WO2024079914A1 - 超音波振動子、医療機器、及び超音波振動子の製造方法 - Google Patents

超音波振動子、医療機器、及び超音波振動子の製造方法 Download PDF

Info

Publication number
WO2024079914A1
WO2024079914A1 PCT/JP2022/038484 JP2022038484W WO2024079914A1 WO 2024079914 A1 WO2024079914 A1 WO 2024079914A1 JP 2022038484 W JP2022038484 W JP 2022038484W WO 2024079914 A1 WO2024079914 A1 WO 2024079914A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic transducer
thickness
layer
piezoelectric element
wire
Prior art date
Application number
PCT/JP2022/038484
Other languages
English (en)
French (fr)
Inventor
暁 吉田
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to PCT/JP2022/038484 priority Critical patent/WO2024079914A1/ja
Publication of WO2024079914A1 publication Critical patent/WO2024079914A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present invention relates to an ultrasonic transducer, a medical device, and a method for manufacturing an ultrasonic transducer.
  • ultrasonic transducers having piezoelectric elements that transmit and receive ultrasonic waves are known (see, for example, Patent Document 1).
  • a dematching layer that reflects ultrasonic waves is laminated on the back side of the piezoelectric element, and an FPC (Flexible Printed Circuits) for transmitting and receiving electrical signals to the piezoelectric element.
  • FPC Flexible Printed Circuits
  • a conductive electrode layer can be formed on the surface of the dematching layer by plating, and the wire can be soldered to the electrode layer.
  • the electrode layer can melt and be absorbed by the solder (eaten by the solder), which can result in poor connection.
  • the present invention has been made in consideration of the above, and aims to provide an ultrasonic transducer, a medical device, and a method for manufacturing an ultrasonic transducer that reduce noise and prevent poor connections.
  • an ultrasonic transducer comprises a piezoelectric element layer having a piezoelectric element that transmits and receives ultrasonic waves, a dematching layer laminated on the piezoelectric element layer and reflecting at least a portion of the ultrasonic waves, the dematching layer having a first member and a second member having a higher conductivity than the first member, and a wire electrically connected to the second member.
  • the wire is made of a material different from that of the second member.
  • the wire is electrically connected to the second member by soldering.
  • an ultrasonic transducer includes a backing material that contains the wire and absorbs or attenuates the ultrasonic waves.
  • the first member is made of a material that has a higher acoustic impedance than the second member.
  • the second member has a first surface located between the piezoelectric element layer and the first member, a second surface located on the opposite side of the first surface across the first member, and a third surface connected to the first surface and the second surface.
  • the thickness of the second surface is 1/3 or less of the thickness of the dematching layer.
  • the thickness of the second surface is greater than the thickness of the first surface and the thickness of the third surface, and the wire is electrically connected to the second surface.
  • the thickness of the third surface is greater than the thickness of the first surface and the thickness of the second surface, and the wire is electrically connected to the third surface.
  • an uneven surface is formed between the first member and the second member, and the wire is electrically connected to the surface of the second member on which the uneven surface is formed.
  • the first member and the second member are made of the same material, and the concentration of the conductive material contained in the second member is higher than the concentration of the conductive material contained in the first member.
  • the first member includes at least one of tungsten (W), cobalt (Co), nickel (Ni), titanium (Ti), chromium (Cr), molybdenum (Mo), tantalum (Ta), and carbon (C).
  • the second member includes at least one of gold (Au), silver (Ag), copper (Cu), cobalt (Co), nickel (Ni), titanium (Ti), chromium (Cr), molybdenum (Mo), tantalum (Ta), and carbon (C).
  • a medical device includes an ultrasound transducer and an insertion section having the ultrasound transducer at its tip and inserted into a subject.
  • the medical device includes an imaging unit that captures images of the inside of the subject.
  • a method for manufacturing an ultrasonic transducer includes preparing a piezoelectric element layer having a piezoelectric element that transmits and receives ultrasonic waves, and a dematching layer that reflects at least a portion of the ultrasonic waves, the dematching layer having a first member and a second member having a higher conductivity than the first member, laminating the dematching layer on the piezoelectric element layer, and electrically connecting a wire to the second member.
  • the second member has a first surface located between the piezoelectric element layer and the first member, a second surface located on the opposite side of the first surface across the first member, and a third surface connected to the first surface and the second surface.
  • a method for manufacturing an ultrasonic transducer includes preparing a dematching layer in which the thickness of the second surface is greater than the thickness of the first surface and the thickness of the third surface, and electrically connecting the wire to the second surface.
  • the method for manufacturing an ultrasonic transducer involves increasing the thickness of the second surface of the laminate in which the dematching layer is laminated on the piezoelectric element layer by plating to be thicker than the thicknesses of the first surface and the third surface, and electrically connecting the wire to the second surface.
  • the present invention makes it possible to realize an ultrasonic transducer, a medical device, and a method for manufacturing an ultrasonic transducer that reduce noise and prevent poor connections.
  • FIG. 1 is a schematic diagram showing an entire endoscope system.
  • FIG. 2 is a perspective view showing the tip of the insertion portion.
  • FIG. 3 is a cross-sectional view showing the configuration of an ultrasonic transducer including the ultrasonic transducer according to the first embodiment.
  • FIG. 4 is a cross-sectional view taken along line AA of FIG.
  • FIG. 5 is a flowchart showing an overview of steps in a method for manufacturing an ultrasonic transducer according to the first embodiment.
  • FIG. 6 is a diagram showing how the members are prepared.
  • FIG. 7 is a diagram showing how the members are stacked.
  • FIG. 8 is a diagram showing how wires are connected.
  • FIG. 9 is a flowchart showing an outline of steps in a method for manufacturing an ultrasonic transducer according to the second embodiment.
  • FIG. 10 is a diagram showing how the members are prepared.
  • FIG. 11 is a diagram showing how the members are stacked.
  • FIG. 12 is a cross-sectional view of an ultrasonic transducer according to the third embodiment.
  • FIG. 13 is a diagram showing how members are prepared.
  • FIG. 14 is a diagram showing how the members are stacked.
  • FIG. 15 is a diagram showing how wires are connected.
  • FIG. 16 is a flowchart showing an overview of steps in a method for manufacturing an ultrasonic transducer according to the fourth embodiment.
  • FIG. 17 is a cross-sectional view of an ultrasonic transducer according to the fifth embodiment.
  • FIG. 16 is a flowchart showing an overview of steps in a method for manufacturing an ultrasonic transducer according to the fourth embodiment.
  • FIG. 17 is a cross-sectional view of an ultra
  • FIG. 18 is a diagram showing how members are prepared.
  • FIG. 19 is a diagram showing how the members are stacked.
  • FIG. 20 is a diagram showing how wires are connected.
  • FIG. 21 is a flowchart showing an outline of steps in a method for manufacturing an ultrasonic transducer according to the sixth embodiment.
  • FIG. 22 is a diagram showing how members are prepared.
  • FIG. 23 is a diagram showing how the various members are stacked.
  • FIG. 24 is a cross-sectional view of an ultrasonic transducer according to the seventh embodiment.
  • FIG. 25 is a cross-sectional view of an ultrasonic transducer according to the eighth embodiment.
  • FIG. 26 is a cross-sectional view of an ultrasonic transducer according to the ninth embodiment.
  • Fig. 1 is a schematic diagram showing an entire endoscope system.
  • the endoscope system 1 as a medical device is a system that performs ultrasonic diagnosis and treatment inside a subject such as a human being using an ultrasonic endoscope.
  • the endoscope system 1 includes an ultrasonic endoscope 2, an ultrasonic observation device 3, an endoscopic observation device 4, and a display device 5.
  • the ultrasonic endoscope 2 can be partially inserted into the subject, and has the functions of transmitting ultrasonic pulses (acoustic pulses) toward the body wall of the subject, receiving ultrasonic echoes reflected by the subject and outputting echo signals, and capturing images of the inside of the subject and outputting image signals.
  • the detailed configuration of the ultrasonic endoscope 2 will be described later.
  • the ultrasound observation device 3 is electrically connected to the ultrasound endoscope 2 via an ultrasound cable 31, and outputs a pulse signal to the ultrasound endoscope 2 via the ultrasound cable 31, and also inputs an echo signal from the ultrasound endoscope 2. The ultrasound observation device 3 then performs a predetermined process on the echo signal to generate an ultrasound image.
  • the endoscopic observation device 4 is detachably connected to the endoscopic connector 9 of the ultrasonic endoscope 2. As shown in FIG. 1, the endoscopic observation device 4 includes a video processor 41 and a light source device 42.
  • the video processor 41 inputs an image signal from the ultrasonic endoscope 2 via the endoscope connector 9. The video processor 41 then performs a predetermined process on the image signal to generate an endoscopic image.
  • the light source device 42 supplies illumination light to the ultrasound endoscope 2 via the endoscope connector 9 to illuminate the inside of the subject.
  • the display device 5 is configured using a liquid crystal, an organic EL (Electro Luminescence), a CRT (Cathode Ray Tube), or a projector, and displays ultrasound images generated by the ultrasound observation device 3, endoscopic images generated by the endoscopic observation device 4, etc.
  • a liquid crystal an organic EL (Electro Luminescence), a CRT (Cathode Ray Tube), or a projector
  • the ultrasonic endoscope 2 includes an insertion section 6, an operation section 7, a universal cord 8, and an endoscope connector 9, as shown in FIG.
  • FIG. 2 is a perspective view showing the tip of the insertion section.
  • the tip side of the insertion section 6 (the tip side in the direction of insertion into the subject) will be referred to simply as the "tip side”
  • the base side of the insertion section 6 (the side away from the tip of the insertion section 6) will be referred to as the "base side”.
  • the insertion section 6 is the part that is inserted into the subject. As shown in FIG. 1 or FIG. 2, the insertion section 6 includes an ultrasound probe 10 disposed at the tip, a rigid member 61 connected to the base end of the ultrasound probe 10, a bending section 62 connected to the base end of the rigid member 61 and allowing bending, and a flexible tube 63 (FIG. 1) connected to the base end of the bending section 62 and having flexibility.
  • a light guide for transmitting the illumination light supplied from the light source device 42, a transducer cable for transmitting pulse signals and echo signals, and a signal cable for transmitting image signals, and there are also ducts for circulating fluids.
  • the rigid member 61 is a rigid member made of a resin material or the like. As shown in FIG. 2, the tip of the rigid member 61 is provided with an illumination section 611 that irradiates illumination light into the subject, an imaging section 612 that images the inside of the subject, and a treatment tool channel 613 that allows a treatment tool to protrude from the tip of the insertion section 6.
