WO2019064749A1 - Fault diagnosis method, power conversion device, motor module and electric power steering device - Google Patents

Fault diagnosis method, power conversion device, motor module and electric power steering device Download PDF

Info

Publication number
WO2019064749A1
WO2019064749A1 PCT/JP2018/023722 JP2018023722W WO2019064749A1 WO 2019064749 A1 WO2019064749 A1 WO 2019064749A1 JP 2018023722 W JP2018023722 W JP 2018023722W WO 2019064749 A1 WO2019064749 A1 WO 2019064749A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
phase
bridge
motor
current
Prior art date
Application number
PCT/JP2018/023722
Other languages
French (fr)
Japanese (ja)
Inventor
アハマッド ガデリー
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019064749A1 publication Critical patent/WO2019064749A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a failure diagnosis method, a power conversion device, a motor module, and an electric power steering device.
  • Patent Document 1 discloses a motor drive device having a first system and a second system.
  • the first system is connected to a first winding set of the motor, and includes a first inverter unit, a power supply relay, a reverse connection protection relay, and the like.
  • the second system is connected to a second winding set of the motor, and includes a second inverter unit, a power supply relay, a reverse connection protection relay, and the like.
  • the power supply relay is operated from the power supply, the failed system or the failure. Shut off the power supply to the grid connected to the set of windings. It is possible to continue motor drive using the other system which has not failed.
  • Patent documents 2 and 3 also disclose a motor drive device having a first system and a second system. Even if one system or one winding set fails, the motor drive can be continued by the system which has not failed.
  • Patent Document 4 discloses a motor drive device having four electrical separation means and two inverters and converting power supplied to a three-phase motor.
  • one electrical separation means is provided between the power supply and the inverter, and one electrical separation means is provided between the inverter and the ground (hereinafter referred to as GND).
  • GND ground
  • Embodiments of the present disclosure provide a fault diagnosis method capable of appropriately diagnosing a fault of the H bridge.
  • An exemplary fault diagnosis method of the present disclosure converts an electric power from a power supply into an electric power supplied to a motor having at least one phase winding, and uses the electric power conversion apparatus including at least one H bridge.
  • a failure diagnosis method for diagnosing a failure comprising obtaining a current / voltage represented in a dq coordinate system, and a voltage command value indicating a voltage value of a target to be applied to the at least one phase winding when controlling the motor And a diagnostic step of diagnosing the failure of the H bridge based on the magnitude of the voltage command value and the acquired current / voltage of the dq coordinate system.
  • An exemplary power converter of the present disclosure is a power converter that converts power from a power source to power supplied to a motor having at least one phase winding, comprising at least one H-bridge; Control circuit for controlling the switching operation of the switch elements of the two H bridges, said control circuit acquiring the current / voltage represented in the dq coordinate system, and controlling said motor at the time of said at least one phase winding
  • the voltage command value indicating the voltage value of the target to be given is acquired, and the diagnosis of the failure of the H bridge is diagnosed based on the magnitude of the voltage command value and the acquired current / voltage of the dq coordinate system.
  • Another exemplary power converter of the present disclosure is a power converter that converts power from a power supply to power supplied to a motor having n-phase (n is an integer of 3 or more) windings.
  • a first inverter connected to one end of the winding of each phase of the motor and having n legs, and a second inverter connected to the other end of the winding of each phase of the motor and having n legs;
  • a control circuit for controlling the operation wherein the control circuit obtains a current and a voltage represented in a dq coordinate system, and indicates each phase indicating a voltage value of a target to be applied to a winding of each phase when controlling the motor
  • the voltage command value of each phase is acquired Decree value of the magnitude, and the failure of the H-bridge diagnosis for
  • a failure diagnosis method capable of appropriately diagnosing a failure of an H bridge by referring to a voltage command value, a power converter, a motor module including the power converter, and the motor module
  • An electric power steering apparatus comprising a motor module
  • FIG. 1 is a block diagram schematically showing a typical block configuration of a motor module 2000 according to an exemplary embodiment 1.
  • FIG. 2 is a circuit diagram schematically showing a circuit configuration of the inverter unit 100 according to the exemplary embodiment 1.
  • FIG. 3A is a schematic view showing the configuration of the A-phase H bridge BA.
  • FIG. 3B is a schematic view showing the configuration of the B-phase H bridge BB.
  • FIG. 3C is a schematic view showing the configuration of the C-phase H bridge BC.
  • FIG. 4 is a functional block diagram illustrating functional blocks of the controller 340 for performing motor control in general.
  • FIG. 5 is a functional block diagram illustrating functional blocks for performing failure diagnosis of the H bridge.
  • FIG. 1 is a block diagram schematically showing a typical block configuration of a motor module 2000 according to an exemplary embodiment 1.
  • FIG. 2 is a circuit diagram schematically showing a circuit configuration of the inverter unit 100 according to the exemplary embodiment 1.
  • FIG. 3A is a schematic view
  • FIG. 6 is a schematic diagram showing a circuit model for explaining the principle of performing a fault diagnosis of the H bridge by comparing the magnitudes of the system voltage and the voltage command value VA_ref.
  • FIG. 7 is a functional block diagram illustrating another functional block for performing fault diagnosis of the H bridge.
  • FIG. 8 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to three-phase energization control. Is a graph.
  • FIG. 9A is obtained by plotting the current values flowing in the B-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the A-phase H bridge BA fails. It is a graph which illustrates a current waveform.
  • FIG. 9B is obtained by plotting the current values flowing in the A-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the B-phase H bridge BB fails. It is a graph which illustrates a current waveform.
  • FIG. 9B is obtained by plotting the current values flowing in the A-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the B-phase H bridge BB fails. It is a graph which illustrates a current waveform.
  • FIG. 9B is obtained by plotting the current values flowing in the A-phase and C-phase windings of the motor 200 when
  • FIG. 9C is obtained by plotting current values flowing in the A-phase and B-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the C-phase H bridge BC fails. It is a graph which illustrates a current waveform.
  • FIG. 10A is a graph showing a waveform (upper side) of a simulation result of motor rotation speed and a waveform (lower side) of a simulation result of rotor angle.
  • FIG. 10B is a graph showing the waveform of the simulation result of the A-phase current Ia.
  • FIG. 10C is a graph showing the waveform of the simulation result of the B phase current Ib.
  • FIG. 10D is a graph showing the waveform of the simulation result of the C-phase current Ic.
  • FIG. 10A is a graph showing a waveform (upper side) of a simulation result of motor rotation speed and a waveform (lower side) of a simulation result of rotor angle.
  • FIG. 10E is a graph showing a waveform of a simulation result of the zero phase current Iz.
  • FIG. 10F is a graph showing a waveform of a simulation result of voltage command value VA_ref.
  • FIG. 10G is a graph showing a waveform of a simulation result of voltage command value VB_ref.
  • FIG. 10H is a graph showing a waveform of a simulation result of voltage command value VC_ref.
  • FIG. 10I is a graph showing a waveform (upper side) of a simulation result of a failure signal A_FD, a waveform (middle) of a simulation result of B_FD, and a waveform (lower side) of a simulation result of C_FD.
  • FIG. 11 is a schematic view showing a typical configuration of an electric power steering apparatus 3000 according to an exemplary embodiment 2. As shown in FIG.
  • the implementation of the present disclosure will be exemplified taking a power conversion device that converts power from a power supply into power supplied to a three-phase motor having three-phase (A-phase, B-phase, C-phase) windings.
  • the form will be described.
  • a power converter for converting power from a power supply into power for supplying to an n-phase motor having n-phase (n is an integer of 4 or more) windings such as four-phase or five-phase, and H used for the apparatus
  • the fault diagnosis method of the bridge is also within the scope of the present disclosure.
  • FIG. 1 schematically shows a typical block configuration of a motor module 2000 according to the present embodiment.
  • Motor module 2000 typically includes a power conversion device 1000 having an inverter unit 100 and a control circuit 300, and a motor 200.
  • the motor module 2000 may be modularized and manufactured and sold as an electromechanical integrated motor having, for example, a motor, a sensor, a driver and a controller.
  • Power converter 1000 can convert power from power source 101 (see FIG. 2) into power to be supplied to motor 200. Power converter 1000 is connected to motor 200. For example, power conversion apparatus 1000 can convert DC power into three-phase AC power which is pseudo sine waves of A-phase, B-phase and C-phase.
  • connection between components (components) mainly means electrical connection.
  • the motor 200 is, for example, a three-phase alternating current motor.
  • Motor 200 includes A-phase winding M1, B-phase winding M2 and C-phase winding M3, and is connected to first inverter 120 and second inverter 130 of inverter unit 100.
  • the first inverter 120 is connected to one end of the winding of each phase of the motor 200
  • the second inverter 130 is connected to the other end of the winding of each phase.
  • the control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360. Each component of the control circuit 300 is mounted on, for example, a single circuit board (typically, a printed circuit board). Control circuit 300 is connected to inverter unit 100, and controls inverter unit 100 based on input signals from current sensor 150 and angle sensor 320. As the control method, there are, for example, vector control, pulse width modulation (PWM) or direct torque control (DTC). However, depending on the motor control method (for example, sensorless control), the angle sensor 320 may not be necessary.
  • PWM pulse width modulation
  • DTC direct torque control
  • the control circuit 300 can achieve closed loop control by controlling the target position, rotational speed, current, and the like of the rotor of the motor 200.
  • Control circuit 300 may include a torque sensor instead of angle sensor 320. In this case, the control circuit 300 can control the target motor torque.
  • the power supply circuit 310 generates power supply voltages (for example, 3 V, 5 V) necessary for each block in the circuit based on, for example, a voltage of 12 V of the power supply 101.
  • the angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects a rotation angle of the rotor (hereinafter referred to as “rotation signal”), and outputs a rotation signal to the controller 340.
  • rotation signal a rotation angle of the rotor
  • the input circuit 330 receives the phase current detected by the current sensor 150 (hereinafter may be referred to as “actual current value”), and the level of the actual current value corresponds to the input level of the controller 340 as necessary. It converts and outputs an actual current value to the controller 340.
  • the input circuit 330 is, for example, an analog-to-digital (AD) conversion circuit.
  • the controller 340 is an integrated circuit that controls the entire power conversion apparatus 1000, and is, for example, a microcontroller or a field programmable gate array (FPGA).
  • the controller 340 controls the switching operation (turn on or off) of each switch element (typically, semiconductor switch element) in the first and second inverters 120 and 130 of the inverter unit 100.
  • the controller 340 sets a target current value according to the actual current value, the rotation signal of the rotor, etc. to generate a PWM signal, and outputs it to the drive circuit 350.
  • the drive circuit 350 is typically a predriver (sometimes referred to as a "gate driver").
  • the drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each switch element in the first and second inverters 120 and 130 of the inverter unit 100 according to the PWM signal, and controls the gate of each switch element give.
  • gate control signal gate control signal
  • the pre-driver may not be required. In that case, the function of the pre-driver may be implemented in the controller 340.
  • the ROM 360 is, for example, a writable memory (for example, a PROM), a rewritable memory (for example, a flash memory), or a read only memory.
  • the ROM 360 stores a control program including instructions for causing the controller 340 to control the power conversion apparatus 1000.
  • the control program is temporarily expanded in a RAM (not shown) at boot time.
  • FIG. 2 schematically shows the circuit configuration of the inverter unit 100 according to the present embodiment.
  • the power supply 101 generates a predetermined power supply voltage (for example, 12 V).
  • a DC power supply is used as the power supply 101.
  • the power supply 101 may be an AC-DC converter or a DC-DC converter, or may be a battery (storage battery).
  • the power supply 101 may be a single power supply common to the first and second inverters 120, 130 as shown, or for the first power supply (not shown) for the first inverter 120 and for the second inverter 130.
  • the fuses ISW_ 11 and ISW_ 12 are connected between the power supply 101 and the first inverter 120.
  • the fuses ISW_11 and ISW_12 can interrupt a large current that can flow from the power supply 101 to the first inverter 120.
  • the fuses ISW 21 and ISW 22 are connected between the power supply 101 and the second inverter 130.
  • the fuses ISW_ 21 and ISW_ 22 can interrupt a large current that can flow from the power supply 101 to the second inverter 130.
  • a relay or the like may be used instead of the fuse.
  • coils are provided between the power supply 101 and the first inverter 120 and between the power supply 101 and the second inverter 130.
  • the coil functions as a noise filter, and smoothes high frequency noise included in the voltage waveform supplied to each inverter or high frequency noise generated in each inverter so as not to flow out to the power supply 101 side.
  • a capacitor is connected to the power supply terminal of each inverter.
  • the capacitor is a so-called bypass capacitor, which suppresses voltage ripple.
  • the capacitor is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to design specifications and the like.
  • the first inverter 120 has a bridge circuit composed of three legs. Each leg has a high side switch element, a low side switch element and a shunt resistor.
  • the A-phase leg has a high side switch element SW_A1H, a low side switch element SW_A1L, and a first shunt resistor S_A1.
  • the B-phase leg has a high side switch element SW_B1H, a low side switch element SW_B1L, and a first shunt resistor S_B1.
  • the C-phase leg has a high side switch element SW_C1H, a low side switch element SW_C1L, and a first shunt resistor S_C1.
  • a switch element for example, a field effect transistor (typically, a MOSFET) in which a parasitic diode is formed, or a combination of an insulated gate bipolar transistor (IGBT) and a free wheeling diode connected in parallel thereto can be used.
  • a field effect transistor typically, a MOSFET
  • IGBT insulated gate bipolar transistor
  • the first shunt resistor S_A1 is used to detect an A-phase current IA1 flowing through the A-phase winding M1, and is connected, for example, between the low side switch element SW_A1L and the GND line GL.
  • the first shunt resistor S_B1 is used to detect the B-phase current IB1 flowing through the B-phase winding M2, and is connected, for example, between the low side switch element SW_B1L and the GND line GL.
  • the first shunt resistor S_C1 is used to detect a C-phase current IC1 flowing through the C-phase winding M3, and is connected, for example, between the low side switch element SW_C1L and the GND line GL.
  • the three shunt resistors S_A1, S_B1, and S_C1 are commonly connected to the GND line GL of the first inverter 120.
  • the second inverter 130 has a bridge circuit composed of three legs. Each leg has a high side switch element, a low side switch element and a shunt resistor.
  • the A-phase leg has a high side switch element SW_A2H, a low side switch element SW_A2L, and a shunt resistor S_A2.
  • the B-phase leg has a high side switch element SW_B2H, a low side switch element SW_B2L, and a shunt resistor S_B2.
  • the C-phase leg has a high side switch element SW_C2H, a low side switch element SW_C2L, and a shunt resistor S_C2.
  • the shunt resistor S_A2 is used to detect the A-phase current IA2, and is connected, for example, between the low side switch element SW_A2L and the GND line GL.
  • the shunt resistor S_B2 is used to detect the B-phase current IB2, and is connected, for example, between the low side switch element SW_B2L and the GND line GL.
  • the shunt resistor S_C2 is used to detect the C-phase current IC2, and is connected, for example, between the low side switch element SW_C2L and the GND line GL.
  • the three shunt resistors S_A2, S_B2 and S_C2 are commonly connected to the GND line GL of the second inverter 130.
  • the above-described current sensor 150 includes, for example, shunt resistors S_A1, S_B1, S_C1, S_A2, S_B2 and S_C2 and a current detection circuit (not shown) that detects the current flowing in each shunt resistor.
  • the A-phase leg of the first inverter 120 (specifically, the node between the high-side switch element SW_A1H and the low-side switch element SW_A1L) is connected to one end A1 of the A-phase winding M1 of the motor 200.
  • the 130 A-phase leg is connected to the other end A2 of the A-phase winding M1.
  • the B-phase leg of the first inverter 120 is connected to one end B1 of the B-phase winding M2 of the motor 200, and the B-phase leg of the second inverter 130 is connected to the other end B2 of the winding M2.
  • the C-phase leg of the first inverter 120 is connected to one end C1 of the C-phase winding M3 of the motor 200, and the C-phase leg of the second inverter 130 is connected to the other end C2 of the winding M3.
  • FIG. 3A schematically shows the configuration of the A-phase H bridge BA.
  • FIG. 3B schematically shows the configuration of the B-phase H bridge BB.
  • FIG. 3C schematically shows the configuration of the C-phase H bridge BC.
  • the inverter unit 100 includes A-phase, B-phase and C-phase H bridges BA, BB, BC.
  • the A-phase H bridge BA includes a high side switch element SW_A1H and a low side switch element SW_A1L in the leg on the first inverter 120 side, a high side switch element SW_A2H in the leg on the second inverter 130 side, a low side switch element SW_A2L, and a winding It has M1.
  • the B-phase H bridge BB includes a high side switch element SW_B1H and a low side switch element SW_B1L in a leg on the first inverter 120 side, a high side switch element SW_B2H in a leg on the second inverter 130 side, a low side switch element SW_B2L, and a winding It has M2.
  • the C-phase H bridge BC includes a high side switching device SW_C1H and a low side switching device SW_C1L in the leg on the first inverter 120 side, a high side switching device SW_C2H in the leg on the second inverter 130 side, a low side switching device SW_C2L, and a winding It has M3.
  • the control circuit 300 (specifically, the controller 340) can identify the failed H bridge from among the three-phase H bridges by performing the failure diagnosis of the H bridge described below. For example, when the control circuit 300 identifies a failed H bridge, it is possible to switch to motor control in which a two-phase winding is energized using a two-phase H bridge other than the failed H bridge.
  • energization of a three-phase winding is referred to as "three-phase energization control”
  • energization of a two-phase winding is referred to as "two-phase energization control”.
  • failure diagnosis method of H bridge With reference to FIGS. 4 to 6, a specific example of a failure diagnosis method for diagnosing a failure of the H bridge, which is used for the power conversion device 1000 shown in FIG. 1, for example, will be described. However, as will be described later, the failure diagnosis method of the present disclosure can be suitably used for a power converter including at least one H bridge, for example, a full bridge type power converter. Here, the failure of the H bridge will be described.
