WO2019220783A1 - Failure diagnostic method, power converting device, motor module, and electric power steering device - Google Patents

Failure diagnostic method, power converting device, motor module, and electric power steering device Download PDF

Info

Publication number
WO2019220783A1
WO2019220783A1 PCT/JP2019/013063 JP2019013063W WO2019220783A1 WO 2019220783 A1 WO2019220783 A1 WO 2019220783A1 JP 2019013063 W JP2019013063 W JP 2019013063W WO 2019220783 A1 WO2019220783 A1 WO 2019220783A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch element
side switch
low
failure
voltage
Prior art date
Application number
PCT/JP2019/013063
Other languages
French (fr)
Japanese (ja)
Inventor
アハマッド ガデリー
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2020519496A priority Critical patent/JPWO2019220783A1/en
Publication of WO2019220783A1 publication Critical patent/WO2019220783A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a failure diagnosis method, a power conversion device, a motor module, and an electric power steering device.
  • Patent Document 1 discloses a motor drive device having a first system and a second system.
  • the first system is connected to the first winding set of the motor and includes a first inverter unit, a power supply relay, a reverse connection protection relay, and the like.
  • the second system is connected to the second winding set of the motor and includes a second inverter unit, a power supply relay, a reverse connection protection relay, and the like.
  • the power relay is connected to the failed system or from the power source. The power supply to the system connected to the winding set is cut off. It is possible to continue motor driving using the other system that has not failed.
  • Patent Documents 2 and 3 also disclose a motor drive device having a first system and a second system. Even if one system or one winding set fails, motor drive can be continued by a system that does not fail.
  • Embodiment of this indication provides the failure diagnostic method which can diagnose appropriately the failure of the switch element with which a power converter is provided.
  • An exemplary failure diagnosis method of the present disclosure is a failure diagnosis method for diagnosing a failure in a power conversion device that converts electric power from a power source into electric power supplied to a motor having at least one phase winding, the electric power
  • the conversion device includes at least one H-bridge each having a first high-side switch element, a first low-side switch element, a second high-side switch element, and a second low-side switch element
  • the failure diagnosis method includes the at least Determining whether there is a failed part in the high side and low side of one H-bridge, a set of the first low side switch element and the second high side switch element, and the second low side switch element and the Determining whether there is a failed set in the set with the first high-side switch element;
  • the first high-side switch element, the first low-side switch element, the second high-side switch element, and the second low-side are determined based on a determination result of whether there is a part and a determination result of whether there is the failed set. Determining whether
  • An exemplary power conversion device of the present disclosure is a power conversion device that converts power from a power source into power supplied to a motor having at least one phase winding, each of the power conversion devices being a first power conversion device.
  • At least one H bridge having a high side switch element, a first low side switch element, a second high side switch element and a second low side switch element, and a control circuit for controlling the operation of the at least one H bridge;
  • the control circuit determines whether there is a failed part in the high side and the low side of the at least one H-bridge, the set of the first low-side switch element and the second high-side switch element, and the second Determining whether there is a failed set in the set of the low-side switch element and the first high-side switch element,
  • the first high-side switch element, the first low-side switch element, the second high-side switch element, and the second based on the determination result of whether there is a failed part and the determination result of whether there is the failed set It is determined whether there is a
  • a failure diagnosis method capable of appropriately diagnosing a failure of a switch element included in a power conversion device, a power conversion device, a motor module including the power conversion device, and the motor module are provided.
  • An electric power steering apparatus is provided.
  • FIG. 1 is a block diagram schematically illustrating a motor module according to an embodiment.
  • FIG. 2 is a circuit diagram schematically showing the inverter unit according to the embodiment.
  • FIG. 3A is a schematic diagram showing an A-phase H-bridge.
  • FIG. 3B is a schematic diagram showing a B-phase H-bridge.
  • FIG. 3C is a schematic diagram showing a C-phase H-bridge.
  • FIG. 4 is a functional block diagram showing a controller that performs overall motor control.
  • FIG. 5 is a diagram showing functional blocks for diagnosing the low-side and high-side faults of the A-phase H-bridge.
  • FIG. 6 is a diagram showing functional blocks for diagnosing the low-side and high-side faults of the B-phase H-bridge.
  • FIG. 7 is a functional block diagram for diagnosing the low-side and high-side failure of the C-phase H-bridge.
  • FIG. 8 is a diagram illustrating functional blocks for performing phase failure diagnosis.
  • FIG. 9 is a diagram illustrating functional blocks for performing phase failure diagnosis.
  • FIG. 10 is a diagram illustrating a circuit model for explaining the principle of performing failure diagnosis by comparing the magnitudes of the system voltage and the voltage command value VA_ref.
  • FIG. 11 is a diagram illustrating a modification of the functional block for performing phase failure diagnosis.
  • FIG. 12 is a diagram showing functional blocks for performing failure diagnosis of a set of A-phase switch elements.
  • FIG. 13 is a diagram showing functional blocks for performing failure diagnosis of a set of B-phase switch elements.
  • FIG. 14 is a diagram showing functional blocks for performing failure diagnosis of a set of C-phase switch elements.
  • FIG. 15 is a diagram illustrating functional blocks for performing failure diagnosis of the A-phase switch element.
  • FIG. 16 is a diagram illustrating functional blocks for performing failure diagnosis of the B-phase switch element.
  • FIG. 17 is a diagram illustrating functional blocks for performing failure diagnosis of the C-phase switch element.
  • FIG. 18 is a schematic diagram showing a lookup table for determining the saturation voltage Vsat from the rotational speed ⁇ and the current amplitude value.
  • FIG. 19 is a graph illustrating a current waveform (sine wave) obtained by plotting the current values flowing through the windings of the A phase, B phase, and C phase of the motor when the power conversion device is controlled according to the three-phase energization control. It is.
  • FIG. 20 is a graph illustrating a current waveform obtained by plotting the current value flowing through each of the B-phase and C-phase windings of the motor when the power conversion device is controlled in accordance with the two-phase energization control when the A-phase fails. It is.
  • FIG. 20 is a graph illustrating a current waveform obtained by plotting the current value flowing through each of the B-phase and C-phase windings of the motor when the power conversion device is controlled in accordance with the two-phase energization control when the A-phase fails. It is.
  • FIG. 21 is a graph exemplifying a current waveform obtained by plotting the current value flowing through each of the C-phase and A-phase windings of the motor when the B-phase has failed and the power converter is controlled according to the two-phase energization control. It is.
  • FIG. 22 is a graph exemplifying a current waveform obtained by plotting the current value flowing through each of the A-phase and B-phase windings of the motor when the power conversion device is controlled according to the two-phase energization control when the C-phase fails. It is.
  • FIG. 23 is a graph showing waveforms of simulation results of the actual voltage VA1 (upper side) and the actual voltage VA2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • FIG. 24 is a graph showing waveforms of simulation results of the actual voltage VB1 (upper side) and the actual voltage VB2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • FIG. 25 is a graph showing waveforms of simulation results of the actual voltage VC1 (upper side) and the actual voltage VC2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • FIG. 26 is a graph showing waveforms of simulation results of the actual voltage VA1 (upper side) and the actual voltage VA2 (lower side) when the high-side switch element SW_A1H has an open failure.
  • FIG. 24 is a graph showing waveforms of simulation results of the actual voltage VB1 (upper side) and the actual voltage VB2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • FIG. 25 is a graph showing waveforms of simulation results of the actual voltage VC1 (upper side) and the actual voltage VC2
  • FIG. 27 is a graph showing waveforms of simulation results of the actual voltage VB1 (upper side) and the actual voltage VB2 (lower side) when the high-side switch element SW_A1H has an open failure.
  • FIG. 28 is a graph showing waveforms of simulation results of the actual voltage VC1 (upper side) and the actual voltage VC2 (lower side) when the high-side switch element SW_A1H has an open failure.
  • FIG. 29 is a graph showing a waveform of a simulation result of the voltage command value VA_ref.
  • FIG. 30 is a graph showing a waveform of a simulation result of the voltage command value VB_ref.
  • FIG. 31 is a graph showing a waveform of a simulation result of the voltage command value VC_ref.
  • FIG. 32 is a schematic diagram illustrating an electric power steering apparatus according to an exemplary embodiment.
  • a power conversion device that converts power from a power source into power to be supplied to a three-phase motor having three-phase (A-phase, B-phase, and C-phase) windings.
  • a form is demonstrated.
  • a power conversion device that converts electric power from a power source into electric power to be supplied to an n-phase motor having an n-phase winding (n is an integer of 4 or more) such as four-phase or five-phase, and a switch used in the device
  • An element failure diagnosis method is also included in the scope of the present disclosure.
  • FIG. 1 schematically shows a typical block configuration of a motor module 2000 according to the present embodiment.
  • the motor module 2000 typically includes a power converter 1000 having the inverter unit 100 and a control circuit 300 and a motor 200.
  • the motor module 2000 is modularized and can be manufactured and sold as, for example, an electromechanically integrated motor having a motor, a sensor, a driver, and a controller.
  • the power conversion apparatus 1000 can convert power from the power source 101 (see FIG. 2) into power supplied to the motor 200.
  • the power conversion apparatus 1000 is connected to the motor 200.
  • the power conversion apparatus 1000 can convert DC power into three-phase AC power that is pseudo-sine waves of A phase, B phase, and C phase.
  • connection between components (components) mainly means electrical connection.
  • the motor 200 is, for example, a three-phase AC motor.
  • the motor 200 includes an A-phase winding M1, a B-phase winding M2, and a C-phase winding M3, and is connected to the first inverter 120 and the second inverter 130 of the inverter unit 100. More specifically, the first inverter 120 is connected to one end of each phase winding of the motor 200, and the second inverter 130 is connected to the other end of each phase winding.
  • the control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360. Each component of the control circuit 300 is mounted on, for example, one circuit board (typically a printed board).
  • the control circuit 300 is connected to the inverter unit 100 and controls the inverter unit 100 based on input signals from the current sensor 150 and the angle sensor 320. Examples of the control method include vector control, pulse width modulation (PWM), and direct torque control (DTC). However, the angle sensor 320 may be unnecessary depending on the motor control method (for example, sensorless control).
  • the control circuit 300 can realize the closed loop control by controlling the target position, rotation speed, current, and the like of the motor 200.
  • the control circuit 300 may include a torque sensor instead of the angle sensor 320. In this case, the control circuit 300 can control the target motor torque.
  • the power supply circuit 310 generates a power supply voltage (for example, 3V, 5V) necessary for each block in the circuit based on the voltage of the power supply 101, for example, 12V.
  • a power supply voltage for example, 3V, 5V
  • the angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects the rotation angle of the rotor (hereinafter referred to as “rotation signal”) and outputs the rotation signal to the controller 340.
  • rotation signal the rotation angle of the rotor
  • the input circuit 330 receives the phase current detected by the current sensor 150 (hereinafter sometimes referred to as “actual current value”), and changes the level of the actual current value to the input level of the controller 340 as necessary.
  • the actual current value is output to the controller 340.
  • the input circuit 330 is, for example, an analog / digital (AD) conversion circuit.
  • the controller 340 is an integrated circuit that controls the entire power conversion apparatus 1000, and is, for example, a microcontroller or an FPGA (Field Programmable Gate Array).
  • the controller 340 controls the switching operation (turn-on or turn-off) of each switch element (typically a semiconductor switch element) in the first and second inverters 120 and 130 of the inverter unit 100.
  • the controller 340 sets the target current value according to the actual current value and the rotation signal of the rotor, generates a PWM signal, and outputs it to the drive circuit 350.
  • the drive circuit 350 is typically a pre-driver (sometimes called a “gate driver”).
  • the drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each switch element in the first and second inverters 120 and 130 of the inverter unit 100 according to the PWM signal, and supplies a control signal to the gate of each switch element.
  • gate control signal gate control signal
  • the pre-driver is not necessarily required. In that case, the function of the pre-driver can be implemented in the controller 340.
  • the ROM 360 is, for example, a writable memory (for example, PROM), a rewritable memory (for example, flash memory), or a read-only memory.
  • the ROM 360 stores a control program including a command group for causing the controller 340 to control the power conversion apparatus 1000.
  • the control program is temporarily expanded in a RAM (not shown) at the time of booting.
  • FIG. 2 schematically shows a circuit configuration of the inverter unit 100 according to the present embodiment.
  • the power supply 101 generates a predetermined power supply voltage (for example, 12V).
  • a DC power source is used as the power source 101.
  • the power source 101 may be an AC-DC converter, a DC-DC converter, or a battery (storage battery).
  • the power source 101 may be a single power source common to the first and second inverters 120 and 130 as shown in the figure, or may be a first power source (not shown) for the first inverter 120 and for the second inverter 130.
  • a second power source (not shown) may be provided.
  • coils are provided between the power source 101 and the first inverter 120 and between the power source 101 and the second inverter 130.
  • the coil functions as a noise filter, and smoothes the high frequency noise included in the voltage waveform supplied to each inverter or the high frequency noise generated by each inverter so as not to flow out to the power supply 101 side.
  • a capacitor is connected to the power supply terminal of each inverter.
  • the capacitor is a so-called bypass capacitor and suppresses voltage ripple.
  • the capacitor is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to design specifications.
  • the first inverter 120 has a bridge circuit composed of three legs. Each leg has a high-side switch element, a low-side switch element, and a shunt resistor.
  • the A-phase leg includes a high-side switch element SW_A1H, a low-side switch element SW_A1L, and a first shunt resistor S_A1.
  • the B-phase leg has a high-side switch element SW_B1H, a low-side switch element SW_B1L, and a first shunt resistor S_B1.
  • the C-phase leg has a high-side switch element SW_C1H, a low-side switch element SW_C1L, and a first shunt resistor S_C1.
  • a field effect transistor typically MOSFET having a parasitic diode formed therein, or a combination of an insulated gate bipolar transistor (IGBT) and a free-wheeling diode connected in parallel thereto can be used.
  • MOSFET field effect transistor
  • IGBT insulated gate bipolar transistor
  • the first shunt resistor S_A1 is used to detect the A-phase current IA1 flowing through the A-phase winding M1, and is connected, for example, between the low-side switch element SW_A1L and the GND line GL.
  • the first shunt resistor S_B1 is used to detect the B-phase current IB1 flowing through the B-phase winding M2, and is connected between the low-side switch element SW_B1L and the GND line GL, for example.
  • the first shunt resistor S_C1 is used to detect the C-phase current IC1 flowing through the C-phase winding M3, and is connected between, for example, the low-side switch element SW_C1L and the GND line GL.
  • the three shunt resistors S_A1, S_B1, and S_C1 are connected in common with the GND line GL of the first inverter 120.
  • the second inverter 130 has a bridge circuit composed of three legs. Each leg has a high-side switch element, a low-side switch element, and a shunt resistor.
  • the A-phase leg has a high-side switch element SW_A2H, a low-side switch element SW_A2L, and a shunt resistor S_A2.
  • the B-phase leg has a high-side switch element SW_B2H, a low-side switch element SW_B2L, and a shunt resistor S_B2.
  • the C-phase leg has a high-side switch element SW_C2H, a low-side switch element SW_C2L, and a shunt resistor S_C2.
  • the shunt resistor S_A2 is used to detect the A-phase current IA2, and is connected, for example, between the low-side switch element SW_A2L and the GND line GL.
  • the shunt resistor S_B2 is used to detect the B-phase current IB2, and is connected between, for example, the low-side switch element SW_B2L and the GND line GL.
  • the shunt resistor S_C2 is used to detect the C-phase current IC2, and is connected, for example, between the low-side switch element SW_C2L and the GND line GL.
  • the three shunt resistors S_A2, S_B2, and S_C2 are connected in common with the GND line GL of the second inverter 130.
  • the current sensor 150 described above includes, for example, a shunt resistor S_A1, S_B1, S_C1, S_A2, S_B2, S_C2, and a current detection circuit (not shown) that detects a current flowing through each shunt resistor.
  • the A-phase leg of the first inverter 120 (specifically, a node between the high-side switch element SW_A1H and the low-side switch element SW_A1L) is connected to one end A1 of the A-phase winding M1 of the motor 200, and the second inverter The 130 A-phase leg is connected to the other end A2 of the A-phase winding M1.
  • the B-phase leg of the first inverter 120 is connected to one end B1 of the B-phase winding M2 of the motor 200, and the B-phase leg of the second inverter 130 is connected to the other end B2 of the winding M2.
  • the C-phase leg of the first inverter 120 is connected to one end C1 of the C-phase winding M3 of the motor 200, and the C-phase leg of the second inverter 130 is connected to the other end C2 of the winding M3.
  • FIG. 3A schematically shows the configuration of the A-phase H-bridge BA.
  • FIG. 3B schematically shows the configuration of a B-phase H-bridge BB.
  • FIG. 3C schematically shows the configuration of a C-phase H-bridge BC.
  • the inverter unit 100 includes A-phase, B-phase, and C-phase H-bridges BA, BB, and BC.
  • the A-phase H bridge BA includes a high-side switch element SW_A1H and a low-side switch element SW_A1L in the leg on the first inverter 120 side, a high-side switch element SW_A2H, a low-side switch element SW_A2L in the leg on the second inverter 130 side, and a winding Has M1.
  • the B-phase H-bridge BB includes a high-side switch element SW_B1H and a low-side switch element SW_B1L in the leg on the first inverter 120 side, a high-side switch element SW_B2H, a low-side switch element SW_B2L in the leg on the second inverter 130 side, and a winding Has M2.
  • the C-phase H-bridge BC includes a high-side switch element SW_C1H and a low-side switch element SW_C1L in the leg on the first inverter 120 side, a high-side switch element SW_C2H, a low-side switch element SW_C2L in the leg on the second inverter 130 side, and a winding M3.
  • the control circuit 300 (specifically, the controller 340) can specify a failed switch element in the power conversion apparatus 1000 by executing a failure diagnosis described below.
  • the control circuit 300 can be switched to motor control in which a two-phase winding is energized using a two-phase H bridge other than the H bridge including the failed switch element.
  • a two-phase winding is called “three-phase energization control”
  • energizing the two-phase winding is called “two-phase energization control”. Details of the failure diagnosis will be described below.
  • failure diagnosis method A specific example of a failure diagnosis method for diagnosing the presence or absence of a failure of the switch element of the power conversion apparatus 1000 shown in FIG. 1 will be described with reference to FIGS.
  • the failure diagnosis method of the present disclosure can be suitably used for a power conversion device including at least one H bridge, for example, a full bridge type power conversion device.
  • the failure of a switch element refers to the open failure of a switch element.
  • An open failure is a failure in which the switch element always has a high impedance.
  • a failure occurring in a switching element of an A-phase H-bridge may be referred to as an A-phase failure.
  • the outline of the failure diagnosis method of this embodiment is as follows.
  • the failure diagnosis it is determined whether there is a failed part on the high side and the low side of the H bridge BA, BB, BC. In addition, it is determined whether there is a broken set among the set of the low side switch element and the high side switch element. Based on these determination results, it is determined whether there is a failed switch element among the high-side switch element and the low-side switch element included in the power conversion device 1000.
  • the current and voltage expressed in the dq coordinate system the actual voltage indicating the voltage across the low side switch element, and the rotational speed ⁇ of the motor are acquired.
  • the current and voltage expressed in the dq coordinate system include a d-axis voltage Vd, a q-axis voltage Vq, a d-axis current Id, and a q-axis current Iq.
  • the axis corresponding to the zero phase is represented as the z-axis.
  • the rotation speed ⁇ is represented by a rotation speed (rpm) at which the rotor of the motor rotates per unit time (for example, 1 minute) or a rotation speed (rps) at which the rotor rotates at unit time (for example, 1 second).
  • a first actual voltage and a second actual voltage are defined for each of the A-phase, B-phase, and C-phase H-bridges BA, BB, and BC.
  • the first actual voltage indicates the voltage across the first low-side switch element in the leg on the first inverter 120 side in the H bridge of each phase. In other words, the first actual voltage corresponds to the node potential between the first high-side switch element and the first low-side switch element in the leg on the first inverter 120 side.
  • the second actual voltage indicates the voltage across the second low-side switch element in the leg on the second inverter 130 side. In other words, the second actual voltage corresponds to the node potential between the second high-side switch element and the second low-side switch element in the leg on the second inverter 130 side.
  • the voltage across the switch element is equal to the voltage Vds between the source and drain of the FET that is the switch element.
  • the first actual voltage indicates the voltage VA1 across the low-side switch element SW_A1L shown in FIG. 3A, and the second actual voltage points across the voltage VA2 across the low-side switch element SW_A2L shown in FIG. 3A.
  • the first actual voltage indicates the voltage VB1 across the low-side switch element SW_B1L shown in FIG. 3B
  • the second actual voltage indicates the voltage VB2 across the low-side switch element SW_B2L shown in FIG. 3B.
  • the first actual voltage indicates the voltage VC1 across the low-side switch element SW_C1L illustrated in FIG. 3C
  • the second actual voltage indicates the voltage VC2 across the low-side switch element SW_C2L illustrated in FIG. 3C. .
  • a failure is diagnosed based on the acquired current and voltage in the dq coordinate system, the first actual voltage, the second actual voltage, the rotation speed, and the like.
  • a fault signal indicating a fault of the switch element is generated and output to a motor control unit described later.
  • a failure signal is a signal that is asserted when a failure occurs.
  • the above-described failure diagnosis is repeatedly executed in synchronization with, for example, a period in which each phase current is measured by the current sensor 150, that is, an AD conversion period.
  • the algorithm for realizing the fault diagnosis method according to the present embodiment can be realized only by hardware such as an application specific integrated circuit (ASIC) or FPGA, or can be realized by a combination of a microcontroller and software. Can do.
  • the operation subject of failure diagnosis is the controller 340 of the control circuit 300.
  • FIG. 4 exemplifies functional blocks of the controller 340 for performing overall motor control.
  • FIG. 5 illustrates functional blocks for performing a low-side and high-side fault diagnosis of the A-phase H-bridge BA.
  • each block in the functional block diagram is shown not in hardware units but in functional block units.
  • the software used for motor control and failure diagnosis may be a module constituting a computer program for executing specific processing corresponding to each functional block, for example.
  • Such a computer program is stored in the ROM 360, for example.
  • the controller 340 can read out commands from the ROM 360 and sequentially execute each process.
  • the controller 340 includes, for example, a failure diagnosis unit 800 and a motor control unit 900.
  • the failure diagnosis of the present disclosure can be suitably combined with motor control (for example, vector control), and can be incorporated into a series of processes of motor control.
  • Failure diagnosis unit 800 obtains d-axis current Id, q-axis current Iq, d-axis voltage Vd, q-axis voltage Vq, and rotation speed ⁇ of motor 200 in the dq coordinate system.
  • the fault diagnosis unit 800 further obtains the first actual voltages VA1, VB1, VC1, and the second actual voltages VA2, VB2, and VC2.
  • the failure diagnosis unit 800 may include a pre-computation unit (not shown) that acquires Vpeak.
  • the pre-computation unit uses the Clark transformation to convert the three-phase currents Ia, Ib and Ic obtained based on the measured value of the current sensor 150 into the currents I ⁇ and ⁇ on the ⁇ axis in the ⁇ fixed coordinate system.
  • To a current I ⁇ of The pre-computation unit converts the currents I ⁇ and I ⁇ into a d-axis current Id and a q-axis current Iq in the dq coordinate system by using park conversion (dq coordinate conversion).
  • the pre-calculation unit acquires the d-axis voltage Vd and the q-axis voltage Vq based on the currents Id and Iq, and calculates the voltage peak value Vpeak from the acquired Vd and Vq based on the following formula (1).
  • the pre-computation unit can also receive Vd and Vq necessary for calculating Vpeak from the motor control unit 900 that performs vector control.
  • the pre-computation unit acquires Vpeak in synchronization with the period in which each phase current is measured by the current sensor 150.
  • Vpeak (2/3) 1/2 (Vd 2 + Vq 2 ) 1/2 formula (1)
  • Failure diagnosis unit 800 refers to lookup table 940 (FIG. 18) and determines saturation voltage Vsat based on currents Id and Iq and rotational speed ⁇ .
  • FIG. 18 schematically shows a look-up table (LUT) 940 for determining the saturation voltage Vsat from the rotation speed ⁇ and the current amplitude value.
  • the LUT 940 associates the relationship between the saturation voltage Vsat and the input of the current amplitude value (Id 2 + Iq 2 ) 1/2 determined based on the d-axis current and the q-axis current and the rotational speed ⁇ of the motor 200.
  • the rotation speed ⁇ is calculated based on, for example, a rotation signal from the angle sensor 320.
  • the rotational speed ⁇ can be estimated using, for example, a known sensorless control method.
  • the actual voltage of each switch element is measured by a drive circuit (predriver) 350, for example.
  • Table 1 illustrates the configuration of the LUT 940 that can be used for failure diagnosis.
  • Id is generally treated as zero. Therefore, the current amplitude value is equal to Iq.
  • Table 1 lists Iq (A).
  • the saturation voltage Vsat is determined from the acquired current amplitude value Iq and the rotational speed ⁇ .
  • a value set in advance before driving may be used as the saturation voltage Vsat.
  • a constant value for example, about 0.1 V) depending on the system may be used as the saturation voltage Vsat.
  • Failure diagnosis unit 800 obtains current peak command value Ipeak_ref and voltage peak value Vpeak expressed in the dq coordinate system. In addition, voltage command values VA_ref, VB_ref and VC_ref are obtained.
  • the failure diagnosis unit 800 diagnoses the presence or absence of a switch element failure based on the actual voltage, voltage peak value, saturation voltage, current peak command value, and voltage command value described above.
  • the failure diagnosis unit 800 generates a failure signal indicating the failed switch element based on the diagnosis result, and outputs the failure signal to the motor control unit 900.
  • the motor control unit 900 generates a PWM signal that controls the overall switching operation of the switch elements of the first and second inverters 120 and 130 using, for example, vector control.
  • the motor control unit 900 outputs a PWM signal to the drive circuit 350. For example, when a failure signal is asserted, the motor control unit 900 can switch the motor control from the three-phase energization control to the two-phase energization control.
  • each functional block may be expressed as a unit. Naturally, these notations are not used with the intention of restricting each functional block to hardware or software.
  • each functional block is implemented as software in the controller 340
  • the execution subject of the software may be the core of the controller 340, for example.
  • the controller 340 can be implemented by an FPGA. In that case, all or some of the functional blocks may be realized by hardware.
  • the computing load of a specific computer can be distributed.
  • all or some of the functional blocks shown in FIG. 4 to FIG. 18 may be distributed and implemented in a plurality of FPGAs.
  • the plurality of FPGAs can be connected to each other by, for example, an in-vehicle control area network (CAN), and can transmit and receive data.
  • CAN in-vehicle control area network
  • FIG. 5 shows a failure diagnosis unit 810A for diagnosing the presence or absence of a low-side and high-side failure of the A-phase H bridge BA.
  • FIG. 6 shows a failure diagnosis unit 810B for diagnosing the presence or absence of a low-side and high-side failure of the B-phase H-bridge BB.
  • FIG. 7 shows a failure diagnosis unit 810C for diagnosing the presence / absence of a low-side and high-side failure of the C-phase H-bridge BC.
  • the fault diagnosis units 810A, 810B, and 810C have substantially the same functional blocks, but input actual voltages are different from each other.
  • the failure diagnosis unit 800 includes failure diagnosis units 810A, 810B, and 810C shown in FIGS.
  • Each of the fault diagnosis units 810A, 810B, and 810C includes multipliers 811 and 812, adders 813, 814, and 815, comparators 816 and 817, and a logic circuit OR818.
  • Each of failure diagnosis units 810A, 810B, and 810C further includes multipliers 821 and 822, adders 823, 824, and 825, comparators 826 and 827, and a logic circuit OR 828.
  • the multiplier 811 multiplies the voltage peak value Vpeak by a constant “ ⁇ 1/2”.
  • the multiplier 812 multiplies the saturation voltage Vsat by a constant “ ⁇ 1”.
  • Adder 813 adds the output values of multipliers 811 and 812.
  • the adder 814 adds the actual voltage VA1 and the output value of the adder 813 to calculate a failure diagnosis voltage VA1L_FD represented by the following formula (2).
  • VA1L_FD VA1-[(Vpeak / 2) + Vsat] Formula (2)
