WO2018142842A1 - 超音波振動子、超音波プローブ、及び超音波内視鏡 - Google Patents

超音波振動子、超音波プローブ、及び超音波内視鏡 Download PDF

Info

Publication number
WO2018142842A1
WO2018142842A1 PCT/JP2018/000036 JP2018000036W WO2018142842A1 WO 2018142842 A1 WO2018142842 A1 WO 2018142842A1 JP 2018000036 W JP2018000036 W JP 2018000036W WO 2018142842 A1 WO2018142842 A1 WO 2018142842A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
ultrasonic transducer
connecting portion
piezoelectric elements
transducer according
Prior art date
Application number
PCT/JP2018/000036
Other languages
English (en)
French (fr)
Inventor
暁 吉田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2018142842A1 publication Critical patent/WO2018142842A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present invention relates to an ultrasonic transducer, an ultrasonic probe, and an ultrasonic endoscope.
  • Ultrasonic waves may be used to observe the characteristics of biological tissues or materials that are the subject of observation. Specifically, the ultrasonic transducer transmits an ultrasonic wave to the observation target, receives an ultrasonic echo reflected by the observation target, and the ultrasonic observation apparatus performs a predetermined process on the received ultrasonic echo. By performing signal processing, information regarding the ultrasonic image and characteristics of the observation target is acquired.
  • the ultrasonic vibrator has a prismatic shape, a plurality of piezoelectric elements arranged in a predetermined pitch interval with the longitudinal direction aligned, and a connecting portion that connects adjacent piezoelectric elements along the arrangement direction of the piezoelectric elements. And an acoustic member that joins the piezoelectric element and the connecting portion.
  • the piezoelectric element converts an electrical pulse signal into an ultrasonic pulse (acoustic pulse) and irradiates the observation target, and converts the ultrasonic echo reflected from the observation target into an electrical echo signal that expresses a voltage change. And output.
  • An ultrasonic transducer is formed by bonding a plate-shaped piezoelectric material to be a piezoelectric element and a connecting portion with an acoustic member as an adhesive, and cutting the piezoelectric material into a prismatic shape by dicing to form a plurality of piezoelectric elements. Is done.
  • the pitch interval of the piezoelectric elements may be shifted due to aging of the acoustic member.
  • the acoustic member which is an adhesive contracts when it is cured, and stress generated by the contraction is released when dicing and the pitch interval of the piezoelectric elements is shifted.
  • the pitch interval of the piezoelectric elements is deviated, the timing of transmitting and receiving ultrasonic waves is deviated, and the image quality of the ultrasonic image is degraded.
  • the present invention has been made in view of the above, and an object thereof is to provide an ultrasonic transducer, an ultrasonic probe, and an ultrasonic endoscope in which the pitch interval of piezoelectric elements is prevented from shifting.
  • the ultrasonic transducer has a prismatic shape, and is arranged at a predetermined pitch interval so that the longitudinal direction is parallel, A plurality of piezoelectric elements that transmit and receive ultrasonic waves, a connecting portion that connects adjacent piezoelectric elements along an arrangement direction of the piezoelectric elements, an acoustic member that joins the piezoelectric elements and the connecting portion, and
  • the piezoelectric element includes a core member that is fixed to the connecting portion at a position that does not intersect with a direction in which ultrasonic waves are transmitted and received, and has a higher rigidity than the connecting portion.
  • the connecting portion is a backing material that absorbs ultrasonic waves transmitted by the piezoelectric element.
  • the connecting portion is an acoustic matching layer that matches an acoustic impedance between the piezoelectric element and an observation target.
  • the ultrasonic transducer according to one aspect of the present invention is characterized in that the core member is located inside the connecting portion along an arrangement direction of the piezoelectric elements.
  • the ultrasonic transducer according to one aspect of the present invention is characterized in that the core member is located on a side surface of the connecting portion along the arrangement direction of the piezoelectric elements.
  • connection portion may be formed on a surface on which the piezoelectric element transmits / receives ultrasonic waves, or on a surface opposite to the surface on which the piezoelectric elements transmit / receive ultrasonic waves. It is characterized by covering the entire surface.
  • the ultrasonic transducer according to one aspect of the present invention is characterized in that the connecting portion is located at an end portion of the piezoelectric element in the longitudinal direction.
  • the ultrasonic transducer according to one aspect of the present invention is characterized in that the piezoelectric elements are arranged so as to bend along the arrangement direction of the piezoelectric elements.
  • the ultrasonic transducer according to one aspect of the present invention is characterized in that the core member is made of a metal, an alloy, or a resin.
  • the ultrasonic transducer according to one aspect of the present invention is characterized in that the core member has a series of shapes along the arrangement direction of the piezoelectric elements.
  • an ultrasonic probe according to one embodiment of the present invention includes the above-described ultrasonic transducer.
  • an ultrasonic endoscope is characterized in that the above-described ultrasonic probe is disposed at a distal end of an insertion portion to be inserted into a subject.
  • an ultrasonic transducer an ultrasonic probe, and an ultrasonic endoscope that prevent the pitch interval of the piezoelectric elements from shifting.
  • FIG. 1 is a diagram schematically illustrating an endoscope system including the ultrasonic transducer according to the first embodiment.
  • FIG. 2 is a perspective view schematically showing a distal end configuration of an insertion portion of the ultrasonic endoscope shown in FIG.
  • FIG. 3 is a plan view illustrating the configuration of the ultrasonic transducer according to the first embodiment.
  • FIG. 4 is a side view illustrating the configuration of the ultrasonic transducer according to the first embodiment.
  • FIG. 5 is a plan view illustrating a configuration of an ultrasonic transducer according to Modification 1-1.
  • FIG. 6 is a side view illustrating the configuration of an ultrasonic transducer according to Modification 1-1.
  • FIG. 1 is a diagram schematically illustrating an endoscope system including the ultrasonic transducer according to the first embodiment.
  • FIG. 2 is a perspective view schematically showing a distal end configuration of an insertion portion of the ultrasonic endoscope shown in FIG.
  • FIG. 3
  • FIG. 7 is a side view illustrating a configuration of an ultrasonic transducer according to Modification 1-2.
  • FIG. 8 is a side view illustrating the configuration of an ultrasonic transducer according to Modification 1-3.
  • FIG. 9 is a side view illustrating a configuration of an ultrasonic transducer according to Modification 1-4.
  • FIG. 10 is a plan view illustrating the configuration of the ultrasonic transducer according to the second embodiment.
  • FIG. 11 is a side view illustrating the configuration of the ultrasonic transducer according to the second embodiment.
  • FIG. 12 is a plan view illustrating a configuration of an ultrasonic transducer according to Modification 2-1.
  • FIG. 13 is a side view illustrating the configuration of the ultrasonic transducer according to Modification 2-1.
  • FIG. 14 is a side view illustrating the configuration of an ultrasonic transducer according to Modification 2-1.
  • FIG. 15 is a plan view illustrating a configuration of an ultrasonic transducer according to the third embodiment.
