WO2020079855A1 - 超音波プローブ及び超音波内視鏡 - Google Patents

超音波プローブ及び超音波内視鏡 Download PDF

Info

Publication number
WO2020079855A1
WO2020079855A1 PCT/JP2018/039104 JP2018039104W WO2020079855A1 WO 2020079855 A1 WO2020079855 A1 WO 2020079855A1 JP 2018039104 W JP2018039104 W JP 2018039104W WO 2020079855 A1 WO2020079855 A1 WO 2020079855A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
piezoelectric elements
ultrasonic
signal
wiring member
Prior art date
Application number
PCT/JP2018/039104
Other languages
English (en)
French (fr)
Inventor
暁 吉田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2018/039104 priority Critical patent/WO2020079855A1/ja
Priority to CN201880098650.0A priority patent/CN112839591A/zh
Priority to JP2020551715A priority patent/JP7085636B2/ja
Publication of WO2020079855A1 publication Critical patent/WO2020079855A1/ja
Priority to US17/223,432 priority patent/US11844649B2/en
Priority to US18/385,584 priority patent/US20240057974A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/445Details of catheter construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/064Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface with multiple active layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0633Cylindrical array

Definitions

  • the present invention relates to an ultrasonic probe and an ultrasonic endoscope.
  • an ultrasonic probe including a plurality of piezoelectric elements that respectively emit ultrasonic waves according to an input electric signal
  • the ultrasonic probe (ultrasonic array transducer) described in Patent Document 1 is composed of a convex ultrasonic probe. More specifically, the ultrasonic probe includes a plurality of piezoelectric elements, an acoustic matching layer, an acoustic lens layer, a backing material, and a cable wiring board.
  • a ground electrode is provided on the outer surface of the outer surface of the piezoelectric element.
  • a signal electrode is provided on the inner surface of the back surface side of the outer surface of the piezoelectric element which is the front and back of the outer surface.
  • the cable wiring board is erected in a state of being in contact with each signal electrode provided on the plurality of piezoelectric elements. An electric signal is input to each of the signal electrodes via the cable wiring board. Then, the plurality of piezoelectric elements respectively emit ultrasonic waves according to the input electric signal.
  • the ultrasonic probe described in Patent Document 1 has a problem that a large space is required on the back side of the plurality of piezoelectric elements in order to dispose the cable wiring board, and it is difficult to achieve miniaturization. Further, when the cable wiring board is arranged directly on the back side of the plurality of piezoelectric elements, the cable wiring board does not have a function as a backing material, and thus the acoustic performance may be deteriorated. There is a problem. Therefore, there is a demand for a technique capable of achieving miniaturization while avoiding deterioration of acoustic performance.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an ultrasonic probe and an ultrasonic endoscope that can be downsized while avoiding deterioration of acoustic performance.
  • the ultrasonic probe according to the present invention has a plurality of piezoelectric elements that respectively emit ultrasonic waves according to an input electric signal, and the plurality of piezoelectric elements are Ultrasonic transducers arranged in parallel along a first direction, an acoustic lens layer that radiates the ultrasonic waves emitted from the plurality of piezoelectric elements to the outside, and an acoustic lens layer that faces the acoustic lens layer with the ultrasonic transducer interposed therebetween.
  • the wiring member is provided on the resin layer having electrical insulation properties, and the wiring member is electrically connected to each of the plurality of piezoelectric elements.
  • a conductive layer having a plurality of signal lines respectively supply the electrical signal to emit respectively the ultrasonic waves to the plurality of piezoelectric elements.
  • the ultrasonic endoscope according to the present invention is an ultrasonic endoscope having an insertion portion to be inserted into a subject, the distal end side of the insertion portion, ultrasonic waves according to the input electrical signal.
  • An ultrasonic transducer having a plurality of piezoelectric elements that are respectively emitted, and the plurality of piezoelectric elements are arranged in parallel along a first direction, and an acoustic wave that radiates the ultrasonic waves emitted from the plurality of piezoelectric elements to the outside.
  • a conductive layer having a plurality of signal lines respectively supply the electrical signal to emit respectively the ultrasonic waves to the plurality of piezoelectric elements with connecting conductive elements and the respective electrically.
  • the ultrasonic probe of the present invention downsizing can be achieved while avoiding deterioration of acoustic performance.
  • FIG. 1 is a diagram showing an endoscope system according to the first embodiment.
  • FIG. 2 is a perspective view showing the tip of the insertion portion.
  • FIG. 3 is a sectional view showing the ultrasonic probe.
  • FIG. 4 is a diagram showing a connection structure between the ultrasonic transducer and the wiring member.
  • FIG. 5 is a diagram showing a connection structure between an ultrasonic transducer and a wiring member.
  • FIG. 6 is a diagram showing the back layer.
  • FIG. 7 is a sectional view showing the ultrasonic probe according to the second embodiment.
  • FIG. 8 is an enlarged cross-sectional view of a part of FIG. 7.
  • FIG. 9 is a diagram showing a first modification of the first embodiment.
  • FIG. 10 is a diagram showing a second modification of the first embodiment.
  • FIG. 11 is a diagram showing a third modification of the first and second embodiments.
  • FIG. 12 is a diagram showing a third modification of the first and second embodiments.
  • FIG. 13 is a diagram showing a modified example 4 of the first and second embodiments.
  • FIG. 14 is a diagram showing a modified example 4 of the first and second embodiments.
  • FIG. 1 is a diagram showing an endoscope system 1 according to the first embodiment.
  • the endoscope system 1 is a system that performs ultrasonic diagnosis and treatment inside a subject such as a person using an ultrasonic endoscope.
  • the endoscope system 1 includes an ultrasonic endoscope 2, an ultrasonic observation device 3, an endoscope observation device 4, and a display device 5.
  • the ultrasonic endoscope 2 can be partially inserted into a subject, transmits ultrasonic pulses (acoustic pulses) toward a body wall inside the subject, and also transmits ultrasonic echoes reflected by the subject. It has a function of outputting an echo signal by receiving it and a function of outputting an image signal by imaging the inside of the subject.
  • the detailed configuration of the ultrasonic endoscope 2 will be described later.
  • the ultrasonic observation device 3 is electrically connected to the ultrasonic endoscope 2 by way of the ultrasonic cable 31 (FIG. 1), and is connected to the ultrasonic endoscope 2 by way of the ultrasonic cable 31. To output a pulse signal and an echo signal from the ultrasonic endoscope 2. Then, the ultrasonic observation apparatus 3 generates an ultrasonic image by performing a predetermined process on the echo signal.
  • the endoscopic observation device 4 includes a video processor 41 and a light source device 42.
  • the video processor 41 inputs the image signal from the ultrasonic endoscope 2 via the endoscope connector 9. Then, the video processor 41 generates an endoscopic image by performing a predetermined process on the image signal.
  • the light source device 42 supplies illumination light for illuminating the inside of the subject to the ultrasonic endoscope 2 via the endoscope connector 9.
  • the display device 5 is configured by using a liquid crystal, an organic EL (Electro Luminescence), a CRT (Cathode Ray Tube), or a projector, and an ultrasonic image generated by the ultrasonic observation device 3 or the endoscope observation device 4 is used.
  • the endoscopic image or the like generated by is displayed.
  • the ultrasonic endoscope 2 includes an insertion portion 6, an operation portion 7, a universal cord 8 and an endoscope connector 9.
  • FIG. 2 is a perspective view showing the tip of the insertion portion 6.
  • the insertion portion 6 is a portion that is inserted into the subject. As shown in FIG. 1 or 2, the insertion portion 6 includes an ultrasonic probe 10 provided on the distal end side, a rigid member 61 connected to the proximal end side of the ultrasonic probe 10, and a base of the rigid member 61. A bending portion 62 that is connected to the end side and is bendable, and a flexible tube 63 (FIG. 1) that is connected to the base end side of the bending portion 62 and has flexibility.
  • a light guide (not shown) that transmits the illumination light supplied from the light source device 42, the above-mentioned pulse signal, and the like.
  • a transducer cable CB (see FIG. 3) that transmits an echo signal and a signal cable (not shown) that transmits an image signal are routed, and a conduit (not shown) for circulating a fluid is provided. ing.
  • the hard member 61 is a hard member made of a resin material or the like, and has a substantially columnar shape extending along the insertion axis Ax (FIG. 2).
  • the insertion axis Ax is an axis along the extending direction of the insertion portion 6.
  • an inclined surface 611 is formed on the outer peripheral surface on the front end side so that the hard member 61 is tapered toward the front end.
  • the rigid member 61 has an attachment hole (not shown) that penetrates from the base end to the tip, an illumination hole 612 and an imaging hole 613 that penetrate from the base end to the inclined surface 611, respectively.
  • An air / water feeding hole 614, a treatment tool channel 615, and the like are formed.
  • the mounting hole (not shown) described above is a hole to which the ultrasonic probe 10 is mounted. Then, the transducer cable CB (see FIG. 3) is inserted into the mounting hole.
  • the ultrasonic endoscope 2 is configured as a perspective type endoscope for observing a direction intersecting the insertion axis Ax at an acute angle.
  • the air / water supply hole 614 constitutes a part of the above-described pipe (not shown), and is a hole for supplying air or water to the imaging hole 613 to wash the outer surface of the objective optical system 617.
  • the treatment instrument channel 615 is a passage through which a treatment instrument (not shown) such as a puncture needle inserted in the insertion portion 6 is projected to the outside.
  • the operation unit 7 is a unit that is connected to the proximal end side of the insertion unit 6 and receives various operations from a doctor or the like.
  • the operation portion 7 includes a bending knob 71 for bending the bending portion 62 and a plurality of operation members 72 for performing various operations.
  • the operation section 7 communicates with the treatment tool channel 615 by way of a tube (not shown) provided inside the bending section 62 and the flexible tube 63, and a treatment tool (not shown) is connected to the tube.
  • a treatment instrument insertion port 73 (FIG. 1) for insertion is provided.
  • the universal cord 8 extends from the operation unit 7 and constitutes a part of the above-mentioned light guide (not shown), the transducer cable CB, the above-mentioned signal cable (not shown), and the above-mentioned conduit (not shown). This is a cord provided with a tube (not shown) that operates.
  • the endoscope connector 9 is provided at the end of the universal cord 8. Then, the endoscope connector 9 is connected to the ultrasonic cable 31 and is connected to the video processor 41 and the light source device 42 by being inserted into the endoscope observation device 4.
  • FIG. 3 is a cross-sectional view showing the ultrasonic probe 10.
  • FIG. 3 is a cross-sectional view of the ultrasonic probe 10 taken along a plane including the insertion axis Ax and orthogonal to the scanning surface SS.
  • the ultrasonic probe 10 is a convex type ultrasonic probe, and has a cylindrical scanning surface SS that is convex toward the outside (upper side in FIG. 3).
  • the scanning surface SS constitutes a part of the outer surface of the ultrasonic probe 10.
  • first direction A1 (FIG. 3)
  • second direction A2 (FIG. 4)
  • the upper side is described as an outer surface side A3 (FIG. 3)
  • the lower side in FIG. 3 is described as a back surface side A4 (FIG. 3).
  • the ultrasonic probe 10 scans (transmits / receives) the ultrasonic wave along the first direction A1 within the ultrasonic wave transmitting / receiving area Ar (FIG. 3) having a fan shape in cross section, which is formed by the normal line of the scanning surface SS.
  • the ultrasonic probe 10 includes an ultrasonic transducer 11, a wiring member 12, an acoustic lens layer 13, a back surface layer 14, and a holding member 15.
  • the ultrasonic transducer 11 includes a plurality of piezoelectric elements 111, as shown in FIG.
  • the plurality of piezoelectric elements 111 are each configured by an elongated rectangular parallelepiped extending linearly along the second direction A2, and are regularly arranged along the first direction A1 as shown in FIG. Has been done. Further, on the outer surface of the piezoelectric element 111, first and second electrodes 111a and 111b (see FIGS. 5 and 6) are formed. Then, the piezoelectric element 111 receives a pulse signal (corresponding to an electrical signal according to the present invention) input by way of the transducer cable CB, the wiring member 12, the back surface layer 14, and the first and second electrodes 111a and 111b.