  • the comparator 816 compares “VA1L_FD” with “zero”. When VA1L_FD is equal to or smaller than zero (VA1L_FD ⁇ 0), the comparator 816 outputs “0” indicating that the actual voltage VA1 is normal to the logic circuit OR818. When VA1L_FD is larger than zero (VA1L_FD> 0), the comparator 816 outputs “1” indicating that the actual voltage VA1 is abnormal to the logic circuit OR818.
  • the adder 815 adds the actual voltage VA2 and the output value of the adder 813 to calculate the failure diagnosis voltage VA2L_FD.
  • the comparator 817 compares “VA2L_FD” with “zero”. When VA2L_FD is equal to or less than zero (VA2L_FD ⁇ 0), the comparator 817 outputs “0” indicating that the actual voltage VA2 is normal to the logic circuit OR818. When VA2L_FD is larger than zero (VA2L_FD> 0), the comparator 817 outputs “1” indicating that the actual voltage VA2 is abnormal to the logic circuit OR818.
  • the logic circuit OR 818 takes the logical sum of the output signals of the comparators 816 and 817.
  • the logic circuit OR 818 outputs a failure signal AL_FD indicating whether or not there is a failure on the low side of the A-phase H bridge BA.
  • the logic circuit OR 818 When the output signals of the comparators 816 and 817 are all “0”, the logic circuit OR 818 outputs “0” indicating normality as the failure signal AL_FD. When at least one of the output signals of the comparators 816 and 817 is “1”, the logic circuit OR 818 outputs “1” indicating a failure as the failure signal AL_FD.
  • the multiplier 821 multiplies the voltage peak value Vpeak by a constant “1 ⁇ 2”.
  • the multiplier 822 multiplies the saturation voltage Vsat by a constant “1”.
  • Adder 823 adds the output values of multipliers 821 and 822.
  • the adder 824 adds the actual voltage VA1 and the output value of the adder 823 to calculate a failure diagnosis voltage VA1H_FD represented by the following formula (3).
  • VA1H_FD VA1 + [(Vpeak / 2) + Vsat] Formula (3)
  • the comparator 826 compares “VA1H_FD” with “zero”. When VA1H_FD is zero or more (VA1H_FD ⁇ 0), the comparator 826 outputs “0” indicating that the actual voltage VA1 is normal to the logic circuit OR828. When VA1H_FD is less than zero (VA1H_FD ⁇ 0), the comparator 826 outputs “1” indicating that the actual voltage VA1 is abnormal to the logic circuit OR826.
  • the adder 825 adds the actual voltage VA2 and the output value of the adder 823 to calculate the failure diagnosis voltage VA2H_FD.
  • the comparator 827 compares “VA2H_FD” with “zero”. When VA2H_FD is zero or more (VA2H_FD ⁇ 0), the comparator 827 outputs “0” indicating that the actual voltage VA2 is normal to the logic circuit OR828. When VA2H_FD is less than zero (VA2H_FD ⁇ 0), the comparator 827 outputs “1” indicating that the actual voltage VA2 is abnormal to the logic circuit OR828.
  • the logic circuit OR 828 takes the logical sum of the output signals of the comparators 826 and 827.
  • the logic circuit OR828 outputs a failure signal AH_FD indicating whether or not there is a failure on the high side of the A-phase H bridge BA.
  • the logic circuit OR 828 When the output signals of the comparators 826 and 827 are all “0”, the logic circuit OR 828 outputs “0” indicating normality as the failure signal AH_FD. When at least one of the output signals of the comparators 826 and 827 is “1”, the logic circuit OR 828 outputs “1” indicating a failure as the failure signal AH_FD.
  • the failure diagnosis unit 810B shown in FIG. 6 performs the same processing as the failure diagnosis unit 810A, and diagnoses the presence or absence of a low-side and high-side failure of the B-phase H-bridge BB. Instead of the actual voltages VA1 and VA2, actual voltages VB1 and VB2 are input to the failure diagnosis unit 810B.
  • the logic circuit OR 818 outputs a failure signal BL_FD indicating the presence or absence of a low-side failure of the B-phase H bridge BB.
  • the logic circuit OR828 outputs a failure signal BH_FD indicating whether or not the high-side failure of the B-phase H-bridge BB exists. Since the other processing of the failure diagnosis unit 810B is the same as that of the failure diagnosis unit 810A, detailed description is omitted here.
  • the failure diagnosis unit 810C shown in FIG. 7 executes the same processing as the failure diagnosis unit 810A, and diagnoses the presence or absence of a low-side and high-side failure of the C-phase H-bridge BC. Instead of the actual voltages VA1 and VA2, actual voltages VC1 and VC2 are input to the failure diagnosis unit 810C.
  • the logic circuit OR 818 outputs a failure signal CL_FD indicating whether or not there is a failure on the low side of the C-phase H-bridge BC.
  • the logic circuit OR 828 outputs a failure signal CH_FD indicating the presence or absence of a high-side failure of the C-phase H bridge BC. Since the other processing of the failure diagnosis unit 810C is the same as that of the failure diagnosis unit 810A, detailed description is omitted here.
  • the failure diagnosis unit 800 has a failure diagnosis unit 830 for diagnosing the phase failure shown in FIG.
  • the failure diagnosis unit 830 diagnoses a failure in the A phase, the B phase, and the C phase using the voltage peak value Vpeak, the current peak command value Ipeak_ref, and the voltage command values VA_ref, VB_ref, and VC_ref.
  • FIG. 9 is a block diagram illustrating a failure diagnosis unit 830 that diagnoses a failure in the A phase, the B phase, and the C phase.
  • the failure diagnosis unit 830 includes, for example, a gain unit 831, a limit determination unit 832, an LPF (low pass filter) 833, an adder 834, a multiplier 835, absolute value calculators 836A, 836B, 836C, adders 837A, 837B, 837C, It has signal generation units 838A, 838B and 838C.
  • the gain unit 831 multiplies the current peak command value Ipeak_ref by the gain R.
  • the current peak command value Ipeak_ref indicates the peak value of the current amplitude in the dq coordinate system, and is specifically calculated based on the following formula (4).
  • Idref represents a d-axis current command value on the d-axis
  • Iqref represents a q-axis current command value on the q-axis
  • Izref represents a zero-phase current command value.
  • abs (X) represents the absolute value of X.
  • the gain R represents the electrical characteristics of the entire circuit system including the H bridge.
  • the gain R is determined in consideration of the influence of the dead time of the switch element, and corresponds to the resistance [ ⁇ ] of the entire circuit.
  • Ipeak_ref (2/3) 1/2 (Idref 2 + Iqref 2 ) 1/2 + abs (Izref) / 3 1/2 equation (4)
  • the core of the controller 340 determines the current command values Idref, Iqref, and Izref based on the rotational speed and the speed command value detected by the angle sensor 320 and outputs them to the failure diagnosis unit 800.
  • a pre-computation unit (not shown) calculates Ipeak_ref based on the current command values Idref, Iqref, and Izref, and outputs it to the gain unit 831.
  • the gain unit 831 outputs Ipeak_ref ⁇ R to the limit determination unit 832.
  • the limit determination unit 832 determines whether or not the product of the current peak command value Ipeak_ref and the gain R is within an allowable range. That is, the limit determination unit 832 determines whether Ipeak_ref ⁇ R is within the allowable range.
  • the allowable range means the upper limit value of the input voltage during normal operation.
  • the voltage peak value Vpeak is low-pass filtered by the general-purpose LPF 833 before the subsequent operation of adding the voltage peak value Vpeak is executed. As a result, the voltage peak value Vpeak expressed only by the fundamental wave can be acquired.
  • the adder 834 adds the output (Ipeak_ref ⁇ R) from the limit determination unit 832 and the output Vpeak from the LPF 833.
  • the adder 834 outputs Ipeak_ref ⁇ R + Vpeak to the multiplier 835.
  • the multiplier 835 multiplies the output Ipeak_ref ⁇ R + Vpeak from the adder 834 by “ ⁇ 1”.
  • the output voltage (Ipeak_ref ⁇ R + Vpeak) from the adder 834 is referred to as “system voltage”.
  • Multiplier 835 outputs the system voltage to A-phase adder 837A, B-phase adder 837B, and C-phase adder 837C.
  • the failure diagnosis unit 830 diagnoses the failure of the A-phase H-bridge BA based on the comparison result between the system voltage and the magnitude of the A-phase voltage command value VA_ref. If the magnitude of voltage command value VA_ref is greater than the system voltage, failure diagnosis unit 800 determines that A-phase H-bridge BA has failed. If the magnitude of voltage command value VA_ref is equal to or lower than the system voltage, failure diagnosis unit 800 determines that A-phase H-bridge BA has not failed.
  • the multiplier 835, the absolute value calculator 836A, and the adder 837A are used to compare the system voltage with the magnitude of the A-phase voltage command value VA_ref.
  • Adder 837A adds the output voltage from multiplier 835 and the magnitude of A-phase voltage command value VA_ref.
  • the reason why the absolute value calculator 836A takes the absolute value of the voltage command value VA_ref is that the open failure of both the high-side switch element and the low-side switch element of the H-bridge is a target of failure diagnosis.
  • the A-phase voltage command value VA_ref includes the voltage command value VA1_ref for the high-side switch element SW_A1H or the low-side switch element SW_A1L (node between both switch elements) of the H-bridge BA, the high-side switch element SW_A2H, or the low-side switch element SW_A2L. This is given by the difference from the voltage command value VA2_ref for (a node between both switch elements).
  • the B phase voltage command value VB_ref and the C phase voltage command value VC_ref are also given in the same manner as the A phase voltage command value VA_ref.
  • Voltage command values VA_ref, VB_ref, and VC_ref are calculated based on Expression (5).
  • VA_ref VA1_ref ⁇ VA2_ref
  • VB_ref VB1_ref ⁇ VB2_ref Equation (5)
  • VC_ref VC1_ref ⁇ VC2_ref
  • the signal generation unit 838A determines that the H-bridge BA has failed, generates a failure signal A_FD, and outputs it to the motor control unit 900.
  • the failure signal A_FD is assigned to a 1-bit signal, and the level of the failure signal A_FD at the normal time is set to the low level “0”.
  • the signal generation unit 838A detects a failure of the H bridge BA, the signal generation unit 838A generates a failure signal A_FD having a high level “1”. In other words, the signal generation unit 838A asserts the failure signal A_FD.
  • the failure diagnosis unit 830 generates B-phase and C-phase failure signals B_FD and C_FD in the same manner as the A phase, and outputs them to the motor control unit 900.
  • FIG. 10 shows a circuit model for explaining the principle of performing a fault diagnosis of the H-bridge by comparing the magnitudes of the system voltage and the voltage command value VA_ref.
  • the gain R corresponds to the resistance [ ⁇ ] of the entire circuit.
  • a current command value Ipeak_ref is a current flowing through the entire circuit
  • a gain R is an internal resistance of the circuit
  • Vpeak is an input voltage.
  • Failure diagnosis unit 800 diagnoses a failure of H-bridge BA based on voltage command value VA_ref, input voltage Vpeak, and voltage drop (Ipeak_ref ⁇ R) of internal resistance R.
  • Vpeak + Ipeak_ref ⁇ R ⁇ VA_ref Vpeak + Ipeak_ref ⁇ R and the voltage command value VA_ref is zero or less. That is, the relationship Vpeak + Ipeak_ref ⁇ R ⁇ VA_ref is established.
  • FIG. 11 shows a modified example of the functional block for performing the H bridge failure diagnosis.
  • failure diagnosis unit 830 determines that H-bridge BA has failed when the difference value obtained by subtracting the system voltage from the magnitude of A-phase voltage command value VA_ref is greater than zero. The failure diagnosis unit 830 determines that the H-bridge BA has not failed when the difference value is zero or less.
  • the failure diagnosis unit 800 can determine the B phase and the C phase similarly to the A phase.
  • a lookup table (LUT) 801 can be used in place of the gain unit 831 and the limit determination unit 832.
  • the LUT 801 is a table that associates the relationship between the current peak command value Ipeak_ref and the speed input indicating the rotation speed of the motor 200 and the output voltage Vsat.
  • the failure diagnosis unit 830 refers to the LUT 801 and determines the output voltage Vsat based on the acquired current peak command value Ipeak_ref and the rotation speed speed.
  • the failure diagnosis unit 830 may acquire the system voltage by performing an operation of adding the voltage peak value Vpeak to the determined output voltage Vsat.
  • FIG. 12 shows a failure diagnosis unit 850A for diagnosing the presence / absence of a failure in the combination of the low-side switch element and the high-side switch element of the A-phase H bridge BA.
  • FIG. 13 shows a failure diagnosis unit 850B for diagnosing the presence / absence of a failure in a set of a low-side switch element and a high-side switch element of a B-phase H-bridge BB.
  • FIG. 14 shows a failure diagnosis unit 850C for diagnosing the presence / absence of a failure in a set of a low-side switch element and a high-side switch element of a C-phase H-bridge BC.
  • Fault diagnosis units 850A, 850B, and 850C have substantially the same functional blocks, but input fault signals and voltage command values are different from each other.
  • the failure diagnosis unit 800 includes failure diagnosis units 850A, 850B, and 850C shown in FIGS.
  • Each of the failure diagnosis units 850A, 850B, and 850C includes a sign function unit 851, a multiplier 852, and comparators 853 and 854.
  • the sign function unit 851 outputs “1”, “ ⁇ 1”, or “0” according to the voltage command value VA_ref. In this example, when the voltage command value VA_ref is a positive value, “1” is output. When the voltage command value VA_ref is a negative value, “ ⁇ 1” is output. When the voltage command value VA_ref is zero, “0” is output.
  • the multiplier 852 multiplies the fault signal A_FD indicating the presence or absence of the A-phase fault by the output value of the sign function unit 851 and outputs the result.
  • the comparator 853 compares the output value of the multiplier 852 with “zero”.
  • the comparator 853 outputs a failure signal A1L2H_FD indicating whether or not there is a failure in the pair of the low side switch element SW_A1L and the high side switch element SW_A2H.
  • the comparator 853 When the output value of the multiplier 852 is less than or equal to zero (output value ⁇ 0), the comparator 853 outputs “0” indicating that the pair of the low-side switch element SW_A1L and the high-side switch element SW_A2H is normal. . When the output value of the multiplier 852 is greater than zero (output value> 0), the comparator 853 outputs “1” indicating that the pair of the low-side switch element SW_A1L and the high-side switch element SW_A2H is abnormal.
  • the voltage command value VA_ref is a difference between the voltage command value VA1_ref and the voltage command value VA2_ref.
  • FIG. 3A when an open failure occurs in at least one of switch elements SW_A1L and SW_A2H, it becomes difficult for a current to flow through a current path including switch element SW_A2H, winding M1, and switch element SW_A1L.
  • the voltage command value VA1_ref increases as a current flows through the current path. As a result, the voltage command value VA_ref becomes a value larger than zero.
  • the output value of the multiplier 852 is greater than zero. Thereby, it can be determined that the pair of the low-side switch element SW_A1L and the high-side switch element SW_A2H is abnormal.
  • the comparator 854 compares the output value of the multiplier 852 with “zero”.
  • the comparator 854 outputs a failure signal A2L1H_FD indicating whether or not there is a failure of the pair of the low side switch element SW_A2L and the high side switch element SW_A1H.
  • the comparator 854 When the output value of the multiplier 852 is zero or more (output value ⁇ 0), the comparator 854 outputs “0” indicating that the pair of the low-side switch element SW_A2L and the high-side switch element SW_A1H is normal. . When the output value of the multiplier 852 is smaller than zero (output value ⁇ 0), the comparator 854 outputs “1” indicating that the pair of the low side switch element SW_A2L and the high side switch element SW_A1H is abnormal.
  • the output value of the multiplier 852 becomes smaller than zero. Thereby, it can be determined that the pair of the low-side switch element SW_A2L and the high-side switch element SW_A1H is abnormal.
  • the failure diagnosis unit 850B shown in FIG. 13 executes the same processing as the failure diagnosis unit 850A, and diagnoses the presence / absence of a failure in the pair of the low-side switch element and the high-side switch element of the B-phase H-bridge BB.
  • Failure diagnosis unit 850B receives failure signal B_FD and voltage command value VB_ref instead of failure signal A_FD and voltage command value VA_ref.
  • the comparator 853 outputs a failure signal B1L2H_FD indicating whether or not there is a failure of the pair of the low side switch element SW_B1L and the high side switch element SW_B2H.
  • the comparator 854 outputs a failure signal B2L1H_FD indicating whether or not there is a failure of the pair of the low side switch element SW_B2L and the high side switch element SW_B1H. Since other processes of the failure diagnosis unit 850B are the same as those of the failure diagnosis unit 850A, detailed description thereof is omitted here.
  • the failure diagnosis unit 850C shown in FIG. 14 executes the same processing as that of the failure diagnosis unit 850A, and diagnoses the presence / absence of a failure in the combination of the low-side switch element and the high-side switch element of the C-phase H-bridge BC.
  • Fault diagnosis unit 850C receives fault signal C_FD and voltage command value VC_ref instead of fault signal A_FD and voltage command value VA_ref.
  • the comparator 853 outputs a failure signal C1L2H_FD indicating whether or not there is a failure of the pair of the low side switch element SW_C1L and the high side switch element SW_C2H.
  • the comparator 854 outputs a failure signal C2L1H_FD indicating whether or not there is a failure of the pair of the low side switch element SW_C2L and the high side switch element SW_C1H. Since the other processing of the failure diagnosis unit 850C is the same as that of the failure diagnosis unit 850A, detailed description thereof is omitted here.
  • FIG. 15 shows a failure diagnosis unit 870A for diagnosing the presence or absence of a failure of the switch element of the A-phase H bridge BA.
  • FIG. 16 shows a failure diagnosis unit 870B for diagnosing the presence or absence of a failure of a switch element included in the B-phase H bridge BB.
  • FIG. 17 shows a failure diagnosis unit 870C for diagnosing the presence or absence of a failure of a switch element included in the C-phase H-bridge BC.
  • Failure diagnosis units 870A, 870B, and 870C have substantially the same functional blocks, but input signals are different from each other.
  • the failure diagnosis unit 800 includes failure diagnosis units 870A, 870B, and 870C shown in FIGS.
  • Each of failure diagnosis units 870A, 870B, and 870C includes logic circuits AND871, 872, 873, and 874.
  • the failure signal AH_FD and the failure signal A2L1H_FD are input to the logic circuit AND871.
  • the failure signal AH_FD indicates whether or not there is a failure on the high side of the A-phase H bridge BA.
  • the failure signal A2L1H_FD indicates the presence / absence of a failure of the pair of the low side switch element SW_A2L and the high side switch element SW_A1H.
  • the logic circuit AND871 outputs a failure signal A1H_FD indicating whether or not the A-phase high-side switch element SW_A1H has failed to the motor control unit 900.
  • the logic circuit AND871 When both the failure signal AH_FD and the failure signal A2L1H_FD are “1” indicating the failure, the logic circuit AND871 outputs “1”.
  • the failure signal A1H_FD being “1” indicates that the high-side switch element SW_A1H has failed.
  • the logic circuit AND871 outputs “0”.
  • the failure signal A1H_FD being “0” indicates that the high-side switch element SW_A1H is normal.
  • failure signal AH_FD and the failure signal A1L2H_FD are input to the logic circuit AND872.
  • the logic circuit AND872 outputs a failure signal A2H_FD indicating whether or not the A-phase high-side switch element SW_A2H has failed to the motor control unit 900.
  • the failure signal AL_FD and the failure signal A1L2H_FD are input to the logic circuit AND873.
  • the logic circuit AND873 outputs a failure signal A1L_FD indicating whether or not the A-phase low-side switch element SW_A1L has failed to the motor control unit 900.
  • the failure signal AL_FD and the failure signal A2L1H_FD are input to the logic circuit AND874.
  • the logic circuit AND874 outputs a failure signal A2L_FD indicating whether or not the A-phase low-side switch element SW_A2L has failed to the motor control unit 900.
  • the failure diagnosis unit 870B executes the same process as the failure diagnosis unit 870A, and executes a diagnosis process of whether or not there is a failure in the switch element of the B-phase H bridge BB.
  • the failure diagnosis unit 870B outputs failure signals B1H_FD, B2H_FD, B1L_FD, and B2L_FD that indicate the presence or absence of failure of the switch elements SW_B1H, SW_B2H, SW_B1L, and SW_B2L to the motor control unit 900.
  • failure signals B1H_FD, B2H_FD, B1L_FD, and B2L_FD that indicate the presence or absence of failure of the switch elements SW_B1H, SW_B2H, SW_B1L, and SW_B2L to the motor control unit 900.
  • the failure diagnosis unit 870C executes the same process as the failure diagnosis unit 870A, and executes a diagnosis process of whether or not there is a failure of the switch element included in the C-phase H-bridge BC.
  • the failure diagnosis unit 870C outputs failure signals C1H_FD, C2H_FD, C1L_FD, and C2L_FD that indicate the presence / absence of failure of the switch elements SW_C1H, SW_C2H, SW_C1L, and SW_C2L to the motor control unit 900.
  • the motor control unit 900 changes the motor control according to the failure signal output by the failure diagnosis unit 800. For example, the motor control is switched from three-phase energization control to two-phase energization control. For example, when a failed switch element is specified, two-phase energization control using the remaining two phases other than the phase including the failed switch element is performed. For example, when it is determined that a switch element of the A-phase H bridge BA has failed, the motor control unit 900 turns off all the switch elements of the A-phase H bridge BA. Then, two-phase energization control using the remaining B-phase and C-phase H-bridges BB and BC is performed. Therefore, even if one of the three phases fails, the power conversion apparatus 1000 can continue to drive the motor.
  • FIG. 19 exemplifies a current waveform (sine wave) obtained by plotting the current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion apparatus 1000 is controlled according to the three-phase energization control.
  • FIG. 20 is obtained by plotting the values of current flowing through the B-phase and C-phase windings of the motor 200 when the power conversion apparatus 1000 is controlled according to the two-phase energization control when the A-phase H-bridge BA fails.
  • the current waveform is illustrated.
  • the horizontal axis represents the motor electrical angle (deg), and the vertical axis represents the current value (A).
  • Ipk represents the maximum current value (peak current value) of each phase.
  • FIG. 21 plots the values of current flowing through the A-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control.
  • the current waveform obtained in this way is illustrated.
  • FIG. 22 when the C-phase H-bridge BC fails, the current values flowing in the A-phase and B-phase windings of the motor 200 are plotted when the power converter 1000 is controlled according to the two-phase energization control.
  • the current waveform is illustrated.
  • the order of processing between the above-described failure diagnosis units 810A, 810B, 810C, 830, 850A, 850B, and 850C is arbitrary. For example, after determining whether there is a set of failed switch elements, it may be determined whether there is a failed part in the high side and low side of the H-bridge, or vice versa. These determinations may be processed in parallel.
  • only a part of the processing may be executed without executing all the processing of the failure diagnosis units 810A, 810B, 810C, 830, 850A, 850B, and 850C.
  • the process of determining whether there is a faulty part if it is determined that there is a faulty part before determining the presence / absence of faults in all the high-side and low-side parts of the H-bridge BA, BB, BC, It is not necessary to determine whether there is a failure in the part. For example, if it is determined that the high side of the H-bridge BA is out of order before determining the presence / absence of the failure of all the parts, it is not necessary to determine the presence / absence of the failure of the remaining parts. If it is determined that the high side of the H-bridge BA has failed, it is possible to identify the failed switch element even if the processing related to the remaining high side and low side is omitted.
  • the determination of the presence / absence of faults in the remaining sets is It does not have to be done. For example, if it is determined that the combination of the low-side switch element SW_A1L and the high-side switch element SW_A2H has failed before determining the presence / absence of failure in all the pairs, the presence / absence of failure in the remaining pairs is not determined. May be. When it is determined that the set of the low-side switch element SW_A1L and the high-side switch element SW_A2H is out of order, the failed switch element can be identified even if the processing related to the remaining set is omitted.
  • the step of determining whether there is a failed part it may be determined whether there is a failed set only for a set of 2n-1 switch elements of n H bridges. . For example, if it is determined that 5 out of 6 sets included in the three-phase H-bridges BA, BB, and BC are not in failure, the remaining 1 set does not perform failure diagnosis, and the remaining 1 It can be identified that the set is out of order.
  • the step of determining whether there is a set of failed switch elements only the 2n-1 of the 2n high side and low side of the n H bridges have failed. It may be determined whether there is. For example, if it is determined that five of the six parts included in the three-phase H-bridges BA, BB, and BC do not fail, the remaining one part does not need to be diagnosed. It can be determined that the remaining one part is out of order.
  • failure diagnosis units 870A, 870B, and 870C may be performed only for the phase determined to be in failure.
  • the amount of calculation can be reduced by omitting some of the plurality of processes.
  • the amount of calculation can be reduced by omitting some of the plurality of processes.
  • each graph represents voltage (V)
  • the horizontal axis represents time (s).
  • FIG. 23 shows waveforms of the actual voltage VA1 (upper side) and the actual voltage VA2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • FIG. 24 shows waveforms of the actual voltage VB1 (upper side) and the actual voltage VB2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • FIG. 25 shows waveforms of the actual voltage VC1 (upper side) and the actual voltage VC2 (lower side) when the low-side switch element SW_A1L has an open failure.
  • the low-side switch element SW_A1L After the low-side switch element SW_A1L has an open failure at time 1.641s, it can be seen that the lower peak value of the actual voltage VA1 increases as shown in FIG. It can also be seen that the upper peak value of the actual voltage VA2 is increasing. That is, the absolute value of the upper peak value of the actual voltage VA2 increases. As shown in FIGS. 24 and 25, the actual voltages VB1, VB2, VC1, and VC2 have a small degree of change.
  • FIG. 26 shows waveforms of the first actual voltage VA1 (upper side) and the second actual voltage VA2 (lower side) of the A phase when the high side switch element SW_A1H in the A phase H bridge BA has an open failure.
  • FIG. 27 shows waveforms of the first actual voltage VB1 (upper side) and the second actual voltage VB2 (lower side) of the B phase when the high-side switch element SW_A1H has an open failure.
  • FIG. 28 shows waveforms of the C-phase first actual voltage VC1 (upper side) and the second actual voltage VC2 (lower side) when the high-side switch element SW_A1H has an open failure.
  • FIG. 29 shows a waveform of the voltage command value VA_ref.
  • FIG. 30 shows a waveform of the voltage command value VB_ref.
  • FIG. 31 shows a waveform of the voltage command value VC_ref.
  • the vertical axis represents voltage (V).
  • the voltage command value VA_ref rises as shown in FIG. 29 after the high-side switch element SW_A2H of the A-phase H-bridge BA at time 1.543s has an open failure. As shown in FIGS. 30 and 31, the voltage command values VB_ref and VC_ref are not increased.
  • the faulty switch element is determined. Do. Thereby, the accuracy of failure diagnosis can be improved.
  • the failure diagnosis of the present disclosure can be realized by a simple algorithm. For this reason, for example, an advantage of reducing the circuit size or the memory size can be obtained in mounting 340 to the controller.
  • the failure diagnosis method of the present disclosure can be suitably used for a full bridge type power conversion device.
  • the full bridge includes a one-phase H-bridge structure, for example, the circuit structure shown in FIG. 3A.
  • the full-bridge type power converter controls the switching operation of the H-bridge BA having the high-side switch element SW_A1H, the high-side switch element SW_A2H, the low-side switch element SW_A1L, and the low-side switch element SW_A2L, and the switch element of the H-bridge BA.
  • a control circuit 300 acquires the current / voltage expressed in the dq coordinate system, and acquires the first actual voltage VA1 indicating the voltage across the low-side switch element SW_A1L and the second actual voltage VA2 indicating the voltage across the low-side switch element SW_A2L. Then, the rotational speed ⁇ of the motor is obtained.
  • the control circuit 300 Based on the acquired current and voltage in the dq coordinate system, the first actual voltage VA1, the second actual voltage VA2, and the rotational speed ⁇ , the control circuit 300 generates the high-side switch element SW_A1H, the high-side switch element SW_A2H, and the low-side switch element. An open failure of SW_A1L and low-side switch element SW_A2L is diagnosed.
  • the above-described failure diagnosis need not be performed for all three phases, and the failure diagnosis may be performed only for one phase or two phases.
  • the failure diagnosis may be performed only for one phase or two phases.
  • the process related to the A phase among the processes described with reference to FIGS. 5 to 17 is performed, and the processes related to the B phase and the C phase may not be performed.
  • FIG. 32 schematically shows a typical configuration of the electric power steering apparatus 3000 according to the present embodiment.
  • a vehicle such as an automobile generally has an electric power steering device.
  • the electric power steering apparatus 3000 includes a steering system 520 and an auxiliary torque mechanism 540 that generates auxiliary torque.
  • the electric power steering device 3000 generates auxiliary torque that assists the steering torque of the steering system that is generated when the driver operates the steering wheel. The burden on the driver's operation is reduced by the auxiliary torque.
  • the steering system 520 includes, for example, a steering handle 521, a steering shaft 522, universal shaft joints 523A and 523B, a rotation shaft 524, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, a knuckle 528A, 528B and left and right steering wheels 529A, 529B.
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an automotive electronic control unit (ECU) 542, a motor 543, a speed reduction mechanism 544, and the like.
  • the steering torque sensor 541 detects the steering torque in the steering system 520.
  • the ECU 542 generates a drive signal based on the detection signal of the steering torque sensor 541.
  • the motor 543 generates an auxiliary torque corresponding to the steering torque based on the dynamic signal.
  • the motor 543 transmits the generated auxiliary torque to the steering system 520 via the speed reduction mechanism 544.
  • the ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment.
  • an electronic control system with an ECU as a core is constructed.
  • a motor drive unit is constructed by the ECU 542, the motor 543, and the inverter 545.
  • the motor module 2000 according to the first embodiment can be suitably used for the system.
  • an EPS that implements a fault diagnosis method according to an embodiment of the present disclosure is an autonomous driving vehicle that corresponds to levels 0 to 5 (standards for automation) defined by the Japanese government and the US Department of Transportation's Road Traffic Safety Administration (NHTSA). Can be mounted.
  • levels 0 to 5 standards for automation
  • NHTSA US Department of Transportation's Road Traffic Safety Administration
  • the embodiment of the present disclosure can be widely used in various devices including various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.
  • various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