  • the illumination unit 611 is located at the tip and includes a light guide that transmits the illumination light output by the light source device 42 to the tip of the insertion section 6, and an illumination lens that irradiates the illumination light emitted from the exit end of the light guide into the subject.
  • the imaging unit 612 captures images of the inside of the subject.
  • the imaging unit 612 has an objective optical system that collects light (subject image) that is irradiated into the subject and reflected within the subject, and an imaging element that captures the subject image collected by the objective optical system.
  • the image signal captured by the imaging element is transmitted to the endoscopic observation device 4 (video processor 41) via a signal cable.
  • the treatment tool channel 613 is a passageway that allows a treatment tool, such as a puncture needle, inserted inside the insertion section 6 to protrude to the outside.
  • the operation unit 7 is connected to the base end side of the insertion unit 6 and is a part that accepts various operations from a doctor or the like. As shown in FIG. 1, this operation unit 7 includes a bending knob 71 for bending the bending portion 62, and a plurality of operating members 72 for performing various operations.
  • the operating section 7 also has a treatment tool insertion port 73 (Fig. 1) that communicates with the treatment tool channel 613 via a tube provided inside the curved section 62 and the flexible tube 63, and through which the treatment tool can be inserted.
  • a treatment tool insertion port 73 (Fig. 1) that communicates with the treatment tool channel 613 via a tube provided inside the curved section 62 and the flexible tube 63, and through which the treatment tool can be inserted.
  • the universal cord 8 extends from the operating unit 7 and is a cord on which a light guide, a transducer cable, a signal cable, and a tube that constitutes part of the duct are arranged.
  • the endoscope connector 9 is provided at the end of the universal cord 8.
  • the endoscope connector 9 is connected to the ultrasound cable 31 and is inserted into the endoscopic observation device 4 to connect to the video processor 41 and the light source device 42.
  • Fig. 3 is a cross-sectional view showing the configuration of an ultrasonic transducer including an ultrasonic transducer according to embodiment 1.
  • the ultrasonic probe 10 is a convex type ultrasonic transducer including a plurality of ultrasonic transducers 100 arranged in an arc shape, but may be a radial type or linear type ultrasonic transducer.
  • Fig. 4 is a cross-sectional view corresponding to line A-A in Fig. 3.
  • the ultrasonic transducer 100 includes a piezoelectric element layer 101, a dematching layer 102, a wire 103, a backing material 104, a first acoustic matching layer 105, and a second acoustic matching layer 106.
  • the piezoelectric element layer 101 has piezoelectric elements that transmit and receive ultrasonic waves. Each piezoelectric element layer 101 is configured as a long rectangular parallelepiped with its long sides extending in the left-right direction in FIG. 4. The piezoelectric element layer 101 converts a pulse signal input via the wire 103 and the dematching layer 102 into an ultrasonic pulse and transmits it to the subject. The piezoelectric element layer 101 also converts an ultrasonic echo reflected by the subject into an electrical echo signal represented by a voltage change, and outputs it to the wire 103 via the dematching layer 102.
  • the piezoelectric element is formed using PMN-PT single crystal, PMN-PZT single crystal, PZN-PT single crystal, PIN-PZN-PT single crystal, or relaxor material.
  • the PMN-PT single crystal is an abbreviation for a solid solution of magnesium lead niobate and lead titanate.
  • the PMN-PZT single crystal is an abbreviation for a solid solution of magnesium lead niobate and lead zirconate titanate.
  • the PZN-PT single crystal is an abbreviation for a solid solution of zinc lead niobate and lead titanate.
  • the PIN-PZN-PT single crystal is an abbreviation for a solid solution of indium lead niobate, zinc lead niobate, and lead titanate.
  • the relaxor material is a general term for a ternary piezoelectric material in which a lead-based composite perovskite, which is a relaxor material, is added to lead zirconate titanate (PZT) for the purpose of increasing the piezoelectric constant and dielectric constant.
  • Lead-based complex perovskite is represented by Pb(B1, B2) O3 , where B1 is either magnesium, zinc, indium or scandium, and B2 is either niobium, tantalum or tungsten. These materials have an excellent piezoelectric effect. Therefore, even if they are miniaturized, the electrical impedance value can be reduced.
  • the dematching layer 102 is laminated on the piezoelectric element layer 101 and reflects at least a portion of the ultrasonic waves.
  • the dematching layer 102 has a first member 121 and a second member 122.
  • the first member 121 is made of a material with a higher acoustic impedance than the second member 122.
  • the first member 121 is, for example, tungsten carbide, which has a high acoustic impedance, but may also contain at least one of tungsten (W), cobalt (Co), nickel (Ni), titanium (Ti), chromium (Cr), molybdenum (Mo), tantalum (Ta), and carbon (C).
  • the second member 122 has a higher conductivity than the first member 121.
  • the second member 122 is, for example, gold (Au), but may also contain at least one of silver (Ag), copper (Cu), cobalt (Co), nickel (Ni), titanium (Ti), chromium (Cr), molybdenum (Mo), tantalum (Ta), and carbon (C).
  • the second member 122 has a first surface 1221 located between the piezoelectric element layer 101 and the first member 121, a second surface 1222 located on the opposite side of the first surface 1221 of the first member 121, and a third surface 1223 connected to the first surface 1221 and the second surface 1222.
  • the thickness of the second surface 1222 is thicker than the thickness of the first surface 1221 and the thickness of the third surface 1223.
  • the thickness of the second surface 1222 is preferably 1/2 or less, more preferably 1/3 or less, of the thickness of the dematching layer 102. By not making the thickness of the second surface 1222 too thick, it is possible to prevent the effect of the dematching layer 102 reflecting ultrasonic waves from being reduced.
  • the thickness of the second surface 1222 is the dimension of the second surface 1222 in a direction perpendicular to the second surface 1222.
  • the thickness of the first surface 1221 and the thickness of the third surface 1223 are the dimensions of the first surface 1221 and the third surface 1223 in a direction perpendicular to the first surface 1221 and the third surface 1223.
  • the thickness of the dematching layer 102 is the dimension of the dematching layer 102 in the direction in which the dematching layer 102 and the piezoelectric element layer 101 are stacked.
  • One end of the wire 103 is electrically connected to the second surface 1222 of the second member 122 by soldering, but may also be electrically connected by ultrasonic fusion or brazing.
  • the other end of the wire 103 is electrically connected to the ultrasound observation device 3 via the universal cord 8 and the ultrasound cable 31, but these are omitted from FIG. 4.
  • the wire 103 transmits pulse signals output from the ultrasound observation device 3 to each piezoelectric element layer 101, and transmits echo signals output by each piezoelectric element layer 101 to the ultrasound observation device 3.
  • the wire 103 is made of a different material from the second member 122.
  • the backing material 104 encompasses the wire 103 and absorbs or attenuates unnecessary ultrasonic waves generated by the operation of the piezoelectric element layer 101.
  • the backing material 104 is formed using a material with a high absorption rate or attenuation rate, such as epoxy resin with alumina, zirconia or other filler dispersed therein, or rubber with the above-mentioned filler dispersed therein. Note that depending on the characteristics of the piezoelectric element layer 101 and the object to be observed, it may not be necessary to provide the backing material 104.
  • the first acoustic matching layer 105 and the second acoustic matching layer 106 are located in the direction in which each piezoelectric element layer 101 transmits ultrasonic waves (upward in FIG. 4) relative to the piezoelectric element layer 101. As shown in FIG. 3, the first acoustic matching layer 105 and the second acoustic matching layer 106 are continuous along the arrangement direction of the multiple piezoelectric element layers 101, and hold each piezoelectric element layer 101 in an arc shape.
  • the first acoustic matching layer 105 and the second acoustic matching layer 106 match the acoustic impedance between the piezoelectric element layer 101 and the observation target in order to efficiently transmit sound (ultrasound) between the piezoelectric element layer 101 and the observation target.
  • the first acoustic matching layer 105 and the second acoustic matching layer 106 are made of different materials.
  • the description is given assuming that there are two acoustic matching layers (the first acoustic matching layer 105 and the second acoustic matching layer 106), but depending on the characteristics of the piezoelectric element layer 101 and the observation target, an acoustic matching layer may not be provided, one layer may be provided, or three or more layers may be provided.
  • FIG. 6 is a diagram showing how the members are prepared. As shown in FIG. 6, the piezoelectric element layer 101, the dematching layer 102, the backing material 104, the first acoustic matching layer 105, and the second acoustic matching layer 106 are prepared. At this time, the thickness of the second surface 1222 of the second member 122 is made thicker than the thickness of the first surface 1221 and the thickness of the third surface 1223.
  • FIG. 7 is a diagram showing how the various components are laminated. As shown in FIG. 7, a laminate is formed in which the dematching layer 102 to the second acoustic matching layer 106 are laminated.
  • step S3 dicing is performed by cutting the laminate formed in step S2 with a dicing saw (step S3).
  • step S3 a dicing saw
  • FIG. 8 is a diagram showing how the wires are connected. As shown in Figure 8, the wires 103 are electrically connected to the second surface 1222 of the second member 122 by soldering.
  • the backing material 104 is filled on the side of the piezoelectric element layer 101 where the dematching layer 102 is laminated (step S5).
  • an ultrasonic probe 10 having a plurality of ultrasonic transducers 100 is manufactured.
  • step S4 when the wire 103 is electrically connected to the second surface 1222 of the second member 122 by soldering, the thickness of the second surface 1222 is increased. As a result, it is possible to prevent the second member 122 from melting and being absorbed by the solder (being eaten by the solder), and it is possible to prevent poor connection.
  • the ultrasonic transducer 100 does not have an FPC, so noise caused by reflection from the FPC is prevented.
  • the dematching layer 102 and the piezoelectric element layer 101 are cut by dicing, and the first acoustic matching layer 105 and the second acoustic matching layer 106 located on the outer side of the piezoelectric elements are used as a reference for bending.
  • the piezoelectric element layer 101, the first acoustic matching layer 105, and the second acoustic matching layer 106 are cut by dicing, and the bending is performed on the basis of an FPC or the like located on the inner side of the piezoelectric elements, the pitch between the piezoelectric elements will expand when bending, and the pitch cannot be maintained.
  • FIG. 10 is a diagram showing how the members are prepared.
  • a piezoelectric element layer 101, a dematching layer 102, a backing material 104, a first acoustic matching layer 105, and a second acoustic matching layer 106 are prepared.
  • the first surface 1221, the second surface 1222, and the third surface 1223 of the prepared second member 122 have the same thickness. Note that the thickness of each surface refers to the dimension of each surface in the direction perpendicular to each surface.
