 described above includes, for example, a shunt resistor S_A1, S_B1, S_C1, S_A2, S_B2, S_C2, and a current detection circuit (not shown) that detects a current flowing through each shunt resistor.
- the A-phase leg of the first inverter 120 (specifically, a node between the high-side switch element SW_A1H and the low-side switch element SW_A1L) is connected to one end A1 of the A-phase winding M1 of the motor 200, and the second inverter The 130 A-phase leg is connected to the other end A2 of the A-phase winding M1.
- the B-phase leg of the first inverter 120 is connected to one end B1 of the B-phase winding M2 of the motor 200, and the B-phase leg of the second inverter 130 is connected to the other end B2 of the winding M2.
- the C-phase leg of the first inverter 120 is connected to one end C1 of the C-phase winding M3 of the motor 200, and the C-phase leg of the second inverter 130 is connected to the other end C2 of the winding M3.
- the inverter unit 100 includes A-phase, B-phase, and C-phase H bridges.
- Each phase H-bridge has two low-side switch elements, two high-side switch elements and a winding.
- the A-phase H bridge includes a high-side switch element SW_A1H and a low-side switch element SW_A1L in the leg on the first inverter 120 side, a high-side switch element SW_A2H, a low-side switch element SW_A2L in the leg on the second inverter 130 side, and a winding. It has a line M1.
- the control circuit 300 (specifically, the controller 340) can identify a faulty H bridge from among the three-phase H bridges by executing fault diagnosis of the H bridge described below.
- the failure of the switch element is broadly classified into “open failure” and “short-circuit failure”.
- Open failure refers to a failure in which the source-drain of the FET is opened (in other words, the resistance rds between the source and drain becomes high impedance)
- short-circuit failure refers to a failure between the source and drain of the FET. Refers to a short circuit failure.
- an H-bridge failure refers to an open failure of a switch element in the H-bridge. For example, when an open failure occurs in the A-phase H-bridge high-side switch element SW_A1H, the failure is referred to as an A-phase H-bridge failure.
- the control circuit 300 can switch to motor control in which a two-phase winding is energized using a two-phase H-bridge other than the faulty H-bridge.
- energizing the three-phase winding is referred to as “three-phase energization control”
- energizing the two-phase winding is referred to as “two-phase energization control”.
- failure diagnosis method for H-bridge A specific example of a failure diagnosis method for diagnosing an H-bridge failure, which is used in, for example, the power conversion apparatus 1000 illustrated in FIG. 1, will be described with reference to FIGS. 3 to 8.
- the failure diagnosis method of the present disclosure can be suitably used for a power conversion device including at least one H bridge, for example, a full bridge type power conversion device.
- a general-purpose pre-driver usually has a failure detection circuit that detects a short-circuit failure of a switch element in the inverter. For example, the short-circuit fault of the switch element is detected by comparing the measured source-drain voltage of the FET and the source-drain threshold voltage. Therefore, the diagnosis of the short circuit failure of the switch element can be performed using the drive circuit 350 in which the failure detection circuit is mounted. On the other hand, the function for detecting an open failure is not implemented in the pre-driver. Therefore, a technique for appropriately detecting an open failure of the switch element is desired.
- the outline of the failure diagnosis method for diagnosing H-bridge failure is as follows.
- Step A Based on the first current sine wave of the phase current measured by the current sensor 150, the second current sine wave obtained by shifting the phase of the first current sine wave by 90 °, and the rotational speed ⁇ of the motor, H A monitoring signal for monitoring a bridge failure is generated for each phase.
- the monitoring signal is represented by the square of the product of the measured peak value of the phase current and the rotational speed ⁇ .
- the rotation speed ⁇ is represented by a rotation speed (rpm) at which the rotor of the motor rotates per unit time (for example, 1 minute) or a rotation speed (rps) at which the rotor rotates at unit time (for example, 1 second).
- Step B A pre-fault signal is generated for each phase based on the comparison result between the monitoring signal and the threshold of the fault level.
- the pre-failure signal is a high active signal, for example, and is a signal that is asserted when an open failure of the switch element occurs.
- Step C A fault signal indicating whether or not the H-bridge is faulty is generated for each phase by calculating the logical product of the pre-fault signal and an activation signal that enables or disables the pre-fault signal.
- the failure signal is, for example, a highly active signal, and is a signal that is asserted when an open failure of the switch element occurs.
- Step D A failure signal is output from the failure diagnosis unit 800 to the motor control unit 900 that controls the motor 200.
- the above steps A to D are repeatedly executed in synchronization with, for example, a period in which each phase current is measured by the current sensor 150, that is, an AD conversion period.
- the algorithm for realizing the fault diagnosis method according to the present embodiment can be realized only by hardware such as an application specific integrated circuit (ASIC) or FPGA, or can be realized by a combination of a microcontroller and software. Can do.
- ASIC application specific integrated circuit
- FPGA field-programmable gate array
- the operation subject of failure diagnosis will be described as the controller 340 of the control circuit 300.
- FIG. 3 illustrates functional blocks of the controller 340 for performing overall motor control.
- FIG. 4A illustrates functional blocks of the monitoring signal unit 810A.
- FIG. 4B illustrates functional blocks of the monitoring signal unit 810B.
- FIG. 4C illustrates functional blocks of the monitoring signal unit 810C.
- FIG. 5 illustrates functional blocks of a cut-off frequency unit 820, a value unit 830, and an activation signal unit 840.
- FIG. 6 illustrates functional blocks of the pre-fault signal unit 850 and the fault signal unit 860.
- each block in the functional block diagram is shown not in hardware units but in functional block units.
- the software used for motor control and H-bridge failure diagnosis may be, for example, a module constituting a computer program for executing a specific process corresponding to each functional block.
- Such a computer program is stored in the ROM 360, for example.
- the controller 340 can read out commands from the ROM 360 and sequentially execute each process.
- the controller 340 includes, for example, a failure diagnosis unit 800 and a motor control unit 900.
- the failure diagnosis of the present disclosure can be suitably combined with motor control such as vector control, and can be incorporated in a series of processes of motor control.
- the fault diagnosis unit 800 obtains the motor rotation speed ⁇ , the peak value Ipeak_ref of the reference current used for motor control, and the phase currents IA, IB and IC measured by the current sensor 150 as input signals.
- the reference current is sometimes called a current command value.
- the failure diagnosis unit 800 generates A, B, and C phase failure signals PhaseA_FD, PhaseB_FD, and PhaseC_FD based on these input signals, and outputs them to the motor control unit 900.
- the failure signal is a signal indicating whether or not the H bridge of each phase has failed.
- the motor control unit 900 generates a PWM signal that controls the overall switching operation of the switch elements of the first and second inverters 120 and 130 using, for example, vector control.
- the motor control unit 900 outputs a PWM signal to the drive circuit 350.
- the motor control unit 900 can switch, for example, motor control from three-phase energization control to two-phase energization control.
- each functional block may be expressed as a unit.
- these notations should not be interpreted with the intention of limiting each functional block to hardware or software.
- the execution subject of the software may be the core of the controller 340, for example.
- the controller 340 can be realized by an FPGA. In that case, all or some of the functional blocks may be realized by hardware.
- the plurality of FPGAs are communicably connected to each other by, for example, an in-vehicle control area network (CAN), and can transmit and receive data.
- CAN in-vehicle control area network
- the failure diagnosis unit 800 includes monitoring signal units 810A, 810B, 810C, a cutoff frequency unit 820, a threshold unit 830, an activation signal unit 840, a pre-failure signal unit 850, and a failure signal unit 860.
- the supervisory signal units 810A, 810B and 810C are composed of substantially the same functional blocks.
- the processing flow for generating the A-phase monitoring signal ⁇ 2Ia_Peak2 will be described using the A-phase monitoring signal unit 810A as an example.
- the monitoring signal unit 810A generates a monitoring signal ⁇ 2Ia_Peak2 for monitoring a failure of the A-phase H bridge.
- the input signal is the rotation speed ⁇ and the phase A current IA measured by the current sensor 150.
- the current waveform of the phase current is a sine wave expressed using Expression (1).
- Ia_peak is a peak value of the phase current IA.
- the current sine wave represented by Expression (1) is referred to as a first current sine wave.
- IA Ia_peak ⁇ sin ( ⁇ t) Equation (1)
- the monitor signal unit 810A is, for example, a programmable low-pass filter (hereinafter referred to as “PLPF”) 801, 806, 808, 810, 813, a square unit 802, 803, 807, 811, a square root unit 805, a multiplier 804, A differentiation unit 809 and an adder 812 are included.
- PLPF programmable low-pass filter
- the square unit 802 squares the first current sine wave filtered by the PLPF 801.
- the multiplier 804 multiplies the output ⁇ 2 of the square unit 803 by the output Ia 2 of the square unit 802 to obtain ⁇ 2 Ia 2 .
- the square root unit 805 calculates the square root ⁇ Ia of ⁇ 2 Ia 2
- the PLPF 806 filters ⁇ Ia.
- the square unit 807 obtains ⁇ 2 Ia 2 after the filtering process by squaring again the filtered ⁇ Ia.
- the noise of the phase current can be effectively removed by performing some low-pass
- Each of PLPF 801, 806, 808, 810 and 813 has a cut-off frequency fcut.
- the cut-off frequency unit 820 shown in FIG. 5 includes, for example, a gain unit 821 and an LPF 822.
- the cut-off frequency unit 820 determines the cut-off frequency fcut based on the multiplication value of the rotation speed ⁇ and the gain.
- the monitoring signal unit 810A performs a calculation for acquiring a second current sine wave obtained by shifting the phase of the first current sine wave by 90 °.
- To shift the phase by 90 ° means to advance or delay the initial phase by 90 °. That is, the phase of the second current sine wave is advanced or delayed by 90 ° with respect to that of the first current sine wave.
- a specific example of advancing the phase by 90 ° is time differentiation.
- the monitoring signal unit 810A obtains the second current sine wave by time-differentiating the first current sine wave.
- the monitoring signal unit 810A preferably filters the phase current IA by the PLPF 808 before performing the differentiation operation by the differentiation unit 809. By this filtering process, it is possible to suppress amplification of noise superimposed on the phase current IA, which may be caused by subsequent differential calculation.
- the differentiating unit 809 time-differentiates the filtered first current sine wave to obtain a second current sine wave represented by Expression (2). That is, the second current sine wave is acquired by performing time differentiation after the first current sine wave is low pass filtered.
- d / dt is a differential operator.
- dIA / dt ⁇ ⁇ Ia_peak ⁇ cos ( ⁇ t) Equation (2)
- the monitoring signal unit 810A preferably further filters the second current sine wave by the PLPF 810. By further filtering, it is possible to more appropriately suppress the amplification of noise superimposed on the phase current IA, which can be caused by differential operation.
- the square unit 811 obtains (dIA / dt) 2 by squaring the filtered second current sine wave.
- the adder 812 generates the A-phase monitoring signal ⁇ 2Ia_Peak2 by adding (dIA / dt) 2 to ⁇ 2 Ia 2 based on Equation (3).
- the A phase monitoring signal ⁇ 2Ia_Peak2 is represented by the square of the product of the measured peak value Ia_peak of the phase current IA and the rotational speed ⁇ .
- the magnitudes of the two signal peaks input to the adder 812 be approximately the same.
- filter processing is performed twice.
- the filtering process is performed twice also in the upper branch of the adder 812.
- the monitoring signal unit 810A preferably filters the generated monitoring signal ⁇ 2Ia_Peak2 with the PLPF 813. This final-stage filtering process can improve the response of failure diagnosis described later.
- the B and C phase monitoring signals ⁇ 2Ib_Peak2 and ⁇ 2Ic_Peak2 are generated in the same manner as the A phase monitoring signal ⁇ 2Ia_Peak2. See Figures 4B and 4C.
- phase of the second current sine wave may be delayed by 90 ° with respect to that of the first current sine wave.
- a specific example of delaying the phase by 90 ° is time integration.
- FIG. 7 illustrates functional blocks of the monitoring signal unit 810A using time integration.
- the monitoring signal unit 810A may include an integration unit 820 instead of the differentiation unit 809.
- the monitoring signal unit 810A may acquire the second current sine wave by time-integrating the first current sine wave using the integration unit 820.
- the multiplier 804 multiplies the square of the second current sine wave by the square of the rotational speed ⁇ .
- the adder 812 generates the monitoring signal ⁇ 2Ia_Peak2 by adding the output of the multiplier 804 filtered by the PLPF 806 to the square of the first current sine wave filtered by the PLPF 810 based on the equation (4). Can do.
- the monitoring signal ⁇ 2Ia_Peak2 When performing a differentiation operation in the monitoring signal unit 810A, the monitoring signal ⁇ 2Ia_Peak2 includes the rotational speed ⁇ in the coefficient, so that it is easy to diagnose a failure particularly at high speed rotation.
- the monitoring signal ⁇ 2Ia_Peak2 does not depend on the rotational speed ⁇ , and therefore, failure diagnosis can be easily performed.
- the failure level threshold FD_Level can be determined based on the average values of the phase currents IA, IB and IC peak values Ia_Peak, Ib_Peak and Ic_Peak measured by the current sensor 150.
- the threshold unit 830 shown in FIG. 5 includes an average value unit 831 and a gain unit 832.
- the threshold unit 830 determines a failure level threshold FD_Level based on ⁇ 2Ia_Peak2 output from the monitoring signal unit 810A, ⁇ 2Ib_Peak2 output from the monitoring signal unit 810B, and ⁇ 2Ic_Peak2 output from the monitoring signal unit 810C. To do.
- the average value unit 831 calculates the average value of ⁇ 2Ia_Peak2, ⁇ 2Ib_Peak2, and ⁇ 2Ic_Peak2.
- the gain unit 832 determines FD_Level by multiplying the average value by a variable gain.