  • a pulse signal (corresponding to an electrical signal according to the present invention) input by way of the transducer cable CB, the wiring member 12, the back surface layer 14, and the first and second electrodes 111a and 111b.
  • the piezoelectric element 111 converts an ultrasonic echo reflected by the subject into an electric echo signal, and passes through the first and second electrodes 111a and 111b, the back surface layer 14, and the wiring member 12. Output to the oscillator cable CB.
  • the piezoelectric element 111 is formed using PMN-PT single crystal, PMN-PZT single crystal, PZN-PT single crystal, PIN-PZN-PT single crystal, or relaxor material.
  • the PMN-PT single crystal is an abbreviation for a solid solution of lead magnesium niobate and lead titanate.
  • PMN-PZT single crystal is an abbreviation for a solid solution of lead magnesium niobate and lead zirconate titanate.
  • PZN-PT single crystal is an abbreviation for solid solution of lead zinc niobate and lead titanate.
  • the PIN-PZN-PT single crystal is an abbreviation for a solid solution of indium lead niobate, zinc lead niobate, and lead titanate.
  • the relaxor material is a general term for a three-component piezoelectric material obtained by adding lead composite perovskite, which is a relaxer material, to lead zirconate titanate (PZT) for the purpose of increasing the piezoelectric constant and the dielectric constant.
  • the lead-based composite perovskite is represented by Pb (B1, B2) O 3 , where B1 is magnesium, zinc, indium or scandium, and B2 is niobium, tantalum or tungsten. These materials have an excellent piezoelectric effect. Therefore, the value of electrical impedance can be lowered even if the size is reduced, which is preferable from the viewpoint of impedance matching between the first and second electrodes 111a and 111b.
  • the first and second electrodes 111a and 111b are each made of a conductive metal material or resin material, and are formed on the following outer surfaces of the piezoelectric element 111, respectively.
  • the first electrode 111a is formed on the entire outer surface of the outer surface A3 on the outer surface of the piezoelectric element 111.
  • the first electrode 111a serves as a signal electrode that electrically connects to the plurality of signal wirings 124 (see FIGS. 4 and 5) provided on the wiring member 12 to input / output a signal to / from the piezoelectric element 111. Function.
  • the second electrode 111b is formed on the entire outer surface of the back surface side A4 on the outer surface of the piezoelectric element 111.
  • the first and second electrodes 111a and 111b face each other along the normal line direction of the scanning surface SS with the piezoelectric element 111 interposed therebetween. Then, the second electrode 111b electrically connects to the ground line GR (FIG. 3) of the transducer cable CB and functions as a ground electrode.
  • FIG. 4 and 5 are views showing a connection structure between the ultrasonic transducer 11 and the wiring member 12.
  • FIG. 4 shows a part of the wiring member 12 (a part disposed at the first position P1 (FIG. 3) between the ultrasonic transducer 11 and the acoustic lens layer 13) from the outer surface side A3. It is the top view seen.
  • the resin layer 121 is not shown for convenience of description.
  • FIG. 5 is an enlarged cross-sectional view of a part of FIG. Note that in FIG. 5, for convenience of description, the plurality of signal wirings 124 are illustrated as one member as the conductive layer 122.
  • the wiring member 12 is a member that electrically connects a signal line (not shown) of the transducer cable CB and each of the first electrodes 111 a provided on the plurality of piezoelectric elements 111.
  • the wiring member 12 is composed of a flexible circuit board (FPC).
  • the wiring member 12 includes a resin layer 121 (FIGS. 3 and 5), a conductive layer 122, and an insulating layer 123. Note that in FIG. 3, the conductive layer 122 and the insulating layer 123 are not shown for convenience of description.
  • the resin layer 121 is a flexible long sheet (substrate) made of an insulating material such as polyimide.
  • first and second surfaces 121a and 121b FIGS. 3 and 5
  • the resin layer 121 is folded back with the first surface 121a forming the outer surface.
  • the resin layer 121 is folded back with the second surface 121b positioned inside.
  • the ultrasonic transducer 11 and the back surface layer 14 are arranged inside the folded resin layer 121. That is, a part of the wiring member 12 is arranged at the first position P1 (FIG. 3) between the ultrasonic transducer 11 and the acoustic lens layer 13.
  • the conductive layer 122 includes a plurality of signal wirings 124 and a plurality of dummy wirings 125.
  • the plurality of signal wirings 124 are made of a conductive metal material or resin material, and are provided between the signal lines (not shown) of the transducer cable CB and the respective first electrodes 111a provided on the plurality of piezoelectric elements 111.
  • the plurality of signal wirings 124 include a plurality of (14 in the example of FIG. 4) first signal wirings 124a and a plurality of (14 in the example of FIG. 4) second signal wirings. And 124b.
  • the plurality of first signal wirings 124a respectively extend from one end ER1 (FIG. 3) in the longitudinal direction of the resin layer 121 to the other end ER2 (FIG. 3) on the second surface 121b, and the resin The wiring patterns are arranged in parallel along the width direction (second direction A2) of the layer 121. As shown in FIG. 4, the plurality of first signal wirings 124a have different lengths along the longitudinal direction of the resin layer 121. In the example of FIG. 4, the plurality of first signal wirings 124a are arranged on the lower side in FIG. 4, where the length of the first signal wiring 124a located on the uppermost side in FIG. 4 is the longest. Accordingly, the length becomes shorter.
  • the plurality of second signal wirings 124b are made of a conductive metal material or resin material, and extend from the other end ER2 in the longitudinal direction of the resin layer 121 toward the one end ER1 on the second surface 121b.
  • the wiring patterns are arranged in parallel along the width direction (second direction A2) of the resin layer 121.
  • the plurality of second signal wirings 124b have different lengths along the longitudinal direction of the resin layer 121.
  • the plurality of second signal wirings 124b are arranged on the upper side in FIG. 4 because the length of the second signal wiring 124b located on the lowermost side in FIG. 4 is the longest. Accordingly, the length becomes shorter.
  • the plurality of dummy wirings 125 are made of a conductive metal material or a resin material, and are formed in the regions Ar1 on the second surface 121b.
  • the dummy wiring patterns (wiring patterns that are not electrically connected to any member). ).
  • the dummy wirings 125 are provided in the same number as the first and second signal wirings 124a and 124b, and are provided on the lines connecting the respective end portions ES1 and ES2 facing each other. Has been.
  • the plurality of signal wirings 124 and the dummy wirings 125 are made of the same material and have the same width dimension and thickness dimension.
  • the insulating layer 123 is made of an insulating material such as polyimide.
  • the insulating layer 123 is provided at a position facing the resin layer 121 (second surface 121b) with the conductive layer 122 sandwiched therebetween, and ensures the insulating property of the conductive layer 122 and protects the conductive layer 122.
  • vias VI are provided in the insulating layer 123 at respective positions facing the respective end portions ES1 and ES2. Then, each via VI is electrically connected to each of the end portions ES1 and ES2, and is also electrically connected to each of the first electrodes 111a provided on the plurality of piezoelectric elements 111. That is, the plurality of signal wirings 124 are electrically connected to the respective first electrodes 111a (the plurality of piezoelectric elements 111) by passing through the vias VI.
  • each end of the plurality of first signal wirings 124a on the one end ER1 side and each end of the plurality of second signal wirings 124b on the other end ER2 side of the insulating layer 123 are omitted.
  • Vias are also provided at respective positions facing each other. The respective vias are electrically connected to the respective end portions and also to the signal lines of the transducer cable CB.
  • the connection position between the wiring member 12 and the signal line of the transducer cable CB is located closer to the base end side than the ultrasonic transducer 11, the acoustic lens layer 13, and the back surface layer 14, as shown in FIG.
  • the wiring member 12 When a part of the wiring member 12 is arranged at the first position P1, the wiring member 12 is arranged in order to efficiently transmit a sound (ultrasonic wave) between the ultrasonic transducer 11 and the subject. Is preferably functioned as an acoustic matching layer that matches the acoustic impedance between the ultrasonic transducer 11 and the subject. Specifically, the wiring member 12 preferably has an acoustic impedance intermediate between the ultrasonic transducer 11 and the acoustic lens layer 13. For example, the acoustic impedance of each of the resin layer 121 and the insulating layer 123 is preferably 2 to 20 MRayl.
  • each thickness of the resin layer 121 and the insulating layer 123 is 1 of the wavelength ⁇ (for example, 400 to 500 ⁇ m) at the center frequency of the ultrasonic waves transmitted from the ultrasonic transducer 11 and transmitted through the resin layer 121 and the insulating layer 123. It is preferably / 4 or less.
  • the thickness of the conductive layer 122 is preferably 1/25 or less of the wavelength ⁇ .
  • the acoustic lens layer 13 is arranged at the first position P1 in the wiring member 12 by the adhesive force of an adhesive (not shown) or the adhesive force when the lens material itself is cast.
  • the portion is fixed on the first surface 121 a of the resin layer 121. That is, in the acoustic lens layer 13, the surface on the outer surface side A3 becomes the scanning surface SS.
  • the scanning surface SS has a circular arc shape in cross section extending in the first direction A1 and an arc shape in cross section extending in the second direction. That is, the scanning surface SS has a convex shape protruding toward the outer surface side A3.
  • the acoustic lens layer 13 converges the ultrasonic pulse transmitted from the ultrasonic transducer 11 and transmitted through the portion of the wiring member 12 arranged at the first position P1. Further, the acoustic lens layer 13 transmits the ultrasonic echo reflected by the subject to the portion of the wiring member 12 arranged at the first position P1.
  • FIG. 6 is a diagram showing the back surface layer 14. Specifically, FIG. 6 is a sectional view in which a part of FIG. 3 is enlarged.
  • the back surface layer 14 is provided on the back surface side A4 of the ultrasonic transducer 11 (the side facing the acoustic lens layer 13 with the ultrasonic transducer 11 interposed therebetween).
  • the back surface layer 14 has a larger acoustic impedance than the ultrasonic transducer 11 and functions as a de-matching layer made of conductive material such as tungsten.
  • the back surface layer 14 has a function of increasing the number of ultrasonic waves that are transmitted from the ultrasonic transducer 11 and that bounce back the ultrasonic waves in the direction opposite to the subject (back side A4) toward the subject, and that are incident on the subject. .
  • the back surface layer 14 is electrically connected to each of the second electrodes 111b provided on the plurality of piezoelectric elements 111.
  • the ground line GR of the transducer cable CB is electrically connected to the back surface layer 14 as shown in FIG. 3 or 6. That is, each of the second electrodes 111b provided on the plurality of piezoelectric elements 111 is electrically connected to the ground line GR by passing through the back surface layer 14.
  • the holding member 15 includes a holding portion 151 and a mounting portion 152.
  • the holding portion 151 is a portion that holds a unit in which the ultrasonic transducer 11, the wiring member 12, the acoustic lens layer 13, and the back surface layer 14 are integrated.
  • the holding portion 151 is provided with a recess 151a for holding the unit and exposing the scanning surface SS of the acoustic lens layer 13 to the outside.
  • the adhesive AD (FIG. 3) is filled in the gap between the recess 151a and the unit.
  • the attachment portion 152 is a portion integrally formed with the base end of the holding portion 151, inserted into the attachment hole (not shown) in the rigid member 61, and attached to the rigid member 61. As shown in FIG. 3, the attachment portion 152 is formed with an insertion hole 152a which penetrates from the base end to the recess 151a and into which the transducer cable CB is inserted.
  • the ultrasonic probe 10 includes the wiring member 12 partially disposed at the first position P1. Then, the wiring member 12 electrically connects the signal line (not shown) of the transducer cable CB and each of the first electrodes 111a provided on the plurality of piezoelectric elements 111. Therefore, it is not necessary to arrange the wiring substrate on the back side A4 of the plurality of piezoelectric elements 111 as in the conventional case. In other words, a large space is not required on the back side A4 of the plurality of piezoelectric elements 111. That is, the ultrasonic probe 10 can be downsized.
  • the wiring member 12 also functions as an acoustic matching layer.