  • FIG. 16 is a side view illustrating the configuration of the ultrasonic transducer according to the third embodiment.
  • FIG. 17 is a plan view illustrating a configuration of an ultrasonic transducer according to Modification 3-1.
  • FIG. 18 is a side view illustrating a configuration of an ultrasonic transducer according to Modification 3-1.
  • FIG. 19 is a side view illustrating the configuration of an ultrasonic transducer according to Modification 3-2.
  • FIG. 20 is a side view illustrating a configuration of an ultrasonic transducer according to Modification 3-3.
  • FIG. 21 is a side view illustrating the configuration of an ultrasonic transducer according to Modification 3-4.
  • FIG. 22 is a plan view illustrating a configuration of an ultrasonic transducer according to the fourth embodiment.
  • FIG. 23 is a side view illustrating the configuration of the ultrasonic transducer according to the fourth embodiment.
  • FIG. 24 is a plan view illustrating a configuration of an ultrasonic transducer according to Modification 4-1.
  • FIG. 25 is a side view illustrating the configuration of an ultrasonic transducer according to Modification 4-1.
  • FIG. 26 is a side view illustrating the configuration of an ultrasonic transducer according to Modification 4-1.
  • FIG. 1 is a diagram schematically illustrating an endoscope system including the ultrasonic transducer according to the first embodiment.
  • the endoscope system 1 is a system that performs ultrasonic diagnosis in a subject such as a person using an ultrasonic endoscope.
  • the endoscope system 1 includes an ultrasonic endoscope 2, an ultrasonic observation device 3, an endoscope observation device 4, a display device 5, and a light source device 6. .
  • the ultrasonic endoscope 2 converts an electrical pulse signal received from the ultrasonic observation device 3 into an ultrasonic pulse (acoustic pulse) and irradiates the subject at the distal end thereof, and is reflected by the subject.
  • the converted ultrasonic echo is converted into an electrical echo signal expressed by a voltage change and output.
  • the ultrasonic endoscope 2 usually has an imaging optical system and an imaging element, and is inserted into the digestive tract (esophagus, stomach, duodenum, large intestine) or respiratory organ (trachea, bronchi) of the subject for digestion. It is possible to take images of tubes and respiratory organs. In addition, surrounding organs (pancreas, gallbladder, bile duct, biliary tract, lymph node, mediastinal organ, blood vessel, etc.) can be imaged using ultrasound. In addition, the ultrasonic endoscope 2 has a light guide that guides illumination light to be irradiated onto a subject during optical imaging. The light guide has a distal end portion that reaches the distal end of the insertion portion of the ultrasonic endoscope 2 into the subject, and a proximal end portion that is connected to the light source device 6 that generates illumination light.
  • the ultrasonic endoscope 2 includes an insertion unit 21, an operation unit 22, a universal cable 23, and a connector 24.
  • the insertion part 21 is a part inserted into the subject.
  • the insertion portion 21 is connected to the ultrasonic transducer 7 disposed at the distal end, the rigid member 211 that holds the ultrasonic transducer 7, and the proximal end side of the rigid member 211, and can be bent.
  • a flexible tube portion 213 connected to the proximal end side of the bending portion 212 and having flexibility.
  • a light guide that transmits illumination light supplied from the light source device 6 and a plurality of signal cables that transmit various signals are routed inside the insertion portion 21.
  • a treatment instrument insertion passage for inserting the treatment instrument is formed.
  • the ultrasonic vibrator 7 may be a convex vibrator, a linear vibrator, or a radial vibrator.
  • the ultrasonic endoscope 2 is provided with a plurality of piezoelectric elements as an ultrasonic transducer 7 in an array, electronically switching the piezoelectric elements involved in transmission / reception, or delaying transmission / reception of each piezoelectric element, Scan electronically.
  • the configuration of the ultrasonic transducer 7 will be described later.
  • FIG. 2 is a perspective view schematically showing the distal end configuration of the insertion portion of the ultrasonic endoscope shown in FIG.
  • the rigid member 211 includes an illumination lens 211 a that collects illumination light and emits it to the outside, an objective lens 211 b that forms part of the imaging optical system and captures light from the outside, and an insertion unit And a treatment instrument protrusion port 211c that communicates with the treatment instrument insertion passage formed in the projection 21 and projects the treatment instrument from the distal end of the insertion portion 21.
  • the operation unit 22 is a part that is connected to the proximal end side of the insertion unit 21 and receives various operations from a doctor or the like. As shown in FIG. 1, the operation unit 22 includes a bending knob 221 for performing a bending operation on the bending unit 212 and a plurality of operation members 222 for performing various operations. In addition, the operation section 22 is formed with a treatment instrument insertion port 223 that communicates with the treatment instrument insertion path and allows the treatment instrument to be inserted into the treatment instrument insertion path.
  • the universal cable 23 is a cable that extends from the operation unit 22 and includes a plurality of signal cables that transmit various signals, and an optical fiber that transmits illumination light supplied from the light source device 6.
  • the connector 24 is provided at the tip of the universal cable 23.
  • the connector 24 includes first to third connector portions 241 to 243 to which the ultrasonic cable 31, the video cable 41, and the optical fiber cable 61 are connected.
  • the ultrasonic observation apparatus 3 is electrically connected to the ultrasonic endoscope 2 via the ultrasonic cable 31 (FIG. 1), and outputs a pulse signal to the ultrasonic endoscope 2 via the ultrasonic cable 31. At the same time, an echo signal is input from the ultrasonic endoscope 2. Then, the ultrasonic observation device 3 performs a predetermined process on the echo signal to generate an ultrasonic image.
  • the endoscope observation apparatus 4 is electrically connected to the ultrasonic endoscope 2 via a video cable 41 (FIG. 1) and inputs an image signal from the ultrasonic endoscope 2 via the video cable 41. . Then, the endoscope observation apparatus 4 performs a predetermined process on the image signal to generate an endoscope image.
  • the display device 5 is configured by using a liquid crystal or organic EL (Electro Luminescence), a projector, a CRT (Cathode Ray Tube), and the like, and an ultrasonic image generated by the ultrasonic observation device 3 or the endoscope observation device 4.
  • generated by are displayed.
  • the light source device 6 is connected to the ultrasonic endoscope 2 via the optical fiber cable 61 (FIG. 1), and supplies illumination light for illuminating the inside of the subject via the optical fiber cable 61 to the ultrasonic endoscope 2. To do.
  • FIG. 3 is a plan view illustrating the configuration of the ultrasonic transducer according to the first embodiment.
  • FIG. 4 is a side view illustrating the configuration of the ultrasonic transducer according to the first embodiment.
  • FIG. 3 is a plan view of the ultrasonic transducer 7 as viewed from below in FIG. 4 is a side view upside down with respect to FIG. 3 and 4 are diagrams showing an example of the ultrasonic transducer 7, and the number of the piezoelectric elements 71 actually disposed is not limited to this.
  • the ultrasonic transducer 7 is a convex ultrasonic transducer as shown in FIG. 2, and is a one-dimensional array (1D array) in which a plurality of piezoelectric elements 71 are arranged in a line. It will be explained as being. In other words, in the ultrasonic transducer 7 according to the first embodiment, the plurality of piezoelectric elements 71 are arranged along the outer surface forming the curved surface of the ultrasonic transducer 7.
  • the ultrasonic transducer 7 has a prismatic shape and a plurality of piezoelectric elements 71 arranged at predetermined pitch intervals so that the longitudinal directions thereof are parallel to each other.
  • the longitudinal direction of the piezoelectric elements 71 is referred to as an elevation direction De
  • the arrangement direction of the piezoelectric elements 71 is referred to as a scanning direction Ds.
  • Piezoelectric element 71 transmits and receives ultrasonic waves. Specifically, the piezoelectric element 71 converts an electrical pulse signal into an acoustic pulse, irradiates the subject, and converts the ultrasonic echo reflected by the subject into an electrical echo signal that expresses the voltage change. Convert and output.
  • a signal input / output electrode (not shown) is provided on the main surface opposite to the side in contact with the acoustic member 72, and the main surface of the piezoelectric element 71 on the acoustic member 72 side is not shown.
  • a ground electrode for grounding is provided. Each electrode is formed using a conductive metal material or resin material.
  • the piezoelectric element 71 is disposed so as to be curved along the scanning direction Ds.
  • the piezoelectric element 71 is formed using a lead zirconate titanate (PZT) ceramic material, or a PMN-PT single crystal, PMN-PZT single crystal, PZN-PT single crystal, PIN-PZN-PT single crystal, or a relaxor material. Is done.
  • PMN-PT single crystal is an abbreviation for solid solution of magnesium / lead niobate and lead titanate.
  • PMN-PZT single crystal is an abbreviation for solid solution of magnesium / lead niobate and lead zirconate titanate.
  • PZN-PT single crystal is an abbreviation for a solid solution of zinc, lead niobate and lead titanate.
  • PIN-PZN-PT single crystal is an abbreviation for a solid solution of indium / lead niobate, zinc / lead niobate and lead titanate.
  • the relaxor-based material is a general term for a three-component piezoelectric material in which lead-based composite perovskite, which is a relaxor material, is added to PZT for the purpose of increasing the piezoelectric constant and dielectric constant.
  • the lead-based composite perovskite is represented by Pb (B1, B2) O 3 , B1 is any of magnesium, zinc, indium, and scandium, and B2 is any of niobium, tantalum, or tungsten. These materials have an excellent piezoelectric effect. For this reason, even if it reduces in size, the value of an electrical impedance can be made low and it is preferable from a viewpoint of impedance matching with the thin film electrode provided in the piezoelectric element 71.
  • the acoustic member 72 joins the piezoelectric element 71 and the connecting portion 73.
  • the acoustic member 72 is an adhesive made of various resins such as an epoxy resin.
  • the acoustic member 72 may be a member that transmits at least a part of the ultrasonic waves, and may be configured of resin, carbon, ceramic, metal, paper, glass, or the like.
  • the shape of the acoustic member 72 is not particularly limited, and may be a thin container filled with a liquid, a cotton shape, a particle shape, a sheet shape, a gel shape, a porous material, a fiber array, or the like.
  • the acoustic member 72 When the acoustic member 72 is not an adhesive, an adhesive is applied to both surfaces of the acoustic member 72, and the piezoelectric element 71 and the connecting portion 73 are joined with the acoustic member 72 interposed therebetween.
  • the acoustic member 72 also has a function as an acoustic matching layer that matches the acoustic impedance between the piezoelectric element 71 and the observation target in order to efficiently transmit sound (ultrasonic waves) between the piezoelectric element 71 and the observation target. May be.
  • the connecting portion 73 connects the piezoelectric elements 71 along the scanning direction Ds.
  • the connecting portion 73 is provided so as to cover the entire surface in the direction in which the piezoelectric element 71 transmits and receives ultrasonic waves.
  • the connecting portion 73 may have a function as an acoustic matching layer.
  • the connecting portion 73 is formed using, for example, the same material as the acoustic member 72, but may be formed from a resin different from the acoustic member 72.
  • the connecting portion 73 may be provided integrally with the acoustic member 72.
  • the core member 74 is disposed at a position where the piezoelectric element 71 does not intersect the direction in which ultrasonic waves are transmitted and received.
  • the core member 74 is fixed inside the connecting portion 73 along the scanning direction Ds.
  • the core member 74 has a series of shapes along the scanning direction Ds.
  • the core member 74 is made of a member having higher rigidity than the connecting portion 73.
  • the core member 74 is a linear, plate-like, or rod-like member made of a metal or alloy such as copper, titanium, silver, or tungsten.
  • the core member 74 is a braided chain in which fine wires made of metal or alloy are knitted, closely wound coils made of metal or alloy, or a plurality of balls made of metal or alloy are in close contact with each other. May be. Further, the core member 74 has a linear, plate-like, or rod-like shape made of a resin that has a smaller coefficient of thermal expansion than the connecting portion 73 and has a greater elasticity in the direction in which the core member 74 extends (scanning direction Ds) than the connecting portion 73. It may be a member. The core member 74 is arrange
  • the ultrasonic transducer 7 having the above configuration irradiates the observation target with ultrasonic waves via the acoustic member 72 and the connecting portion 73 when the piezoelectric element 71 is vibrated by the input of the pulse signal.
  • the ultrasonic wave reflected from the observation target is transmitted to the piezoelectric element 71 through the acoustic member 72 and the connecting portion 73.
  • the piezoelectric element 71 is vibrated by the transmitted ultrasonic wave, and the piezoelectric element 71 converts the vibration into an electrical echo signal and outputs it as an echo signal to the ultrasonic observation apparatus 3 via a wiring (not shown).
  • the core member 74 having rigidity higher than that of the connecting portion 73 is arranged inside the connecting portion 73, it is possible to prevent a pitch shift due to deterioration over time of the acoustic member 72.
  • the ultrasonic vibrator 7 has a plate-like piezoelectric material to be a piezoelectric element 71 bonded by an acoustic member 72 to a connecting portion 73 in which a core member 74 is disposed, and the piezoelectric material and the acoustic member 72 are bonded by dicing. After cutting, it can be manufactured by curving the whole.
  • the acoustic member 72 that is an adhesive or the adhesive applied to both surfaces of the acoustic member 72 that is, for example, a sheet is contracted when cured, and the stress generated by the contraction is released when dicing and is piezoelectric. In some cases, the pitch interval of the elements 71 is shifted.
  • the pitch of the piezoelectric elements 71 is shifted due to stress from the adhesive during dicing. This can be prevented.
  • the core member 74 since the core member 74 is arranged at a position where the piezoelectric element 71 does not intersect with the direction in which ultrasonic waves are transmitted and received, the core member 74 prevents the piezoelectric element 71 from being displaced in pitch. At the same time, the core member 74 is prevented from affecting the ultrasonic image.
  • the ultrasonic transducer 7 may include one or a plurality of acoustic matching layers separately from the connecting portion 73. Further, the ultrasonic transducer 7 has a function of narrowing the ultrasonic wave with one surface being convex or concave, and emits an ultrasonic wave from the piezoelectric element 71 to the outside or an ultrasonic echo from the outside.
  • An acoustic lens for capturing may be provided.
  • the acoustic lens is formed using silicone, polymethylpentene, epoxy resin, polyetherimide, or the like.
  • the ultrasonic transducer 7 may include a backing material that attenuates unnecessary ultrasonic vibration generated by the operation of the piezoelectric element 71.
  • the backing material is formed using a material having a high attenuation rate, for example, an epoxy resin in which a filler such as alumina or zirconia is dispersed, or a rubber in which the filler is dispersed.
  • FIG. 5 is a plan view illustrating a configuration of an ultrasonic transducer according to Modification 1-1.
  • FIG. 6 is a side view illustrating the configuration of an ultrasonic transducer according to Modification 1-1.
  • the ultrasonic transducer 7 may be a linear ultrasonic transducer in which piezoelectric elements 71 are arranged in a plane.
  • FIG. 7 is a side view illustrating a configuration of an ultrasonic transducer according to Modification 1-2.
  • a connecting portion 73 may be disposed on the side opposite to the outer surface side of the piezoelectric element 71.
  • the connecting portion 73 is provided so as to cover the entire surface opposite to the direction in which the piezoelectric element 71 transmits and receives ultrasonic waves.
  • the connecting portion 73 may also have a function as a backing material that absorbs the ultrasonic wave transmitted by the piezoelectric element 71.
  • FIG. 8 is a side view illustrating the configuration of an ultrasonic transducer according to Modification 1-3. As shown in FIG. 8, in the ultrasonic transducer 7 a, the core member 74 a may be selectively disposed at the center or the end in the arrangement direction of the piezoelectric elements 71.
  • FIG. 9 is a side view illustrating a configuration of an ultrasonic transducer according to Modification 1-4. As shown in FIG. 9, in the ultrasonic transducer 7 a, a connecting portion 73 is disposed on the opposite side to the outer surface side of the piezoelectric element 71, and the core member 74 a is at the center or end in the arrangement direction of the piezoelectric elements 71. May be selectively arranged.
  • FIG. 10 is a plan view illustrating the configuration of the ultrasonic transducer according to the second embodiment.
  • FIG. 11 is a side view illustrating the configuration of the ultrasonic transducer according to the second embodiment.
  • the connecting portion 73 ⁇ / b> A is located at the end of the piezoelectric element 71 in the longitudinal direction.
  • the piezoelectric elements 71 are arranged so as to be bent along the arrangement direction of the piezoelectric elements 71.
  • An acoustic matching layer 75A that matches the acoustic impedance of the piezoelectric element 71 and the observation target is disposed between the acoustic member 72 and the connecting portion 73A.
  • the connecting portion 73A is arranged at a position where the piezoelectric element 71 does not intersect the direction in which ultrasonic waves are transmitted and received, it is possible to prevent the ultrasonic waves from being attenuated by the connecting portion 73A.
  • FIG. 12 is a plan view illustrating a configuration of an ultrasonic transducer according to Modification 2-1.
  • 13 and 14 are side views showing the configuration of the ultrasonic transducer according to Modification 2-1.
  • FIG. 14 is a side view of FIG. 12 or FIG. 13 viewed from the right side or the left side.
  • the connecting portion 73A is located at the end of the piezoelectric element 71 in the longitudinal direction, and the piezoelectric elements 71 are arranged in a planar shape.
  • FIG. 15 is a plan view illustrating a configuration of an ultrasonic transducer according to the third embodiment.
  • FIG. 16 is a side view illustrating the configuration of the ultrasonic transducer according to the third embodiment.
  • the core member 74 ⁇ / b> B is provided on the side surface of the connecting portion 73 along the arrangement direction of the piezoelectric elements 71.
  • the core member 74B is fixed to the side surface of the connecting portion 73 by bonding with an adhesive or caulking a metal member.
  • the piezoelectric elements 71 are arranged so as to be bent along the arrangement direction of the piezoelectric elements 71.
  • FIG. 17 is a plan view illustrating a configuration of an ultrasonic transducer according to Modification 3-1.
  • FIG. 18 is a side view illustrating a configuration of an ultrasonic transducer according to Modification 3-1.
  • the ultrasonic transducer 7B may be a linear ultrasonic transducer in which piezoelectric elements 71 are arranged in a planar shape.
  • FIG. 19 is a side view illustrating the configuration of an ultrasonic transducer according to Modification 3-2. As shown in FIG. 19, in the ultrasonic transducer 7 ⁇ / b> B, a connecting portion 73 may be disposed on the side opposite to the outer surface side of the piezoelectric element 71.
  • FIG. 20 is a side view illustrating a configuration of an ultrasonic transducer according to Modification 3-3.
  • the core member 74 ⁇ / b> Ba may be selectively disposed at the center or the end in the arrangement direction of the piezoelectric elements 71.
  • FIG. 21 is a side view illustrating the configuration of an ultrasonic transducer according to Modification 3-4.
  • a connecting portion 73 is disposed on the side opposite to the outer surface side of the piezoelectric element 71, and the core member 74 ⁇ / b> Ba is arranged at the center or end in the arrangement direction of the piezoelectric elements 71. May be selectively arranged.
  • the piezoelectric element 71 may be formed by cutting the piezoelectric material and the acoustic member 72 into a prismatic shape by dicing.
  • the piezoelectric material is made of a bendable soft material such as PVDF (PolyVinylidene DiFluoride).
  • the ultrasonic transducer 7 ⁇ / b> Ba affixes a semicircular piezoelectric material that becomes the piezoelectric element 71 by the acoustic member 72 onto the semicircular connecting portion 73, and attaches the semicircular core member 74 ⁇ / b> Ba to the side surface of the connecting portion 73.
  • the piezoelectric element 71 may be formed by cutting the piezoelectric material and the acoustic member 72 into a prismatic shape by dicing.
  • FIG. 22 is a plan view illustrating a configuration of an ultrasonic transducer according to the fourth embodiment.
  • FIG. 23 is a side view illustrating the configuration of the ultrasonic transducer according to the fourth embodiment.
  • the connecting portion 73A is located at the end of the piezoelectric element 71 in the longitudinal direction, and the core member 74B is along the arrangement direction of the piezoelectric elements 71. It is fixed to the side surface of the connecting portion 73A.
  • the piezoelectric elements 71 are arranged so as to be bent along the arrangement direction of the piezoelectric elements 71.
  • An acoustic matching layer 75A is disposed between the acoustic member 72 and the connecting portion 73A.
  • FIG. 24 is a plan view illustrating a configuration of an ultrasonic transducer according to Modification 4-1.
  • 25 and 26 are side views showing the configuration of the ultrasonic transducer according to Modification 4-1.
  • FIG. 26 is a side view of FIG. 24 or FIG. 25 viewed from the right side or the left side.
  • the connecting portion 73A is located at the end of the piezoelectric element 71 in the longitudinal direction, and the piezoelectric elements 71 are arranged in a planar shape.
  • the ultrasonic transducer of the present invention may be applied to an external ultrasonic probe that emits ultrasonic waves from the body surface of a subject.
  • the extracorporeal ultrasonic probe is usually used for observing abdominal organs (liver, gallbladder, bladder), breast (particularly mammary gland), and thyroid gland.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Signal Processing (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

超音波振動子は、角柱状をなし、長手方向が平行になるように所定のピッチ間隔に配列されており、超音波の送受信を行う複数の圧電素子と、前記圧電素子の配列方向に沿って、隣接する前記圧電素子を連結する連結部と、前記圧電素子と前記連結部とを接合する音響部材と、前記圧電素子が超音波の送受信を行う方向と交わらない位置において、前記連結部に固定されており、前記連結部より剛性が高い芯部材と、を備える。これにより、圧電素子のピッチ間隔がずれることを防止した超音波振動子、超音波プローブ、及び超音波内視鏡を提供する。

Description

超音波振動子、超音波プローブ、及び超音波内視鏡
 本発明は、超音波振動子、超音波プローブ、及び超音波内視鏡に関する。
 観測対象である生体組織又は材料の特性を観測するために、超音波を用いることがある。具体的には、超音波振動子が、観測対象に超音波を送信し、その観測対象によって反射された超音波エコーを受信し、超音波観測装置が、受信した超音波エコーに対して所定の信号処理を施すことにより、観測対象の超音波画像や特性に関する情報を取得する。
 超音波振動子は、角柱状をなし、長手方向を揃えて所定のピッチ間隔に配列されている複数の圧電素子と、圧電素子の配列方向に沿って、隣接する圧電素子を連結する連結部と、圧電素子と連結部とを接合する音響部材と、を備える。圧電素子は、電気的なパルス信号を超音波パルス(音響パルス)に変換して観測対象へ照射するとともに、観測対象で反射された超音波エコーを電圧変化で表現する電気的なエコー信号に変換して出力する。超音波振動子は、圧電素子となる板状の圧電材料と連結部とを接着剤である音響部材により接着し、ダイシングにより圧電材料を角柱状に切断して複数の圧電素子とすることにより形成される。
特開2014-99760号公報
 しかしながら、従来の超音波振動子では、音響部材の経年変化により圧電素子のピッチ間隔がずれる場合があった。また、従来の超音波振動子では、接着剤である音響部材が硬化する際に収縮し、収縮により生じた応力がダイシングする際に解放されて圧電素子のピッチ間隔がずれる場合があった。圧電素子のピッチ間隔がずれると、超音波を送受信するタイミングがずれ、超音波画像の画質が低下するため、圧電素子のピッチ間隔がずれることを防止した超音波振動子が求められていた。
 本発明は、上記に鑑みてなされたものであって、圧電素子のピッチ間隔がずれることを防止した超音波振動子、超音波プローブ、及び超音波内視鏡を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る超音波振動子は、角柱状をなし、長手方向が平行になるように所定のピッチ間隔に配列されており、超音波の送受信を行う複数の圧電素子と、前記圧電素子の配列方向に沿って、隣接する前記圧電素子を連結する連結部と、前記圧電素子と前記連結部とを接合する音響部材と、前記圧電素子が超音波の送受信を行う方向と交わらない位置において、前記連結部に固定されており、前記連結部より剛性が高い芯部材と、を備えることを特徴とする。
 また、本発明の一態様に係る超音波振動子は、前記連結部は、前記圧電素子が送信した超音波を吸収するバッキング材であることを特徴とする。
 また、本発明の一態様に係る超音波振動子は、前記連結部は、前記圧電素子と観測対象との音響インピーダンスをマッチングさせる音響整合層であることを特徴とする。
 また、本発明の一態様に係る超音波振動子は、前記芯部材は、前記圧電素子の配列方向に沿って、前記連結部の内部に位置することを特徴とする。
 また、本発明の一態様に係る超音波振動子は、前記芯部材は、前記圧電素子の配列方向に沿って、前記連結部の側面に位置することを特徴とする。
 また、本発明の一態様に係る超音波振動子は、前記連結部は、前記圧電素子が超音波の送受信を行う面、又は前記圧電素子が超音波の送受信を行う面と反対側の面の全面を覆っていることを特徴とする。
 また、本発明の一態様に係る超音波振動子は、前記連結部は、前記圧電素子の前記長手方向の端部に位置することを特徴とする。
 また、本発明の一態様に係る超音波振動子は、前記圧電素子は、前記圧電素子の配列方向に沿って湾曲するように配列されていることを特徴とする。
 また、本発明の一態様に係る超音波振動子は、前記芯部材は、金属、合金、又は樹脂からなることを特徴とする。
 また、本発明の一態様に係る超音波振動子は、前記芯部材は、前記圧電素子の配列方向に沿って一連の形状をなすことを特徴とする。
 また、本発明の一態様に係る超音波プローブは、上記の超音波振動子を備えることを特徴とする。
 また、本発明の一態様に係る超音波内視鏡は、上記の超音波プローブが被検体内に挿入する挿入部の先端に配置されていることを特徴とする。
 本発明によれば、圧電素子のピッチ間隔がずれることを防止した超音波振動子、超音波プローブ、及び超音波内視鏡を実現することができる。
図1は、実施の形態1に係る超音波振動子を備える内視鏡システムを模式的に示す図である。 図2は、図1に示す超音波内視鏡の挿入部の先端構成を模式的に示す斜視図である。 図3は、実施の形態1に係る超音波振動子の構成を表す平面図である。 図4は、実施の形態1に係る超音波振動子の構成を表す側面図である。 図5は、変形例1-1に係る超音波振動子の構成を表す平面図である。 図6は、変形例1-1に係る超音波振動子の構成を表す側面図である。 図7は、変形例1-2に係る超音波振動子の構成を表す側面図である。 図8は、変形例1-3に係る超音波振動子の構成を表す側面図である。 図9は、変形例1-4に係る超音波振動子の構成を表す側面図である。 図10は、実施の形態2に係る超音波振動子の構成を表す平面図である。 図11は、実施の形態2に係る超音波振動子の構成を表す側面図である。 図12は、変形例2-1に係る超音波振動子の構成を表す平面図である。 図13は、変形例2-1に係る超音波振動子の構成を表す側面図である。 図14は、変形例2-1に係る超音波振動子の構成を表す側面図である。 図15は、実施の形態3に係る超音波振動子の構成を表す平面図である。 図16は、実施の形態3に係る超音波振動子の構成を表す側面図である。 図17は、変形例3-1に係る超音波振動子の構成を表す平面図である。 図18は、変形例3-1に係る超音波振動子の構成を表す側面図である。 図19は、変形例3-2に係る超音波振動子の構成を表す側面図である。 図20は、変形例3-3に係る超音波振動子の構成を表す側面図である。 図21は、変形例3-4に係る超音波振動子の構成を表す側面図である。 図22は、実施の形態4に係る超音波振動子の構成を表す平面図である。 図23は、実施の形態4に係る超音波振動子の構成を表す側面図である。 図24は、変形例4-1に係る超音波振動子の構成を表す平面図である。 図25は、変形例4-1に係る超音波振動子の構成を表す側面図である。 図26は、変形例4-1に係る超音波振動子の構成を表す側面図である。
 以下に、図面を参照して本発明に係る超音波振動子、超音波プローブ、及び超音波内視鏡の実施の形態を説明する。なお、これらの実施の形態により本発明が限定されるものではない。以下の実施の形態においては、超音波内視鏡を例示して説明するが、本発明は複数の圧電素子を備える超音波振動子一般に適用することができる。
 また、図面の記載において、同一又は対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
(実施の形態1)
 図1は、実施の形態1に係る超音波振動子を備える内視鏡システムを模式的に示す図である。内視鏡システム1は、超音波内視鏡を用いて人等の被検体内の超音波診断を行うシステムである。この内視鏡システム1は、図1に示すように、超音波内視鏡2と、超音波観測装置3と、内視鏡観察装置4と、表示装置5と、光源装置6と、を備える。
 超音波内視鏡2は、その先端部において、超音波観測装置3から受信した電気的なパルス信号を超音波パルス(音響パルス)に変換して被検体へ照射するとともに、被検体で反射された超音波エコーを電圧変化で表現する電気的なエコー信号に変換して出力する。
 超音波内視鏡2は、通常は撮像光学系及び撮像素子を有しており、被検体の消化管(食道、胃、十二指腸、大腸)、又は呼吸器(気管、気管支)へ挿入され、消化管や、呼吸器の撮像を行うことが可能である。また、その周囲臓器(膵臓、胆嚢、胆管、胆道、リンパ節、縦隔臓器、血管等)を、超音波を用いて撮像することが可能である。また、超音波内視鏡2は、光学撮像時に被検体へ照射する照明光を導くライトガイドを有する。このライトガイドは、先端部が超音波内視鏡2の被検体への挿入部の先端まで達している一方、基端部が照明光を発生する光源装置6に接続されている。
 超音波内視鏡2は、図1に示すように、挿入部21と、操作部22と、ユニバーサルケーブル23と、コネクタ24と、を備える。挿入部21は、被検体内に挿入される部分である。この挿入部21は、図1に示すように、先端に配置される超音波振動子7と、超音波振動子7を保持する硬性部材211と、硬性部材211の基端側に連結され湾曲可能とする湾曲部212と、湾曲部212の基端側に連結され可撓性を有する可撓管部213と、を備える。ここで、挿入部21の内部には、具体的な図示は省略したが、光源装置6から供給された照明光を伝送するライトガイド、各種信号を伝送する複数の信号ケーブルが引き回されているとともに、処置具を挿通するための処置具用挿通路が形成されている。
 超音波振動子7は、コンベックス振動子、リニア振動子及びラジアル振動子のいずれでも構わない。超音波内視鏡2が、超音波振動子7として複数の圧電素子をアレイ状に設け、送受信にかかわる圧電素子を電子的に切り替えたり、各圧電素子の送受信に遅延をかけたりすることで、電子的に走査させる。超音波振動子7の構成については、後述する。
 図2は、図1に示す超音波内視鏡の挿入部の先端構成を模式的に示す斜視図である。図2に示すように、硬性部材211は、照明光を集光して外部に出射する照明レンズ211aと、撮像光学系の一部をなし、外部からの光を取り込む対物レンズ211bと、挿入部21内に形成された処置具用挿通路に連通し、挿入部21の先端から処置具を突出させる処置具突出口211cと、を有する。
 操作部22は、挿入部21の基端側に連結され、医師等からの各種操作を受け付ける部分である。この操作部22は、図1に示すように、湾曲部212を湾曲操作するための湾曲ノブ221と、各種操作を行うための複数の操作部材222と、を備える。また、操作部22には、処置具用挿通路に連通し、当該処置具用挿通路に処置具を挿通するための処置具挿入口223が形成されている。
 ユニバーサルケーブル23は、操作部22から延在し、各種信号を伝送する複数の信号ケーブル、及び光源装置6から供給された照明光を伝送する光ファイバ等が配設されたケーブルである。
 コネクタ24は、ユニバーサルケーブル23の先端に設けられている。そして、コネクタ24は、超音波ケーブル31、ビデオケーブル41、及び光ファイバケーブル61がそれぞれ接続される第1~第3コネクタ部241~243を備える。
 超音波観測装置3は、超音波ケーブル31(図1)を介して超音波内視鏡2に電気的に接続し、超音波ケーブル31を介して超音波内視鏡2にパルス信号を出力するとともに超音波内視鏡2からエコー信号を入力する。そして、超音波観測装置3は、当該エコー信号に所定の処理を施して超音波画像を生成する。
 内視鏡観察装置4は、ビデオケーブル41(図1)を介して超音波内視鏡2に電気的に接続し、ビデオケーブル41を介して超音波内視鏡2からの画像信号を入力する。そして、内視鏡観察装置4は、当該画像信号に所定の処理を施して内視鏡画像を生成する。
 表示装置5は、液晶又は有機EL(Electro Luminescence)、プロジェクタ、CRT(Cathode Ray Tube)などを用いて構成され、超音波観測装置3にて生成された超音波画像や、内視鏡観察装置4にて生成された内視鏡画像等を表示する。
 光源装置6は、光ファイバケーブル61(図1)を介して超音波内視鏡2に接続し、光ファイバケーブル61を介して被検体内を照明する照明光を超音波内視鏡2に供給する。
 続いて、挿入部21の先端に設けられた超音波振動子7の構成を図3、図4を参照して説明する。図3は、実施の形態1に係る超音波振動子の構成を表す平面図である。図4は、実施の形態1に係る超音波振動子の構成を表す側面図である。なお、図3は、超音波振動子7を図2の下方から見た平面図である。図4は、図2に対して上下が逆の側面図である。また、図3、図4は、超音波振動子7の一例を表す図であり、実際に配設される圧電素子71の個数はこの限りではない。本実施の形態1では、超音波振動子7が、図2に示すようなコンベックス型の超音波振動子であって、複数の圧電素子71が一列に配列された一次元アレイ(1Dアレイ)であるものとして説明する。換言すれば、本実施の形態1に係る超音波振動子7では、複数の圧電素子71が、当該超音波振動子7の曲面をなす外表面に沿って配置されている。
 超音波振動子7は、角柱状をなし、長手方向が平行になるように所定のピッチ間隔に配列されている複数の圧電素子71と、圧電素子71に対し、当該超音波振動子7の外表面側にそれぞれ設けられる複数の音響部材72と、音響部材72の圧電素子71と接する側と反対側に設けられ、隣接する圧電素子71及び音響部材72同士を連結する連結部73と、連結部73の内部に固定されている芯部材74と、を備える。以下、図2~図4に示すように、圧電素子71の長手方向をエレベーション方向Deとよび、圧電素子71の配列方向を走査方向Dsとよぶ。
 圧電素子71は、超音波の送受信を行う。具体的には、圧電素子71は、電気的なパルス信号を音響パルスに変換して被検体へ照射するとともに、被検体で反射された超音波エコーを電圧変化で表現する電気的なエコー信号に変換して出力する。圧電素子71には、例えば、音響部材72と接する側と反対側の主面に不図示の信号入出力用電極が設けられているとともに、圧電素子71の音響部材72側の主面に不図示のグラウンド接地用のグラウンド電極が設けられている。各電極は、導電性を有する金属材料又は樹脂材料を用いて形成される。圧電素子71は、走査方向Dsに沿って湾曲するように配置されている。
 圧電素子71は、チタン酸ジルコン酸鉛(PZT)セラミック材料、又はPMN-PT単結晶、PMN-PZT単結晶、PZN-PT単結晶、PIN-PZN-PT単結晶もしくはリラクサー系材料を用いて形成される。PMN-PT単結晶は、マグネシウム・ニオブ酸鉛及びチタン酸鉛の固溶体の略称である。PMN-PZT単結晶は、マグネシウム・ニオブ酸鉛及びチタン酸ジルコン酸鉛の固溶体の略称である。PZN-PT単結晶は、亜鉛・ニオブ酸鉛及びチタン酸鉛の固溶体の略称である。PIN-PZN-PT単結晶は、インジウム・ニオブ酸鉛、亜鉛・ニオブ酸鉛及びチタン酸鉛の固溶体の略称である。リラクサー系材料は、圧電定数や誘電率を増加させる目的でリラクサー材料である鉛系複合ペロブスカイトをPZTに添加した三成分系圧電材料の総称である。鉛系複合ペロブスカイトは、Pb(B1、B2)Oで表され、B1はマグネシウム、亜鉛、インジウム又はスカンジウムのいずれかであり、B2はニオブ、タンタル又はタングステンのいずれかである。これらの材料は、優れた圧電効果を有している。このため、小型化しても電気的なインピーダンスの値を低くすることができ、圧電素子71に設けられる薄膜電極との間のインピーダンスマッチングの観点から好ましい。
 音響部材72は、圧電素子71と連結部73とを接合する。音響部材72は、例えばエポキシ樹脂等の各種樹脂からなる接着剤である。また、音響部材72は、超音波の少なくとも一部を透過する部材であればよく、樹脂、カーボン、セラミック、金属、紙、ガラス等からなる構成であってもよい。また、音響部材72の形状は特に限定されず、液体を封入した薄い容器状、綿状、粒子状、シート状、ゲル状、多孔質、繊維を配列したもの等であってもよい。なお、音響部材72が接着剤でない場合、音響部材72の両面にそれぞれ接着剤が塗布され、圧電素子71と連結部73とが音響部材72を挟んで接合される。音響部材72は、圧電素子71と観測対象との間で音(超音波)を効率よく透過させるために、圧電素子71と観測対象との音響インピーダンスをマッチングさせる音響整合層としての機能を兼ね備えていてもよい。
 連結部73は、走査方向Dsに沿って、圧電素子71を連結する。連結部73は、圧電素子71が超音波の送受信を行う方向の全面を覆うように設けられている。連結部73は、音響部材72と同様に、音響整合層としての機能を兼ね備えていてもよい。連結部73は、例えば音響部材72と同じ材料を用いて形成されるが、音響部材72と異なる樹脂から形成されていてもよい。なお、連結部73は、音響部材72と一体的に設けられるものであってもよい。
 芯部材74は、圧電素子71が超音波の送受信を行う方向と交わらない位置に配置されている。芯部材74は、走査方向Dsに沿って、連結部73の内部に固定されている。芯部材74は、走査方向Dsに沿って一連の形状をなす。芯部材74は、連結部73より剛性が高い部材からなる。具体的には、芯部材74は、例えば銅、チタン、銀、タングステン等の金属又は合金からなる線状、板状、棒状の部材である。また、芯部材74は、金属又は合金からなる細線が編み込まれた編込みワイヤ、金属又は合金からなる密巻きコイル、金属又は合金からなる複数のボールが互いに密着している数珠状のチェーンであってもよい。また、芯部材74は、連結部73よりも熱膨張係数が小さく、かつ芯部材74が延伸する方向(走査方向Ds)の弾性が連結部73よりも大きい樹脂からなる線状、板状、棒状の部材であってもよい。芯部材74は、例えばインサート成形により連結部73の内部に配置される。
 以上の構成を有する超音波振動子7は、パルス信号の入力によって圧電素子71が振動することで、音響部材72及び連結部73を介して観測対象に超音波を照射する。また、観測対象から反射された超音波は、音響部材72及び連結部73を介して圧電素子71に伝えられる。伝達された超音波により圧電素子71が振動し、圧電素子71が該振動を電気的なエコー信号に変換して、エコー信号として不図示の配線を介して超音波観測装置3に出力する。
 実施の形態1によれば、連結部73の内部に連結部73より剛性の高い芯部材74が配置されているため、音響部材72の経年劣化によるピッチずれを防止することができる。
 また、超音波振動子7は、内部に芯部材74が配置された連結部73上に、音響部材72により圧電素子71となる板状の圧電材料を接着し、ダイシングにより圧電材料及び音響部材72を切断した後、全体を湾曲させることにより製造することができる。ここで、接着剤である音響部材72、又は例えばシート状である音響部材72の両面に塗布された接着剤が硬化する際に収縮し、収縮により生じた応力がダイシングする際に解放されて圧電素子71のピッチ間隔がずれる場合があった。しかしながら、実施の形態1によれば、ダイシング時に連結部73の内部に連結部73より剛性の高い芯部材74が配置されているため、ダイシング時に接着剤からの応力により圧電素子71のピッチがずれることを防止することができる。
 また、実施の形態1によれば、芯部材74が、圧電素子71が超音波の送受信を行う方向と交わらない位置に配置されているため、芯部材74により圧電素子71のピッチずれを防止するとともに、芯部材74が超音波画像に影響を与えることを防止している。
 なお、超音波振動子7は、連結部73とは別に、1つ又は複数の音響整合層を備えていてもよい。また、超音波振動子7は、一方の面が凸状又は凹状をなして超音波を絞る機能を有し、圧電素子71からの超音波を外部に出射する、又は外部からの超音波エコーを取り込む音響レンズを備えていてもよい。音響レンズは、シリコーン、ポリメチルペンテンや、エポキシ樹脂、ポリエーテルイミドなどを用いて形成される。また、超音波振動子7は、圧電素子71の動作によって生じる不要な超音波振動を減衰させるバッキング材を備えていてもよい。バッキング材は、減衰率の大きい材料、例えば、アルミナやジルコニア等のフィラーを分散させたエポキシ樹脂や、上述したフィラーを分散したゴムを用いて形成される。
(変形例1-1)
 図5は、変形例1-1に係る超音波振動子の構成を表す平面図である。図6は、変形例1-1に係る超音波振動子の構成を表す側面図である。図5、図6に示すように、超音波振動子7は、圧電素子71が平面状に配列されているリニア型の超音波振動子であってもよい。
(変形例1-2)
 図7は、変形例1-2に係る超音波振動子の構成を表す側面図である。図7に示すように、超音波振動子7において、圧電素子71の外表面側と反対側に連結部73が配置されていてもよい。連結部73は、圧電素子71が超音波の送受信を行う方向と反対側の全面を覆うように設けられている。この構成において、連結部73は、圧電素子71が送信した超音波を吸収するバッキング材としての機能を兼ね備えていてもよい。
(変形例1-3)
 図8は、変形例1-3に係る超音波振動子の構成を表す側面図である。図8に示すように、超音波振動子7aにおいて、芯部材74aは、圧電素子71の配列方向の中央や端部に選択的に配置されていてもよい。
(変形例1-4)
 図9は、変形例1-4に係る超音波振動子の構成を表す側面図である。図9に示すように、超音波振動子7aにおいて、圧電素子71の外表面側と反対側に連結部73が配置されており、かつ芯部材74aが圧電素子71の配列方向の中央や端部に選択的に配置されていてもよい。
(実施の形態2)
 図10は、実施の形態2に係る超音波振動子の構成を表す平面図である。図11は、実施の形態2に係る超音波振動子の構成を表す側面図である。図10、図11に示すように、超音波振動子7Aにおいて、連結部73Aは、圧電素子71の長手方向の端部に位置する。圧電素子71は、圧電素子71の配列方向に沿って湾曲するように配置されている。また、音響部材72と連結部73Aとの間には、圧電素子71と観測対象との音響インピーダンスをマッチングさせる音響整合層75Aが配置されている。この構成では、連結部73Aが、圧電素子71が超音波の送受信を行う方向と交わらない位置に配置されていることにより、連結部73Aにより超音波が減衰することを防止することができる。
(変形例2-1)
 図12は、変形例2-1に係る超音波振動子の構成を表す平面図である。図13、図14は、変形例2-1に係る超音波振動子の構成を表す側面図である。図14は、図12又は図13を右側又は左側から見た側面図である。図12~図14に示すように、超音波振動子7Aにおいて、連結部73Aが圧電素子71の長手方向の端部に位置し、かつ圧電素子71が平面状に配列されている。
(実施の形態3)
 図15は、実施の形態3に係る超音波振動子の構成を表す平面図である。図16は、実施の形態3に係る超音波振動子の構成を表す側面図である。図15、図16に示すように、超音波振動子7Bにおいて、芯部材74Bは、圧電素子71の配列方向に沿って、連結部73の側面に設けられている。芯部材74Bは、接着剤による接着や金属部材をかしめることにより連結部73の側面に固定されている。圧電素子71は、圧電素子71の配列方向に沿って湾曲するように配置されている。
(変形例3-1)
 図17は、変形例3-1に係る超音波振動子の構成を表す平面図である。図18は、変形例3-1に係る超音波振動子の構成を表す側面図である。図17、図18に示すように、超音波振動子7Bは、圧電素子71が平面状に配列されているリニア型の超音波振動子であってもよい。
(変形例3-2)
 図19は、変形例3-2に係る超音波振動子の構成を表す側面図である。図19に示すように、超音波振動子7Bにおいて、圧電素子71の外表面側と反対側に連結部73が配置されていてもよい。
(変形例3-3)
 図20は、変形例3-3に係る超音波振動子の構成を表す側面図である。図20に示すように、超音波振動子7Baにおいて、芯部材74Baは、圧電素子71の配列方向の中央や端部に選択的に配置されていてもよい。
(変形例3-4)
 図21は、変形例3-4に係る超音波振動子の構成を表す側面図である。図21に示すように、超音波振動子7Baにおいて、圧電素子71の外表面側と反対側に連結部73が配置されており、かつ芯部材74Baが圧電素子71の配列方向の中央や端部に選択的に配置されていてもよい。なお、超音波振動子7Baは、連結部73上に音響部材72により圧電素子71となる板状の圧電材料を貼り付け、全体を湾曲させた後に芯部材74Baを連結部73の側面に貼り付けた後、ダイシングにより圧電材料及び音響部材72を角柱状に切断して、圧電素子71を形成してもよい。この場合、圧電材料は、例えばPVDF(PolyVinylidene DiFluoride)等の湾曲可能な軟性の材料からなる。また、超音波振動子7Baは、半円形状の連結部73上に音響部材72により圧電素子71となる半円形状の圧電材料を貼り付け、半円形状の芯部材74Baを連結部73の側面に貼り付けた後、ダイシングにより圧電材料及び音響部材72を角柱状に切断して、圧電素子71を形成してもよい。
(実施の形態4)
 図22は、実施の形態4に係る超音波振動子の構成を表す平面図である。図23は、実施の形態4に係る超音波振動子の構成を表す側面図である。図22、図23に示すように、超音波振動子7Cにおいて、連結部73Aは、圧電素子71の長手方向の端部に位置し、かつ芯部材74Bが圧電素子71の配列方向に沿って、連結部73Aの側面に固定されている。圧電素子71は、圧電素子71の配列方向に沿って湾曲するように配置されている。また、音響部材72と連結部73Aとの間には、音響整合層75Aが配置されている。
(変形例4-1)
 図24は、変形例4-1に係る超音波振動子の構成を表す平面図である。図25、図26は、変形例4-1に係る超音波振動子の構成を表す側面図である。図26は、図24又は図25を右側又は左側から見た側面図である。図24~図26に示すように、超音波振動子7Cにおいて、連結部73Aが圧電素子71の長手方向の端部に位置し、かつ圧電素子71が平面状に配列されている。
 なお、超音波内視鏡として一例を記載したが、本発明の超音波振動子は、被検体の体表から超音波を照射する体外式の超音波プローブに適用してもよい。体外式の超音波プローブは、通常、腹部臓器(肝臓、胆嚢、膀胱)、乳房(特に乳腺)、甲状腺を観察する際に用いられる。
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、以上のように表わしかつ記述した特定の詳細及び代表的な実施形態に限定されるものではない。従って、添付のクレーム及びその均等物によって定義される総括的な発明の概念の精神又は範囲から逸脱することなく、様々な変更が可能である。
 1 内視鏡システム
 2 超音波内視鏡
 3 超音波観測装置
 4 内視鏡観察装置
 5 表示装置
 6 光源装置
 7、7a、7A、7B、7Ba、7C 超音波振動子
 21 挿入部
 22 操作部
 23 ユニバーサルケーブル
 24 コネクタ
 31 超音波ケーブル
 41 ビデオケーブル
 61 光ファイバケーブル
 71 圧電素子
 72 音響部材
 73、73A 連結部
 74、74a、74B、74Ba 芯部材
 75A 音響整合層
 211 硬性部材
 211a 照明レンズ
 211b 対物レンズ
 211c 処置具突出口
 212 湾曲部
 213 可撓管部
 221 湾曲ノブ
 222 操作部材
 223 処置具挿入口
 241 第1コネクタ部
 242 第2コネクタ部
 243 第3コネクタ部

Claims (12)

  1.  角柱状をなし、長手方向が平行になるように所定のピッチ間隔に配列されており、超音波の送受信を行う複数の圧電素子と、
     前記圧電素子の配列方向に沿って、隣接する前記圧電素子を連結する連結部と、
     前記圧電素子と前記連結部とを接合する音響部材と、
     前記圧電素子が超音波の送受信を行う方向と交わらない位置において、前記連結部に固定されており、前記連結部より剛性が高い芯部材と、
     を備えることを特徴とする超音波振動子。
  2.  前記連結部は、前記圧電素子が送信した超音波を吸収するバッキング材であることを特徴とする請求項1に記載の超音波振動子。
  3.  前記連結部は、前記圧電素子と観測対象との音響インピーダンスをマッチングさせる音響整合層であることを特徴とする請求項1又は2に記載の超音波振動子。
  4.  前記芯部材は、前記圧電素子の配列方向に沿って、前記連結部の内部に位置することを特徴とする請求項1~3のいずれか1つに記載の超音波振動子。
  5.  前記芯部材は、前記圧電素子の配列方向に沿って、前記連結部の側面に位置することを特徴とする請求項1~4のいずれか1つに記載の超音波振動子。
  6.  前記連結部は、前記圧電素子が超音波の送受信を行う面、又は前記圧電素子が超音波の送受信を行う面と反対側の面の全面を覆っていることを特徴とする請求項1~5のいずれか1つに記載の超音波振動子。
  7.  前記連結部は、前記圧電素子の前記長手方向の端部に位置することを特徴とする請求項1~6のいずれか1つに記載の超音波振動子。
  8.  前記圧電素子は、前記圧電素子の配列方向に沿って湾曲するように配列されていることを特徴とする請求項1~7のいずれか1つに記載の超音波振動子。
  9.  前記芯部材は、金属、合金、又は樹脂からなることを特徴とする請求項1~8のいずれか1つに記載の超音波振動子。
  10.  前記芯部材は、前記圧電素子の配列方向に沿って一連の形状をなすことを特徴とする請求項1~9のいずれか1つに記載の超音波振動子。
  11.  請求項1~10のいずれか1つに記載の超音波振動子を備えることを特徴とする超音波プローブ。
  12.  請求項11に記載の超音波プローブが被検体内に挿入する挿入部の先端に配置されていることを特徴とする超音波内視鏡。
PCT/JP2018/000036 2017-02-06 2018-01-04 超音波振動子、超音波プローブ、及び超音波内視鏡 WO2018142842A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-019629 2017-02-06
JP2017019629A JP6800035B2 (ja) 2017-02-06 2017-02-06 超音波振動子、超音波プローブ、及び超音波内視鏡

Publications (1)

Publication Number Publication Date
WO2018142842A1 true WO2018142842A1 (ja) 2018-08-09

Family

ID=63040618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000036 WO2018142842A1 (ja) 2017-02-06 2018-01-04 超音波振動子、超音波プローブ、及び超音波内視鏡

Country Status (2)

Country Link
JP (1) JP6800035B2 (ja)
WO (1) WO2018142842A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028299U (ja) * 1989-06-15 1990-01-19
JP2001197593A (ja) * 2000-01-12 2001-07-19 Hitachi Medical Corp 超音波装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225044A (ja) * 1983-06-07 1984-12-18 松下電器産業株式会社 超音波トランスジユ−サ
JPS60102098A (ja) * 1983-11-08 1985-06-06 Tokyo Keiki Co Ltd 超音波探触子
WO2008121238A2 (en) * 2007-03-30 2008-10-09 Gore Enterprise Holdings, Inc. Improved ultrasonic attenuation materials
JP4547468B2 (ja) * 2008-10-14 2010-09-22 オリンパスメディカルシステムズ株式会社 超音波プローブ
JP2011212084A (ja) * 2010-03-31 2011-10-27 Konica Minolta Medical & Graphic Inc 超音波探触子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028299U (ja) * 1989-06-15 1990-01-19
JP2001197593A (ja) * 2000-01-12 2001-07-19 Hitachi Medical Corp 超音波装置

Also Published As

Publication number Publication date
JP6800035B2 (ja) 2020-12-16
JP2018126203A (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6157795B2 (ja) 超音波振動子および超音波プローブ
US9924925B2 (en) Ultrasound transducer and ultrasound probe
CN107205726B (zh) 超声波探头
US20180035977A1 (en) Ultrasound transducer, ultrasound probe and method of manufacturing ultrasound transducer
JP6741637B2 (ja) 超音波内視鏡
US10869649B2 (en) Ultrasound transducer module and ultrasound endoscope
US11160530B2 (en) Ultrasonic transducer module, ultrasonic endoscope and processing method of ultrasonic transducer module
WO2018142842A1 (ja) 超音波振動子、超音波プローブ、及び超音波内視鏡
JP6197145B2 (ja) 超音波内視鏡
JP6697962B2 (ja) 超音波振動子および超音波内視鏡
JP7223871B2 (ja) 超音波内視鏡
JP6952533B2 (ja) 超音波内視鏡
JP2017074231A (ja) 超音波内視鏡の製造方法および超音波内視鏡
JP6800078B2 (ja) 超音波振動子、超音波内視鏡、及び超音波振動子の製造方法
US20190133555A1 (en) Ultrasonic transducer module and ultrasonic endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747782

Country of ref document: EP

Kind code of ref document: A1