  • the failure of the H bridge refers to the open failure of the switch element. In this specification, for example, the occurrence of an open failure in the high-side switch element SW_A1H of the A-phase H bridge BA is referred to as a failure of the A-phase H bridge BA.
  • the outline of the failure diagnosis method for diagnosing the failure of the H bridge is as follows.
  • the current / voltage represented in the dq coordinate system is acquired, and the voltage command value is acquired for each phase (acquisition step).
  • the current and voltage expressed in the dq coordinate system are d axis voltage, q axis voltage, d axis current, q axis current, zero phase current, d axis current command value, q axis current command value and zero phase current command value Including.
  • an axis corresponding to the zero phase is represented as the z axis.
  • the voltage command value indicates the voltage value of the target to be applied to the winding, which is used when controlling the motor 200.
  • the zero-phase current is also called z-axis current.
  • the failure of the H bridge is diagnosed for each phase based on the magnitude of the voltage command value of each phase and the current / voltage of the acquired dq coordinate system (diagnosis step).
  • a fault signal indicating a fault in the H bridge is generated, and a fault signal is output to the motor control unit 900 that controls the motor 200 (fault signal output step).
  • a fault signal is a signal that is asserted when a fault occurs.
  • the acquisition step, the diagnosis step, and the fault signal output step are repeatedly performed, for example, in synchronization with a cycle of measuring each phase current by the current sensor 150, that is, a cycle of AD conversion.
  • the algorithm for realizing the fault diagnosis method according to the present embodiment can be realized only by hardware such as an application specific integrated circuit (ASIC) or an FPGA, for example, or realized by a combination of a microcontroller and software.
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • the operation subject of failure diagnosis is the controller 340 of the control circuit 300.
  • FIG. 4 exemplifies functional blocks of the controller 340 for performing motor control in general.
  • FIG. 5 exemplifies functional blocks for performing failure diagnosis of the H bridge.
  • each block in the functional block diagram is shown not in hardware but in functional block.
  • the software used for motor control and fault diagnosis of the H bridge may be, for example, a module constituting a computer program for executing a specific process corresponding to each functional block.
  • Such computer programs are stored, for example, in the ROM 360.
  • the controller 340 can read an instruction from the ROM 360 and sequentially execute each process.
  • the controller 340 includes, for example, a fault diagnosis unit 800 and a motor control unit 900.
  • the fault diagnosis of the present disclosure can be suitably combined with motor control (for example, vector control) and can be incorporated into a series of processes of motor control.
  • Fault diagnosis unit 800 obtains current peak command value Ipeak_ref and voltage peak value Vpeak expressed in the dq coordinate system, and obtains voltage command values VA_ref, VB_ref and VC_ref.
  • the failure diagnosis unit 800 diagnoses a failure of the A-phase H bridge BA based on the magnitude of the voltage command value VA_ref, the acquired current peak command value Ipeak_ref and the voltage peak value Vpeak.
  • the failure diagnosis unit 800 diagnoses a failure of the B-phase H bridge BB based on the magnitude of the voltage command value VB_ref, the acquired current peak command value Ipeak_ref and the voltage peak value Vpeak.
  • the failure diagnosis unit 800 diagnoses a failure of the C-phase H bridge BC based on the magnitude of the voltage command value VC_ref, the acquired current peak command value Ipeak_ref and the voltage peak value Vpeak.
  • the failure diagnosis unit 800 generates failure signals A_FD, B_FD and C_FD indicating the failure of the H bridge for each phase based on the diagnosis result, and outputs the generated signals to the motor control unit 900 that controls the motor 200.
  • the motor control unit 900 generates a PWM signal that controls the overall switching operation of the switch elements of the first and second inverters 120 and 130 using, for example, vector control.
  • the motor control unit 900 outputs a PWM signal to the drive circuit 350. Further, the motor control unit 900 can switch the motor control from the three-phase energization control to the two-phase energization control, for example, when a failure signal is asserted.
  • each functional block may be referred to as a unit for convenience of explanation. Naturally, these notations should not be used with the intention of limiting interpretation of each functional block to hardware or software.
  • controller 340 When each functional block is implemented as software in the controller 340, the execution subject of the software may be, for example, the core of the controller 340. As described above, controller 340 may be implemented by an FPGA. In that case, all or part of the functional blocks can be realized in hardware.
  • the computing load of a specific computer can be distributed.
  • all or part of the functional blocks shown in FIG. 4 and FIG. 5 may be distributed and implemented in a plurality of FPGAs.
  • the plurality of FPGAs are communicably connected to one another by, for example, a vehicle-mounted control area network (CAN), and can transmit and receive data.
  • CAN vehicle-mounted control area network
  • the failure diagnosis unit 800 includes, for example, gain unit 810, limit determination unit 820, LPF (low pass filter) 830, adder 840, multiplier 850, absolute value units 860A, 860B, 860C, adders 870A, 870B, 870C, signals. It has generation units 880A, 880B and 880C.
  • the gain unit 810 multiplies the current peak command value Ipeak_ref by the gain R.
  • the current peak command value Ipeak_ref indicates the peak value of the current amplitude in the dq coordinate system, and is specifically calculated based on the equation (1).
  • Idref indicates a d-axis current command value on the d-axis
  • Iqref indicates a q-axis current command value on the q-axis
  • Izref indicates a zero-phase current command value.
  • abs (X) indicates the absolute value of X.
  • the gain R represents the electrical characteristics of the entire circuit system including the H bridge.
  • the gain R is determined in consideration of the influence of the dead time of the switch element and the like, and corresponds to the resistance [ ⁇ ] of the entire circuit.
  • Ipeak_ref (2/3) 1/2 (Idref 2 + Iqref 2 ) 1/2 + abs (Izref) / 3 1/2 equation (1)
  • the core of the controller 340 determines the current command values Idref, Iqref and Izref based on the rotational speed and the speed command value detected by the angle sensor 320, and outputs them to the fault diagnosis unit 800.
  • a pre-operation unit to be described later calculates Ipeak_ref based on the current command values Idref, Iqref and Izref, and outputs the Ipeak_ref to the gain unit 810.
  • the gain unit 810 outputs Ipeak_ref ⁇ R to the limit determination unit 820.
  • Limit determination unit 820 determines whether or not the magnitude of the product of current peak command value Ipeak_ref and gain R is within an allowable range. That is, the limit determination unit 820 determines whether Ipeak_ref ⁇ R is within the allowable range.
  • the allowable range means the upper limit value of the input voltage in the normal operation.
  • the LPF 830 performs low-pass filter processing on the voltage peak value Vpeak.
  • the voltage peak value Vpeak is calculated based on the equation (2).
  • Vd indicates the d-axis voltage in the dq coordinate system
  • Vq indicates the q-axis voltage.
  • Vpeak (2/3) 1/2 (Vd 2 + Vq 2 ) 1/2 equation (2)
  • the failure diagnosis unit 800 may have a pre-operation unit (not shown) for acquiring Vpeak.
  • the pre-arithmetic unit uses three-phase currents Ia, Ib and Ic obtained based on the measurement values of the current sensor 150 using Clarke transformation to generate currents I ⁇ and ⁇ on the ⁇ axis in the ⁇ fixed coordinate system.
  • Current I.sub..beta The pre-arithmetic unit further converts the currents I ⁇ and I ⁇ into a d-axis current Id, a q-axis current Iq and a zero-phase current Iz in the dq coordinate system, using Park conversion (dq coordinate conversion).
  • the pre-arithmetic unit acquires the d-axis voltage Vd and the q-axis voltage Vq based on Id and Iq, and calculates the voltage peak value Vpeak from the acquired Vd and Vq based on Expression (2).
  • the pre-arithmetic unit can also receive Vd and Vq necessary for calculation of Vpeak from the motor control unit 900 performing vector control.
  • the pre-calculation unit acquires Vpeak and Ipeak_ref in synchronization with the cycle of measuring each phase current by the current sensor 150.
  • the adder 840 adds the output (Ipeak_ref ⁇ R) from the limit determination unit 820 and the output Vpeak from the LPF 830.
  • the adder 840 outputs Ipeak_ref ⁇ R + Vpeak to the multiplier 850.
  • the multiplier 850 multiplies the output Ipeak_ref ⁇ R + Vpeak from the adder 840 by ( ⁇ 1).
  • the output voltage (Ipeak_ref ⁇ R + Vpeak) from the adder 840 is referred to as “system voltage”.
  • Multiplier 850 outputs the system voltage to A-phase adder 870A, B-phase adder 870B and C-phase adder 870C.
  • Failure diagnosis unit 800 diagnoses a failure of H bridge BA of A phase based on the comparison result of the system voltage and the magnitude of voltage command value VA_ref of A phase. If the magnitude of voltage command value VA_ref is larger than the system voltage, failure diagnosis unit 800 determines that A-phase H bridge BA is broken. When the magnitude of voltage command value VA_ref is equal to or less than the system voltage, failure diagnosis unit 800 determines that A-phase H bridge BA is not broken. In this embodiment, comparison between the system voltage and the voltage command value VA_ref of the A phase is realized using the multiplier 850, the absolute value unit 860A, and the adder 870A.
  • the adder 870A adds the output voltage from the multiplier 850 and the magnitude of the A-phase voltage command value VA_ref.
  • the reason why the absolute value unit 860A takes the absolute value of the voltage command value VA_ref is to set the open failure of both the high side switch element and the low side switch element of the H bridge as a target of failure diagnosis.
  • the voltage command value VA_ref of the A phase is a voltage command value VA1_ref for the high side switch device SW_A1H or low side switch device SW_A1L (a node between both switch devices) of the H bridge BA, the high side switch device SW_A2H or the low side switch device SW_A2L It is given by the difference with voltage command value VA2_ref for (a node between both switch elements).
  • the B-phase voltage command value VB_ref and the C-phase voltage command value VC_ref are also given similarly to the A-phase voltage command value VA_ref.
  • Voltage command values VA_ref, VB_ref and VC_ref are calculated based on equation (3).
  • VA_ref VA1_ref-VA2_ref
  • VB_ref VB1_ref-VB2_ref formula (3)
  • VC_ref VC1_ref-VC2_ref
  • signal generation unit 880A determines that H bridge BA is broken, generates failure signal A_FD, and outputs it to motor control unit 900.
  • the fault signal A_FD is assigned to a 1-bit signal, and the level of the fault signal A_FD in the normal state is set to the low level.
  • the signal generation unit 880A When detecting a failure of the H bridge BA, the signal generation unit 880A generates a high level failure signal A_FD. In other words, the signal generation unit 880A asserts the fault signal A_FD.
  • the failure diagnosis unit 800 generates the failure signals B_FD and C_FD of the B phase and the C phase similarly to the A phase, and outputs them to the motor control unit 900.
  • FIG. 6 shows a circuit model for explaining the principle of performing fault diagnosis of the H bridge by comparing the magnitudes of the system voltage and the voltage command value VA_ref.
  • the gain R corresponds to the resistance [ ⁇ ] of the entire circuit.
  • a current command value IPeak_ref is a current flowing through the entire circuit
  • a gain R is an internal resistance of the circuit
  • Vpeak is an input voltage.
  • the failure diagnosis unit 800 diagnoses a failure of the H bridge BA based on the voltage command value VA_ref, the input voltage Vpeak and the voltage drop (Ipeak_ref ⁇ R) of the internal resistance R.
  • Vpeak + Ipeak_ref ⁇ R the difference between Vpeak + Ipeak_ref ⁇ R and the voltage command value VA_ref (Vpeak + Ipeak_ref ⁇ R-VA_ref) becomes zero or less. That is, the relationship of Vpeak + Ipeak_ref ⁇ R ⁇ VA_ref holds.
  • FIG. 7 shows a modification of the functional block for performing fault diagnosis of the H bridge.
  • subtractors 890A, 890B and 890C are used instead of the multiplier 850 and the adders 870A, 870B and 870C. If the difference value obtained by subtracting the system voltage from the magnitude of voltage command value VA_ref of phase A is greater than zero, failure diagnosis unit 800 determines that H bridge BA is broken. Failure diagnosis unit 800 determines that H bridge BA has not failed if the difference value is less than or equal to zero. The failure diagnosis unit 800 can determine the B phase and the C phase in the same manner as the A phase.
  • a look-up table (LUT) 801 can be used instead of the gain unit 810 and the limit determination unit 820.
  • the LUT 801 is a table that relates the relationship between the current peak command value Ipeak_ref and the input of the speed indicating the rotational speed of the motor 200, and the output voltage Vsat.
  • the failure diagnosis unit 800 refers to the LUT 801 to determine the output voltage Vsat based on the acquired current peak command value Ipeak_ref and the rotation speed speed.
  • the failure diagnosis unit 800 may acquire the system voltage by performing an operation of adding the voltage peak value Vpeak to the determined output voltage Vsat.
  • FIG. 8 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to three-phase energization control.
  • FIG. 9A is obtained by plotting the current values flowing in the B-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the A-phase H bridge BA fails.
  • the current waveform is illustrated.
  • the horizontal axis indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A).
  • I pk represents the maximum current value (peak current value) of each phase.
  • FIG. 9B plots the current values flowing in the A-phase and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to the two-phase energization control.
  • the current waveform obtained by FIG. 9C is obtained by plotting current values flowing in the A-phase and B-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the C-phase H bridge BC fails. The current waveform is illustrated.
  • Motor control unit 900 performs three-phase energization control when normal, that is, when the levels of failure signals A_FD, B_FD and C_FD are all low.
  • the motor control unit 900 performs two-phase energization to energize the windings M2 and M3 using the two-phase H bridges BB and BC other than the failed H bridge BA. Control can be performed. Thus, even if one of the three phases of the H bridge is broken, power conversion device 1000 can continue motor driving.
  • FIGS. 10A to 10I The simulation result of the waveform of each signal is shown to FIGS. 10A to 10I.
  • FIG. 10A shows a waveform (upper side) of the motor rotational speed and a waveform (lower side) of the rotor angle.
  • the upper vertical axis of the graph indicates the rotational speed (rpm), and the lower vertical axis indicates the rotor angle (rad).
  • the horizontal axis shows time (s). The horizontal axis of all the waveforms of this simulation result indicates time.
  • FIG. 10B shows the waveform of the A-phase current Ia
  • FIG. 10C shows the waveform of the B-phase current Ib
  • FIG. 10D shows the waveform of the C-phase current Ic.
  • the vertical axis shows the current (A). In the waveform of each phase, the waveform of the actual current value and the waveform of the current command value are shown.
  • FIG. 10E shows the waveform of the zero phase current Iz.
  • the vertical axis shows the current (A).
  • FIG. 10F shows the waveform of voltage command value VA_ref
  • FIG. 10G shows the waveform of voltage command value VB_ref
  • FIG. 10H shows the waveform of voltage command value VC_ref.
  • the vertical axis represents voltage (V).
  • FIG. 10I shows the waveform of failure signal A_FD (upper side), the waveform of B_FD (middle) and the waveform of C_FD (lower side).
  • the vertical axis indicates the failure signal level.
  • the voltage command value VA_ref rises as shown in FIG. 10F.
  • voltage command values VB_ref and VC_ref do not rise.
  • FIG. 10I after 3.2 ms have elapsed since the open failure of the high-side switch element SW_A1H of the A-phase H bridge BA, the fault signal A_FD is appropriate in synchronization with the rise of the voltage command value VA_ref. It can be seen that it is asserted to. The fault signals B_FD and C_FD are not asserted.
  • the H bridge of the failed phase can be identified by comparing the magnitude relationship between Vpeak + Ipeak_ref ⁇ R and V_ref.
  • the fault diagnosis of the present disclosure can be realized by a simple algorithm. Therefore, for example, advantages such as circuit size reduction or memory size reduction can be obtained in the implementation of the controller 340.
  • the failure diagnosis method of the present disclosure can also be suitably used for a full bridge type power converter.
  • the full bridge comprises a one-phase H-bridge structure, for example the circuit structure shown in FIG. 3A.
  • the failure of the full bridge can be detected by utilizing the above-described failure diagnosis method for the failure diagnosis of the full bridge.
  • the full bridge type power converter includes one H bridge and a control circuit 300 that controls the switching operation of the switch element of the H bridge.
  • the control circuit 300 acquires the current / voltage represented in the dq coordinate system, acquires the voltage command value indicating the voltage value of the target applied to the winding at the time of control of the motor, and acquires the magnitude and acquisition of the voltage command value.
  • the fault of the full bridge is diagnosed based on the current and voltage of the dq coordinate system.
  • FIG. 11 schematically shows a typical configuration of the electric power steering apparatus 3000 according to the present embodiment.
  • Vehicles such as automobiles generally have an electric power steering device.
  • the electric power steering apparatus 3000 according to the present embodiment has a steering system 520 and an auxiliary torque mechanism 540 that generates an auxiliary torque.
  • Electric power steering apparatus 3000 generates an assist torque that assists the steering torque of the steering system generated by the driver operating the steering wheel.
  • the assist torque reduces the burden on the driver's operation.
  • the steering system 520 includes, for example, a steering handle 521, a steering shaft 522, free shaft joints 523A and 523B, a rotating shaft 524, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, and knuckles 528A. , 528B, and left and right steering wheels 529A, 529B.
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an electronic control unit (ECU) 542 for a car, a motor 543, a reduction mechanism 544, and the like.
  • the steering torque sensor 541 detects a steering torque in the steering system 520.
  • the ECU 542 generates a drive signal based on the detection signal of the steering torque sensor 541.
  • the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
  • the motor 543 transmits the generated assist torque to the steering system 520 via the reduction mechanism 544.
  • the ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment.
  • an electronic control system is built around an ECU.
  • a motor drive unit is constructed by the ECU 542, the motor 543 and the inverter 545.
  • the motor module 2000 by Embodiment 1 can be used suitably for the system.
  • Embodiments of the present disclosure are also suitably used in motor control systems such as shift by wire, steering by wire, X by wire such as brake by wire, and traction motors.
  • an EPS implementing a failure diagnosis method according to an embodiment of the present disclosure is an autonomous vehicle corresponding to levels 0 to 4 (standards of automation) defined by the Government of Japan and the Road Traffic Safety Administration (NHTSA) of the US Department of Transportation. It can be loaded.
  • Embodiments of the present disclosure can be widely used in a variety of devices equipped with various motors, such as vacuum cleaners, dryers, ceiling fans, washing machines, refrigerators, and electric power steering devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