  • the back surface layer 14 is electrically connected to each of the second electrodes 111b provided on the plurality of piezoelectric elements 111, and is composed of a conductive de-matching layer, and the ground line GR is electrically connected. To be done. Therefore, even when a part of the wiring member 12 is arranged at the first position P1, ultrasonic waves can be efficiently transmitted between the ultrasonic transducer 11 and the subject, and the acoustic performance is improved. It does not fall. Therefore, according to the ultrasonic probe 10 according to the first embodiment, it is possible to reduce the size while avoiding the deterioration of the acoustic performance.
  • the plurality of first signal wirings 124a extend from one end ER1 toward the other end ER2, respectively, and have a length along the longitudinal direction of the resin layer 121. Are different from each other.
  • the plurality of second signal wirings 124b extend from the other end ER2 toward the one end ER1 and have different lengths along the longitudinal direction of the resin layer 121. Therefore, even when the wiring space of the plurality of signal wirings 124 on the second surface 121b is narrow, the plurality of signal wirings 124 are efficiently arranged, and the plurality of signal wirings 124 allow the transducer cable to be connected.
  • the CB signal line (not shown) and each first electrode 111a can be electrically connected.
  • the wiring member 12 has a configuration in which the conductive layer 122 is sandwiched between the resin layer 121 and the insulating layer 123. Then, the plurality of signal wirings 124 are electrically connected to the respective first electrodes 111a by passing through the vias VI provided in the insulating layer 123, respectively. Therefore, it is possible to electrically connect the signal line (not shown) of the transducer cable CB and each of the first electrodes 111a by the wiring member 12 while sufficiently ensuring the insulating property of the conductive layer 122.
  • the conductive layer 122 is made of the same material as the signal wiring 124, and includes the dummy wiring 125 having the same width dimension and thickness dimension. Therefore, the ultrasonic waves transmitted from the ultrasonic transducer 11 are transmitted through the conductive layer 122 having the same volume regardless of the position of the ultrasonic waves. Therefore, variations in acoustic performance can be suppressed.
  • FIG. 7 is a sectional view showing the ultrasonic probe 10A according to the second embodiment. Specifically, FIG. 7 is a sectional view corresponding to FIG. Note that in FIG. 7, the conductive layer 122 and the insulating layer 123 are not shown for convenience of description.
  • FIG. 8 is an enlarged cross-sectional view of a part of FIG. 7. In the ultrasonic probe 10A according to the second embodiment, as shown in FIG.
  • a back layer 14A having a shape different from that of the back layer 14 is adopted in the ultrasonic probe 10 described in the first embodiment. is doing. Further, in the ultrasonic probe 10A, as shown in FIG. 7, the wiring member 12 is not disposed at the first position P1 as described in the first embodiment, but the wiring member 12 is not disposed at the first position P1. A part is arranged on the back surface side A4 of the back surface layer 14A (the second position P2 facing the ultrasonic transducer 11 with the back surface layer 14A interposed therebetween). Further, in the ultrasonic probe 10A, the acoustic matching layer 16 is arranged at the first position P1.
  • the back surface layer 14A is provided for each of the plurality of piezoelectric elements 111 on the back surface side of the ultrasonic transducer 11, and is similar to the back surface layer 14 described in the first embodiment. And each function as a de-matching layer. Contrary to the wiring member 12 described in the first embodiment, the wiring member 12 according to the second embodiment is folded back with the second surface 121b forming the outer surface. In other words, the wiring member 12 is folded back with the first surface 121a positioned inside. Then, each via VI is electrically connected to each back surface layer 14A.
  • the plurality of signal wirings 124 are electrically connected to the respective second electrodes 111b (the plurality of piezoelectric elements 111) by passing through the vias VI and the back layers 14A. That is, the second electrode 111b functions as a signal electrode that inputs / outputs a signal to / from the piezoelectric element 111.
  • the acoustic matching layer 16 is a member that matches the acoustic impedance between the ultrasonic transducer 11 and the subject in order to efficiently transmit sound (ultrasonic waves) between the ultrasonic transducer 11 and the subject.
  • the acoustic matching layer 16 is made of a conductive resin. That is, the acoustic matching layer 16 is electrically connected to each of the first electrodes 111 a provided on the plurality of piezoelectric elements 111. Then, as shown in FIG. 7, the ground line GR of the transducer cable CB is electrically connected to the acoustic matching layer 16. That is, the first electrode 111a functions as a ground electrode.
  • the ultrasonic probe 10 (10A) is composed of a convex type ultrasonic probe, but not limited to this, it may be composed of a radial type ultrasonic probe.
  • the endoscope system 1 has both the function of generating an ultrasonic image and the function of generating an endoscopic image, but the present invention is not limited to this. It may be configured to have only the function of generating an image.
  • the endoscope system 1 is not limited to the medical field but may be an endoscope system for observing the inside of a subject such as a mechanical structure in the industrial field.
  • the ultrasonic endoscope 2 is configured by a perspective type endoscope that observes a direction intersecting the insertion axis Ax at an acute angle, but the present invention is not limited to this.
  • the ultrasonic endoscope 2 is configured as a side-view type endoscope for observing a direction orthogonal to the insertion axis Ax or a direct-view type endoscope for observing a direction along the insertion axis Ax. It doesn't matter.
  • the positions at which the first and second electrodes 111a and 111b are provided with respect to the piezoelectric element 111 are not limited to the positions described in the above-described first and second embodiments, but other positions. It may be provided in.
  • the first electrode 111a may be provided not only on the outer surface of the outer surface A3 of the piezoelectric element 111, but also on other outer surfaces, and may have an L-shape in cross section.
  • the second electrode 111b may be provided not only on the outer surface of the back surface side A4 of the piezoelectric element 111 but also on other outer surfaces, and may have an L-shape in cross section.
  • the first and second electrodes 111 and 111b may be provided at positions facing each other along the first direction A1 with the piezoelectric element 111 interposed therebetween.
  • the outermost surface (first surface 121a) of the wiring member 12 is provided for the purpose of electrical safety and avoiding mixing of noise into the first and second signal wirings 124a and 124b. You may further provide the layer which has electroconductivity.
  • FIG. 9 is a diagram showing a first modification of the first embodiment. Specifically, FIG. 9 is a perspective view of a portion (a portion provided at the first position P1) of the wiring member 12B according to the first modification as viewed from the outer surface side A3. In FIG. 9, the resin layer 121 is not shown for convenience of description.
  • the wiring member 12B according to the first modification employs a conductive layer 122B different from the conductive layer 122 in the wiring member 12 described in the first embodiment. Unlike the conductive layer 122, the conductive layer 122B does not have a plurality of dummy wirings 125. Further, the plurality of first signal wirings 124a and the plurality of second signal wirings 124b are, as shown in FIG.
  • an area ArO located at the center of the ultrasonic transducer 11 when viewed from the outer surface side A3. are provided in regions that do not overlap with each other.
  • the conductive layer 122B is not provided in the region ArO when viewed from the outer surface side A3, so that the acoustic performance is reduced by the conductive layer 122B. It can be avoided.
  • FIG. 10 is a diagram showing a second modification of the first embodiment.
  • FIG. 10 is a plan view of a part of the wiring member 12C according to the second modification (a part disposed at the first position P1) as viewed from the outer surface side A3.
  • the resin layer 121 and the plurality of first signal wirings 124 a are omitted for convenience of description.
  • the wiring member 12C according to the second modification employs a conductive layer 122C different from the conductive layer 122 in the wiring member 12 described in the first embodiment. Unlike the conductive layer 122, the conductive layer 122C does not have the plurality of dummy wirings 125.
  • FIG. 10 is a plan view of a part of the wiring member 12C according to the second modification (a part disposed at the first position P1) as viewed from the outer surface side A3.
  • the resin layer 121 and the plurality of first signal wirings 124 a are omitted for convenience of description.
  • the wiring member 12C according to the second modification employs
  • the plurality of second signal wirings 124b when viewed from the outer surface side A3, partially overlap with each other in a state where they do not overlap with the plurality of piezoelectric elements 111 as much as possible. It is provided between the elements 111. The same applies to the plurality of first signal wirings 124a. Even when the wiring member 12C according to Modified Example 2 is adopted, the same effect as that of Modified Example 1 described above can be obtained.
  • FIG. 11 and 12 are diagrams showing a third modification of the first and second embodiments.
  • FIG. 11 is a plan view of the wiring member 12D according to Modification 3 as viewed from the first surface 121a side.
  • FIG. 12 is a plan view of the wiring member 12D as viewed from the second surface 121b side.
  • the illustration of the plurality of first signal wirings 124 a is omitted.
  • the illustration of the insulating layer 123 is omitted.
  • conductive layer 122 was provided only on second surface 121b. That is, the conductive layer 122 was composed of one layer.
  • the conductive layer 122D provided in the wiring member 12D according to the third modification is composed of two layers.
  • the plurality of second signal wirings 124b includes a single layer provided on each of the first surface 121a and a single layer provided on each of the second surface 121b. It is composed of layers. The same applies to the plurality of first signal wirings 124a.
  • the distance between the second signal wirings 124b adjacent to each other becomes long. Therefore, mutual interference of signals between the second signal wirings 124b adjacent to each other (between the first signal wirings 124a adjacent to each other) is suppressed (the occurrence of crosstalk is suppressed).
  • FIGS. 13 and 14 are diagrams showing a modified example 4 of the first and second embodiments.
  • FIG. 13 and FIG. 14 are diagrams showing the configuration of the connection member 200 provided in the endoscope connector 9 and electrically connecting the transducer cable CB and the ultrasonic cable 31.
  • FIG. 13 is a plan view of the FPC 210.
  • FIG. 14 is a side view of the connecting member 200.
  • the connection member 200 includes an FPC 210 and a connector 220 (FIG. 14), as shown in FIG. 13 or 14.
  • the FPC 210 includes a circuit board 211, a ground pad 212, a plurality of (four in the third modification) signal pads 213, and a cover member 214.
  • the circuit board 211 is a circuit board in which a ground line (not shown) and a plurality of signal lines (not shown) are provided in an elongated substrate made of an insulating material such as polyimide.
  • the ground pad 212 is provided on the end of the circuit board 211 on the oscillator cable CB side (left side in FIGS. 13 and 14) and is electrically connected to a ground line (not shown) inside the circuit board 211.
  • the ground line GR of the transducer cable CB is electrically connected to the ground pad 212, as shown in FIG.
  • the plurality of signal pads 213 are provided on the right side of the ground pad 212 on the circuit board 211 in FIGS. 13 and 14.
  • the plurality of signal pads 213 extend along the longitudinal direction of the circuit board 211 (left and right direction in FIGS. 13 and 14) and along the width direction of the circuit board 211 (up and down direction in FIG. 13). Are paralleled. Then, in the plurality of signal pads 213, each end on the right side in FIGS. 13 and 14 is electrically connected to a plurality of signal lines (not shown) inside the circuit board 211.
  • the cover member 214 is made of an insulating material such as a coverlay.
  • the cover member 214 is provided so as to straddle the plurality of signal pads 213, and divides the plurality of signal pads 213 into a left area ArL and a right area ArR in FIGS. 13 and 14.
  • the plurality of signal lines SG of the transducer cable CB are electrically connected to the area ArL, as shown in FIG.
  • the region ArR functions as a pad for inspecting each electric path from the plurality of piezoelectric elements 111 to the plurality of signal lines SG.
  • the cover member 214 is provided between the ground pad 212 and the plurality of signal pads 213 on the circuit board 211 and on the right side of the plurality of signal pads 213 in FIGS. 13 and 14. It is also provided on the edge.
  • the connector 220 is a connector that electrically connects a ground line (not shown) and a plurality of signal lines (not shown) inside the circuit board 211 to the ultrasonic cable 31.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Mechanical Engineering (AREA)
  • Gynecology & Obstetrics (AREA)
  • Optics & Photonics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