- the threshold unit 830 is implemented using a lookup table that applies a function of current and rotational speed.
- the value of the variable gain is set in the range of 0.01 to 0.95, for example. According to the threshold unit 830, since the peak value of each phase is used, it is not necessary to increase the variables for failure diagnosis processing.
- the activation signal unit 840 shown in FIG. 5 has an absolute value unit 841 and a comparison unit 842.
- the comparison unit 842 generates an activation signal Zero_Level based on the comparison result between the peak value Ipeak_ref of the reference current used for controlling the motor and the minimum value I_min of the reference current.
- the activation signal Zero_Level is a signal indicating whether or not the reference current is zero.
- the peak value Ipeak_ref of the reference current is given by Equation (5). abs is an operator of an absolute value.
- Id_ref [(2/3) 1/2 (Id_ref 2 + Iq_ref 2 ) 1/2 ] + [abs (Iz_ref) / (3) 1/2 ] Equation (5)
- Id_ref is a d-axis reference current in the dq coordinate system
- Iq_req is a q-axis reference current in the dq coordinate system
- Iz_ref is a z-phase reference current.
- the minimum value I_min of the reference current is set to about 10 mA, for example.
- the activation signal Zero_Level is a high active signal.
- the comparison unit 842 of the activation signal unit 840 asserts the activation signal Zero_Level when Ipeak_ref is greater than or equal to I_min.
- the comparison unit 842 negates the activation signal Zero_Level when Ipeak_ref is less than I_min.
- FIG. 8 shows how the level of the A-phase monitoring signal ⁇ 2Ia_Peak2 changes when an open circuit failure occurs in the switching element of the H bridge.
- the level of the monitoring signal ⁇ 2Ia_Peak2 indicates ⁇ 2 Ia_peak 2 .
- the level of the monitoring signal ⁇ 2Ia_Peak2 drops to a level close to zero below the failure level threshold FD_Level.
- the signal level is much smaller than the normal signal level.
- the time required for the change in the signal level is referred to as “detection time”. The earlier the detection time, the better the sensitivity or responsiveness for detecting a failure. As already described, it is possible to improve the responsiveness by filtering the generated monitoring signal ⁇ 2Ia_Peak2 with PLPF.
- the pre-failure signal unit 850 shown in FIG. 6 includes three comparators 851. Three comparators 851 generate A, B, and C phase pre-fault signals A_Level_FD, B_Level_FD, and C_Level_FD, respectively. For example, when the A-phase monitoring signal ⁇ 2Ia_Peak2 is less than the failure level threshold FD_Level, the A-phase comparator 851 generates a pre-failure signal A_Level_FD indicating that the H-bridge is in a failure state.
- the A-phase comparator 851 When the monitoring signal ⁇ 2Ia_Peak2 is equal to or greater than the failure level threshold FD_Level, the A-phase comparator 851 generates a pre-failure signal A_Level_FD indicating that the H-bridge is not in a failure state.
- the pre-failure signal A_Level_FD is a high active signal.
- the pre-failure signal A_Level_FD is asserted.
- the activation signal Zero_Level is used to enable or disable the pre-failure signal A_Level_FD.
- the pre-failure signal unit 850 generates B and C-phase pre-failure signals B_Level_FD and C_Level_FD in the same manner as the A phase.
- the failure signal unit 860 shown in FIG.
- the AND unit 861 calculates a logical product of the pre-failure signal and the activation signal Zero_Level to generate a failure signal for each phase indicating whether or not the H-bridge has failed.
- the A-phase AND unit 861 calculates the logical product of the A-phase pre-fault signal A_Level_FD and the activation signal Zero_Level, thereby indicating whether or not the A-phase H-bridge is faulty. Is generated.
- the failure signal unit 860 generates B and C phase failure signals PhaseB_FD and PhaseC_FD in the same manner as the A phase, and outputs them to the motor control unit 900.
- an activation signal Zero_Level that invalidates the pre-fault signal A_Level_FD is generated.
- the pre-failure signal A_Level_FD is in an asserted state, it is masked by the activation signal Zero_Level.
- the reference current which is a sine wave, periodically becomes a value close to zero.
- the level of the monitoring signal ⁇ 2Ia_Peak2 may be less than the failure level threshold FD_Level.
- the pre-failure signal A_Level_FD is asserted.
- the failure signal PhaseA_FD can be maintained in a negated state by masking the pre-failure signal A_Level_FD with the activation signal Zero_Level.
- FIG. 9 exemplifies a current waveform (sine wave) obtained by plotting the current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion apparatus 1000 is controlled according to the three-phase energization control. are doing.
- FIG. 10A shows the current obtained by plotting the values of current flowing through the B-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the A-phase H-bridge fails.
- the waveform is illustrated.
- the horizontal axis represents the motor electrical angle (deg), and the vertical axis represents the current value (A).
- I pk represents the peak value of the phase current.
- FIG. 10B when the B-phase H bridge fails, the current values flowing in the A-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control are plotted.
- the current waveform obtained is illustrated.
- FIG. 10C shows the current obtained by plotting the values of the currents flowing through the A-phase and B-phase windings of the motor 200 when the power conversion apparatus 1000 is controlled according to the two-phase energization control when the C-phase H bridge fails.
- the waveform is illustrated.
- the motor control unit 900 performs three-phase energization control when it is normal, that is, when all of the failure signals PhaseA_FD, PhaseB_FD, and PhaseC_FD are negated.
- the motor control unit 900 uses the B and C phase H bridges other than the failed A phase H bridge to energize the windings M2 and M3. Energization control can be performed. Thereby, even if one-phase H-bridge of the three phases breaks down, power conversion apparatus 1000 can continue motor driving.
- FIGS. 11A to 11F show simulation results of detection times with respect to the reference current Iq_ref when the motor is rotated at 250, 500, 750, 1000, 1500, and 1700 rpm, respectively.
- the vertical axis of the graph represents the detection time (ms), and the horizontal axis represents the reference current Iq_ref (A).
- a detection time of 20 ms or less is required. From the simulation results, it can be seen that the detection time sufficiently satisfying the market requirement can be obtained in the motor drive range from low speed rotation to high speed rotation and in the motor drive range from low torque to high torque.
- the monitoring signal based on the square of the product of the peak value of the phase current and the rotation speed or the square of the peak value of the phase current is monitored.
- the monitoring signal based on the square of the product of the peak value of the phase current and the rotation speed or the square of the peak value of the phase current is monitored.
- FIG. 12 schematically shows a typical configuration of the electric power steering apparatus 3000 according to the present embodiment.
- a vehicle such as an automobile generally has an electric power steering device.
- the electric power steering apparatus 3000 includes a steering system 520 and an auxiliary torque mechanism 540 that generates auxiliary torque.
- the electric power steering device 3000 generates auxiliary torque that assists the steering torque of the steering system that is generated when the driver operates the steering wheel. The burden on the driver's operation is reduced by the auxiliary torque.
- the steering system 520 includes, for example, a steering handle 521, a steering shaft 522, universal shaft joints 523A and 523B, a rotation shaft 524, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, a knuckle 528A, 528B and left and right steering wheels 529A, 529B.
- the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an automotive electronic control unit (ECU) 542, a motor 543, a speed reduction mechanism 544, and the like.
- the steering torque sensor 541 detects the steering torque in the steering system 520.
- the ECU 542 generates a drive signal based on the detection signal of the steering torque sensor 541.
- the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
- the motor 543 transmits the generated auxiliary torque to the steering system 520 via the speed reduction mechanism 544.
- the ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment.
- an electronic control system with an ECU as a core is constructed.
- a motor drive unit is constructed by the ECU 542, the motor 543, and the inverter 545.
- the motor module 2000 according to the first embodiment can be suitably used for the system.
- an EPS that implements a fault diagnosis method according to an embodiment of the present disclosure is an autonomous driving vehicle that corresponds to levels 0 to 5 (standards for automation) defined by the Japanese government and the US Department of Transportation's Road Traffic Safety Administration (NHTSA). Can be mounted.
- levels 0 to 5 standards for automation
- NHTSA US Department of Transportation's Road Traffic Safety Administration
- the embodiment of the present disclosure can be widely used in various devices including various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.
- various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Inverter Devices (AREA)
- Electronic Switches (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Power Steering Mechanism (AREA)
Abstract
The failure diagnosis method according to the present disclosure is used in a power conversion device equipped with at least one H-bridge to diagnose a failure of the H-bridge. The failure diagnosis method includes: a step of generating a monitoring signal for monitoring a failure of an H-bridge on the basis of a first current sine wave of a phase current, a second current sine wave obtained by shifting the phase of the first current sine wave by 90 degrees, and the rotational speed of a motor; a step of generating a pre-failure signal on the basis of the results of comparison between the monitoring signal and a failure level threshold value; and a step of calculating the logical product of the pre-failure signal and an activation signal for enabling or disenabling the pre-failure signal, thereby generating a failure signal indicating whether the H-bridge is failed or not.
Description
本開示は、故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置に関する。
The present disclosure relates to a failure diagnosis method, a power conversion device, a motor module, and an electric power steering device.
近年、電動モータ(以下、単に「モータ」と表記する。)、インバータおよびECUが一体化された機電一体型モータが開発されている。特に車載分野において安全性の観点から高い品質保証が要求される。そのため部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として、1つのモータに対して2つの電力変換装置を設けることが検討されている。他の一例として、メインのマイクロコントローラにバックアップ用マイクロコントローラを設けることが検討されている。
In recent years, an electromechanical integrated motor in which an electric motor (hereinafter simply referred to as “motor”), an inverter, and an ECU are integrated has been developed. In particular, high quality assurance is required from the viewpoint of safety in the in-vehicle field. Therefore, a redundant design that can continue safe operation even if a part of the component fails is adopted. As an example of a redundant design, it is considered to provide two power conversion devices for one motor. As another example, it is considered to provide a backup microcontroller in the main microcontroller.
特許文献1は、第1系統および第2系統を有するモータ駆動装置を開示する。第1系統は、モータの第1巻線組に接続され、第1インバータ部、電源リレーおよび逆接続保護リレーなどを有する。第2系統は、モータの第2巻線組に接続され、第2インバータ部、電源リレーおよび逆接続保護リレーなどを有する。モータ駆動装置に故障が生じていないとき、第1系統および第2系統の両方を用いてモータを駆動することが可能である。これに対し、第1系統および第2系統の一方、または、第1巻線組および第2巻線組の一方に故障が生じたとき、電源リレーは、電源から、故障した系統、または、故障した巻線組に接続された系統への電力供給を遮断する。故障していない他方の系統を用いてモータ駆動を継続させることが可能である。
Patent Document 1 discloses a motor drive device having a first system and a second system. The first system is connected to the first winding set of the motor and includes a first inverter unit, a power supply relay, a reverse connection protection relay, and the like. The second system is connected to the second winding set of the motor and includes a second inverter unit, a power supply relay, a reverse connection protection relay, and the like. When there is no failure in the motor drive device, it is possible to drive the motor using both the first system and the second system. On the other hand, when a failure occurs in one of the first system and the second system, or one of the first winding group and the second winding group, the power relay is connected to the failed system or from the power source. The power supply to the system connected to the winding set is cut off. It is possible to continue motor driving using the other system that has not failed.
特許文献2および3も、第1系統および第2系統を有するモータ駆動装置を開示する。
一方の系統または一方の巻線組が故障したとしても、故障していない系統によってモータ駆動を継続させることができる。Patent Documents 2 and 3 also disclose a motor drive device having a first system and a second system.
Even if one system or one winding set fails, motor drive can be continued by a system that does not fail.
一方の系統または一方の巻線組が故障したとしても、故障していない系統によってモータ駆動を継続させることができる。
Even if one system or one winding set fails, motor drive can be continued by a system that does not fail.
Hブリッジの故障、特に、Hブリッジ内のスイッチ素子の開放故障を適切に検出することが望まれている。
It is desired to appropriately detect a failure of the H bridge, particularly an open failure of the switch element in the H bridge.
本開示の実施形態は、Hブリッジ内のスイッチ素子の開放故障を適切に診断することが可能な故障診断方法を提供する。
The embodiment of the present disclosure provides a failure diagnosis method capable of appropriately diagnosing an open failure of a switch element in an H bridge.
本開示の例示的な故障診断方法は、電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換する、少なくとも1つのHブリッジを備える電力変換装置に用いる、Hブリッジの故障を診断する故障診断方法であって、電流センサによって測定された相電流の第1電流正弦波、前記第1電流正弦波の位相を90°シフトして得られる第2電流正弦波および前記モータの回転速度に基づいて、Hブリッジの故障を監視するための監視信号を生成するステップと、前記監視信号と故障レベルのしきい値との比較結果に基づいてプレ故障信号を生成するステップと、前記プレ故障信号、および、前記プレ故障信号を有効または無効にするアクティベーション信号の論理積を演算することにより、Hブリッジが故障しているか否かを示す故障信号を生成するステップと、を包含する。
An exemplary fault diagnosis method of the present disclosure uses an H-bridge for use in a power converter that includes at least one H-bridge that converts power from a power source into power supplied to a motor having at least one phase winding. A failure diagnosis method for diagnosing a failure, comprising: a first current sine wave of a phase current measured by a current sensor; a second current sine wave obtained by shifting the phase of the first current sine wave by 90 °; and the motor Generating a monitoring signal for monitoring a failure of the H-bridge based on the rotation speed, and generating a pre-failure signal based on a comparison result between the monitoring signal and a threshold of the failure level; Whether or not the H-bridge has failed by calculating a logical product of the pre-failure signal and an activation signal that enables or disables the pre-failure signal Including the steps of: generating a fault signal indicating a.