A fault diagnosis method of the present disclosure diagnoses a fault of an H bridge and is used in a power conversion device which is provided with at least one H bridge and converts power from a power supply to power to be supplied to a motor having at least one-phase windings. The fault diagnosis method includes: an acquisition step for acquiring a current/voltage Ipeak_ref, Vpeak represented in a dq coordinate system, and acquires a voltage command value V_ref indicating a target voltage value imparted to the at least one-phase winding at the time of controlling the motor; and a diagnosis step for diagnosing a fault of the H bridge on the basis of the acquired current/voltage of the dq coordinate system.

Description

故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置Failure diagnosis method, power conversion device, motor module and electric power steering device
本開示は、故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置に関する。


The present disclosure relates to a failure diagnosis method, a power conversion device, a motor module, and an electric power steering device.


近年、電動モータ(以下、単に「モータ」と表記する。)、インバータおよびECUが一体化された機電一体型モータが開発されている。特に車載分野において、安全性の観点から高い品質保証が要求される。そのため、部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として、1つのモータに対して2つの電力変換装置を設けることが検討されている。他の一例として、メインのマイクロコントローラにバックアップ用マイクロコントローラを設けることが検討されている。


2. Description of the Related Art In recent years, an electromechanical integrated motor has been developed in which an electric motor (hereinafter simply referred to as a "motor"), an inverter and an ECU are integrated. Particularly in the automotive field, high quality assurance is required from the viewpoint of safety. Therefore, a redundant design is adopted that can continue safe operation even if part of the part fails. As an example of redundant design, it is considered to provide two power converters for one motor. As another example, it is considered to provide a backup microcontroller on the main microcontroller.


特許文献1は、第1系統および第2系統を有するモータ駆動装置を開示する。第1系統は、モータの第1巻線組に接続され、第1インバータ部、電源リレーおよび逆接続保護リレーなどを有する。第2系統は、モータの第2巻線組に接続され、第2インバータ部、電源リレーおよび逆接続保護リレーなどを有する。モータ駆動装置に故障が生じていないとき、第1系統および第2系統の両方を用いてモータを駆動することが可能である。これに対し、第1系統および第2系統の一方、または、第1巻線組および第2巻線組の一方に故障が生じたとき、電源リレーは、電源から、故障した系統、または、故障した巻線組に接続された系統への電力供給を遮断する。故障していない他方の系統を用いてモータ駆動を継続させることが可能である。  Patent Document 1 discloses a motor drive device having a first system and a second system. The first system is connected to a first winding set of the motor, and includes a first inverter unit, a power supply relay, a reverse connection protection relay, and the like. The second system is connected to a second winding set of the motor, and includes a second inverter unit, a power supply relay, a reverse connection protection relay, and the like. When no failure occurs in the motor drive device, it is possible to drive the motor using both the first system and the second system. On the other hand, when a failure occurs in one of the first system and the second system, or one of the first winding set and the second winding set, the power supply relay is operated from the power supply, the failed system or the failure. Shut off the power supply to the grid connected to the set of windings. It is possible to continue motor drive using the other system which has not failed.
特許文献2および3も、第1系統および第2系統を有するモータ駆動装置を開示する。一方の系統または一方の巻線組が故障したとしても、故障していない系統によってモータ駆動を継続させることができる。  Patent documents 2 and 3 also disclose a motor drive device having a first system and a second system. Even if one system or one winding set fails, the motor drive can be continued by the system which has not failed.
特許文献4は、4つの電気的分離手段、および、2つのインバータを有し、三相モータに供給する電力を変換するモータ駆動装置を開示する。1つのインバータに対し、電源およびインバータの間に1つの電気的分離手段が設けられ、インバータおよびグランド(以下、GNDと表記する。)の間に1つの電気的分離手段が設けられている。故障したインバータにおける巻線の中性点を用いて、故障していないインバータによってモータを駆動することが可能である。そのとき、故障したインバータに接続された2つの電気的分離手段を遮断状態にすることによって、故障したインバータは電源およびGNDから分離される。 Patent Document 4 discloses a motor drive device having four electrical separation means and two inverters and converting power supplied to a three-phase motor. For one inverter, one electrical separation means is provided between the power supply and the inverter, and one electrical separation means is provided between the inverter and the ground (hereinafter referred to as GND). It is possible to drive the motor with a non-faulty inverter using the neutral point of the winding in the faulted inverter. At that time, the failed inverter is separated from the power supply and GND by putting the two electrical separation means connected to the failed inverter into the cut off state.
特開2016-34204号公報JP, 2016-34204, A 特開2016-32977号公報JP, 2016-32977, A 特開2008-132919号公報JP 2008-132919 A 特許第5797751号公報Patent No. 5779751
上述した従来の技術では、Hブリッジの故障を適切に検出することが求められていた。  In the above-described prior art, it has been required to properly detect the failure of the H bridge.
本開示の実施形態は、Hブリッジの故障を適切に診断することが可能な故障診断方法を提供する。 Embodiments of the present disclosure provide a fault diagnosis method capable of appropriately diagnosing a fault of the H bridge.
本開示の例示的な故障診断方法は、電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換し、少なくとも1つのHブリッジを備える電力変換装置に用いる、Hブリッジの故障を診断する故障診断方法であって、dq座標系において表現される電流・電圧を獲得し、かつ、前記モータの制御時に前記少なくとも一相の巻線に与えるターゲットの電圧値を示す電圧指令値を獲得する獲得ステップと、前記電圧指令値の大きさ、および、獲得した前記dq座標系の電流・電圧に基づいて前記Hブリッジの故障を診断する診断ステップと、を包含する。  An exemplary fault diagnosis method of the present disclosure converts an electric power from a power supply into an electric power supplied to a motor having at least one phase winding, and uses the electric power conversion apparatus including at least one H bridge. A failure diagnosis method for diagnosing a failure, comprising obtaining a current / voltage represented in a dq coordinate system, and a voltage command value indicating a voltage value of a target to be applied to the at least one phase winding when controlling the motor And a diagnostic step of diagnosing the failure of the H bridge based on the magnitude of the voltage command value and the acquired current / voltage of the dq coordinate system.
本開示の例示的な電力変換装置は、電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換する電力変換装置であって、少なくとも1つのHブリッジと、前記少なくとも1つのHブリッジのスイッチ素子のスイッチング動作を制御する制御回路と、を備え、前記制御回路は、dq座標系において表現される電流・電圧を獲得し、前記モータの制御時に前記少なくとも一相の巻線に与えるターゲットの電圧値を示す電圧指令値を獲得し、前記電圧指令値の大きさ、および、獲得した前記dq座標系の電流・電圧に基づいて前記Hブリッジの故障を診断する診断する。  An exemplary power converter of the present disclosure is a power converter that converts power from a power source to power supplied to a motor having at least one phase winding, comprising at least one H-bridge; Control circuit for controlling the switching operation of the switch elements of the two H bridges, said control circuit acquiring the current / voltage represented in the dq coordinate system, and controlling said motor at the time of said at least one phase winding The voltage command value indicating the voltage value of the target to be given is acquired, and the diagnosis of the failure of the H bridge is diagnosed based on the magnitude of the voltage command value and the acquired current / voltage of the dq coordinate system.
本開示の例示的な他の電力変換装置は、電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置であって、前記モータの各相の巻線の一端に接続され、n個のレグを有する第1インバータと、前記モータの各相の巻線の他端に接続され、n個のレグを有する第2インバータと、前記n相の巻線、前記第1インバータの前記n個のレグ、および、前記第2インバータの前記n個のレグを有するn個のHブリッジと、前記n個のHブリッジのスイッチ素子のスイッチング動作を制御する制御回路と、を備え、前記制御回路は、dq座標系において表現される電流・電圧を獲得し、前記モータの制御時に各相の巻線に与えるターゲットの電圧値を示す各相の電圧指令値を獲得し、前記各相の電圧指令値の大きさ、および、獲得した前記dq座標系の電流・電圧に基づいてHブリッジの故障を相毎に診断する。 Another exemplary power converter of the present disclosure is a power converter that converts power from a power supply to power supplied to a motor having n-phase (n is an integer of 3 or more) windings. A first inverter connected to one end of the winding of each phase of the motor and having n legs, and a second inverter connected to the other end of the winding of each phase of the motor and having n legs; Switching of the switch elements of the n H-bridges having the n-phase winding, the n-legs of the first inverter, and the n-legs of the second inverter, and the n H-bridges A control circuit for controlling the operation, wherein the control circuit obtains a current and a voltage represented in a dq coordinate system, and indicates each phase indicating a voltage value of a target to be applied to a winding of each phase when controlling the motor The voltage command value of each phase is acquired Decree value of the magnitude, and the failure of the H-bridge diagnosis for each phase based on the current and voltage of the dq coordinate system acquired.
本開示の例示的な実施形態によると、電圧指令値を参照することによってHブリッジの故障を適切に診断することが可能な故障診断方法、電力変換装置、当該電力変換装置を備えるモータモジュールおよび当該モータモジュールを備える電動パワーステアリング装置が提供される。 According to an exemplary embodiment of the present disclosure, a failure diagnosis method capable of appropriately diagnosing a failure of an H bridge by referring to a voltage command value, a power converter, a motor module including the power converter, and the motor module An electric power steering apparatus comprising a motor module is provided.
図1は、例示的な実施形態1によるモータモジュール2000の典型的なブロック構成を模式的に示すブロック図である。FIG. 1 is a block diagram schematically showing a typical block configuration of a motor module 2000 according to an exemplary embodiment 1. As shown in FIG. 図2は、例示的な実施形態1によるインバータユニット100の回路構成を模式的に示す回路図である。FIG. 2 is a circuit diagram schematically showing a circuit configuration of the inverter unit 100 according to the exemplary embodiment 1. As shown in FIG. 図3Aは、A相のHブリッジBAの構成を示す模式図である。FIG. 3A is a schematic view showing the configuration of the A-phase H bridge BA. 図3Bは、B相のHブリッジBBの構成を示す模式図である。FIG. 3B is a schematic view showing the configuration of the B-phase H bridge BB. 図3Cは、C相のHブリッジBCの構成を示す模式図である。FIG. 3C is a schematic view showing the configuration of the C-phase H bridge BC. 図4は、モータ制御全般を行うためのコントローラ340の機能ブロックを例示する機能ブロック図である。FIG. 4 is a functional block diagram illustrating functional blocks of the controller 340 for performing motor control in general. 図5は、Hブリッジの故障診断を行うための機能ブロックを例示する機能ブロック図である。FIG. 5 is a functional block diagram illustrating functional blocks for performing failure diagnosis of the H bridge. 図6は、システム電圧と電圧指令値VA_refの大きさの比較によるHブリッジの故障診断を行う原理を説明するための回路モデルを示す模式図である。FIG. 6 is a schematic diagram showing a circuit model for explaining the principle of performing a fault diagnosis of the H bridge by comparing the magnitudes of the system voltage and the voltage command value VA_ref. 図7は、Hブリッジの故障診断を行うための他の機能ブロックを例示する機能ブロック図である。FIG. 7 is a functional block diagram illustrating another functional block for performing fault diagnosis of the H bridge. 図8は、三相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示するグラフである。FIG. 8 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to three-phase energization control. Is a graph. 図9Aは、A相のHブリッジBAが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のB相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。FIG. 9A is obtained by plotting the current values flowing in the B-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the A-phase H bridge BA fails. It is a graph which illustrates a current waveform. 図9Bは、B相のHブリッジBBが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。FIG. 9B is obtained by plotting the current values flowing in the A-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the B-phase H bridge BB fails. It is a graph which illustrates a current waveform. 図9Cは、C相のHブリッジBCが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。FIG. 9C is obtained by plotting current values flowing in the A-phase and B-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the C-phase H bridge BC fails. It is a graph which illustrates a current waveform. 図10Aは、モータ回転数のシミュレーション結果の波形(上側)およびロータ角のシミュレーション結果の波形(下側)を示すグラフである。FIG. 10A is a graph showing a waveform (upper side) of a simulation result of motor rotation speed and a waveform (lower side) of a simulation result of rotor angle. 図10Bは、A相電流Iaのシミュレーション結果の波形を示すグラフである。FIG. 10B is a graph showing the waveform of the simulation result of the A-phase current Ia. 図10Cは、B相電流Ibのシミュレーション結果の波形を示すグラフである。FIG. 10C is a graph showing the waveform of the simulation result of the B phase current Ib. 図10Dは、C相電流Icのシミュレーション結果の波形を示すグラフである。FIG. 10D is a graph showing the waveform of the simulation result of the C-phase current Ic. 図10Eは、零相電流Izのシミュレーション結果の波形を示すグラフである。FIG. 10E is a graph showing a waveform of a simulation result of the zero phase current Iz. 図10Fは、電圧指令値VA_refのシミュレーション結果の波形を示すグラフである。FIG. 10F is a graph showing a waveform of a simulation result of voltage command value VA_ref. 図10Gは、電圧指令値VB_refのシミュレーション結果の波形を示すグラフである。FIG. 10G is a graph showing a waveform of a simulation result of voltage command value VB_ref. 図10Hは、電圧指令値VC_refのシミュレーション結果の波形を示すグラフである。FIG. 10H is a graph showing a waveform of a simulation result of voltage command value VC_ref. 図10Iは、故障信号A_FDのシミュレーション結果の波形(上側)、B_FDのシミュレーション結果の波形(中間)およびC_FDのシミュレーション結果の波形(下側)を示すグラフである。FIG. 10I is a graph showing a waveform (upper side) of a simulation result of a failure signal A_FD, a waveform (middle) of a simulation result of B_FD, and a waveform (lower side) of a simulation result of C_FD. 図11は、例示的な実施形態2による電動パワーステアリング装置3000の典型的な構成を示す模式図である。FIG. 11 is a schematic view showing a typical configuration of an electric power steering apparatus 3000 according to an exemplary embodiment 2. As shown in FIG.
以下、添付の図面を参照しながら、本開示のHブリッジの故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。  Hereinafter, with reference to the accompanying drawings, embodiments of the H-bridge failure diagnosis method, the power conversion device, the motor module, and the electric power steering device of the present disclosure will be described in detail. However, in order to facilitate the understanding of the person skilled in the art, the following description may be omitted unnecessarily to avoid redundant description. For example, detailed description of already well-known matters and redundant description of substantially the same configuration may be omitted.
本明細書において、電源からの電力を、三相(A相、B相、C相)の巻線を有する三相モータに供給する電力に変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置、およびその装置に用いるHブリッジの故障診断方法も本開示の範疇である。  In the present specification, the implementation of the present disclosure will be exemplified taking a power conversion device that converts power from a power supply into power supplied to a three-phase motor having three-phase (A-phase, B-phase, C-phase) windings. The form will be described. However, a power converter for converting power from a power supply into power for supplying to an n-phase motor having n-phase (n is an integer of 4 or more) windings such as four-phase or five-phase, and H used for the apparatus The fault diagnosis method of the bridge is also within the scope of the present disclosure.