超音波プローブ(10)は、入力した電気信号に応じて超音波をそれぞれ出射する複数の圧電素子(111)を有し、複数の圧電素子(111)が第1の方向A1に沿って並列された超音波トランスデューサ(11)と、複数の圧電素子(111)から出射された超音波を外部に放射する音響レンズ層(13)と、超音波トランスデューサ(11)を挟んで音響レンズ層(13)に対向する背面層(14)と、音響レンズ層(13)と超音波トランスデューサ(11)との間の第1の位置(P1)に一部が配設された配線部材(12)と、を備える。配線部材(12)は、電気絶縁性を有する樹脂層と、樹脂層上に設けられ、複数の圧電素子(111)とそれぞれ電気的に接続するとともに複数の圧電素子に超音波をそれぞれ出射させる電気信号をそれぞれ供給する複数の信号配線を有する導電層と、を備える。

Description

超音波プローブ及び超音波内視鏡
 本発明は、超音波プローブ及び超音波内視鏡に関する。
 従来、入力した電気信号に応じて超音波をそれぞれ出射する複数の圧電素子を備えた超音波プローブが知られている(例えば、特許文献1参照)。
 特許文献1に記載の超音波プローブ(超音波アレイ振動子)は、コンベックス型の超音波プローブによって構成されている。より具体的に、超音波プローブは、複数の圧電素子の他、音響整合層と、音響レンズ層と、バッキング材と、ケーブル配線基板とを備える。
 ここで、圧電素子の外面のうち、外表面には、グラウンド電極が設けられている。また、圧電素子の外面のうち、当該外表面と表裏をなす背面側の内表面には、信号電極が設けられている。
 また、ケーブル配線基板は、複数の圧電素子に設けられた各信号電極に対して当接した状態で立設されている。当該各信号電極には、当該ケーブル配線基板を経由することによって、電気信号が入力される。そして、複数の圧電素子は、当該入力した電気信号に応じて、超音波をそれぞれ出射する。
特開2002-224104号公報
 しかしながら、特許文献1に記載の超音波プローブでは、ケーブル配線基板を配置するために、複数の圧電素子の背面側に広い空間を必要とし、小型化を図ることが難しい、という問題がある。また、複数の圧電素子の背面側に直接、ケーブル配線基板を配置した場合には、当該ケーブル配線基板がバッキング材としての機能を有していないため、音響性能が低下してしまう虞がある、という問題がある。
 そこで、音響性能の低下を回避しつつ、小型化を図ることができる技術が要望されている。
 本発明は、上記に鑑みてなされたものであって、音響性能の低下を回避しつつ、小型化を図ることができる超音波プローブ及び超音波内視鏡を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る超音波プローブは、入力した電気信号に応じて超音波をそれぞれ出射する複数の圧電素子を有し、前記複数の圧電素子が第1の方向に沿って並列された超音波トランスデューサと、前記複数の圧電素子から出射された前記超音波を外部に放射する音響レンズ層と、前記超音波トランスデューサを挟んで前記音響レンズ層に対向する背面層と、前記音響レンズ層と前記超音波トランスデューサとの間の第1の位置、または、前記背面層を挟んで前記超音波トランスデューサに対向する第2の位置に少なくとも一部が配設された配線部材と、を備え、前記配線部材は、電気絶縁性を有する樹脂層と、前記樹脂層上に設けられ、前記複数の圧電素子とそれぞれ電気的に接続するとともに前記複数の圧電素子に前記超音波をそれぞれ出射させる前記電気信号をそれぞれ供給する複数の信号配線を有する導電層と、を備える。
 また、本発明に係る超音波内視鏡は、被検体内に挿入される挿入部を有する超音波内視鏡において、前記挿入部の先端側には、入力した電気信号に応じて超音波をそれぞれ出射する複数の圧電素子を有し、前記複数の圧電素子が第1の方向に沿って並列された超音波トランスデューサと、前記複数の圧電素子から出射された前記超音波を外部に放射する音響レンズ層と、前記超音波トランスデューサを挟んで前記音響レンズ層に対向する背面層と、前記音響レンズ層と前記超音波トランスデューサとの間の第1の位置、または、前記背面層を挟んで前記超音波トランスデューサに対向する第2の位置に少なくとも一部が配設された配線部材と、を備え、前記配線部材は、電気絶縁性を有する樹脂層と、前記樹脂層上に設けられ、前記複数の圧電素子とそれぞれ電気的に接続するとともに前記複数の圧電素子に前記超音波をそれぞれ出射させる前記電気信号をそれぞれ供給する複数の信号配線を有する導電層と、を備える。
 本発明に係る超音波プローブによれば、音響性能の低下を回避しつつ、小型化を図ることができる。
図1は、実施の形態1に係る内視鏡システムを示す図である。 図2は、挿入部の先端を示す斜視図である。 図3は、超音波プローブを示す断面図である。 図4は、超音波トランスデューサと配線部材との接続構造を示す図である。 図5は、超音波トランスデューサと配線部材との接続構造を示す図である。 図6は、背面層を示す図である。 図7は、実施の形態2に係る超音波プローブを示す断面図である。 図8は、図7の一部を拡大した断面図である。 図9は、実施の形態1の変形例1を示す図である。 図10は、実施の形態1の変形例2を示す図である。 図11は、実施の形態1,2の変形例3を示す図である。 図12は、実施の形態1,2の変形例3を示す図である。 図13は、実施の形態1,2の変形例4を示す図である。 図14は、実施の形態1,2の変形例4を示す図である。
 以下に、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。
(実施の形態1)
 〔内視鏡システムの概略構成〕
 図1は、本実施の形態1に係る内視鏡システム1を示す図である。
 内視鏡システム1は、超音波内視鏡を用いて人等の被検体内の超音波診断及び処置を行うシステムである。この内視鏡システム1は、図1に示すように、超音波内視鏡2と、超音波観測装置3と、内視鏡観察装置4と、表示装置5とを備える。
 超音波内視鏡2は、一部を被検体内に挿入可能とし、被検体内の体壁に向けて超音波パルス(音響パルス)を送信するとともに被検体にて反射された超音波エコーを受信することによってエコー信号を出力する機能、及び被検体内を撮像することによって画像信号を出力する機能を有する。
 なお、超音波内視鏡2の詳細な構成については、後述する。
 超音波観測装置3は、超音波ケーブル31(図1)を経由することによって超音波内視鏡2に電気的に接続し、超音波ケーブル31を経由することによって超音波内視鏡2に対してパルス信号を出力するとともに超音波内視鏡2からエコー信号を出力する。そして、超音波観測装置3では、当該エコー信号に対して所定の処理を施すことによって超音波画像を生成する。
 内視鏡観察装置4には、超音波内視鏡2の後述する内視鏡用コネクタ9(図1)が着脱自在に接続される。この内視鏡観察装置4は、図1に示すように、ビデオプロセッサ41と、光源装置42とを備える。
 ビデオプロセッサ41は、内視鏡用コネクタ9を経由することによって超音波内視鏡2からの画像信号を入力する。そして、ビデオプロセッサ41は、当該画像信号に対して所定の処理を施すことによって内視鏡画像を生成する。
 光源装置42は、内視鏡用コネクタ9を経由することによって被検体内を照明する照明光を超音波内視鏡2に対して供給する。
 表示装置5は、液晶、有機EL(Electro Luminescence)、CRT(Cathode Ray Tube)、または、プロジェクタを用いて構成され、超音波観測装置3によって生成された超音波画像や、内視鏡観察装置4によって生成された内視鏡画像等を表示する。
 〔超音波内視鏡の構成〕
 次に、超音波内視鏡2の構成について説明する。
 超音波内視鏡2は、図1に示すように、挿入部6と、操作部7と、ユニバーサルコード8と、内視鏡用コネクタ9とを備える。
 図2は、挿入部6の先端を示す斜視図である。
 なお、以下では、挿入部6の構成を説明するにあたって、挿入部6の先端側(被検体内への挿入方向の先端側)を「先端側」とのみ記載し、挿入部6の基端側(挿入部6の先端から離間する側)を「基端側」とのみ記載する。
 挿入部6は、被検体内に挿入される部分である。この挿入部6は、図1または図2に示すように、先端側に設けられた超音波プローブ10と、超音波プローブ10の基端側に連結された硬性部材61と、硬性部材61の基端側に連結され湾曲可能とする湾曲部62と、湾曲部62の基端側に連結され可撓性を有する可撓管63(図1)とを備える。
 なお、挿入部6、操作部7、ユニバーサルコード8、及び内視鏡用コネクタ9の内部には、光源装置42から供給された照明光を伝送するライトガイド(図示略)、上述したパルス信号やエコー信号を伝送する振動子ケーブルCB(図3参照)、及び画像信号を伝送する信号ケーブル(図示略)が引き回されているとともに、流体を流通させるための管路(図示略)が設けられている。
 ここで、硬性部材61は、樹脂材料等から構成された硬質部材であり、挿入軸Ax(図2)に沿って延在する略円柱形状を有する。なお、挿入軸Axは、挿入部6の延在方向に沿う軸である。
 この硬性部材61において、先端側の外周面には、先端に向かうにしたがって当該硬性部材61を先細形状とする傾斜面611が形成されている。
 そして、硬性部材61には、図2に示すように、基端から先端まで貫通した取付用孔(図示略)、基端から傾斜面611までそれぞれ貫通した照明用孔612、撮像用孔613、送気送水用孔614、及び処置具チャンネル615等が形成されている。
 上述した取付用孔(図示略)は、超音波プローブ10が取り付けられる孔である。そして、当該取付用孔の内部には、振動子ケーブルCB(図3参照)が挿通されている。
 照明用孔612の内部には、上述したライトガイド(図示略)の出射端側と、当該ライトガイドの出射端から出射された照明光を被検体内に向けて照射する照明レンズ616(図2)とが配設されている。
 撮像用孔613の内部には、被検体内に向けて照射され、当該被検体内で反射された光(被写体像)を集光する対物光学系617(図2)、及び当該対物光学系617によって集光された被写体像を撮像する撮像素子(図示略)が配設されている。そして、当該撮像素子によって撮像された画像信号は、上述した信号ケーブル(図示略)を経由することによって内視鏡観察装置4(ビデオプロセッサ41)に伝送される。