This failure diagnostic method according to an embodiment of the present disclosure diagnoses a failure of a power converting device 1000 which converts power from a power source 101 into power to be supplied to a motor 200. The failure diagnostic method includes: a step for determining whether there is a failed part among the high side and the low side of at least one H-bridge; a step for determining whether there is a failed pair among a pair of a first low-side switching element and a second high-side switching element, and a pair of a second low-side switching element and a first high-side switching element; and a step for determining whether there is a failed switching element on the basis of the determination result of whether there is a failed part and the determination result of whether there is a failed pair.

Description

故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置Failure diagnosis method, power conversion device, motor module, and electric power steering device
 本開示は、故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置に関する。 The present disclosure relates to a failure diagnosis method, a power conversion device, a motor module, and an electric power steering device.
 近年、電動モータ(以下、単に「モータ」と表記する。)、インバータおよびECUが一体化された機電一体型モータが開発されている。特に車載分野において、安全性の観点から高い品質保証が要求される。そのため、部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として1つのモータに対して2つの電力変換装置を設けることが検討されている。他の一例としてメインのマイクロコントローラにバックアップ用マイクロコントローラを設けることが検討されている。 In recent years, an electromechanical integrated motor in which an electric motor (hereinafter simply referred to as “motor”), an inverter, and an ECU are integrated has been developed. Particularly in the in-vehicle field, high quality assurance is required from the viewpoint of safety. Therefore, a redundant design that can continue safe operation even when a part of the component fails is adopted. As an example of a redundant design, it is considered to provide two power conversion devices for one motor. As another example, it is considered to provide a backup microcontroller in the main microcontroller.
 特許文献1は、第1系統および第2系統を有するモータ駆動装置を開示する。第1系統は、モータの第1巻線組に接続され、第1インバータ部、電源リレーおよび逆接続保護リレーなどを有する。第2系統は、モータの第2巻線組に接続され、第2インバータ部、電源リレーおよび逆接続保護リレーなどを有する。モータ駆動装置に故障が生じていないとき、第1系統および第2系統の両方を用いてモータを駆動することが可能である。これに対し、第1系統および第2系統の一方、または、第1巻線組および第2巻線組の一方に故障が生じたとき、電源リレーは、電源から、故障した系統、または、故障した巻線組に接続された系統への電力供給を遮断する。故障していない他方の系統を用いてモータ駆動を継続させることが可能である。 Patent Document 1 discloses a motor drive device having a first system and a second system. The first system is connected to the first winding set of the motor and includes a first inverter unit, a power supply relay, a reverse connection protection relay, and the like. The second system is connected to the second winding set of the motor and includes a second inverter unit, a power supply relay, a reverse connection protection relay, and the like. When there is no failure in the motor drive device, it is possible to drive the motor using both the first system and the second system. On the other hand, when a failure occurs in one of the first system and the second system, or one of the first winding group and the second winding group, the power relay is connected to the failed system or from the power source. The power supply to the system connected to the winding set is cut off. It is possible to continue motor driving using the other system that has not failed.
 特許文献2および3も、第1系統および第2系統を有するモータ駆動装置を開示する。一方の系統または一方の巻線組が故障したとしても、故障していない系統によってモータ駆動を継続させることができる。 Patent Documents 2 and 3 also disclose a motor drive device having a first system and a second system. Even if one system or one winding set fails, motor drive can be continued by a system that does not fail.
日本国公開公報:特開2016-34204号公報Japan Publication: JP-A-2016-34204 日本国公開公報:特開2016-32977号公報Japan publication: JP-A-2016-32977 日本国公開公報:特開2008-132919号公報Japanese publication: JP-A-2008-132919
 上述した従来の技術では、電力変換装置が備えるスイッチ素子の故障を適切に検出することが求められていた。 In the conventional technology described above, it has been required to appropriately detect a failure of a switch element included in the power conversion device.
 本開示の実施形態は、電力変換装置が備えるスイッチ素子の故障を適切に診断することが可能な故障診断方法を提供する。 Embodiment of this indication provides the failure diagnostic method which can diagnose appropriately the failure of the switch element with which a power converter is provided.
 本開示の例示的な故障診断方法は、電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換する電力変換装置の故障を診断する故障診断方法であって、前記電力変換装置は、各々が第1ハイサイドスイッチ素子、第1ローサイドスイッチ素子、第2ハイサイドスイッチ素子および第2ローサイドスイッチ素子を有する少なくとも1つのHブリッジ、を備え、前記故障診断方法は、前記少なくとも1つのHブリッジのハイサイドおよびローサイドの中に故障したパートがあるか判定するステップと、前記第1ローサイドスイッチ素子と前記第2ハイサイドスイッチ素子との組、および前記第2ローサイドスイッチ素子と前記第1ハイサイドスイッチ素子との組の中に故障した組があるか判定するステップと、前記故障したパートがあるかの判定結果および前記故障した組があるかの判定結果に基づいて、前記第1ハイサイドスイッチ素子、前記第1ローサイドスイッチ素子、前記第2ハイサイドスイッチ素子および前記第2ローサイドスイッチ素子の中に故障したスイッチ素子があるか判定するステップと、を包含する。 An exemplary failure diagnosis method of the present disclosure is a failure diagnosis method for diagnosing a failure in a power conversion device that converts electric power from a power source into electric power supplied to a motor having at least one phase winding, the electric power The conversion device includes at least one H-bridge each having a first high-side switch element, a first low-side switch element, a second high-side switch element, and a second low-side switch element, and the failure diagnosis method includes the at least Determining whether there is a failed part in the high side and low side of one H-bridge, a set of the first low side switch element and the second high side switch element, and the second low side switch element and the Determining whether there is a failed set in the set with the first high-side switch element; The first high-side switch element, the first low-side switch element, the second high-side switch element, and the second low-side are determined based on a determination result of whether there is a part and a determination result of whether there is the failed set. Determining whether there is a failed switch element among the switch elements.
 本開示の例示的な電力変換装置は、電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換する電力変換装置であって、前記電力変換装置は、各々が第1ハイサイドスイッチ素子、第1ローサイドスイッチ素子、第2ハイサイドスイッチ素子および第2ローサイドスイッチ素子を有する少なくとも1つのHブリッジと、前記少なくとも1つのHブリッジの動作を制御する制御回路と、を備え、前記制御回路は、前記少なくとも1つのHブリッジのハイサイドおよびローサイドの中に故障したパートがあるか判定し、前記第1ローサイドスイッチ素子と前記第2ハイサイドスイッチ素子との組、および前記第2ローサイドスイッチ素子と前記第1ハイサイドスイッチ素子との組の中に故障した組があるか判定し、前記故障したパートがあるかの判定結果および前記故障した組があるかの判定結果に基づいて、前記第1ハイサイドスイッチ素子、前記第1ローサイドスイッチ素子、前記第2ハイサイドスイッチ素子および前記第2ローサイドスイッチ素子の中に故障したスイッチ素子があるか判定する。 An exemplary power conversion device of the present disclosure is a power conversion device that converts power from a power source into power supplied to a motor having at least one phase winding, each of the power conversion devices being a first power conversion device. At least one H bridge having a high side switch element, a first low side switch element, a second high side switch element and a second low side switch element, and a control circuit for controlling the operation of the at least one H bridge; The control circuit determines whether there is a failed part in the high side and the low side of the at least one H-bridge, the set of the first low-side switch element and the second high-side switch element, and the second Determining whether there is a failed set in the set of the low-side switch element and the first high-side switch element, The first high-side switch element, the first low-side switch element, the second high-side switch element, and the second based on the determination result of whether there is a failed part and the determination result of whether there is the failed set It is determined whether there is a failed switch element among the low-side switch elements.
 本開示の例示的な実施形態によると、電力変換装置が備えるスイッチ素子の故障を適切に診断することが可能な故障診断方法、電力変換装置、当該電力変換装置を備えるモータモジュールおよび当該モータモジュールを備える電動パワーステアリング装置が提供される。 According to an exemplary embodiment of the present disclosure, a failure diagnosis method capable of appropriately diagnosing a failure of a switch element included in a power conversion device, a power conversion device, a motor module including the power conversion device, and the motor module are provided. An electric power steering apparatus is provided.
図1は、実施形態に係るモータモジュールを模式的に示すブロック図である。FIG. 1 is a block diagram schematically illustrating a motor module according to an embodiment. 図2は、実施形態に係るインバータユニットを模式的に示す回路図である。FIG. 2 is a circuit diagram schematically showing the inverter unit according to the embodiment. 図3Aは、A相のHブリッジを示す模式図である。FIG. 3A is a schematic diagram showing an A-phase H-bridge. 図3Bは、B相のHブリッジを示す模式図である。FIG. 3B is a schematic diagram showing a B-phase H-bridge. 図3Cは、C相のHブリッジを示す模式図である。FIG. 3C is a schematic diagram showing a C-phase H-bridge. 図4は、モータ制御全般を行うコントローラを示す機能ブロック図である。FIG. 4 is a functional block diagram showing a controller that performs overall motor control. 図5は、A相のHブリッジのローサイドおよびハイサイドの故障診断を行うための機能ブロックを示す図である。FIG. 5 is a diagram showing functional blocks for diagnosing the low-side and high-side faults of the A-phase H-bridge. 図6は、B相のHブリッジのローサイドおよびハイサイドの故障診断を行うための機能ブロックを示す図である。FIG. 6 is a diagram showing functional blocks for diagnosing the low-side and high-side faults of the B-phase H-bridge. 図7は、C相のHブリッジのローサイドおよびハイサイドの故障診断を行うための機能ブロックを示す図である。FIG. 7 is a functional block diagram for diagnosing the low-side and high-side failure of the C-phase H-bridge. 図8は、相の故障診断を行うための機能ブロックを示す図である。FIG. 8 is a diagram illustrating functional blocks for performing phase failure diagnosis. 図9は、相の故障診断を行うための機能ブロックを示す図である。FIG. 9 is a diagram illustrating functional blocks for performing phase failure diagnosis. 図10は、システム電圧と電圧指令値VA_refの大きさの比較による故障診断を行う原理を説明するための回路モデルを示す図である。FIG. 10 is a diagram illustrating a circuit model for explaining the principle of performing failure diagnosis by comparing the magnitudes of the system voltage and the voltage command value VA_ref. 図11は、相の故障診断を行うための機能ブロックの変形例を示す図である。FIG. 11 is a diagram illustrating a modification of the functional block for performing phase failure diagnosis. 図12は、A相のスイッチ素子の組の故障診断を行うための機能ブロックを示す図である。FIG. 12 is a diagram showing functional blocks for performing failure diagnosis of a set of A-phase switch elements. 図13は、B相のスイッチ素子の組の故障診断を行うための機能ブロックを示す図である。FIG. 13 is a diagram showing functional blocks for performing failure diagnosis of a set of B-phase switch elements. 図14は、C相のスイッチ素子の組の故障診断を行うための機能ブロックを示す図である。FIG. 14 is a diagram showing functional blocks for performing failure diagnosis of a set of C-phase switch elements. 図15は、A相のスイッチ素子の故障診断を行うための機能ブロックを示す図である。FIG. 15 is a diagram illustrating functional blocks for performing failure diagnosis of the A-phase switch element. 図16は、B相のスイッチ素子の故障診断を行うための機能ブロックを示す図である。FIG. 16 is a diagram illustrating functional blocks for performing failure diagnosis of the B-phase switch element. 図17は、C相のスイッチ素子の故障診断を行うための機能ブロックを示す図である。FIG. 17 is a diagram illustrating functional blocks for performing failure diagnosis of the C-phase switch element. 図18は、回転速度ωおよび電流振幅値から飽和電圧Vsatを決定するルックアップテーブルを示す模式図である。FIG. 18 is a schematic diagram showing a lookup table for determining the saturation voltage Vsat from the rotational speed ω and the current amplitude value. 図19は、三相通電制御に従って電力変換装置を制御したときにモータのA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示するグラフである。FIG. 19 is a graph illustrating a current waveform (sine wave) obtained by plotting the current values flowing through the windings of the A phase, B phase, and C phase of the motor when the power conversion device is controlled according to the three-phase energization control. It is. 図20は、A相が故障した場合、二相通電制御に従って電力変換装置を制御したときにモータのB相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。FIG. 20 is a graph illustrating a current waveform obtained by plotting the current value flowing through each of the B-phase and C-phase windings of the motor when the power conversion device is controlled in accordance with the two-phase energization control when the A-phase fails. It is. 図21は、B相が故障した場合、二相通電制御に従って電力変換装置を制御したときにモータのC相、A相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。FIG. 21 is a graph exemplifying a current waveform obtained by plotting the current value flowing through each of the C-phase and A-phase windings of the motor when the B-phase has failed and the power converter is controlled according to the two-phase energization control. It is. 図22は、C相が故障した場合、二相通電制御に従って電力変換装置を制御したときにモータのA相、B相の各巻線に流れる電流値をプロットして得られる電流波形を例示するグラフである。FIG. 22 is a graph exemplifying a current waveform obtained by plotting the current value flowing through each of the A-phase and B-phase windings of the motor when the power conversion device is controlled according to the two-phase energization control when the C-phase fails. It is. 図23は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VA1(上側)および実電圧VA2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 23 is a graph showing waveforms of simulation results of the actual voltage VA1 (upper side) and the actual voltage VA2 (lower side) when the low-side switch element SW_A1L has an open failure. 図24は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VB1(上側)および実電圧VB2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 24 is a graph showing waveforms of simulation results of the actual voltage VB1 (upper side) and the actual voltage VB2 (lower side) when the low-side switch element SW_A1L has an open failure. 図25は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VC1(上側)および実電圧VC2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 25 is a graph showing waveforms of simulation results of the actual voltage VC1 (upper side) and the actual voltage VC2 (lower side) when the low-side switch element SW_A1L has an open failure. 図26は、ハイサイドスイッチ素子SW_A1Hがオープン故障した場合の実電圧VA1(上側)および実電圧VA2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 26 is a graph showing waveforms of simulation results of the actual voltage VA1 (upper side) and the actual voltage VA2 (lower side) when the high-side switch element SW_A1H has an open failure. 図27は、ハイサイドスイッチ素子SW_A1Hがオープン故障した場合の実電圧VB1(上側)および実電圧VB2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 27 is a graph showing waveforms of simulation results of the actual voltage VB1 (upper side) and the actual voltage VB2 (lower side) when the high-side switch element SW_A1H has an open failure. 図28は、ハイサイドスイッチ素子SW_A1Hがオープン故障した場合の実電圧VC1(上側)および実電圧VC2(下側)のシミュレーション結果の波形を示すグラフである。FIG. 28 is a graph showing waveforms of simulation results of the actual voltage VC1 (upper side) and the actual voltage VC2 (lower side) when the high-side switch element SW_A1H has an open failure. 図29は、電圧指令値VA_refのシミュレーション結果の波形を示すグラフである。FIG. 29 is a graph showing a waveform of a simulation result of the voltage command value VA_ref. 図30は、電圧指令値VB_refのシミュレーション結果の波形を示すグラフである。FIG. 30 is a graph showing a waveform of a simulation result of the voltage command value VB_ref. 図31は、電圧指令値VC_refのシミュレーション結果の波形を示すグラフである。FIG. 31 is a graph showing a waveform of a simulation result of the voltage command value VC_ref. 図32は、例示的な実施形態に係る電動パワーステアリング装置を示す模式図である。FIG. 32 is a schematic diagram illustrating an electric power steering apparatus according to an exemplary embodiment.
 以下、添付の図面を参照しながら、本開示のスイッチ素子の故障診断方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。 Hereinafter, embodiments of a switch element failure diagnosis method, a power conversion device, a motor module, and an electric power steering device according to the present disclosure will be described in detail with reference to the accompanying drawings. However, in order to avoid the following description from being unnecessarily redundant and to facilitate understanding by those skilled in the art, a more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted.
 本明細書において、電源からの電力を、三相(A相、B相、C相)の巻線を有する三相モータに供給する電力に変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置、およびその装置に用いるスイッチ素子の故障診断方法も本開示の範疇である。 In the present specification, implementation of the present disclosure will be described by taking, as an example, a power conversion device that converts power from a power source into power to be supplied to a three-phase motor having three-phase (A-phase, B-phase, and C-phase) windings. A form is demonstrated. However, a power conversion device that converts electric power from a power source into electric power to be supplied to an n-phase motor having an n-phase winding (n is an integer of 4 or more) such as four-phase or five-phase, and a switch used in the device An element failure diagnosis method is also included in the scope of the present disclosure.
 (実施形態1)
 〔1.モータモジュール2000および電力変換装置1000の構造〕
 図1は、本実施形態によるモータモジュール2000の典型的なブロック構成を模式的に示している。
(Embodiment 1)
[1. Structure of motor module 2000 and power conversion apparatus 1000]
FIG. 1 schematically shows a typical block configuration of a motor module 2000 according to the present embodiment.
 モータモジュール2000は、典型的に、インバータユニット100と制御回路300とを有する電力変換装置1000およびモータ200を備える。モータモジュール2000は、モジュール化され、例えば、モータ、センサ、ドライバおよびコントローラを有する機電一体型モータとして製造および販売され得る。 The motor module 2000 typically includes a power converter 1000 having the inverter unit 100 and a control circuit 300 and a motor 200. The motor module 2000 is modularized and can be manufactured and sold as, for example, an electromechanically integrated motor having a motor, a sensor, a driver, and a controller.
 電力変換装置1000は、電源101(図2を参照)からの電力をモータ200に供給する電力に変換することが可能である。電力変換装置1000は、モータ200に接続される。例えば、電力変換装置1000は、直流電力を、A相、B相およびC相の擬似正弦波である三相交流電力に変換することが可能である。本明細書において、部品(構成要素)同士の間の「接続」とは、主に電気的な接続を意味する。 The power conversion apparatus 1000 can convert power from the power source 101 (see FIG. 2) into power supplied to the motor 200. The power conversion apparatus 1000 is connected to the motor 200. For example, the power conversion apparatus 1000 can convert DC power into three-phase AC power that is pseudo-sine waves of A phase, B phase, and C phase. In this specification, “connection” between components (components) mainly means electrical connection.
 モータ200は、例えば三相交流モータである。モータ200は、A相の巻線M1、B相の巻線M2およびC相の巻線M3を備え、インバータユニット100の第1インバータ120と第2インバータ130とに接続される。具体的に説明すると、第1インバータ120はモータ200の各相の巻線の一端に接続され、第2インバータ130は各相の巻線の他端に接続される。 The motor 200 is, for example, a three-phase AC motor. The motor 200 includes an A-phase winding M1, a B-phase winding M2, and a C-phase winding M3, and is connected to the first inverter 120 and the second inverter 130 of the inverter unit 100. More specifically, the first inverter 120 is connected to one end of each phase winding of the motor 200, and the second inverter 130 is connected to the other end of each phase winding.
 制御回路300は、例えば、電源回路310と、角度センサ320と、入力回路330と、コントローラ340と、駆動回路350と、ROM360とを備える。制御回路300の各部品は、例えば1枚の回路基板(典型的にはプリント基板)に実装される。制御回路300は、インバータユニット100に接続され、電流センサ150および角度センサ320からの入力信号に基づいてインバータユニット100を制御する。その制御手法として、例えばベクトル制御、パルス幅変調(PWM)または直接トルク制御(DTC)がある。ただし、モータ制御手法(例えばセンサレス制御)によっては、角度センサ320は不要な場合がある。 The control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360. Each component of the control circuit 300 is mounted on, for example, one circuit board (typically a printed board). The control circuit 300 is connected to the inverter unit 100 and controls the inverter unit 100 based on input signals from the current sensor 150 and the angle sensor 320. Examples of the control method include vector control, pulse width modulation (PWM), and direct torque control (DTC). However, the angle sensor 320 may be unnecessary depending on the motor control method (for example, sensorless control).
 制御回路300は、目的とする、モータ200のロータの位置、回転速度、および電流などを制御してクローズドループ制御を実現できる。制御回路300は、角度センサ320に代えてトルクセンサを備えてもよい。この場合、制御回路300は、目的とするモータトルクを制御できる。 The control circuit 300 can realize the closed loop control by controlling the target position, rotation speed, current, and the like of the motor 200. The control circuit 300 may include a torque sensor instead of the angle sensor 320. In this case, the control circuit 300 can control the target motor torque.
 電源回路310は、電源101の例えば12Vの電圧に基づいて回路内の各ブロックに必要な電源電圧(例えば3V、5V)を生成する。 The power supply circuit 310 generates a power supply voltage (for example, 3V, 5V) necessary for each block in the circuit based on the voltage of the power supply 101, for example, 12V.
 角度センサ320は、例えばレゾルバまたはホールICである。または、角度センサ320は、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ320は、ロータの回転角(以下、「回転信号」と表記する。)を検出し、回転信号をコントローラ340に出力する。 The angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects the rotation angle of the rotor (hereinafter referred to as “rotation signal”) and outputs the rotation signal to the controller 340.
 入力回路330は、電流センサ150によって検出された相電流(以下、「実電流値」と表記する場合がある。)を受け取って、実電流値のレベルをコントローラ340の入力レベルに必要に応じて変換し、実電流値をコントローラ340に出力する。入力回路330は、例えばアナログデジタル(AD)変換回路である。 The input circuit 330 receives the phase current detected by the current sensor 150 (hereinafter sometimes referred to as “actual current value”), and changes the level of the actual current value to the input level of the controller 340 as necessary. The actual current value is output to the controller 340. The input circuit 330 is, for example, an analog / digital (AD) conversion circuit.
 コントローラ340は、電力変換装置1000の全体を制御する集積回路であり、例えば、マイクロコントローラまたはFPGA(Field Programmable Gate Array)である。コントローラ340は、インバータユニット100の第1および第2インバータ120、130における各スイッチ素子(典型的には半導体スイッチ素子)のスイッチング動作(ターンオンまたはターンオフ)を制御する。コントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路350に出力する。 The controller 340 is an integrated circuit that controls the entire power conversion apparatus 1000, and is, for example, a microcontroller or an FPGA (Field Programmable Gate Array). The controller 340 controls the switching operation (turn-on or turn-off) of each switch element (typically a semiconductor switch element) in the first and second inverters 120 and 130 of the inverter unit 100. The controller 340 sets the target current value according to the actual current value and the rotation signal of the rotor, generates a PWM signal, and outputs it to the drive circuit 350.
 駆動回路350は、典型的にはプリドライバ(「ゲートドライバ」と呼ばれることもある。)である。駆動回路350は、インバータユニット100の第1および第2インバータ120、130における各スイッチ素子のスイッチング動作を制御する制御信号(ゲート制御信号)をPWM信号に従って生成し、各スイッチ素子のゲートに制御信号を与える。駆動対象が低電圧で駆動可能なモータであるとき、プリドライバは必ずしも必要とされない。その場合、プリドライバの機能はコントローラ340に実装され得る。 The drive circuit 350 is typically a pre-driver (sometimes called a “gate driver”). The drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each switch element in the first and second inverters 120 and 130 of the inverter unit 100 according to the PWM signal, and supplies a control signal to the gate of each switch element. give. When the driving target is a motor that can be driven at a low voltage, the pre-driver is not necessarily required. In that case, the function of the pre-driver can be implemented in the controller 340.
 ROM360は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM360は、コントローラ340に電力変換装置1000を制御させるための命令群を含む制御プログラムを格納している。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。 The ROM 360 is, for example, a writable memory (for example, PROM), a rewritable memory (for example, flash memory), or a read-only memory. The ROM 360 stores a control program including a command group for causing the controller 340 to control the power conversion apparatus 1000. For example, the control program is temporarily expanded in a RAM (not shown) at the time of booting.
 図2を参照しインバータユニット100の具体的な回路構成を説明する。 A specific circuit configuration of the inverter unit 100 will be described with reference to FIG.
 図2は、本実施形態によるインバータユニット100の回路構成を模式的に示している。 FIG. 2 schematically shows a circuit configuration of the inverter unit 100 according to the present embodiment.
 電源101は、所定の電源電圧(例えば12V)を生成する。電源101として、例えば直流電源が用いられる。ただし、電源101は、AC-DCコンバータまたはDC―DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。電源101は、図示するように、第1および第2インバータ120、130に共通の単一電源であってもよいし、第1インバータ120用の第1電源(不図示)および第2インバータ130用の第2電源(不図示)を備えていてもよい。 The power supply 101 generates a predetermined power supply voltage (for example, 12V). As the power source 101, for example, a DC power source is used. However, the power source 101 may be an AC-DC converter, a DC-DC converter, or a battery (storage battery). The power source 101 may be a single power source common to the first and second inverters 120 and 130 as shown in the figure, or may be a first power source (not shown) for the first inverter 120 and for the second inverter 130. A second power source (not shown) may be provided.
 図示されていないが、電源101と第1インバータ120の間、および、電源101と第2インバータ130の間にコイルが設けられる。コイルは、ノイズフィルタとして機能し、各インバータに供給する電圧波形に含まれる高周波ノイズ、または各インバータで発生する高周波ノイズを電源101側に流出させないように平滑化する。また、各インバータの電源端子には、コンデンサが接続される。コンデンサは、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサは、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。 Although not shown, coils are provided between the power source 101 and the first inverter 120 and between the power source 101 and the second inverter 130. The coil functions as a noise filter, and smoothes the high frequency noise included in the voltage waveform supplied to each inverter or the high frequency noise generated by each inverter so as not to flow out to the power supply 101 side. A capacitor is connected to the power supply terminal of each inverter. The capacitor is a so-called bypass capacitor and suppresses voltage ripple. The capacitor is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to design specifications.
 第1インバータ120は、3個のレグから構成されるブリッジ回路を有する。各レグは、ハイサイドスイッチ素子、ローサイドスイッチ素子およびシャント抵抗を有する。A相レグは、ハイサイドスイッチ素子SW_A1H、ローサイドスイッチ素子SW_A1Lおよび第1シャント抵抗S_A1を有する。B相レグは、ハイサイドスイッチ素子SW_B1H、ローサイドスイッチ素子SW_B1Lおよび第1シャント抵抗S_B1を有する。C相レグは、ハイサイドスイッチ素子SW_C1H、ローサイドスイッチ素子SW_C1Lおよび第1シャント抵抗S_C1を有する。 The first inverter 120 has a bridge circuit composed of three legs. Each leg has a high-side switch element, a low-side switch element, and a shunt resistor. The A-phase leg includes a high-side switch element SW_A1H, a low-side switch element SW_A1L, and a first shunt resistor S_A1. The B-phase leg has a high-side switch element SW_B1H, a low-side switch element SW_B1L, and a first shunt resistor S_B1. The C-phase leg has a high-side switch element SW_C1H, a low-side switch element SW_C1L, and a first shunt resistor S_C1.
 スイッチ素子として、例えば、寄生ダイオードが内部に形成された電界効果トランジスタ(典型的にはMOSFET)、または、絶縁ゲートバイポーラトランジスタ(IGBT)とそれに並列接続された還流ダイオードとの組み合わせを用いることができる。 As the switch element, for example, a field effect transistor (typically MOSFET) having a parasitic diode formed therein, or a combination of an insulated gate bipolar transistor (IGBT) and a free-wheeling diode connected in parallel thereto can be used. .
 第1シャント抵抗S_A1は、A相の巻線M1を流れるA相電流IA1を検出するために用いられ、例えば、ローサイドスイッチ素子SW_A1LとGNDラインGLの間に接続される。第1シャント抵抗S_B1は、B相の巻線M2を流れるB相電流IB1を検出するために用いられ、例えば、ローサイドスイッチ素子SW_B1LとGNDラインGLの間に接続される。第1シャント抵抗S_C1は、C相の巻線M3を流れるC相電流IC1を検出するために用いられ、例えば、ローサイドスイッチ素子SW_C1LとGNDラインGLの間に接続される。3個のシャント抵抗S_A1、S_B1およびS_C1は、第1インバータ120のGNDラインGLと共通に接続されている。 The first shunt resistor S_A1 is used to detect the A-phase current IA1 flowing through the A-phase winding M1, and is connected, for example, between the low-side switch element SW_A1L and the GND line GL. The first shunt resistor S_B1 is used to detect the B-phase current IB1 flowing through the B-phase winding M2, and is connected between the low-side switch element SW_B1L and the GND line GL, for example. The first shunt resistor S_C1 is used to detect the C-phase current IC1 flowing through the C-phase winding M3, and is connected between, for example, the low-side switch element SW_C1L and the GND line GL. The three shunt resistors S_A1, S_B1, and S_C1 are connected in common with the GND line GL of the first inverter 120.
 第2インバータ130は、3個のレグから構成されるブリッジ回路を有する。各レグは、ハイサイドスイッチ素子、ローサイドスイッチ素子およびシャント抵抗を有する。A相レグは、ハイサイドスイッチ素子SW_A2H、ローサイドスイッチ素子SW_A2Lおよびシャント抵抗S_A2を有する。B相レグは、ハイサイドスイッチ素子SW_B2H、ローサイドスイッチ素子SW_B2Lおよびシャント抵抗S_B2を有する。C相レグは、ハイサイドスイッチ素子SW_C2H、ローサイドスイッチ素子SW_C2Lおよびシャント抵抗S_C2を有する。 The second inverter 130 has a bridge circuit composed of three legs. Each leg has a high-side switch element, a low-side switch element, and a shunt resistor. The A-phase leg has a high-side switch element SW_A2H, a low-side switch element SW_A2L, and a shunt resistor S_A2. The B-phase leg has a high-side switch element SW_B2H, a low-side switch element SW_B2L, and a shunt resistor S_B2. The C-phase leg has a high-side switch element SW_C2H, a low-side switch element SW_C2L, and a shunt resistor S_C2.
 シャント抵抗S_A2は、A相電流IA2を検出するために用いられ、例えば、ローサイドスイッチ素子SW_A2LとGNDラインGLの間に接続される。シャント抵抗S_B2は、B相電流IB2を検出するために用いられ、例えば、ローサイドスイッチ素子SW_B2LとGNDラインGLの間に接続される。シャント抵抗S_C2は、C相電流IC2を検出するために用いられ、例えば、ローサイドスイッチ素子SW_C2LとGNDラインGLの間に接続される。3個のシャント抵抗S_A2、S_B2およびS_C2は、第2インバータ130のGNDラインGLと共通に接続されている。 The shunt resistor S_A2 is used to detect the A-phase current IA2, and is connected, for example, between the low-side switch element SW_A2L and the GND line GL. The shunt resistor S_B2 is used to detect the B-phase current IB2, and is connected between, for example, the low-side switch element SW_B2L and the GND line GL. The shunt resistor S_C2 is used to detect the C-phase current IC2, and is connected, for example, between the low-side switch element SW_C2L and the GND line GL. The three shunt resistors S_A2, S_B2, and S_C2 are connected in common with the GND line GL of the second inverter 130.
 上述した電流センサ150は、例えば、シャント抵抗S_A1、S_B1、S_C1、S_A2、S_B2、S_C2および各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を備える。 The current sensor 150 described above includes, for example, a shunt resistor S_A1, S_B1, S_C1, S_A2, S_B2, S_C2, and a current detection circuit (not shown) that detects a current flowing through each shunt resistor.
 第1インバータ120のA相レグ(具体的には、ハイサイドスイッチ素子SW_A1Hおよびローサイドスイッチ素子SW_A1Lの間のノード)は、モータ200のA相の巻線M1の一端A1に接続され、第2インバータ130のA相レグは、A相の巻線M1の他端A2に接続される。第1インバータ120のB相レグは、モータ200のB相の巻線M2の一端B1に接続され、第2インバータ130のB相レグは、巻線M2の他端B2に接続される。第1インバータ120のC相レグは、モータ200のC相の巻線M3の一端C1に接続され、第2インバータ130のC相レグは、巻線M3の他端C2に接続される。 The A-phase leg of the first inverter 120 (specifically, a node between the high-side switch element SW_A1H and the low-side switch element SW_A1L) is connected to one end A1 of the A-phase winding M1 of the motor 200, and the second inverter The 130 A-phase leg is connected to the other end A2 of the A-phase winding M1. The B-phase leg of the first inverter 120 is connected to one end B1 of the B-phase winding M2 of the motor 200, and the B-phase leg of the second inverter 130 is connected to the other end B2 of the winding M2. The C-phase leg of the first inverter 120 is connected to one end C1 of the C-phase winding M3 of the motor 200, and the C-phase leg of the second inverter 130 is connected to the other end C2 of the winding M3.
 図3Aは、A相のHブリッジBAの構成を模式的に示している。図3Bは、B相のHブリッジBBの構成を模式的に示している。図3Cは、C相のHブリッジBCの構成を模式的に示している。 FIG. 3A schematically shows the configuration of the A-phase H-bridge BA. FIG. 3B schematically shows the configuration of a B-phase H-bridge BB. FIG. 3C schematically shows the configuration of a C-phase H-bridge BC.
 インバータユニット100は、A相、B相およびC相のHブリッジBA、BBおよびBCを備える。A相のHブリッジBAは、第1インバータ120側のレグにおけるハイサイドスイッチ素子SW_A1H、ローサイドスイッチ素子SW_A1L、第2インバータ130側のレグにおけるハイサイドスイッチ素子SW_A2H、ローサイドスイッチ素子SW_A2L、および、巻線M1を有する。 The inverter unit 100 includes A-phase, B-phase, and C-phase H-bridges BA, BB, and BC. The A-phase H bridge BA includes a high-side switch element SW_A1H and a low-side switch element SW_A1L in the leg on the first inverter 120 side, a high-side switch element SW_A2H, a low-side switch element SW_A2L in the leg on the second inverter 130 side, and a winding Has M1.
 B相のHブリッジBBは、第1インバータ120側のレグにおけるハイサイドスイッチ素子SW_B1H、ローサイドスイッチ素子SW_B1L、第2インバータ130側のレグにおけるハイサイドスイッチ素子SW_B2H、ローサイドスイッチ素子SW_B2L、および、巻線M2を有する。 The B-phase H-bridge BB includes a high-side switch element SW_B1H and a low-side switch element SW_B1L in the leg on the first inverter 120 side, a high-side switch element SW_B2H, a low-side switch element SW_B2L in the leg on the second inverter 130 side, and a winding Has M2.
 C相のHブリッジBCは、第1インバータ120側のレグにおけるハイサイドスイッチ素子SW_C1H、ローサイドスイッチ素子SW_C1L、第2インバータ130側のレグにおけるハイサイドスイッチ素子SW_C2H、ローサイドスイッチ素子SW_C2L、および、巻線M3を有する。 The C-phase H-bridge BC includes a high-side switch element SW_C1H and a low-side switch element SW_C1L in the leg on the first inverter 120 side, a high-side switch element SW_C2H, a low-side switch element SW_C2L in the leg on the second inverter 130 side, and a winding M3.
 制御回路300(具体的にはコントローラ340)は、以下で説明する故障診断を実行することにより、電力変換装置1000内の故障したスイッチ素子を特定することができる。 The control circuit 300 (specifically, the controller 340) can specify a failed switch element in the power conversion apparatus 1000 by executing a failure diagnosis described below.
 例えば制御回路300は、故障したスイッチ素子を特定すると、故障したスイッチ素子を含むHブリッジ以外の二相のHブリッジを用いて二相の巻線に通電するモータ制御に切替えることが可能である。本明細書では、三相の巻線に通電することを「三相通電制御」と呼び、二相の巻線に通電することを「二相通電制御」と呼ぶ。以下、故障診断の詳細を説明する。 For example, when the failed switch element is identified, the control circuit 300 can be switched to motor control in which a two-phase winding is energized using a two-phase H bridge other than the H bridge including the failed switch element. In this specification, energizing the three-phase winding is called “three-phase energization control”, and energizing the two-phase winding is called “two-phase energization control”. Details of the failure diagnosis will be described below.
 〔2.故障診断方法〕
 図4から図18を参照しながら、例えば、図1に示す電力変換装置1000のスイッチ素子の故障の有無を診断する故障診断方法の具体例を説明する。本開示の故障診断方法は、少なくとも1つのHブリッジを備える電力変換装置、例えばフルブリッジタイプの電力変換装置に好適に用いることができる。本明細書中において、スイッチ素子の故障は、スイッチ素子のオープン故障を指す。オープン故障とは、スイッチ素子が常時ハイインピーダンスになる故障である。本明細書では、例えばA相のHブリッジのスイッチ素子に故障が生じることを、A相の故障と呼ぶ場合がある。
[2. (Failure diagnosis method)
A specific example of a failure diagnosis method for diagnosing the presence or absence of a failure of the switch element of the power conversion apparatus 1000 shown in FIG. 1 will be described with reference to FIGS. The failure diagnosis method of the present disclosure can be suitably used for a power conversion device including at least one H bridge, for example, a full bridge type power conversion device. In this specification, the failure of a switch element refers to the open failure of a switch element. An open failure is a failure in which the switch element always has a high impedance. In the present specification, for example, a failure occurring in a switching element of an A-phase H-bridge may be referred to as an A-phase failure.
 本実施形態の故障診断方法の概要は、下記のとおりである。 The outline of the failure diagnosis method of this embodiment is as follows.
 故障診断では、HブリッジBA、BB、BCのハイサイドおよびローサイドの中に故障したパートがあるか判定する。また、ローサイドスイッチ素子とハイサイドスイッチ素子との組の中に故障した組があるか判定する。これらの判定結果に基づいて、電力変換装置1000が備えるハイサイドスイッチ素子およびローサイドスイッチ素子の中に故障したスイッチ素子があるか判定する。 In the failure diagnosis, it is determined whether there is a failed part on the high side and the low side of the H bridge BA, BB, BC. In addition, it is determined whether there is a broken set among the set of the low side switch element and the high side switch element. Based on these determination results, it is determined whether there is a failed switch element among the high-side switch element and the low-side switch element included in the power conversion device 1000.
 故障診断では、例えばdq座標系において表現される電流および電圧と、ローサイドスイッチ素子の両端電圧を示す実電圧と、モータの回転速度ωとを獲得する。dq座標系において表現される電流および電圧は、d軸電圧Vd、q軸電圧Vq、d軸電流Idおよびq軸電流Iqを含む。dq座標系において、零相に対応した軸をz軸として表している。回転速度ωは、単位時間(例えば1分間)にモータのロータが回転する回転数(rpm)または単位時間(例えば1秒間)にロータが回転する回転数(rps)で表される。 In the failure diagnosis, for example, the current and voltage expressed in the dq coordinate system, the actual voltage indicating the voltage across the low side switch element, and the rotational speed ω of the motor are acquired. The current and voltage expressed in the dq coordinate system include a d-axis voltage Vd, a q-axis voltage Vq, a d-axis current Id, and a q-axis current Iq. In the dq coordinate system, the axis corresponding to the zero phase is represented as the z-axis. The rotation speed ω is represented by a rotation speed (rpm) at which the rotor of the motor rotates per unit time (for example, 1 minute) or a rotation speed (rps) at which the rotor rotates at unit time (for example, 1 second).
 図3Aから図3Cを用いて、スイッチ素子の実電圧を説明する。 The actual voltage of the switch element will be described with reference to FIGS. 3A to 3C.
 A相、B相およびC相のHブリッジBA、BBおよびBCのそれぞれに対し、第1実電圧および第2実電圧を定義する。第1実電圧は、各相のHブリッジにおいて、第1インバータ120側のレグにおける第1ローサイドスイッチ素子の両端電圧を示す。換言すると、第1実電圧は、第1インバータ120側のレグにおける第1ハイサイドスイッチ素子と第1ローサイドスイッチ素子の間のノード電位に相当する。第2実電圧は、第2インバータ130側のレグにおける第2ローサイドスイッチ素子の両端電圧を示す。換言すると、第2実電圧は、第2インバータ130側のレグにおける第2ハイサイドスイッチ素子と第2ローサイドスイッチ素子の間のノード電位に相当する。スイッチ素子の両端電圧は、スイッチ素子であるFETのソース-ドレイン間の電圧Vdsに等しい。 A first actual voltage and a second actual voltage are defined for each of the A-phase, B-phase, and C-phase H-bridges BA, BB, and BC. The first actual voltage indicates the voltage across the first low-side switch element in the leg on the first inverter 120 side in the H bridge of each phase. In other words, the first actual voltage corresponds to the node potential between the first high-side switch element and the first low-side switch element in the leg on the first inverter 120 side. The second actual voltage indicates the voltage across the second low-side switch element in the leg on the second inverter 130 side. In other words, the second actual voltage corresponds to the node potential between the second high-side switch element and the second low-side switch element in the leg on the second inverter 130 side. The voltage across the switch element is equal to the voltage Vds between the source and drain of the FET that is the switch element.
 A相のHブリッジBAに対し、第1実電圧は、図3Aに示すローサイドスイッチ素子SW_A1Lの両端電圧VA1を指し、第2実電圧は、図3Aに示すローサイドスイッチ素子SW_A2Lの両端電圧VA2を指す。B相のHブリッジBBに対し、第1実電圧は、図3Bに示すローサイドスイッチ素子SW_B1Lの両端電圧VB1を指し、第2実電圧は、図3Bに示すローサイドスイッチ素子SW_B2Lの両端電圧VB2を指す。C相のHブリッジBCに対し、第1実電圧は、図3Cに示すローサイドスイッチ素子SW_C1Lの両端電圧VC1を指し、第2実電圧は、図3Cに示すローサイドスイッチ素子SW_C2Lの両端電圧VC2を指す。 For the A-phase H bridge BA, the first actual voltage indicates the voltage VA1 across the low-side switch element SW_A1L shown in FIG. 3A, and the second actual voltage points across the voltage VA2 across the low-side switch element SW_A2L shown in FIG. 3A. . For the B-phase H-bridge BB, the first actual voltage indicates the voltage VB1 across the low-side switch element SW_B1L shown in FIG. 3B, and the second actual voltage indicates the voltage VB2 across the low-side switch element SW_B2L shown in FIG. 3B. . For the C-phase H-bridge BC, the first actual voltage indicates the voltage VC1 across the low-side switch element SW_C1L illustrated in FIG. 3C, and the second actual voltage indicates the voltage VC2 across the low-side switch element SW_C2L illustrated in FIG. 3C. .
 次に、獲得した、dq座標系の電流および電圧、第1実電圧、第2実電圧および回転速度等に基づいて、故障を診断する。 Next, a failure is diagnosed based on the acquired current and voltage in the dq coordinate system, the first actual voltage, the second actual voltage, the rotation speed, and the like.
 故障しているスイッチ素子があると判定した場合、スイッチ素子の故障を示す故障信号を生成し、後述するモータ制御ユニットに出力する。例えば、故障信号は、故障が生じるとアサートされる信号である。 If it is determined that there is a faulty switch element, a fault signal indicating a fault of the switch element is generated and output to a motor control unit described later. For example, a failure signal is a signal that is asserted when a failure occurs.
 上記の故障診断は、例えば、電流センサ150によって各相電流を測定する周期、すなわちAD変換の周期に同期して繰り返し実行される。 The above-described failure diagnosis is repeatedly executed in synchronization with, for example, a period in which each phase current is measured by the current sensor 150, that is, an AD conversion period.
 本実施形態による故障診断方法を実現するためのアルゴリズムは、例えば特定用途向け集積回路(ASIC)またはFPGAなどのハードウェアのみで実現することもできるし、マイクロコントローラおよびソフトウェアの組み合わせによっても実現することができる。本実施形態では、故障診断の動作主体を制御回路300のコントローラ340とする。 The algorithm for realizing the fault diagnosis method according to the present embodiment can be realized only by hardware such as an application specific integrated circuit (ASIC) or FPGA, or can be realized by a combination of a microcontroller and software. Can do. In the present embodiment, the operation subject of failure diagnosis is the controller 340 of the control circuit 300.
 図4は、モータ制御全般を行うためのコントローラ340の機能ブロックを例示している。図5は、A相のHブリッジBAのローサイドおよびハイサイドの故障診断を行うための機能ブロックを例示している。 FIG. 4 exemplifies functional blocks of the controller 340 for performing overall motor control. FIG. 5 illustrates functional blocks for performing a low-side and high-side fault diagnosis of the A-phase H-bridge BA.
 本明細書において、機能ブロック図における各ブロックは、ハードウェア単位ではなく機能ブロック単位で示される。モータ制御および故障診断に用いるソフトウェアは、例えば、各機能ブロックに対応した特定の処理を実行させるためのコンピュータプログラムを構成するモジュールであり得る。そのようなコンピュータプログラムは、例えばROM360に格納される。コントローラ340は、ROM360から命令を読み出して各処理を逐次実行することができる。 In this specification, each block in the functional block diagram is shown not in hardware units but in functional block units. The software used for motor control and failure diagnosis may be a module constituting a computer program for executing specific processing corresponding to each functional block, for example. Such a computer program is stored in the ROM 360, for example. The controller 340 can read out commands from the ROM 360 and sequentially execute each process.
 コントローラ340は、例えば、故障診断ユニット800およびモータ制御ユニット900を有する。このように、本開示の故障診断は、モータ制御(例えばベクトル制御)と好適に組み合わせることができ、モータ制御の一連の処理の中に組み込むことが可能である。 The controller 340 includes, for example, a failure diagnosis unit 800 and a motor control unit 900. As described above, the failure diagnosis of the present disclosure can be suitably combined with motor control (for example, vector control), and can be incorporated into a series of processes of motor control.
 故障診断ユニット800は、dq座標系におけるd軸電流Id、q軸電流Iq、d軸電圧Vd、q軸電圧Vq、およびモータ200の回転速度ωを獲得する。故障診断ユニット800は、さらに、第1実電圧VA1、VB1、VC1、第2実電圧VA2、VB2およびVC2を獲得する。 Failure diagnosis unit 800 obtains d-axis current Id, q-axis current Iq, d-axis voltage Vd, q-axis voltage Vq, and rotation speed ω of motor 200 in the dq coordinate system. The fault diagnosis unit 800 further obtains the first actual voltages VA1, VB1, VC1, and the second actual voltages VA2, VB2, and VC2.
 例えば、故障診断ユニット800は、Vpeakを獲得するプレ演算ユニット(不図示)を有し得る。プレ演算ユニットは、クラーク変換を用いて、電流センサ150の測定値に基づいて取得された三相電流Ia、IbおよびIcを、αβ固定座標系における、α軸上の電流Iαおよびβ軸上の電流Iβに変換する。プレ演算ユニットは、パーク変換(dq座標変換)を用いて、電流Iα、Iβを、dq座標系におけるd軸電流Idおよびq軸電流Iqに変換する。プレ演算ユニットは、電流IdおよびIqに基づいてd軸電圧Vdおよびq軸電圧Vqを取得し、取得したVd、Vqから下記式(1)に基づいて電圧ピーク値Vpeakを算出する。または、プレ演算ユニットは、ベクトル制御を行うモータ制御ユニット900から、Vpeakの算出に必要なVd、Vqを受け取ることも可能である。例えば、プレ演算ユニットは、電流センサ150によって各相電流を測定する周期に同期してVpeakを獲得する。
  Vpeak=(2/3)1/2(Vd+Vq1/2   式(1)
For example, the failure diagnosis unit 800 may include a pre-computation unit (not shown) that acquires Vpeak. The pre-computation unit uses the Clark transformation to convert the three-phase currents Ia, Ib and Ic obtained based on the measured value of the current sensor 150 into the currents I α and β on the α axis in the αβ fixed coordinate system. To a current I β of The pre-computation unit converts the currents I α and I β into a d-axis current Id and a q-axis current Iq in the dq coordinate system by using park conversion (dq coordinate conversion). The pre-calculation unit acquires the d-axis voltage Vd and the q-axis voltage Vq based on the currents Id and Iq, and calculates the voltage peak value Vpeak from the acquired Vd and Vq based on the following formula (1). Alternatively, the pre-computation unit can also receive Vd and Vq necessary for calculating Vpeak from the motor control unit 900 that performs vector control. For example, the pre-computation unit acquires Vpeak in synchronization with the period in which each phase current is measured by the current sensor 150.
Vpeak = (2/3) 1/2 (Vd 2 + Vq 2 ) 1/2 formula (1)
 故障診断ユニット800は、ルックアップテーブル940(図18)を参照して、電流Id、Iqおよび回転速度ωに基づいて飽和電圧Vsatを決定する。 Failure diagnosis unit 800 refers to lookup table 940 (FIG. 18) and determines saturation voltage Vsat based on currents Id and Iq and rotational speed ω.
 図18は、回転速度ωおよび電流振幅値から飽和電圧Vsatを決定するルックアップテーブル(LUT)940を模式的に示している。LUT940は、d軸電流およびq軸電流に基づいて決定される電流振幅値(Id+Iq1/2およびモータ200の回転速度ωの入力と、飽和電圧Vsatとの関係を関連付ける。 FIG. 18 schematically shows a look-up table (LUT) 940 for determining the saturation voltage Vsat from the rotation speed ω and the current amplitude value. The LUT 940 associates the relationship between the saturation voltage Vsat and the input of the current amplitude value (Id 2 + Iq 2 ) 1/2 determined based on the d-axis current and the q-axis current and the rotational speed ω of the motor 200.
 回転速度ωは、例えば角度センサ320からの回転信号に基づいて算出される。または、回転速度ωは、例えば公知のセンサレス制御手法を用いて推定することができる。各スイッチ素子の実電圧は、例えば駆動回路(プリドライバ)350によって測定される。 The rotation speed ω is calculated based on, for example, a rotation signal from the angle sensor 320. Alternatively, the rotational speed ω can be estimated using, for example, a known sensorless control method. The actual voltage of each switch element is measured by a drive circuit (predriver) 350, for example.
 表1は、故障診断に用いることが可能なLUT940の構成を例示している。モータ制御では、一般的にIdはゼロとして扱われる。そのため、電流振幅値はIqに等しくなる。表1には、Iq(A)を記載している。飽和電圧Vsatは、獲得された電流振幅値Iqおよび回転速度ωから決定される。あるいは、飽和電圧Vsatとして、例えば、駆動前に予め設定した値を用いてもよい。例えば、飽和電圧Vsatとして、システムに依存する一定の値(例えば0.1V程度)を用いてもよい。 Table 1 illustrates the configuration of the LUT 940 that can be used for failure diagnosis. In motor control, Id is generally treated as zero. Therefore, the current amplitude value is equal to Iq. Table 1 lists Iq (A). The saturation voltage Vsat is determined from the acquired current amplitude value Iq and the rotational speed ω. Alternatively, for example, a value set in advance before driving may be used as the saturation voltage Vsat. For example, a constant value (for example, about 0.1 V) depending on the system may be used as the saturation voltage Vsat.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 故障診断ユニット800は、dq座標系において表現される電流ピーク指令値Ipeak_refおよび電圧ピーク値Vpeakを獲得する。また、電圧指令値VA_ref、VB_refおよびVC_refを獲得する。 Failure diagnosis unit 800 obtains current peak command value Ipeak_ref and voltage peak value Vpeak expressed in the dq coordinate system. In addition, voltage command values VA_ref, VB_ref and VC_ref are obtained.
 故障診断ユニット800は、上述した実電圧、電圧ピーク値、飽和電圧、電流ピーク指令値、電圧指令値に基づいてスイッチ素子の故障の有無を診断する。 The failure diagnosis unit 800 diagnoses the presence or absence of a switch element failure based on the actual voltage, voltage peak value, saturation voltage, current peak command value, and voltage command value described above.
 故障診断ユニット800は、故障したスイッチ素子を示す故障信号を診断結果に基づいて生成し、モータ制御ユニット900に出力する。 The failure diagnosis unit 800 generates a failure signal indicating the failed switch element based on the diagnosis result, and outputs the failure signal to the motor control unit 900.
 モータ制御ユニット900は、例えばベクトル制御を用いて、第1および第2インバータ120、130のスイッチ素子のスイッチング動作の全般を制御するPWM信号を生成する。モータ制御ユニット900は、PWM信号を駆動回路350に出力する。また、モータ制御ユニット900は、例えば故障信号がアサートされると、モータ制御を三相通電制御から二相通電制御に切替えることが可能である。 The motor control unit 900 generates a PWM signal that controls the overall switching operation of the switch elements of the first and second inverters 120 and 130 using, for example, vector control. The motor control unit 900 outputs a PWM signal to the drive circuit 350. For example, when a failure signal is asserted, the motor control unit 900 can switch the motor control from the three-phase energization control to the two-phase energization control.
 本明細書において、説明の便宜上、各機能ブロックをユニットと表記する場合がある。当然に、各機能ブロックをハードウェアまたはソフトウェアに限定解釈する意図で、これらの表記を用いてはいない。 In this specification, for convenience of explanation, each functional block may be expressed as a unit. Naturally, these notations are not used with the intention of restricting each functional block to hardware or software.
 各機能ブロックはソフトウェアとしてコントローラ340に実装される場合、そのソフトウェアの実行主体は例えばコントローラ340のコアであり得る。上述のように、コントローラ340はFPGAによって実現され得る。その場合、全てまたは一部の機能ブロックはハードウェアで実現され得る。 When each functional block is implemented as software in the controller 340, the execution subject of the software may be the core of the controller 340, for example. As described above, the controller 340 can be implemented by an FPGA. In that case, all or some of the functional blocks may be realized by hardware.
 複数のFPGAを用いて処理を分散させることにより、特定のコンピュータの演算負荷を分散できる。その場合、図4から図18に示される機能ブロックの全てまたは一部は、複数のFPGAに分散して実装され得る。複数のFPGAは、例えば車載のコントロールエリアネットワーク(CAN)によって互いに通信可能に接続され、データの送受信を行うことができる。 演算 By distributing processing using multiple FPGAs, the computing load of a specific computer can be distributed. In that case, all or some of the functional blocks shown in FIG. 4 to FIG. 18 may be distributed and implemented in a plurality of FPGAs. The plurality of FPGAs can be connected to each other by, for example, an in-vehicle control area network (CAN), and can transmit and receive data.
 (Hブリッジのハイサイドおよびローサイドの故障診断)
 図5は、A相のHブリッジBAのローサイドおよびハイサイドの故障の有無を診断する故障診断ユニット810Aを示している。図6は、B相のHブリッジBBのローサイドおよびハイサイドの故障の有無を診断する故障診断ユニット810Bを示している。図7は、C相のHブリッジBCのローサイドおよびハイサイドの故障の有無を診断する故障診断ユニット810Cを示している。故障診断ユニット810A、810B、810Cは、実質的に同じ機能ブロックを有するが、入力される実電圧が互いに異なる。故障診断ユニット800は、図5、図6、図7に示す故障診断ユニット810A、810B、810Cを有する。
(H bridge high side and low side failure diagnosis)
FIG. 5 shows a failure diagnosis unit 810A for diagnosing the presence or absence of a low-side and high-side failure of the A-phase H bridge BA. FIG. 6 shows a failure diagnosis unit 810B for diagnosing the presence or absence of a low-side and high-side failure of the B-phase H-bridge BB. FIG. 7 shows a failure diagnosis unit 810C for diagnosing the presence / absence of a low-side and high-side failure of the C-phase H-bridge BC. The fault diagnosis units 810A, 810B, and 810C have substantially the same functional blocks, but input actual voltages are different from each other. The failure diagnosis unit 800 includes failure diagnosis units 810A, 810B, and 810C shown in FIGS.
 故障診断ユニット810A、810B、810Cのそれぞれは乗算器811、812と、加算器813、814、815と、比較器816、817と、論理回路OR818とを有する。故障診断ユニット810A、810B、810Cのそれぞれは乗算器821、822と、加算器823、824、825と、比較器826、827と、論理回路OR828とをさらに有する。 Each of the fault diagnosis units 810A, 810B, and 810C includes multipliers 811 and 812, adders 813, 814, and 815, comparators 816 and 817, and a logic circuit OR818. Each of failure diagnosis units 810A, 810B, and 810C further includes multipliers 821 and 822, adders 823, 824, and 825, comparators 826 and 827, and a logic circuit OR 828.
 まず、図5を用いて、A相のHブリッジBAのローサイドおよびハイサイドの故障の有無の診断処理を説明する。 First, the diagnosis process for the presence or absence of a failure on the low side and the high side of the A-phase H bridge BA will be described with reference to FIG.
 乗算器811は、電圧ピーク値Vpeakに定数「-1/2」を乗算する。乗算器812は、飽和電圧Vsatに定数「-1」を乗算する。加算器813は、乗算器811および812の出力値を加算する。加算器814は、実電圧VA1と加算器813の出力値とを加算して、下記式(2)で表される故障診断電圧VA1L_FDを算出する。
 VA1L_FD=VA1-〔(Vpeak/2)+Vsat〕 式(2)
The multiplier 811 multiplies the voltage peak value Vpeak by a constant “−1/2”. The multiplier 812 multiplies the saturation voltage Vsat by a constant “−1”. Adder 813 adds the output values of multipliers 811 and 812. The adder 814 adds the actual voltage VA1 and the output value of the adder 813 to calculate a failure diagnosis voltage VA1L_FD represented by the following formula (2).
VA1L_FD = VA1-[(Vpeak / 2) + Vsat] Formula (2)
 比較器816は、“VA1L_FD”と“ゼロ”とを比較する。比較器816は、VA1L_FDがゼロ以下である(VA1L_FD≦0)場合、実電圧VA1は正常であることを示す“0”を論理回路OR818に出力する。比較器816は、VA1L_FDがゼロより大きい(VA1L_FD>0)場合、実電圧VA1は異常であることを示す“1”を論理回路OR818に出力する。 The comparator 816 compares “VA1L_FD” with “zero”. When VA1L_FD is equal to or smaller than zero (VA1L_FD ≦ 0), the comparator 816 outputs “0” indicating that the actual voltage VA1 is normal to the logic circuit OR818. When VA1L_FD is larger than zero (VA1L_FD> 0), the comparator 816 outputs “1” indicating that the actual voltage VA1 is abnormal to the logic circuit OR818.
 同様に、加算器815は、実電圧VA2と加算器813の出力値とを加算して、故障診断電圧VA2L_FDを算出する。 Similarly, the adder 815 adds the actual voltage VA2 and the output value of the adder 813 to calculate the failure diagnosis voltage VA2L_FD.
 比較器817は、“VA2L_FD”と“ゼロ”とを比較する。比較器817は、VA2L_FDがゼロ以下である(VA2L_FD≦0)場合、実電圧VA2は正常であることを示す“0”を論理回路OR818に出力する。比較器817は、VA2L_FDがゼロより大きい(VA2L_FD>0)場合、実電圧VA2は異常であることを示す“1”を論理回路OR818に出力する。 The comparator 817 compares “VA2L_FD” with “zero”. When VA2L_FD is equal to or less than zero (VA2L_FD ≦ 0), the comparator 817 outputs “0” indicating that the actual voltage VA2 is normal to the logic circuit OR818. When VA2L_FD is larger than zero (VA2L_FD> 0), the comparator 817 outputs “1” indicating that the actual voltage VA2 is abnormal to the logic circuit OR818.
 論理回路OR818は、比較器816、817の出力信号の論理和をとる。論理回路OR818は、A相のHブリッジBAのローサイドの故障の有無を示す故障信号AL_FDを出力する。 The logic circuit OR 818 takes the logical sum of the output signals of the comparators 816 and 817. The logic circuit OR 818 outputs a failure signal AL_FD indicating whether or not there is a failure on the low side of the A-phase H bridge BA.
 比較器816、817の出力信号が全て“0”である場合、論理回路OR818は、正常を示す“0”を故障信号AL_FDとして出力する。比較器816、817の出力信号の少なくとも1つが“1”である場合、論理回路OR818は、故障を示す“1”を故障信号AL_FDとして出力する。 When the output signals of the comparators 816 and 817 are all “0”, the logic circuit OR 818 outputs “0” indicating normality as the failure signal AL_FD. When at least one of the output signals of the comparators 816 and 817 is “1”, the logic circuit OR 818 outputs “1” indicating a failure as the failure signal AL_FD.
 例えば、ローサイドスイッチ素子SW_A2Lがオープン故障した場合、そのスイッチ素子SW_A2Lはオン状態でも電流はほとんど流れない。スイッチ素子SW_A2Lに電流がほとんど流れないためにスイッチ素子SW_A1Lに余分な電圧が掛かる。実電圧VA1は大きくなり、VA1_FD>0となる。 For example, when an open failure occurs in the low-side switch element SW_A2L, current hardly flows even if the switch element SW_A2L is in an ON state. Since almost no current flows through the switch element SW_A2L, an extra voltage is applied to the switch element SW_A1L. The actual voltage VA1 increases and VA1_FD> 0.
 乗算器821は、電圧ピーク値Vpeakに定数「1/2」を乗算する。乗算器822は、飽和電圧Vsatに定数「1」を乗算する。加算器823は、乗算器821および822の出力値を加算する。加算器824は、実電圧VA1と加算器823の出力値とを加算して、下記式(3)で表される故障診断電圧VA1H_FDを算出する。
 VA1H_FD=VA1+〔(Vpeak/2)+Vsat〕 式(3)
The multiplier 821 multiplies the voltage peak value Vpeak by a constant “½”. The multiplier 822 multiplies the saturation voltage Vsat by a constant “1”. Adder 823 adds the output values of multipliers 821 and 822. The adder 824 adds the actual voltage VA1 and the output value of the adder 823 to calculate a failure diagnosis voltage VA1H_FD represented by the following formula (3).
VA1H_FD = VA1 + [(Vpeak / 2) + Vsat] Formula (3)
 比較器826は、“VA1H_FD”と“ゼロ”とを比較する。比較器826は、VA1H_FDがゼロ以上である(VA1H_FD≧0)場合、実電圧VA1は正常であることを示す“0”を論理回路OR828に出力する。比較器826は、VA1H_FDがゼロ未満(VA1H_FD<0)の場合、実電圧VA1は異常であることを示す“1”を論理回路OR826に出力する。 The comparator 826 compares “VA1H_FD” with “zero”. When VA1H_FD is zero or more (VA1H_FD ≧ 0), the comparator 826 outputs “0” indicating that the actual voltage VA1 is normal to the logic circuit OR828. When VA1H_FD is less than zero (VA1H_FD <0), the comparator 826 outputs “1” indicating that the actual voltage VA1 is abnormal to the logic circuit OR826.
 同様に、加算器825は、実電圧VA2と加算器823の出力値とを加算して、故障診断電圧VA2H_FDを算出する。 Similarly, the adder 825 adds the actual voltage VA2 and the output value of the adder 823 to calculate the failure diagnosis voltage VA2H_FD.
 比較器827は、“VA2H_FD”と“ゼロ”とを比較する。比較器827は、VA2H_FDがゼロ以上である(VA2H_FD≧0)場合、実電圧VA2は正常であることを示す“0”を論理回路OR828に出力する。比較器827は、VA2H_FDがゼロ未満(VA2H_FD<0)場合、実電圧VA2は異常であることを示す“1”を論理回路OR828に出力する。 The comparator 827 compares “VA2H_FD” with “zero”. When VA2H_FD is zero or more (VA2H_FD ≧ 0), the comparator 827 outputs “0” indicating that the actual voltage VA2 is normal to the logic circuit OR828. When VA2H_FD is less than zero (VA2H_FD <0), the comparator 827 outputs “1” indicating that the actual voltage VA2 is abnormal to the logic circuit OR828.
 論理回路OR828は、比較器826、827の出力信号の論理和をとる。論理回路OR828は、A相のHブリッジBAのハイサイドの故障の有無を示す故障信号AH_FDを出力する。 The logic circuit OR 828 takes the logical sum of the output signals of the comparators 826 and 827. The logic circuit OR828 outputs a failure signal AH_FD indicating whether or not there is a failure on the high side of the A-phase H bridge BA.
 比較器826、827の出力信号が全て“0”である場合、論理回路OR828は、正常を示す“0”を故障信号AH_FDとして出力する。比較器826、827の出力信号の少なくとも1つが“1”である場合、論理回路OR828は、故障を示す“1”を故障信号AH_FDとして出力する。 When the output signals of the comparators 826 and 827 are all “0”, the logic circuit OR 828 outputs “0” indicating normality as the failure signal AH_FD. When at least one of the output signals of the comparators 826 and 827 is “1”, the logic circuit OR 828 outputs “1” indicating a failure as the failure signal AH_FD.
 図6に示す故障診断ユニット810Bは、故障診断ユニット810Aと同様の処理を実行し、B相のHブリッジBBのローサイドおよびハイサイドの故障の有無を診断する。故障診断ユニット810Bには、実電圧VA1、VA2の代わりに、実電圧VB1、VB2が入力される。論理回路OR818は、B相のHブリッジBBのローサイドの故障の有無を示す故障信号BL_FDを出力する。論理回路OR828は、B相のHブリッジBBのハイサイドの故障の有無を示す故障信号BH_FDを出力する。故障診断ユニット810Bのそれ以外の処理は故障診断ユニット810Aと同様であるため、ここでは詳細な説明は省略する。 The failure diagnosis unit 810B shown in FIG. 6 performs the same processing as the failure diagnosis unit 810A, and diagnoses the presence or absence of a low-side and high-side failure of the B-phase H-bridge BB. Instead of the actual voltages VA1 and VA2, actual voltages VB1 and VB2 are input to the failure diagnosis unit 810B. The logic circuit OR 818 outputs a failure signal BL_FD indicating the presence or absence of a low-side failure of the B-phase H bridge BB. The logic circuit OR828 outputs a failure signal BH_FD indicating whether or not the high-side failure of the B-phase H-bridge BB exists. Since the other processing of the failure diagnosis unit 810B is the same as that of the failure diagnosis unit 810A, detailed description is omitted here.
 図7に示す故障診断ユニット810Cは、故障診断ユニット810Aと同様の処理を実行し、C相のHブリッジBCのローサイドおよびハイサイドの故障の有無を診断する。故障診断ユニット810Cには、実電圧VA1、VA2の代わりに、実電圧VC1、VC2が入力される。論理回路OR818は、C相のHブリッジBCのローサイドの故障の有無を示す故障信号CL_FDを出力する。論理回路OR828は、C相のHブリッジBCのハイサイドの故障の有無を示す故障信号CH_FDを出力する。故障診断ユニット810Cのそれ以外の処理は故障診断ユニット810Aと同様であるため、ここでは詳細な説明は省略する。 The failure diagnosis unit 810C shown in FIG. 7 executes the same processing as the failure diagnosis unit 810A, and diagnoses the presence or absence of a low-side and high-side failure of the C-phase H-bridge BC. Instead of the actual voltages VA1 and VA2, actual voltages VC1 and VC2 are input to the failure diagnosis unit 810C. The logic circuit OR 818 outputs a failure signal CL_FD indicating whether or not there is a failure on the low side of the C-phase H-bridge BC. The logic circuit OR 828 outputs a failure signal CH_FD indicating the presence or absence of a high-side failure of the C-phase H bridge BC. Since the other processing of the failure diagnosis unit 810C is the same as that of the failure diagnosis unit 810A, detailed description is omitted here.
 (相の故障診断)
 故障診断ユニット800は図8に示す相の故障を診断するための故障診断ユニット830を有する。故障診断ユニット830は電圧ピーク値Vpeak、電流ピーク指令値Ipeak_ref、電圧指令値VA_ref、VB_ref、VC_refを用いて、A相、B相、C相の故障を診断する。
(Phase failure diagnosis)
The failure diagnosis unit 800 has a failure diagnosis unit 830 for diagnosing the phase failure shown in FIG. The failure diagnosis unit 830 diagnoses a failure in the A phase, the B phase, and the C phase using the voltage peak value Vpeak, the current peak command value Ipeak_ref, and the voltage command values VA_ref, VB_ref, and VC_ref.
 図9は、A相、B相、C相の故障を診断する故障診断ユニット830を例示するブロック図である。故障診断ユニット830は、例えば、ゲインユニット831、リミット判定ユニット832、LPF(ローパスフィルタ)833、加算器834、乗算器835、絶対値演算器836A、836B、836C、加算器837A、837B、837C、信号生成ユニット838A、838Bおよび838Cを有する。 FIG. 9 is a block diagram illustrating a failure diagnosis unit 830 that diagnoses a failure in the A phase, the B phase, and the C phase. The failure diagnosis unit 830 includes, for example, a gain unit 831, a limit determination unit 832, an LPF (low pass filter) 833, an adder 834, a multiplier 835, absolute value calculators 836A, 836B, 836C, adders 837A, 837B, 837C, It has signal generation units 838A, 838B and 838C.
 ゲインユニット831は、電流ピーク指令値Ipeak_refにゲインRを乗算する。電流ピーク指令値Ipeak_refは、dq座標系における電流振幅のピーク値を示し、具体的には下記式(4)に基づいて算出される。ここで、Idrefは、d軸上のd軸電流指令値を示し、Iqrefは、q軸上のq軸電流指令値を示し、Izrefは、零相電流指令値を示す。abs(X)はXの絶対値を示す。ゲインRは、Hブリッジを含む回路システム全体の電気的特性を表す。例えば、ゲインRは、スイッチ素子のデッドタイムの影響など考慮して決定され、回路全体の抵抗〔Ω〕に相当する。
  Ipeak_ref=(2/3)1/2(Idref+Iqref1/2+abs(Izref)/31/2    式(4)
The gain unit 831 multiplies the current peak command value Ipeak_ref by the gain R. The current peak command value Ipeak_ref indicates the peak value of the current amplitude in the dq coordinate system, and is specifically calculated based on the following formula (4). Here, Idref represents a d-axis current command value on the d-axis, Iqref represents a q-axis current command value on the q-axis, and Izref represents a zero-phase current command value. abs (X) represents the absolute value of X. The gain R represents the electrical characteristics of the entire circuit system including the H bridge. For example, the gain R is determined in consideration of the influence of the dead time of the switch element, and corresponds to the resistance [Ω] of the entire circuit.
Ipeak_ref = (2/3) 1/2 (Idref 2 + Iqref 2 ) 1/2 + abs (Izref) / 3 1/2 equation (4)
 例えば、コントローラ340のコアは、角度センサ320により検出された回転速度および速度指令値に基づいて電流指令値Idref、IqrefおよびIzrefを決定し、故障診断ユニット800に出力する。例えば、プレ演算ユニット(不図示)が、電流指令値Idref、IqrefおよびIzrefに基づいてIpeak_refを算出し、ゲインユニット831に出力する。ゲインユニット831は、Ipeak_ref・Rをリミット判定ユニット832に出力する。 For example, the core of the controller 340 determines the current command values Idref, Iqref, and Izref based on the rotational speed and the speed command value detected by the angle sensor 320 and outputs them to the failure diagnosis unit 800. For example, a pre-computation unit (not shown) calculates Ipeak_ref based on the current command values Idref, Iqref, and Izref, and outputs it to the gain unit 831. The gain unit 831 outputs Ipeak_ref · R to the limit determination unit 832.
 リミット判定ユニット832は、電流ピーク指令値Ipeak_refとゲインRの積の大きさが許容範囲にあるか否かを判定する。つまり、リミット判定ユニット832は、Ipeak_ref・Rが許容範囲にあるかどうかを判定する。許容範囲は、通常動作時の入力電圧の上限値を意味する。 The limit determination unit 832 determines whether or not the product of the current peak command value Ipeak_ref and the gain R is within an allowable range. That is, the limit determination unit 832 determines whether Ipeak_ref · R is within the allowable range. The allowable range means the upper limit value of the input voltage during normal operation.
 電圧ピーク値Vpeakを加算する後段の演算を実行する前に、電圧ピーク値Vpeakを汎用LPF833によってローパスフィルタ処理することが好ましい。これにより、基本波のみによって表される電圧ピーク値Vpeakを取得することが可能となる。 It is preferable that the voltage peak value Vpeak is low-pass filtered by the general-purpose LPF 833 before the subsequent operation of adding the voltage peak value Vpeak is executed. As a result, the voltage peak value Vpeak expressed only by the fundamental wave can be acquired.
 加算器834はリミット判定ユニット832からの出力(Ipeak_ref・R)およびLPF833からの出力Vpeakを加算する。加算器834はIpeak_ref・R+Vpeakを乗算器835に出力する。 The adder 834 adds the output (Ipeak_ref · R) from the limit determination unit 832 and the output Vpeak from the LPF 833. The adder 834 outputs Ipeak_ref · R + Vpeak to the multiplier 835.
 乗算器835は、加算器834からの出力Ipeak_ref・R+Vpeakに“-1”を乗算する。本明細書では、加算器834からの出力電圧(Ipeak_ref・R+Vpeak)を「システム電圧」と呼ぶこととする。乗算器835は、システム電圧を、A相用加算器837A、B相用加算器837BおよびC相用加算器837Cに出力する。 The multiplier 835 multiplies the output Ipeak_ref · R + Vpeak from the adder 834 by “−1”. In this specification, the output voltage (Ipeak_ref · R + Vpeak) from the adder 834 is referred to as “system voltage”. Multiplier 835 outputs the system voltage to A-phase adder 837A, B-phase adder 837B, and C-phase adder 837C.
 以下、A相の故障診断を例にし、Hブリッジの故障診断処理を説明する。 Hereinafter, the fault diagnosis process of the H bridge will be described by taking the fault diagnosis of the A phase as an example.
 故障診断ユニット830は、システム電圧とA相の電圧指令値VA_refの大きさとの比較結果に基づいてA相のHブリッジBAの故障を診断する。故障診断ユニット800は、電圧指令値VA_refの大きさがシステム電圧よりも大きい場合、A相のHブリッジBAは故障していると判定する。故障診断ユニット800は、電圧指令値VA_refの大きさがシステム電圧以下である場合、A相のHブリッジBAは故障していないと判定する。本実施形態では、乗算器835、絶対値演算器836Aおよび加算器837Aを用いてシステム電圧とA相の電圧指令値VA_refの大きさとの比較を実現する。 The failure diagnosis unit 830 diagnoses the failure of the A-phase H-bridge BA based on the comparison result between the system voltage and the magnitude of the A-phase voltage command value VA_ref. If the magnitude of voltage command value VA_ref is greater than the system voltage, failure diagnosis unit 800 determines that A-phase H-bridge BA has failed. If the magnitude of voltage command value VA_ref is equal to or lower than the system voltage, failure diagnosis unit 800 determines that A-phase H-bridge BA has not failed. In this embodiment, the multiplier 835, the absolute value calculator 836A, and the adder 837A are used to compare the system voltage with the magnitude of the A-phase voltage command value VA_ref.
 加算器837Aは、乗算器835からの出力電圧およびA相の電圧指令値VA_refの大きさを加算する。絶対値演算器836Aにより電圧指令値VA_refの絶対値をとる理由は、Hブリッジのハイサイドスイッチ素子およびローサイドスイッチ素子の両方のオープン故障を故障診断の対象とするためである。 Adder 837A adds the output voltage from multiplier 835 and the magnitude of A-phase voltage command value VA_ref. The reason why the absolute value calculator 836A takes the absolute value of the voltage command value VA_ref is that the open failure of both the high-side switch element and the low-side switch element of the H-bridge is a target of failure diagnosis.
 再び図3Aから図3Cを参照する。 Referring to FIGS. 3A to 3C again.
 A相の電圧指令値VA_refは、HブリッジBAのハイサイドスイッチ素子SW_A1Hまたはローサイドスイッチ素子SW_A1L(両スイッチ素子の間のノード)についての電圧指令値VA1_refと、ハイサイドスイッチ素子SW_A2Hまたはローサイドスイッチ素子SW_A2L(両スイッチ素子の間のノード)についての電圧指令値VA2_refとの差分によって与えられる。B相の電圧指令値VB_ref、C相の電圧指令値VC_refも、A相の電圧指令値VA_refと同様に与えられる。電圧指令値VA_ref、VB_refおよびVC_refは、式(5)に基づいて算出される。
   VA_ref=VA1_ref-VA2_ref
   VB_ref=VB1_ref-VB2_ref    式(5)
   VC_ref=VC1_ref-VC2_ref
The A-phase voltage command value VA_ref includes the voltage command value VA1_ref for the high-side switch element SW_A1H or the low-side switch element SW_A1L (node between both switch elements) of the H-bridge BA, the high-side switch element SW_A2H, or the low-side switch element SW_A2L. This is given by the difference from the voltage command value VA2_ref for (a node between both switch elements). The B phase voltage command value VB_ref and the C phase voltage command value VC_ref are also given in the same manner as the A phase voltage command value VA_ref. Voltage command values VA_ref, VB_ref, and VC_ref are calculated based on Expression (5).
VA_ref = VA1_ref−VA2_ref
VB_ref = VB1_ref−VB2_ref Equation (5)
VC_ref = VC1_ref−VC2_ref
 信号生成ユニット838Aは、加算器837Aからの加算値がゼロよりも大きい場合、HブリッジBAは故障していると判定し、故障信号A_FDを生成してモータ制御ユニット900に出力する。例えば、故障信号A_FDを1ビットの信号に割り当て、正常時の故障信号A_FDのレベルをLowレベル“0”とする。信号生成ユニット838Aは、HブリッジBAの故障を検知すると、Highレベル“1”の故障信号A_FDを生成する。換言すると、信号生成ユニット838Aは、故障信号A_FDをアサートする。 When the addition value from the adder 837A is larger than zero, the signal generation unit 838A determines that the H-bridge BA has failed, generates a failure signal A_FD, and outputs it to the motor control unit 900. For example, the failure signal A_FD is assigned to a 1-bit signal, and the level of the failure signal A_FD at the normal time is set to the low level “0”. When the signal generation unit 838A detects a failure of the H bridge BA, the signal generation unit 838A generates a failure signal A_FD having a high level “1”. In other words, the signal generation unit 838A asserts the failure signal A_FD.
 故障診断ユニット830は、A相と同様にして、B相、C相の故障信号B_FD、C_FDを生成しモータ制御ユニット900に出力する。 The failure diagnosis unit 830 generates B-phase and C-phase failure signals B_FD and C_FD in the same manner as the A phase, and outputs them to the motor control unit 900.
 図10はシステム電圧と電圧指令値VA_refの大きさの比較によるHブリッジの故障診断を行う原理を説明するための回路モデルを示している。 FIG. 10 shows a circuit model for explaining the principle of performing a fault diagnosis of the H-bridge by comparing the magnitudes of the system voltage and the voltage command value VA_ref.
 上述したように、ゲインRは、回路全体の抵抗〔Ω〕に相当する。図10に示す回路モデルにおいて、電流指令値Ipeak_refは回路全体に流れる電流であり、ゲインRは回路の内部抵抗であり、Vpeakは入力電圧である。故障診断ユニット800は、電圧指令値VA_ref、入力電圧Vpeakおよび内部抵抗Rの電圧降下(Ipeak_ref・R)に基づいて、HブリッジBAの故障を診断する。 As described above, the gain R corresponds to the resistance [Ω] of the entire circuit. In the circuit model shown in FIG. 10, a current command value Ipeak_ref is a current flowing through the entire circuit, a gain R is an internal resistance of the circuit, and Vpeak is an input voltage. Failure diagnosis unit 800 diagnoses a failure of H-bridge BA based on voltage command value VA_ref, input voltage Vpeak, and voltage drop (Ipeak_ref · R) of internal resistance R.
 HブリッジBAが故障していない場合、Vpeak+Ipeak_ref・Rと電圧指令値VA_refとの差分(Vpeak+Ipeak_ref・R-VA_ref)はゼロまたはそれ以下となる。つまり、Vpeak+Ipeak_ref・R≒VA_refの関係が成り立つ。 When the H-bridge BA is not faulty, the difference (Vpeak + Ipeak_ref · R−VA_ref) between Vpeak + Ipeak_ref · R and the voltage command value VA_ref is zero or less. That is, the relationship Vpeak + Ipeak_ref · R≈VA_ref is established.
 HブリッジBAが故障すると、電圧指令値VA_refは上昇する。そのため、差分(Vpeak+Ipeak_ref・R-VA_ref)はゼロとはならず、Vpeak+Ipeak_ref・R<VA_refとなって平衡が崩れる。 When the H bridge BA fails, the voltage command value VA_ref increases. For this reason, the difference (Vpeak + Ipeak_ref · R−VA_ref) does not become zero, and Vpeak + Ipeak_ref · R <VA_ref, and the balance is lost.
 図11は、Hブリッジの故障診断を行うための機能ブロックの変形例を示している。 FIG. 11 shows a modified example of the functional block for performing the H bridge failure diagnosis.
 この変形例では、乗算器835および加算器837A、837Bおよび837Cの代わりに減算器839A、839Bおよび839Cを用いる。故障診断ユニット830は、A相の電圧指令値VA_refの大きさからシステム電圧を引き算することで得られる差分値がゼロよりも大きい場合、HブリッジBAは故障していると判定する。故障診断ユニット830は、その差分値がゼロ以下である場合、HブリッジBAは故障していないと判定する。故障診断ユニット800は、B相、C相についてもA相と同様に判定できる。 In this modification, subtracters 839A, 839B and 839C are used instead of the multiplier 835 and adders 837A, 837B and 837C. Failure diagnosis unit 830 determines that H-bridge BA has failed when the difference value obtained by subtracting the system voltage from the magnitude of A-phase voltage command value VA_ref is greater than zero. The failure diagnosis unit 830 determines that the H-bridge BA has not failed when the difference value is zero or less. The failure diagnosis unit 800 can determine the B phase and the C phase similarly to the A phase.
 ゲインユニット831およびリミット判定ユニット832の代わりにルックアップテーブル(LUT)801を利用することができる。LUT801は、電流ピーク指令値Ipeak_refおよびモータ200の回転数を示すspeedの入力と、出力電圧Vsatとの関係を関連付けるテーブルである。故障診断ユニット830は、LUT801を参照して、獲得した電流ピーク指令値Ipeak_refおよび回転数speedに基づいて出力電圧Vsatを決定する。故障診断ユニット830は、決定した出力電圧Vsatに電圧ピーク値Vpeakを加算する演算を実行することによりシステム電圧を獲得してもよい。 A lookup table (LUT) 801 can be used in place of the gain unit 831 and the limit determination unit 832. The LUT 801 is a table that associates the relationship between the current peak command value Ipeak_ref and the speed input indicating the rotation speed of the motor 200 and the output voltage Vsat. The failure diagnosis unit 830 refers to the LUT 801 and determines the output voltage Vsat based on the acquired current peak command value Ipeak_ref and the rotation speed speed. The failure diagnosis unit 830 may acquire the system voltage by performing an operation of adding the voltage peak value Vpeak to the determined output voltage Vsat.
 (スイッチ素子の組の故障診断)
 次に、ローサイドスイッチ素子およびハイサイドスイッチ素子の組の故障診断を説明する。
(Failure diagnosis of switch element set)
Next, failure diagnosis of a set of a low side switch element and a high side switch element will be described.
 図12は、A相のHブリッジBAのローサイドスイッチ素子およびハイサイドスイッチ素子の組の故障の有無を診断する故障診断ユニット850Aを示している。図13は、B相のHブリッジBBのローサイドスイッチ素子およびハイサイドスイッチ素子の組の故障の有無を診断する故障診断ユニット850Bを示している。図14は、C相のHブリッジBCのローサイドスイッチ素子およびハイサイドスイッチ素子の組の故障の有無を診断する故障診断ユニット850Cを示している。故障診断ユニット850A、850B、850Cは実質的に同じ機能ブロックを有するが、入力される故障信号および電圧指令値が互いに異なる。故障診断ユニット800は図12、図13、図14に示す故障診断ユニット850A、850B、850Cを有する。 FIG. 12 shows a failure diagnosis unit 850A for diagnosing the presence / absence of a failure in the combination of the low-side switch element and the high-side switch element of the A-phase H bridge BA. FIG. 13 shows a failure diagnosis unit 850B for diagnosing the presence / absence of a failure in a set of a low-side switch element and a high-side switch element of a B-phase H-bridge BB. FIG. 14 shows a failure diagnosis unit 850C for diagnosing the presence / absence of a failure in a set of a low-side switch element and a high-side switch element of a C-phase H-bridge BC. Fault diagnosis units 850A, 850B, and 850C have substantially the same functional blocks, but input fault signals and voltage command values are different from each other. The failure diagnosis unit 800 includes failure diagnosis units 850A, 850B, and 850C shown in FIGS.
 故障診断ユニット850A、850B、850Cのそれぞれは、符号関数(Sign Function)ユニット851と、乗算器852と、比較器853、854とを有する。 Each of the failure diagnosis units 850A, 850B, and 850C includes a sign function unit 851, a multiplier 852, and comparators 853 and 854.
 まず、図12を用いて、A相のHブリッジBAのローサイドスイッチ素子およびハイサイドスイッチ素子の組の故障の有無の診断処理を説明する。 First, referring to FIG. 12, a diagnosis process for the presence or absence of a failure of a set of the low-side switch element and the high-side switch element of the A-phase H-bridge BA will be described.
 符号関数ユニット851は、電圧指令値VA_refに応じて“1”、“-1”、“0”のいずれかを出力する。この例では、電圧指令値VA_refが正の値であるときは“1”を出力する。電圧指令値VA_refが負の値であるときは“-1”を出力する。電圧指令値VA_refがゼロであるときは“0”を出力する。 The sign function unit 851 outputs “1”, “−1”, or “0” according to the voltage command value VA_ref. In this example, when the voltage command value VA_ref is a positive value, “1” is output. When the voltage command value VA_ref is a negative value, “−1” is output. When the voltage command value VA_ref is zero, “0” is output.
 乗算器852は、A相の故障の有無を示す故障信号A_FDと、符号関数ユニット851の出力値とを乗算して出力する。 The multiplier 852 multiplies the fault signal A_FD indicating the presence or absence of the A-phase fault by the output value of the sign function unit 851 and outputs the result.
 比較器853は乗算器852の出力値と“ゼロ”とを比較する。比較器853はローサイドスイッチ素子SW_A1Lとハイサイドスイッチ素子SW_A2Hとの組の故障の有無を示す故障信号A1L2H_FDを出力する。 The comparator 853 compares the output value of the multiplier 852 with “zero”. The comparator 853 outputs a failure signal A1L2H_FD indicating whether or not there is a failure in the pair of the low side switch element SW_A1L and the high side switch element SW_A2H.
 比較器853は、乗算器852の出力値がゼロ以下である(出力値≦0)場合、ローサイドスイッチ素子SW_A1Lとハイサイドスイッチ素子SW_A2Hとの組は正常であることを示す“0”を出力する。比較器853は、乗算器852の出力値がゼロより大きい(出力値>0)場合、ローサイドスイッチ素子SW_A1Lとハイサイドスイッチ素子SW_A2Hとの組は異常であることを示す“1”を出力する。 When the output value of the multiplier 852 is less than or equal to zero (output value ≦ 0), the comparator 853 outputs “0” indicating that the pair of the low-side switch element SW_A1L and the high-side switch element SW_A2H is normal. . When the output value of the multiplier 852 is greater than zero (output value> 0), the comparator 853 outputs “1” indicating that the pair of the low-side switch element SW_A1L and the high-side switch element SW_A2H is abnormal.
 上述の式(5)に示したように、電圧指令値VA_refは、電圧指令値VA1_refと電圧指令値VA2_refとの差である。図3Aを参照して、スイッチ素子SW_A1LおよびSW_A2Hの少なくとも一方にオープン故障が発生した場合、スイッチ素子SW_A2Hと、巻線M1と、スイッチ素子SW_A1Lとで構成される電流経路に電流が流れにくくなる。この電流経路に電流を流そうとして、電圧指令値VA1_refは大きくなる。その結果、電圧指令値VA_refはゼロより大きい値となる。 As shown in the above equation (5), the voltage command value VA_ref is a difference between the voltage command value VA1_ref and the voltage command value VA2_ref. Referring to FIG. 3A, when an open failure occurs in at least one of switch elements SW_A1L and SW_A2H, it becomes difficult for a current to flow through a current path including switch element SW_A2H, winding M1, and switch element SW_A1L. The voltage command value VA1_ref increases as a current flows through the current path. As a result, the voltage command value VA_ref becomes a value larger than zero.
 故障信号A_FDが“1”を示し、且つ符号関数ユニット851の出力値が“1”を示す場合、乗算器852の出力値はゼロより大きくなる。これにより、ローサイドスイッチ素子SW_A1Lとハイサイドスイッチ素子SW_A2Hとの組は異常であると判定することができる。 When the fault signal A_FD indicates “1” and the output value of the sign function unit 851 indicates “1”, the output value of the multiplier 852 is greater than zero. Thereby, it can be determined that the pair of the low-side switch element SW_A1L and the high-side switch element SW_A2H is abnormal.
 比較器854は乗算器852の出力値と“ゼロ”とを比較する。比較器854はローサイドスイッチ素子SW_A2Lとハイサイドスイッチ素子SW_A1Hとの組の故障の有無を示す故障信号A2L1H_FDを出力する。 The comparator 854 compares the output value of the multiplier 852 with “zero”. The comparator 854 outputs a failure signal A2L1H_FD indicating whether or not there is a failure of the pair of the low side switch element SW_A2L and the high side switch element SW_A1H.
 比較器854は、乗算器852の出力値がゼロ以上である(出力値≧0)場合、ローサイドスイッチ素子SW_A2Lとハイサイドスイッチ素子SW_A1Hとの組は正常であることを示す“0”を出力する。比較器854は、乗算器852の出力値がゼロより小さい(出力値<0)場合、ローサイドスイッチ素子SW_A2Lとハイサイドスイッチ素子SW_A1Hとの組は異常であることを示す“1”を出力する。 When the output value of the multiplier 852 is zero or more (output value ≧ 0), the comparator 854 outputs “0” indicating that the pair of the low-side switch element SW_A2L and the high-side switch element SW_A1H is normal. . When the output value of the multiplier 852 is smaller than zero (output value <0), the comparator 854 outputs “1” indicating that the pair of the low side switch element SW_A2L and the high side switch element SW_A1H is abnormal.
 図3Aを参照して、スイッチ素子SW_A2LおよびSW_A1Hの少なくとも一方にオープン故障が発生した場合、スイッチ素子SW_A1Hと、巻線M1と、スイッチ素子SW_A2Lとで構成される電流経路に電流が流れにくくなる。この電流経路に電流を流そうとして、電圧指令値VA2_refは大きくなる。その結果、電圧指令値VA_refはゼロより小さい値となる。 Referring to FIG. 3A, when an open failure occurs in at least one of switch elements SW_A2L and SW_A1H, it is difficult for a current to flow through a current path including switch element SW_A1H, winding M1, and switch element SW_A2L. The voltage command value VA2_ref increases as a current flows through this current path. As a result, the voltage command value VA_ref becomes a value smaller than zero.
 故障信号A_FDが“1”を示し、且つ符号関数ユニット851の出力値が“-1”を示す場合、乗算器852の出力値はゼロより小さくなる。これにより、ローサイドスイッチ素子SW_A2Lとハイサイドスイッチ素子SW_A1Hとの組は異常であると判定することができる。 When the fault signal A_FD indicates “1” and the output value of the sign function unit 851 indicates “−1”, the output value of the multiplier 852 becomes smaller than zero. Thereby, it can be determined that the pair of the low-side switch element SW_A2L and the high-side switch element SW_A1H is abnormal.
 図13に示す故障診断ユニット850Bは、故障診断ユニット850Aと同様の処理を実行し、B相のHブリッジBBのローサイドスイッチ素子およびハイサイドスイッチ素子の組の故障の有無を診断する。故障診断ユニット850Bには、故障信号A_FDおよび電圧指令値VA_refの代わりに、故障信号B_FDおよび電圧指令値VB_refが入力される。比較器853は、ローサイドスイッチ素子SW_B1Lとハイサイドスイッチ素子SW_B2Hとの組の故障の有無を示す故障信号B1L2H_FDを出力する。比較器854は、ローサイドスイッチ素子SW_B2Lとハイサイドスイッチ素子SW_B1Hとの組の故障の有無を示す故障信号B2L1H_FDを出力する。故障診断ユニット850Bのそれ以外の処理は故障診断ユニット850Aと同様であるため、ここでは詳細な説明は省略する。 The failure diagnosis unit 850B shown in FIG. 13 executes the same processing as the failure diagnosis unit 850A, and diagnoses the presence / absence of a failure in the pair of the low-side switch element and the high-side switch element of the B-phase H-bridge BB. Failure diagnosis unit 850B receives failure signal B_FD and voltage command value VB_ref instead of failure signal A_FD and voltage command value VA_ref. The comparator 853 outputs a failure signal B1L2H_FD indicating whether or not there is a failure of the pair of the low side switch element SW_B1L and the high side switch element SW_B2H. The comparator 854 outputs a failure signal B2L1H_FD indicating whether or not there is a failure of the pair of the low side switch element SW_B2L and the high side switch element SW_B1H. Since other processes of the failure diagnosis unit 850B are the same as those of the failure diagnosis unit 850A, detailed description thereof is omitted here.
 図14に示す故障診断ユニット850Cは、故障診断ユニット850Aと同様の処理を実行し、C相のHブリッジBCのローサイドスイッチ素子およびハイサイドスイッチ素子の組の故障の有無を診断する。故障診断ユニット850Cには、故障信号A_FDおよび電圧指令値VA_refの代わりに、故障信号C_FDおよび電圧指令値VC_refが入力される。比較器853は、ローサイドスイッチ素子SW_C1Lとハイサイドスイッチ素子SW_C2Hとの組の故障の有無を示す故障信号C1L2H_FDを出力する。比較器854は、ローサイドスイッチ素子SW_C2Lとハイサイドスイッチ素子SW_C1Hとの組の故障の有無を示す故障信号C2L1H_FDを出力する。故障診断ユニット850Cのそれ以外の処理は故障診断ユニット850Aと同様であるため、ここでは詳細な説明は省略する。 The failure diagnosis unit 850C shown in FIG. 14 executes the same processing as that of the failure diagnosis unit 850A, and diagnoses the presence / absence of a failure in the combination of the low-side switch element and the high-side switch element of the C-phase H-bridge BC. Fault diagnosis unit 850C receives fault signal C_FD and voltage command value VC_ref instead of fault signal A_FD and voltage command value VA_ref. The comparator 853 outputs a failure signal C1L2H_FD indicating whether or not there is a failure of the pair of the low side switch element SW_C1L and the high side switch element SW_C2H. The comparator 854 outputs a failure signal C2L1H_FD indicating whether or not there is a failure of the pair of the low side switch element SW_C2L and the high side switch element SW_C1H. Since the other processing of the failure diagnosis unit 850C is the same as that of the failure diagnosis unit 850A, detailed description thereof is omitted here.
 (故障したスイッチ素子の特定)
 次に、電力変換装置1000が備えるハイサイドスイッチ素子およびローサイドスイッチ素子の中に故障したスイッチ素子があるか判定する処理を説明する。
(Identification of failed switch element)
Next, a process for determining whether there is a failed switch element among the high-side switch element and the low-side switch element included in the power conversion device 1000 will be described.
 図15は、A相のHブリッジBAが有するスイッチ素子の故障の有無を診断する故障診断ユニット870Aを示している。図16は、B相のHブリッジBBが有するスイッチ素子の故障の有無を診断する故障診断ユニット870Bを示している。図17は、C相のHブリッジBCが有するスイッチ素子の故障の有無を診断する故障診断ユニット870Cを示している。 FIG. 15 shows a failure diagnosis unit 870A for diagnosing the presence or absence of a failure of the switch element of the A-phase H bridge BA. FIG. 16 shows a failure diagnosis unit 870B for diagnosing the presence or absence of a failure of a switch element included in the B-phase H bridge BB. FIG. 17 shows a failure diagnosis unit 870C for diagnosing the presence or absence of a failure of a switch element included in the C-phase H-bridge BC.
 故障診断ユニット870A、870B、870Cは、実質的に同じ機能ブロックを有するが、入力される信号が互いに異なる。故障診断ユニット800は、図15、図16、図17に示す故障診断ユニット870A、870B、870Cを有する。故障診断ユニット870A、870B、870Cのそれぞれは、論理回路AND871、872、873、874を備える。 Failure diagnosis units 870A, 870B, and 870C have substantially the same functional blocks, but input signals are different from each other. The failure diagnosis unit 800 includes failure diagnosis units 870A, 870B, and 870C shown in FIGS. Each of failure diagnosis units 870A, 870B, and 870C includes logic circuits AND871, 872, 873, and 874.
 まず、A相のHブリッジBAが有するスイッチ素子の故障の有無の診断処理を説明する。 First, a diagnosis process for determining whether or not a switch element included in the A-phase H-bridge BA has a failure will be described.
 論理回路AND871には、故障信号AH_FDと故障信号A2L1H_FDとが入力される。故障信号AH_FDは、A相のHブリッジBAのハイサイドの故障の有無を示す。故障信号A2L1H_FDは、ローサイドスイッチ素子SW_A2Lとハイサイドスイッチ素子SW_A1Hとの組の故障の有無を示す。 The failure signal AH_FD and the failure signal A2L1H_FD are input to the logic circuit AND871. The failure signal AH_FD indicates whether or not there is a failure on the high side of the A-phase H bridge BA. The failure signal A2L1H_FD indicates the presence / absence of a failure of the pair of the low side switch element SW_A2L and the high side switch element SW_A1H.
 論理回路AND871は、A相のハイサイドスイッチ素子SW_A1Hの故障の有無を示す故障信号A1H_FDをモータ制御ユニット900に出力する。 The logic circuit AND871 outputs a failure signal A1H_FD indicating whether or not the A-phase high-side switch element SW_A1H has failed to the motor control unit 900.
 故障信号AH_FDと故障信号A2L1H_FDの両方が故障を示す“1”である場合、論理回路AND871は“1”を出力する。故障信号A1H_FDが“1”であることは、ハイサイドスイッチ素子SW_A1Hは故障していることを表している。故障信号AH_FDと故障信号A2L1H_FDの少なくとも一方が正常を示す“0”である場合、論理回路AND871は“0”を出力する。故障信号A1H_FDが“0”であることは、ハイサイドスイッチ素子SW_A1Hは正常であることを表している。 When both the failure signal AH_FD and the failure signal A2L1H_FD are “1” indicating the failure, the logic circuit AND871 outputs “1”. The failure signal A1H_FD being “1” indicates that the high-side switch element SW_A1H has failed. When at least one of the failure signal AH_FD and the failure signal A2L1H_FD is “0” indicating normality, the logic circuit AND871 outputs “0”. The failure signal A1H_FD being “0” indicates that the high-side switch element SW_A1H is normal.
 A相のHブリッジBAのハイサイドが故障しており、且つローサイドスイッチ素子SW_A2Lとハイサイドスイッチ素子SW_A1Hとの組が故障しているということは、ハイサイドスイッチ素子SW_A1Hが故障していることを表している。論理回路AND871が出力する故障信号A1H_FDが“1”である場合、ハイサイドスイッチ素子SW_A1Hが故障していることを特定することができる。 The fact that the high side of the A-phase H bridge BA has failed and the combination of the low side switch element SW_A2L and the high side switch element SW_A1H has failed means that the high side switch element SW_A1H has failed. Represents. When the failure signal A1H_FD output from the logic circuit AND871 is “1”, it can be specified that the high-side switch element SW_A1H has failed.
 同様に、論理回路AND872には、故障信号AH_FDと故障信号A1L2H_FDとが入力される。論理回路AND872は、A相のハイサイドスイッチ素子SW_A2Hの故障の有無を示す故障信号A2H_FDをモータ制御ユニット900に出力する。 Similarly, the failure signal AH_FD and the failure signal A1L2H_FD are input to the logic circuit AND872. The logic circuit AND872 outputs a failure signal A2H_FD indicating whether or not the A-phase high-side switch element SW_A2H has failed to the motor control unit 900.
 論理回路AND873には、故障信号AL_FDと故障信号A1L2H_FDとが入力される。論理回路AND873は、A相のローサイドスイッチ素子SW_A1Lの故障の有無を示す故障信号A1L_FDをモータ制御ユニット900に出力する。 The failure signal AL_FD and the failure signal A1L2H_FD are input to the logic circuit AND873. The logic circuit AND873 outputs a failure signal A1L_FD indicating whether or not the A-phase low-side switch element SW_A1L has failed to the motor control unit 900.
 論理回路AND874には、故障信号AL_FDと故障信号A2L1H_FDとが入力される。論理回路AND874は、A相のローサイドスイッチ素子SW_A2Lの故障の有無を示す故障信号A2L_FDをモータ制御ユニット900に出力する。 The failure signal AL_FD and the failure signal A2L1H_FD are input to the logic circuit AND874. The logic circuit AND874 outputs a failure signal A2L_FD indicating whether or not the A-phase low-side switch element SW_A2L has failed to the motor control unit 900.
 図16に示す故障診断ユニット870Bが実行する処理は、故障診断ユニット870Aと同様であるため、ここでは詳細な説明は省略する。故障診断ユニット870Bは、故障診断ユニット870Aと同様の処理を実行し、B相のHブリッジBBが有するスイッチ素子の故障の有無の診断処理を実行する。故障診断ユニット870Bは、スイッチ素子SW_B1H、SW_B2H、SW_B1L、SW_B2Lの故障の有無を示す故障信号B1H_FD、B2H_FD、B1L_FD、B2L_FDをモータ制御ユニット900に出力する。B相のHブリッジBBに故障が発生している場合は、どのスイッチ素子が故障したのか特定することができる。 Since the process executed by the failure diagnosis unit 870B shown in FIG. 16 is the same as that of the failure diagnosis unit 870A, detailed description thereof is omitted here. The failure diagnosis unit 870B executes the same process as the failure diagnosis unit 870A, and executes a diagnosis process of whether or not there is a failure in the switch element of the B-phase H bridge BB. The failure diagnosis unit 870B outputs failure signals B1H_FD, B2H_FD, B1L_FD, and B2L_FD that indicate the presence or absence of failure of the switch elements SW_B1H, SW_B2H, SW_B1L, and SW_B2L to the motor control unit 900. When a failure occurs in the B-phase H-bridge BB, it is possible to identify which switch element has failed.
 図17に示す故障診断ユニット870Cが実行する処理は、故障診断ユニット870Aと同様であるため、ここでは詳細な説明は省略する。故障診断ユニット870Cは、故障診断ユニット870Aと同様の処理を実行し、C相のHブリッジBCが有するスイッチ素子の故障の有無の診断処理を実行する。故障診断ユニット870Cは、スイッチ素子SW_C1H、SW_C2H、SW_C1L、SW_C2Lの故障の有無を示す故障信号C1H_FD、C2H_FD、C1L_FD、C2L_FDをモータ制御ユニット900に出力する。C相のHブリッジBCに故障が発生している場合は、どのスイッチ素子が故障したのか特定することができる。 Since the process executed by the failure diagnosis unit 870C shown in FIG. 17 is the same as that of the failure diagnosis unit 870A, detailed description thereof is omitted here. The failure diagnosis unit 870C executes the same process as the failure diagnosis unit 870A, and executes a diagnosis process of whether or not there is a failure of the switch element included in the C-phase H-bridge BC. The failure diagnosis unit 870C outputs failure signals C1H_FD, C2H_FD, C1L_FD, and C2L_FD that indicate the presence / absence of failure of the switch elements SW_C1H, SW_C2H, SW_C1L, and SW_C2L to the motor control unit 900. When a failure has occurred in the C-phase H-bridge BC, it is possible to identify which switch element has failed.
 モータ制御ユニット900は、故障診断ユニット800が出力する故障信号に応じてモータ制御を変更する。例えば、モータ制御を三相通電制御から二相通電制御に切替える。例えば、故障したスイッチ素子が特定されると、その故障したスイッチ素子を含む相以外の残りの二相を用いた二相通電制御を行う。例えば、A相のHブリッジBAのスイッチ素子が故障したことが特定されると、モータ制御ユニット900は、A相のHブリッジBAの全てのスイッチ素子をオフにする。そして残りのB相およびC相のHブリッジBBおよびBCを用いた二相通電制御を行う。よって三相のうちの一相が故障しても、電力変換装置1000はモータ駆動を継続できる。 The motor control unit 900 changes the motor control according to the failure signal output by the failure diagnosis unit 800. For example, the motor control is switched from three-phase energization control to two-phase energization control. For example, when a failed switch element is specified, two-phase energization control using the remaining two phases other than the phase including the failed switch element is performed. For example, when it is determined that a switch element of the A-phase H bridge BA has failed, the motor control unit 900 turns off all the switch elements of the A-phase H bridge BA. Then, two-phase energization control using the remaining B-phase and C-phase H-bridges BB and BC is performed. Therefore, even if one of the three phases fails, the power conversion apparatus 1000 can continue to drive the motor.
 図19は、三相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示している。図20は、A相のHブリッジBAが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のB相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示している。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。図19、図20の電流波形において、電気角30°毎に電流値をプロットしている。Ipkは各相の最大電流値(ピーク電流値)を表す。 FIG. 19 exemplifies a current waveform (sine wave) obtained by plotting the current values flowing in the A-phase, B-phase, and C-phase windings of the motor 200 when the power conversion apparatus 1000 is controlled according to the three-phase energization control. doing. FIG. 20 is obtained by plotting the values of current flowing through the B-phase and C-phase windings of the motor 200 when the power conversion apparatus 1000 is controlled according to the two-phase energization control when the A-phase H-bridge BA fails. The current waveform is illustrated. The horizontal axis represents the motor electrical angle (deg), and the vertical axis represents the current value (A). In the current waveforms of FIGS. 19 and 20, current values are plotted for every electrical angle of 30 °. Ipk represents the maximum current value (peak current value) of each phase.
 参考として、図21に、B相のHブリッジBBが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、C相の各巻線に流れる電流値をプロットして得られる電流波形を例示する。図22に、C相のHブリッジBCが故障した場合、二相通電制御に従って電力変換装置1000を制御したときにモータ200のA相、B相の各巻線に流れる電流値をプロットして得られる電流波形を例示する。 For reference, when the B-phase H-bridge BB fails, FIG. 21 plots the values of current flowing through the A-phase and C-phase windings of the motor 200 when the power converter 1000 is controlled according to the two-phase energization control. The current waveform obtained in this way is illustrated. In FIG. 22, when the C-phase H-bridge BC fails, the current values flowing in the A-phase and B-phase windings of the motor 200 are plotted when the power converter 1000 is controlled according to the two-phase energization control. The current waveform is illustrated.
 本実施形態において、上述した故障診断ユニット810A、810B、810C、830、850A、850B、850Cの間での処理の順番は任意である。例えば、故障したスイッチ素子の組があるか判定してから、Hブリッジのハイサイドおよびローサイドの中に故障したパートがあるか判定してもよいし、逆でもよい。また、それらの判定を並列に処理してもよい。 In the present embodiment, the order of processing between the above-described failure diagnosis units 810A, 810B, 810C, 830, 850A, 850B, and 850C is arbitrary. For example, after determining whether there is a set of failed switch elements, it may be determined whether there is a failed part in the high side and low side of the H-bridge, or vice versa. These determinations may be processed in parallel.
 また、故障診断ユニット810A、810B、810C、830、850A、850B、850Cの全ての処理を実行せずに、一部の処理のみ実行してもよい。例えば、故障したパートがあるか判定する処理において、HブリッジBA、BB、BCのハイサイドおよびローサイドの全てのパートの故障の有無を判定する前に故障したパートがあると判定した場合は、残りのパートの故障の有無の判定は行わなくてもよい。例えば、全てのパートの故障の有無を判定する前に、HブリッジBAのハイサイドが故障している判定した場合は、残りのパートの故障の有無の判定は行わなくてもよい。HブリッジBAのハイサイドが故障していると判定した場合は、残りのハイサイドおよびローサイドに関係する処理は省略しても、故障したスイッチ素子を特定することは可能である。 Further, only a part of the processing may be executed without executing all the processing of the failure diagnosis units 810A, 810B, 810C, 830, 850A, 850B, and 850C. For example, in the process of determining whether there is a faulty part, if it is determined that there is a faulty part before determining the presence / absence of faults in all the high-side and low-side parts of the H-bridge BA, BB, BC, It is not necessary to determine whether there is a failure in the part. For example, if it is determined that the high side of the H-bridge BA is out of order before determining the presence / absence of the failure of all the parts, it is not necessary to determine the presence / absence of the failure of the remaining parts. If it is determined that the high side of the H-bridge BA has failed, it is possible to identify the failed switch element even if the processing related to the remaining high side and low side is omitted.
 また、例えば故障したスイッチ素子の組があるか判定する処理において、全ての組の故障の有無を判定する前に故障した組があると判定した場合は、残りの組の故障の有無の判定は行わなくてもよい。例えば、全ての組の故障の有無を判定する前に、ローサイドスイッチ素子SW_A1Lとハイサイドスイッチ素子SW_A2Hとの組が故障している判定した場合は、残りの組の故障の有無の判定は行わなくてもよい。ローサイドスイッチ素子SW_A1Lとハイサイドスイッチ素子SW_A2Hとの組が故障していると判定した場合は、残りの組に関係する処理は省略しても、故障したスイッチ素子を特定することは可能である。 Also, for example, in the process of determining whether there is a set of failed switch elements, if it is determined that there is a failed set before determining the presence / absence of all sets of faults, the determination of the presence / absence of faults in the remaining sets is It does not have to be done. For example, if it is determined that the combination of the low-side switch element SW_A1L and the high-side switch element SW_A2H has failed before determining the presence / absence of failure in all the pairs, the presence / absence of failure in the remaining pairs is not determined. May be. When it is determined that the set of the low-side switch element SW_A1L and the high-side switch element SW_A2H is out of order, the failed switch element can be identified even if the processing related to the remaining set is omitted.
 また、故障したパートがあるか判定するステップにおいて故障があると判定した場合は、n個のHブリッジの2n-1個のスイッチ素子の組についてのみ、故障した組があるか判定してもよい。例えば、三相のHブリッジBA、BB、BCに含まれる6組のうちの5組は故障していないと判定した場合は、残りの1組は故障診断を行わなくても、その残りの1組が故障していることを特定することができる。 Further, when it is determined that there is a failure in the step of determining whether there is a failed part, it may be determined whether there is a failed set only for a set of 2n-1 switch elements of n H bridges. . For example, if it is determined that 5 out of 6 sets included in the three-phase H-bridges BA, BB, and BC are not in failure, the remaining 1 set does not perform failure diagnosis, and the remaining 1 It can be identified that the set is out of order.
 また、故障したスイッチ素子の組があるか判定するステップにおいて故障があると判定した場合は、n個のHブリッジの2n個のハイサイドおよびローサイドのうちの2n-1個についてのみ、故障したパートがあるか判定してもよい。例えば、三相のHブリッジBA、BB、BCに含まれる6個のパートのうちの5個は故障していないと判定した場合は、残りの1個のパートは故障診断を行わなくても、その残りの1個のパートが故障していることを特定することができる。 Further, when it is determined that there is a failure in the step of determining whether there is a set of failed switch elements, only the 2n-1 of the 2n high side and low side of the n H bridges have failed. It may be determined whether there is. For example, if it is determined that five of the six parts included in the three-phase H-bridges BA, BB, and BC do not fail, the remaining one part does not need to be diagnosed. It can be determined that the remaining one part is out of order.
 また、故障診断ユニット870A、870B、870Cの処理は、故障していると判定された相についてのみ行ってもよい。 Further, the processing of the failure diagnosis units 870A, 870B, and 870C may be performed only for the phase determined to be in failure.
 このように、複数の処理の一部を省略することにより、演算量を削減することができる。演算量削減により、故障が発生したときに、より短い時間で故障に対処することができる。 Thus, the amount of calculation can be reduced by omitting some of the plurality of processes. By reducing the amount of calculation, when a failure occurs, the failure can be dealt with in a shorter time.
 以下に、本開示による故障診断に用いられるアルゴリズムの妥当性を、dSPACE社の“ラピッドコントロールプロトタイピング(RCP)システム”およびMathWorks社のMatlab/Simulinkを用いて検証した結果を示す。この検証には、ベクトル制御により制御を受ける、電動パワーステアリング(EPS)装置に用いる表面磁石型(SPM)モータのモデルが用いられた。検証においてq軸の電流指令値Iq_refを3Aに設定し、d軸の電流指令値Id_refおよび零相の電流指令値Iz_refを0Aに設定した。モータの回転速度ωは1200rpmに設定した。シミュレーションでは、第1インバータ120のローサイドスイッチ素子SW_A1Lにオープン故障を時刻1.641sで発生させている。 Hereinafter, the validity of the algorithm used for the failure diagnosis according to the present disclosure will be shown using the “Rapid Control Prototyping (RCP) System” of dSPACE and the Matlab / Simlink of MathWorks. For this verification, a model of a surface magnet type (SPM) motor used in an electric power steering (EPS) apparatus, which is controlled by vector control, was used. In the verification, the q-axis current command value Iq_ref was set to 3A, and the d-axis current command value Id_ref and the zero-phase current command value Iz_ref were set to 0A. The rotation speed ω of the motor was set to 1200 rpm. In the simulation, an open failure occurs in the low-side switch element SW_A1L of the first inverter 120 at time 1.641s.
 図23から図31に、各信号の波形のシミュレーション結果を示している。各グラフの縦軸は電圧(V)を示し、横軸は時間(s)を示している。 23 to 31 show the simulation results of the waveforms of the signals. The vertical axis of each graph represents voltage (V), and the horizontal axis represents time (s).
 図23は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VA1(上側)および実電圧VA2(下側)の波形を示している。図24は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VB1(上側)および実電圧VB2(下側)の波形を示している。図25は、ローサイドスイッチ素子SW_A1Lがオープン故障した場合の実電圧VC1(上側)および実電圧VC2(下側)の波形を示している。 FIG. 23 shows waveforms of the actual voltage VA1 (upper side) and the actual voltage VA2 (lower side) when the low-side switch element SW_A1L has an open failure. FIG. 24 shows waveforms of the actual voltage VB1 (upper side) and the actual voltage VB2 (lower side) when the low-side switch element SW_A1L has an open failure. FIG. 25 shows waveforms of the actual voltage VC1 (upper side) and the actual voltage VC2 (lower side) when the low-side switch element SW_A1L has an open failure.
 時刻1.641sでローサイドスイッチ素子SW_A1Lがオープン故障した後、図23に示すように実電圧VA1の下側ピーク値は上昇していることが分かる。また、実電圧VA2の上側ピーク値は上昇していることが分かる。すなわち、実電圧VA2の上側ピーク値の絶対値は大きくなる。図24、図25に示すように、実電圧VB1、VB2、VC1、VC2は変化の度合いは小さい。 After the low-side switch element SW_A1L has an open failure at time 1.641s, it can be seen that the lower peak value of the actual voltage VA1 increases as shown in FIG. It can also be seen that the upper peak value of the actual voltage VA2 is increasing. That is, the absolute value of the upper peak value of the actual voltage VA2 increases. As shown in FIGS. 24 and 25, the actual voltages VB1, VB2, VC1, and VC2 have a small degree of change.
 正常時の動作においても、実電圧がVpeak/2よりもわずかに大きくなることは発生し得る。しかし、本実施形態では、Vpeak/2に飽和電圧Vsatを加算した値と、実電圧との比較を行う。このため、図23に示す実電圧VA2のように大きく変化した実電圧が発生した場合にのみ、故障と判定することができる。正常時の動作において実電圧がVpeak/2より大きくなる場合は故障と判定しないことにより、故障判定の精度を高めることができる。 Even in normal operation, it may occur that the actual voltage becomes slightly higher than Vpeak / 2. However, in this embodiment, the value obtained by adding the saturation voltage Vsat to Vpeak / 2 is compared with the actual voltage. For this reason, it can be determined that a failure has occurred only when an actual voltage that has changed significantly, such as the actual voltage VA2 shown in FIG. When the actual voltage is higher than Vpeak / 2 in the normal operation, the failure determination accuracy can be improved by not determining the failure.
 図26は、A相のHブリッジBAにおけるハイサイドスイッチ素子SW_A1Hがオープン故障した場合のA相の第1実電圧VA1(上側)および第2実電圧VA2(下側)の波形を示している。図27は、ハイサイドスイッチ素子SW_A1Hがオープン故障した場合のB相の第1実電圧VB1(上側)および第2実電圧VB2(下側)の波形を示している。図28は、ハイサイドスイッチ素子SW_A1Hがオープン故障した場合のC相の第1実電圧VC1(上側)および第2実電圧VC2(下側)の波形を示している。 FIG. 26 shows waveforms of the first actual voltage VA1 (upper side) and the second actual voltage VA2 (lower side) of the A phase when the high side switch element SW_A1H in the A phase H bridge BA has an open failure. FIG. 27 shows waveforms of the first actual voltage VB1 (upper side) and the second actual voltage VB2 (lower side) of the B phase when the high-side switch element SW_A1H has an open failure. FIG. 28 shows waveforms of the C-phase first actual voltage VC1 (upper side) and the second actual voltage VC2 (lower side) when the high-side switch element SW_A1H has an open failure.
 時刻1.543sでA相のHブリッジBAのハイサイドスイッチ素子SW_A1Hがオープン故障した後、図26に示すように第1実電圧VA1の上側ピーク値は低下していることが分かる。また、第2実電圧VA2の下側ピーク値は低下していることが分かる(下側ピーク値の絶対値は大きくなる)。図27、図28に示すように、第1実電圧VB1、VC1、第2実電圧VB2、VC2の変化の度合いは小さい。 After the open failure of the high-side switch element SW_A1H of the A-phase H-bridge BA at time 1.543s, it can be seen that the upper peak value of the first actual voltage VA1 is lowered as shown in FIG. It can also be seen that the lower peak value of the second actual voltage VA2 is decreasing (the absolute value of the lower peak value is increased). As shown in FIGS. 27 and 28, the first actual voltages VB1 and VC1 and the second actual voltages VB2 and VC2 have a small degree of change.
 図29は、電圧指令値VA_refの波形を示している。図30は、電圧指令値VB_refの波形を示している。図31は、電圧指令値VC_refの波形を示している。縦軸は、電圧(V)を示している。 FIG. 29 shows a waveform of the voltage command value VA_ref. FIG. 30 shows a waveform of the voltage command value VB_ref. FIG. 31 shows a waveform of the voltage command value VC_ref. The vertical axis represents voltage (V).
 時刻1.543sでA相のHブリッジBAのハイサイドスイッチ素子SW_A2Hがオープン故障した後、図29に示すように電圧指令値VA_refは上昇していることが分かる。図30、図31に示すように、電圧指令値VB_ref、VC_refは上昇していない。 It can be seen that the voltage command value VA_ref rises as shown in FIG. 29 after the high-side switch element SW_A2H of the A-phase H-bridge BA at time 1.543s has an open failure. As shown in FIGS. 30 and 31, the voltage command values VB_ref and VC_ref are not increased.
 上記の実施形態では、故障診断の途中の処理においても、スイッチ素子の故障を検出することは可能である。しかし、それら途中の時点ではスイッチ素子の故障を確定させない。本実施形態では、Hブリッジのハイサイドおよびローサイドの中に故障したパートがあるかの判定結果と、故障したスイッチ素子の組があるかの判定結果とに基づいて、故障したスイッチ素子の確定を行う。これにより、故障診断の精度を高めることができる。 In the above embodiment, it is possible to detect a failure of the switch element even in the process during the failure diagnosis. However, the failure of the switch element is not determined at some point in the middle. In this embodiment, based on the determination result of whether there is a faulty part in the high side and the low side of the H bridge and the determination result of whether there is a set of faulty switch elements, the faulty switch element is determined. Do. Thereby, the accuracy of failure diagnosis can be improved.
 本実施形態によると、Hブリッジが有するスイッチ素子のうちオープン故障したスイッチ素子を特定することができる。本開示の故障診断は、簡易なアルゴリズムにより実現できる。そのため、例えばコントローラへ340の実装において回路規模またはメモリサイズの縮小といった利点が得られる。 According to this embodiment, it is possible to identify a switch element that has an open failure among the switch elements of the H bridge. The failure diagnosis of the present disclosure can be realized by a simple algorithm. For this reason, for example, an advantage of reducing the circuit size or the memory size can be obtained in mounting 340 to the controller.
 本開示の故障診断方法は、フルブリッジタイプの電力変換装置にも好適に用いることができる。フルブリッジは、一相のHブリッジ構造、例えば図3Aに示す回路構造を備える。上述した故障診断方法をフルブリッジの故障診断に利用することにより、フルブリッジの故障を検知することができる。 The failure diagnosis method of the present disclosure can be suitably used for a full bridge type power conversion device. The full bridge includes a one-phase H-bridge structure, for example, the circuit structure shown in FIG. 3A. By utilizing the above-described failure diagnosis method for full bridge failure diagnosis, a full bridge failure can be detected.
 例えば、フルブリッジタイプの電力変換装置は、ハイサイドスイッチ素子SW_A1H、ハイサイドスイッチ素子SW_A2H、ローサイドスイッチ素子SW_A1Lおよびローサイドスイッチ素子SW_A2Lを有するHブリッジBAと、HブリッジBAのスイッチ素子のスイッチング動作を制御する制御回路300と、を備える。制御回路300は、dq座標系において表現される電流・電圧を獲得し、ローサイドスイッチ素子SW_A1Lの両端電圧を示す第1実電圧VA1およびローサイドスイッチ素子SW_A2Lの両端電圧を示す第2実電圧VA2を獲得し、モータの回転速度ωを獲得する。制御回路300は、獲得した、dq座標系の電流・電圧、第1実電圧VA1、第2実電圧VA2および回転速度ωに基づいて、ハイサイドスイッチ素子SW_A1H、ハイサイドスイッチ素子SW_A2H、ローサイドスイッチ素子SW_A1Lおよびローサイドスイッチ素子SW_A2Lのオープン故障を診断する。 For example, the full-bridge type power converter controls the switching operation of the H-bridge BA having the high-side switch element SW_A1H, the high-side switch element SW_A2H, the low-side switch element SW_A1L, and the low-side switch element SW_A2L, and the switch element of the H-bridge BA. And a control circuit 300. The control circuit 300 acquires the current / voltage expressed in the dq coordinate system, and acquires the first actual voltage VA1 indicating the voltage across the low-side switch element SW_A1L and the second actual voltage VA2 indicating the voltage across the low-side switch element SW_A2L. Then, the rotational speed ω of the motor is obtained. Based on the acquired current and voltage in the dq coordinate system, the first actual voltage VA1, the second actual voltage VA2, and the rotational speed ω, the control circuit 300 generates the high-side switch element SW_A1H, the high-side switch element SW_A2H, and the low-side switch element. An open failure of SW_A1L and low-side switch element SW_A2L is diagnosed.
 本実施形態においては、三相全てについて上述した故障診断を行わなくてもよく、一相または二相についてのみ故障診断を行ってもよい。例えば、A相についてのみ故障診断を行う場合は、図5から図17を用いて説明した処理のうちのA相に関する処理のみを行い、B相およびC相に関する処理は行わなくてもよい。 In the present embodiment, the above-described failure diagnosis need not be performed for all three phases, and the failure diagnosis may be performed only for one phase or two phases. For example, when failure diagnosis is performed only for the A phase, only the process related to the A phase among the processes described with reference to FIGS. 5 to 17 is performed, and the processes related to the B phase and the C phase may not be performed.
 (実施形態2)
 図32は、本実施形態による電動パワーステアリング装置3000の典型的な構成を模式的に示す。
(Embodiment 2)
FIG. 32 schematically shows a typical configuration of the electric power steering apparatus 3000 according to the present embodiment.
 自動車等の車両は一般に、電動パワーステアリング装置を有する。本実施形態による電動パワーステアリング装置3000は、ステアリングシステム520、および補助トルクを生成する補助トルク機構540を有する。電動パワーステアリング装置3000は、運転者がステアリングハンドルを操作することで発生するステアリングシステムの操舵トルクを補助する補助トルクを生成する。補助トルクにより運転者の操作の負担は軽減される。 A vehicle such as an automobile generally has an electric power steering device. The electric power steering apparatus 3000 according to the present embodiment includes a steering system 520 and an auxiliary torque mechanism 540 that generates auxiliary torque. The electric power steering device 3000 generates auxiliary torque that assists the steering torque of the steering system that is generated when the driver operates the steering wheel. The burden on the driver's operation is reduced by the auxiliary torque.
 ステアリングシステム520は例えばステアリングハンドル521、ステアリングシャフト522、自在軸継手523A、523B、回転軸524、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪529A、529Bから構成され得る。 The steering system 520 includes, for example, a steering handle 521, a steering shaft 522, universal shaft joints 523A and 523B, a rotation shaft 524, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, a knuckle 528A, 528B and left and right steering wheels 529A, 529B.
 補助トルク機構540は、例えば操舵トルクセンサ541、自動車用電子制御ユニット(ECU)542、モータ543および減速機構544などから構成される。操舵トルクセンサ541は、ステアリングシステム520における操舵トルクを検出する。ECU542は操舵トルクセンサ541の検出信号に基づいて駆動信号を生成する。モータ543は、動信号に基づいて操舵トルクに応じた補助トルクを生成する。モータ543は、減速機構544を介してステアリングシステム520に、生成した補助トルクを伝達する。 The auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an automotive electronic control unit (ECU) 542, a motor 543, a speed reduction mechanism 544, and the like. The steering torque sensor 541 detects the steering torque in the steering system 520. The ECU 542 generates a drive signal based on the detection signal of the steering torque sensor 541. The motor 543 generates an auxiliary torque corresponding to the steering torque based on the dynamic signal. The motor 543 transmits the generated auxiliary torque to the steering system 520 via the speed reduction mechanism 544.
 ECU542は、例えば、実施形態1によるコントローラ340および駆動回路350などを有する。自動車ではECUを核とした電子制御システムが構築される。電動パワーステアリング装置3000では、例えば、ECU542、モータ543およびインバータ545によって、モータ駆動ユニットが構築される。そのシステムに、実施形態1によるモータモジュール2000を好適に用いることができる。 The ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment. In an automobile, an electronic control system with an ECU as a core is constructed. In the electric power steering apparatus 3000, for example, a motor drive unit is constructed by the ECU 542, the motor 543, and the inverter 545. The motor module 2000 according to the first embodiment can be suitably used for the system.
 本開示の実施形態は、シフトバイワイヤ、ステアリングバイワイヤ、ブレーキバイワイヤなどのエックスバイワイヤおよびトラクションモータなどのモータ制御システムにも好適に用いられる。例えば、本開示の実施形態による故障診断方法を実装したEPSは、日本政府および米国運輸省道路交通安全局(NHTSA)によって定められたレベル0から5(自動化の基準)に対応した自動運転車に搭載され得る。 The embodiment of the present disclosure is also suitably used for motor control systems such as X-by-wire such as shift-by-wire, steering-by-wire, and brake-by-wire, and a traction motor. For example, an EPS that implements a fault diagnosis method according to an embodiment of the present disclosure is an autonomous driving vehicle that corresponds to levels 0 to 5 (standards for automation) defined by the Japanese government and the US Department of Transportation's Road Traffic Safety Administration (NHTSA). Can be mounted.
 本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。 The embodiment of the present disclosure can be widely used in various devices including various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.

Claims (18)

  1.  電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換する電力変換装置の故障を診断する故障診断方法であって、
     前記電力変換装置は、
     各々が第1ハイサイドスイッチ素子、第1ローサイドスイッチ素子、第2ハイサイドスイッチ素子および第2ローサイドスイッチ素子を有する少なくとも1つのHブリッジ、
     を備え、
     前記故障診断方法は、
     前記少なくとも1つのHブリッジのハイサイドおよびローサイドの中に故障したパートがあるか判定するステップと、
     前記第1ローサイドスイッチ素子と前記第2ハイサイドスイッチ素子との組、および前記第2ローサイドスイッチ素子と前記第1ハイサイドスイッチ素子との組の中に故障した組があるか判定するステップと、
     前記故障したパートがあるかの判定結果および前記故障した組があるかの判定結果に基づいて、前記第1ハイサイドスイッチ素子、前記第1ローサイドスイッチ素子、前記第2ハイサイドスイッチ素子および前記第2ローサイドスイッチ素子の中に故障したスイッチ素子があるか判定するステップと、
     を包含する、故障診断方法。
    A failure diagnosis method for diagnosing a failure of a power conversion device that converts power from a power source into power supplied to a motor having at least one phase winding,
    The power converter is
    At least one H-bridge, each having a first high-side switch element, a first low-side switch element, a second high-side switch element, and a second low-side switch element;
    With
    The failure diagnosis method includes:
    Determining whether there is a failed part in the high side and low side of the at least one H-bridge;
    Determining whether there is a failed set in the set of the first low-side switch element and the second high-side switch element and the set of the second low-side switch element and the first high-side switch element;
    Based on the determination result of whether there is the failed part and the determination result of whether there is the failed set, the first high-side switch element, the first low-side switch element, the second high-side switch element, and the first Determining whether there is a failed switch element among the two low-side switch elements;
    A failure diagnosis method comprising:
  2.  前記第1ローサイドスイッチ素子の両端電圧を示す第1実電圧と、前記第2ローサイドスイッチ素子の両端電圧を示す第2実電圧と、飽和電圧と、dq座標系におけるd軸電圧およびq軸電圧に基づいて決定される電圧ピーク値とを獲得するステップをさらに包含する、請求項1に記載の故障診断方法。 A first actual voltage indicating a voltage across the first low-side switch element; a second actual voltage indicating a voltage across the second low-side switch element; a saturation voltage; and a d-axis voltage and a q-axis voltage in a dq coordinate system. The fault diagnosis method according to claim 1, further comprising obtaining a voltage peak value determined based on the voltage peak value.
  3.  前記飽和電圧は、前記dq座標系におけるd軸電流、q軸電流および前記モータの回転速度に基づいて決定される、請求項2に記載の故障診断方法。 3. The failure diagnosis method according to claim 2, wherein the saturation voltage is determined based on a d-axis current, a q-axis current in the dq coordinate system, and a rotation speed of the motor.
  4.  前記d軸電流および前記q軸電流に基づいて決定される電流値および前記モータの回転速度の入力と、前記飽和電圧とを関連付けるルックアップテーブルを用いて、前記飽和電圧を決定する、請求項2または3に記載の故障診断方法。 The saturation voltage is determined using a look-up table that associates an input of a current value determined based on the d-axis current and the q-axis current and an input of a rotation speed of the motor with the saturation voltage. Or the failure diagnosis method according to 3.
  5.  前記故障したパートがあるか判定するステップにおいて、前記第1実電圧、前記第2実電圧、前記飽和電圧および前記電圧ピーク値に基づいて、前記故障したパートがあるか判定する、請求項2から4のいずれかに記載の故障診断方法。 3. In the step of determining whether there is a failed part, it is determined whether there is the failed part based on the first actual voltage, the second actual voltage, the saturation voltage, and the voltage peak value. 5. The failure diagnosis method according to any one of 4.
  6.  前記獲得するステップは、前記モータの制御時に前記少なくとも一相の巻線に与えるターゲットの電圧値を示す電圧指令値と、dq座標系における電流振幅のピーク値を示す電流ピーク指令値とを獲得するステップを含む、請求項2から5のいずれかに記載の故障診断方法。 The obtaining step obtains a voltage command value indicating a voltage value of a target to be applied to the at least one phase winding during control of the motor and a current peak command value indicating a peak value of a current amplitude in the dq coordinate system. The fault diagnosis method according to claim 2, comprising a step.
  7.  前記故障した組があるか判定するステップにおいて、前記電圧ピーク値、前記電圧指令値、前記電流ピーク指令値に基づいて、前記故障した組があるか判定する、請求項6に記載の故障診断方法。 The fault diagnosis method according to claim 6, wherein in the step of determining whether or not there is a faulty group, it is determined whether or not there is a faulty group based on the voltage peak value, the voltage command value, and the current peak command value. .
  8.  前記モータはn相(nは3以上の整数)の前記巻線を有し、
     前記電力変換装置はn個の前記Hブリッジを有する、請求項1から7のいずれかに記載の故障診断方法。
    The motor has the winding of n phase (n is an integer of 3 or more),
    The fault diagnosis method according to claim 1, wherein the power conversion device includes n H bridges.
  9.  前記故障したパートがあるか判定するステップにおいて、前記n個のHブリッジそれぞれのハイサイドおよびローサイドの中に故障したパートがあるか判定し、
     前記故障した組があるか判定するステップにおいて、前記n個のHブリッジそれぞれの前記第1ローサイドスイッチ素子と前記第2ハイサイドスイッチ素子との組、および前記第2ローサイドスイッチ素子と前記第1ハイサイドスイッチ素子との組の中に故障した組があるか判定する、請求項8に記載の故障診断方法。
    In the step of determining whether there is a failed part, it is determined whether there is a failed part in the high side and low side of each of the n H bridges;
    In the step of determining whether there is the failed set, the set of the first low-side switch element and the second high-side switch element of each of the n H bridges, and the second low-side switch element and the first high-side switch element The fault diagnosis method according to claim 8, wherein it is determined whether there is a faulty set in the set with the side switch element.
  10.  前記故障したパートがあるか判定するステップにおいて、前記Hブリッジのハイサイドおよびローサイドの全てのパートの故障の有無を判定する前に故障したパートがあると判定した場合は、残りのパートの故障の有無の判定は行わない、請求項8に記載の故障診断方法。 In the step of determining whether there is a failed part, if it is determined that there is a failed part before determining whether there is a failure in all of the high-side and low-side parts of the H-bridge, The failure diagnosis method according to claim 8, wherein the presence / absence determination is not performed.
  11.  前記故障した組があるか判定するステップにおいて、全ての前記組の故障の有無を判定する前に故障した組があると判定した場合は、残りの組の故障の有無の判定は行わない、請求項8または10に記載の故障診断方法。 In the step of determining whether or not there is a faulty set, if it is determined that there is a faulty set before determining the presence or absence of failure of all the sets, determination of the presence or absence of faults of the remaining sets is not performed. Item 11. The failure diagnosis method according to Item 8 or 10.
  12.  前記故障したパートがあるか判定するステップにおいて故障があると判定した場合、
     前記n個のHブリッジの2n-1個の組について、前記故障した組があるか判定するステップを実行する、請求項8、10、11のいずれかに記載の故障診断方法。
    If it is determined that there is a failure in the step of determining whether there is a failed part,
    12. The fault diagnosis method according to claim 8, wherein the step of determining whether or not there is a faulty set is performed for 2n-1 sets of the n H bridges.
  13.  前記故障した組があるか判定するステップにおいて故障があると判定した場合、
     前記n個のHブリッジのハイサイドおよびローサイドのうちの2n-1個のパートについて、前記故障したパートがあるか判定するステップを実行する、請求項8、10から12のいずれかに記載の故障診断方法。
    When it is determined that there is a failure in the step of determining whether there is a failed set,
    The failure according to any one of claims 8, 10 to 12, wherein the step of determining whether or not there is the failed part is performed for 2n-1 parts of the high side and the low side of the n H bridges. Diagnosis method.
  14.  前記故障したスイッチ素子があるか判定するステップは、前記故障したパートがあるかの判定結果および前記故障した組があるかの判定結果に基づいて、前記第1ハイサイドスイッチ素子、前記第1ローサイドスイッチ素子、前記第2ハイサイドスイッチ素子および前記第2ローサイドスイッチ素子のうちのどのスイッチが故障したか判定するステップを含む、請求項1から13のいずれかに記載の故障診断方法。 The step of determining whether or not there is a failed switch element is based on a determination result of whether or not there is a failed part and a determination result of whether or not there is a failed set, the first high side switch element, the first low side The failure diagnosis method according to claim 1, further comprising a step of determining which one of a switch element, the second high-side switch element, and the second low-side switch element has failed.
  15.  前記故障したスイッチ素子を特定した場合に、前記故障したスイッチ素子を示す故障信号を出力するステップをさらに包含する、請求項14に記載の故障診断方法。 The fault diagnosis method according to claim 14, further comprising a step of outputting a fault signal indicating the faulty switch element when the faulty switch element is specified.
  16.  電源からの電力を、少なくとも一相の巻線を有するモータに供給する電力に変換する電力変換装置であって、
     前記電力変換装置は、
     各々が第1ハイサイドスイッチ素子、第1ローサイドスイッチ素子、第2ハイサイドスイッチ素子および第2ローサイドスイッチ素子を有する少なくとも1つのHブリッジと、
     前記少なくとも1つのHブリッジの動作を制御する制御回路と、
     を備え、
     前記制御回路は、
     前記少なくとも1つのHブリッジのハイサイドおよびローサイドの中に故障したパートがあるか判定し、
     前記第1ローサイドスイッチ素子と前記第2ハイサイドスイッチ素子との組、および前記第2ローサイドスイッチ素子と前記第1ハイサイドスイッチ素子との組の中に故障した組があるか判定し、
     前記故障したパートがあるかの判定結果および前記故障した組があるかの判定結果に基づいて、前記第1ハイサイドスイッチ素子、前記第1ローサイドスイッチ素子、前記第2ハイサイドスイッチ素子および前記第2ローサイドスイッチ素子の中に故障したスイッチ素子があるか判定する、電力変換装置。
    A power conversion device that converts electric power from a power source into electric power to be supplied to a motor having at least one phase winding,
    The power converter is
    At least one H-bridge, each having a first high-side switch element, a first low-side switch element, a second high-side switch element, and a second low-side switch element;
    A control circuit for controlling the operation of the at least one H-bridge;
    With
    The control circuit includes:
    Determining if there is a failed part in the high side and low side of the at least one H-bridge;
    Determining whether there is a failed set in the set of the first low-side switch element and the second high-side switch element and the set of the second low-side switch element and the first high-side switch element;
    Based on the determination result of whether there is the failed part and the determination result of whether there is the failed set, the first high-side switch element, the first low-side switch element, the second high-side switch element, and the first 2. A power conversion device that determines whether there is a failed switch element among the low-side switch elements.
  17.  モータと、
     請求項16に記載の電力変換装置と、
    を備えるモータモジュール。
    A motor,
    The power conversion device according to claim 16,
    A motor module comprising:
  18.  請求項17に記載のモータモジュールを備える電動パワーステアリング装置。 An electric power steering apparatus comprising the motor module according to claim 17.
PCT/JP2019/013063 2018-05-15 2019-03-27 Failure diagnostic method, power converting device, motor module, and electric power steering device WO2019220783A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020519496A JPWO2019220783A1 (en) 2018-05-15 2019-03-27 Failure diagnosis method, power conversion device, motor module and electric power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018093827 2018-05-15
JP2018-093827 2018-05-15

Publications (1)

Publication Number Publication Date
WO2019220783A1 true WO2019220783A1 (en) 2019-11-21

Family

ID=68540097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013063 WO2019220783A1 (en) 2018-05-15 2019-03-27 Failure diagnostic method, power converting device, motor module, and electric power steering device

Country Status (2)

Country Link
JP (1) JPWO2019220783A1 (en)
WO (1) WO2019220783A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025872A (en) * 2009-07-28 2011-02-10 Jtekt Corp Electric power steering device
JP2011057012A (en) * 2009-09-08 2011-03-24 Jtekt Corp Electric power steering control device
WO2017150638A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device
WO2019064749A1 (en) * 2017-09-28 2019-04-04 日本電産株式会社 Fault diagnosis method, power conversion device, motor module and electric power steering device
WO2019064748A1 (en) * 2017-09-28 2019-04-04 日本電産株式会社 Fault diagnosis method, power conversion device, motor module and electric power steering device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025872A (en) * 2009-07-28 2011-02-10 Jtekt Corp Electric power steering device
JP2011057012A (en) * 2009-09-08 2011-03-24 Jtekt Corp Electric power steering control device
WO2017150638A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device
WO2019064749A1 (en) * 2017-09-28 2019-04-04 日本電産株式会社 Fault diagnosis method, power conversion device, motor module and electric power steering device
WO2019064748A1 (en) * 2017-09-28 2019-04-04 日本電産株式会社 Fault diagnosis method, power conversion device, motor module and electric power steering device

Also Published As

Publication number Publication date
JPWO2019220783A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
US10177694B2 (en) Current sensor abnormality diagnosis device
JP7088200B2 (en) Motor control method, power converter, motor module and electric power steering device
JP6217554B2 (en) Inverter device
WO2019064749A1 (en) Fault diagnosis method, power conversion device, motor module and electric power steering device
US11095233B2 (en) Electric power conversion apparatus, motor drive unit and electric motion power steering apparatus
US11476777B2 (en) Power conversion device, driving device, and power steering device
CN111656669B (en) Control device
WO2018030209A1 (en) Motor control method, motor control system, and electrically-powered steering system
WO2020080170A1 (en) Failure diagnosis method, power conversion device, motor module, and electric power steering device
JP5923955B2 (en) Control device for multi-phase rotating machine
WO2019220780A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
WO2019220783A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
WO2019240004A1 (en) Failure diagnosis method, power conversion device, motor module, and electric power steering device
WO2019064748A1 (en) Fault diagnosis method, power conversion device, motor module and electric power steering device
WO2019220782A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
WO2019220781A1 (en) Failure diagnostic method, power converting device, motor module, and electric power steering device
CN115516758A (en) Control device for AC rotating machine
WO2019058671A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2018056046A1 (en) Power conversion device, motor drive unit, and electric power steering device
JP2019037101A (en) Control device of rotating electric machine
WO2019058677A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2019058676A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2019058672A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2019058675A1 (en) Malfunction diagnosis method, motor control method, power conversion device, motor module, and electric power steering device
WO2018173587A1 (en) Motor control method, motor control system, and electric power steering system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519496

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19802486

Country of ref document: EP

Kind code of ref document: A1