(実施形態1)

〔1.モータモジュール2000および電力変換装置1000の構造〕

 図1は、本実施形態によるモータモジュール2000の典型的なブロック構成を模式的に示している。 

(Embodiment 1)

[1. Structure of motor module 2000 and power converter 1000]

FIG. 1 schematically shows a typical block configuration of a motor module 2000 according to the present embodiment.
モータモジュール2000は、典型的に、インバータユニット100と制御回路300とを有する電力変換装置1000およびモータ200を備える。モータモジュール2000は、モジュール化され、例えば、モータ、センサ、ドライバおよびコントローラを有する機電一体型モータとして製造および販売され得る。  Motor module 2000 typically includes a power conversion device 1000 having an inverter unit 100 and a control circuit 300, and a motor 200. The motor module 2000 may be modularized and manufactured and sold as an electromechanical integrated motor having, for example, a motor, a sensor, a driver and a controller.
電力変換装置1000は、電源101(図2を参照)からの電力をモータ200に供給する電力に変換することが可能である。電力変換装置1000は、モータ200に接続される。例えば、電力変換装置1000は、直流電力を、A相、B相およびC相の擬似正弦波である三相交流電力に変換することが可能である。本明細書において、部品(構成要素)同士の間の「接続」とは、主に電気的な接続を意味する。  Power converter 1000 can convert power from power source 101 (see FIG. 2) into power to be supplied to motor 200. Power converter 1000 is connected to motor 200. For example, power conversion apparatus 1000 can convert DC power into three-phase AC power which is pseudo sine waves of A-phase, B-phase and C-phase. In the present specification, “connection” between components (components) mainly means electrical connection.
モータ200は、例えば三相交流モータである。モータ200は、A相の巻線M1、B相の巻線M2およびC相の巻線M3を備え、インバータユニット100の第1インバータ120と第2インバータ130とに接続される。具体的に説明すると、第1インバータ120はモータ200の各相の巻線の一端に接続され、第2インバータ130は各相の巻線の他端に接続される。  The motor 200 is, for example, a three-phase alternating current motor. Motor 200 includes A-phase winding M1, B-phase winding M2 and C-phase winding M3, and is connected to first inverter 120 and second inverter 130 of inverter unit 100. Specifically, the first inverter 120 is connected to one end of the winding of each phase of the motor 200, and the second inverter 130 is connected to the other end of the winding of each phase.
制御回路300は、例えば、電源回路310と、角度センサ320と、入力回路330と、コントローラ340と、駆動回路350と、ROM360とを備える。制御回路300の各部品は、例えば1枚の回路基板(典型的にはプリント基板)に実装される。制御回路300は、インバータユニット100に接続され、電流センサ150および角度センサ320からの入力信号に基づいてインバータユニット100を制御する。その制御手法として、例えばベクトル制御、パルス幅変調(PWM)または直接トルク制御(DTC)がある。ただし、モータ制御手法(例えばセンサレス制御)によっては、角度センサ320は不要な場合がある。  The control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360. Each component of the control circuit 300 is mounted on, for example, a single circuit board (typically, a printed circuit board). Control circuit 300 is connected to inverter unit 100, and controls inverter unit 100 based on input signals from current sensor 150 and angle sensor 320. As the control method, there are, for example, vector control, pulse width modulation (PWM) or direct torque control (DTC). However, depending on the motor control method (for example, sensorless control), the angle sensor 320 may not be necessary.
制御回路300は、目的とする、モータ200のロータの位置、回転速度、および電流などを制御してクローズドループ制御を実現することができる。なお、制御回路300は、角度センサ320に代えてトルクセンサを備えてもよい。この場合、制御回路300は、目的とするモータトルクを制御することができる。  The control circuit 300 can achieve closed loop control by controlling the target position, rotational speed, current, and the like of the rotor of the motor 200. Control circuit 300 may include a torque sensor instead of angle sensor 320. In this case, the control circuit 300 can control the target motor torque.
電源回路310は、電源101の例えば12Vの電圧に基づいて回路内の各ブロックに必要な電源電圧(例えば3V、5V)を生成する。  The power supply circuit 310 generates power supply voltages (for example, 3 V, 5 V) necessary for each block in the circuit based on, for example, a voltage of 12 V of the power supply 101.
角度センサ320は、例えばレゾルバまたはホールICである。または、角度センサ320は、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ320は、ロータの回転角(以下、「回転信号」と表記する。)を検出し、回転信号をコントローラ340に出力する。  The angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects a rotation angle of the rotor (hereinafter referred to as “rotation signal”), and outputs a rotation signal to the controller 340.
入力回路330は、電流センサ150によって検出された相電流(以下、「実電流値」と表記する場合がある。)を受け取って、実電流値のレベルをコントローラ340の入力レベルに必要に応じて変換し、実電流値をコントローラ340に出力する。入力回路330は、例えばアナログデジタル(AD)変換回路である。  The input circuit 330 receives the phase current detected by the current sensor 150 (hereinafter may be referred to as “actual current value”), and the level of the actual current value corresponds to the input level of the controller 340 as necessary. It converts and outputs an actual current value to the controller 340. The input circuit 330 is, for example, an analog-to-digital (AD) conversion circuit.
コントローラ340は、電力変換装置1000の全体を制御する集積回路であり、例えば、マイクロコントローラまたはFPGA(Field Programmable Gate Array)である。コントローラ340は、インバータユニット100の第1および第2インバータ120、130における各スイッチ素子(典型的には半導体スイッチ素子)のスイッチング動作(ターンオンまたはターンオフ)を制御する。コントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路350に出力する。
The controller 340 is an integrated circuit that controls the entire power conversion apparatus 1000, and is, for example, a microcontroller or a field programmable gate array (FPGA). The controller 340 controls the switching operation (turn on or off) of each switch element (typically, semiconductor switch element) in the first and second inverters 120 and 130 of the inverter unit 100. The controller 340 sets a target current value according to the actual current value, the rotation signal of the rotor, etc. to generate a PWM signal, and outputs it to the drive circuit 350.
駆動回路350は典型的にはプリドライバ(「ゲートドライバ」と呼ばれることもある。)である。駆動回路350は、インバータユニット100の第1および第2インバータ120、130における各スイッチ素子のスイッチング動作を制御する制御信号(ゲート制御信号)をPWM信号に従って生成し、各スイッチ素子のゲートに制御信号を与える。駆動対象が低電圧で駆動可能なモータであるとき、プリドライバは必ずしも必要とされない場合がある。その場合、プリドライバの機能はコントローラ340に実装され得る。
The drive circuit 350 is typically a predriver (sometimes referred to as a "gate driver"). The drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each switch element in the first and second inverters 120 and 130 of the inverter unit 100 according to the PWM signal, and controls the gate of each switch element give. When the object to be driven is a low-voltage drivable motor, the pre-driver may not be required. In that case, the function of the pre-driver may be implemented in the controller 340.
ROM360は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM360は、コントローラ340に電力変換装置1000を制御させるための命令群を含む制御プログラムを格納している。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。
The ROM 360 is, for example, a writable memory (for example, a PROM), a rewritable memory (for example, a flash memory), or a read only memory. The ROM 360 stores a control program including instructions for causing the controller 340 to control the power conversion apparatus 1000. For example, the control program is temporarily expanded in a RAM (not shown) at boot time.