 本実施の形態1では、上述したように照明用孔612及び撮像用孔613は、傾斜面611に形成されている。このため、本実施の形態1に係る超音波内視鏡2は、挿入軸Axに対して鋭角で交差する方向を観察する斜視タイプの内視鏡として構成されている。
 送気送水用孔614は、上述した管路(図示略)の一部を構成し、撮像用孔613に向けて送気または送水し、対物光学系617の外面を洗浄するための孔である。
 処置具チャンネル615は、挿入部6の内部に挿通された穿刺針等の処置具(図示略)を外部に突出させる通路である。
 操作部7は、挿入部6の基端側に連結され、医師等から各種操作を受け付ける部分である。この操作部7は、図1に示すように、湾曲部62を湾曲操作するための湾曲ノブ71と、各種操作を行うための複数の操作部材72とを備える。
 また、操作部7には、湾曲部62及び可撓管63の内部に設けられたチューブ(図示略)を経由することによって処置具チャンネル615に連通し、当該チューブに処置具(図示略)を挿通するための処置具挿入口73(図1)が設けられている。
 ユニバーサルコード8は、操作部7から延在し、上述したライトガイド(図示略)、振動子ケーブルCB、上述した信号ケーブル(図示略)、及び上述した管路(図示略)の一部を構成するチューブ(図示略)が配設されたコードである。
 内視鏡用コネクタ9は、ユニバーサルコード8の端部に設けられている。そして、内視鏡用コネクタ9は、超音波ケーブル31が接続されるとともに、内視鏡観察装置4に挿し込まれることでビデオプロセッサ41及び光源装置42に接続する。
 〔超音波プローブの構成〕
 次に、超音波プローブ10の構成について説明する。
 図3は、超音波プローブ10を示す断面図である。具体的に、図3は、挿入軸Axを含み、走査面SSに対して直交する平面にて超音波プローブ10を切断した断面図である。
 超音波プローブ10は、コンベックス型の超音波プローブであり、外部(図3中、上方側)に向けて凸となる円筒面状の走査面SSを有する。ここで、走査面SSは、超音波プローブ10の外表面の一部を構成する。
 なお、以下では、超音波プローブ10の構成を説明するにあたって、円筒面状の走査面SSの周方向を第1の方向A1(図3)と記載し、円筒面状の走査面SSにおける円筒軸に沿う方向(図3中、紙面に直交する方向)を第2の方向A2(図4)と記載する。さらに、図3中、上方側を外表面側A3(図3)と記載し、図3中、下方側を背面側A4(図3)と記載する。
 そして、超音波プローブ10は、走査面SSの法線によって構成される断面視扇状の超音波送受領域Ar(図3)内で第1の方向A1に沿って超音波を走査(送受信)する。
 この超音波プローブ10は、図3に示すように、超音波トランスデューサ11と、配線部材12と、音響レンズ層13と、背面層14と、保持部材15とを備える。
 超音波トランスデューサ11は、図3に示すように、複数の圧電素子111を備える。
 複数の圧電素子111は、第2の方向A2に沿って直線状に延在する長尺状の直方体によってそれぞれ構成され、図3に示すように、第1の方向A1に沿って規則的に配列されている。また、圧電素子111の外面には、第1,第2の電極111a,111b(図5,図6参照)が形成されている。そして、圧電素子111は、振動子ケーブルCB、配線部材12、背面層14、及び第1,第2の電極111a,111bを経由することによって入力したパルス信号(本発明に係る電気信号に相当)を超音波パルスに変換し、被検体に向けて送信する。また、圧電素子111は、被検体によって反射された超音波エコーを電気的なエコー信号に変換し、第1,第2の電極111a,111b、背面層14、及び配線部材12を経由することによって振動子ケーブルCBに出力する。
 ここで、圧電素子111は、PMN-PT単結晶、PMN-PZT単結晶、PZN-PT単結晶、PIN-PZN-PT単結晶またはリラクサー系材料を用いて形成される。
 なお、PMN-PT単結晶は、マグネシウム・ニオブ酸鉛及びチタン酸鉛の固溶体の略称である。PMN-PZT単結晶は、マグネシウム・ニオブ酸鉛及びチタン酸ジルコン酸鉛の固溶体の略称である。PZN-PT単結晶は、亜鉛・ニオブ酸鉛及びチタン酸鉛の固溶体の略称である。PIN-PZN-PT単結晶は、インジウム・ニオブ酸鉛、亜鉛・ニオブ酸鉛及びチタン酸鉛の固溶体の略称である。リラクサー系材料は、圧電定数や誘電率を増加させる目的でリラクサー材料である鉛系複合ペロブスカイトをチタン酸ジルコン酸鉛(PZT)に添加した三成分系圧電材料の総称である。鉛系複合ペロブスカイトは、Pb(B1、B2)Oによって表され、B1はマグネシウム、亜鉛、インジウムまたはスカンジウムのいずれかであり、B2はニオブ、タンタルまたはタングステンのいずれかである。これらの材料は、優れた圧電効果を有している。このため、小型化しても電気的なインピーダンスの値を低くすることができ、第1,第2の電極111a,111bとの間のインピーダンスマッチングの観点から好ましい。
 第1,第2の電極111a,111bは、導電性を有する金属材料または樹脂材料によってそれぞれ構成され、圧電素子111における以下の外面にそれぞれ形成されている。
 第1の電極111aは、圧電素子111の外面において、外表面側A3の外面全体に形成されている。そして、第1の電極111aは、配線部材12に設けられた複数の信号配線124(図4,図5参照)と電気的に接続し、圧電素子111への信号の入出力を行う信号電極として機能する。
 第2の電極111bは、圧電素子111の外面において、背面側A4の外面全体に形成されている。すなわち、第1,第2の電極111a,111bは、圧電素子111を挟んで、走査面SSの法線方向に沿って互いに対向する。そして、第2の電極111bは、振動子ケーブルCBのグラウンド線GR(図3)と電気的に接続し、グラウンド電極として機能する。
 図4及び図5は、超音波トランスデューサ11と配線部材12との接続構造を示す図である。具体的に、図4は、配線部材12の一部(超音波トランスデューサ11と音響レンズ層13との間の第1の位置P1(図3)に配設された部分)を外表面側A3から見た平面図である。なお、図4では、説明の便宜上、樹脂層121の図示を省略している。図5は、図3の一部を拡大した断面図である。なお、図5では、説明の便宜上、導電層122として、複数の信号配線124を一部材によって図示している。
 配線部材12は、振動子ケーブルCBの信号線(図示略)と複数の圧電素子111に設けられた各第1の電極111aとを電気的に接続する部材である。本実施の形態1では、配線部材12は、フレキシブル回路基板(FPC)によって構成されている。この配線部材12は、図3ないし図5に示すように、樹脂層121(図3,図5)と、導電層122と、絶縁層123とを備える。なお、図3では、説明の便宜上、導電層122及び絶縁層123の図示を省略している。
 樹脂層121は、ポリイミド等の絶縁材料から構成された可撓性を有する長尺状のシート(基板)である。以下では、樹脂層121において、互いに表裏をなす一対のシート面を第1,第2の面121a,121b(図3,図5)と記載する。この樹脂層121は、図3に示すように、第1の面121aが外表面を構成する状態で折り返される。言い換えれば、樹脂層121は、第2の面121bが内側に位置する状態で折り返される。そして、超音波トランスデューサ11及び背面層14は、折り返された樹脂層121の内側に配置される。すなわち、配線部材12の一部は、超音波トランスデューサ11と音響レンズ層13との間の第1の位置P1(図3)に配設される。
 導電層122は、図4に示すように、複数の信号配線124と、複数のダミー配線125とを備える。
 複数の信号配線124は、導電性を有する金属材料または樹脂材料によって構成され、振動子ケーブルCBの信号線(図示略)と複数の圧電素子111に設けられた各第1の電極111aとの間で上述したパルス信号やエコー信号を伝送する信号配線である。これら複数の信号配線124は、図4に示すように、複数(図4の例では14本)の第1の信号配線124aと、複数(図4の例では14本)の第2の信号配線124bとを備える。
 複数の第1の信号配線124aは、第2の面121b上において、樹脂層121の長手方向の一端ER1(図3)から他端ER2(図3)に向けてそれぞれ延在するとともに、当該樹脂層121の幅方向(第2の方向A2)に沿って並列された配線パターンとしてそれぞれ構成されている。これら複数の第1の信号配線124aは、図4に示すように、樹脂層121の長手方向に沿う長さが互いに異なる。図4の例では、複数の第1の信号配線124aは、図4中、最も上方側に位置する第1の信号配線124aの当該長さが最も長く、図4中、下方側に配置されるにしたがって、当該長さが短くなる。
 複数の第2の信号配線124bは、導電性を有する金属材料または樹脂材料によって構成され、第2の面121b上において、樹脂層121の長手方向の他端ER2から一端ER1に向けてそれぞれ延在するとともに、当該樹脂層121の幅方向(第2の方向A2)に沿って並列された配線パターンとしてそれぞれ構成されている。これら複数の第2の信号配線124bは、図4に示すように、樹脂層121の長手方向に沿う長さが互いに異なる。図4の例では、複数の第2の信号配線124bは、図4中、最も下方側に位置する第2の信号配線124bの当該長さが最も長く、図4中、上方側に配置されるにしたがって、当該長さが短くなる。
 そして、第2の面121b上において、複数の第1の信号配線124aにおける他端ER2側の各端部ES1(図4)と複数の第2の信号配線124bにおける一端ER1側の各端部ES2(図4)との間には、平行四辺形型の領域Ar1が形成される。
 複数のダミー配線125は、導電性を有する金属材料または樹脂材料によって構成され、第2の面121b上の領域Ar1にそれぞれ形成されたダミーの配線パターン(いずれの部材とも電気的に接続しない配線パターン)である。本実施の形態1では、ダミー配線125は、第1,第2の信号配線124a,124bと同一の数だけ設けられているとともに、互いに対向する各端部ES1,ES2同士を結ぶ線上にそれぞれ設けられている。
 本実施の形態1では、複数の信号配線124及びダミー配線125は、同一の材料によって構成されているとともに、同一の幅寸法及び厚み寸法を有する。