本開示の例示的な電力変換装置は、電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換する電力変換装置であって、少なくとも1つのHブリッジと、前記少なくとも1つのHブリッジのスイッチ素子のスイッチング動作を制御する制御回路と、を備え、前記制御回路は、電流センサによって測定された相電流の第1電流正弦波、前記第1電流正弦波の位相を90°シフトして得られる第2電流正弦波および前記モータの回転速度に基づいて、Hブリッジの故障を監視するための監視信号を生成し、前記監視信号と故障レベルのしきい値との比較結果に基づいてプレ故障信号を生成し、前記プレ故障信号、および、前記プレ故障信号を有効または無効にするアクティベーション信号の論理積を演算することにより、Hブリッジが故障しているか否かを示す故障信号を生成する。
An exemplary power converter of the present disclosure is a power converter that converts power from a power source into power supplied to a motor having at least one phase winding, the power converter including at least one H-bridge and the at least one A control circuit for controlling the switching operation of the switching elements of the two H-bridges, wherein the control circuit sets the phase of the first current sine wave of the phase current measured by the current sensor to 90 °. Based on the second current sine wave obtained by shifting and the rotational speed of the motor, a monitoring signal for monitoring the H-bridge failure is generated, and the comparison result between the monitoring signal and the failure level threshold value is obtained. By generating a pre-failure signal based on and calculating a logical product of the pre-failure signal and an activation signal that enables or disables the pre-failure signal H-bridge to generate a fault signal indicating whether or not a failure.
本開示の例示的な実施形態によれば、Hブリッジ内のスイッチ素子の開放故障を適切に診断することが可能な故障診断方法、電力変換装置、当該電力変換装置を備えるモータモジュールおよび当該モータモジュールを備える電動パワーステアリング装置が提供される。
According to exemplary embodiments of the present disclosure, a failure diagnosis method, a power conversion device, a motor module including the power conversion device, and the motor module capable of appropriately diagnosing an open failure of a switch element in an H-bridge An electric power steering apparatus is provided.
以下、添付の図面を参照しながら、本開示のHブリッジの故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。
Hereinafter, embodiments of an H-bridge failure diagnosis method, a power conversion device, a motor module, and an electric power steering device according to the present disclosure will be described in detail with reference to the accompanying drawings. However, in order to avoid the following description from being unnecessarily redundant and to facilitate understanding by those skilled in the art, a more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted.
本明細書において、電源からの電力を三相(A相、B相、C相)の巻線を有する三相モータに供給する電力に変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、一相若しくは二相の巻線を有するモータ、または、四相若しくは五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置、およびその装置に用いるHブリッジの故障診断方法も本開示の範疇である。
In the present specification, an embodiment of the present disclosure is described by taking, as an example, a power conversion device that converts power from a power source into power supplied to a three-phase motor having three-phase (A-phase, B-phase, and C-phase) windings. Will be explained. However, power from the power source is supplied to a motor having one-phase or two-phase windings, or an n-phase motor having n-phase windings such as four-phase or five-phase (n is an integer of 4 or more). A power conversion device that converts power and an H-bridge fault diagnosis method that is used in the power conversion device are also included in the scope of the present disclosure.
(実施形態1)
〔1.モータモジュール2000および電力変換装置1000の構造〕
図1は、本実施形態によるモータモジュール2000の典型的なブロック構成を模式的に示している。 (Embodiment 1)
[1. Structure ofmotor module 2000 and power conversion apparatus 1000]
FIG. 1 schematically shows a typical block configuration of amotor module 2000 according to the present embodiment.
〔1.モータモジュール2000および電力変換装置1000の構造〕
図1は、本実施形態によるモータモジュール2000の典型的なブロック構成を模式的に示している。 (Embodiment 1)
[1. Structure of
FIG. 1 schematically shows a typical block configuration of a
モータモジュール2000は、典型的に、インバータユニット100と制御回路300とを有する電力変換装置1000およびモータ200を備える。モータモジュール2000は、モジュール化され、例えば、モータ、センサ、ドライバおよびコントローラを有する機電一体型モータとして製造および販売され得る。
The motor module 2000 typically includes a power converter 1000 having the inverter unit 100 and a control circuit 300 and a motor 200. The motor module 2000 is modularized and can be manufactured and sold as, for example, an electromechanically integrated motor having a motor, a sensor, a driver, and a controller.
電力変換装置1000は、電源101(図2を参照)からの電力をモータ200に供給する電力に変換することが可能である。電力変換装置1000は、モータ200に接続される。例えば、電力変換装置1000は、直流電力を、A相、B相およびC相の擬似正弦波である三相交流電力に変換することが可能である。本明細書において、部品(構成要素)同士の間の「接続」とは、主に電気的な接続を意味する。
The power conversion apparatus 1000 can convert power from the power source 101 (see FIG. 2) into power supplied to the motor 200. The power conversion apparatus 1000 is connected to the motor 200. For example, the power conversion apparatus 1000 can convert DC power into three-phase AC power that is pseudo-sine waves of A phase, B phase, and C phase. In this specification, “connection” between components (components) mainly means electrical connection.
モータ200は、例えば、永久磁石同期モータなどの三相交流モータである。モータ200は、A相の巻線M1、B相の巻線M2およびC相の巻線M3を備え、インバータユニット100の第1インバータ120と第2インバータ130とに接続される。具体的に説明すると、第1インバータ120はモータ200の各相の巻線の一端に接続され、第2インバータ130は各相の巻線の他端に接続される。
The motor 200 is, for example, a three-phase AC motor such as a permanent magnet synchronous motor. The motor 200 includes an A-phase winding M1, a B-phase winding M2, and a C-phase winding M3, and is connected to the first inverter 120 and the second inverter 130 of the inverter unit 100. More specifically, the first inverter 120 is connected to one end of each phase winding of the motor 200, and the second inverter 130 is connected to the other end of each phase winding.
制御回路300は、例えば、電源回路310と、角度センサ320と、入力回路330と、コントローラ340と、駆動回路350と、ROM360とを備える。制御回路300の各部品は、例えば1枚の回路基板(典型的にはプリント基板)に実装される。制御回路300は、インバータユニット100に接続され、電流センサ150および角度センサ320からの入力信号に基づいてインバータユニット100を制御する。その制御手法として、例えばベクトル制御、パルス幅変調(PWM)または直接トルク制御(DTC)がある。ただし、モータ制御手法(例えばセンサレス制御)によっては、角度センサ320は不要な場合がある。
The control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360. Each component of the control circuit 300 is mounted on, for example, one circuit board (typically a printed board). The control circuit 300 is connected to the inverter unit 100 and controls the inverter unit 100 based on input signals from the current sensor 150 and the angle sensor 320. Examples of the control method include vector control, pulse width modulation (PWM), and direct torque control (DTC). However, the angle sensor 320 may be unnecessary depending on the motor control method (for example, sensorless control).
制御回路300は、目的とする、モータ200のロータの位置、回転速度、および電流などを制御してクローズドループ制御を実現できる。なお、制御回路300は、角度センサ320に代えてトルクセンサを備えてもよい。この場合、制御回路300は、目的とするモータトルクを制御できる。
The control circuit 300 can realize the closed loop control by controlling the target position, rotation speed, current, and the like of the motor 200. Note that the control circuit 300 may include a torque sensor instead of the angle sensor 320. In this case, the control circuit 300 can control the target motor torque.
本開示は、図1に例示するモータモジュールのブロック構成に限定されず、例えば、第1インバータ120を制御する第1制御回路および第2インバータ130を制御する第2制御回路を含むブロック構成を有し得る。
The present disclosure is not limited to the block configuration of the motor module illustrated in FIG. 1, and has, for example, a block configuration including a first control circuit that controls the first inverter 120 and a second control circuit that controls the second inverter 130. Can do.
電源回路310は、電源101の例えば12Vの電圧に基づいて回路内の各ブロックに必要な電源電圧(例えば3V、5V)を生成する。
The power supply circuit 310 generates a power supply voltage (for example, 3V, 5V) necessary for each block in the circuit based on the voltage of the power supply 101, for example, 12V.
角度センサ320は、例えばレゾルバまたはホールICである。または、角度センサ320は、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ320は、ロータの回転角(以下、「回転信号」と表記する。)を検出し、回転信号をコントローラ340に出力する。
The angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects the rotation angle of the rotor (hereinafter referred to as “rotation signal”) and outputs the rotation signal to the controller 340.
入力回路330は、電流センサ150によって検出された相電流(以下、「実電流値」と表記する場合がある。)を受け取って、実電流値のレベルをコントローラ340の入力レベルに必要に応じて変換し、実電流値をコントローラ340に出力する。入力回路330は、例えばアナログデジタル(AD)変換回路である。
The input circuit 330 receives the phase current detected by the current sensor 150 (hereinafter sometimes referred to as “actual current value”), and changes the level of the actual current value to the input level of the controller 340 as necessary. The actual current value is output to the controller 340. The input circuit 330 is, for example, an analog / digital (AD) conversion circuit.
コントローラ340は、電力変換装置1000の全体を制御する集積回路であり、例えば、マイクロコントローラまたはFPGA(Field Programmable Gate Array)である。コントローラ340は、インバータユニット100の第1および第2インバータ120、130における各スイッチ素子(典型的には半導体スイッチ素子)のスイッチング動作(ターンオンまたはターンオフ)を制御する。コントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路350に出力する。
The controller 340 is an integrated circuit that controls the entire power conversion apparatus 1000, and is, for example, a microcontroller or an FPGA (Field Programmable Gate Array). The controller 340 controls the switching operation (turn-on or turn-off) of each switch element (typically a semiconductor switch element) in the first and second inverters 120 and 130 of the inverter unit 100. The controller 340 sets the target current value according to the actual current value and the rotation signal of the rotor, generates a PWM signal, and outputs it to the drive circuit 350.
駆動回路350は典型的にはプリドライバ(「ゲートドライバ」と呼ばれることもある。)である。駆動回路350は、インバータユニット100の第1および第2インバータ120、130における各スイッチ素子のスイッチング動作を制御する制御信号(ゲート制御信号)をPWM信号に従って生成し、各スイッチ素子のゲートに制御信号を与える。駆動対象が低電圧で駆動可能なモータであるとき、プリドライバは必ずしも必要とされない場合がある。その場合プリドライバの機能はコントローラ340に実装され得る。
The drive circuit 350 is typically a pre-driver (sometimes called a “gate driver”). The drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each switch element in the first and second inverters 120 and 130 of the inverter unit 100 according to the PWM signal, and supplies a control signal to the gate of each switch element. give. When the driving target is a motor that can be driven at a low voltage, the pre-driver may not be necessarily required. In that case, the function of the pre-driver can be implemented in the controller 340.
ROM360は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM360は、コントローラ340に電力変換装置1000を制御させるための命令群を含む制御プログラムを格納している。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。
The ROM 360 is, for example, a writable memory (for example, PROM), a rewritable memory (for example, flash memory), or a read-only memory. The ROM 360 stores a control program including a command group for causing the controller 340 to control the power conversion apparatus 1000. For example, the control program is temporarily expanded in a RAM (not shown) at the time of booting.
図2を参照しインバータユニット100の具体的な回路構成を説明する。
A specific circuit configuration of the inverter unit 100 will be described with reference to FIG.
図2は、本実施形態によるインバータユニット100の回路構成を模式的に示している。
FIG. 2 schematically shows a circuit configuration of the inverter unit 100 according to the present embodiment.
電源101は、所定の電源電圧(例えば12V)を生成する。電源101として、例えば直流電源が用いられる。ただし、電源101は、AC-DCコンバータまたはDC―DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。電源101は、図示するように、第1および第2インバータ120、130に共通の単一電源であってもよいし、第1インバータ120用の第1電源(不図示)および第2インバータ130用の第2電源(不図示)を備えていてもよい。
The power supply 101 generates a predetermined power supply voltage (for example, 12V). As the power source 101, for example, a DC power source is used. However, the power source 101 may be an AC-DC converter, a DC-DC converter, or a battery (storage battery). The power source 101 may be a single power source common to the first and second inverters 120 and 130 as shown in the figure, or may be a first power source (not shown) for the first inverter 120 and for the second inverter 130. A second power source (not shown) may be provided.
図示されていないが、電源101と第1インバータ120の間、および、電源101と第2インバータ130の間にコイルが設けられる。コイルは、ノイズフィルタとして機能し、各インバータに供給する電圧波形に含まれる高周波ノイズ、または各インバータで発生する高周波ノイズを電源101側に流出させないように平滑化する。また、各インバータの電源端子には、コンデンサが接続される。コンデンサは、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサは、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。
Although not shown, coils are provided between the power source 101 and the first inverter 120 and between the power source 101 and the second inverter 130. The coil functions as a noise filter, and smoothes the high frequency noise included in the voltage waveform supplied to each inverter or the high frequency noise generated by each inverter so as not to flow out to the power supply 101 side. A capacitor is connected to the power supply terminal of each inverter. The capacitor is a so-called bypass capacitor and suppresses voltage ripple. The capacitor is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to design specifications.
第1インバータ120は、3個のレグから構成されるブリッジ回路を有する。各レグは、ハイサイドスイッチ素子、ローサイドスイッチ素子およびシャント抵抗を有する。A相レグは、ハイサイドスイッチ素子SW_A1H、ローサイドスイッチ素子SW_A1Lおよび第1シャント抵抗S_A1を有する。B相レグは、ハイサイドスイッチ素子SW_B1H、ローサイドスイッチ素子SW_B1Lおよび第1シャント抵抗S_B1を有する。C相レグは、ハイサイドスイッチ素子SW_C1H、ローサイドスイッチ素子SW_C1Lおよび第1シャント抵抗S_C1を有する。
The first inverter 120 has a bridge circuit composed of three legs. Each leg has a high-side switch element, a low-side switch element, and a shunt resistor. The A-phase leg includes a high-side switch element SW_A1H, a low-side switch element SW_A1L, and a first shunt resistor S_A1. The B-phase leg has a high-side switch element SW_B1H, a low-side switch element SW_B1L, and a first shunt resistor S_B1. The C-phase leg has a high-side switch element SW_C1H, a low-side switch element SW_C1L, and a first shunt resistor S_C1.