 図2を参照してインバータユニット100の具体的な回路構成を説明する。

A specific circuit configuration of the inverter unit 100 will be described with reference to FIG.
図2は、本実施形態によるインバータユニット100の回路構成を模式的に示している。  FIG. 2 schematically shows the circuit configuration of the inverter unit 100 according to the present embodiment.
電源101は、所定の電源電圧(例えば12V)を生成する。電源101として、例えば直流電源が用いられる。ただし、電源101は、AC-DCコンバータまたはDC―DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。電源101は、図示するように、第1および第2インバータ120、130に共通の単一電源であってもよいし、第1インバータ120用の第1電源(不図示)および第2インバータ130用の第2電源(不図示)を備えていてもよい。  The power supply 101 generates a predetermined power supply voltage (for example, 12 V). For example, a DC power supply is used as the power supply 101. However, the power supply 101 may be an AC-DC converter or a DC-DC converter, or may be a battery (storage battery). The power supply 101 may be a single power supply common to the first and second inverters 120, 130 as shown, or for the first power supply (not shown) for the first inverter 120 and for the second inverter 130. A second power source (not shown) of
ヒューズISW_11、ISW_12が、電源101と第1インバータ120との間に接続される。ヒューズISW_11、ISW_12は、電源101から第1インバータ120に流れ得る大電流を遮断することができる。ヒューズISW_21、ISW_22が、電源101と第2インバータ130との間に接続される。ヒューズISW_21、ISW_22は、電源101から第2インバータ130に流れ得る大電流を遮断することができる。ヒューズの代わりにリレーなどを用いてもよい。  The fuses ISW_ 11 and ISW_ 12 are connected between the power supply 101 and the first inverter 120. The fuses ISW_11 and ISW_12 can interrupt a large current that can flow from the power supply 101 to the first inverter 120. The fuses ISW 21 and ISW 22 are connected between the power supply 101 and the second inverter 130. The fuses ISW_ 21 and ISW_ 22 can interrupt a large current that can flow from the power supply 101 to the second inverter 130. A relay or the like may be used instead of the fuse.
図示されていないが、電源101と第1インバータ120の間、および、電源101と第2インバータ130の間にコイルが設けられる。コイルは、ノイズフィルタとして機能し、各インバータに供給する電圧波形に含まれる高周波ノイズ、または各インバータで発生する高周波ノイズを電源101側に流出させないように平滑化する。また、各インバータの電源端子には、コンデンサが接続される。コンデンサは、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサは、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。  Although not shown, coils are provided between the power supply 101 and the first inverter 120 and between the power supply 101 and the second inverter 130. The coil functions as a noise filter, and smoothes high frequency noise included in the voltage waveform supplied to each inverter or high frequency noise generated in each inverter so as not to flow out to the power supply 101 side. Further, a capacitor is connected to the power supply terminal of each inverter. The capacitor is a so-called bypass capacitor, which suppresses voltage ripple. The capacitor is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to design specifications and the like.
第1インバータ120は、3個のレグから構成されるブリッジ回路を有する。各レグは、ハイサイドスイッチ素子、ローサイドスイッチ素子およびシャント抵抗を有する。A相レグは、ハイサイドスイッチ素子SW_A1H、ローサイドスイッチ素子SW_A1Lおよび第1シャント抵抗S_A1を有する。B相レグは、ハイサイドスイッチ素子SW_B1H、ローサイドスイッチ素子SW_B1Lおよび第1シャント抵抗S_B1を有する。C相レグは、ハイサイドスイッチ素子SW_C1H、ローサイドスイッチ素子SW_C1Lおよび第1シャント抵抗S_C1を有する。  The first inverter 120 has a bridge circuit composed of three legs. Each leg has a high side switch element, a low side switch element and a shunt resistor. The A-phase leg has a high side switch element SW_A1H, a low side switch element SW_A1L, and a first shunt resistor S_A1. The B-phase leg has a high side switch element SW_B1H, a low side switch element SW_B1L, and a first shunt resistor S_B1. The C-phase leg has a high side switch element SW_C1H, a low side switch element SW_C1L, and a first shunt resistor S_C1.
スイッチ素子として、例えば、寄生ダイオードが内部に形成された電界効果トランジスタ(典型的にはMOSFET)、または、絶縁ゲートバイポーラトランジスタ(IGBT)とそれに並列接続された還流ダイオードとの組み合わせを用いることができる。  As a switch element, for example, a field effect transistor (typically, a MOSFET) in which a parasitic diode is formed, or a combination of an insulated gate bipolar transistor (IGBT) and a free wheeling diode connected in parallel thereto can be used. .
第1シャント抵抗S_A1は、A相の巻線M1を流れるA相電流IA1を検出するために用いられ、例えばローサイドスイッチ素子SW_A1LとGNDラインGLの間に接続される。第1シャント抵抗S_B1は、B相の巻線M2を流れるB相電流IB1を検出するために用いられ、例えばローサイドスイッチ素子SW_B1LとGNDラインGLの間に接続される。第1シャント抵抗S_C1は、C相の巻線M3を流れるC相電流IC1を検出するために用いられ、例えばローサイドスイッチ素子SW_C1LとGNDラインGLの間に接続される。3個のシャント抵抗S_A1、S_B1、S_C1は、第1インバータ120のGNDラインGLと共通に接続されている。  The first shunt resistor S_A1 is used to detect an A-phase current IA1 flowing through the A-phase winding M1, and is connected, for example, between the low side switch element SW_A1L and the GND line GL. The first shunt resistor S_B1 is used to detect the B-phase current IB1 flowing through the B-phase winding M2, and is connected, for example, between the low side switch element SW_B1L and the GND line GL. The first shunt resistor S_C1 is used to detect a C-phase current IC1 flowing through the C-phase winding M3, and is connected, for example, between the low side switch element SW_C1L and the GND line GL. The three shunt resistors S_A1, S_B1, and S_C1 are commonly connected to the GND line GL of the first inverter 120.
第2インバータ130は、3個のレグから構成されるブリッジ回路を有する。各レグは、ハイサイドスイッチ素子、ローサイドスイッチ素子およびシャント抵抗を有する。A相レグは、ハイサイドスイッチ素子SW_A2H、ローサイドスイッチ素子SW_A2Lおよびシャント抵抗S_A2を有する。B相レグは、ハイサイドスイッチ素子SW_B2H、ローサイドスイッチ素子SW_B2Lおよびシャント抵抗S_B2を有する。C相レグは、ハイサイドスイッチ素子SW_C2H、ローサイドスイッチ素子SW_C2Lおよびシャント抵抗S_C2を有する。  The second inverter 130 has a bridge circuit composed of three legs. Each leg has a high side switch element, a low side switch element and a shunt resistor. The A-phase leg has a high side switch element SW_A2H, a low side switch element SW_A2L, and a shunt resistor S_A2. The B-phase leg has a high side switch element SW_B2H, a low side switch element SW_B2L, and a shunt resistor S_B2. The C-phase leg has a high side switch element SW_C2H, a low side switch element SW_C2L, and a shunt resistor S_C2.
シャント抵抗S_A2は、A相電流IA2を検出するために用いられ、例えば、ローサイドスイッチ素子SW_A2LとGNDラインGLの間に接続される。シャント抵抗S_B2は、B相電流IB2を検出するために用いられ、例えば、ローサイドスイッチ素子SW_B2LとGNDラインGLの間に接続される。シャント抵抗S_C2は、C相電流IC2を検出するために用いられ、例えば、ローサイドスイッチ素子SW_C2LとGNDラインGLの間に接続される。3個のシャント抵抗S_A2、S_B2、S_C2は、第2インバータ130のGNDラインGLと共通に接続されている。  The shunt resistor S_A2 is used to detect the A-phase current IA2, and is connected, for example, between the low side switch element SW_A2L and the GND line GL. The shunt resistor S_B2 is used to detect the B-phase current IB2, and is connected, for example, between the low side switch element SW_B2L and the GND line GL. The shunt resistor S_C2 is used to detect the C-phase current IC2, and is connected, for example, between the low side switch element SW_C2L and the GND line GL. The three shunt resistors S_A2, S_B2 and S_C2 are commonly connected to the GND line GL of the second inverter 130.
上述した電流センサ150は、例えば、シャント抵抗S_A1、S_B1、S_C1、S_A2、S_B2、S_C2および各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を備える。  The above-described current sensor 150 includes, for example, shunt resistors S_A1, S_B1, S_C1, S_A2, S_B2 and S_C2 and a current detection circuit (not shown) that detects the current flowing in each shunt resistor.
第1インバータ120のA相レグ(具体的には、ハイサイドスイッチ素子SW_A1Hおよびローサイドスイッチ素子SW_A1Lの間のノード)は、モータ200のA相の巻線M1の一端A1に接続され、第2インバータ130のA相レグは、A相の巻線M1の他端A2に接続される。第1インバータ120のB相レグは、モータ200のB相の巻線M2の一端B1に接続され、第2インバータ130のB相レグは、巻線M2の他端B2に接続される。第1インバータ120のC相レグは、モータ200のC相の巻線M3の一端C1に接続され、第2インバータ130のC相レグは、巻線M3の他端C2に接続される。  The A-phase leg of the first inverter 120 (specifically, the node between the high-side switch element SW_A1H and the low-side switch element SW_A1L) is connected to one end A1 of the A-phase winding M1 of the motor 200. The 130 A-phase leg is connected to the other end A2 of the A-phase winding M1. The B-phase leg of the first inverter 120 is connected to one end B1 of the B-phase winding M2 of the motor 200, and the B-phase leg of the second inverter 130 is connected to the other end B2 of the winding M2. The C-phase leg of the first inverter 120 is connected to one end C1 of the C-phase winding M3 of the motor 200, and the C-phase leg of the second inverter 130 is connected to the other end C2 of the winding M3.
図3Aは、A相のHブリッジBAの構成を模式的に示している。図3Bは、B相のHブリッジBBの構成を模式的に示している。図3Cは、C相のHブリッジBCの構成を模式的に示している。  FIG. 3A schematically shows the configuration of the A-phase H bridge BA. FIG. 3B schematically shows the configuration of the B-phase H bridge BB. FIG. 3C schematically shows the configuration of the C-phase H bridge BC.
インバータユニット100は、A相、B相およびC相のHブリッジBA、BB、BCを備える。A相のHブリッジBAは、第1インバータ120側のレグにおけるハイサイドスイッチ素子SW_A1H、ローサイドスイッチ素子SW_A1L、第2インバータ130側のレグにおけるハイサイドスイッチ素子SW_A2H、ローサイドスイッチ素子SW_A2L、および、巻線M1を有する。B相のHブリッジBBは、第1インバータ120側のレグにおけるハイサイドスイッチ素子SW_B1H、ローサイドスイッチ素子SW_B1L、第2インバータ130側のレグにおけるハイサイドスイッチ素子SW_B2H、ローサイドスイッチ素子SW_B2L、および、巻線M2を有する。C相のHブリッジBCは、第1インバータ120側のレグにおけるハイサイドスイッチ素子SW_C1H、ローサイドスイッチ素子SW_C1L、第2インバータ130側のレグにおけるハイサイドスイッチ素子SW_C2H、ローサイドスイッチ素子SW_C2L、および、巻線M3を有する。


The inverter unit 100 includes A-phase, B-phase and C-phase H bridges BA, BB, BC. The A-phase H bridge BA includes a high side switch element SW_A1H and a low side switch element SW_A1L in the leg on the first inverter 120 side, a high side switch element SW_A2H in the leg on the second inverter 130 side, a low side switch element SW_A2L, and a winding It has M1. The B-phase H bridge BB includes a high side switch element SW_B1H and a low side switch element SW_B1L in a leg on the first inverter 120 side, a high side switch element SW_B2H in a leg on the second inverter 130 side, a low side switch element SW_B2L, and a winding It has M2. The C-phase H bridge BC includes a high side switching device SW_C1H and a low side switching device SW_C1L in the leg on the first inverter 120 side, a high side switching device SW_C2H in the leg on the second inverter 130 side, a low side switching device SW_C2L, and a winding It has M3.


制御回路300(具体的にはコントローラ340)は、以下で説明するHブリッジの故障診断を実行することにより、三相のHブリッジの中から故障したHブリッジを特定することができる。例えば、制御回路300は、故障したHブリッジを特定すると、故障したHブリッジ以外の二相のHブリッジを用いて二相の巻線を通電するモータ制御に切替えることが可能である。本明細書において、三相の巻線を通電することを「三相通電制御」と呼び、二相の巻線を通電することを「二相通電制御」と呼ぶこととする。
The control circuit 300 (specifically, the controller 340) can identify the failed H bridge from among the three-phase H bridges by performing the failure diagnosis of the H bridge described below. For example, when the control circuit 300 identifies a failed H bridge, it is possible to switch to motor control in which a two-phase winding is energized using a two-phase H bridge other than the failed H bridge. In the present specification, energization of a three-phase winding is referred to as "three-phase energization control", and energization of a two-phase winding is referred to as "two-phase energization control".

〔2.Hブリッジの故障診断方法〕

 図4から図6を参照しながら、例えば、図1に示す電力変換装置1000に用いる、Hブリッジの故障を診断する故障診断方法の具体例を説明する。ただし、本開示の故障診断方法は、後述するように、少なくとも1つのHブリッジを備える電力変換装置、例えばフルブリッジタイプの電力変換装置に好適に用いることができる。ここで、Hブリッジの故障を説明する。Hブリッジの故障は、スイッチ素子のオープン故障を指す。本明細書では、例えばA相のHブリッジBAのハイサイドスイッチ素子SW_A1Hにオープン故障が生じることを、A相のHブリッジBAの故障と呼ぶ。

[2. Failure diagnosis method of H bridge]

With reference to FIGS. 4 to 6, a specific example of a failure diagnosis method for diagnosing a failure of the H bridge, which is used for the power conversion device 1000 shown in FIG. 1, for example, will be described. However, as will be described later, the failure diagnosis method of the present disclosure can be suitably used for a power converter including at least one H bridge, for example, a full bridge type power converter. Here, the failure of the H bridge will be described. The failure of the H bridge refers to the open failure of the switch element. In this specification, for example, the occurrence of an open failure in the high-side switch element SW_A1H of the A-phase H bridge BA is referred to as a failure of the A-phase H bridge BA.
Hブリッジの故障を診断する故障診断方法の概要は、下記のとおりである。
The outline of the failure diagnosis method for diagnosing the failure of the H bridge is as follows.
まず、dq座標系において表現される電流・電圧を獲得し、かつ、電圧指令値を相毎に獲得する(獲得ステップ)。dq座標系において表現される電流・電圧は、d軸電圧、q軸電圧、d軸電流、q軸電流、零相電流、d軸電流指令値、q軸電流指令値および零相電流指令値を含む。なお、dq座標系において、零相に対応する軸をz軸として表している。電圧指令値は、モータ200の制御時に用いる、巻線に与えるターゲットの電圧値を示す。零相電流は、z軸電流とも呼ばれる。  First, the current / voltage represented in the dq coordinate system is acquired, and the voltage command value is acquired for each phase (acquisition step). The current and voltage expressed in the dq coordinate system are d axis voltage, q axis voltage, d axis current, q axis current, zero phase current, d axis current command value, q axis current command value and zero phase current command value Including. In the dq coordinate system, an axis corresponding to the zero phase is represented as the z axis. The voltage command value indicates the voltage value of the target to be applied to the winding, which is used when controlling the motor 200. The zero-phase current is also called z-axis current.
次に、各相の電圧指令値の大きさ、および、獲得したdq座標系の電流・電圧に基づいてHブリッジの故障を相毎に診断する(診断ステップ)。  Next, the failure of the H bridge is diagnosed for each phase based on the magnitude of the voltage command value of each phase and the current / voltage of the acquired dq coordinate system (diagnosis step).
次に、Hブリッジの故障を示す故障信号を生成し、モータ200を制御するモータ制御ユニット900に故障信号を出力する(故障信号出力ステップ)。例えば、故障信号は、故障が生じるとアサートされる信号である。  Next, a fault signal indicating a fault in the H bridge is generated, and a fault signal is output to the motor control unit 900 that controls the motor 200 (fault signal output step). For example, a fault signal is a signal that is asserted when a fault occurs.
上記の獲得ステップ、診断ステップおよび故障信号出力ステップは、例えば、電流センサ150によって各相電流を測定する周期、すなわちAD変換の周期に同期して繰り返し実行される。  The acquisition step, the diagnosis step, and the fault signal output step are repeatedly performed, for example, in synchronization with a cycle of measuring each phase current by the current sensor 150, that is, a cycle of AD conversion.
本実施形態による故障診断方法を実現するためのアルゴリズムは、例えば特定用途向け集積回路(ASIC)またはFPGAなどのハードウェアのみで実現することもできるし、マイクロコントローラおよびソフトウェアの組み合わせによっても実現することができる。本実施形態では、故障診断の動作主体を制御回路300のコントローラ340とする。  The algorithm for realizing the fault diagnosis method according to the present embodiment can be realized only by hardware such as an application specific integrated circuit (ASIC) or an FPGA, for example, or realized by a combination of a microcontroller and software. Can. In the present embodiment, the operation subject of failure diagnosis is the controller 340 of the control circuit 300.
図4は、モータ制御全般を行うためのコントローラ340の機能ブロックを例示している。図5は、Hブリッジの故障診断を行うための機能ブロックを例示している。  FIG. 4 exemplifies functional blocks of the controller 340 for performing motor control in general. FIG. 5 exemplifies functional blocks for performing failure diagnosis of the H bridge.
本明細書において、機能ブロック図における各ブロックは、ハードウェア単位ではなく機能ブロック単位で示される。モータ制御およびHブリッジの故障診断に用いるソフトウェアは、例えば、各機能ブロックに対応した特定の処理を実行させるためのコンピュータプログラムを構成するモジュールであり得る。そのようなコンピュータプログラムは、例えばROM360に格納される。コントローラ340は、ROM360から命令を読み出して各処理を逐次実行することができる。  In the present specification, each block in the functional block diagram is shown not in hardware but in functional block. The software used for motor control and fault diagnosis of the H bridge may be, for example, a module constituting a computer program for executing a specific process corresponding to each functional block. Such computer programs are stored, for example, in the ROM 360. The controller 340 can read an instruction from the ROM 360 and sequentially execute each process.
コントローラ340は、例えば、故障診断ユニット800およびモータ制御ユニット900を有する。このように、本開示の故障診断は、モータ制御(例えばベクトル制御)と好適に組み合わせることができ、モータ制御の一連の処理の中に組み込むことが可能である。  The controller 340 includes, for example, a fault diagnosis unit 800 and a motor control unit 900. Thus, the fault diagnosis of the present disclosure can be suitably combined with motor control (for example, vector control) and can be incorporated into a series of processes of motor control.
故障診断ユニット800は、dq座標系において表現される、電流ピーク指令値Ipeak_refおよび電圧ピーク値Vpeakを獲得し、かつ、電圧指令値VA_ref、VB_refおよびVC_refを獲得する。故障診断ユニット800は、電圧指令値VA_refの大きさ、獲得した電流ピーク指令値Ipeak_refおよび電圧ピーク値Vpeakに基づいてA相のHブリッジBAの故障を診断する。故障診断ユニット800は、電圧指令値VB_refの大きさ、獲得した電流ピーク指令値Ipeak_refおよび電圧ピーク値Vpeakに基づいてB相のHブリッジBBの故障を診断する。故障診断ユニット800は、電圧指令値VC_refの大きさ、獲得した電流ピーク指令値Ipeak_refおよび電圧ピーク値Vpeakに基づいてC相のHブリッジBCの故障を診断する。故障診断ユニット800は、Hブリッジの故障を示す故障信号A_FD,B_FDおよびC_FDを診断結果に基づいて相毎に生成し、モータ200を制御するモータ制御ユニット900に出力する。  Fault diagnosis unit 800 obtains current peak command value Ipeak_ref and voltage peak value Vpeak expressed in the dq coordinate system, and obtains voltage command values VA_ref, VB_ref and VC_ref. The failure diagnosis unit 800 diagnoses a failure of the A-phase H bridge BA based on the magnitude of the voltage command value VA_ref, the acquired current peak command value Ipeak_ref and the voltage peak value Vpeak. The failure diagnosis unit 800 diagnoses a failure of the B-phase H bridge BB based on the magnitude of the voltage command value VB_ref, the acquired current peak command value Ipeak_ref and the voltage peak value Vpeak. The failure diagnosis unit 800 diagnoses a failure of the C-phase H bridge BC based on the magnitude of the voltage command value VC_ref, the acquired current peak command value Ipeak_ref and the voltage peak value Vpeak. The failure diagnosis unit 800 generates failure signals A_FD, B_FD and C_FD indicating the failure of the H bridge for each phase based on the diagnosis result, and outputs the generated signals to the motor control unit 900 that controls the motor 200.
モータ制御ユニット900は、例えばベクトル制御を用いて、第1および第2インバータ120、130のスイッチ素子のスイッチング動作の全般を制御するPWM信号を生成する。モータ制御ユニット900は、PWM信号を駆動回路350に出力する。また、モータ制御ユニット900は、例えば故障信号がアサートされると、モータ制御を三相通電制御から二相通電制御に切替えることが可能である。  The motor control unit 900 generates a PWM signal that controls the overall switching operation of the switch elements of the first and second inverters 120 and 130 using, for example, vector control. The motor control unit 900 outputs a PWM signal to the drive circuit 350. Further, the motor control unit 900 can switch the motor control from the three-phase energization control to the two-phase energization control, for example, when a failure signal is asserted.
本明細書において、説明の便宜上、各機能ブロックをユニットと表記する場合がある。当然に、各機能ブロックをハードウェアまたはソフトウェアに限定解釈する意図で、これらの表記を用いてはならない。  In the present specification, each functional block may be referred to as a unit for convenience of explanation. Naturally, these notations should not be used with the intention of limiting interpretation of each functional block to hardware or software.
各機能ブロックはソフトウェアとしてコントローラ340に実装される場合、そのソフトウェアの実行主体は、例えばコントローラ340のコアであり得る。上述したようにコントローラ340はFPGAによって実現され得る。その場合全てまたは一部の機能ブロックはハードウェアで実現され得る。
When each functional block is implemented as software in the controller 340, the execution subject of the software may be, for example, the core of the controller 340. As described above, controller 340 may be implemented by an FPGA. In that case, all or part of the functional blocks can be realized in hardware.
複数のFPGAを用いて処理を分散させることにより、特定のコンピュータの演算負荷を分散させることができる。その場合、図4および図5に示される機能ブロックの全てまたは一部は、複数のFPGAに分散して実装され得る。複数のFPGAは、例えば車載のコントロールエリアネットワーク(CAN)によって互いに通信可能に接続され、データの送受信を行うことが可能である。  By distributing the processing using a plurality of FPGAs, the computing load of a specific computer can be distributed. In that case, all or part of the functional blocks shown in FIG. 4 and FIG. 5 may be distributed and implemented in a plurality of FPGAs. The plurality of FPGAs are communicably connected to one another by, for example, a vehicle-mounted control area network (CAN), and can transmit and receive data.
故障診断ユニット800は、例えば、ゲインユニット810、リミット判定ユニット820、LPF(ローパスフィルタ)830、加算器840、乗算器850、絶対値ユニット860A、860B、860C、加算器870A、870B、870C、信号生成ユニット880A、880Bおよび880Cを有する。  The failure diagnosis unit 800 includes, for example, gain unit 810, limit determination unit 820, LPF (low pass filter) 830, adder 840, multiplier 850, absolute value units 860A, 860B, 860C, adders 870A, 870B, 870C, signals. It has generation units 880A, 880B and 880C.
ゲインユニット810は、電流ピーク指令値Ipeak_refにゲインRを乗算する。電流ピーク指令値Ipeak_refは、dq座標系における電流振幅のピーク値を示し、具体的には、式(1)基づいて算出される。ここで、Idrefは、d軸上のd軸電流指令値を示し、Iqrefは、q軸上のq軸電流指令値を示し、Izrefは、零相電流指令値を示す。abs(X)はXの絶対値を示す。ゲインRは、Hブリッジを含む回路システム全体の電気的特性を表す。例えば、ゲインRは、スイッチ素子のデッドタイムの影響など考慮して決定され、回路全体の抵抗〔Ω〕に相当する。