  • FIG. 11 is a diagram showing how each member is laminated. As shown in Figure 11, a laminate is formed in which the dematching layer 102 to the second acoustic matching layer 106 are laminated.
  • step S3 dicing is performed by cutting the laminate formed in step S2 with a dicing saw (step S3).
  • step S3 a dicing saw
  • step S12 the thickness of the second surface 1222 of the dematching layer 102 is increased (step S12). This can be achieved by plating or sputtering the back side of the laminate. As a result, a laminate similar to that shown in FIG. 7 is formed. The subsequent steps may be similar to those in embodiment 1, so a description thereof will be omitted.
  • the thickness of the second surface 1222 of the second member 122 may be increased after the layers are laminated. In this case, as in the first embodiment, it is possible to prevent the second member 122 from melting and being absorbed by the solder (being eaten by the solder), thereby preventing poor connections.
  • FIG. 12 is a cross-sectional view of an ultrasonic transducer according to embodiment 3.
  • Fig. 12 in the dematching layer 102A of the ultrasonic transducer 100A according to embodiment 3, an uneven surface is formed between the first member 121A and the second member 122A.
  • the wire 103 is electrically connected to the second surface 1222A of the second member 122A on which the uneven surface is formed.
  • the method for manufacturing the ultrasonic transducer 100A is similar to the process shown in FIG. 5.
  • FIG. 13 is a diagram showing how the members are prepared.
  • the piezoelectric element layer 101, the dematching layer 102A, the backing material 104, the first acoustic matching layer 105, and the second acoustic matching layer 106 are prepared.
  • an uneven surface is formed between the first member 121A and the second member 122A of the dematching layer 102A. This can be achieved by plating the surface of the first member 121A with the uneven surface to form the second member 122A, so that the recesses are filled.
  • FIG. 14 is a diagram showing how the various components are laminated. As shown in Figure 14, a laminate is formed in which the dematching layer 102A to the second acoustic matching layer 106 are laminated.
  • step S3 dicing is performed by cutting the laminate formed in step S2 with a dicing saw (step S3).
  • step S3 a dicing saw
  • FIG. 15 is a diagram showing how the wires are connected. As shown in Figure 15, the wire 103 is electrically connected to the second surface 1222A of the second member 122A by soldering.
  • the backing material 104 is filled on the side of the piezoelectric element layer 101 where the dematching layer 102A is laminated (step S5).
  • an ultrasonic probe having multiple ultrasonic transducers 100A is manufactured.
  • step S4 when the wire 103 is electrically connected to the second surface 1222A of the second member 122A by soldering in step S4, an uneven surface is formed between the first member 121A and the second surface 1222A. As a result, it is possible to prevent the second member 122A from melting and being absorbed by the solder (being eaten by the solder), and it is possible to prevent poor connection.
  • the same process as in FIG. 9 is performed up to step S3, and as shown in FIG. 11, the dematching layer 102 and the piezoelectric element layer 101 are cut, and a laminate is formed in which the dematching layer 102 to the second acoustic matching layer 106 are stacked.
  • the first surface 1221, the second surface 1222, and the third surface 1223 of the second member 122 have the same thickness. Note that the thickness of each surface refers to the dimension of each surface in the direction perpendicular to each surface.
  • an uneven surface is formed between the first member 121A and the second member 122A of the dematching layer 102A (step S21).
  • This can be achieved by forming an uneven surface on the back side of the laminate by etching, laser irradiation, sandblasting, etc., and then plating the recesses to fill them, or by attaching a highly conductive material to the back side.
  • the subsequent steps may be similar to those in embodiment 3, so a description thereof will be omitted.
  • an uneven surface may be formed between the first member 121A and the second member 122A of the second member 122A after the layers are laminated.
  • Fig. 17 is a cross-sectional view of an ultrasonic transducer according to embodiment 5.
  • the dematching layer 102B of the ultrasonic transducer 100B according to embodiment 4 has a first member 121B and a second member 122B laminated on the surface of the first member 121B opposite to the piezoelectric element layer 101.
  • the first member 121B and the second member 122B are made of the same material, but the second member 122B has a higher concentration of conductive material than the first member 121B, and is more conductive than the first member 121B.
  • the first member 121B and the second member 122B are formed by adding a conductive filler to tungsten carbide, for example, but the second member 122B has a higher concentration of filler than the first member 121B.
  • the thickness of the second member 122B is made thick so as to prevent it from being absorbed into the solder when connecting the wire 103.
  • the thickness of the second member 122B is preferably 1/2 or less, and more preferably 1/3 or less, of the thickness of the dematching layer 102B.
  • the thickness of the dematching layer 102B and the thickness of the second member 122B are the respective dimensions in the direction in which the first member 121B and the second member 122B are arranged. In other words, the dimensions perpendicular to the surface on which soldering is performed are the thickness of the dematching layer 102B and the thickness of the second member 122B.
  • a portion of the tungsten carbide may be formed with a higher binder concentration. That is, a portion of the tungsten carbide may be the second member 122B, and a portion with a relatively low binder concentration may be the first member 121B. Furthermore, the first member 121B and the second member 122B may be formed separately and then joined together. That is, two pieces of tungsten carbide with different binder or filler concentrations may be formed and then joined together.
  • the method for manufacturing an ultrasonic transducer according to embodiment 5 is similar to the method shown in FIG. 5.
  • FIG. 18 is a diagram showing how the members are prepared. As shown in FIG. 18, a piezoelectric element layer 101, a dematching layer 102B, a backing material 104, a first acoustic matching layer 105, and a second acoustic matching layer 106 are prepared.
  • the dematching layer 102B has a first member 121B and a second member 122B that is more conductive than the first member 121B.
  • FIG. 19 is a diagram showing how the various components are laminated. As shown in Figure 19, a laminate is formed in which the dematching layer 102B to the second acoustic matching layer 106 are laminated.
  • step S3 dicing is performed by cutting the laminate formed in step S2 with a dicing saw (step S3).
  • step S3 a dicing saw
  • FIG. 20 is a diagram showing how the wires are connected. As shown in Figure 20, the wire 103 is electrically connected to the second member 122B by soldering.
  • the backing material 104 is filled on the side of the piezoelectric element layer 101 where the dematching layer 102B is laminated (step S5).
  • an ultrasonic probe having multiple ultrasonic transducers 100B is manufactured.
  • step S4 when the wire 103 is electrically connected to the second member 122B by soldering, the thickness of the second member 122B is increased. As a result, it is possible to prevent the second member 122B from melting and being absorbed by the solder (being eaten by the solder), and it is possible to prevent poor connection.
  • FIG. 21 is a diagram showing how the members are prepared. As shown in FIG. 22, the piezoelectric element layer 101, the first member 121B, the backing material 104, the first acoustic matching layer 105, and the second acoustic matching layer 106 are prepared.
  • FIG. 23 is a diagram showing how the members are laminated. As shown in Figure 23, a laminate is formed in which the first member 121B to the second acoustic matching layer 106 are laminated.
  • step S3 dicing is performed by cutting the laminate formed in step S2 with a dicing saw (step S3).
  • step S3 a dicing saw
  • step S31 the second member 122B of the dematching layer 102B is formed (step S31). This can be achieved by plating, sputtering, impregnation, or attaching a highly conductive member to the back side of the laminate. This forms a laminate similar to that in FIG. 7, and the subsequent steps can be similar to those in embodiment 1, so a description thereof will be omitted.
  • the second member 122B may be formed after the layers are laminated. In this case, too, it is possible to prevent the second member 122B from melting and being absorbed by the solder (being eaten by the solder), thereby preventing poor connections.
  • Fig. 24 is a cross-sectional view of an ultrasonic transducer according to the seventh embodiment.
  • the dematching layer 102C of the ultrasonic transducer 100C according to the seventh embodiment has a first member 121C and a second member 122C.
  • the thickness of the third surface 1223C of the second member 122C is made thicker than the thickness of the first surface 1221 and the thickness of the second surface 1222C.
  • the wire 103 is electrically connected to the third surface 1223C.
  • the thickness of each surface is the dimension of each surface in a direction perpendicular to each surface.
  • the thickness of the third surface 1223C is made thick. As a result, it is possible to prevent the second member 122C from melting and being absorbed by the solder (being eaten by the solder), and it is possible to prevent poor connection.
  • Fig. 25 is a cross-sectional view of an ultrasonic transducer according to embodiment 8.
  • an uneven surface is formed between the first member 121D and the second member 122D.
  • the wire 103 is electrically connected to the third surface 1223D on which the uneven surface of the second member 122D is formed.
  • the second surface 1222D has the same thickness as the first surface 1221. The thickness of each surface is the dimension of each surface in a direction perpendicular to each surface.
  • the wire 103 when the wire 103 is electrically connected to the third surface 1223D of the second member 122D by soldering, an uneven surface is formed between the first member 121D and the third surface 1223D. As a result, it is possible to prevent the second member 122D from melting and being absorbed by the solder (being eaten by the solder), and it is possible to prevent poor connection.
  • Fig. 26 is a cross-sectional view of an ultrasonic transducer according to embodiment 9.
  • a dematching layer 102E of an ultrasonic transducer 100E according to embodiment 9 has a first member 121E and a second member 122E formed on a side surface of the first member 121E.
  • the first member 121E and the second member 122E are made of the same material, but the second member 122E has a higher concentration of conductive material than the first member 121E, and is more conductive than the first member 121E.
  • the thickness of the second member 122E is made thicker so as to prevent it from being absorbed into the solder when connecting the wire 103.
  • the thickness of the second member 122E is preferably 1/2 or less, and more preferably 1/3 or less, of the thickness of the dematching layer 102E.
  • the thickness of the dematching layer 102E and the thickness of the second member 122E are the respective dimensions in the direction in which the first member 121E and the second member 122E are aligned. In other words, the thickness of the dematching layer 102E and the thickness of the second member 122E are the dimensions in the direction perpendicular to the surface on which soldering is performed.
  • the thickness of the second member 122E is increased. As a result, it is possible to prevent the second member 122E from melting and being absorbed by the solder (being eaten by the solder), and it is possible to prevent poor connection.
  • ultrasonic endoscopes as medical devices, but they could also be ultrasonic catheters, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