 絶縁層123は、ポリイミド等の絶縁材料から構成されている。この絶縁層123は、導電層122を挟んで樹脂層121(第2の面121b)に対向する位置に設けられ、導電層122の絶縁性を確保するとともに当該導電層122を保護する。この絶縁層123には、図5に示すように、各端部ES1,ES2に対向する各位置にビアVIがそれぞれ設けられている。そして、各ビアVIは、各端部ES1,ES2とそれぞれ電気的に接続するとともに、複数の圧電素子111に設けられた各第1の電極111aとそれぞれ電気的に接続する。すなわち、複数の信号配線124は、各ビアVIを経由することによって、各第1の電極111a(複数の圧電素子111)とそれぞれ電気的に接続する。
 なお、具体的な図示は省略したが、絶縁層123において、複数の第1の信号配線124aにおける一端ER1側の各端部と複数の第2の信号配線124bにおける他端ER2側の各端部に対向する各位置にもビアがそれぞれ設けられている。そして、当該各ビアは、当該各端部とそれぞれ電気的に接続するとともに、振動子ケーブルCBの信号線とそれぞれ電気的に接続する。なお、配線部材12と振動子ケーブルCBの信号線との接続位置は、図3に示すように、超音波トランスデューサ11、音響レンズ層13、及び背面層14よりも基端側に位置する。
 そして、配線部材12の一部を第1の位置P1に配設した場合には、超音波トランスデューサ11と被検体との間で音(超音波)を効率良く透過させるために、当該配線部材12を、当該超音波トランスデューサ11と被検体との間の音響インピーダンスをマッチングさせる音響整合層として機能させることが好ましい。
 具体的に、配線部材12は、超音波トランスデューサ11と音響レンズ層13との中間の音響インピーダンスを有していることが好ましい。例えば、樹脂層121及び絶縁層123の各音響インピーダンスは、2~20MRaylであることが好ましい。また、樹脂層121及び絶縁層123の音響インピーダンスは、超音波トランスデューサ11側から音響レンズ層13側に向けて順に小さくなることが好ましい(例えば、絶縁層123の音響インピーダンス:9MRayl、樹脂層121の音響インピーダンス:2MRayl)。さらに、樹脂層121及び絶縁層123の各厚みは、超音波トランスデューサ11から送信され、当該樹脂層121及び絶縁層123を透過する超音波の中心周波数における波長λ(例えば、400~500μm)の1/4以下であることが好ましい。また、導電層122の厚みは、当該波長λの1/25以下であることが好ましい。
 音響レンズ層13は、図3に示すように、接着剤(図示略)による接着力やレンズ材そのものを注型した際の密着力によって、配線部材12における第1の位置P1に配設された部分において、樹脂層121の第1の面121a上に固定される。すなわち、音響レンズ層13において、外表面側A3の面は、走査面SSとなる。この走査面SSは、第1の方向A1に沿って延在した断面視円弧形状を有するとともに、第2の方向に沿って延在した断面視円弧形状を有する。すなわち、走査面SSは、外表面側A3に向けて突出した凸形状を有する。そして、音響レンズ層13は、超音波トランスデューサ11から送信され、配線部材12における第1の位置P1に配設された部分を透過した超音波パルスを収束させる。また、音響レンズ層13は、被検体により反射された超音波エコーを配線部材12における第1の位置P1に配設された部分に伝達する。
 図6は、背面層14を示す図である。具体的に、図6は、図3の一部を拡大した断面図である。
 背面層14は、超音波トランスデューサ11の背面側A4(超音波トランスデューサ11を挟んで音響レンズ層13に対向する側)に設けられている。本実施の形態1では、背面層14は、超音波トランスデューサ11よりも大きい音響インピーダンスを有し、かつ、導電性を有する例えばタングステン等によって構成されたデマッチング層として機能する。すなわち、背面層14は、超音波トランスデューサ11から送信され、被検体とは逆方向(背面側A4)に向かう超音波を被検体に向けて跳ね返し、被検体に入射する超音波を増やす機能を有する。そして、背面層14は、複数の圧電素子111に設けられた各第2の電極111bと電気的に接続する。また、背面層14には、図3または図6に示すように、振動子ケーブルCBのグラウンド線GRが電気的に接続される。すなわち、複数の圧電素子111に設けられた各第2の電極111bは、背面層14を経由することによって、グラウンド線GRと電気的に接続する。
 保持部材15は、図3に示すように、保持部151と、取付部152とを備える。
 保持部151は、超音波トランスデューサ11、配線部材12、音響レンズ層13、及び背面層14が一体化されたユニットを保持する部分である。この保持部151には、図3に示すように、当該ユニットを保持しつつ、音響レンズ層13の走査面SSを外部に露出させる凹部151aが形成されている。そして、凹部151aと当該ユニットとの隙間には、接着剤AD(図3)が充填される。
 取付部152は、保持部151の基端に一体形成され、硬性部材61における上述した取付用孔(図示略)に挿入され、当該硬性部材61に対して取り付けられる部分である。この取付部152には、図3に示すように、基端から凹部151aまで貫通し、振動子ケーブルCBが挿通される挿通孔152aが形成されている。
 以上説明した本実施の形態1によれば、以下の効果を奏する。
 本実施の形態1に係る超音波プローブ10は、一部が第1の位置P1に配設された配線部材12を備える。そして、配線部材12は、振動子ケーブルCBの信号線(図示略)と複数の圧電素子111に設けられた各第1の電極111aとを電気的に接続する。
 このため、従来のように複数の圧電素子111の背面側A4に配線基板を配置する必要がない。言い換えれば、複数の圧電素子111の背面側A4に広い空間を必要としない。すなわち、超音波プローブ10の小型化を図ることができる。
 また、配線部材12は、音響整合層として機能する。さらに、背面層14は、複数の圧電素子111に設けられた各第2の電極111bと電気的に接続し、かつ、導電性を有するデマッチング層によって構成され、グラウンド線GRが電気的に接続される。
 このため、配線部材12の一部を第1の位置P1に配設した場合であっても、超音波トランスデューサ11と被検体との間で超音波を効率よく透過させることができ、音響性能が低下してしまうことがない。
 したがって、本実施の形態1に係る超音波プローブ10によれば、音響性能の低下を回避しつつ、小型化を図ることができる。
 また、本実施の形態1に係る超音波プローブ10では、複数の第1の信号配線124aは、一端ER1から他端ER2に向けてそれぞれ延在するとともに、樹脂層121の長手方向に沿う長さが互いに異なる。また、複数の第2の信号配線124bは、他端ER2から一端ER1に向けてそれぞれ延在するとともに、樹脂層121の長手方向に沿う長さが互いに異なる。
 このため、第2の面121b上における複数の信号配線124の配線スペースが狭い場合であっても、当該複数の信号配線124を効率的に配線し、当該複数の信号配線124によって、振動子ケーブルCBの信号線(図示略)と各第1の電極111aとを電気的に接続することができる。
 また、本実施の形態1に係る超音波プローブ10では、配線部材12は、導電層122を樹脂層121及び絶縁層123によって挟持した構成を有する。そして、複数の信号配線124は、絶縁層123に設けられた複数のビアVIをそれぞれ経由することによって各第1の電極111aとそれぞれ電気的に接続する。
 このため、導電層122の絶縁性を十分に確保しつつ、配線部材12によって、振動子ケーブルCBの信号線(図示略)と各第1の電極111aとを電気的に接続することができる。
 また、本実施の形態1に係る超音波プローブ10では、導電層122は、信号配線124と同一の材料によって構成されるとともに、同一の幅寸法及び厚み寸法を有するダミー配線125を備える。
 このため、超音波トランスデューサ11から送信される超音波は、いずれの位置から送信された場合であっても、同一の体積の導電層122を透過することとなる。したがって、音響性能のバラつきを抑制することができる。
(実施の形態2)
 次に、本実施の形態2について説明する。
 以下の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図7は、本実施の形態2に係る超音波プローブ10Aを示す断面図である。具体的に、図7は、図3に対応した断面図である。なお、図7では、説明の便宜上、導電層122及び絶縁層123の図示を省略している。図8は、図7の一部を拡大した断面図である。
 本実施の形態2に係る超音波プローブ10Aでは、図8に示すように、上述した実施の形態1において説明した超音波プローブ10に対して、背面層14とは異なる形状の背面層14Aを採用している。また、超音波プローブ10Aでは、図7に示すように、上述した実施の形態1において説明したように配線部材12の一部を第1の位置P1に配設することなく、当該配線部材12の一部を背面層14Aの背面側A4(背面層14Aを挟んで超音波トランスデューサ11に対向する第2の位置P2)に配設している。さらに、超音波プローブ10Aでは、第1の位置P1に音響整合層16を配設している。
 具体的に、背面層14Aは、図8に示すように、超音波トランスデューサ11の背面側において、複数の圧電素子111毎にそれぞれ設けられ、上述した実施の形態1において説明した背面層14と同様に、デマッチング層としてそれぞれ機能する。
 本実施の形態2に係る配線部材12は、上述した実施の形態1において説明した配線部材12とは逆に、第2の面121bが外表面を構成する状態で折り返される。言い換えれば、配線部材12は、第1の面121aが内側に位置する状態で折り返される。そして、各ビアVIは、各背面層14Aとそれぞれ電気的に接続する。本実施の形態2では、複数の信号配線124は、各ビアVI及び各背面層14Aを経由することによって、各第2の電極111b(複数の圧電素子111)とそれぞれ電気的に接続する。すなわち、第2の電極111bは、圧電素子111への信号の入出力を行う信号電極として機能する。
 音響整合層16は、超音波トランスデューサ11と被検体との間で音(超音波)を効率良く透過させるために、超音波トランスデューサ11と被検体との間の音響インピーダンスをマッチングさせる部材である。本実施の形態2では、音響整合層16は、導電性を有する樹脂によって構成されている。すなわち、音響整合層16は、複数の圧電素子111に設けられた各第1の電極111aと電気的に接続する。そして、音響整合層16には、図7に示すように、振動子ケーブルCBのグラウンド線GRが電気的に接続される。すなわち、第1の電極111aは、グラウンド電極として機能する。
 以上説明した本実施の形態2に係る超音波プローブ10Aを採用した場合であっても、上述した実施の形態1と同様の効果を有する。
(その他の実施形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1,2によってのみ限定されるべきものではない。
 上述した実施の形態1,2では、超音波プローブ10(10A)は、コンベックス型の超音波プローブによって構成されていたが、これに限らず、ラジアル型の超音波プローブによって構成しても構わない。
 上述した実施の形態1,2では、内視鏡システム1は、超音波画像を生成する機能、及び内視鏡画像を生成する機能の双方を有していたが、これに限らず、超音波画像を生成する機能のみを有する構成としても構わない。
 上述した実施の形態1,2において、内視鏡システム1は、医療分野に限らず、工業分野において、機械構造物等の被検体の内部を観察する内視鏡システムとしても構わない。
 上述した実施の形態1,2において、超音波内視鏡2は、挿入軸Axに対して鋭角で交差する方向を観察する斜視タイプの内視鏡によって構成されていたが、これに限らない。例えば、超音波内視鏡2を、挿入軸Axに対して直角に交差する方向を観察する側視タイプの内視鏡や、挿入軸Axに沿う方向を観察する直視タイプの内視鏡として構成しても構わない。
 上述した実施の形態1,2において、圧電素子111に対して第1,第2の電極111a,111bを設ける位置は、上述した実施の形態1,2において説明した位置に限らず、その他の位置に設けても構わない。例えば、第1の電極111aは、圧電素子111における外表面側A3の外面の他、その他の外面にも設けられ、断面視L字形状を有していても構わない。同様に、第2の電極111bは、圧電素子111における背面側A4の外面の他、その他の外面にも設けられ、断面視L字形状を有していても構わない。また、圧電素子111の外面において、当該圧電素子111を挟んで第1の方向A1に沿って互いに対向する位置に第1,第2の電極111,111bをそれぞれ設けても構わない。
 上述した実施の形態1において、電気安全性や第1,第2の信号配線124a,124bへのノイズの混入を回避することを目的として、配線部材12の最外面(第1の面121a)に導電性を有する層をさらに設けても構わない。
 図9は、本実施の形態1の変形例1を示す図である。具体的に、図9は、本変形例1に係る配線部材12Bの一部(第1の位置P1に配設された部分)を外表面側A3から見た斜視図である。なお、図9では、説明の便宜上、樹脂層121の図示を省略している。
 本変形例1に係る配線部材12Bでは、上述した実施の形態1において説明した配線部材12に対して、導電層122とは異なる導電層122Bを採用している。
 導電層122Bは、導電層122とは異なり、複数のダミー配線125を有していない。また、複数の第1の信号配線124a、及び複数の第2の信号配線124bは、図9に示すように、外表面側A3から見た場合において、超音波トランスデューサ11の中心に位置する領域ArOに重なり合わない領域にそれぞれ設けられている。
 本変形例1に係る配線部材12Bを採用した場合には、外表面側A3から見た場合において、領域ArOには導電層122Bが設けられていないため、当該導電層122Bによる音響性能の低下を回避することができる。
 図10は、本実施の形態1の変形例2を示す図である。具体的に、図10は、本変形例2に係る配線部材12Cの一部(第1の位置P1に配設された部分)を外表面側A3から見た平面図である。なお、図10では、説明の便宜上、樹脂層121及び複数の第1の信号配線124aの図示を省略している。
 本変形例2に係る配線部材12Cでは、上述した実施の形態1において説明した配線部材12に対して、導電層122とは異なる導電層122Cを採用している。
 導電層122Cは、導電層122とは異なり、複数のダミー配線125を有していない。また、複数の第2の信号配線124bは、図10に示すように、外表面側A3から見た場合において、複数の圧電素子111に対してなるべく重なり合わない状態で、一部が隣接する圧電素子111間に設けられている。なお、複数の第1の信号配線124aも同様である。
 本変形例2に係る配線部材12Cを採用した場合であっても、上述した変形例1と同様の効果を奏する。
 図11及び図12は、実施の形態1,2の変形例3を示す図である。具体的に、図11は、本変形例3に係る配線部材12Dを第1の面121a側から見た平面図である。図12は、配線部材12Dを第2の面121b側から見た平面図である。なお、図11及び図12では、説明の便宜上、複数の第1の信号配線124aの図示を省略している。また、図12では、絶縁層123の図示を省略している。
 上述した実施の形態1,2では、導電層122は、第2の面121b上にのみ設けられていた。すなわち、導電層122は、一層によって構成されていた。
 これに対して本変形例3に係る配線部材12Dに設けられた導電層122Dは、二層によって構成されている。具体的に、複数の第2の信号配線124bは、図11に示すように、第1の面121a上にそれぞれ設けられた一層と、第2の面121b上にそれぞれ設けられた一層との二層によって構成されている。なお、複数の第1の信号配線124aも同様である。
 本変形例3のように構成した場合には、互いに隣接する第2の信号配線124b間(互いに隣接する第1の信号配線124a間)の距離が長くなる。このため、互いに隣接する第2の信号配線124b間(互いに隣接する第1の信号配線124a間)の信号の相互干渉が抑制(クロストークの発生が抑制)される。
 図13及び図14は、実施の形態1,2の変形例4を示す図である。具体的に、図13及び図14は、内視鏡用コネクタ9内に設けられ、振動子ケーブルCBと超音波ケーブル31とを電気的に接続する接続部材200の構成を示す図である。また、図13は、FPC210の平面図である。図14は、接続部材200の側面図である。
 上述した実施の形態1,2に係る内視鏡システム1において、図13及び図14に示した接続部材200を採用しても構わない。
 接続部材200は、図13または図14に示すように、FPC210と、コネクタ220(図14)とを備える。
 FPC210は、図13または図14に示すように、回路基板211と、グラウンドパッド212と、複数(本変形例3では4つ)の信号パッド213と、カバー部材214とを備える。
 回路基板211は、ポリイミド等の絶縁材料から構成された長尺状の基板内にグラウンド線(図示略)や複数の信号線(図示略)が設けられた回路基板である。
 グラウンドパッド212は、回路基板211上において、振動子ケーブルCB側(図13,図14中、左側)の端部に設けられ、当該回路基板211内部のグラウンド線(図示略)に導通する。そして、グラウンドパッド212には、図14に示すように、振動子ケーブルCBのグラウンド線GRが電気的に接続される。
 複数の信号パッド213は、回路基板211上において、グラウンドパッド212に対して、図13及び図14中、右側に設けられている。これら複数の信号パッド213は、回路基板211の長手方向(図13,図14中、左右方向)に沿ってそれぞれ延在し、当該回路基板211の幅方向(図13中、上下方向)に沿って並列されている。そして、複数の信号パッド213において、図13及び図14中、右側の各端部は、回路基板211内部の複数の信号線(図示略)にそれぞれ導通する。
 カバー部材214は、カバーレイ等の絶縁材料から構成されている。そして、カバー部材214は、複数の信号パッド213を跨ぐ状態で設けられ、当該複数の信号パッド213を図13及び図14中、左側の領域ArLと右側の領域ArRとに区画する。
 そして、複数の信号パッド213において、領域ArLには、図14に示すように、振動子ケーブルCBの複数の信号線SGがそれぞれ電気的に接続される。一方、複数の信号パッド213において、領域ArRは、複数の圧電素子111から当該複数の信号線SGに至る各電気経路の検査用のパッドとして機能する。
 なお、図13及び図14の例では、カバー部材214は、回路基板211上におけるグラウンドパッド212と複数の信号パッド213との間、及び複数の信号パッド213における図13及び図14中、右側の端部上にも設けられている。
 コネクタ220は、回路基板211内部のグラウンド線(図示略)及び複数の信号線(図示略)と超音波ケーブル31とを電気的に接続するコネクタである。
 1 内視鏡システム
 2 超音波内視鏡
 3 超音波観測装置
 4 内視鏡観察装置
 5 表示装置
 6 挿入部
 7 操作部
 8 ユニバーサルコード
 9 内視鏡用コネクタ
 10,10A 超音波プローブ
 11 超音波トランスデューサ
 12,12B~12D 配線部材
 13 音響レンズ層
 14,14A 背面層
 15 保持部材
 16 音響整合層
 31 超音波ケーブル
 41 ビデオプロセッサ
 42 光源装置
 61 硬性部材
 62 湾曲部
 63 可撓管
 71 湾曲ノブ
 72 操作部材
 73 処置具挿入口
 111 圧電素子
 111a 第1の電極
 111b 第2の電極
 121 樹脂層
 121a 第1の面
 121b 第2の面
 122,122B~122D 導電層
 123 絶縁層
 124 信号配線
 124a 第1の信号配線
 124b 第2の信号配線
 125 ダミー配線
 151 保持部
 151a 凹部
 152 取付部
 152a 挿通孔
 200 接続部材
 210 FPC
 211 回路基板
 212 グラウンドパッド
 213 信号パッド
 214 カバー部材
 220 コネクタ
 611 傾斜面
 612 照明用孔
 613 撮像用孔
 614 送気送水用孔
 615 処置具チャンネル
 616 照明レンズ
 617 対物光学系
 A1 第1の方向
 A2 第2の方向
 A3 外表面側
 A4 背面側
 AD 接着剤
 Ar 超音波送受領域
 Ar1,ArL,ArO,ArR 領域
 Ax 挿入軸
 CB 振動子ケーブル
 ER1 一端
 ER2 他端
 ES1,ES2 端部
 GR グラウンド線
 P1 第1の位置
 P2 第2の位置
 SG 信号線
 SS 走査面
 VI ビア