  Ipeak_ref=(2/3)1/2(Idref+Iqref1/2+abs(Izref)/31/2    式(1)
The gain unit 810 multiplies the current peak command value Ipeak_ref by the gain R. The current peak command value Ipeak_ref indicates the peak value of the current amplitude in the dq coordinate system, and is specifically calculated based on the equation (1). Here, Idref indicates a d-axis current command value on the d-axis, Iqref indicates a q-axis current command value on the q-axis, and Izref indicates a zero-phase current command value. abs (X) indicates the absolute value of X. The gain R represents the electrical characteristics of the entire circuit system including the H bridge. For example, the gain R is determined in consideration of the influence of the dead time of the switch element and the like, and corresponds to the resistance [Ω] of the entire circuit.

Ipeak_ref = (2/3) 1/2 (Idref 2 + Iqref 2 ) 1/2 + abs (Izref) / 3 1/2 equation (1)
例えば、コントローラ340のコアは、角度センサ320により検出された回転速度および速度指令値に基づいて電流指令値Idref、IqrefおよびIzrefを決定し、故障診断ユニット800に出力する。後述するプレ演算ユニットが、電流指令値Idref、IqrefおよびIzrefに基づいてIpeak_refを算出し、ゲインユニット810に出力する。ゲインユニット810は、Ipeak_ref・Rをリミット判定ユニット820に出力する。  For example, the core of the controller 340 determines the current command values Idref, Iqref and Izref based on the rotational speed and the speed command value detected by the angle sensor 320, and outputs them to the fault diagnosis unit 800. A pre-operation unit to be described later calculates Ipeak_ref based on the current command values Idref, Iqref and Izref, and outputs the Ipeak_ref to the gain unit 810. The gain unit 810 outputs Ipeak_ref · R to the limit determination unit 820.
リミット判定ユニット820は、電流ピーク指令値Ipeak_refとゲインRの積の大きさが許容範囲にあるか否かを判定する。つまり、リミット判定ユニット820は、Ipeak_ref・Rが許容範囲にあるかどうかを判定する。許容範囲は、通常動作時の入力電圧の上限値を意味する。  Limit determination unit 820 determines whether or not the magnitude of the product of current peak command value Ipeak_ref and gain R is within an allowable range. That is, the limit determination unit 820 determines whether Ipeak_ref · R is within the allowable range. The allowable range means the upper limit value of the input voltage in the normal operation.
電圧ピーク値Vpeakを加算する後段の演算を実行する前に、電圧ピーク値Vpeakを汎用LPF830によってローパスフィルタ処理することが好ましい。これにより、基本波のみによって表される電圧ピーク値Vpeakを取得することが可能となる。  It is preferable to subject the voltage peak value Vpeak to low-pass filter processing by the general purpose LPF 830 before performing the subsequent operation of adding the voltage peak value Vpeak. This makes it possible to acquire the voltage peak value Vpeak represented by only the fundamental wave.
LPF830は、電圧ピーク値Vpeakをローパスフィルタ処理する。電圧ピーク値Vpeakは、式(2)に基づいて算出される。ここで、Vdは、dq座標系におけるd軸電圧を示し、Vqはq軸電圧を示す。

  Vpeak=(2/3)1/2(Vd+Vq1/2   式(2)
The LPF 830 performs low-pass filter processing on the voltage peak value Vpeak. The voltage peak value Vpeak is calculated based on the equation (2). Here, Vd indicates the d-axis voltage in the dq coordinate system, and Vq indicates the q-axis voltage.

Vpeak = (2/3) 1/2 (Vd 2 + Vq 2 ) 1/2 equation (2)
例えば、故障診断ユニット800は、Vpeakを獲得するプレ演算ユニット(不図示)を有し得る。プレ演算ユニットは、クラーク変換を用いて、電流センサ150の測定値に基づいて取得された三相電流Ia、IbおよびIcを、αβ固定座標系における、α軸上の電流Iαおよびβ軸上の電流Iβに変換する。プレ演算ユニットは、さらに、パーク変換(dq座標変換)を用いて、電流Iα、Iβを、dq座標系における、d軸電流Id、q軸電流Iqおよび零相電流Izに変換する。プレ演算ユニットは、IdおよびIqに基づいてd軸電圧Vdおよびq軸電圧Vqを取得し、取得したVd、Vqから式(2)に基づいて電圧ピーク値Vpeakを算出する。または、プレ演算ユニットは、ベクトル制御を行うモータ制御ユニット900から、Vpeakの算出に必要なVd、Vqを受け取ることも可能である。例えば、プレ演算ユニットは、電流センサ150によって各相電流を測定する周期に同期してVpeak、Ipeak_refを獲得する。
For example, the failure diagnosis unit 800 may have a pre-operation unit (not shown) for acquiring Vpeak. The pre-arithmetic unit uses three-phase currents Ia, Ib and Ic obtained based on the measurement values of the current sensor 150 using Clarke transformation to generate currents I α and β on the α axis in the αβ fixed coordinate system. Current I.sub..beta . The pre-arithmetic unit further converts the currents I α and I β into a d-axis current Id, a q-axis current Iq and a zero-phase current Iz in the dq coordinate system, using Park conversion (dq coordinate conversion). The pre-arithmetic unit acquires the d-axis voltage Vd and the q-axis voltage Vq based on Id and Iq, and calculates the voltage peak value Vpeak from the acquired Vd and Vq based on Expression (2). Alternatively, the pre-arithmetic unit can also receive Vd and Vq necessary for calculation of Vpeak from the motor control unit 900 performing vector control. For example, the pre-calculation unit acquires Vpeak and Ipeak_ref in synchronization with the cycle of measuring each phase current by the current sensor 150.
加算器840は、リミット判定ユニット820からの出力(Ipeak_ref・R)およびLPF830からの出力Vpeakを加算する。加算器840は、Ipeak_ref・R+Vpeakを乗算器850に出力する。
The adder 840 adds the output (Ipeak_ref · R) from the limit determination unit 820 and the output Vpeak from the LPF 830. The adder 840 outputs Ipeak_ref · R + Vpeak to the multiplier 850.
乗算器850は、加算器840からの出力Ipeak_ref・R+Vpeakに(-1)を乗算する。本明細書では、加算器840からの出力電圧(Ipeak_ref・R+Vpeak)を「システム電圧」と呼ぶこととする。乗算器850は、システム電圧を、A相用加算器870A、B相用加算器870BおよびC相用加算器870Cに出力する。
The multiplier 850 multiplies the output Ipeak_ref · R + Vpeak from the adder 840 by (−1). In the present specification, the output voltage (Ipeak_ref · R + Vpeak) from the adder 840 is referred to as “system voltage”. Multiplier 850 outputs the system voltage to A-phase adder 870A, B-phase adder 870B and C-phase adder 870C.
以下、A相の故障診断を例にしてHブリッジの故障診断の処理を説明する。
In the following, the process of H-bridge failure diagnosis will be described by taking the A-phase failure diagnosis as an example.
故障診断ユニット800は、システム電圧とA相の電圧指令値VA_refの大きさとの比較結果に基づいてA相のHブリッジBAの故障を診断する。故障診断ユニット800は、電圧指令値VA_refの大きさがシステム電圧よりも大きい場合、A相のHブリッジBAは故障していると判定する。故障診断ユニット800は、電圧指令値VA_refの大きさがシステム電圧以下である場合、A相のHブリッジBAは故障していないと判定する。本実施形態では、乗算器850、絶対値ユニット860Aおよび加算器870Aを用いてシステム電圧とA相の電圧指令値VA_refの大きさとの比較を実現する。  Failure diagnosis unit 800 diagnoses a failure of H bridge BA of A phase based on the comparison result of the system voltage and the magnitude of voltage command value VA_ref of A phase. If the magnitude of voltage command value VA_ref is larger than the system voltage, failure diagnosis unit 800 determines that A-phase H bridge BA is broken. When the magnitude of voltage command value VA_ref is equal to or less than the system voltage, failure diagnosis unit 800 determines that A-phase H bridge BA is not broken. In this embodiment, comparison between the system voltage and the voltage command value VA_ref of the A phase is realized using the multiplier 850, the absolute value unit 860A, and the adder 870A.
加算器870Aは、乗算器850からの出力電圧およびA相の電圧指令値VA_refの大きさを加算する。絶対値ユニット860Aにより電圧指令値VA_refの絶対値をとる理由は、Hブリッジのハイサイドスイッチ素子およびローサイドスイッチ素子の両方のオープン故障を故障診断の対象とするためである。  The adder 870A adds the output voltage from the multiplier 850 and the magnitude of the A-phase voltage command value VA_ref. The reason why the absolute value unit 860A takes the absolute value of the voltage command value VA_ref is to set the open failure of both the high side switch element and the low side switch element of the H bridge as a target of failure diagnosis.
再び図3Aから図3Cを参照する。  Refer again to FIGS. 3A to 3C.
A相の電圧指令値VA_refは、HブリッジBAのハイサイドスイッチ素子SW_A1Hまたはローサイドスイッチ素子SW_A1L(両スイッチ素子の間のノード)についての電圧指令値VA1_refと、ハイサイドスイッチ素子SW_A2Hまたはローサイドスイッチ素子SW_A2L(両スイッチ素子の間のノード)についての電圧指令値VA2_refとの差分によって与えられる。B相の電圧指令値VB_ref、C相の電圧指令値VC_refも、A相の電圧指令値VA_refと同様に与えられる。電圧指令値VA_ref、VB_refおよびVC_refは、式(3)に基づいて算出される。

   VA_ref=VA1_ref-VA2_ref

   VB_ref=VB1_ref-VB2_ref    式(3)

   VC_ref=VC1_ref-VC2_ref
The voltage command value VA_ref of the A phase is a voltage command value VA1_ref for the high side switch device SW_A1H or low side switch device SW_A1L (a node between both switch devices) of the H bridge BA, the high side switch device SW_A2H or the low side switch device SW_A2L It is given by the difference with voltage command value VA2_ref for (a node between both switch elements). The B-phase voltage command value VB_ref and the C-phase voltage command value VC_ref are also given similarly to the A-phase voltage command value VA_ref. Voltage command values VA_ref, VB_ref and VC_ref are calculated based on equation (3).