超音波振動子は、超音波を送受信する圧電素子を有する圧電素子層と、前記圧電素子層に積層されており、前記超音波の少なくとも一部を反射するデマッチング層であって、第1部材、及び前記第1部材より導電性が高い第2部材を有するデマッチング層と、前記第2部材に電気的に接続されているワイヤと、を備える。これにより、ノイズを低減し、かつ接続不良を防止した超音波振動子を提供する。

Description

超音波振動子、医療機器、及び超音波振動子の製造方法
 本発明は、超音波振動子、医療機器、及び超音波振動子の製造方法に関する。
 従来、超音波を送受信する圧電素子を有する超音波振動子が知られている(例えば、特許文献1参照)。特許文献1の超音波振動子では、圧電素子の裏面側に超音波を反射するデマッチング層と、圧電素子に電気信号を送受信するためのFPC(Flexible Printed Circuits)とが積層されている。
特開2013-77940号公報
 しかしながら、圧電素子の裏面側にFPCが積層されている場合、FPCで反射された超音波がノイズとなり、超音波画像の画質を低下させるという課題があった。
 また、デマッチング層の表面にメッキ加工により導電性を有する電極層を形成し、電極層にワイヤを半田付けする構成とすることもできる。しかしながら、ワイヤを半田付けする際に、電極層が溶融して半田に吸収される(半田に喰われる)場合があり、接続不良となるおそれがあった。
 本発明は、上記に鑑みてなされたものであって、ノイズを低減し、かつ接続不良を防止した超音波振動子、医療機器、及び超音波振動子の製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る超音波振動子は、超音波を送受信する圧電素子を有する圧電素子層と、前記圧電素子層に積層されており、前記超音波の少なくとも一部を反射するデマッチング層であって、第1部材、及び前記第1部材より導電性が高い第2部材を有するデマッチング層と、前記第2部材に電気的に接続されているワイヤと、を備える。
 また、本発明の一態様に係る超音波振動子は、前記ワイヤは、前記第2部材と異なる材料からなる。
 また、本発明の一態様に係る超音波振動子は、前記ワイヤは、前記第2部材に半田により電気的に接続されている。
 また、本発明の一態様に係る超音波振動子は、前記ワイヤを包含し、前記超音波を吸収又は減衰させるバッキング材を備える。
 また、本発明の一態様に係る超音波振動子は、前記第1部材は、前記第2部材よりも音響インピーダンスが高い材料からなる。
 また、本発明の一態様に係る超音波振動子は、前記第2部材は、前記圧電素子層と前記第1部材との間に位置する第1の面、前記第1部材を挟んで、前記第1の面と反対側に位置する第2の面、前記第1の面及び前記第2の面に接続している第3の面を有する。
 また、本発明の一態様に係る超音波振動子は、前記第2の面の厚さは、前記デマッチング層の厚さの1/3以下である。
 また、本発明の一態様に係る超音波振動子は、前記第2の面の厚さは、前記第1の面の厚さ及び前記第3の面の厚さより厚くされており、前記ワイヤは、前記第2の面に電気的に接続されている。
 また、本発明の一態様に係る超音波振動子は、前記第3の面の厚さは、前記第1の面の厚さ及び前記第2の面の厚さより厚くされており、前記ワイヤは、前記第3の面に電気的に接続されている。
 また、本発明の一態様に係る超音波振動子は、前記第1部材と前記第2部材との間に凹凸面が形成されており、前記ワイヤは、前記第2部材の前記凹凸面が形成されている面に電気的に接続されている。
 また、本発明の一態様に係る超音波振動子は、前記第1部材と前記第2部材とは、互いに同じ材料によって構成され、前記第2部材に含まれる導電性の材料の濃度が、前記第1部材に含まれる導電性の材料の濃度より高く形成されている。
 また、本発明の一態様に係る超音波振動子は、前記第1部材は、タングステン(W)、コバルト(Co)、ニッケル(Ni)、チタン(Ti)、クロム(Cr)、モリブデン(Mo)、タンタル(Ta)、炭素(C)の少なくとも1つを含む。
 また、本発明の一態様に係る超音波振動子は、前記第2部材は、金(Au)、銀(Ag)、銅(Cu)、コバルト(Co)、ニッケル(Ni)、チタン(Ti)、クロム(Cr)、モリブデン(Mo)、タンタル(Ta)、炭素(C)の少なくとも1つを含む。
 また、本発明の一態様に係る医療機器は、超音波振動子と、先端に前記超音波振動子が配置されており、被検体内に挿入される挿入部と、を備える。
 また、本発明の一態様に係る医療機器は、前記被検体内を撮像する撮像部を備える。
 また、本発明の一態様に係る超音波振動子の製造方法は、超音波を送受信する圧電素子を有する圧電素子層、及び前記超音波の少なくとも一部を反射するデマッチング層であって、第1部材、及び前記第1部材より導電性が高い第2部材を有するデマッチング層を準備し、前記圧電素子層に前記デマッチング層を積層し、前記第2部材にワイヤを電気的に接続する、ことを含む。
 また、本発明の一態様に係る超音波振動子の製造方法は、前記第2部材は、前記圧電素子層と前記第1部材との間に位置する第1の面、前記第1部材を挟んで、前記第1の面と反対側に位置する第2の面、前記第1の面及び前記第2の面に接続している第3の面を有する。
 また、本発明の一態様に係る超音波振動子の製造方法は、前記第2の面の厚さが前記第1の面の厚さ及び前記第3の面の厚さより厚くされている前記デマッチング層を準備し、前記第2の面に前記ワイヤを電気的に接続する。
 また、本発明の一態様に係る超音波振動子の製造方法は、前記圧電素子層に前記デマッチング層を積層した積層体の前記第2の面の厚さを前記第1の面の厚さ及び前記第3の面の厚さよりメッキ加工により厚くし、前記第2の面に前記ワイヤを電気的に接続する。
 本発明によれば、ノイズを低減し、かつ接続不良を防止した超音波振動子、医療機器、及び超音波振動子の製造方法を実現することができる。
図1は、内視鏡システムの全体を示す概略図である。 図2は、挿入部の先端を示す斜視図である。 図3は、実施の形態1に係る超音波振動子を備える超音波振動子の構成を示す断面図である。 図4は、図3のA-A線に対応する断面図である。 図5は、実施の形態1に係る超音波振動子の製造方法の工程の概要を示すフローチャートである。 図6は、部材を準備する様子を表す図である。 図7は、各部材を積層する様子を表す図である。 図8は、ワイヤを接続する様子を表す図である。 図9は、実施の形態2に係る超音波振動子の製造方法の工程の概要を示すフローチャートである。 図10は、部材を準備する様子を表す図である。 図11は、各部材を積層する様子を表す図である。 図12は、実施の形態3に係る超音波振動子の断面図である。 図13は、部材を準備する様子を表す図である。 図14は、各部材を積層する様子を表す図である。 図15は、ワイヤを接続する様子を表す図である。 図16は、実施の形態4に係る超音波振動子の製造方法の工程の概要を示すフローチャートである。 図17は、実施の形態5に係る超音波振動子の断面図である。 図18は、部材を準備する様子を表す図である。 図19は、各部材を積層する様子を表す図である。 図20は、ワイヤを接続する様子を表す図である。 図21は、実施の形態6に係る超音波振動子の製造方法の工程の概要を示すフローチャートである。 図22は、部材を準備する様子を表す図である。 図23は、各部材を積層する様子を表す図である。 図24は、実施の形態7に係る超音波振動子の断面図である。 図25は、実施の形態8に係る超音波振動子の断面図である。 図26は、実施の形態9に係る超音波振動子の断面図である。
 以下に、図面を参照して本発明に係る超音波振動子、医療機器、及び超音波振動子の製造方法の実施の形態を説明する。なお、これらの実施の形態により本発明が限定されるものではない。本発明は、超音波振動子、医療機器、及び超音波振動子の製造方法一般に適用することができる。
 また、図面の記載において、同一又は対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
(実施の形態1)
 〔内視鏡システムの概略構成〕
 図1は、内視鏡システムの全体を示す概略図である。医療機器としての内視鏡システム1は、超音波内視鏡を用いて人等の被検体内の超音波診断及び処置を行うシステムである。この内視鏡システム1は、図1に示すように、超音波内視鏡2と、超音波観測装置3と、内視鏡観察装置4と、表示装置5と、を備える。
 超音波内視鏡2は、一部を被検体内に挿入可能とし、被検体内の体壁に向けて超音波パルス(音響パルス)を送信するとともに被検体にて反射された超音波エコーを受信してエコー信号を出力する機能、及び被検体内を撮像して画像信号を出力する機能を有する。なお、超音波内視鏡2の詳細な構成については、後述する。
 超音波観測装置3は、超音波ケーブル31を介して超音波内視鏡2に電気的に接続し、超音波ケーブル31を介して超音波内視鏡2にパルス信号を出力するとともに超音波内視鏡2からエコー信号を入力する。そして、超音波観測装置3では、当該エコー信号に所定の処理を施して超音波画像を生成する。
 内視鏡観察装置4には、超音波内視鏡2の内視鏡用コネクタ9が着脱自在に接続される。この内視鏡観察装置4は、図1に示すように、ビデオプロセッサ41と、光源装置42とを備える。
 ビデオプロセッサ41は、内視鏡用コネクタ9を介して超音波内視鏡2からの画像信号を入力する。そして、ビデオプロセッサ41は、当該画像信号に所定の処理を施して内視鏡画像を生成する。
 光源装置42は、内視鏡用コネクタ9を介して被検体内を照明する照明光を超音波内視鏡2に供給する。
 表示装置5は、液晶、有機EL(Electro Luminescence)、CRT(Cathode Ray Tube)、又は、プロジェクタを用いて構成され、超音波観測装置3にて生成された超音波画像や、内視鏡観察装置4にて生成された内視鏡画像等を表示する。
 〔超音波内視鏡の構成〕
 次に、超音波内視鏡2の構成について説明する。超音波内視鏡2は、図1に示すように、挿入部6と、操作部7と、ユニバーサルコード8と、内視鏡用コネクタ9と、を備える。
 図2は、挿入部の先端を示す斜視図である。なお、以下では、挿入部6の構成を説明するにあたって、挿入部6の先端側(被検体内への挿入方向の先端側)を「先端側」とのみ記載し、挿入部6の基端側(挿入部6の先端から離間する側)を「基端側」と記載する。
 挿入部6は、被検体内に挿入される部分である。この挿入部6は、図1又は図2に示すように、先端に配置されている超音波プローブ10と、超音波プローブ10の基端側に連結された硬性部材61と、硬性部材61の基端側に連結され湾曲可能とする湾曲部62と、湾曲部62の基端側に連結され可撓性を有する可撓管63(図1)と、を備える。
 なお、挿入部6、操作部7、ユニバーサルコード8、及び内視鏡用コネクタ9の内部には、光源装置42から供給された照明光を伝送するライトガイド、パルス信号やエコー信号を伝送する振動子ケーブル、及び画像信号を伝送する信号ケーブルが引き回されているとともに、流体を流通させるための管路が設けられている。
 硬性部材61は、樹脂材料等から構成された硬質部材である。硬性部材61の先端には、図2に示すように、被検体内に照明光を照射する照明部611と、被検体内を撮像する撮像部612と、挿入部6の先端から処置具を突出させる処置具チャンネル613と、が配設されている。
 照明部611は、先端に配置されており、光源装置42が出力した照明光を挿入部6の先端に伝送するライトガイドと、ライトガイドの出射端から出射された照明光を被検体内に照射する照明レンズと、を備える。
 撮像部612は、被検体内を撮像する。撮像部612は、被検体内に照射され、当該被検体内で反射された光(被写体像)を集光する対物光学系と、対物光学系にて集光された被写体像を撮像する撮像素子と、を有する。そして、撮像素子にて撮像された画像信号は、信号ケーブルを介して内視鏡観察装置4(ビデオプロセッサ41)に伝送される。
 処置具チャンネル613は、挿入部6の内部に挿通された穿刺針等の処置具を外部に突出させる通路である。
 操作部7は、挿入部6の基端側に連結され、医師等から各種操作を受け付ける部分である。この操作部7は、図1に示すように、湾曲部62を湾曲操作するための湾曲ノブ71と、各種操作を行うための複数の操作部材72と、を備える。
 また、操作部7には、湾曲部62及び可撓管63の内部に設けられたチューブを介して処置具チャンネル613に連通し、このチューブに処置具を挿通するための処置具挿入口73(図1)が設けられている。
 ユニバーサルコード8は、操作部7から延在し、ライトガイド、振動子ケーブル、信号ケーブル、及び管路の一部を構成するチューブが配設されたコードである。
 内視鏡用コネクタ9は、ユニバーサルコード8の端部に設けられている。そして、内視鏡用コネクタ9は、超音波ケーブル31が接続されるとともに、内視鏡観察装置4に挿し込まれることでビデオプロセッサ41及び光源装置42に接続する。
 〔超音波プローブの構成〕
 次に、超音波プローブ10の構成について説明する。図3は、実施の形態1に係る超音波振動子を備える超音波振動子の構成を示す断面図である。図3に示すように、超音波プローブ10は、円弧状に配列された複数の超音波振動子100を備えるコンベックス型の超音波振動子であるが、ラジアル型やリニア型の超音波振動子であってもよい。
 〔超音波振動子の構成〕
 次に、超音波振動子100の構成について説明する。図4は、図3のA-A線に対応する断面図である。図4に示すように、超音波振動子100は、圧電素子層101と、デマッチング層102と、ワイヤ103と、バッキング材104と、第1音響整合層105と、第2音響整合層106と、を備える。
 圧電素子層101は、超音波を送受信する圧電素子を有する。圧電素子層101は、図4の左右方向を長辺とする長尺状の直方体でそれぞれ構成される。そして、圧電素子層101は、ワイヤ103及びデマッチング層102を経由して入力されたパルス信号を超音波パルスに変換して被検体に送信する。また、圧電素子層101は、被検体で反射された超音波エコーを電圧変化で表現する電気的なエコー信号に変換し、デマッチング層102を経由してワイヤ103に出力する。
 圧電素子は、PMN-PT単結晶、PMN-PZT単結晶、PZN-PT単結晶、PIN-PZN-PT単結晶又はリラクサー系材料を用いて形成される。なお、PMN-PT単結晶は、マグネシウム・ニオブ酸鉛及びチタン酸鉛の固溶体の略称である。PMN-PZT単結晶は、マグネシウム・ニオブ酸鉛及びチタン酸ジルコン酸鉛の固溶体の略称である。PZN-PT単結晶は、亜鉛・ニオブ酸鉛及びチタン酸鉛の固溶体の略称である。PIN-PZN-PT単結晶は、インジウム・ニオブ酸鉛、亜鉛・ニオブ酸鉛及びチタン酸鉛の固溶体の略称である。リラクサー系材料は、圧電定数や誘電率を増加させる目的でリラクサー材料である鉛系複合ペロブスカイトをチタン酸ジルコン酸鉛(PZT)に添加した三成分系圧電材料の総称である。鉛系複合ペロブスカイトは、Pb(B1、B2)Oで表され、B1はマグネシウム、亜鉛、インジウム又はスカンジウムのいずれかであり、B2はニオブ、タンタル又はタングステンのいずれかである。これらの材料は、優れた圧電効果を有している。このため、小型化しても電気的なインピーダンスの値を低くすることができる。
 デマッチング層102は、圧電素子層101に積層されており、超音波の少なくとも一部を反射する。デマッチング層102は、第1部材121と、第2部材122と、を有する。
 第1部材121は、第2部材122よりも音響インピーダンスが高い材料からなる。第1部材121は、例えば音響インピーダンスが高いタングステンカーバイドであるが、タングステン(W)、コバルト(Co)、ニッケル(Ni)、チタン(Ti)、クロム(Cr)、モリブデン(Mo)、タンタル(Ta)、炭素(C)の少なくとも1つを含んでいてもよい。
 第2部材122は、第1部材121より導電性が高い。第2部材122は、例えば金(Au)であるが、銀(Ag)、銅(Cu)、コバルト(Co)、ニッケル(Ni)、チタン(Ti)、クロム(Cr)、モリブデン(Mo)、タンタル(Ta)、炭素(C)の少なくとも1つを含んでいてもよい。
 また、第2部材122は、圧電素子層101と第1部材121との間に位置する第1の面1221、第1部材121の第1の面1221と反対側に位置する第2の面1222、第1の面1221及び第2の面1222に接続している第3の面1223を有する。第2の面1222の厚さは、第1の面1221の厚さ及び第3の面1223の厚さより厚くされている。また、第2の面1222の厚さは、デマッチング層102の厚さの1/2以下であることが好ましく、1/3以下であることがより好ましい。第2の面1222の厚さを厚くしすぎないことにより、デマッチング層102が超音波を反射する効果が低減することを防止することができる。なお、第2の面1222の厚さとは、第2の面1222に垂直な方向における、第2の面1222の寸法である。同様に、第1の面1221の厚さ及び第3の面1223の厚さとは、第1の面1221及び第3の面1223に垂直な方向における、第1の面1221及び第3の面1223の寸法である。また、デマッチング層102の厚さとは、デマッチング層102と圧電素子層101とが積層する方向における、デマッチング層102の寸法である。
 ワイヤ103は、一端が第2部材122の第2の面1222に半田により電気的に接続されているが、超音波融着又はロウ付け等により電気的に接続されていてもよい。また、ワイヤ103の他端は、ユニバーサルコード8、超音波ケーブル31を経由して超音波観測装置3に電気的に接続されているが、図4では図示を省略した。ワイヤ103は、超音波観測装置3から出力されるパルス信号を各圧電素子層101に伝送するとともに、各圧電素子層101が出力したエコー信号を超音波観測装置3に伝送する。また、ワイヤ103は、第2部材122と異なる材料からなる。
 バッキング材104は、ワイヤ103を包含し、圧電素子層101の動作によって生じる不要な超音波を吸収又は減衰させる。バッキング材104は、吸収率又は減衰率の大きい材料、例えば、アルミナやジルコニア等のフィラーを分散させたエポキシ樹脂や、上述したフィラーを分散したゴムを用いて形成される。なお、圧電素子層101と観測対象との特性により、バッキング材104を設けなくてもよい。
 第1音響整合層105及び第2音響整合層106は、圧電素子層101に対して、各圧電素子層101が超音波を送信する方向(図4の上方)に位置する。また、第1音響整合層105及び第2音響整合層106は、図3に示すように、複数の圧電素子層101の配列方向に沿って一連をなし、円弧状に各圧電素子層101を保持する。第1音響整合層105及び第2音響整合層106は、圧電素子層101と観測対象との間において音(超音波)を効率よく透過させるために、圧電素子層101と観測対象との間の音響インピーダンスをマッチングさせる。第1音響整合層105及び第2音響整合層106は、互いに異なる材料からなる。なお、本実施の形態1では、2つの音響整合層(第1音響整合層105及び第2音響整合層106)を有するものとして説明するが、圧電素子層101と観測対象との特性により、音響整合層を設けなくてもよいし、一層としてもよいし、三層以上としてもよい。
 〔超音波振動子の製造方法〕