Claims (9)

  1.  入力した電気信号に応じて超音波をそれぞれ出射する複数の圧電素子を有し、前記複数の圧電素子が第1の方向に沿って並列された超音波トランスデューサと、
     前記複数の圧電素子から出射された前記超音波を外部に放射する音響レンズ層と、
     前記超音波トランスデューサを挟んで前記音響レンズ層に対向する背面層と、
     前記音響レンズ層と前記超音波トランスデューサとの間の第1の位置、または、前記背面層を挟んで前記超音波トランスデューサに対向する第2の位置に少なくとも一部が配設された配線部材と、を備え、
     前記配線部材は、
     電気絶縁性を有する樹脂層と、
     前記樹脂層上に設けられ、前記複数の圧電素子とそれぞれ電気的に接続するとともに前記複数の圧電素子に前記超音波をそれぞれ出射させる前記電気信号をそれぞれ供給する複数の信号配線を有する導電層と、を備える超音波プローブ。
  2.  前記複数の信号配線は、
     前記樹脂層の長手方向に沿う長さが互いに異なる請求項1に記載の超音波プローブ。
  3.  前記配線部材は、
     前記導電層を挟んで前記樹脂層に対向する絶縁層をさらに有し、
     前記複数の信号配線は、
     前記絶縁層に設けられた複数のビアをそれぞれ経由することによって前記複数の圧電素子とそれぞれ電気的に接続する請求項1に記載の超音波プローブ。
  4.  前記導電層は、
     前記信号配線と同一の材料、及び同一の厚みを有するダミー配線を備える請求項1に記載の超音波プローブ。
  5.  前記複数の信号配線は、
     前記樹脂層上において、前記樹脂層における長手方向の一端から他端に向けて延在する第1の信号配線と、
     前記樹脂層上において、前記他端から前記一端に向けて延在する第2の信号配線と、を備える請求項1に記載の超音波プローブ。
  6.  前記配線部材の少なくとも一部は、
     前記第1の位置に配設されているとともに、前記複数の圧電素子と前記音響レンズ層との中間の音響インピーダンスを有する請求項1に記載の超音波プローブ。
  7.  前記背面層は、
     前記複数の圧電素子と電気的に接続するとともに、前記複数の圧電素子よりも大きい音響インピーダンスを有し、かつ、導電性を有するデマッチング層によって構成され、グラウンドとなるグラウンド線が電気的に接続される請求項6に記載の超音波プローブ。
  8.  前記背面層は、
     前記複数の圧電素子に対してそれぞれ複数、設けられているとともに、前記複数の圧電素子よりも大きい音響インピーダンスを有し、かつ、導電性を有する複数のデマッチング層によって構成され、
     前記配線部材の少なくとも一部は、
     前記第2の位置に配設され、
     前記複数の信号配線は、
     前記複数のデマッチング層を経由することによって、前記複数の圧電素子とそれぞれ電気的に接続する請求項1に記載の超音波プローブ。
  9.  被検体内に挿入される挿入部を有する超音波内視鏡において、
     前記挿入部の先端側には、
     入力した電気信号に応じて超音波をそれぞれ出射する複数の圧電素子を有し、前記複数の圧電素子が第1の方向に沿って並列された超音波トランスデューサと、
     前記複数の圧電素子から出射された前記超音波を外部に放射する音響レンズ層と、
     前記超音波トランスデューサを挟んで前記音響レンズ層に対向する背面層と、
     前記音響レンズ層と前記超音波トランスデューサとの間の第1の位置、または、前記背面層を挟んで前記超音波トランスデューサに対向する第2の位置に少なくとも一部が配設された配線部材と、を備え、
     前記配線部材は、
     電気絶縁性を有する樹脂層と、
     前記樹脂層上に設けられ、前記複数の圧電素子とそれぞれ電気的に接続するとともに前記複数の圧電素子に前記超音波をそれぞれ出射させる前記電気信号をそれぞれ供給する複数の信号配線を有する導電層と、を備える超音波内視鏡。
PCT/JP2018/039104 2018-10-19 2018-10-19 超音波プローブ及び超音波内視鏡 WO2020079855A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/039104 WO2020079855A1 (ja) 2018-10-19 2018-10-19 超音波プローブ及び超音波内視鏡
CN201880098650.0A CN112839591A (zh) 2018-10-19 2018-10-19 超声波探头和超声波内窥镜
JP2020551715A JP7085636B2 (ja) 2018-10-19 2018-10-19 超音波プローブ及び超音波内視鏡
US17/223,432 US11844649B2 (en) 2018-10-19 2021-04-06 Ultrasound probe and ultrasound endoscope
US18/385,584 US20240057974A1 (en) 2018-10-19 2023-10-31 Ultrasound probe and ultrasound endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/039104 WO2020079855A1 (ja) 2018-10-19 2018-10-19 超音波プローブ及び超音波内視鏡

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/223,432 Continuation US11844649B2 (en) 2018-10-19 2021-04-06 Ultrasound probe and ultrasound endoscope

Publications (1)

Publication Number Publication Date
WO2020079855A1 true WO2020079855A1 (ja) 2020-04-23

Family

ID=70283800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039104 WO2020079855A1 (ja) 2018-10-19 2018-10-19 超音波プローブ及び超音波内視鏡

Country Status (4)

Country Link
US (2) US11844649B2 (ja)
JP (1) JP7085636B2 (ja)
CN (1) CN112839591A (ja)
WO (1) WO2020079855A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024079914A1 (ja) * 2022-10-14 2024-04-18 オリンパスメディカルシステムズ株式会社 超音波振動子、医療機器、及び超音波振動子の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI822190B (zh) * 2022-07-18 2023-11-11 佳世達科技股份有限公司 超聲波換能模組及超聲波探頭

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275044A (ja) * 1990-03-23 1991-12-05 Hitachi Medical Corp 超音波探触子
JPH08122311A (ja) * 1994-10-21 1996-05-17 Ge Yokogawa Medical Syst Ltd 超音波探触子
JP2004298240A (ja) * 2003-03-28 2004-10-28 Olympus Corp 超音波内視鏡
JP2013150681A (ja) * 2012-01-24 2013-08-08 Toshiba Corp 超音波プローブおよび超音波診断装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3469386B2 (ja) * 1996-02-07 2003-11-25 株式会社東芝 超音波トランスジューサ及びその製造方法
JPH1156857A (ja) * 1997-08-27 1999-03-02 Olympus Optical Co Ltd 配列型超音波探触子
JP2000261891A (ja) * 1999-03-05 2000-09-22 Toshiba Corp 超音波探触子およびその製造方法
JP3780168B2 (ja) 2001-01-30 2006-05-31 オリンパス株式会社 超音波アレイ振動子
JP2006510269A (ja) * 2002-12-11 2006-03-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 超小型化された超音波送受波器
US8641627B2 (en) * 2003-11-26 2014-02-04 Imacor Inc. Transesophageal ultrasound using a narrow probe
EP1728563B1 (en) * 2005-05-30 2021-08-04 Toshiba Medical Systems Corporation Ultrasonic probe and ultrasonic probe manufacturing method
US7622848B2 (en) * 2006-01-06 2009-11-24 General Electric Company Transducer assembly with z-axis interconnect
JP2007215748A (ja) * 2006-02-16 2007-08-30 Fujifilm Corp 超音波内視鏡システム
JP4980653B2 (ja) * 2006-06-12 2012-07-18 オリンパスメディカルシステムズ株式会社 超音波探触子および超音波探触子を有する超音波内視鏡
US20080125658A1 (en) * 2006-09-01 2008-05-29 General Electric Company Low-profile acoustic transducer assembly
JP2009061112A (ja) * 2007-09-06 2009-03-26 Ge Medical Systems Global Technology Co Llc 超音波探触子および超音波撮像装置
US8197413B2 (en) * 2008-06-06 2012-06-12 Boston Scientific Scimed, Inc. Transducers, devices and systems containing the transducers, and methods of manufacture
JP4941998B2 (ja) * 2008-12-26 2012-05-30 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波プローブの圧電振動子、超音波プローブ、超音波診断装置及び超音波プローブにおける圧電振動子の製造方法
KR101064601B1 (ko) * 2009-02-10 2011-09-15 주식회사 휴먼스캔 초음파 탐촉자, 초음파 영상 장치 및 그의 제조 방법
JP5456048B2 (ja) * 2009-09-18 2014-03-26 株式会社東芝 医療用アレイ式超音波プローブおよび医療用超音波診断装置
JP5153972B2 (ja) * 2011-03-24 2013-02-27 オリンパスメディカルシステムズ株式会社 超音波振動子および超音波診断装置
JP5259762B2 (ja) * 2011-03-24 2013-08-07 株式会社東芝 超音波プローブ及び超音波プローブ製造方法
JP5725978B2 (ja) * 2011-06-02 2015-05-27 株式会社東芝 超音波プローブ
KR101496863B1 (ko) * 2013-05-09 2015-03-02 주식회사 휴먼스캔 분리 결합형 초음파 프로브 장치
WO2016175050A1 (ja) * 2015-04-30 2016-11-03 オリンパス株式会社 超音波振動子および超音波プローブ
CN107708576B (zh) * 2015-06-23 2021-07-13 奥林巴斯株式会社 超声波振子和超声波探头
EP3479773B1 (en) * 2016-06-30 2019-12-18 FUJIFILM Corporation Ultrasonic endoscope
JP2018085612A (ja) * 2016-11-22 2018-05-31 セイコーエプソン株式会社 超音波センサー及び超音波センサー用圧電デバイス
EP3706438A4 (en) * 2017-11-01 2021-01-06 FUJIFILM Corporation COMPOSITION OF RESIN FOR ACOUSTIC ADAPTATION LAYER, CURED PRODUCT, ACOUSTIC ADAPTATION SHEET, ACOUSTIC WAVES PROBE, ACOUSTIC WAVE MEASURING DEVICE, PRODUCTION PROCESS FOR ACOUSTICAL WAVES PROBE AND ACOUSTIC ADAPTATION LAYER MATERIALS
US11806191B2 (en) * 2018-05-21 2023-11-07 General Electric Company Phased array transducers and wafer scale manufacturing for making the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275044A (ja) * 1990-03-23 1991-12-05 Hitachi Medical Corp 超音波探触子
JPH08122311A (ja) * 1994-10-21 1996-05-17 Ge Yokogawa Medical Syst Ltd 超音波探触子
JP2004298240A (ja) * 2003-03-28 2004-10-28 Olympus Corp 超音波内視鏡
JP2013150681A (ja) * 2012-01-24 2013-08-08 Toshiba Corp 超音波プローブおよび超音波診断装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024079914A1 (ja) * 2022-10-14 2024-04-18 オリンパスメディカルシステムズ株式会社 超音波振動子、医療機器、及び超音波振動子の製造方法

Also Published As

Publication number Publication date
US11844649B2 (en) 2023-12-19
CN112839591A (zh) 2021-05-25
JP7085636B2 (ja) 2022-06-16
JPWO2020079855A1 (ja) 2021-09-02
US20240057974A1 (en) 2024-02-22
US20210219957A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
CN107079223B (zh) 超声波振子以及超声波探头
US20240057974A1 (en) Ultrasound probe and ultrasound endoscope
JP6588630B2 (ja) 超音波振動子ユニット
US11076837B2 (en) Ultrasonic endoscope
US11202620B2 (en) Ultrasonic endoscope
CN107708576B (zh) 超声波振子和超声波探头
CN108882919B (zh) 超声波振子单元及使用该单元的超声波内窥镜
US20190350555A1 (en) Ultrasonic transducer, ultrasonic endoscope, and method of manufacturing ultrasonic transducer
JP5876196B1 (ja) 超音波内視鏡
US20230346342A1 (en) Ultrasound probe, ultrasound transducer unit, and ultrasound endoscope
US20220354458A1 (en) Ultrasound probe and ultrasound endoscope
CN111656799B (zh) 超声波探头
CN111093524B (zh) 超声波振子和超声波内窥镜
JP6800078B2 (ja) 超音波振動子、超音波内視鏡、及び超音波振動子の製造方法
JP6581302B2 (ja) 超音波振動子モジュールおよび超音波内視鏡
JP6944885B2 (ja) 超音波振動子及び超音波内視鏡
JP2023092343A (ja) 超音波振動子、超音波振動子の製造方法、及び超音波プローブ
JP2006130222A (ja) 超音波内視鏡
JP2018064744A (ja) 超音波振動子、超音波内視鏡、及び超音波振動子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020551715

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936867

Country of ref document: EP

Kind code of ref document: A1