VA_ref = VA1_ref-VA2_ref

VB_ref = VB1_ref-VB2_ref formula (3)

VC_ref = VC1_ref-VC2_ref
信号生成ユニット880Aは、加算器870Aからの加算値がゼロよりも大きい場合、HブリッジBAは故障していると判定し、故障信号A_FDを生成してモータ制御ユニット900に出力する。例えば、故障信号A_FDを1ビットの信号に割り当て、正常時の故障信号A_FDのレベルをLowレベルとする。信号生成ユニット880Aは、HブリッジBAの故障を検知すると、Highレベルの故障信号A_FDを生成する。換言すると、信号生成ユニット880Aは、故障信号A_FDをアサートする。  When the added value from adder 870A is larger than zero, signal generation unit 880A determines that H bridge BA is broken, generates failure signal A_FD, and outputs it to motor control unit 900. For example, the fault signal A_FD is assigned to a 1-bit signal, and the level of the fault signal A_FD in the normal state is set to the low level. When detecting a failure of the H bridge BA, the signal generation unit 880A generates a high level failure signal A_FD. In other words, the signal generation unit 880A asserts the fault signal A_FD.
故障診断ユニット800は、A相と同様にして、B相、C相の故障信号B_FD、C_FDを生成しモータ制御ユニット900に出力する。  The failure diagnosis unit 800 generates the failure signals B_FD and C_FD of the B phase and the C phase similarly to the A phase, and outputs them to the motor control unit 900.
図6は、システム電圧と電圧指令値VA_refの大きさの比較によるHブリッジの故障診断を行う原理を説明するための回路モデルを示している。  FIG. 6 shows a circuit model for explaining the principle of performing fault diagnosis of the H bridge by comparing the magnitudes of the system voltage and the voltage command value VA_ref.
上述したように、ゲインRは、回路全体の抵抗〔Ω〕に相当する。図6に示す回路モデルにおいて、電流指令値IPeak_refは回路全体に流れる電流であり、ゲインRは回路の内部抵抗であり、Vpeakは、入力電圧である。故障診断ユニット800は、電圧指令値VA_ref、入力電圧Vpeakおよび内部抵抗Rの電圧降下(Ipeak_ref・R)に基づいて、HブリッジBAの故障を診断する。  As described above, the gain R corresponds to the resistance [Ω] of the entire circuit. In the circuit model shown in FIG. 6, a current command value IPeak_ref is a current flowing through the entire circuit, a gain R is an internal resistance of the circuit, and Vpeak is an input voltage. The failure diagnosis unit 800 diagnoses a failure of the H bridge BA based on the voltage command value VA_ref, the input voltage Vpeak and the voltage drop (Ipeak_ref · R) of the internal resistance R.
HブリッジBAが故障していない場合、Vpeak+Ipeak_ref・Rと電圧指令値VA_refとの差分(Vpeak+Ipeak_ref・R-VA_ref)はゼロまたはそれ以下となる。つまり、Vpeak+Ipeak_ref・R≒VA_refの関係が成り立つ。  If the H bridge BA has not failed, the difference between Vpeak + Ipeak_ref · R and the voltage command value VA_ref (Vpeak + Ipeak_ref · R-VA_ref) becomes zero or less. That is, the relationship of Vpeak + Ipeak_ref · R ≒ VA_ref holds.
HブリッジBAが故障すると、電圧指令値VA_refは上昇する。そのため、差分(Vpeak+Ipeak_ref・R-VA_ref)はゼロとはならず、Vpeak+Ipeak_ref・R<VA_refとなって平衡が崩れる。  When H bridge BA fails, voltage command value VA_ref rises. Therefore, the difference (Vpeak + Ipeak_ref · R-VA_ref) does not become zero, but Vpeak + Ipeak_ref · R <VA_ref, and the balance is broken.
図7はHブリッジの故障診断を行うための機能ブロックの変形例を示す。
FIG. 7 shows a modification of the functional block for performing fault diagnosis of the H bridge.
本変形例では乗算器850および加算器870A、870B、870Cの代わりに減算器890A、890B、890Cを用いる。故障診断ユニット800は、A相の電圧指令値VA_refの大きさからシステム電圧を引き算することにより得られる差分値がゼロよりも大きい場合、HブリッジBAは故障していると判定する。故障診断ユニット800は、その差分値がゼロ以下である場合、HブリッジBAは故障していないと判定する。故障診断ユニット800は、B相、C相についてもA相と同様に判定することができる。
In this modification, subtractors 890A, 890B and 890C are used instead of the multiplier 850 and the adders 870A, 870B and 870C. If the difference value obtained by subtracting the system voltage from the magnitude of voltage command value VA_ref of phase A is greater than zero, failure diagnosis unit 800 determines that H bridge BA is broken. Failure diagnosis unit 800 determines that H bridge BA has not failed if the difference value is less than or equal to zero. The failure diagnosis unit 800 can determine the B phase and the C phase in the same manner as the A phase.
ゲインユニット810およびリミット判定ユニット820の代わりにルックアップテーブル(LUT)801を利用することができる。LUT801は、電流ピーク指令値Ipeak_refおよびモータ200の回転数を示すspeedの入力と、出力電圧Vsatとの関係を関連付けるテーブルである。故障診断ユニット800は、LUT801を参照して、獲得した電流ピーク指令値Ipeak_refおよび回転数speedに基づいて出力電圧Vsatを決定する。故障診断ユニット800は、決定した出力電圧Vsatに電圧ピーク値Vpeakを加算する演算を実行することによりシステム電圧を獲得してもよい。  A look-up table (LUT) 801 can be used instead of the gain unit 810 and the limit determination unit 820. The LUT 801 is a table that relates the relationship between the current peak command value Ipeak_ref and the input of the speed indicating the rotational speed of the motor 200, and the output voltage Vsat. The failure diagnosis unit 800 refers to the LUT 801 to determine the output voltage Vsat based on the acquired current peak command value Ipeak_ref and the rotation speed speed. The failure diagnosis unit 800 may acquire the system voltage by performing an operation of adding the voltage peak value Vpeak to the determined output voltage Vsat.
図8は、三相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示する。図9Aは、A相のHブリッジBAが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のB相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示する。横軸はモータ電気角(deg)を示し、縦軸は電流値(A)を示す。図8、図9の電流波形において、電気角30°毎に電流値をプロットしている。Ipkは各相の最大電流値(ピーク電流値)を表す。  FIG. 8 exemplifies a current waveform (sine wave) obtained by plotting current values flowing in the A-phase, B-phase and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to three-phase energization control. Do. FIG. 9A is obtained by plotting the current values flowing in the B-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the A-phase H bridge BA fails. The current waveform is illustrated. The horizontal axis indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A). In the current waveforms of FIG. 8 and FIG. 9, current values are plotted at every electrical angle of 30 °. I pk represents the maximum current value (peak current value) of each phase.
参考として、図9Bに、B相のHブリッジBBが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示する。図9Cに、C相のHブリッジBCが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相の各巻線に流れる電流値をプロットして得られる電流波形を例示する。  As a reference, when the B-phase H bridge BB fails, FIG. 9B plots the current values flowing in the A-phase and C-phase windings of the motor 200 when the power conversion device 1000 is controlled according to the two-phase energization control. The current waveform obtained by FIG. 9C is obtained by plotting current values flowing in the A-phase and B-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control when the C-phase H bridge BC fails. The current waveform is illustrated.
モータ制御ユニット900は、正常時、つまり、故障信号A_FD、B_FDおよびC_FDのレベルが全てLowであるとき、三相通電制御を行う。これに対し、例えば、故障信号A_FDがアサートされると、モータ制御ユニット900は、故障したHブリッジBA以外の二相のHブリッジBB、BCを用いて巻線M2、M3を通電する二相通電制御を行うことができる。これにより、三相のうちの一相のHブリッジが故障したとしても、電力変換装置1000はモータ駆動を継続することができる。


Motor control unit 900 performs three-phase energization control when normal, that is, when the levels of failure signals A_FD, B_FD and C_FD are all low. On the other hand, for example, when the failure signal A_FD is asserted, the motor control unit 900 performs two-phase energization to energize the windings M2 and M3 using the two-phase H bridges BB and BC other than the failed H bridge BA. Control can be performed. Thus, even if one of the three phases of the H bridge is broken, power conversion device 1000 can continue motor driving.


以下に、本開示によるHブリッジの故障診断に用いられるアルゴリズムの妥当性を、dSPACE社の”ラピッドコントロールプロトタイピング(RCP)システム”およびMathWorks社のMatlab/Simulinkを用いて検証した結果を示す。この検証には、ベクトル制御により制御を受ける、電動パワーステアリング(EPS)装置に用いる表面磁石型(SPM)モータのモデルが用いられた。検証において電流指令値Iqrefを3Aに設定し、IdrefおよびIz_refを0Aに設定した。モータの回転速度を1190rpmに設定し、A相のHブリッジBAのハイサイドスイッチ素子SW_A1Hにオープン故障を時刻1.543sで発生させた。


The following shows the results of verification of the validity of the algorithm used for fault diagnosis of the H bridge according to the present disclosure, using dSPACE's "Rapid Control Prototyping (RCP) system" and Matlab / Simulink from MathWorks. For this verification, a model of a surface magnet type (SPM) motor used in an electric power steering (EPS) device, which is controlled by vector control, is used. In verification, the current command value Iqref was set to 3A, and Idref and Iz_ref were set to 0A. The rotational speed of the motor was set to 1190 rpm, and an open failure was generated at time 1.543 s in the high side switch element SW_A1H of the A-phase H bridge BA.


図10Aから図10Iに、各信号の波形のシミュレーション結果を示す。  The simulation result of the waveform of each signal is shown to FIGS. 10A to 10I.
図10Aは、モータ回転数の波形(上側)およびロータ角の波形(下側)を示している。グラフの上側の縦軸は、回転速度(rpm)を示し、下側の縦軸は、ロータ角(rad)を示している。横軸は時間(s)を示している。本シミュレーション結果の全波形の横軸は時間を示している。  FIG. 10A shows a waveform (upper side) of the motor rotational speed and a waveform (lower side) of the rotor angle. The upper vertical axis of the graph indicates the rotational speed (rpm), and the lower vertical axis indicates the rotor angle (rad). The horizontal axis shows time (s). The horizontal axis of all the waveforms of this simulation result indicates time.
図10Bは、A相電流Iaの波形を示し、図10Cは、B相電流Ibの波形を示し、図10Dは、C相電流Icの波形を示している。縦軸は、電流(A)を示す。各相の波形において、実電流値の波形および電流指令値の波形を示している。  10B shows the waveform of the A-phase current Ia, FIG. 10C shows the waveform of the B-phase current Ib, and FIG. 10D shows the waveform of the C-phase current Ic. The vertical axis shows the current (A). In the waveform of each phase, the waveform of the actual current value and the waveform of the current command value are shown.
図10Eは零相電流Izの波形を示している。縦軸は、電流(A)を示す。
FIG. 10E shows the waveform of the zero phase current Iz. The vertical axis shows the current (A).
図10Fは、電圧指令値VA_refの波形を示し、図10Gは、電圧指令値VB_refの波形を示し、図10Hは、電圧指令値VC_refの波形を示している。縦軸は、電圧(V)を示す。  FIG. 10F shows the waveform of voltage command value VA_ref, FIG. 10G shows the waveform of voltage command value VB_ref, and FIG. 10H shows the waveform of voltage command value VC_ref. The vertical axis represents voltage (V).
図10Iは、故障信号A_FDの波形(上側)、B_FDの波形(中間)およびC_FDの波形(下側)を示す。縦軸は、故障信号レベルを示す。
FIG. 10I shows the waveform of failure signal A_FD (upper side), the waveform of B_FD (middle) and the waveform of C_FD (lower side). The vertical axis indicates the failure signal level.
時刻1.543sでA相のHブリッジBAのハイサイドスイッチ素子SW_A1Hがオープン故障した後、図10Fに示すように電圧指令値VA_refは上昇していることが分かる。図10G、図10Hに示すように、電圧指令値VB_ref、VC_refは上昇していない。また、図10Iに示すように、A相のHブリッジBAのハイサイドスイッチ素子SW_A1Hがオープン故障してから3.2ms経過した後、電圧指令値VA_refの上昇に同期して、故障信号A_FDは適切にアサートされていることが分かる。故障信号B_FD、C_FDはアサートされていない。  After the open failure of the high-side switch element SW_A1H of the A-phase H bridge BA at time 1.543 s, it can be seen that the voltage command value VA_ref rises as shown in FIG. 10F. As shown in FIGS. 10G and 10H, voltage command values VB_ref and VC_ref do not rise. Further, as shown in FIG. 10I, after 3.2 ms have elapsed since the open failure of the high-side switch element SW_A1H of the A-phase H bridge BA, the fault signal A_FD is appropriate in synchronization with the rise of the voltage command value VA_ref. It can be seen that it is asserted to. The fault signals B_FD and C_FD are not asserted.
本実施形態によると、Vpeak+Ipeak_ref・RとV_refの大小関係を比較することにより故障した相のHブリッジを特定することができる。本開示の故障診断は、簡易なアルゴリズムにより実現できる。そのため、例えばコントローラへ340の実装において回路規模またはメモリサイズの縮小といった利点が得られる。  According to the present embodiment, the H bridge of the failed phase can be identified by comparing the magnitude relationship between Vpeak + Ipeak_ref · R and V_ref. The fault diagnosis of the present disclosure can be realized by a simple algorithm. Therefore, for example, advantages such as circuit size reduction or memory size reduction can be obtained in the implementation of the controller 340.
本開示の故障診断方法は、フルブリッジタイプの電力変換装置にも好適に用いることができる。フルブリッジは、一相のHブリッジ構造、例えば図3Aに示す回路構造を備える。上述した故障診断方法をフルブリッジの故障診断に利用することにより、フルブリッジの故障を検知することができる。  The failure diagnosis method of the present disclosure can also be suitably used for a full bridge type power converter. The full bridge comprises a one-phase H-bridge structure, for example the circuit structure shown in FIG. 3A. The failure of the full bridge can be detected by utilizing the above-described failure diagnosis method for the failure diagnosis of the full bridge.
フルブリッジタイプの電力変換装置は、1つのHブリッジと、Hブリッジのスイッチ素子のスイッチング動作を制御する制御回路300と、を備える。制御回路300は、dq座標系において表現される電流・電圧を獲得し、モータの制御時に巻線に与えるターゲットの電圧値を示す電圧指令値を獲得し、電圧指令値の大きさ、および、獲得したdq座標系の電流・電圧に基づいてフルブリッジの故障を診断する。  The full bridge type power converter includes one H bridge and a control circuit 300 that controls the switching operation of the switch element of the H bridge. The control circuit 300 acquires the current / voltage represented in the dq coordinate system, acquires the voltage command value indicating the voltage value of the target applied to the winding at the time of control of the motor, and acquires the magnitude and acquisition of the voltage command value. The fault of the full bridge is diagnosed based on the current and voltage of the dq coordinate system.
(実施形態2)

 図11は、本実施形態による電動パワーステアリング装置3000の典型的な構成を模式的に示す。
Second Embodiment

FIG. 11 schematically shows a typical configuration of the electric power steering apparatus 3000 according to the present embodiment.
自動車等の車両は一般に、電動パワーステアリング装置を有する。本実施形態による電動パワーステアリング装置3000は、ステアリングシステム520、および補助トルクを生成する補助トルク機構540を有する。電動パワーステアリング装置3000は、運転者がステアリングハンドルを操作することによって発生するステアリングシステムの操舵トルクを補助する補助トルクを生成する。補助トルクにより、運転者の操作の負担は軽減される。
Vehicles such as automobiles generally have an electric power steering device. The electric power steering apparatus 3000 according to the present embodiment has a steering system 520 and an auxiliary torque mechanism 540 that generates an auxiliary torque. Electric power steering apparatus 3000 generates an assist torque that assists the steering torque of the steering system generated by the driver operating the steering wheel. The assist torque reduces the burden on the driver's operation.
ステアリングシステム520は、例えばステアリングハンドル521、ステアリングシャフト522、自在軸継手523A、523B、回転軸524、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪529A、529Bから構成され得る。
The steering system 520 includes, for example, a steering handle 521, a steering shaft 522, free shaft joints 523A and 523B, a rotating shaft 524, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, and knuckles 528A. , 528B, and left and right steering wheels 529A, 529B.
補助トルク機構540は、例えば操舵トルクセンサ541、自動車用電子制御ユニット(ECU)542、モータ543および減速機構544などから構成される。操舵トルクセンサ541は、ステアリングシステム520における操舵トルクを検出する。ECU542は操舵トルクセンサ541の検出信号に基づいて駆動信号を生成する。モータ543は駆動信号に基づいて操舵トルクに応じた補助トルクを生成する。モータ543は、減速機構544を介してステアリングシステム520に、生成した補助トルクを伝達する。
The auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an electronic control unit (ECU) 542 for a car, a motor 543, a reduction mechanism 544, and the like. The steering torque sensor 541 detects a steering torque in the steering system 520. The ECU 542 generates a drive signal based on the detection signal of the steering torque sensor 541. The motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal. The motor 543 transmits the generated assist torque to the steering system 520 via the reduction mechanism 544.
ECU542は、例えば、実施形態1によるコントローラ340および駆動回路350などを有する。自動車ではECUを核とした電子制御システムが構築される。電動パワーステアリング装置3000では、例えば、ECU542、モータ543およびインバータ545によって、モータ駆動ユニットが構築される。そのシステムに、実施形態1によるモータモジュール2000を好適に用いることができる。  The ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment. In automobiles, an electronic control system is built around an ECU. In the electric power steering apparatus 3000, for example, a motor drive unit is constructed by the ECU 542, the motor 543 and the inverter 545. The motor module 2000 by Embodiment 1 can be used suitably for the system.
本開示の実施形態は、シフトバイワイヤ、ステアリングバイワイヤ、ブレーキバイワイヤなどのエックスバイワイヤおよびトラクションモータなどのモータ制御システムにも好適に用いられる。例えば、本開示の実施形態による故障診断方法を実装したEPSは、日本政府および米国運輸省道路交通安全局(NHTSA)によって定められたレベル0から4(自動化の基準)に対応した自動運転車に搭載され得る。 Embodiments of the present disclosure are also suitably used in motor control systems such as shift by wire, steering by wire, X by wire such as brake by wire, and traction motors. For example, an EPS implementing a failure diagnosis method according to an embodiment of the present disclosure is an autonomous vehicle corresponding to levels 0 to 4 (standards of automation) defined by the Government of Japan and the Road Traffic Safety Administration (NHTSA) of the US Department of Transportation. It can be loaded.
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。 Embodiments of the present disclosure can be widely used in a variety of devices equipped with various motors, such as vacuum cleaners, dryers, ceiling fans, washing machines, refrigerators, and electric power steering devices.
100:インバータユニット、101:電源、120:第1インバータ、130:第2インバータ、140:インバータ、150:電流センサ、200:モータ、300:制御回路、310:電源回路、320:角度センサ、330:入力回路、340:マイクロコントローラ、350:駆動回路、360:ROM、1000:電力変換装置、2000:モータモジュール、3000:電動パワーステアリング装置 100: inverter unit, 101: power supply, 120: first inverter, 130: second inverter, 140: inverter, 150: current sensor, 200: motor, 300: control circuit, 310: power circuit, 320: angle sensor, 330 : Input circuit, 340: Micro controller, 350: Drive circuit, 360: ROM, 1000: Power converter, 2000: Motor module, 3000: Electric power steering device