スイッチ素子として、例えば、寄生ダイオードが内部に形成された電界効果トランジスタ(典型的にはMOSFET)、または、絶縁ゲートバイポーラトランジスタ(IGBT)とそれに並列接続された還流ダイオードとの組み合わせを用いることができる。
As the switch element, for example, a field effect transistor (typically MOSFET) having a parasitic diode formed therein, or a combination of an insulated gate bipolar transistor (IGBT) and a free-wheeling diode connected in parallel thereto can be used. .
第1シャント抵抗S_A1は、A相の巻線M1を流れるA相電流IAを検出するために用いられ、例えばローサイドスイッチ素子SW_A1LとGNDラインGLの間に接続される。第1シャント抵抗S_B1は、B相の巻線M2を流れるB相電流IBを検出するために用いられ、例えばローサイドスイッチ素子SW_B1LとGNDラインGLの間に接続される。第1シャント抵抗S_C1は、C相の巻線M3を流れるC相電流ICを検出するために用いられ、例えばローサイドスイッチ素子SW_C1LとGNDラインGLの間に接続される。3個のシャント抵抗S_A1、S_B1およびS_C1は第1インバータ120のGNDラインGLと共通に接続されている。
The first shunt resistor S_A1 is used to detect the A-phase current IA flowing through the A-phase winding M1, and is connected between, for example, the low-side switch element SW_A1L and the GND line GL. The first shunt resistor S_B1 is used to detect the B-phase current IB flowing through the B-phase winding M2, and is connected between, for example, the low-side switch element SW_B1L and the GND line GL. The first shunt resistor S_C1 is used to detect a C-phase current IC flowing through the C-phase winding M3, and is connected between, for example, the low-side switch element SW_C1L and the GND line GL. The three shunt resistors S_A1, S_B1, and S_C1 are connected in common with the GND line GL of the first inverter 120.
第2インバータ130は、3個のレグから構成されるブリッジ回路を有する。各レグは、ハイサイドスイッチ素子、ローサイドスイッチ素子およびシャント抵抗を有する。A相レグは、ハイサイドスイッチ素子SW_A2H、ローサイドスイッチ素子SW_A2Lおよびシャント抵抗S_A2を有する。B相レグは、ハイサイドスイッチ素子SW_B2H、ローサイドスイッチ素子SW_B2Lおよびシャント抵抗S_B2を有する。C相レグは、ハイサイドスイッチ素子SW_C2H、ローサイドスイッチ素子SW_C2Lおよびシャント抵抗S_C2を有する。
The second inverter 130 has a bridge circuit composed of three legs. Each leg has a high-side switch element, a low-side switch element, and a shunt resistor. The A-phase leg has a high-side switch element SW_A2H, a low-side switch element SW_A2L, and a shunt resistor S_A2. The B-phase leg has a high-side switch element SW_B2H, a low-side switch element SW_B2L, and a shunt resistor S_B2. The C-phase leg has a high-side switch element SW_C2H, a low-side switch element SW_C2L, and a shunt resistor S_C2.
シャント抵抗S_A2は、A相電流IAを検出するために用いられ、例えば、ローサイドスイッチ素子SW_A2LとGNDラインGLの間に接続される。シャント抵抗S_B2は、B相電流IBを検出するために用いられ、例えば、ローサイドスイッチ素子SW_B2LとGNDラインGLの間に接続される。シャント抵抗S_C2は、C相電流ICを検出するために用いられ、例えば、ローサイドスイッチ素子SW_C2LとGNDラインGLの間に接続される。3個のシャント抵抗S_A2、S_B2およびS_C2は、第2インバータ130のGNDラインGLと共通に接続されている。
The shunt resistor S_A2 is used to detect the A-phase current IA, and is connected, for example, between the low-side switch element SW_A2L and the GND line GL. The shunt resistor S_B2 is used for detecting the B-phase current IB, and is connected, for example, between the low-side switch element SW_B2L and the GND line GL. The shunt resistor S_C2 is used to detect the C-phase current IC, and is connected, for example, between the low-side switch element SW_C2L and the GND line GL. The three shunt resistors S_A2, S_B2, and S_C2 are connected in common with the GND line GL of the second inverter 130.
上述した電流センサ150は、例えば、シャント抵抗S_A1、S_B1、S_C1、S_A2、S_B2、S_C2および各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を備える。
The current sensor 150 described above includes, for example, a shunt resistor S_A1, S_B1, S_C1, S_A2, S_B2, S_C2, and a current detection circuit (not shown) that detects a current flowing through each shunt resistor.
第1インバータ120のA相レグ(具体的には、ハイサイドスイッチ素子SW_A1Hおよびローサイドスイッチ素子SW_A1Lの間のノード)は、モータ200のA相の巻線M1の一端A1に接続され、第2インバータ130のA相レグは、A相の巻線M1の他端A2に接続される。第1インバータ120のB相レグは、モータ200のB相の巻線M2の一端B1に接続され、第2インバータ130のB相レグは、巻線M2の他端B2に接続される。第1インバータ120のC相レグは、モータ200のC相の巻線M3の一端C1に接続され、第2インバータ130のC相レグは、巻線M3の他端C2に接続される。
The A-phase leg of the first inverter 120 (specifically, a node between the high-side switch element SW_A1H and the low-side switch element SW_A1L) is connected to one end A1 of the A-phase winding M1 of the motor 200, and the second inverter The 130 A-phase leg is connected to the other end A2 of the A-phase winding M1. The B-phase leg of the first inverter 120 is connected to one end B1 of the B-phase winding M2 of the motor 200, and the B-phase leg of the second inverter 130 is connected to the other end B2 of the winding M2. The C-phase leg of the first inverter 120 is connected to one end C1 of the C-phase winding M3 of the motor 200, and the C-phase leg of the second inverter 130 is connected to the other end C2 of the winding M3.
インバータユニット100は、A相、B相およびC相のHブリッジを備える。各相のHブリッジは、2つのローサイドスイッチ素子、2つのハイサイドスイッチ素子および巻線を有する。例えば、A相のHブリッジは、第1インバータ120側のレグにおけるハイサイドスイッチ素子SW_A1H、ローサイドスイッチ素子SW_A1L、第2インバータ130側のレグにおけるハイサイドスイッチ素子SW_A2H、ローサイドスイッチ素子SW_A2L、および、巻線M1を有する。
The inverter unit 100 includes A-phase, B-phase, and C-phase H bridges. Each phase H-bridge has two low-side switch elements, two high-side switch elements and a winding. For example, the A-phase H bridge includes a high-side switch element SW_A1H and a low-side switch element SW_A1L in the leg on the first inverter 120 side, a high-side switch element SW_A2H, a low-side switch element SW_A2L in the leg on the second inverter 130 side, and a winding. It has a line M1.
制御回路300(具体的にはコントローラ340)は、以下で説明するHブリッジの故障診断を実行することにより、三相のHブリッジの中から故障したHブリッジを特定することができる。スイッチ素子の故障には、大きく分けて「開放故障」と「短絡故障」とがある。「開放故障」は、FETのソース-ドレイン間が開放する故障(換言すると、ソース-ドレイン間の抵抗rdsがハイインピーダンスになること)を指し、「短絡故障」は、FETのソース-ドレイン間が短絡する故障を指す。本開示において、Hブリッジの故障は、Hブリッジの中のスイッチ素子の開放故障を指す。例えば、A相のHブリッジのハイサイドスイッチ素子SW_A1Hに開放故障が生じた場合、その故障をA相のHブリッジの故障と呼ぶ。
The control circuit 300 (specifically, the controller 340) can identify a faulty H bridge from among the three-phase H bridges by executing fault diagnosis of the H bridge described below. The failure of the switch element is broadly classified into “open failure” and “short-circuit failure”. “Open failure” refers to a failure in which the source-drain of the FET is opened (in other words, the resistance rds between the source and drain becomes high impedance), and “short-circuit failure” refers to a failure between the source and drain of the FET. Refers to a short circuit failure. In the present disclosure, an H-bridge failure refers to an open failure of a switch element in the H-bridge. For example, when an open failure occurs in the A-phase H-bridge high-side switch element SW_A1H, the failure is referred to as an A-phase H-bridge failure.
例えば、制御回路300は、故障したHブリッジを特定すると、故障したHブリッジ以外の二相のHブリッジを用いて二相の巻線を通電するモータ制御に切替えることが可能である。本明細書において、三相の巻線を通電することを「三相通電制御」と呼び、二相の巻線を通電することを「二相通電制御」と呼ぶこととする。
For example, if the faulty H-bridge is specified, the control circuit 300 can switch to motor control in which a two-phase winding is energized using a two-phase H-bridge other than the faulty H-bridge. In this specification, energizing the three-phase winding is referred to as “three-phase energization control”, and energizing the two-phase winding is referred to as “two-phase energization control”.
〔2.Hブリッジの故障診断方法〕
図3から図8を参照しながら、例えば、図1に示す電力変換装置1000に用いる、Hブリッジの故障を診断する故障診断方法の具体例を説明する。ただし、本開示の故障診断方法は、少なくとも1つのHブリッジを備える電力変換装置、例えばフルブリッジタイプの電力変換装置に好適に用いることができる。 [2. Failure diagnosis method for H-bridge]
A specific example of a failure diagnosis method for diagnosing an H-bridge failure, which is used in, for example, thepower conversion apparatus 1000 illustrated in FIG. 1, will be described with reference to FIGS. 3 to 8. However, the failure diagnosis method of the present disclosure can be suitably used for a power conversion device including at least one H bridge, for example, a full bridge type power conversion device.
図3から図8を参照しながら、例えば、図1に示す電力変換装置1000に用いる、Hブリッジの故障を診断する故障診断方法の具体例を説明する。ただし、本開示の故障診断方法は、少なくとも1つのHブリッジを備える電力変換装置、例えばフルブリッジタイプの電力変換装置に好適に用いることができる。 [2. Failure diagnosis method for H-bridge]
A specific example of a failure diagnosis method for diagnosing an H-bridge failure, which is used in, for example, the
汎用のプリドライバには通常、インバータ内のスイッチ素子の短絡故障を検知する故障検出回路が実装されている。例えば、測定したFETのソース-ドレイン電圧とソース-ドレインしきい値電圧とを比較することで、スイッチ素子の短絡故障は検出される。従って、スイッチ素子の短絡故障の診断は、故障検出回路を実装した駆動回路350を用いて行うことができる。これに対し、開放故障を検知する機能はプリドライバには実装されていない。そのため、スイッチ素子の開放故障を適切に検出する手法が望まれている。
A general-purpose pre-driver usually has a failure detection circuit that detects a short-circuit failure of a switch element in the inverter. For example, the short-circuit fault of the switch element is detected by comparing the measured source-drain voltage of the FET and the source-drain threshold voltage. Therefore, the diagnosis of the short circuit failure of the switch element can be performed using the drive circuit 350 in which the failure detection circuit is mounted. On the other hand, the function for detecting an open failure is not implemented in the pre-driver. Therefore, a technique for appropriately detecting an open failure of the switch element is desired.
本実施形態は、Hブリッジの4つのスイッチ素子のうちの少なくとも1つに開放故障が生じているかどうかを、回転速度ωおよび相電流のピーク値Ipeakの積に基づいて相毎に診断する故障診断方法を提供する。
In the present embodiment, a failure diagnosis for diagnosing, for each phase, whether or not an open failure has occurred in at least one of the four switching elements of the H-bridge, based on the product of the rotational speed ω and the peak value Ipeak of the phase current. Provide a method.
Hブリッジの故障を診断する故障診断方法の概要は下記のとおりである。
The outline of the failure diagnosis method for diagnosing H-bridge failure is as follows.
ステップA:電流センサ150によって測定された相電流の第1電流正弦波、第1電流正弦波の位相を90°シフトして得られる第2電流正弦波およびモータの回転速度ωに基づいて、Hブリッジの故障を監視するための監視信号を相毎に生成する。例えば、監視信号は、測定された相電流のピーク値および回転速度ωの積の二乗によって表される。回転速度ωは、単位時間(例えば1分間)にモータのロータが回転する回転数(rpm)または単位時間(例えば1秒間)にロータが回転する回転数(rps)で表される。
Step A: Based on the first current sine wave of the phase current measured by the current sensor 150, the second current sine wave obtained by shifting the phase of the first current sine wave by 90 °, and the rotational speed ω of the motor, H A monitoring signal for monitoring a bridge failure is generated for each phase. For example, the monitoring signal is represented by the square of the product of the measured peak value of the phase current and the rotational speed ω. The rotation speed ω is represented by a rotation speed (rpm) at which the rotor of the motor rotates per unit time (for example, 1 minute) or a rotation speed (rps) at which the rotor rotates at unit time (for example, 1 second).
ステップB:監視信号と故障レベルのしきい値との比較結果に基づいてプレ故障信号を相毎に生成する。プレ故障信号は、例えばハイアクティブの信号であり、スイッチ素子の開放故障が生じるとアサートされる信号である。
Step B: A pre-fault signal is generated for each phase based on the comparison result between the monitoring signal and the threshold of the fault level. The pre-failure signal is a high active signal, for example, and is a signal that is asserted when an open failure of the switch element occurs.
ステップC:プレ故障信号、および、プレ故障信号を有効または無効にするアクティベーション信号の論理積を演算することにより、Hブリッジが故障しているか否かを示す故障信号を相毎に生成する。故障信号は、例えばハイアクティブの信号であり、スイッチ素子の開放故障が生じるとアサートされる信号である。
Step C: A fault signal indicating whether or not the H-bridge is faulty is generated for each phase by calculating the logical product of the pre-fault signal and an activation signal that enables or disables the pre-fault signal. The failure signal is, for example, a highly active signal, and is a signal that is asserted when an open failure of the switch element occurs.
ステップD:故障診断ユニット800からモータ200を制御するモータ制御ユニット900に故障信号を出力する。
Step D: A failure signal is output from the failure diagnosis unit 800 to the motor control unit 900 that controls the motor 200.
上記のステップAからDは、例えば、電流センサ150によって各相電流を測定する周期、すなわちAD変換の周期に同期して繰り返し実行される。
The above steps A to D are repeatedly executed in synchronization with, for example, a period in which each phase current is measured by the current sensor 150, that is, an AD conversion period.
本実施形態による故障診断方法を実現するためのアルゴリズムは、例えば特定用途向け集積回路(ASIC)またはFPGAなどのハードウェアのみで実現することもできるし、マイクロコントローラおよびソフトウェアの組み合わせによっても実現することができる。本実施形態では、故障診断の動作主体を制御回路300のコントローラ340として説明する。
The algorithm for realizing the fault diagnosis method according to the present embodiment can be realized only by hardware such as an application specific integrated circuit (ASIC) or FPGA, or can be realized by a combination of a microcontroller and software. Can do. In the present embodiment, the operation subject of failure diagnosis will be described as the controller 340 of the control circuit 300.
図3は、モータ制御全般を行うためのコントローラ340の機能ブロックを例示している。図4Aは、監視信号ユニット810Aの機能ブロックを例示している。図4Bは、監視信号ユニット810Bの機能ブロックを例示している。図4Cは、監視信号ユニット810Cの機能ブロックを例示している。図5は、カットオフ周波数ユニット820、値ユニット830およびアクティベーション信号ユニット840の機能ブロックを例示している。図6は、プレ故障信号ユニット850および故障信号ユニット860の機能ブロックを例示している。
FIG. 3 illustrates functional blocks of the controller 340 for performing overall motor control. FIG. 4A illustrates functional blocks of the monitoring signal unit 810A. FIG. 4B illustrates functional blocks of the monitoring signal unit 810B. FIG. 4C illustrates functional blocks of the monitoring signal unit 810C. FIG. 5 illustrates functional blocks of a cut-off frequency unit 820, a value unit 830, and an activation signal unit 840. FIG. 6 illustrates functional blocks of the pre-fault signal unit 850 and the fault signal unit 860.
本明細書において、機能ブロック図における各ブロックは、ハードウェア単位ではなく機能ブロック単位で示している。モータ制御およびHブリッジの故障診断に用いるソフトウェアは、例えば、各機能ブロックに対応した特定の処理を実行させるためのコンピュータプログラムを構成するモジュールであり得る。そのようなコンピュータプログラムは、例えばROM360に格納される。コントローラ340は、ROM360から命令を読み出して各処理を逐次実行することができる。
In this specification, each block in the functional block diagram is shown not in hardware units but in functional block units. The software used for motor control and H-bridge failure diagnosis may be, for example, a module constituting a computer program for executing a specific process corresponding to each functional block. Such a computer program is stored in the ROM 360, for example. The controller 340 can read out commands from the ROM 360 and sequentially execute each process.
コントローラ340は、例えば、故障診断ユニット800およびモータ制御ユニット900を有する。このように、本開示の故障診断は、例えばベクトル制御などのモータ制御と好適に組み合わせることができ、モータ制御の一連の処理の中に組み込むことが可能である。
The controller 340 includes, for example, a failure diagnosis unit 800 and a motor control unit 900. As described above, the failure diagnosis of the present disclosure can be suitably combined with motor control such as vector control, and can be incorporated in a series of processes of motor control.
故障診断ユニット800は、入力信号として、モータの回転速度ω、モータ制御に用いるリファレンス電流のピーク値Ipeak_refおよび電流センサ150によって測定された相電流IA、IBおよびICを獲得する。リファレンス電流は電流指令値と呼ばれることもある。故障診断ユニット800は、A、BおよびC相の故障信号PhaseA_FD、PhaseB_FDおよびPhaseC_FDをこれらの入力信号に基づいて生成し、モータ制御ユニット900に出力する。故障信号は、各相のHブリッジが故障しているか否かを示す信号である。
The fault diagnosis unit 800 obtains the motor rotation speed ω, the peak value Ipeak_ref of the reference current used for motor control, and the phase currents IA, IB and IC measured by the current sensor 150 as input signals. The reference current is sometimes called a current command value. The failure diagnosis unit 800 generates A, B, and C phase failure signals PhaseA_FD, PhaseB_FD, and PhaseC_FD based on these input signals, and outputs them to the motor control unit 900. The failure signal is a signal indicating whether or not the H bridge of each phase has failed.
モータ制御ユニット900は、例えばベクトル制御を用いて、第1および第2インバータ120、130のスイッチ素子のスイッチング動作の全般を制御するPWM信号を生成する。モータ制御ユニット900は、PWM信号を駆動回路350に出力する。また、モータ制御ユニット900は、故障信号がアサートされると、例えばモータ制御を三相通電制御から二相通電制御に切替えることが可能である。
The motor control unit 900 generates a PWM signal that controls the overall switching operation of the switch elements of the first and second inverters 120 and 130 using, for example, vector control. The motor control unit 900 outputs a PWM signal to the drive circuit 350. In addition, when the failure signal is asserted, the motor control unit 900 can switch, for example, motor control from three-phase energization control to two-phase energization control.
本明細書において、説明の便宜上、各機能ブロックをユニットと表記する場合がある。当然に、各機能ブロックをハードウェアまたはソフトウェアに限定する意図でこれらの表記を解釈してはならない。
In this specification, for convenience of explanation, each functional block may be expressed as a unit. Of course, these notations should not be interpreted with the intention of limiting each functional block to hardware or software.
各機能ブロックはソフトウェアとしてコントローラ340に実装される場合、そのソフトウェアの実行主体は、例えばコントローラ340のコアであり得る。上述したように、コントローラ340は、FPGAによって実現され得る。その場合、全てまたは一部の機能ブロックは、ハードウェアで実現され得る。
When each functional block is implemented as software in the controller 340, the execution subject of the software may be the core of the controller 340, for example. As described above, the controller 340 can be realized by an FPGA. In that case, all or some of the functional blocks may be realized by hardware.
複数のFPGAを用いて処理を分散させることにより、特定のコンピュータの演算負荷を分散させることができる。その場合、図3から図6に示される機能ブロックの全てまたは一部は、複数のFPGAに分散して実装され得る。複数のFPGAは、例えば車載のコントロールエリアネットワーク(CAN)によって互いに通信可能に接続され、データの送受信を行うことが可能である。
By distributing processing using a plurality of FPGAs, it is possible to distribute the computation load of a specific computer. In that case, all or some of the functional blocks shown in FIGS. 3 to 6 may be distributed and implemented in a plurality of FPGAs. The plurality of FPGAs are communicably connected to each other by, for example, an in-vehicle control area network (CAN), and can transmit and receive data.
故障診断ユニット800は、監視信号ユニット810A、810B、810C、カットオフ周波数ユニット820、しきい値ユニット830、アクティベーション信号ユニット840、プレ故障信号ユニット850および故障信号ユニット860を有する。監視信号ユニット810A、810Bおよび810Cは、実質的に同じ機能ブロックから構成される。以下、A相の監視信号ユニット810Aを例に、A相の監視信号ω2Ia_Peak2を生成する処理フローを説明する。
The failure diagnosis unit 800 includes monitoring signal units 810A, 810B, 810C, a cutoff frequency unit 820, a threshold unit 830, an activation signal unit 840, a pre-failure signal unit 850, and a failure signal unit 860. The supervisory signal units 810A, 810B and 810C are composed of substantially the same functional blocks. Hereinafter, the processing flow for generating the A-phase monitoring signal ω2Ia_Peak2 will be described using the A-phase monitoring signal unit 810A as an example.
図4Aに示すように、監視信号ユニット810Aは、A相のHブリッジの故障を監視するための監視信号ω2Ia_Peak2を生成する。入力信号は、回転速度ωおよび電流センサ150によって測定されたA相の相電流IAである。本実施形態において、相電流の電流波形は、式(1)を用いて表される正弦波である。ここで、Ia_peakは相電流IAのピーク値である。式(1)で表される電流正弦波を第1電流正弦波と呼ぶこととする。
IA=Ia_peak・sin(ωt) 式(1) As shown in FIG. 4A, themonitoring signal unit 810A generates a monitoring signal ω2Ia_Peak2 for monitoring a failure of the A-phase H bridge. The input signal is the rotation speed ω and the phase A current IA measured by the current sensor 150. In the present embodiment, the current waveform of the phase current is a sine wave expressed using Expression (1). Here, Ia_peak is a peak value of the phase current IA. The current sine wave represented by Expression (1) is referred to as a first current sine wave.
IA = Ia_peak · sin (ωt) Equation (1)
IA=Ia_peak・sin(ωt) 式(1) As shown in FIG. 4A, the
IA = Ia_peak · sin (ωt) Equation (1)
監視信号ユニット810Aは、例えば、プログラマブルローパスフィルタ(以降、「PLPF」と表記する。)801、806、808、810、813、二乗ユニット802、803、807、811、平方根ユニット805、乗算器804、微分ユニット809および加算器812を有する。例えば、二乗ユニット802は、PLPF801でフィルタ処理された第1電流正弦波を二乗する。乗算器804は、二乗ユニット803の出力ω2を二乗ユニット802の出力Ia2に乗算することにより、ω2Ia2を得る。平方根ユニット805は、ω2Ia2の平方根ωIaを演算し、PLPF806はωIaをフィルタ処理する。二乗ユニット807は、フィルタ処理したωIaを再度二乗することにより、フィルタ処理後のω2Ia2を得る。このように、幾つかのローパスフィルタ処理を行うことにより、相電流のノイズを効果的に除去することができる。
The monitor signal unit 810A is, for example, a programmable low-pass filter (hereinafter referred to as “PLPF”) 801, 806, 808, 810, 813, a square unit 802, 803, 807, 811, a square root unit 805, a multiplier 804, A differentiation unit 809 and an adder 812 are included. For example, the square unit 802 squares the first current sine wave filtered by the PLPF 801. The multiplier 804 multiplies the output ω 2 of the square unit 803 by the output Ia 2 of the square unit 802 to obtain ω 2 Ia 2 . The square root unit 805 calculates the square root ωIa of ω 2 Ia 2 , and the PLPF 806 filters ωIa. The square unit 807 obtains ω 2 Ia 2 after the filtering process by squaring again the filtered ωIa. Thus, the noise of the phase current can be effectively removed by performing some low-pass filter processes.
PLPF801、806、808、810および813の各々はカットオフ周波数fcutを有する。図5に示すカットオフ周波数ユニット820は、例えば、ゲインユニット821およびLPF822を有する。カットオフ周波数ユニット820は、回転速度ωおよびゲインの乗算値に基づいてカットオフ周波数fcutを決定する。
Each of PLPF 801, 806, 808, 810 and 813 has a cut-off frequency fcut. The cut-off frequency unit 820 shown in FIG. 5 includes, for example, a gain unit 821 and an LPF 822. The cut-off frequency unit 820 determines the cut-off frequency fcut based on the multiplication value of the rotation speed ω and the gain.
監視信号ユニット810Aは、ω2Ia2の演算に並行して、第1電流正弦波の位相を90°シフトして得られる第2電流正弦波を取得する演算を行う。位相を90°シフトするとは、初期位相を90°進めるまたは遅らせることを意味する。つまり、第2電流正弦波の位相は、第1電流正弦波のそれに対し90°進むかまたは遅れる。
In parallel with the calculation of ω 2 Ia 2 , the monitoring signal unit 810A performs a calculation for acquiring a second current sine wave obtained by shifting the phase of the first current sine wave by 90 °. To shift the phase by 90 ° means to advance or delay the initial phase by 90 °. That is, the phase of the second current sine wave is advanced or delayed by 90 ° with respect to that of the first current sine wave.
位相を90°進める具体例は時間微分である。図4Aのように、監視信号ユニット810Aは、第1電流正弦波を時間微分することにより第2電流正弦波を取得する。監視信号ユニット810Aは、微分ユニット809で微分演算を行う前に相電流IAをPLPF808によりフィルタ処理することが好ましい。このフィルタ処理により、後段の微分演算によって生じ得る、相電流IAに重畳したノイズの増幅を抑制することが可能となる。微分ユニット809は、フィルタ処理した第1電流正弦波を時間微分し、式(2)で表される第2電流正弦波を取得する。すなわち、第1電流正弦波をローパスフィルタ処理した後で時間微分することにより、第2電流正弦波を取得する。ここで、d/dtは微分演算子である。
dIA/dt=ω・Ia_peak・cos(ωt) 式(2) A specific example of advancing the phase by 90 ° is time differentiation. As shown in FIG. 4A, themonitoring signal unit 810A obtains the second current sine wave by time-differentiating the first current sine wave. The monitoring signal unit 810A preferably filters the phase current IA by the PLPF 808 before performing the differentiation operation by the differentiation unit 809. By this filtering process, it is possible to suppress amplification of noise superimposed on the phase current IA, which may be caused by subsequent differential calculation. The differentiating unit 809 time-differentiates the filtered first current sine wave to obtain a second current sine wave represented by Expression (2). That is, the second current sine wave is acquired by performing time differentiation after the first current sine wave is low pass filtered. Here, d / dt is a differential operator.
dIA / dt = ω · Ia_peak · cos (ωt) Equation (2)
dIA/dt=ω・Ia_peak・cos(ωt) 式(2) A specific example of advancing the phase by 90 ° is time differentiation. As shown in FIG. 4A, the
dIA / dt = ω · Ia_peak · cos (ωt) Equation (2)
監視信号ユニット810Aは、第2電流正弦波をPLPF810によりさらにフィルタ処理することが好ましい。さらなるフィルタ処理により、微分演算によって生じ得る、相電流IAに重畳したノイズの増幅をより適切に抑制することが可能となる。二乗ユニット811は、フィルタ処理した第2電流正弦波を二乗することにより、(dIA/dt)2を得る。加算器812は、式(3)に基づいて、ω2Ia2に(dIA/dt)2を加算することにより、A相の監視信号ω2Ia_Peak2を生成する。A相の監視信号ω2Ia_Peak2は、測定された相電流IAのピーク値Ia_peakおよび回転速度ωの積の二乗によって表される。
ω2Ia2+(dIA/dt)2=ω2Ia_peak2・sin2(ωt)+ω2・Ia_peak2・cos2(ωt)=ω2Ia_peak2 式(3) Themonitoring signal unit 810A preferably further filters the second current sine wave by the PLPF 810. By further filtering, it is possible to more appropriately suppress the amplification of noise superimposed on the phase current IA, which can be caused by differential operation. The square unit 811 obtains (dIA / dt) 2 by squaring the filtered second current sine wave. The adder 812 generates the A-phase monitoring signal ω2Ia_Peak2 by adding (dIA / dt) 2 to ω 2 Ia 2 based on Equation (3). The A phase monitoring signal ω2Ia_Peak2 is represented by the square of the product of the measured peak value Ia_peak of the phase current IA and the rotational speed ω.
ω 2 Ia 2 + (dIA / dt) 2 = ω 2 Ia_peak 2 · sin 2 (ωt) + ω 2 · Ia_peak 2 · cos 2 (ωt) = ω 2 Ia_peak 2 formula (3)
ω2Ia2+(dIA/dt)2=ω2Ia_peak2・sin2(ωt)+ω2・Ia_peak2・cos2(ωt)=ω2Ia_peak2 式(3) The
ω 2 Ia 2 + (dIA / dt) 2 = ω 2 Ia_peak 2 · sin 2 (ωt) + ω 2 · Ia_peak 2 · cos 2 (ωt) = ω 2 Ia_peak 2 formula (3)
式(3)に基づいて監視信号ω2Ia_Peak2を求めるとき、加算器812に入力する2つの信号ピークの大きさは同程度にしておくことが好ましい。図4Aに示す加算器812の微分演算を含む下側ブランチ(演算パス)において、2回のフィルタ処理を実施する。これに合わせて、加算器812の上側ブランチにおいても2回のフィルタ処理を実施する。これにより、Ia_peak2相当のピークを有する2つの入力信号を加算器812に与えることが可能となる。
When obtaining the monitoring signal ω2Ia_Peak2 based on the equation (3), it is preferable that the magnitudes of the two signal peaks input to the adder 812 be approximately the same. In the lower branch (arithmetic path) including the differential operation of the adder 812 shown in FIG. 4A, filter processing is performed twice. In accordance with this, the filtering process is performed twice also in the upper branch of the adder 812. As a result, two input signals having peaks corresponding to Ia_peak 2 can be supplied to the adder 812.
監視信号ユニット810Aは、生成した監視信号ω2Ia_Peak2をPLPF813によってフィルタ処理することが好ましい。この最終段のフィルタ処理によって、後述する故障診断の応答性を向上させることが可能となる。B、C相の監視信号ω2Ib_Peak2、ω2Ic_Peak2は、A相の監視信号ω2Ia_Peak2と同様に生成される。図4B、4Cを参照されたい。
The monitoring signal unit 810A preferably filters the generated monitoring signal ω2Ia_Peak2 with the PLPF 813. This final-stage filtering process can improve the response of failure diagnosis described later. The B and C phase monitoring signals ω2Ib_Peak2 and ω2Ic_Peak2 are generated in the same manner as the A phase monitoring signal ω2Ia_Peak2. See Figures 4B and 4C.
上述したとおり、第2電流正弦波の位相は、第1電流正弦波のそれに対し90°遅れていてもよい。位相を90°遅らせる具体例は、時間積分である。図7は、時間積分を用いた監視信号ユニット810Aの機能ブロックを例示している。
As described above, the phase of the second current sine wave may be delayed by 90 ° with respect to that of the first current sine wave. A specific example of delaying the phase by 90 ° is time integration. FIG. 7 illustrates functional blocks of the monitoring signal unit 810A using time integration.
監視信号ユニット810Aは、微分ユニット809に代えて積分ユニット820を有することができる。監視信号ユニット810Aは、積分ユニット820を用いて第1電流正弦波を時間積分することにより、第2電流正弦波を取得しても構わない。乗算器804は、第2電流正弦波の二乗に回転速度ωの二乗を乗算する。加算器812は、式(4)に基づいて、PLPF806でフィルタ処理した乗算器804の出力を、PLPF810でフィルタ処理した第1電流正弦波の二乗に加算することにより、監視信号ω2Ia_Peak2を生成することができる。
ω2Ia_Peak2=IA2+(ω∫IAdt)2=Ia_peak2 式(4) Themonitoring signal unit 810A may include an integration unit 820 instead of the differentiation unit 809. The monitoring signal unit 810A may acquire the second current sine wave by time-integrating the first current sine wave using the integration unit 820. The multiplier 804 multiplies the square of the second current sine wave by the square of the rotational speed ω. The adder 812 generates the monitoring signal ω2Ia_Peak2 by adding the output of the multiplier 804 filtered by the PLPF 806 to the square of the first current sine wave filtered by the PLPF 810 based on the equation (4). Can do.
ω2Ia_Peak2 = IA 2 + (ω∫IAdt) 2 = Ia_peak 2 formula (4)
ω2Ia_Peak2=IA2+(ω∫IAdt)2=Ia_peak2 式(4) The
ω2Ia_Peak2 = IA 2 + (ω∫IAdt) 2 = Ia_peak 2 formula (4)
監視信号ユニット810Aにおいて微分演算を行う場合、監視信号ω2Ia_Peak2は、係数に回転速度ωを含むために、特に高速回転時の故障診断が容易になる。積分演算を行う場合、監視信号ω2Ia_Peak2は回転速度ωに依存しないために故障診断を容易に行うことができる。
When performing a differentiation operation in the monitoring signal unit 810A, the monitoring signal ω2Ia_Peak2 includes the rotational speed ω in the coefficient, so that it is easy to diagnose a failure particularly at high speed rotation. When performing the integral operation, the monitoring signal ω2Ia_Peak2 does not depend on the rotational speed ω, and therefore, failure diagnosis can be easily performed.
故障レベルのしきい値FD_Levelは、電流センサ150によって測定された相電流IA、IBおよびICのピーク値Ia_Peak、Ib_PeakおよびIc_Peakの平均値に基づいて決定することができる。図5に示すしきい値ユニット830は、平均値ユニット831およびゲインユニット832を有する。しきい値ユニット830は、監視信号ユニット810Aから出力されたω2Ia_Peak2、監視信号ユニット810Bから出力されたω2Ib_Peak2、および、監視信号ユニット810Cから出力されたω2Ic_Peak2に基づいて故障レベルのしきい値FD_Levelを決定する。例えば、平均値ユニット831は、ω2Ia_Peak2、ω2Ib_Peak2およびω2Ic_Peak2の平均値を演算する。ゲインユニット832はその平均値に可変ゲインを乗算することにより、FD_Levelを決定する。例えば、しきい値ユニット830は、電流および回転速度の関数を適用したルックアップテーブルを用いて実現される。可変ゲインの値は、例えば0.01から0.95の範囲に設定される。しきい値ユニット830によれば、各相のピーク値を用いるために、故障診断処理のための変数を増やす必要がなくなる。
The failure level threshold FD_Level can be determined based on the average values of the phase currents IA, IB and IC peak values Ia_Peak, Ib_Peak and Ic_Peak measured by the current sensor 150. The threshold unit 830 shown in FIG. 5 includes an average value unit 831 and a gain unit 832. The threshold unit 830 determines a failure level threshold FD_Level based on ω2Ia_Peak2 output from the monitoring signal unit 810A, ω2Ib_Peak2 output from the monitoring signal unit 810B, and ω2Ic_Peak2 output from the monitoring signal unit 810C. To do. For example, the average value unit 831 calculates the average value of ω2Ia_Peak2, ω2Ib_Peak2, and ω2Ic_Peak2. The gain unit 832 determines FD_Level by multiplying the average value by a variable gain. For example, the threshold unit 830 is implemented using a lookup table that applies a function of current and rotational speed. The value of the variable gain is set in the range of 0.01 to 0.95, for example. According to the threshold unit 830, since the peak value of each phase is used, it is not necessary to increase the variables for failure diagnosis processing.
図5に示すアクティベーション信号ユニット840は、絶対値ユニット841および比較ユニット842を有する。比較ユニット842は、モータの制御に用いるリファレンス電流のピーク値Ipeak_refとリファレンス電流の最小値I_minとの比較結果に基づいてアクティベーション信号Zero_Levelを生成する。アクティベーション信号Zero_Levelは、リファレンス電流がゼロであるか否かを示す信号である。リファレンス電流のピーク値Ipeak_refは、式(5)によって与えられる。absは絶対値の演算子である。
Ipeak_ref=〔(2/3)1/2(Id_ref2+Iq_ref2)1/2〕+〔abs(Iz_ref)/(3)1/2〕 式(5)
ここで、Id_refはdq座標系におけるd軸リファレンス電流であり、Iq_reqはdq座標系におけるq軸リファレンス電流である。Iz_refは、z相のリファレンス電流である。リファレンス電流の最小値I_minは、例えば10mA程度に設定される。 Theactivation signal unit 840 shown in FIG. 5 has an absolute value unit 841 and a comparison unit 842. The comparison unit 842 generates an activation signal Zero_Level based on the comparison result between the peak value Ipeak_ref of the reference current used for controlling the motor and the minimum value I_min of the reference current. The activation signal Zero_Level is a signal indicating whether or not the reference current is zero. The peak value Ipeak_ref of the reference current is given by Equation (5). abs is an operator of an absolute value.
Ipeak_ref = [(2/3) 1/2 (Id_ref 2 + Iq_ref 2 ) 1/2 ] + [abs (Iz_ref) / (3) 1/2 ] Equation (5)
Here, Id_ref is a d-axis reference current in the dq coordinate system, and Iq_req is a q-axis reference current in the dq coordinate system. Iz_ref is a z-phase reference current. The minimum value I_min of the reference current is set to about 10 mA, for example.
Ipeak_ref=〔(2/3)1/2(Id_ref2+Iq_ref2)1/2〕+〔abs(Iz_ref)/(3)1/2〕 式(5)
ここで、Id_refはdq座標系におけるd軸リファレンス電流であり、Iq_reqはdq座標系におけるq軸リファレンス電流である。Iz_refは、z相のリファレンス電流である。リファレンス電流の最小値I_minは、例えば10mA程度に設定される。 The
Ipeak_ref = [(2/3) 1/2 (Id_ref 2 + Iq_ref 2 ) 1/2 ] + [abs (Iz_ref) / (3) 1/2 ] Equation (5)
Here, Id_ref is a d-axis reference current in the dq coordinate system, and Iq_req is a q-axis reference current in the dq coordinate system. Iz_ref is a z-phase reference current. The minimum value I_min of the reference current is set to about 10 mA, for example.
例えば、アクティベーション信号Zero_Levelはハイアクティブの信号である。アクティベーション信号ユニット840の比較ユニット842は、Ipeak_refがI_min以上であるとき、アクティベーション信号Zero_Levelをアサートする。比較ユニット842は、Ipeak_refがI_min未満であるとき、アクティベーション信号Zero_Levelをネゲートする。
For example, the activation signal Zero_Level is a high active signal. The comparison unit 842 of the activation signal unit 840 asserts the activation signal Zero_Level when Ipeak_ref is greater than or equal to I_min. The comparison unit 842 negates the activation signal Zero_Level when Ipeak_ref is less than I_min.
図8は、Hブリッジのスイッチ素子に開放故障が生じた場合のA相の監視信号ω2Ia_Peak2のレベル変化の様子を示している。Hブリッジが正常であるとき、監視信号ω2Ia_Peak2のレベルは、ω2Ia_peak2を示す。Hブリッジのスイッチ素子に開放故障が生じると、監視信号ω2Ia_Peak2のレベルは、故障レベルのしきい値FD_Level未満のゼロに近いレベルまで降下する。その信号レベルは、正常時の信号レベルよりもずっと小さい。本明細書では、この信号レベルの変化に要す時間を「検出時間(Detection Time)」と呼ぶこととする。検出時間が早いほど、故障を検知する感応性または応答性は良い。既に述べたとおり、生成した監視信号ω2Ia_Peak2をPLPFによってフィルタ処理することにより、応答性を向上させることが可能となる。
FIG. 8 shows how the level of the A-phase monitoring signal ω2Ia_Peak2 changes when an open circuit failure occurs in the switching element of the H bridge. When the H-bridge is normal, the level of the monitoring signal ω2Ia_Peak2 indicates ω 2 Ia_peak 2 . When an open failure occurs in the switching element of the H bridge, the level of the monitoring signal ω2Ia_Peak2 drops to a level close to zero below the failure level threshold FD_Level. The signal level is much smaller than the normal signal level. In this specification, the time required for the change in the signal level is referred to as “detection time”. The earlier the detection time, the better the sensitivity or responsiveness for detecting a failure. As already described, it is possible to improve the responsiveness by filtering the generated monitoring signal ω2Ia_Peak2 with PLPF.
図6に示すプレ故障信号ユニット850は、3つの比較器851を有する。3つの比較器851は、A、BおよびC相のプレ故障信号A_Level_FD、B_Level_FDおよびC_Level_FDをそれぞれ生成する。例えば、A相の監視信号ω2Ia_Peak2が故障レベルのしきい値FD_Level未満である場合、A相の比較器851は、Hブリッジは故障状態であることを示すプレ故障信号A_Level_FDを生成する。監視信号ω2Ia_Peak2が故障レベルのしきい値FD_Level以上である場合、A相の比較器851は、Hブリッジは故障状態ではないことを示すプレ故障信号A_Level_FDを生成する。
The pre-failure signal unit 850 shown in FIG. 6 includes three comparators 851. Three comparators 851 generate A, B, and C phase pre-fault signals A_Level_FD, B_Level_FD, and C_Level_FD, respectively. For example, when the A-phase monitoring signal ω2Ia_Peak2 is less than the failure level threshold FD_Level, the A-phase comparator 851 generates a pre-failure signal A_Level_FD indicating that the H-bridge is in a failure state. When the monitoring signal ω2Ia_Peak2 is equal to or greater than the failure level threshold FD_Level, the A-phase comparator 851 generates a pre-failure signal A_Level_FD indicating that the H-bridge is not in a failure state.
例えば、プレ故障信号A_Level_FDはハイアクティブの信号である。故障が発生すると、プレ故障信号A_Level_FDはアサートされる。アクティベーション信号Zero_Levelは、プレ故障信号A_Level_FDを有効または無効にするために用いられる。プレ故障信号ユニット850は、B、C相のプレ故障信号B_Level_FD、C_Level_FDもA相と同様に生成する。
For example, the pre-failure signal A_Level_FD is a high active signal. When a failure occurs, the pre-failure signal A_Level_FD is asserted. The activation signal Zero_Level is used to enable or disable the pre-failure signal A_Level_FD. The pre-failure signal unit 850 generates B and C-phase pre-failure signals B_Level_FD and C_Level_FD in the same manner as the A phase.
図6に示す故障信号ユニット860は、3つのANDユニット861を有する。ANDユニット861は、プレ故障信号、および、アクティベーション信号Zero_Levelの論理積を演算することにより、Hブリッジが故障しているか否かを示す故障信号を相毎に生成する。例えば、A相のANDユニット861は、A相のプレ故障信号A_Level_FD、および、アクティベーション信号Zero_Levelの論理積を演算することにより、A相のHブリッジが故障しているか否かを示す故障信号PhaseA_FDを生成する。故障信号ユニット860は、B、C相の故障信号PhaseB_FD、PhaseC_FDもA相と同様に生成し、それらをモータ制御ユニット900に出力する。
6 has three AND units 861. The failure signal unit 860 shown in FIG. The AND unit 861 calculates a logical product of the pre-failure signal and the activation signal Zero_Level to generate a failure signal for each phase indicating whether or not the H-bridge has failed. For example, the A-phase AND unit 861 calculates the logical product of the A-phase pre-fault signal A_Level_FD and the activation signal Zero_Level, thereby indicating whether or not the A-phase H-bridge is faulty. Is generated. The failure signal unit 860 generates B and C phase failure signals PhaseB_FD and PhaseC_FD in the same manner as the A phase, and outputs them to the motor control unit 900.
リファレンス電流のピーク値Ipeak_refの絶対値がリファレンス電流の最小値I_min未満である場合、プレ故障信号A_Level_FDを無効にするアクティベーション信号Zero_Levelが生成される。その場合、プレ故障信号A_Level_FDはアサートされた状態であっても、アクティベーション信号Zero_Levelによってマスクされる。例えば、正常時のモータ駆動に、正弦波であるリファレンス電流は周期的にゼロに近い値になる。その結果、監視信号ω2Ia_Peak2のレベルは、故障レベルのしきい値FD_Level未満になり得る。Hブリッジは故障していなくても、プレ故障信号A_Level_FDはアサートされる。これを回避するために、アクティベーション信号Zero_Levelでプレ故障信号A_Level_FDをマスクすることにより、故障信号PhaseA_FDをネゲート状態に維持できる。
When the absolute value of the peak value Ipeak_ref of the reference current is less than the minimum value I_min of the reference current, an activation signal Zero_Level that invalidates the pre-fault signal A_Level_FD is generated. In that case, even if the pre-failure signal A_Level_FD is in an asserted state, it is masked by the activation signal Zero_Level. For example, for normal motor driving, the reference current, which is a sine wave, periodically becomes a value close to zero. As a result, the level of the monitoring signal ω2Ia_Peak2 may be less than the failure level threshold FD_Level. Even if the H-bridge has not failed, the pre-failure signal A_Level_FD is asserted. In order to avoid this, the failure signal PhaseA_FD can be maintained in a negated state by masking the pre-failure signal A_Level_FD with the activation signal Zero_Level.
図9は、三相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示している。図10Aは、A相のHブリッジが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のB相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示している。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。図9、図10Aの電流波形において、電気角30°毎に電流値をプロットしている。Ipkは相電流のピーク値を表す。
FIG. 9 exemplifies a current waveform (sine wave) obtained by plotting the current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion apparatus 1000 is controlled according to the three-phase energization control. are doing. FIG. 10A shows the current obtained by plotting the values of current flowing through the B-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the A-phase H-bridge fails. The waveform is illustrated. The horizontal axis represents the motor electrical angle (deg), and the vertical axis represents the current value (A). In the current waveforms of FIGS. 9 and 10A, current values are plotted every 30 electrical angles. I pk represents the peak value of the phase current.
参考として、図10Bに、B相のHブリッジが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示する。図10Cに、C相のHブリッジが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相の各巻線に流れる電流値をプロットして得られる電流波形を例示する。
For reference, in FIG. 10B, when the B-phase H bridge fails, the current values flowing in the A-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control are plotted. The current waveform obtained is illustrated. FIG. 10C shows the current obtained by plotting the values of the currents flowing through the A-phase and B-phase windings of the motor 200 when the power conversion apparatus 1000 is controlled according to the two-phase energization control when the C-phase H bridge fails. The waveform is illustrated.
例えば、モータ制御ユニット900は、正常時、つまり、故障信号PhaseA_FD、PhaseB_FDおよびPhaseC_FDの全てがネゲートされている場合、三相通電制御を行う。これに対し、例えば、故障信号PhaseA_FDがアサートされると、モータ制御ユニット900は、故障したA相のHブリッジ以外のB、C相のHブリッジを用いて巻線M2、M3を通電する二相通電制御を行うことができる。これにより、三相のうちの一相のHブリッジが故障したとしても、電力変換装置1000はモータ駆動を継続することができる。
For example, the motor control unit 900 performs three-phase energization control when it is normal, that is, when all of the failure signals PhaseA_FD, PhaseB_FD, and PhaseC_FD are negated. On the other hand, for example, when the failure signal PhaseA_FD is asserted, the motor control unit 900 uses the B and C phase H bridges other than the failed A phase H bridge to energize the windings M2 and M3. Energization control can be performed. Thereby, even if one-phase H-bridge of the three phases breaks down, power conversion apparatus 1000 can continue motor driving.
以下に、本開示によるHブリッジの故障診断に用いられるアルゴリズムの妥当性を、dSPACE社の”ラピッドコントロールプロトタイピング(RCP)システム”およびMathWorks社のMatlab/Simulinkを用いて検証した結果を示す。この検証には、ベクトル制御により制御を受ける、電動パワーステアリング(EPS)装置に用いる表面磁石型(SPM)モータのモデルが用いられた。電流および回転速度の異なる条件下でA相のHブリッジの故障診断における検出時間を検証した。d軸のリファレンス電流Id_refおよびz相のリファレンス電流Iz_refを0Aに設定し、q軸のリファレンス電流Iq_refを変化させた。
The results of verifying the validity of the algorithm used for H-bridge failure diagnosis according to the present disclosure using “Rapid Control Prototyping (RCP) System” of dSPACE and Matlab / Simulink of MathWorks are shown below. For this verification, a model of a surface magnet type (SPM) motor used in an electric power steering (EPS) apparatus, which is controlled by vector control, was used. The detection time in fault diagnosis of A-phase H-bridge under different conditions of current and rotational speed was verified. The d-axis reference current Id_ref and the z-phase reference current Iz_ref were set to 0 A, and the q-axis reference current Iq_ref was changed.
モータを250、500、750、1000、1500および1700rpmで回転させた場合において、0Aから20Aまでの範囲のリファレンス電流Iq_refに対する検出時間をそれぞれ検証した。
When the motor was rotated at 250, 500, 750, 1000, 1500 and 1700 rpm, the detection time for the reference current Iq_ref in the range from 0 A to 20 A was verified.
図11Aから図11Fは、250、500、750、1000、1500および1700rpmでモータを回転させるときの、リファレンス電流Iq_refに対する検出時間のシミュレーション結果をそれぞれ示している。グラフの縦軸は、検出時間(ms)を示し、横軸は、リファレンス電流Iq_ref(A)を示す。
FIGS. 11A to 11F show simulation results of detection times with respect to the reference current Iq_ref when the motor is rotated at 250, 500, 750, 1000, 1500, and 1700 rpm, respectively. The vertical axis of the graph represents the detection time (ms), and the horizontal axis represents the reference current Iq_ref (A).
例えば、車載に搭載されるEPSシステムの規格によれば、20ms以下の検出時間が求められる。シミュレーション結果から、低速回転から高速回転までのモータ駆動範囲、かつ、低トルクから高トルクまでのモータ駆動範囲において、市場要求を十分に満足する検出時間が得られることが分かる。
For example, according to the standard of an EPS system mounted on a vehicle, a detection time of 20 ms or less is required. From the simulation results, it can be seen that the detection time sufficiently satisfying the market requirement can be obtained in the motor drive range from low speed rotation to high speed rotation and in the motor drive range from low torque to high torque.
従来、Hブリッジのスイッチ素子が開放故障した場合、相電流に重畳されるノイズの影響により、開放故障を正確に検出することは困難であった。また、Hブリッジは正常に機能している場合であっても、相電流は正弦波であるので、その電流値は周期的にゼロとなる。そのことが、開放故障を正確に検出することをより一層困難にしていた。
Conventionally, when a switching element of an H-bridge has an open failure, it has been difficult to accurately detect the open failure due to the influence of noise superimposed on the phase current. Even if the H-bridge is functioning normally, the phase current is a sine wave, and the current value periodically becomes zero. This made it more difficult to accurately detect open faults.
本実施形態によると、相電流のピーク値と回転速度の積の二乗または相電流のピーク値の二乗に基づく監視信号を監視する。これにより、時間依存による相電流の変動を考慮せずにHブリッジの故障を容易に診断することが可能となる。さらに、生成した監視信号をローパスフィルタ処理することにより、故障検知の応答性または感応性を向上させることができる。
According to the present embodiment, the monitoring signal based on the square of the product of the peak value of the phase current and the rotation speed or the square of the peak value of the phase current is monitored. As a result, it is possible to easily diagnose the failure of the H-bridge without taking into consideration the variation of the phase current due to time dependence. Furthermore, by performing low-pass filter processing on the generated monitoring signal, it is possible to improve the responsiveness or sensitivity of failure detection.
(実施形態2)
図12は、本実施形態による電動パワーステアリング装置3000の典型的な構成を模式的に示す。 (Embodiment 2)
FIG. 12 schematically shows a typical configuration of the electricpower steering apparatus 3000 according to the present embodiment.
図12は、本実施形態による電動パワーステアリング装置3000の典型的な構成を模式的に示す。 (Embodiment 2)
FIG. 12 schematically shows a typical configuration of the electric
自動車等の車両は一般に、電動パワーステアリング装置を有する。本実施形態による電動パワーステアリング装置3000は、ステアリングシステム520、および補助トルクを生成する補助トルク機構540を有する。電動パワーステアリング装置3000は運転者がステアリングハンドルを操作することによって発生するステアリングシステムの操舵トルクを補助する補助トルクを生成する。補助トルクにより運転者の操作の負担は軽減される。
A vehicle such as an automobile generally has an electric power steering device. The electric power steering apparatus 3000 according to the present embodiment includes a steering system 520 and an auxiliary torque mechanism 540 that generates auxiliary torque. The electric power steering device 3000 generates auxiliary torque that assists the steering torque of the steering system that is generated when the driver operates the steering wheel. The burden on the driver's operation is reduced by the auxiliary torque.
ステアリングシステム520は例えばステアリングハンドル521、ステアリングシャフト522、自在軸継手523A、523B、回転軸524、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪529A、529Bから構成され得る。
The steering system 520 includes, for example, a steering handle 521, a steering shaft 522, universal shaft joints 523A and 523B, a rotation shaft 524, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, a knuckle 528A, 528B and left and right steering wheels 529A, 529B.
補助トルク機構540は例えば、操舵トルクセンサ541、自動車用電子制御ユニット(ECU)542、モータ543および減速機構544などから構成される。操舵トルクセンサ541は、ステアリングシステム520における操舵トルクを検出する。ECU542は操舵トルクセンサ541の検出信号に基づいて駆動信号を生成する。モータ543は駆動信号に基づいて操舵トルクに応じた補助トルクを生成する。モータ543は減速機構544を介してステアリングシステム520に生成した補助トルクを伝達する。
The auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an automotive electronic control unit (ECU) 542, a motor 543, a speed reduction mechanism 544, and the like. The steering torque sensor 541 detects the steering torque in the steering system 520. The ECU 542 generates a drive signal based on the detection signal of the steering torque sensor 541. The motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal. The motor 543 transmits the generated auxiliary torque to the steering system 520 via the speed reduction mechanism 544.
ECU542は例えば実施形態1によるコントローラ340および駆動回路350などを有する。自動車ではECUを核とした電子制御システムが構築される。電動パワーステアリング装置3000では例えば、ECU542、モータ543およびインバータ545によって、モータ駆動ユニットが構築される。そのシステムに実施形態1によるモータモジュール2000を好適に用いることができる。
The ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment. In an automobile, an electronic control system with an ECU as a core is constructed. In the electric power steering apparatus 3000, for example, a motor drive unit is constructed by the ECU 542, the motor 543, and the inverter 545. The motor module 2000 according to the first embodiment can be suitably used for the system.
本開示の実施形態は、シフトバイワイヤ、ステアリングバイワイヤ、ブレーキバイワイヤなどのエックスバイワイヤおよびトラクションモータなどのモータ制御システムにも好適に用いられる。例えば、本開示の実施形態による故障診断方法を実装したEPSは、日本政府および米国運輸省道路交通安全局(NHTSA)によって定められたレベル0から5(自動化の基準)に対応した自動運転車に搭載され得る。
The embodiment of the present disclosure is also suitably used for motor control systems such as X-by-wire such as shift-by-wire, steering-by-wire, and brake-by-wire, and a traction motor. For example, an EPS that implements a fault diagnosis method according to an embodiment of the present disclosure is an autonomous driving vehicle that corresponds to levels 0 to 5 (standards for automation) defined by the Japanese government and the US Department of Transportation's Road Traffic Safety Administration (NHTSA). Can be mounted.
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。
The embodiment of the present disclosure can be widely used in various devices including various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.
Claims (16)
- 電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換する、
少なくとも1つのHブリッジを備える電力変換装置に用いる、Hブリッジの故障を診断する故障診断方法であって、
電流センサによって測定された相電流の第1電流正弦波、前記第1電流正弦波の位相を90°シフトして得られる第2電流正弦波および前記モータの回転速度に基づいて、Hブリッジの故障を監視するための監視信号を生成するステップと、
前記監視信号と故障レベルのしきい値との比較結果に基づいてプレ故障信号を生成するステップと、
前記プレ故障信号、および、前記プレ故障信号を有効または無効にするアクティベーション信号の論理積を演算することにより、Hブリッジが故障しているか否かを示す故障信号を生成するステップと、
を包含する故障診断方法。 Converting power from the power source into power supplied to a motor having at least one phase winding;
A failure diagnosis method for diagnosing a failure of an H bridge, which is used for a power conversion device including at least one H bridge,
Based on the first current sine wave of the phase current measured by the current sensor, the second current sine wave obtained by shifting the phase of the first current sine wave by 90 °, and the rotational speed of the motor, the H-bridge failure Generating a monitoring signal for monitoring
Generating a pre-failure signal based on a comparison result between the monitoring signal and a failure level threshold;
Generating a fault signal indicating whether the H-bridge is faulty by calculating a logical product of the pre-fault signal and an activation signal that enables or disables the pre-fault signal;
A fault diagnosis method including: - 前記監視信号を生成するステップにおいて、前記第1電流正弦波を時間微分することにより、前記第2電流正弦波を取得する、請求項1に記載の故障診断方法。 The fault diagnosis method according to claim 1, wherein, in the step of generating the monitoring signal, the second current sine wave is obtained by time differentiation of the first current sine wave.
- 前記第1電流正弦波をローパスフィルタ処理した後で時間微分することにより、前記第2電流正弦波を取得する、請求項2に記載の故障診断方法。 3. The failure diagnosis method according to claim 2, wherein the second current sine wave is acquired by performing time differentiation after the first current sine wave is subjected to low-pass filter processing.
- 前記監視信号を生成するステップにおいて、前記第1電流正弦波の二乗に前記回転速度を乗算した乗算値に前記第2電流正弦波の二乗を加算することにより、前記監視信号を生成する、請求項2または3に記載の故障診断方法。 The step of generating the monitoring signal includes generating the monitoring signal by adding the square of the second current sine wave to a multiplication value obtained by multiplying the square of the first current sine wave by the rotation speed. 4. The failure diagnosis method according to 2 or 3.
- 前記監視信号を生成するステップにおいて、前記第1電流正弦波を時間積分することにより、前記第2電流正弦波を取得する、請求項1に記載の故障診断方法。 The fault diagnosis method according to claim 1, wherein, in the step of generating the monitoring signal, the second current sine wave is acquired by time-integrating the first current sine wave.
- 前記監視信号を生成するステップにおいて、前記第2電流正弦波に前記回転速度を乗算した乗算値の二乗を前記第1電流正弦波の二乗に加算することにより、前記監視信号を生成する、請求項5に記載の故障診断方法。 The step of generating the monitoring signal generates the monitoring signal by adding a square of a multiplication value obtained by multiplying the second current sine wave by the rotation speed to a square of the first current sine wave. 5. The failure diagnosis method according to 5.
- 生成した前記監視信号をローパスフィルタ処理するステップをさらに包含する、請求項6に記載の故障診断方法。 The fault diagnosis method according to claim 6, further comprising a step of low-pass filtering the generated monitoring signal.
- 前記モータの制御に用いるリファレンス電流のピーク値と前記リファレンス電流の最小値との比較結果に基づいて前記アクティベーション信号を生成する、請求項1から7のいずれかに記載の故障診断方法。 8. The failure diagnosis method according to claim 1, wherein the activation signal is generated based on a comparison result between a peak value of a reference current used for controlling the motor and a minimum value of the reference current.
- 前記プレ故障信号を生成するステップにおいて、前記監視信号が前記故障レベルのしきい値未満である場合、Hブリッジは故障状態であることを示す前記プレ故障信号を生成し、前記監視信号が前記故障レベルのしきい値以上である場合、Hブリッジは故障状態ではないことを示す前記プレ故障信号を生成する、請求項8に記載の故障診断方法。 In the step of generating the pre-failure signal, if the monitoring signal is less than the failure level threshold, the H-bridge generates the pre-failure signal indicating a failure condition, and the monitoring signal is the failure signal. 9. The fault diagnosis method according to claim 8, wherein when the level is equal to or higher than a threshold level, the pre-failure signal is generated to indicate that the H-bridge is not in a fault state.
- 前記リファレンス電流のピーク値の絶対値が前記リファレンス電流の最小値未満である場合、前記プレ故障信号を無効にする前記アクティベーション信号を生成する、請求項9に記載の故障診断方法。 10. The fault diagnosis method according to claim 9, wherein when the absolute value of the peak value of the reference current is less than a minimum value of the reference current, the activation signal that invalidates the pre-fault signal is generated.
- 前記モータを制御するモータ制御ユニットに前記故障信号を出力するステップをさらに包含する、請求項1から10のいずれかに記載の故障診断方法。 11. The failure diagnosis method according to claim 1, further comprising a step of outputting the failure signal to a motor control unit that controls the motor.
- 電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する、n相のHブリッジを備える電力変換装置に用いる、前記n相のHブリッジの故障を相毎に診断する故障診断方法であって、
請求項1から11のいずれかに記載の故障診断方法を各相のHブリッジに実行することにより、Hブリッジの故障を相毎に診断する、故障診断方法。 The n-phase H bridge is used in a power conversion device including an n-phase H bridge that converts power from a power source into power supplied to a motor having an n-phase (n is an integer of 3 or more) winding. A failure diagnosis method for diagnosing a failure for each phase,
A failure diagnosis method for diagnosing a failure of an H bridge for each phase by executing the failure diagnosis method according to claim 1 on an H bridge of each phase. - 前記故障レベルのしきい値は、電流センサによって測定された各相の相電流のピーク値の平均値に基づいて決定される、請求項12に記載の故障診断方法。 The failure diagnosis method according to claim 12, wherein the threshold value of the failure level is determined based on an average value of a peak value of a phase current of each phase measured by a current sensor.
- 電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換する電力変換装置であって、
少なくとも1つのHブリッジと、
前記少なくとも1つのHブリッジのスイッチ素子のスイッチング動作を制御する制御回路と、
を備え、
前記制御回路は、
電流センサによって測定された相電流の第1電流正弦波、前記第1電流正弦波の位相を90°シフトして得られる第2電流正弦波および前記モータの回転速度に基づいて、Hブリッジの故障を監視するための監視信号を生成し、
前記監視信号と故障レベルのしきい値との比較結果に基づいてプレ故障信号を生成し、
前記プレ故障信号、および、前記プレ故障信号を有効または無効にするアクティベーション信号の論理積を演算することにより、Hブリッジが故障しているか否かを示す故障信号を生成する、電力変換装置。 A power conversion device that converts electric power from a power source into electric power to be supplied to a motor having at least one phase winding,
At least one H-bridge;
A control circuit for controlling a switching operation of the at least one H-bridge switch element;
With
The control circuit includes:
Based on the first current sine wave of the phase current measured by the current sensor, the second current sine wave obtained by shifting the phase of the first current sine wave by 90 °, and the rotational speed of the motor, the H-bridge failure Generate a monitoring signal to monitor
Generating a pre-failure signal based on a comparison result between the monitoring signal and a failure level threshold;
The power converter which produces | generates the failure signal which shows whether the H bridge has failed by calculating the logical product of the pre-failure signal and the activation signal which validates or invalidates the pre-failure signal. - モータと、
請求項14に記載の電力変換装置と、
を備えるモータモジュール。 A motor,
The power conversion device according to claim 14,
A motor module comprising: - 請求項15に記載のモータモジュールを備える電動パワーステアリング装置。 An electric power steering apparatus comprising the motor module according to claim 15.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020525499A JPWO2019240004A1 (en) | 2018-06-12 | 2019-06-06 | Failure diagnosis method, power conversion device, motor module and electric power steering device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018111861 | 2018-06-12 | ||
JP2018-111861 | 2018-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019240004A1 true WO2019240004A1 (en) | 2019-12-19 |
Family
ID=68843290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/022507 WO2019240004A1 (en) | 2018-06-12 | 2019-06-06 | Failure diagnosis method, power conversion device, motor module, and electric power steering device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2019240004A1 (en) |
WO (1) | WO2019240004A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113978545A (en) * | 2021-11-25 | 2022-01-28 | 联创汽车电子有限公司 | EPS controller |
JP2022051366A (en) * | 2020-09-18 | 2022-03-31 | 株式会社東芝 | Semiconductor circuit and failure determination method of semiconductor circuit |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004215328A (en) * | 2002-12-26 | 2004-07-29 | Aisin Aw Co Ltd | Control device and method for motor operated drive, and its program |
JP2010268555A (en) * | 2009-05-13 | 2010-11-25 | Nissan Motor Co Ltd | Inverter abnormality detector |
JP2011041366A (en) * | 2009-08-07 | 2011-02-24 | Toyota Motor Corp | Failure detector for inverter |
JP2013031356A (en) * | 2011-06-24 | 2013-02-07 | Mitsubishi Electric Corp | Motor control device and electric power steering device using the same |
-
2019
- 2019-06-06 WO PCT/JP2019/022507 patent/WO2019240004A1/en active Application Filing
- 2019-06-06 JP JP2020525499A patent/JPWO2019240004A1/en not_active Ceased
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004215328A (en) * | 2002-12-26 | 2004-07-29 | Aisin Aw Co Ltd | Control device and method for motor operated drive, and its program |
JP2010268555A (en) * | 2009-05-13 | 2010-11-25 | Nissan Motor Co Ltd | Inverter abnormality detector |
JP2011041366A (en) * | 2009-08-07 | 2011-02-24 | Toyota Motor Corp | Failure detector for inverter |
JP2013031356A (en) * | 2011-06-24 | 2013-02-07 | Mitsubishi Electric Corp | Motor control device and electric power steering device using the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022051366A (en) * | 2020-09-18 | 2022-03-31 | 株式会社東芝 | Semiconductor circuit and failure determination method of semiconductor circuit |
JP7504737B2 (en) | 2020-09-18 | 2024-06-24 | 株式会社東芝 | Semiconductor circuit and method for determining failure of semiconductor circuit |
CN113978545A (en) * | 2021-11-25 | 2022-01-28 | 联创汽车电子有限公司 | EPS controller |
CN113978545B (en) * | 2021-11-25 | 2024-05-14 | 联创汽车电子有限公司 | EPS controller |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019240004A1 (en) | 2021-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6408938B2 (en) | Inverter failure diagnosis apparatus and failure diagnosis method | |
JP7088200B2 (en) | Motor control method, power converter, motor module and electric power steering device | |
JP5614598B2 (en) | Motor control device | |
JP5273450B2 (en) | Motor control device | |
WO2019064749A1 (en) | Fault diagnosis method, power conversion device, motor module and electric power steering device | |
US11095233B2 (en) | Electric power conversion apparatus, motor drive unit and electric motion power steering apparatus | |
JP6939793B2 (en) | Motor control method, motor control system and electric power steering system | |
WO2019240004A1 (en) | Failure diagnosis method, power conversion device, motor module, and electric power steering device | |
US10560044B2 (en) | Motor control method, motor control system, and electric power steering system | |
US11139766B2 (en) | Controller, motor control system having the controller, and electric power steering system having the motor control system | |
US11271503B2 (en) | Controller, motor control system having the controller, and electric power steering system having the motor control system | |
CN112840557B (en) | Fault diagnosis method, power conversion device, motor module, and electric power steering device | |
JP2018160972A (en) | Control device of motor drive circuit and diagnostic method of motor drive circuit | |
WO2019220780A1 (en) | Failure diagnostic method, power converting device, motor module, and electric power steering device | |
WO2019064748A1 (en) | Fault diagnosis method, power conversion device, motor module and electric power steering device | |
WO2019220781A1 (en) | Failure diagnostic method, power converting device, motor module, and electric power steering device | |
WO2019220782A1 (en) | Failure diagnostic method, power converting device, motor module, and electric power steering device | |
WO2019220783A1 (en) | Failure diagnostic method, power converting device, motor module, and electric power steering device | |
WO2019058671A1 (en) | Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device | |
JP2020065392A (en) | Motor control device, motor control method, motor module, electric power steering device and traction motor unit | |
WO2019064830A1 (en) | Power conversion device, motor module, and electric power steering device | |
WO2019058677A1 (en) | Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device | |
WO2019058672A1 (en) | Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device | |
WO2019058676A1 (en) | Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device | |
WO2018173587A1 (en) | Motor control method, motor control system, and electric power steering system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19819847 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020525499 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19819847 Country of ref document: EP Kind code of ref document: A1 |