 次に、超音波振動子の製造方法について説明する。図5は、実施の形態1に係る超音波振動子の製造方法の工程の概要を示すフローチャートである。
 図5に示すように、超音波振動子100を製造するために用いる部材を準備する(ステップS1)。図6は、部材を準備する様子を表す図である。図6に示すように、圧電素子層101と、デマッチング層102と、バッキング材104と、第1音響整合層105及び第2音響整合層106と、を準備する。このとき、第2部材122の第2の面1222の厚さは、第1の面1221の厚さ及び第3の面1223の厚さより厚くされている。これは、第1部材121の表面にメッキ加工により第2部材122を形成する際に、第2の面1222の厚さが第1の面1221の厚さ及び第3の面1223の厚さより厚くなるようにメッキ加工又はスパッタ等を施すことにより実現することができる。
 続いて、圧電素子層101、デマッチング層102、バッキング材104、第1音響整合層105及び第2音響整合層106を、接着剤等により積層する(ステップS2)。図7は、各部材を積層する様子を表す図である。図7に示すように、デマッチング層102~第2音響整合層106が積層した積層体が形成される。
 その後、ステップS2で形成した積層体をダイシングソーで裁断するダイシングを行う(ステップS3)。これにより、デマッチング層102及び圧電素子層101が裁断され、板状の圧電素子層101が直方体となる。
 そして、超音波振動子100に配線を取り付ける(ステップS4)。図8は、ワイヤを接続する様子を表す図である。図8に示すように、第2部材122の第2の面1222にワイヤ103を半田により電気的に接続する。
 最後に、図3に示す円弧状に第1音響整合層105及び第2音響整合層106を湾曲させた状態で、圧電素子層101のデマッチング層102が積層されている側にバッキング材104を充填する(ステップS5)。その結果、複数の超音波振動子100を有する超音波プローブ10が製造される。
 以上説明した実施の形態1によれば、ステップS4において、第2部材122の第2の面1222にワイヤ103を半田により電気的に接続する際に、第2の面1222の厚さが厚くされている。その結果、第2部材122が溶融して半田に吸収される(半田に喰われる)ことを防止することができ、接続不良を防止することができる。
 また、実施の形態1によれば、超音波振動子100は、FPCを有しないので、FPCの反射に起因してノイズが生じることが防止されている。
 また、実施の形態1によれば、ダイシングによりデマッチング層102及び圧電素子層101を裁断し、圧電素子より外側に位置する第1音響整合層105及び第2音響整合層106を基準として湾曲させる。これにより、湾曲させる際に圧電素子間のピッチを維持することができる。これに対して、ダイシングにより圧電素子層101、第1音響整合層105及び第2音響整合層106を裁断し、圧電素子より内側に位置するFPC等を基準として湾曲させる場合には、湾曲させる際に圧電素子間のピッチが拡大するためピッチを維持することができない。
(実施の形態2)
 実施の形態2に係る超音波振動子100の構成は、実施の形態1と同様であるから説明を省略する。図9は、実施の形態2に係る超音波振動子の製造方法の工程の概要を示すフローチャートである。
 図9に示すように、超音波振動子100を製造するために用いる部材を準備する(ステップS11)。図10は、部材を準備する様子を表す図である。図10に示すように、圧電素子層101と、デマッチング層102と、バッキング材104と、第1音響整合層105及び第2音響整合層106と、を準備する。準備した第2部材122の第1の面1221、第2の面1222、及び第3の面1223は同じ厚さである。なお、各面の厚さとは、各面に垂直な方向における、各面の寸法である。
 続いて、圧電素子層101、デマッチング層102、バッキング材104、第1音響整合層105及び第2音響整合層106を、接着剤等により積層する(ステップS2)。図11は、各部材を積層する様子を表す図である。図11に示すように、デマッチング層102~第2音響整合層106が積層した積層体が形成される。
 その後、ステップS2で形成した積層体をダイシングソーで裁断するダイシングを行う(ステップS3)。これにより、デマッチング層102及び圧電素子層101が裁断され、板状の圧電素子層101が直方体となる。
 ここで、デマッチング層102の第2の面1222の厚さを厚くする(ステップS12)。これは、積層体の裏面側にメッキ加工又はスパッタ等を施すことにより実現することができる。これにより、図7と同様の積層体が形成される。以降の工程は実施の形態1と同様であってよいので説明を省略する。
 以上説明した実施の形態2のように、各層を積層後に第2部材122の第2の面1222の厚さを厚くしてもよい。この場合にも実施の形態1と同様に、第2部材122が溶融して半田に吸収される(半田に喰われる)ことを防止することができ、接続不良を防止することができる。
(実施の形態3)
 図12は、実施の形態3に係る超音波振動子の断面図である。図12に示すように、実施の形態3に係る超音波振動子100Aのデマッチング層102Aにおいて、第1部材121Aと第2部材122Aとの間に凹凸面が形成されている。そして、ワイヤ103は、第2部材122Aの凹凸面が形成されている第2の面1222Aに電気的に接続されている。
 次に、超音波振動子100Aの製造方法について説明する。実施の形態3に係る超音波振動子の製造方法は、図5と同様の工程である。
 図5に示すように、超音波振動子100Aを製造するために用いる部材を準備する(ステップS1)。図13は、部材を準備する様子を表す図である。図13に示すように、圧電素子層101と、デマッチング層102Aと、バッキング材104と、第1音響整合層105及び第2音響整合層106と、を準備する。このとき、デマッチング層102Aの第1部材121Aと第2部材122Aとの間には凹凸面が形成されている。これは、凹凸面が形成された第1部材121Aの表面にメッキ加工により第2部材122Aを形成する際に、凹部が埋まるようにメッキ加工を施すことにより実現することができる。
 続いて、圧電素子層101、デマッチング層102A、バッキング材104、第1音響整合層105及び第2音響整合層106を、接着剤等により積層する(ステップS2)。図14は、各部材を積層する様子を表す図である。図14に示すように、デマッチング層102A~第2音響整合層106が積層した積層体が形成される。
 その後、ステップS2で形成した積層体をダイシングソーで裁断するダイシングを行う(ステップS3)。これにより、デマッチング層102A及び圧電素子層101が裁断され、板状の圧電素子層101が直方体となる。
 そして、超音波振動子100Aに配線を取り付ける(ステップS4)。図15は、ワイヤを接続する様子を表す図である。図15に示すように、第2部材122Aの第2の面1222Aにワイヤ103を半田により電気的に接続する。
 最後に、図3に示す円弧状に第1音響整合層105及び第2音響整合層106を湾曲させた状態で、圧電素子層101のデマッチング層102Aが積層されている側にバッキング材104を充填する(ステップS5)。その結果、複数の超音波振動子100Aを有する超音波プローブが製造される。
 以上説明した実施の形態3によれば、ステップS4において、第2部材122Aの第2の面1222Aにワイヤ103を半田により電気的に接続する際に、第1部材121Aと第2の面1222Aとの間に凹凸面が形成されている。その結果、第2部材122Aが溶融して半田に吸収される(半田に喰われる)ことを防止することができ、接続不良を防止することができる。
(実施の形態4)
 実施の形態4に係る超音波振動子100Aの構成は、実施の形態3と同様であるから説明を省略する。図16は、実施の形態4に係る超音波振動子の製造方法の工程の概要を示すフローチャートである。
 図16に示すように、ステップS3まで、図9と同様の処理を行い、図11に示すように、デマッチング層102及び圧電素子層101が裁断され、デマッチング層102~第2音響整合層106が積層した積層体が形成される。この積層体において、第2部材122の第1の面1221、第2の面1222、及び第3の面1223は同じ厚さである。なお、各面の厚さとは、各面に垂直な方向における、各面の寸法である。
 続いて、デマッチング層102Aの第1部材121Aと第2部材122Aとの間に凹凸面を形成する(ステップS21)。これは、積層体の裏面側にエッチング、レーザー照射、サンドブラスト等により凹凸面を形成し、凹部が埋まるようにメッキ加工を施す、又は裏面側に導電性が高い部材を貼り付けることにより実現することができる。これにより、図14と同様の積層体が形成される。以降の工程は実施の形態3と同様であってよいので説明を省略する。
 以上説明した実施の形態4のように、各層を積層後に第2部材122Aの第1部材121Aと第2部材122Aとの間に凹凸面を形成してもよい。この場合にも実施の形態3と同様に、第2部材122Aが溶融して半田に吸収される(半田に喰われる)ことを防止することができ、接続不良を防止することができる。
(実施の形態5)
 図17は、実施の形態5に係る超音波振動子の断面図である。図17に示すように、実施の形態4に係る超音波振動子100Bのデマッチング層102Bは、第1部材121Bと、第1部材121Bの圧電素子層101と反対側の面に積層されている第2部材122Bと、を有する。
 第1部材121Bと第2部材122Bとは、同一の材料からなるが、第2部材122Bは、第1部材121Bよりも導電性の材料の濃度が高くされており、第1部材121Bよりも導電性が高い。具体的には、第1部材121Bと第2部材122Bとは、例えばタングステンカーバイドに導電性を有するフィラーを添加することにより形成されるが、第2部材122Bは、第1部材121Bよりもフィラーの濃度が高くされている。また、第2部材122Bの厚さは、ワイヤ103を接続する際に半田に吸収されることが防止できるよう厚くされている。第2部材122Bの厚さは、デマッチング層102Bの厚さの1/2以下であることが好ましく、1/3以下であることがより好ましい。なお、デマッチング層102Bの厚さと第2部材122Bの厚さとは、第1部材121Bと第2部材122Bとが並ぶ方向における、それぞれの寸法である。換言すると、半田付けを行う面に対して垂直な方向の寸法を、デマッチング層102Bの厚さと第2部材122Bの厚さとしている。
 また、第2部材122Bを、第1部材121Bよりも導電性の材料の濃度が高くするために、例えば、タングステンカーバイドの一部において、バインダーの濃度を高くして形成してもよい。すなわち、タングステンカーバイドの一部を第2部材122Bとし、バインダーの濃度が相対的に低い部分を第1部材121Bとするでも良い。さらに、第1部材121Bと第2部材122Bとを別々に形成し、接合するでも良い。すなわち、バインダー又はフィラーの濃度が異なるタングステンカーバイドを2つ形成し、これらを接合するように形成してもよい。
 次に、超音波振動子の製造方法について説明する。実施の形態5に係る超音波振動子の製造方法は、図5と同様の工程である。
 図5に示すように、超音波振動子100Bを製造するために用いる部材を準備する(ステップS1)。図18は、部材を準備する様子を表す図である。図18に示すように、圧電素子層101と、デマッチング層102Bと、バッキング材104と、第1音響整合層105及び第2音響整合層106と、を準備する。デマッチング層102Bは、第1部材121Bと、第1部材121Bより導電性が高い第2部材122Bとを有する。
 続いて、圧電素子層101、デマッチング層102B、バッキング材104、第1音響整合層105及び第2音響整合層106を、接着剤等により積層する(ステップS2)。図19は、各部材を積層する様子を表す図である。図19に示すように、デマッチング層102B~第2音響整合層106が積層した積層体が形成される。
 その後、ステップS2で形成した積層体をダイシングソーで裁断するダイシングを行う(ステップS3)。これにより、デマッチング層102B及び圧電素子層101が裁断され、板状の圧電素子層101が直方体となる。
 そして、超音波振動子100Bに配線を取り付ける(ステップS4)。図20は、ワイヤを接続する様子を表す図である。図20に示すように、第2部材122Bにワイヤ103を半田により電気的に接続する。
 最後に、図3に示す円弧状に第1音響整合層105及び第2音響整合層106を湾曲させた状態で、圧電素子層101のデマッチング層102Bが積層されている側にバッキング材104を充填する(ステップS5)。その結果、複数の超音波振動子100Bを有する超音波プローブが製造される。
 以上説明した実施の形態5によれば、ステップS4において、第2部材122Bにワイヤ103を半田により電気的に接続する際に、第2部材122Bの厚さが厚くされている。その結果、第2部材122Bが溶融して半田に吸収される(半田に喰われる)ことを防止することができ、接続不良を防止することができる。
(実施の形態6)
 実施の形態6に係る超音波振動子100Bの構成は、実施の形態5と同様であるから説明を省略する。図21は、実施の形態6に係る超音波振動子の製造方法の工程の概要を示すフローチャートである。
 図21に示すように、超音波振動子100Bを製造するために用いる部材を準備する(ステップS11)。図22は、部材を準備する様子を表す図である。図22に示すように、圧電素子層101と、第1部材121Bと、バッキング材104と、第1音響整合層105及び第2音響整合層106と、を準備する。
 続いて、圧電素子層101、第1部材121B、バッキング材104、第1音響整合層105及び第2音響整合層106を、接着剤等により積層する(ステップS2)。図23は、各部材を積層する様子を表す図である。図23に示すように、第1部材121B~第2音響整合層106が積層した積層体が形成される。
 その後、ステップS2で形成した積層体をダイシングソーで裁断するダイシングを行う(ステップS3)。これにより、第1部材121B及び圧電素子層101が裁断され、板状の圧電素子層101が直方体となる。
 ここで、デマッチング層102Bの第2部材122Bを形成する(ステップS31)。これは、積層体の裏面側にメッキ加工、スパッタ、含侵、又は裏面側に導電性が高い部材を貼り付けることにより実現することができる。これにより、図7と同様の積層体が形成され、以降の工程は実施の形態1と同様であってよいので説明を省略する。
 以上説明した実施の形態6のように、各層を積層後に第2部材122Bを形成してもよい。この場合にも、第2部材122Bが溶融して半田に吸収される(半田に喰われる)ことを防止することができ、接続不良を防止することができる。
(実施の形態7)
 図24は、実施の形態7に係る超音波振動子の断面図である。図24に示すように、実施の形態7に係る超音波振動子100Cのデマッチング層102Cは、第1部材121Cと第2部材122Cとを有する。そして、第2部材122Cの第3の面1223Cの厚さは、第1の面1221の厚さ及び第2の面1222Cの厚さより厚くされている。ワイヤ103は、第3の面1223Cに電気的に接続されている。なお、各面の厚さとは、各面に垂直な方向における、各面の寸法である。
 以上説明した実施の形態7によれば、第2部材122の第3の面1223Cにワイヤ103を半田により電気的に接続する際に、第3の面1223Cの厚さが厚くされている。その結果、第2部材122Cが溶融して半田に吸収される(半田に喰われる)ことを防止することができ、接続不良を防止することができる。
(実施の形態8)
 図25は、実施の形態8に係る超音波振動子の断面図である。図25に示すように、実施の形態8に係る超音波振動子100Dのデマッチング層102Dにおいて、第1部材121Dと第2部材122Dとの間に凹凸面が形成されている。そして、ワイヤ103は、第2部材122Dの凹凸面が形成されている第3の面1223Dに電気的に接続されている。なお、第2の面1222Dは、第1の面1221と同じ厚さである。各面の厚さとは、各面に垂直な方向における、各面の寸法である。
 以上説明した実施の形態8によれば、第2部材122Dの第3の面1223Dにワイヤ103を半田により電気的に接続する際に、第1部材121Dと第3の面1223Dとの間に凹凸面が形成されている。その結果、第2部材122Dが溶融して半田に吸収される(半田に喰われる)ことを防止することができ、接続不良を防止することができる。
(実施の形態9)
 図26は、実施の形態9に係る超音波振動子の断面図である。図26に示すように、実施の形態9に係る超音波振動子100Eのデマッチング層102Eは、第1部材121Eと、第1部材121Eの側面に形成されている第2部材122Eと、を有する。
 第1部材121Eと第2部材122Eとは、同一の材料からなるが、第2部材122Eは、第1部材121Eよりも導電性の材料の濃度が高くされており、第1部材121Eよりも導電性が高い。また、第2部材122Eの厚さは、ワイヤ103を接続する際に半田に吸収されることが防止できるよう厚くされている。第2部材122Eの厚さは、デマッチング層102Eの厚さの1/2以下であることが好ましく、1/3以下であることがより好ましい。なお、デマッチング層102Eの厚さと第2部材122Eの厚さとは、第1部材121Eと第2部材122Eとが並ぶ方向における、それぞれの寸法である。換言すると、半田付けを行う面に対して垂直な方向の寸法を、デマッチング層102Eの厚さと第2部材122Eの厚さとしている。
 以上説明した実施の形態9によれば、第2部材122Eにワイヤ103を半田により電気的に接続する際に、第2部材122Eの厚さが厚くされている。その結果、第2部材122Eが溶融して半田に吸収される(半田に喰われる)ことを防止することができ、接続不良を防止することができる。
 ここまで、医療機器として超音波内視鏡を説明してきたが、例えば超音波カテーテルであってもよい。
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、以上のように表し、かつ記述した特定の詳細及び代表的な実施の形態に限定されるものではない。従って、添付のクレーム及びその均等物によって定義される総括的な発明の概念の精神又は範囲から逸脱することなく、様々な変更が可能である。
 1 内視鏡システム
 2 超音波内視鏡
 3 超音波観測装置
 4 内視鏡観察装置
 5 表示装置
 6 挿入部
 7 操作部
 8 ユニバーサルコード
 9 内視鏡用コネクタ
 10 超音波プローブ
 31 超音波ケーブル
 41 ビデオプロセッサ
 42 光源装置
 61 硬性部材
 62 湾曲部
 63 可撓管
 71 湾曲ノブ
 72 操作部材
 73 処置具挿入口
 100、100A、100B、100C、100D、100E 超音波振動子
 101 圧電素子層
 102、102A、102B、102C、102D、102E デマッチング層
 103 ワイヤ
 104 バッキング材
 105 第1音響整合層
 106 第2音響整合層
 121、121A、121B、121C、121D、121E 第1部材
 122、122A、122B、122C、122D、122E 第2部材
 611 照明部
 612 撮像部
 613 処置具チャンネル
 1221 第1の面
 1222 第2の面
 1223 第3の面

Claims (19)

  1.  超音波を送受信する圧電素子を有する圧電素子層と、
     前記圧電素子層に積層されており、前記超音波の少なくとも一部を反射するデマッチング層であって、第1部材、及び前記第1部材より導電性が高い第2部材を有するデマッチング層と、
     前記第2部材に電気的に接続されているワイヤと、
     を備える超音波振動子。
  2.  前記ワイヤは、前記第2部材と異なる材料からなる請求項1に記載の超音波振動子。
  3.  前記ワイヤは、前記第2部材に半田により電気的に接続されている請求項1に記載の超音波振動子。
  4.  前記ワイヤを包含し、前記超音波を吸収又は減衰させるバッキング材を備える請求項1に記載の超音波振動子。
  5.  前記第1部材は、前記第2部材よりも音響インピーダンスが高い材料からなる請求項1に記載の超音波振動子。
  6.  前記第2部材は、
     前記圧電素子層と前記第1部材との間に位置する第1の面、
     前記第1部材を挟んで前記第1の面と反対側に位置する第2の面、
     前記第1の面及び前記第2の面に接続している第3の面を有する請求項1に記載の超音波振動子。
  7.  前記第2の面の厚さは、前記デマッチング層の厚さの1/3以下である請求項6に記載の超音波振動子。
  8.  前記第2の面の厚さは、前記第1の面の厚さ及び前記第3の面の厚さより厚くされており、
     前記ワイヤは、前記第2の面に電気的に接続されている請求項6に記載の超音波振動子。
  9.  前記第3の面の厚さは、前記第1の面の厚さ及び前記第2の面の厚さより厚くされており、
     前記ワイヤは、前記第3の面に電気的に接続されている請求項6に記載の超音波振動子。
  10.  前記第1部材と前記第2部材との間に凹凸面が形成されており、
     前記ワイヤは、前記第2部材の前記凹凸面が形成されている面に電気的に接続されている請求項1に記載の超音波振動子。
  11.  前記第1部材と前記第2部材とは、互いに同じ材料によって構成され、
     前記第2部材に含まれる導電性の材料の濃度が、前記第1部材に含まれる導電性の材料の濃度より高く形成されている請求項1に記載の超音波振動子。
  12.  前記第1部材は、タングステン(W)、コバルト(Co)、ニッケル(Ni)、チタン(Ti)、クロム(Cr)、モリブデン(Mo)、タンタル(Ta)、炭素(C)の少なくとも1つを含む請求項1に記載の超音波振動子。
  13.  前記第2部材は、金(Au)、銀(Ag)、銅(Cu)、コバルト(Co)、ニッケル(Ni)、チタン(Ti)、クロム(Cr)、モリブデン(Mo)、タンタル(Ta)、炭素(C)の少なくとも1つを含む請求項1に記載の超音波振動子。
  14.  請求項1に記載の超音波振動子と、
     先端に前記超音波振動子が配置されており、被検体内に挿入される挿入部と、
     を備える医療機器。
  15.  前記被検体内を撮像する撮像部を備える請求項14に記載の医療機器。
  16.  超音波を送受信する圧電素子を有する圧電素子層、及び前記超音波の少なくとも一部を反射するデマッチング層であって、第1部材、及び前記第1部材より導電性が高い第2部材を有するデマッチング層を準備し、
     前記圧電素子層に前記デマッチング層を積層し、
     前記第2部材にワイヤを電気的に接続する、
     ことを含む超音波振動子の製造方法。
  17.  前記第2部材は、
     前記圧電素子層と前記第1部材との間に位置する第1の面、
     前記第1部材を挟んで、前記第1の面と反対側に位置する第2の面、
     前記第1の面及び前記第2の面に接続している第3の面を有する請求項16に記載の超音波振動子の製造方法。
  18.  前記第2の面の厚さが前記第1の面の厚さ及び前記第3の面の厚さより厚くされている前記デマッチング層を準備し、
     前記第2の面に前記ワイヤを電気的に接続する請求項17に記載の超音波振動子の製造方法。
  19.  前記圧電素子層に前記デマッチング層を積層した積層体の前記第2の面の厚さを前記第1の面の厚さ及び前記第3の面の厚さよりメッキ加工により厚くし、
     前記第2の面に前記ワイヤを電気的に接続する請求項17に記載の超音波振動子の製造方法。
PCT/JP2022/038484 2022-10-14 2022-10-14 超音波振動子、医療機器、及び超音波振動子の製造方法 WO2024079914A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038484 WO2024079914A1 (ja) 2022-10-14 2022-10-14 超音波振動子、医療機器、及び超音波振動子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038484 WO2024079914A1 (ja) 2022-10-14 2022-10-14 超音波振動子、医療機器、及び超音波振動子の製造方法

Publications (1)

Publication Number Publication Date
WO2024079914A1 true WO2024079914A1 (ja) 2024-04-18

Family

ID=90669285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038484 WO2024079914A1 (ja) 2022-10-14 2022-10-14 超音波振動子、医療機器、及び超音波振動子の製造方法

Country Status (1)

Country Link
WO (1) WO2024079914A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034159A (ja) * 2010-07-30 2012-02-16 Konica Minolta Medical & Graphic Inc 超音波探触子、その製造方法、及び超音波医用画像診断装置
WO2020079855A1 (ja) * 2018-10-19 2020-04-23 オリンパス株式会社 超音波プローブ及び超音波内視鏡
JP2020175049A (ja) * 2019-04-23 2020-10-29 コニカミノルタ株式会社 超音波探触子及び超音波診断装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034159A (ja) * 2010-07-30 2012-02-16 Konica Minolta Medical & Graphic Inc 超音波探触子、その製造方法、及び超音波医用画像診断装置
WO2020079855A1 (ja) * 2018-10-19 2020-04-23 オリンパス株式会社 超音波プローブ及び超音波内視鏡
JP2020175049A (ja) * 2019-04-23 2020-10-29 コニカミノルタ株式会社 超音波探触子及び超音波診断装置

Similar Documents

Publication Publication Date Title
JP5828627B2 (ja) 超音波診断装置用プローブ及びその製造方法
CN107708576B (zh) 超声波振子和超声波探头
CN107205726B (zh) 超声波探头
JPWO2006040962A1 (ja) 超音波振動子およびその製造方法
CN107534816B (zh) 超声波振子、超声波探头以及超声波振子的制造方法
KR102293575B1 (ko) 초음파 영상장치용 프로브 및 그 제조방법
JP2010158522A (ja) 超音波診断装置用プローブ及びその製造方法
EP2182784A1 (en) PCB and PCB probe
JP6606276B2 (ja) 超音波振動子ユニット、及びこれを用いる超音波内視鏡
WO2017187756A1 (ja) 超音波振動子ユニット
KR101073855B1 (ko) 초음파 진단장치용 프로브 및 그 제조방법
US20190350555A1 (en) Ultrasonic transducer, ultrasonic endoscope, and method of manufacturing ultrasonic transducer
US20080294054A1 (en) Ultrasound probe and diagnostic ultrasound system
KR101112658B1 (ko) 초음파 진단장치용 프로브 및 그 제조방법
WO2024079914A1 (ja) 超音波振動子、医療機器、及び超音波振動子の製造方法
WO2020079855A1 (ja) 超音波プローブ及び超音波内視鏡
JP6648267B2 (ja) 超音波振動子モジュール、超音波内視鏡および超音波振動子モジュールの製造方法
EP2190008A1 (en) Probe for ultrasound system and method of manufacturing the same
US20230329673A1 (en) Ultrasound probe, ultrasound endoscope, laminated body, and ultrasound probe manufacturing method
US20220015740A1 (en) Diagnostic imaging catheter
US20230346342A1 (en) Ultrasound probe, ultrasound transducer unit, and ultrasound endoscope
WO2018142842A1 (ja) 超音波振動子、超音波プローブ、及び超音波内視鏡
US20230346348A1 (en) Ultrasound transducer array, endoscope, and manufacturing method of ultrasound transducer array
WO2021171608A1 (ja) 超音波探触子、及び超音波内視鏡
JP2023092343A (ja) 超音波振動子、超音波振動子の製造方法、及び超音波プローブ