Claims (14)

  1. 電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換し、少なくとも1つのHブリッジを備える電力変換装置に用いる、Hブリッジの故障を診断する故障診断方法であって、



     dq座標系において表現される電流・電圧を獲得し、かつ、前記モータの制御時に前記少なくとも一相の巻線に与えるターゲットの電圧値を示す電圧指令値を獲得する獲得ステップと、



     前記電圧指令値の大きさ、および、獲得した前記dq座標系の電流・電圧に基づいて前記Hブリッジの故障を診断する診断ステップと、



    を包含する故障診断方法。


    What is claimed is: 1. A fault diagnostic method for diagnosing H-bridge failure, comprising: converting power from a power source into power to be supplied to a motor having at least one phase winding, for use in a power converter comprising at least one H bridge;



    acquiring a current / voltage represented in a dq coordinate system, and acquiring a voltage command value indicating a voltage value of a target to be applied to the at least one phase winding when controlling the motor;



    Diagnosing the failure of the H bridge based on the magnitude of the voltage command value and the acquired current / voltage of the dq coordinate system;



    Failure diagnosis method including:


  2. 前記獲得ステップにおいて、前記dq座標系におけるd軸電圧およびq軸電圧に基づいて決定される電圧ピーク値と、前記dq座標系における、d軸電流、q軸電流および零相電流の3つの指令値に基づいて決定される電流ピーク指令値とを獲得し、



     前記診断ステップにおいて、前記電圧ピーク値、前記電流ピーク指令値、および、前記Hブリッジを含む回路システム全体の電気的特性を表すゲインに基づいて決定されるシステム電圧と、前記電圧指令値の大きさとの比較結果に基づいて前記Hブリッジの故障を診断する、請求項1に記載の故障診断方法。


    In the acquisition step, three command values of a voltage peak value determined based on the d axis voltage and the q axis voltage in the dq coordinate system, and a d axis current, a q axis current, and a zero phase current in the dq coordinate system And the current peak command value determined based on



    In the diagnosis step, a system voltage determined based on the voltage peak value, the current peak command value, and a gain representing an electrical characteristic of the entire circuit system including the H bridge, and a magnitude of the voltage command value The failure diagnosis method according to claim 1, wherein the failure of the H bridge is diagnosed based on the comparison result of


  3. 前記診断ステップにおいて、前記電圧指令値の大きさが前記システム電圧よりも大きい場合、前記Hブリッジは故障していると判定し、前記電圧指令値の大きさが前記システム電圧以下である場合、前記Hブリッジは故障していないと判定する、請求項2に記載の故障診断方法。


    In the diagnosis step, when the magnitude of the voltage command value is larger than the system voltage, it is determined that the H bridge is broken, and the magnitude of the voltage command value is equal to or less than the system voltage. The fault diagnostic method according to claim 2, wherein it is determined that the H bridge is not faulty.


  4. 前記診断ステップにおいて前記Hブリッジは故障していると判定すると、前記Hブリッジの故障を示す故障信号を生成し、前記モータを制御する制御ユニットに出力する故障信号出力ステップをさらに包含する、請求項3に記載の故障診断方法。


    The method according to claim 1, further comprising: a fault signal output step of generating a fault signal indicating a fault of the H bridge upon determining that the H bridge is faulty in the diagnosis step, and outputting the fault signal to a control unit that controls the motor. The failure diagnosis method according to 3.


  5. 前記獲得ステップは、前記電流ピーク指令値と前記ゲインの積に、前記電圧ピーク値を加算する演算を実行することにより前記システム電圧を獲得することを包含する、請求項2から4のいずれかに記載の故障診断方法。


    5. The system according to any one of claims 2 to 4, wherein the acquiring step includes acquiring the system voltage by performing an operation of adding the voltage peak value to a product of the current peak command value and the gain. Failure diagnosis method described.


  6. 前記獲得ステップは、前記電流ピーク指令値と前記ゲインの前記積の大きさが許容範囲にあるか否かを判定し、かつ、前記電圧ピーク値を加算する演算を実行する前に前記電圧ピーク値をローパスフィルタ処理する、請求項5に記載の故障診断装置。


    The acquisition step determines whether or not the magnitude of the product of the current peak command value and the gain is within an allowable range, and the voltage peak value is calculated before performing an operation of adding the voltage peak value. The fault diagnosis device according to claim 5, wherein the low pass filter processing is performed.


  7. 前記獲得ステップは、



      前記電流ピーク指令値および前記モータの回転数の入力と、出力電圧との関係を関連付けるルックアップテーブルを参照して、獲得した前記電流ピーク指令値および前記モータの回転数に基づいて前記出力電圧を決定し、



      決定した前記出力電圧に前記電圧ピーク値を加算する演算を実行することにより前記システム電圧を獲得することを包含する、請求項2から4のいずれかに記載の故障診断方法。


    The acquisition step is



    The output voltage is calculated based on the acquired current peak command value and the number of revolutions of the motor with reference to a lookup table that relates the relationship between the current peak instruction value and the input of the number of revolutions of the motor and the output voltage. Decide



    The fault diagnosis method according to any one of claims 2 to 4, comprising acquiring the system voltage by performing an operation of adding the voltage peak value to the determined output voltage.


  8. 前記獲得ステップは、前記電圧ピーク値を加算する演算を実行する前に前記電圧ピーク値をローパスフィルタ処理る、請求項7に記載の故障診断装置。


    The fault diagnosis apparatus according to claim 7, wherein the acquiring step low-pass-filters the voltage peak value before performing an operation of adding the voltage peak value.


  9. 前記診断ステップにおいて、前記電圧指令値の大きさから前記システム電圧を引き算することにより得られる差分値がゼロよりも大きい場合、前記Hブリッジは故障していると判定し、前記差分値がゼロ以下である場合、前記Hブリッジは故障していないと判定する、請求項5から8のいずれかに記載の故障診断方法。


    In the diagnosis step, when the difference value obtained by subtracting the system voltage from the magnitude of the voltage command value is larger than zero, it is determined that the H bridge is broken, and the difference value is less than or equal to zero. The failure diagnosis method according to any one of claims 5 to 8, wherein it is determined that the H bridge has not failed.


  10. 電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換し、前記n相の巻線の一端に接続される第1インバータおよび前記n相の巻線の他端に接続される第2インバータを備える電力変換装置に用いる、前記n相の巻線、前記第1インバータのn個のレグ、および前記第2インバータのn個のレグを有するn個のHブリッジにおいてHブリッジの故障を相毎に診断する故障診断方法であって、



     請求項1から9のいずれかに記載の故障診断方法を実行することにより、各相の電圧指令値の大きさ、および、獲得した前記dq座標系の電流・電圧に基づいてHブリッジの故障を相毎に診断する、故障診断方法。


    The first inverter connected to one end of the n-phase winding and the n-phase are converted into power to be supplied to a motor having an n-phase (n is an integer of 3 or more) windings from a power source. The n-phase winding, n legs of the first inverter, and n legs of the second inverter, for use in a power conversion device including a second inverter connected to the other end of the winding A failure diagnosis method for diagnosing failure of an H bridge in each H bridge phase by phase,



    By executing the fault diagnosis method according to any one of claims 1 to 9, the H bridge fault is determined based on the magnitude of the voltage command value of each phase and the acquired current / voltage of the dq coordinate system. Failure diagnosis method to diagnose every phase.


  11. 電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換する電力変換装置であって、



     少なくとも1つのHブリッジと、



     前記少なくとも1つのHブリッジのスイッチ素子のスイッチング動作を制御する制御回路と、



    を備え、



     前記制御回路は、



      dq座標系において表現される電流・電圧を獲得し、



      前記モータの制御時に前記少なくとも一相の巻線に与えるターゲットの電圧値を示す電圧指令値を獲得し、



      前記電圧指令値の大きさ、および、獲得した前記dq座標系の電流・電圧に基づいて前記Hブリッジの故障を診断する診断する、電力変換装置。


    What is claimed is: 1. A power conversion device for converting power from a power supply into power supplied to a motor having at least one phase winding,



    With at least one H bridge,



    A control circuit that controls the switching operation of the switch element of the at least one H bridge;



    Equipped with



    The control circuit



    acquire the current and voltage represented in the dq coordinate system,



    Obtaining a voltage command value indicating a voltage value of a target applied to the at least one phase winding when controlling the motor;



    A power converter that diagnoses a failure of the H bridge based on the magnitude of the voltage command value and the acquired current / voltage of the dq coordinate system.


  12. 電源からの電力を、n相(nは3以上の整数)の巻線を有するモータに供給する電力に変換する電力変換装置であって、



     前記モータの各相の巻線の一端に接続され、n個のレグを有する第1インバータと、



     前記モータの各相の巻線の他端に接続され、n個のレグを有する第2インバータと、



     前記n相の巻線、前記第1インバータの前記n個のレグ、および、前記第2インバータの前記n個のレグを有するn個のHブリッジと、



     前記n個のHブリッジのスイッチ素子のスイッチング動作を制御する制御回路と、



    を備え、



     前記制御回路は、



      dq座標系において表現される電流・電圧を獲得し、



      前記モータの制御時に各相の巻線に与えるターゲットの電圧値を示す各相の電圧指令値を獲得し、



      前記各相の電圧指令値の大きさ、および、獲得した前記dq座標系の電流・電圧に基づいてHブリッジの故障を相毎に診断する、電力変換装置。


    A power converter that converts power from a power supply into power supplied to a motor having n-phase (n is an integer of 3 or more) windings,



    A first inverter connected to one end of a winding of each phase of the motor and having n legs;



    A second inverter connected to the other end of the windings of each phase of the motor and having n legs;



    N H-bridges comprising the n-phase winding, the n legs of the first inverter, and the n legs of the second inverter;



    A control circuit that controls the switching operation of the switch elements of the n H bridges;



    Equipped with



    The control circuit



    acquire the current and voltage represented in the dq coordinate system,



    The voltage command value of each phase indicating the voltage value of the target applied to the winding of each phase when controlling the motor is obtained,



    A power conversion device that diagnoses a failure of an H bridge for each phase based on the magnitude of the voltage command value of each phase and the acquired current / voltage of the dq coordinate system.


  13. モータと、請求項11または12に記載の電力変換装置と、を備えるモータモジュール。


    A motor module, comprising: a motor; and the power conversion device according to claim 11.


  14. 請求項13に記載のモータモジュールを備える電動パワーステアリング装置。 An electric power steering apparatus comprising the motor module according to claim 13.
PCT/JP2018/023722 2017-09-28 2018-06-22 Fault diagnosis method, power conversion device, motor module and electric power steering device WO2019064749A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017188090 2017-09-28
JP2017-188090 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019064749A1 true WO2019064749A1 (en) 2019-04-04

Family

ID=65901280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023722 WO2019064749A1 (en) 2017-09-28 2018-06-22 Fault diagnosis method, power conversion device, motor module and electric power steering device

Country Status (1)

Country Link
WO (1) WO2019064749A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110083992A (en) * 2019-05-29 2019-08-02 江南大学 A kind of Boost method for diagnosing faults based on more new breath recursive least-squares
WO2019220783A1 (en) * 2018-05-15 2019-11-21 日本電産株式会社 Failure diagnostic method, power converting device, motor module, and electric power steering device
CN113044053A (en) * 2021-02-01 2021-06-29 东风汽车集团股份有限公司 EPS controller phase MOSFET impact loss prevention control method and system
US11271513B2 (en) 2020-03-03 2022-03-08 Kabushiki Kaisha Toshiba Driving device, driving system, and method of driving electric motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025872A (en) * 2009-07-28 2011-02-10 Jtekt Corp Electric power steering device
JP2011078221A (en) * 2009-09-30 2011-04-14 Denso Corp Controller of multi-phase rotating machine, and electric power steering device using the same
JP2016019385A (en) * 2014-07-09 2016-02-01 株式会社ジェイテクト Motor device
WO2016152523A1 (en) * 2015-03-23 2016-09-29 日本精工株式会社 Motor control device, electric power steering device and vehicle mounted with same
WO2017150638A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025872A (en) * 2009-07-28 2011-02-10 Jtekt Corp Electric power steering device
JP2011078221A (en) * 2009-09-30 2011-04-14 Denso Corp Controller of multi-phase rotating machine, and electric power steering device using the same
JP2016019385A (en) * 2014-07-09 2016-02-01 株式会社ジェイテクト Motor device
WO2016152523A1 (en) * 2015-03-23 2016-09-29 日本精工株式会社 Motor control device, electric power steering device and vehicle mounted with same
WO2017150638A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220783A1 (en) * 2018-05-15 2019-11-21 日本電産株式会社 Failure diagnostic method, power converting device, motor module, and electric power steering device
JPWO2019220783A1 (en) * 2018-05-15 2021-06-17 日本電産株式会社 Failure diagnosis method, power conversion device, motor module and electric power steering device
CN110083992A (en) * 2019-05-29 2019-08-02 江南大学 A kind of Boost method for diagnosing faults based on more new breath recursive least-squares
US11271513B2 (en) 2020-03-03 2022-03-08 Kabushiki Kaisha Toshiba Driving device, driving system, and method of driving electric motor
CN113044053A (en) * 2021-02-01 2021-06-29 东风汽车集团股份有限公司 EPS controller phase MOSFET impact loss prevention control method and system

Similar Documents

Publication Publication Date Title
JP7088200B2 (en) Motor control method, power converter, motor module and electric power steering device
WO2019064749A1 (en) Fault diagnosis method, power conversion device, motor module and electric power steering device
US11063545B2 (en) Power conversion device, motor module, and electric power steering device
US20200247464A1 (en) Power conversion device, motor module, and electric power steering device
JP6939793B2 (en) Motor control method, motor control system and electric power steering system
US10560044B2 (en) Motor control method, motor control system, and electric power steering system
WO2019064766A1 (en) Power conversion device, motor drive unit, and electric power steering device
CN112840557B (en) Fault diagnosis method, power conversion device, motor module, and electric power steering device
US10483882B2 (en) Drive device
JP6503962B2 (en) Current sensor abnormality diagnosis device
JP2011019302A (en) Controller for motor driving system
WO2019240004A1 (en) Failure diagnosis method, power conversion device, motor module, and electric power steering device
CN111656669B (en) Control device
WO2019220780A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
WO2019064748A1 (en) Fault diagnosis method, power conversion device, motor module and electric power steering device
WO2019220783A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
WO2019220781A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
WO2019058671A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2019220782A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
JPWO2018056046A1 (en) Power converter, motor drive unit and electric power steering apparatus
WO2019058677A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2019058676A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2019058672A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2019058675A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2019058670A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP