WO2020078436A1 - 汽车空调滤网的使用寿命检测方法和设备、存储介质 - Google Patents

汽车空调滤网的使用寿命检测方法和设备、存储介质 Download PDF

Info

Publication number
WO2020078436A1
WO2020078436A1 PCT/CN2019/111735 CN2019111735W WO2020078436A1 WO 2020078436 A1 WO2020078436 A1 WO 2020078436A1 CN 2019111735 W CN2019111735 W CN 2019111735W WO 2020078436 A1 WO2020078436 A1 WO 2020078436A1
Authority
WO
WIPO (PCT)
Prior art keywords
service life
air
filter
time
pollutant concentration
Prior art date
Application number
PCT/CN2019/111735
Other languages
English (en)
French (fr)
Inventor
冯海涛
熊明娜
孙明
陈翼雄
蒋未来
刘李亮
史志宇
陆阳
Original Assignee
3M创新有限公司
冯海涛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M创新有限公司, 冯海涛 filed Critical 3M创新有限公司
Priority to CN201980068107.0A priority Critical patent/CN112996682A/zh
Priority to KR1020217014129A priority patent/KR20210095625A/ko
Publication of WO2020078436A1 publication Critical patent/WO2020078436A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/06Filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00585Means for monitoring, testing or servicing the air-conditioning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/0073Control systems or circuits characterised by particular algorithms or computational models, e.g. fuzzy logic or dynamic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/008Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being air quality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00985Control systems or circuits characterised by display or indicating devices, e.g. voice simulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/06Filtering
    • B60H2003/0683Filtering the quality of the filter or the air being checked

Definitions

  • the invention belongs to the technical field of automobile air conditioning, and particularly relates to a method and equipment for detecting the service life of an automobile air conditioning filter, and a computer-readable storage medium.
  • the invention at least partially solves the problem that the prior art cannot accurately determine the service life of the automobile filter, and provides a service life detection method and device of the automobile air conditioner filter that can know the service life of the automobile filter in a timely and accurate manner, and a computer-readable storage medium.
  • One aspect of the present invention is to provide a method for detecting the service life of an automobile air-conditioning filter, which includes:
  • the target pollutant is a pollutant that can be filtered by the automobile air conditioning filter
  • the cycle state is determined according to the change of the target pollutant concentration with time; wherein, the cycle state is an inner cycle or an outer cycle, and the outer cycle is a state where filtered outside air in the vehicle is obtained only by the air conditioner, and the inner cycle It is a state where the air in the car is circulated and filtered only by the air conditioner;
  • the service life of the filter screen is determined according to the cycle state.
  • the determining the service life of the filter according to the cycle state includes:
  • the target pollutant concentration in the car during the outer cycle is changed with time, and the target pollutant concentration in the car is changed with the time during the inner cycle;
  • the air conditioning air volume is the air volume passing through the filter in a unit time
  • the filtering efficiency of the filter is determined according to the change of the target pollutant concentration in the vehicle with time and the air conditioning air volume during the internal circulation; wherein, the air conditioning air volume during the internal circulation and the external circulation are equal;
  • the determining the air volume of the air conditioner according to the change of the target pollutant concentration in the vehicle with time during the external circulation includes:
  • n t1 a + b * e -f * t1 / V, determine the air-conditioning air volume f, where n t1 is the target pollutant concentration in the car after t1 time after the start of the outer cycle, a and b are in each outer cycle Medium is a fixed value, e is a natural constant, and V is the volume of the interior space.
  • the determining the filtering efficiency of the filter according to the change of the target pollutant concentration in the vehicle with time during the internal circulation and the air conditioning air volume includes:
  • n t2 n 0 * e -f * ⁇ * t2 / V, determine the filter efficiency ⁇ of the filter, where n t2 is the target pollutant concentration in the car after time t2 at the beginning of the inner cycle, n 0 is The target pollutant concentration in the vehicle at the beginning of the second internal cycle, e is a natural constant, f is the air conditioning air volume, and V is the volume of the vehicle interior space.
  • the determining the service life of the filter according to the cycle state includes:
  • the cumulative purification amount of the internal circulation of the car air conditioner is calculated according to the target pollutant concentration in the vehicle, the air conditioning air volume, and the estimated filtration efficiency of the filter; during the external circulation, according to the target pollutant concentration, air conditioning air volume, and filtration outside the vehicle
  • the estimated filtration efficiency of the net is used to calculate the cumulative purification volume of the external air conditioner of the car air conditioner;
  • the air conditioning air volume is the amount of air passing through the filter per unit time; the amount;
  • the determining the service life of the filter according to the cumulative purification amount includes:
  • the expected cumulative purification amount is calculated based on the change of the target pollutant concentration in the vehicle with time during multiple internal cycles;
  • the acquiring the change of the target pollutant concentration in the vehicle with time includes:
  • the determining the circulation state according to the change of the target pollutant concentration with time includes:
  • Curve generation step generate the change curve of target pollutant concentration with time
  • Fragment acquisition step a plurality of descending segments are segmented from the change curve of the target pollutant concentration with time, and in each descending segment, the target pollutant concentration shows a downward trend;
  • Loop judgment step The descending segment corresponding to the inner loop and the descending segment corresponding to the outer loop are selected from a plurality of descending segments.
  • the method further includes:
  • State judging step judging whether the car air conditioner is on during each descending segment, and discarding the descending segment where the car air conditioning is off.
  • the length of each descending segment is 3-20 minutes.
  • the method before the determining the service life of the filter according to the cycle state, the method further includes: obtaining the cumulative turn-on time of the air conditioner;
  • Said determining the service life of the filter according to the cycle state includes: determining the service life of the filter based on the cumulative opening time and the cycle state.
  • the service life detection method of the automobile air-conditioning filter further includes:
  • the determining the service life of the filter according to the cycle state includes determining the service life of the filter based on the cycle state only when the vehicle is in motion.
  • the target pollutants include:
  • the method further includes:
  • An aspect of the present invention is to provide a service life detection device for an automobile air-conditioning filter, which includes:
  • An obtaining unit used to obtain the change of the concentration of target pollutants in the vehicle with time; wherein, the target pollutants are pollutants that can be filtered by the automobile air-conditioning filter;
  • the state judgment unit is used to determine the cycle state according to the change of the target pollutant concentration with time; wherein, the cycle state is an inner cycle or an outer cycle, and the outer cycle is a vehicle interior where filtered outside air is obtained only by the air conditioner State, the internal circulation is a state where the air in the vehicle is circulated and filtered only by the air conditioner;
  • the service life calculation unit is used to determine the service life of the filter screen according to the cycle state.
  • the service life calculation unit includes:
  • the extraction module is used to obtain the change of the target pollutant concentration in the vehicle during the outer circulation with time and the change of the target pollutant concentration in the vehicle during the inner circulation according to the change of the target pollutant concentration with time and the circulation state;
  • the air volume calculation module is used to determine the air volume of the air conditioner according to the change of the target pollutant concentration in the vehicle with time during the external circulation.
  • the filtering efficiency calculation module is used to determine the filtering efficiency of the filter according to the change of the target pollutant concentration in the vehicle over time and the air conditioning air volume during the internal circulation; wherein, the air conditioning air volume during the internal circulation and the external circulation are equal;
  • the service life calculation module is used to determine the service life of the filter screen according to the filtration efficiency.
  • the service life calculation unit includes:
  • Internal circulation cumulative purification volume calculation module used to calculate the internal circulation cumulative purification volume of the car air conditioner based on the target pollutant concentration in the vehicle, the air conditioning air volume, and the estimated filtration efficiency of the filter in the internal circulation;
  • the air conditioning air volume is unit time The amount of air inside the filter;
  • External circulation cumulative purification volume calculation module is used to calculate the external circulation cumulative purification volume of the car air conditioner according to the target pollutant concentration outside the vehicle, the air conditioning air volume, and the estimated filtration efficiency of the filter during the external circulation;
  • the cumulative purification amount calculation module is used to calculate the sum of the internal purification amount and the external purification amount as the cumulative purification amount of the automobile air conditioner;
  • the service life calculation module is used to determine the service life of the filter according to the accumulated purification amount.
  • the service life calculation unit further includes:
  • the expected cumulative purification amount calculation module is used to calculate the expected cumulative purification amount according to the change of the target pollutant concentration in the vehicle with time during multiple internal cycles within a predetermined time;
  • a replacement module is used to compare the expected cumulative purification amount with the cumulative purification amount, and if the difference between the two is less than a predetermined value, replace the cumulative purification amount with the expected cumulative purification amount.
  • the acquiring unit includes:
  • the pollutant sensor which is installed in the car, is used to continuously detect the target pollutant concentration in the car to obtain the change of the target pollutant concentration in the car with time.
  • the state judgment unit includes:
  • the curve generation module is used to generate the change curve of target pollutant concentration with time
  • the fragment acquisition module is used to divide a plurality of descending fragments from the change curve of the target pollutant concentration with time, and in each falling fragment, the target pollutant concentration shows a downward trend;
  • the loop judgment module is used to select the descending segment corresponding to the inner loop and the descending segment corresponding to the outer loop from a plurality of descending segments.
  • the service life detection equipment further includes:
  • Movement status acquisition unit used to acquire the movement status of the car
  • the service life calculation unit is used to determine the service life of the filter screen only based on the cycle state when the vehicle is moving.
  • the motion state acquisition unit includes:
  • the vehicle-mounted automatic diagnosis system interface is used to connect with the vehicle-mounted automatic diagnosis system to obtain the movement state of the vehicle from the vehicle-mounted automatic diagnosis system;
  • An acceleration sensor which is provided on the car, is used to obtain the acceleration of the car, and determine the motion state of the car according to the acceleration.
  • the service life detection equipment further includes:
  • the electronic label reader is used to read the information of the filter screen from the electronic label installed on the filter screen.
  • the service life detection equipment further includes:
  • the alarm unit is used to issue an alarm when the service life is lower than a predetermined value.
  • An aspect of the present invention is to provide a computer-readable storage medium in which a program that can be executed by a processor is stored,
  • the processor executes the program, the method for detecting the service life of the automobile air-conditioning filter described above can be performed.
  • the service life of the filter can be obtained only by the target pollutant concentration in the car, so its implementation is simple, without the need to modify the structure of the car (such as the central control system), or add it to the air conditioner or filter Install additional devices, and as long as a pollutant sensor (such as a PM2.5 sensor) that detects the target pollutant concentration is installed in the vehicle (of course, there is a processor for data processing).
  • a pollutant sensor such as a PM2.5 sensor
  • Figure 1 is a schematic diagram of the inner and outer circulation states
  • FIG. 2 is a schematic flow chart of a method for detecting the service life of a car air-conditioning filter according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a variation curve of a target pollutant concentration with time and a descending segment separated from it in an embodiment of the present invention
  • FIG. 4 is a schematic diagram of judging the state of the inner circulation or the outer circulation (including whether the air conditioner is turned on) by fitting in the embodiment of the present invention
  • FIG. 5 is a schematic flowchart of another method for detecting the service life of an automobile air-conditioning filter according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of the composition of a service life detection device for an automobile air-conditioning filter according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of the composition of another service life detection device for an automobile air-conditioning filter according to an embodiment of the present invention.
  • Automobile refers to a non-rail-carried vehicle with four or more wheels driven by power.
  • Inside the car refers to the space inside the car used to accommodate people and goods. When the windows, doors, etc. are closed, except for the air conditioner or unavoidable gaps in the car, the space between the car and the outside should be basically incapable of air. exchange.
  • Air Conditioner Air Conditioner
  • the filter mentioned in the present invention refers to a filter (CAF, Cabin Air Filter) used to filter the air-conditioned air in the air conditioner of the car, which can filter the passing air to At least partially filter out dust, debris, pollen, mold, bacteria and even gaseous pollutants.
  • CAF Cabin Air Filter
  • Target pollutants refers to pollutants that can be filtered by the filter, such as PM2.5 (particulate matter with aerodynamic equivalent diameter less than or equal to 2.5 microns), PM10 (particulate matter with aerodynamic equivalent diameter less than or equal to 10 microns), etc. ; Obviously, for different filters, the corresponding target pollutants are also different.
  • Frtration efficiency is a parameter that represents the filtering effect of the filter. It specifically refers to the proportion of the amount of target pollutants filtered by the filter after the air passes through the filter once to the amount of target pollutants in the air before passing through the filter; therefore ,
  • the maximum filtration efficiency is 1, the minimum is 0, and the larger the value, the better the filtration effect of the filter.
  • the filtration efficiency of the new filter is close to 1, and the filtration efficiency is reduced to about 0.5, or about 0.3, or 0.1 When left or right, it usually means that the filtering effect of the filter screen has been significantly reduced and needs to be replaced.
  • Air-conditioning air volume refers to the amount of air passing through the filter per unit time, that is, the ventilation (filtration) rate of the air conditioner.
  • the present invention provides a method for obtaining the service life of a car air-conditioning filter screen, as a basis for determining whether the filter screen needs to be replaced.
  • the method can be performed by a service life detection device of an automobile air-conditioning filter.
  • the service life detection device of an automobile air-conditioning filter should at least include a processor with data acquisition and processing capabilities.
  • the service life detection method of the automobile air-conditioning filter of the present invention may include:
  • the target pollutant is the pollutant that can be filtered by the automobile air conditioning filter;
  • the cycle state is internal circulation or external circulation
  • the external circulation is the state where the filtered outside air is obtained only by the air conditioner in the vehicle
  • the internal circulation is the vehicle only through the air conditioner The state of circulating filtration of internal air
  • the concentration of the target pollutant in the vehicle is first obtained, and then the inner or outer circulation of the vehicle is obtained according to the concentration, and then the filter is calculated in different ways according to the different circulation states The service life of the net, so it can accurately calculate the service life of the filter.
  • the service life of the filter can be obtained only by the target pollutant concentration, so it is simple to implement, without the need to modify the structure of the car (such as the central control system), nor to install additional air conditioners and filters Devices, as long as a pollutant sensor (such as a PM2.5 sensor) that detects the target pollutant concentration is installed in the vehicle (of course, there is a processor for data processing).
  • a pollutant sensor such as a PM2.5 sensor
  • the service life detection method of the automobile air-conditioning filter may include the following steps:
  • the pollutant sensor (such as PM2.5 sensor) of the service life detection device of the car air conditioning filter continuously detects the target pollutant concentration (such as PM2.5) in the car to obtain the target pollution Changes in substance concentration over time.
  • the target pollutants can be any one or more of PM2.5, PM10, PM0.3, odorous substances, total volatile organic compounds, and pollen, as long as they can be filtered by the filter.
  • the specific frequency of the above detection can be set as needed, as long as it can meet the accuracy requirements of subsequent calculations.
  • the maximum and minimum values of the concentration in the time period can be collected every 10 seconds (the average value can be used as the detection result), or the instantaneous concentration of the current time can be collected every 3 seconds.
  • the timing of the above detection can be selected as needed.
  • the above test can be carried out continuously (for example, the service life of the car air conditioning filter is independent of the car, as long as it is turned on); or, the above test can also be carried out continuously after the car is powered on (because the car It is impossible to start the air conditioner without powering on); or, the above test can also be started according to the user's command; or, the above test can also be performed at a predetermined time (such as the first three days of each month).
  • the target pollutant concentration change over time is not obtained by detection, but by directly reading the data of the known target pollutant concentration in the car to determine its change over time (such as the service life detection of automobile air conditioning filter)
  • the processor of the device can be set in the cloud), which is also feasible.
  • the target pollutant concentration data detected by the sensor can be filtered, smoothed, eliminated outliers, and filled with missing values. To achieve data optimization.
  • the target pollutant concentration data obtained by the detection can be smoothed (such as the use of average values, sliding average values), or removed outlier processing (such as the Laida criterion method, the Shawler criterion method, Dixon Criterion method, t test criterion, Grubbs criterion method) processing, or filling of missing data (such as average filling, median filling, moving average filling, self-fitting filling, other data regression prediction value filling), etc., To improve data quality.
  • smoothed such as the use of average values, sliding average values
  • removed outlier processing such as the Laida criterion method, the Shawler criterion method, Dixon Criterion method, t test criterion, Grubbs criterion method
  • filling of missing data such as average filling, median filling, moving average filling, self-fitting filling, other data regression prediction value filling
  • car air conditioners are only used when the car is traveling (ie, with a certain speed of movement), and in some cases, there may be a state of no power failure after parking. This state has little significance for the calculation of the service life of the filter, so The movement state of the car can be obtained to determine whether the detected data can be used to calculate the service life of the filter, and to ensure that the service life of the filter is determined only based on the cycle state of the car during the movement.
  • the processor of the service life detection device of the automobile air-conditioning filter can be connected to the OBD (On Board Diagnostics), so as to directly determine whether the car is moving through the data from the OBD.
  • OBD On Board Diagnostics
  • the service life detection device of the automobile air-conditioning filter may also include an acceleration sensor to determine whether the automobile is moving according to the acceleration condition. For example, you can take the mode of the acceleration vectors (that is, the magnitude of the total acceleration) of three axes that are perpendicular to each other, and determine whether the car is in motion by a threshold; another example, you can also collect acceleration data over a period of time and pass the acceleration when it is stationary. Determine the direction of gravitational acceleration, and remove the gravitational acceleration through vector angle calculation to get the car's motion posture.
  • an acceleration sensor to determine whether the automobile is moving according to the acceleration condition. For example, you can take the mode of the acceleration vectors (that is, the magnitude of the total acceleration) of three axes that are perpendicular to each other, and determine whether the car is in motion by a threshold; another example, you can also collect acceleration data over a period of time and pass the acceleration when it is stationary. Determine the direction of gravitational acceleration, and remove the gravitational acceleration through vector angle calculation to get the
  • the data collected by the acceleration sensor can also be preprocessed.
  • the acceleration data can be filtered (such as arithmetic average filtering, weighted average filtering, moving average filtering, median filtering, composite filtering that removes the maximum and minimum before taking the average to prevent the influence of abnormal values, and other rules superimposed Compound filtering, using program-simulated high-pass filtering, low-pass filtering, band-pass filtering, band-stop filtering, etc.), to weaken the impact of small vibrations on the judgment of the motion state, only to determine the motion state through a larger acceleration, simplify the judgment process.
  • Curve generation step generate a change curve of target pollutant concentration with time.
  • a change curve of the target pollutant concentration with time as shown in FIG. 3 is generated (the time and the target pollutant concentration in the figure only indicate the relative Amount without adding units).
  • this step is to generate only the change curve of the target pollutant concentration with time while the car is traveling. That is to say, if the movement state of the car is known, the processor of the service life detection device of the car air-conditioning filter can only acquire the change of the target pollutant concentration with time of the car while driving, and generate a corresponding curve.
  • the sequence of the above steps to obtain the movement state and the specific operations performed according to the movement state can also be adjusted.
  • the movement state of the car can also be obtained first, so that the target pollutant concentration in the vehicle can only be obtained when the car is moving Changes with time; in short, as long as it can be guaranteed that the service life of the filter will be determined only based on the cycle status of the car during the movement.
  • the segment of the target pollutant concentration with an indefinite interception time length showing a downward trend is regarded as a decreasing segment.
  • multiple fragments can be obtained by shifting the window of the target pollutant concentration with time, and then the rule can be used to determine whether there are multiple drops in the target pollutant concentration in each fragment.
  • the length of each falling segment is 3-20 minutes. This is because experience shows that the reduction of the target pollutant concentration caused by air-conditioning purification will generally be completed within the above time range (that is, basically stabilized).
  • a state judging step judging whether the automobile air conditioner is turned on during each descending segment, and discarding the descending segment where the automobile air conditioner is off.
  • the air-conditioning state can be determined by whether the maximum value and minimum value in the falling segment meet a certain threshold relationship (for example, the minimum value is greater than 80% of the maximum value because the air conditioner is not turned on); or, as shown in FIG.
  • the curve of the segment is fitted with a specific curve (such as an exponential curve), and whether the air conditioner is turned on is determined by whether the degree of fitting is too small (such as the coefficient of determination R2 less than 0.3 is that the air conditioner is not turned on);
  • the database of target pollutant concentration changes with time under the open state, and then through the machine learning classification or regression algorithm (such as decision tree, support vector machine, naive Bayes, artificial neural network, etc.) to establish a model of air conditioning off and on, through The model that the falling segment fits determines the state of the air conditioner.
  • the processor of the service life detection device of the automobile air-conditioning filter is connected to the OBD (on-board automatic diagnosis system), it is also feasible to obtain the air-conditioning status directly.
  • each descending segment corresponds to the internal circulation and external circulation states (because the descending segment corresponding to the internal circulation and external circulation necessarily corresponds to the state where the air conditioner is turned on).
  • Loop judgment step filter out descending segments corresponding to the inner loop and descending segments corresponding to the outer loop from a plurality of descending segments.
  • the data of the descending segment under the inner circulation and outer circulation state should conform to a certain rule, so it can be determined whether it corresponds to the inner circulation or outer circulation state by analyzing the data of the falling segment.
  • the available algorithms include rule setting, threshold setting, machine learning classification algorithm, and so on.
  • the curve of the falling segment can also be fitted to a specific curve (such as an exponential curve), and the degree of fit and the slope range after taking the logarithm can be used to judge (such as the coefficient of determination R2 greater than 0.8 and taking the logarithm After the slope is greater than 15 is the inner loop, such as the coefficient of determination R2 is less than 0.8 and greater than 0.3, and the logarithm after the slope is less than 0.8 is the outer loop; or, the machine can also be used for the descending fragments that have been determined to belong to the inner loop or the outer loop Learning methods (such as decision trees, support vector machines, naive Bayes, artificial neural networks) learn to establish corresponding classification models, and judge inner and outer loops through the models.
  • a certain threshold relationship such as the minimum value is less than 20% of the maximum value is the inner loop, and the minimum value is greater than 30% of the maximum value is the outer loop
  • the curve of the falling segment can also be fitted to a specific curve (such as an exponential curve), and the degree of fit
  • the processor of the service life detection device of the automobile air-conditioning filter is connected to the OBD, and the OBD can obtain the air-conditioning status (that is, whether the air-conditioning itself is set to the internal circulation mode or the external circulation mode), the status of the window / door (such as Whether the window / door is open), you can also directly determine the inner or outer cycle based on the OBD data.
  • the falling segments of the inner and outer circulation can be selected from the long-term target pollutant concentration with time change curve, this is because during normal use, the car air conditioner will inevitably be in The inner loop or outer loop state, so as long as the detection time is long enough, it can be extracted from it for the inner loop and outer loop fragments.
  • the time-dependent change of the target pollutant concentration in the vehicle during the outer circulation that is, multiple descending segments corresponding to the outer circulation
  • the inner circulation time are obtained.
  • the change of the target pollutant concentration in the vehicle with time ie, corresponding to multiple falling segments of the outer cycle.
  • the air-conditioning air volume is determined according to the change of the target pollutant concentration in the vehicle with time during the external circulation obtained above.
  • the required parameters eg, f according to the above formula or ⁇ according to the following formula
  • the descending segment curve can be first fitted to a standard exponential curve, and then the required parameters can be obtained according to the fitted curve; or, the descending segment curve can also be used Multiple points of multiple simultaneous equations, and then solve the simultaneous equations to find the required parameters.
  • the air-conditioning air volume is determined according to the change of the target pollutant concentration in the vehicle with time obtained during the internal circulation obtained above.
  • the change in target pollutant concentration with time conforms to the above formula.
  • the above air conditioning air volume and filtration efficiency can be obtained through a corresponding descending segment, where the interval between the two descending segments used is not too long; or, it can also be obtained through multiple different external circulation states.
  • a plurality of fs are found in the descending segment, and then the average value of each f is used to find ⁇ in one or more descending segments in the inner circulation state (if multiple ⁇ s are also found, the average is also obtained).
  • the above air conditioning air volume f and filtration efficiency ⁇ can be directly calculated according to the above formula, or, a model can be established through a machine learning algorithm in advance, and f and ⁇ can be calculated through the model.
  • the change of target pollutant concentration with time during internal and external circulation is obtained first.
  • this change is related to the air conditioning air volume (ie, the filter volume of the filter) and the filter efficiency (ie, the filter effect of the filter) )
  • the air conditioning air volume can be obtained separately according to the change of target pollutant concentration with time during external circulation, and the filtration efficiency can be obtained by using air conditioning air volume combined with the change of target pollutant concentration with time during internal circulation. Since the filtration efficiency is calculated based on the actual working state of the air conditioner, it is very accurate, and the filtration efficiency directly reflects the filtration effect of the filter, which will gradually decrease with the use of the filter. Therefore, for the same type of filter The smaller the filtering efficiency of the mesh product, the lower the remaining service life. Therefore, the filtering service life can be accurately obtained through the filtering efficiency.
  • the cumulative turn-on time of the air conditioner can also be obtained.
  • the cumulative turn-on time of the air conditioner in this step may be the cumulative time of the above-calculated air conditioner being turned on; or, it may be calculated according to certain rules according to certain rules, such as the usual The time the car is in the driving state, but when the time the car is in the driving state is far less than the power-on time of the car, it is considered that there is a problem with the acceleration sensor, and the power-on time of the car is directly used as the cumulative air-conditioning on time.
  • this step is used for auxiliary calculation of the service life of the filter, so it may not be necessary.
  • steps S110 and S111 are only exemplary, and there is no necessary sequence relationship between them and other steps, as long as they are completed before the step of finally determining the service life (step S112).
  • the service life of the filter can be comprehensively determined according to them.
  • the position of the filtration efficiency in the complete service life of the filter can be found and converted into the remaining service life of the filter, and the threshold value corresponding to the filter efficiency can be set.
  • the service life judged according to the filtration efficiency does not meet the threshold condition, the service life of the filter is considered exhausted.
  • the filter efficiency threshold can be set directly for each type of filter; or, the filter efficiency can be classified based on the initial filter efficiency of the filter obtained in advance in the laboratory test and the filter efficiency when it is used to the limit Normalization (such as changing to a value between 100 and 0), and setting the corresponding threshold (such as 10 to 30), more specifically, if the filtering efficiency normalization processing is a value between 100 and 0, it represents filtering The remaining service life of the screen, assuming that the set threshold is 10, when the normalized filtration efficiency is reduced to 10, it means that the service life of the filter is about to be exhausted, reminding the user to replace the filter; or, you can also set the corresponding The threshold of the ratio between the measured filtration efficiency and the initial filtration efficiency.
  • the threshold may not be set, but judgment may be made according to the change trend of the filtration efficiency with time. For example, when the filtration efficiency basically no longer decreases with time, the service life is considered exhausted.
  • the data of the measured filtration efficiency and initial filtration efficiency used above can be optimized by means such as mean and median.
  • the cumulative turn-on time of the air conditioner can also be normalized to a value between 100 and 0, and used as the basis for judging the service life of the filter (such as setting a threshold).
  • the service life of the filter screen can be comprehensively judged by various methods according to them.
  • the service life judged by one of the methods can be mainly used, and the service life judged by the other method can be used to modify it (such as taking the average value, taking the weighted value, increasing or decreasing according to the difference, or only when it meets certain rules Amendment);
  • a one-vote veto method can be adopted, as long as there is a way to judge that the service life is exhausted, it is determined that the filter needs to be replaced; or, a rule selection method can be adopted, that is, when the service life judged by the two methods is inconsistent , According to the actual situation, analyze which method fails to determine the method used to determine the service life.
  • this step can also determine the service life based on the filtration efficiency alone.
  • the above judgment of the service life of the filter is also related to the filter model.
  • the same filter efficiency value may indicate that the service life of a certain type of filter is exhausted, and that the filter of another type represents Can continue to use for a while. Therefore, before making a judgment on the service life, the filter model should also be known in a certain way.
  • a car air conditioner can use many different types of filters
  • the user can input the initial parameters or model of the filter through an input device (such as a touch screen); or, if a certain model must be installed in a car air conditioner , You can save the initial parameters of the filter in advance, etc.
  • the alarm in this step may be flashing, ringing, voice, etc., or it may be a prompt text or symbol on the display screen that needs to be replaced.
  • the method for detecting the service life of an automobile air-conditioning filter may include the following steps:
  • Steps S201-207 These steps are the same as the steps S101-S107 above.
  • the same method as the above steps S101-S107 can be used to obtain the change of the target pollutant concentration in the vehicle with time, and the cycle state is determined according to the change of the target pollutant concentration with time.
  • the cumulative purification amount of the internal circulation of the automobile air conditioner is calculated according to the target pollutant concentration in the vehicle, the air volume of the air conditioner, and the estimated filtration efficiency of the filter.
  • the cumulative purification amount of the external circulation of the automobile air conditioner is calculated according to the target pollutant concentration outside the vehicle, the air conditioning air volume, and the estimated filtration efficiency of the filter.
  • the cumulative purification amount refers to the total amount of target pollutants accumulated by the filter screen. These filtered target pollutants will accumulate on the filter screen, which gradually reduces the performance of the filter screen, so the cumulative purification amount can also be Calculate the service life of the filter.
  • the cumulative purification amount can be calculated by the following formula:
  • Cumulative purification volume ⁇ Air conditioning air volume * time * concentration of target pollutants in filtered air * estimated filtration efficiency
  • air conditioning air volume * time is the air volume after air conditioning, which is multiplied by the "concentration of target pollutants in the filtered air” is the total amount of target pollutants after air conditioning, and then multiplied by "estimated filtration efficiency” is filtered The amount of target pollutants filtered out by the net and accumulated on the filter net, that is, the cumulative purification amount.
  • concentration of target pollutants in filtered air are also different according to the different states of internal and external circulation, that is, they should be the concentration of target pollutants in the car and the concentration of target pollutants outside the car, so the internal cycle accumulates The purification amount and the cumulative purification amount of the external circulation should be calculated separately.
  • the air purification air volume and the target pollutants used in the calculation process of the above internal circulation cumulative purification amount and external circulation cumulative purification amount can be actual measured values, or can be estimated, or the actual measured values can be calculated by coefficients, etc.
  • the target pollutant concentration in the vehicle can be measured in real time, or it can be the maximum value within a period of time, the average value within a period of time, and so on.
  • the target pollutant concentration outside the vehicle may be the value (real-time value, maximum value, average value, etc.) measured by a pollutant sensor installed outside the vehicle, or it may be multiplied by the target pollution concentration inside the vehicle An estimate obtained by a certain coefficient.
  • the air-conditioning air volume can be calculated according to the above method using the descending segment of the external circulation; or, the air-conditioning air volume can also be estimated based on the original rated air volume of the air-conditioning (such as the air-conditioning air volume is gradually reduced with the increase of the power-on time); The average air conditioning air volume estimated by statistical methods is used.
  • the above estimated filtration efficiency is the value of the filtration efficiency estimated by a predetermined method: for example, the available time is estimated (that is, the estimated filtration efficiency decreases according to a predetermined step with the increase of the power-on time); or, the estimated filtration efficiency is also The average value obtained from a test conducted in advance may be used.
  • the sum of the accumulated purification amount of the inner cycle and the accumulated purification amount of the outer cycle is used as the accumulated purification amount CCM 1 of the automobile air conditioner.
  • the cumulative purification amount of the inner cycle and the cumulative purification amount of the outer cycle can be added to calculate the current cumulative purification amount CCM 1 .
  • the cumulative purification amount is the "cumulative" value, it can be calculated by continuously adding increments, that is, the cumulative purification amount increment within the time period is calculated at intervals (that is, the cumulative purification amount is in the (The part that increases during the time period), and then continuously add the cumulative purification amount in each time period to increase the total cumulative purification amount.
  • the expected cumulative purification amount is calculated according to the change of the target pollutant concentration in the vehicle with time during multiple internal cycles.
  • the service life of the filter has a corresponding relationship with the accumulated purification amount, and the service life of the filter also corresponds to the current filtration effect of the filter, so the filtration effect of the filter also corresponds to the accumulated purification amount.
  • the filtering effect of the filter is different, the change of the target pollutant concentration in the vehicle with time during the internal circulation is also different. Therefore, the current filtration effect of the filter can be calculated by changing the target pollutant concentration in the vehicle with time during multiple cycles within a short period of time, and then the cumulative purification amount corresponding to the filtration effect can be obtained, that is, the expected Cumulative purification amount CCM2.
  • the above-mentioned process of anticipating the cumulative purification amount may be: finding the slope of the curve in a plurality of descending segments corresponding to the internal circulation, for example, the log may be taken first, and then linearly fitted into a straight line (such as Multiplication, linear regression method, polynomial regression method, LASSO method, minimum angle regression method, etc.), then find the slope of the fitted curve; by taking the average or median, etc., the slope value reflecting the overall condition of multiple curves is obtained ; According to the slope value, the current filtering effect of the filter can be calculated; according to the filtering effect, the corresponding cumulative purification amount, that is, the expected cumulative purification amount CCM 2 can be found.
  • the corresponding cumulative purification amount that is, the expected cumulative purification amount CCM 2 can be found.
  • the expected cumulative purification amount CCM 2 obtained from the change of the target pollutant concentration with time is compared with the cumulative purification amount CCM 1 obtained above from the estimated filtration efficiency of the target pollutant concentration, air conditioning air volume, and filter screen. If the difference between the two is less than a preset threshold, replace CCM 1 with CCM 2 , that is, after the service life judgment and the calculation of the new cumulative purification amount, the replaced cumulative purification amount (actually CCM 2) ) Calculation. Of course, if the gap between the two is too large, no replacement step is performed.
  • the cumulative purification amount calculated based on the target pollutant concentration, air conditioning air volume, and the estimated filtration efficiency of the filter is a long-term cumulative value, so every small error caused by measurement and calculation will be gradually accumulated into it. The total error is increasing.
  • the expected cumulative purification amount is based on the measured change of the target pollutant concentration with time, and there is no cumulative error, so its value is generally more accurate.
  • the cumulative purification amount can be corrected using the expected cumulative purification amount to eliminate the cumulative purification The cumulative error in the quantity.
  • the service life of the filter is calculated.
  • Normalization such as any known normalization method such as min method, max method, z-score method
  • the cumulative purification amount is normalized to a value between 100 and 0, it represents the remaining service life of the filter.
  • the normalized cumulative purification amount is reduced to At 30 o'clock, it means that the service life of the filter is about to be exhausted, and the user is reminded to replace the filter; or, a threshold corresponding to the ratio of the cumulative purification amount to the maximum cumulative purification amount can also be set.
  • the threshold may not be set, but judgment may be made based on the change trend of the accumulated purification amount with time. If the accumulated purification amount basically no longer increases with time, the service life is considered to be exhausted.
  • this step can be similar to the above way of judging the service life by the filtration efficiency, and the service life is also determined by integrating the cumulative opening time and the cumulative purification amount.
  • the invention also provides a service life detection device for automobile air-conditioning filters, which can perform the above method, thereby detecting the service life of automobile air-conditioning filters.
  • the service life detection equipment of the automobile air conditioner filter may include:
  • the obtaining unit is used to obtain the change of the concentration of target pollutants in the car with time; wherein, the target pollutants are pollutants that can be filtered by the automobile air-conditioning filter;
  • the state judgment unit is used to determine the cycle state according to the change of the target pollutant concentration with time; wherein, the cycle state is an inner cycle or an outer cycle, and the outer cycle is a state in the vehicle where filtered outside air is obtained only by the air conditioner, the inner cycle It is a state where the air in the car is circulated and filtered only by the air conditioner;
  • the service life calculation unit is used to determine the service life of the filter according to the cycle status.
  • the service life calculation unit includes:
  • the extraction module is used to obtain the change of the target pollutant concentration in the vehicle during the external circulation with time and the change of the target pollutant concentration in the vehicle during the internal circulation according to the change of the target pollutant concentration with time and the circulation state;
  • the air volume calculation module is used to determine the air volume of the air conditioner according to the change of the target pollutant concentration in the vehicle with time during the external circulation.
  • the air volume of the air conditioner is the air volume passing through the filter unit per unit time;
  • the filtering efficiency calculation module is used to determine the filtering efficiency of the filter according to the change of the target pollutant concentration in the vehicle with time during the internal circulation and the air conditioning air volume; wherein, the air conditioning air volume during the internal circulation and the external circulation are equal;
  • the service life calculation module is used to determine the service life of the filter screen according to the filtration efficiency.
  • the service life calculation unit includes:
  • Internal circulation cumulative purification amount calculation module used to calculate the cumulative purification amount of the internal circulation of the car air conditioner according to the target pollutant concentration in the vehicle, the air conditioning air volume, and the estimated filtration efficiency of the filter in the internal circulation; the air conditioning air volume is filtered per unit time Air volume of the net;
  • External circulation cumulative purification volume calculation module is used to calculate the external circulation cumulative purification volume of the car air conditioner according to the target pollutant concentration outside the vehicle, the air conditioning air volume, and the estimated filtration efficiency of the filter during the external circulation;
  • the cumulative purification amount calculation module is used to calculate the sum of the internal purification amount and the external purification amount as the cumulative purification amount of the automobile air conditioner;
  • the service life calculation module is used to determine the service life of the filter according to the accumulated purification amount.
  • the service life calculation unit also includes:
  • the expected cumulative purification amount calculation module is used to calculate the expected cumulative purification amount according to the change of the target pollutant concentration in the vehicle with time during multiple internal cycles within a predetermined time;
  • the replacement module is used to compare the expected cumulative purification amount with the cumulative purification amount. If the difference between the two is less than a predetermined value, the cumulative purification amount is replaced by the expected cumulative purification amount.
  • the obtaining unit includes:
  • the pollutant sensor which is installed in the car, is used to continuously detect the target pollutant concentration in the car to obtain the change of the target pollutant concentration in the car with time.
  • the state judgment unit includes:
  • the curve generation module is used to generate the change curve of target pollutant concentration with time
  • the fragment acquisition module is used to segment multiple falling fragments from the change curve of the target pollutant concentration with time. In each falling fragment, the target pollutant concentration shows a downward trend;
  • the loop judgment module is used to select the descending segment corresponding to the inner loop and the descending segment corresponding to the outer loop from a plurality of descending segments.
  • the service life detection equipment for automobile air-conditioning filters also includes:
  • Movement status acquisition unit used to acquire the movement status of the car
  • the curve generation module is used to generate only the change curve of target pollutant concentration with time while the vehicle is traveling.
  • the motion state acquisition unit includes:
  • OBD interface used to connect with OBD to get the vehicle's movement status from OBD
  • An acceleration sensor which is provided on the car, is used to obtain the acceleration of the car, and determine the motion state of the car according to the acceleration.
  • the service life detection equipment for automobile air-conditioning filters also includes:
  • the electronic label reader is used to read the information of the filter screen from the electronic label installed on the filter screen.
  • the service life detection equipment for automobile air-conditioning filters also includes:
  • the alarm unit is used to give an alarm when the service life is lower than the predetermined value.
  • each unit and module in the service life detection device of the automobile air-conditioning filter of the present invention can perform the above-mentioned service life detection method of the automobile air-conditioning filter, so that the service life of the filter can be accurately known.
  • the service life detection equipment of the above automobile air-conditioning filter may include an OBD interface for connecting to the OBD of the automobile, so as to obtain the movement status of the automobile directly from the OBD, and use it as a basis to determine whether the target pollutant concentration of the automobile is driving The basis of the change curve.
  • the service life detection device of the automobile air-conditioning filter may further include an acceleration sensor, which is used to determine whether the automobile is moving according to the detected acceleration.
  • the service life detection device of the automobile air-conditioning filter has both an OBD interface and an acceleration sensor.
  • the service life detection equipment of the above automotive air conditioning filter can also include an electronic tag reader, which is used to read the information of the filter from the electronic tag provided on the filter, so as to learn the relevant of the filter when installing the filter Parameters (such as filter model, initial filtration efficiency, maximum cumulative purification amount, etc.) are used as the basis for judging the service life.
  • an electronic tag reader which is used to read the information of the filter from the electronic tag provided on the filter, so as to learn the relevant of the filter when installing the filter Parameters (such as filter model, initial filtration efficiency, maximum cumulative purification amount, etc.) are used as the basis for judging the service life.
  • the present invention also provides a computer-readable storage medium in which a program that can be executed by a processor is stored.
  • the processor executes the program, the above-mentioned method for detecting the service life of an automobile air-conditioning filter can be performed.
  • the program corresponding to the above method can be stored in the computer-readable storage medium, so that when the processor runs the program, the above method for detecting the service life of the automobile air-conditioning filter can be realized.
  • the computer-readable storage medium may be any volatile or non-volatile storage medium such as a hard disk, a mobile hard disk, a U disk, a CD, a DVD, a RAM, a ROM, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种汽车空调滤网的使用寿命检测方法及设备,方法包括:获取车内的目标污染物浓度随时间的变化;其中,目标污染物为能被汽车空调滤网过滤的污染物;根据目标污染物浓度随时间的变化确定循环状态;其中,循环状态为内循环或外循环,外循环为车内仅通过空调获得经过滤的车外空气的状态,内循环为仅通过空调对车内空气进行循环过滤的状态;根据循环状态确定滤网的使用寿命。滤网使用寿命只要通过车内目标污染物浓度即可得到,故其实现简单,不用对汽车的结构进行改造,也不用在空调、滤网中加装额外器件。

Description

汽车空调滤网的使用寿命检测方法和设备、存储介质 技术领域
本发明属于汽车空调技术领域,具体涉及一种汽车空调滤网的使用寿命检测方法和设备、计算机可读存储介质。
背景技术
多数汽车都具有空调,而多数汽车空调中都设有滤网,用于对经过空调进入汽车内部的空气进行过滤,滤除空气中的灰尘、杂物、花粉、霉菌、细菌甚至气态污染物等,以提高车内空气的质量。随着使用时间的增加,被过滤掉的污染物会逐渐集聚在汽车空调滤网上,导致滤网的过滤效果降低、通气量(空调风量)减少等,因此,汽车空调滤网是需要及时更换的耗材。
现有空调滤网一般是定时(如半年到一年)或固定行驶里程(如20000公理)更换的。但是,不同汽车在不同时间段内空调的使用频率不同,使用环境中的空气质量也不同,这些都导致按照固定时间或行驶里程更换滤网的方式并不准确,可能在更换时滤网使用寿命还剩余较多,造成时间和物质成本的浪费,也可能在更换前较长时间滤网使用寿命就已经耗尽,无法有效净化空气,影响人的健康。
发明内容
本发明至少部分解决现有技术无法准确确定汽车滤网使用寿命的问题,提供一种可及时、准确的获知汽车滤网使用寿命的汽车空调滤网的使用寿命检测方法和设备、计算机可读存储介质。
本发明的一个方面是提供一种汽车空调滤网的使用寿命检测方法,其包括:
获取车内的目标污染物浓度随时间的变化;其中,所述目标污染物为能被汽车空调滤网过滤的污染物;
根据目标污染物浓度随时间的变化确定循环状态;其中,所述循环状态为内循环或外循环,所述外循环为车内仅通过空调获得经过滤的车外空气的状态,所述内循环为仅通过空调对车内空气进行循环过滤的状态;
根据所述循环状态确定滤网的使用寿命。
可选的是,所述根据所述循环状态确定滤网的使用寿命包括:
根据目标污染物浓度随时间的变化以及循环状态得到外循环时车内的目标污染物浓度随时间的变化,以及内循环时车内的目标污染物浓度随时间的变化;
根据外循环时车内的目标污染物浓度随时间的变化确定空调风量,所述空调风量为单位时间内经过滤网的空气量;
根据内循环时车内的目标污染物浓度随时间的变化和空调风量确定滤网的过滤效率;其中,内循环时和外循环时所述空调风量相等;
根据过滤效率确定滤网的使用寿命。
进一步可选的是,所述根据外循环时车内的目标污染物浓度随时间的变化确定空调风量包括:
根据公式n t1=a+b*e -f*t1/V确定空调风量f,其中,n t1为本次外循环开始t1时间后车内的目标污染物浓度,a、b在每次外循环中为固定值,e为自然常数,V为车内空间体积。
进一步可选的是,所述根据内循环时车内的目标污染物浓度随时间的变化和空调风量确定滤网的过滤效率包括:
根据公式n t2=n 0*e -f*θ*t2/V确定滤网的过滤效率θ,其中,n t2为本次内循环开始t2时间后车内的目标污染物浓度,n 0为本次内循环开始时的车内的目标污染物浓度,e为自然常数,f为空调风量,V为车内空间体积。
可选的是,所述根据所述循环状态确定滤网的使用寿命包括:
在内循环时,根据车内的目标污染物浓度、空调风量、滤网的估算过滤效率计算汽车空调的内循环累计净化量;在外循环时,根据车外的 目标污染物浓度、空调风量、滤网的估算过滤效率计算汽车空调的外循环累计净化量;所述空调风量为单位时间内经过滤网的空气量;其中,内循环累计净化量与外循环累计净化量之和作为汽车空调的累计净化量;
根据累计净化量确定滤网的使用寿命。
进一步可选的是,所述根据累计净化量确定滤网的使用寿命包括:
在预定时间内,根据多次内循环时车内的目标污染物浓度随时间的变化计算得到预期累计净化量;
比较所述预期累计净化量与累计净化量,若二者的差异小于预定值,则以预期累计净化量取代累计净化量。
可选的是,所述获取车内的目标污染物浓度随时间的变化包括:
持续检测车内的目标污染物浓度以得到车内的目标污染物浓度随时间的变化。
可选的是,所述根据目标污染物浓度随时间的变化确定循环状态包括:
曲线生成步骤:生成目标污染物浓度随时间的变化曲线;
片段获取步骤:从目标污染物浓度随时间的变化曲线中分割出多个下降片段,在每个下降片段中,所述目标污染物浓度呈下降趋势;
循环判断步骤:从多个下降片段中筛选出对应内循环的下降片段和对应外循环的下降片段。
进一步可选的是,在所述片段获取步骤和循环判断步骤之间还包括:
状态判断步骤:判断每个下降片段时汽车空调是否处于开启状态,舍弃汽车空调处于关闭状态的下降片段。
进一步可选的是,每个所述下降片段的时间长度在3~20分钟。
可选的是,在所述根据所述循环状态确定滤网的使用寿命前,还包括:获取空调的累计开启时间;
所述根据所述循环状态确定滤网的使用寿命包括:根据累计开启时 间和循环状态共同确定滤网的使用寿命。
可选的是,所述汽车空调滤网的使用寿命检测方法还包括:
获取汽车的运动状态;
所述根据所述循环状态确定滤网的使用寿命包括:仅根据汽车运动时的所述循环状态确定滤网的使用寿命。
可选的是,所述目标污染物包括:
PM2.5、PM10、PM0.3、异味物质,总挥发性有机物、花粉中的任意一种或多种。
可选的是,在所述根据过滤效率确定滤网的使用寿命后,还包括:
若所述使用寿命低于预定值,则发出报警。
本发明的一个方面是提供一种汽车空调滤网的使用寿命检测设备,其包括:
获取单元,用于获取车内的目标污染物浓度随时间的变化;其中,所述目标污染物为能被汽车空调滤网过滤的污染物;
状态判断单元,用于根据目标污染物浓度随时间的变化确定循环状态;其中,所述循环状态为内循环或外循环,所述外循环为车内仅通过空调获得经过滤的车外空气的状态,所述内循环为仅通过空调对车内空气进行循环过滤的状态;
使用寿命计算单元,用于根据所述循环状态确定滤网的使用寿命。
可选的是,所述使用寿命计算单元包括:
提取模块,用于根据目标污染物浓度随时间的变化以及循环状态得到外循环时车内的目标污染物浓度随时间的变化,以及内循环时车内的目标污染物浓度随时间的变化;
风量计算模块,用于根据外循环时车内的目标污染物浓度随时间的变化确定空调风量,所述空调风量为单位时间内经过滤网的空气量;
过滤效率计算模块,用于根据内循环时车内的目标污染物浓度随时 间的变化和空调风量确定滤网的过滤效率;其中,内循环时和外循环时所述空调风量相等;
使用寿命计算模块,用于根据过滤效率确定滤网的使用寿命。
可选的是,所述使用寿命计算单元包括:
内循环累计净化量计算模块,用于在内循环时,根据车内的目标污染物浓度、空调风量、滤网的估算过滤效率计算汽车空调的内循环累计净化量;所述空调风量为单位时间内经过滤网的空气量;
外循环累计净化量计算模块,用于在外循环时,根据车外的目标污染物浓度、空调风量、滤网的估算过滤效率计算汽车空调的外循环累计净化量;
累计净化量计算模块,用于以内循环累计净化量与外循环累计净化量之和作为汽车空调的累计净化量;
使用寿命计算模块,用于根据累计净化量确定滤网的使用寿命。
进一步可选的是,所述使用寿命计算单元还包括:
预期累计净化量计算模块,用于在预定时间内,根据多次内循环时车内的目标污染物浓度随时间的变化计算得到预期累计净化量;
替代模块,用于比较所述预期累计净化量与累计净化量,若二者的差异小于预定值,则以预期累计净化量取代累计净化量。
可选的是,所述获取单元包括:
污染物传感器,其设于车内,用于持续检测车内的目标污染物浓度以得到车内的目标污染物浓度随时间的变化。
可选的是,所述状态判断单元包括:
曲线生成模块,用于生成目标污染物浓度随时间的变化曲线;
片段获取模块,用于从目标污染物浓度随时间的变化曲线中分割出多个下降片段,在每个下降片段中,所述目标污染物浓度呈下降趋势;
循环判断模块,用于从多个下降片段中筛选出对应内循环的下降片段和对应外循环的下降片段。
可选的是,所述使用寿命检测设备还包括:
运动状态获取单元,用于获取汽车的运动状态;
所述使用寿命计算单元用于仅根据汽车运动时的所述循环状态确定滤网的使用寿命。
进一步可选的是,所述运动状态获取单元包括:
车载自动诊断系统接口,用于与车载自动诊断系统连接,以从车载自动诊断系统获取汽车的运动状态;
和/或,
加速度传感器,其设于汽车上,用于获取汽车的加速度,并根据加速度判断汽车的运动状态。
可选的是,所述使用寿命检测设备还包括:
电子标签读取器,用于从设于滤网上的电子标签中读取滤网的信息。
可选的是,所述使用寿命检测设备还包括:
报警单元,用于在所述使用寿命低于预定值时发出报警。
本发明的一个方面是提供一种计算机可读存储介质,其中存储有能被处理器执行的程序,
当所述处理器执行所述程序时,能进行上述的汽车空调滤网的使用寿命检测方法。
不同于常规的家用空气净化器,汽车空调具有不同的循环状态(内循环或外循环),其在不同循环状态下以不同的方式过滤不同的空气,因此,对不同的循环状态,判断滤网的使用寿命的方法也是不同的。而本发明的方法中,则根据车内目标污染物浓度的变化预先确定汽车处于内循环还是外循环状态,之后再根据循环状态的不同用不同方式计算滤网的使用寿命,故其能准确的实现滤网的使用寿命的计算。
而且,根据以上方法,滤网使用寿命只要通过车内目标污染物浓度 即可得到,故其实现简单,不用对汽车的结构(如中控系统)进行改造,也不用在空调、滤网中加装额外器件,而只要在车内设置检测目标污染物浓度的污染物传感器(如PM2.5传感器)即可(当然还要有进行数据处理的处理器)。
附图说明
图1为内循环和外循环状态的示意图;
图2为本发明的实施例的一种汽车空调滤网的使用寿命检测方法的流程示意图;
图3为本发明的实施例中目标污染物浓度随时间的变化曲线及由其分出的下降片段的示意图;
图4为本发明的实施例中通过拟合方式判断内循环或外循环(包括空调是否开启)状态的示意图;
图5为本发明的实施例的另一种汽车空调滤网的使用寿命检测方法的流程示意图;
图6为本发明的实施例的一种汽车空调滤网的使用寿命检测设备的组成示意框图;
图7为本发明的实施例的另一种汽车空调滤网的使用寿命检测设备的组成示意框图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
名词解释
以下对本发明中使用的部分名词的通常含义进行解释。
“汽车”是指由动力驱动的、具有4个或4个以上车轮的非轨道承 载的车辆。
“车内”是指用于容纳人员、货物的汽车内部的空间,当车窗、车门等均关闭时,除通过汽车空调或不可避免的缝隙外,车内空间与外界应当基本上不能进行空气交换。
“汽车空调”是指安装在汽车上的空气调节设备(Air Conditioner),其具有对车内空气的温度、湿度、洁净度等进行调节的能力。
如图1所示,“外循环”时汽车的车门、车窗等均关闭,空调从外界吸取空气并供入车内,故供入车内的空气必然经过空调滤网的过滤;即外循环是车内仅通过空调获得经过滤的车外空气的状态(当然,外循环时空气可通专用的排风口等排出,但在各种状态下,空气一般都不会从排风口进入车内)。
如图1所示,“内循环”时汽车的车门、车窗等均关闭,空调从车内吸取空气并再次供入车内,故该部分经过空调的空气必然经过空调滤网的过滤;即内循环是仅通过空调对车内空气进行循环过滤的状态。
如无特殊说明,本发明中提到的滤网是指用于在汽车的空调中对经过空调的空气进行过滤的滤网(CAF,Cabin Air Filter),其能对经过的空气进行过滤,以至少部分滤除其中的灰尘、杂物、花粉、霉菌、细菌甚至气态污染物等。
“目标污染物”是指能被滤网滤除的污染物,如PM2.5(空气动力学当量直径小于等于2.5微米的颗粒物)、PM10(空气动力学当量直径小于等于10微米的颗粒物)等;显然,针对不同的滤网,与其对应的目标污染物也是不同的。
“过滤效率”是表示滤网过滤效果的参数,其具体指空气经过滤网一次后被滤网过滤掉的目标污染物的量占经过滤网前空气中的目标污染物的量的比例;因此,过滤效率最大为1,最小为0,且其数值越大表示滤网的过滤效果越好,通常新滤网的过滤效率接近1,而在过滤效率降低至0.5左右,或0.3左右,或0.1左右时,通常表示滤网的过滤效果已经明显降低,需要更换。
“空调风量”是指单位时间内经过滤网的空气量,也就是空调的换气(过滤)速率。
汽车空调滤网的使用寿命检测方法
本发明提供一种方法,可获知汽车空调滤网的使用寿命,作为判断是否需要更换滤网的依据。
该方法可通过汽车空调滤网的使用寿命检测设备执行,该汽车空调滤网的使用寿命检测设备中至少应包括具有数据获取和处理能力的处理器。
本发明的汽车空调滤网的使用寿命检测方法可包括:
获取车内的目标污染物浓度随时间的变化;其中,目标污染物为能被汽车空调滤网过滤的污染物;
根据目标污染物浓度随时间的变化确定循环状态;其中,循环状态为内循环或外循环,外循环为车内仅通过空调获得经过滤的车外空气的状态,内循环为仅通过空调对车内空气进行循环过滤的状态;
根据循环状态确定滤网的使用寿命。
根据本发明的汽车空调滤网的使用寿命检测方法,先获取车内目标污染物的浓度,再根据该浓度得出汽车的内循环或外循环,之后再根据循环状态的不同用不同方式计算滤网的使用寿命,故其能准确的实现滤网的使用寿命的计算。
而且,根据以上方法,滤网使用寿命只要通过目标污染物浓度即可得到,故其实现简单,不用对汽车的结构(如中控系统)进行改造,也不用在空调、滤网中加装额外器件,而只要在车内设置检测目标污染物浓度的污染物传感器(如PM2.5传感器)即可(当然还要有进行数据处理的处理器)。
具体的,如图2所示,作为本发明的一种实施方式,该汽车空调滤网的使用寿命检测方法可包括以下步骤:
S101、持续检测车内的目标污染物浓度以得到车内的目标污染物浓度随时间的变化。
也就是说,在一定的时间内通过汽车空调滤网的使用寿命检测设备的污染物传感器(如PM2.5传感器)持续检测车内的目标污染物浓度(如PM2.5),以得到目标污染物浓度随时间的变化。
其中,目标污染物可为PM2.5、PM10、PM0.3、异味物质,总挥发性有机物、花粉中的任意一种或多种,只要其能被滤网过滤即可。
其中,以上检测的具体频率可根据需要设定,只要能满足后续计算的精度要求即可。例如,可每10秒采集一次该时间段内的浓度最大值和最小值(可用其平均值作为检测结果),或每3秒采集一次当前时刻的浓度瞬时值等。
其中,以上检测的时机可根据需要选择。例如,以上检测可以是持续不断的进行(如汽车空调滤网的使用寿命检测独立于汽车中,只要其开启就检测);或者,以上检测也可以是汽车上电后持续不断的进行(因为汽车不上电空调就不可能启动);或者,以上检测也可以是根据用户的命令开始进行;或者,以上检测也可以是在预定的时间(如每个月的前三天)进行等。
当然,如果不是通过检测获得目标污染物浓度随时间的变化,而是通过直接读取已知的车内的目标污染物浓度的数据确定其随时间的变化(如汽车空调滤网的使用寿命检测设备的处理器可设于云端),也是可行的。
S102、对检测到的数据进行预处理。
为去除传感器直接检测得到的数据的误差与噪音,方便后续的处理,可对传感器检测得到的目标污染物浓度数据进行滤波、平滑、剔除异常值、填充缺失值等处理中的一项或多项,实现数据优化。
例如,可对检测得到的目标污染物浓度数据进行平滑处理(如采用平均值、滑动平均值),或进行剔除异常值处理(如采用拉依达准则法、肖 维勒准则法、狄克逊准则法、t检验准则发、格拉布斯准则法)处理,或进行丢失数据填充处理(如采用均值填充、中值填充、滑动平均填充、自拟合填充、其他数据回归预测值填充)等,以改善数据质量。
当然,如果不进行本预处理步骤,也是可行的。
S103、可选的,获取汽车的运动状态。
通常汽车空调都是在汽车行驶(即有一定运动速度)时才实际使用,而个别情况下,可能出现停车后没断电的状态,这种状态对滤网使用寿命的计算意义不大,故可获取汽车的运动状态,以确定检测到的数据是否可用于计算滤网的使用寿命,并保证最终仅根据汽车运动时的循环状态确定滤网的使用寿命。
具体的,可让汽车空调滤网的使用寿命检测设备的处理器与OBD(On Board Diagnostics,车载自动诊断系统)相连,从而通过来自OBD的数据直接确定汽车是否在运动。
或者,汽车空调滤网的使用寿命检测设备也可包括加速度传感器,通过加速度的状况确定汽车是否在运动。例如,可取相互垂直的三轴的加速度向量的模(即总加速度的大小),通过阈值判断确定汽车是否在运动;再如,可也采集一段时间内的加速度数据,通过其中静止状态时的加速度确定出重力加速度的方向,通过向量夹角计算除去重力加速度,以得到汽车的运动姿态。
其中,对加速度传感器采集到的数据也可进行预处理。例如,可对加速度数据进行滤波处理(如算术平均值滤波、加权平均值滤波、滑动平均值滤波、中值滤波、在取均值前剔除最大最小值防止异常值影响的复合滤波、其他规则叠加的复合滤波,使用程序模拟的高通滤波、低通滤波、带通滤波、带阻滤波等),以弱化微小震动对运动状态判断的影响,仅通过较大的加速度确定运动状态,简化判断过程。
当然,如果不进行本步骤,也是可行的。
S104、曲线生成步骤:生成目标污染物浓度随时间的变化曲线。
也就是说,用以上检测到的目标污染物浓度随时间的变化的数据,生成如图3所示的目标污染物浓度随时间的变化曲线(图中时间和目标污染物浓度均只标出相对量,而未加单位)。
当然,当以上获取汽车了的运动状态时,本步骤为仅生成汽车行驶时目标污染物浓度随时间的变化曲线。也就是说,若汽车的运动状态可知时,则汽车空调滤网的使用寿命检测设备的处理器可仅获取汽车行驶时目标污染物浓度随时间的变化,并生成相应的曲线。
当然,以上获取运动状态的步骤的进行顺序以及根据运动状态进行的具体操作也可调整,例如,也可先获取汽车的运动状态,从而仅在汽车运动时才开始获取车内的目标污染物浓度随时间的变化;总之,只要能保证最终仅根据汽车运动时的循环状态确定滤网的使用寿命即可。
S105、片段获取步骤:从目标污染物浓度随时间的变化曲线中分割出多个下降片段,在每个下降片段中,目标污染物浓度呈下降趋势。
也就是说,如图3所示,从以上目标污染物浓度随时间的变化曲线中分割出多个下降片段,每个下降片段中目标污染物的浓度都呈下降的趋势,即在每个下降片段中目标污染物浓度可能有个别短时间的提升或持平,但从整体趋势上看是降低的,而下降片段中目标污染物浓度的降低可能是由空调对空气的净化造成的,故下降片段可用于后续的过滤效率计算。
其中,可预先设定一个时长,并从目标污染物浓度随时间的变化曲线中找出在该时长内呈下降趋势的片段作为下降片段;或者,也可从目标污染物浓度随时间的变化曲线中截取时间长度不定的目标污染物浓度呈下降趋势的片段作为下降片段。例如,作为一种可选的方案,可通过对目标污染物浓度随时间的变化曲线进行移窗操作得到多个片段,再通过规则判断在每个片段中目标污染物浓度是否存在多次下降的情况(如目标污染物浓度降至一定值稳定后又升高并稳定一段时间),若存在则将该片段再次切分为更多的片段,最终得到多个下降片段;或者,另一种 可行的方案为仅通过移窗操作得到多个固定时长的片段,并判断每个片段是否为下降片段,若不是则将其舍弃。
其中,可选的,每个下降片段的时间长度在3~20分钟。这是因为根据经验表明,因空调净化造成的目标污染物浓度降低一般会在以上时间范围内完成(即基本达到稳定)。
S106、可选的,状态判断步骤:判断每个下降片段时汽车空调是否处于开启状态,舍弃汽车空调处于关闭状态的下降片段。
显然,只有因空调净化造成的目标污染物的浓度下降才可能用于过滤效率的分析,因此,因开窗通风、环境变化等造成的下降片段不应用于过滤效率分析,故可预先判断各下降片段时空调是否开启,并除去空调关闭时的下降片段。
当空调开启时,其对应的下降片段的数据应符合一定规律,故可对下降片段的数据进行分析,以判断其是否对应空调开启的状态。具体的,以上判断可采用规则设置、阈值设置、机器学习分类算法等。例如,可通过下降片段中的最大值最小值是否符合一定的阈值关系(如最小值大于最大值的80%为空调未开启)确定其空调状态;或者,如图4所示,也可将下降片段的曲线与特定曲线(如指数曲线)拟合,通过其拟合程度是否过小(如可决系数R2小于0.3为空调未开启)判断空调是否开启;或者,也可预先离线建立空调关闭和开启状态下目标污染物浓度随时间变化的数据库,再通过机器学习的分类或回归算法(如决策树、支持向量机、朴素贝叶斯、人工神经网络等)建立空调关闭和开启的模型,通过下降片段符合的模型确定空调的状态。
当然,如果是汽车空调滤网的使用寿命检测设备的处理器与OBD(车载自动诊断系统)相连,直接获取空调状态,也是可行的。
当然,如果不进行本步骤,而是直接通过判断各下降片段是否对应内循环和外循环状态(因为对应内循环和外循环的下降片段必然对应空调开启的状态),也是可行的。
S107、循环判断步骤:从多个下降片段中筛选出对应内循环的下降片段和对应外循环的下降片段。
也就是说,再次对各下降片段进行判断,除去其中不属于内循环和外循环状态的下降片段(如空调开启的同时车窗也打开,故无法确定净化到底是哪方面的影响导致),并确定剩余的下降片段中哪些对应内循环状态,哪些对应外循环状态,即确定了循环状态。
在内循环和外循环状态下的下降片段的数据应符合一定规律,故可通过对下降片段的数据进行分析确定其是否对应内循环或外循环状态。具体的,可用的算法包括规则设置、阈值设置、机器学习分类算法等。例如,可通过下降片段中的最大值最小值是否符合一定的阈值关系进行判断(如最小值小于最大值的20%为内循环,最小值大于最大值的30%为外循环);或者,如图4所示,也可将下降片段的曲线与特定曲线(如指数曲线)拟合,通过其拟合程度和取对数后的斜率范围进行判断(如可决系数R2大于0.8且取对数后斜率大于15为内循环,如可决系数R2小于0.8且大于0.3,且取对数后斜率小于0.8为外循环);或者,也可对已经确定属于内循环或外循环的下降片段使用机器学习方法(如决策树、支持向量机、朴素贝叶斯、人工神经网络)进行学习,以建立相应的分类模型,并通过模型判断内循环与外循环。
当然,如果是汽车空调滤网的使用寿命检测设备的处理器与OBD相连,且OBD可获取空调状态(即空调本身被设为内循环模式还是外循环模式)、车窗/车门的状态(如车窗/车门是否打开),则也可直接根据OBD的数据确定内循环或外循环。
当然,从以上方法可知,内循环和外循环的下降片段可以是从长期的目标污染物浓度随时间的变化曲线中筛选出来的,这是因为在正常的使用过程中,汽车空调必然会不时处于内循环或外循环状态,故只要检测的时间足够长,必然可从中提取到用于内循环和外循环片段。
当然,如果是用户根据需要有意让汽车分别在内循环和外循环状态下工作,或者是汽车空调滤网的使用寿命检测设备的处理器在预定时间(如每个月一次)控制汽车分别在内循环和外循环状态下工作,也是可行 的。
S108、根据目标污染物浓度随时间的变化以及循环状态得到外循环时车内的目标污染物浓度随时间的变化,以及内循环时车内的目标污染物浓度随时间的变化。
也就是说,在确定了各下降片段对应的循环状态后,也就得到了外循环时车内的目标污染物浓度随时间的变化(即对应外循环的多个下降片段),以及内循环时车内的目标污染物浓度随时间的变化(即对应外循环的多个下降片段)。
S109、根据外循环时车内的目标污染物浓度随时间的变化确定空调风量。
也就是说,根据以上获取到的外循环时车内的目标污染物浓度随时间的变化确定空调风量。
可选的,本步骤可为根据公式n t1=a+b*e -f*t1/V确定空调风量f,其中,n t1为本次外循环开始t1时间后车内的目标污染物浓度,a、b在每次外循环中为固定值,e为自然常数,V为车内空间体积。
经研究发现,在每个连续的外循环状态下,目标污染物浓度随时间的变化符合以上公式。也就是说,以外循环状态下的某个时间为起点,则在从该起点开始经历了时长t1的时间后,车内的目标污染物浓度为n t1,例如,若以t1为5分钟,即表示从起点开始经历了5分钟的时间后,车内的目标污染物浓度为n 5min=a+b*e -f*5min/V
由于该公式中a、b、e、V均为常数,t1和n t1已知,故根据下降片段曲线的斜率即可求出e的系数中的空调风量f,即求出单位时间内空调过滤的空气量(体积)。
当然,本发明中根据下降片段曲线按预定关系求出所需参数(如根据以上公式求f,或根据以下公式求θ)的具体运算方式是多样的。例如,考虑到下降片段曲线具有不可避免的误差、波动,故可先将下降片段曲 线拟合为标准的指数曲线,再根据拟合的曲线求出所需参数;或者,也可用下降片段曲线中的多个点得出多个联立的方程,再通过解联立方程组求出所需参数。
S110、根据内循环时车内的目标污染物浓度随时间的变化和空调风量确定滤网的过滤效率;其中,内循环时和外循环时空调风量相等。
也就是说,根据以上获取到的内循环时车内的目标污染物浓度随时间的变化确定空调风量。
可选的,本步骤可为根据公式n t2=n 0*e -f*θ*t2/V确定滤网的过滤效率θ,其中,n t2为本次内循环开始t2时间后车内的目标污染物浓度,n 0为本次内循环开始时的车内的目标污染物浓度,e为自然常数,f为空调风量,V为车内空间体积。
经研究发现,每个连续的内循环状态下,目标污染物浓度随时间的变化符合以上公式。也就是说,以内循环状态下的某个时间为起点,则在从该起点开始经历了时长t2的时间后,车内的目标污染物浓度为n t2,例如,若以t2为10分钟,即表示从起点开始经历了10分钟的时间后,车内的目标污染物浓度为n 10min=n 0*e -f*θ*10min/V,其中n 0是以上起点时车内的目标污染物浓度。
在时间相差不太长的情况下,由于滤网状态不会发生很明显的改变,故空调风量也不会产生明显变化,因此在用某外循环状态的下降片段求出空调风量f后,可认为与该下降片段时间相差不大的内循环状态的下降片段中的f不变。由此,以上公式中的n t2、n 0、f(由外循环状态下求出)、t2、V均是已知的,故可求出过滤效率θ,也就得到体现汽车空调滤网当前实际过滤效果的参数。
其中,以上空调风量和过滤效率可分别各通过一个相应的下降片段求出,其中使用的两个下降片段之间间隔的时间不过长即可;或者,也可通过多个不同的外循环状态的下降片段求出多个f,再用各f的平均值在一个或多个内循环状态的下降片段中求θ(如果是求出多个θ则也求平均)。
其中,以上空调风量f和过滤效率θ可直接根据以上的公式计算,或者,也可预先通过机器学习算法建立模型,通过模型计算f和θ。
根据以上方法,先得出内循环和外循环时目标污染物浓度随时间的变化,显然,该变化与空调风量(即滤网的过滤量)、滤网的过滤效率(即滤网的过滤效果)相关。经研究发现,根据外循环时目标污染物浓度随时间的变化可单独求出空调风量,而用空调风量结合内循环时目标污染物浓度随时间的变化则可求出过滤效率。由于过滤效率是根据空调的实际工作状态计算得到的,故其十分准确,且过滤效率直接体现滤网的过滤效果,其会随着滤网的使用而逐渐减小,因此,对于相同型号的滤网产品,其过滤效率越小则表示其剩余的使用寿命越低,故通过过滤效率可准确的得出滤网的使用寿命。
S111、可选的,获取空调累计开启时间。
也就是说,也可获取空调的累计开启时间,显然,该时间越长则表示空调已经运行的时间越长,故滤网可能的剩余使用寿命越短。
具体的,本步骤中的空调累计开启时间可为以上计算出的空调处于开启状态的累计时间;或者,也可用汽车的上电时间和汽车处于行驶状态的时间按一定规则综合计算,如通常采用汽车处于行驶状态的时间,但当汽车处于行驶状态的时间远远小于汽车上电时间时,则认为加速度传感器存在问题,直接采用汽车上电时间作为空调累计开启时间。
当然,本步骤是用于对滤网使用寿命进行辅助计算的,故其也可没有。
当然,应当理解,以上S110、S111步骤的顺序和位置只是示例性的,它们与其它步骤间并无必然的先后关系,只要它们在最终确定使用寿命(步骤S112)的步骤前完成即可。
S112、根据过滤效率以及累计开启时间确定滤网的使用寿命。
也就是说,在求出以上的过滤效率θ和累计开启时间后,可根据它 们综合确定滤网的使用寿命。
具体的,在计算得到过滤效率后,可找到该过滤效率在滤网完整的使用寿命中所占的位置,并将其转换为滤网的剩余使用寿命,并设定对应过滤效率的阈值,当根据过滤效率判断的使用寿命不符合阈值条件时即认为滤网使用寿命耗尽。例如,对每种型号的滤网,可直接设定过滤效率的阈值;或者,也可根据预先在实验室测试得到的滤网的初始过滤效率和使用到极限时的过滤效率对过滤效率进行归一化处理(如转变为100至0间的值),并设置对应的阈值(如10~30),更具体的,若过滤效率归一化处理为100至0间的值,则其代表滤网剩余的使用寿命,假设其设定的阈值为10,则当归一化的过滤效率降低至10时,就表示滤网使用寿命即将耗尽,提醒用户更换滤网;或者,也可设定对应实测过滤效率与初始过滤效率的比值的阈值。
或者,也可不设置阈值,而是根据过滤效率随时间的变化趋势进行判断,如当过滤效率基本不再随时间降低时则认为使用寿命耗尽。
当然,以上使用的实测过滤效率、初始过滤效率等的数据均可通过均值、中值等方法进行优化。
类似的,对空调累计开启时间,也可归一化为100至0间的值,并作为判断滤网使用寿命的基础(如设定阈值)。
具体的,对以上过滤效率和累计开启时间,可根据它们用多种不同的方法综合判断滤网的使用寿命。例如,可用其中一种方法判断的使用寿命为主,并根据另一种方法判断的使用寿命对其进行修正(如取均值、取加权值、根据差值增减,或者在符合特定规律时才修正);或者,也可采用一票否决的方式,只要有一种方式判断使用寿命耗尽即认定滤网需要更换;或者,也可采取规则选择的方式,即当两方法判断的使用寿命不一致时,根据实际情况分析哪种方法失效,以确定采用哪种方法判断的使用寿命。
当然,应当理解,如果未求出累计开启时间,则本步骤也可单独根据过滤效率确定使用寿命。
当然,以上滤网使用寿命的判断还与滤网型号有关,如相同的过滤效率值,可能对某种型号的滤网代表使用寿命已经耗尽,而对另一种型号的滤网则代表还可继续使用一段时间。因此,在进行使用寿命判断前,还应通过一定方式获知滤网型号。例如,若某汽车空调可使用多种不同型号的滤网,则可在滤网上加装电子标签,并在汽车空调滤网的使用寿命检测设备中设置电子标签读写器,以在安装滤网时读取电子标签中的滤网初始参数;或者,也可在安装滤网时,用户通过输入设备(如触摸屏)输入滤网的初始参数或型号;或者,若某汽车空调中必须安装特定型号的滤网,则可预先将该滤网的初始参数存储下来等。
S113、可选的,若使用寿命低于预定值,则发出报警。
也就是说,若之前求出的使用寿命低于预定值(即最终判定结果是使用寿命耗尽),则表明滤网已经应当更换,故可通过报警单元发出报警,提醒用户更换滤网。
具体的,本步骤的报警可以是发出闪光、鸣响、语音等,也可以是在显示屏上显示需要更换滤网的提示文字或符号。
具体的,作为本发明的另一种实施方式,也可采用不同的具体方式根据循环状态判断使用寿命。具体的,如图5所示,该汽车空调滤网的使用寿命检测方法可包括以下步骤:
S201-207步骤:这些步骤与以上的S101-S107步骤相同。
也就是说,可采用与以上S101-S107步骤相同的方法获取车内的目标污染物浓度随时间的变化,并根据目标污染物浓度随时间的变化确定循环状态。
S208a、在内循环时,根据车内的目标污染物浓度、空调风量、滤网的估算过滤效率计算汽车空调的内循环累计净化量。
S208b、在外循环时,根据车外的目标污染物浓度、空调风量、滤网 的估算过滤效率计算汽车空调的外循环累计净化量。
其中,累计净化量(CCM)是指滤网累计过滤掉的目标污染物的总量,这些被过滤的目标污染物会集聚在滤网上,使滤网性能逐渐降低,故通过累计净化量也可计算出滤网的使用寿命。
理论上看,累计净化量可通过以下公式计算:
累计净化量=∑空调风量*时间*过滤的空气中目标污染物的浓度*估算过滤效率;
其中“空调风量*时间”是经过空调的空气量,其乘上“过滤的空气中目标污染物的浓度”就是经过空调的目标污染物总量,其再乘上“估算过滤效率”就是被滤网过滤掉的并集聚在滤网上的目标污染物的量,即累计净化量。
根据内循环和外循环状态的不同,以上“过滤的空气中目标污染物的浓度”也不同,即其应当分别是车内的目标污染物浓度和车外的目标污染物浓度,故内循环累计净化量和外循环累计净化量应分别计算。
其中,以上内循环累计净化量、外循环累计净化量计算过程中所用的空调风量、目标污染物可以是实际测的值,也可以采用估算的方式,或对实际测的值通过系数等方式进行相应的修正:
例如,车内的目标污染物浓度,可采用实时的测试值,也可为一段时间内的最大值、一段之间内的平均值等。
再如,车外的目标污染物浓度,可为通过设于车外的污染物传感器测得的值(实时值、最大值、平均值等),也可为用车内的目标污染浓度乘以一定系数得到的估算值。
再如,空调风量可利用外循环的下降片段按照以上方法计算;或者,空调风量也可根据空调原有的额定风量估算(如认为空调风量随上电时间的增长逐渐降低);或者,也可采用通过统计方法估算的平均空调风量。
而以上估算过滤效率则为通过预定的方式估计得到的过滤效率值:例如,可用时间进行估算(即估算过滤效率随上电时间的增长而按照预定规律阶梯减小);或者,估算过滤效率也可采用根据预先进行的试验得到 的平均值等。
S209、以内循环累计净化量与外循环累计净化量之和作为汽车空调的累计净化量CCM 1
也就是说,可将内循环累计净化量与外循环累计净化量相加,计算得到当前的累计净化量CCM 1
应当理解,由于累计净化量是“累计”值,因此,其可采用不断将增量加入的方式计算,即每隔一段时间计算该时间段内的累计净化量增量(即累计净化量在该时间段内增加的部分),之后不断将各时间段内的累计净化量增量加入,即可得到总的累计净化量。
S210a、可选的,在预定时间内,根据多次内循环时车内的目标污染物浓度随时间的变化计算得到预期累计净化量。
显然,滤网的使用寿命与累计净化量有对应关系,且滤网的使用寿命还与滤网当前的过滤效果对应,故滤网的过滤效果也与累计净化量对应。
当滤网的过滤效果不同时,在内循环时车内的目标污染物浓度随时间的变化也是不同的。因此,通过在一段较短时间内多次内循环时车内的目标污染物浓度随时间的变化可计算出滤网当前的过滤效果,进而得出与该过滤效果对应的累计净化量,即预期累计净化量CCM2。
具体的,以上预期累计净化量的过程可为:求出多个对应内循环的下降片段中曲线的斜率,例如,可先对曲线取对数,之后进行线性拟合为直线(如用最小二乘法、线性回归法、多项式回归、法LASSO法、最小角回归法等),再求拟合曲线的斜率;通过取平均值或中值等方式,得出反应多个曲线的整体状况的斜率值;根据该斜率值可计算出滤网当前的过滤效果;根据该过滤效果可找出对应的累计净化量,即预期累计净化量CCM 2
S210b、可选的,比较预期累计净化量与累计净化量,若二者的差异 小于预定值,则以预期累计净化量取代累计净化量。
也就是说,将根据目标污染物浓度随时间的变化求出的预期累计净化量CCM 2与以上根据目标污染物浓度、空调风量、滤网的估算过滤效率求出的累计净化量CCM 1进行比较,如果二者的差距小于一个预设的阈值,则用CCM 2取代CCM 1,即之后进行使用寿命判断以及计算新的累计净化量时,均以被替换后的累计净化量(实际为CCM 2)计算。当然,如果二者间的差距过大,则不进行替换步骤。
显然,以上根据目标污染物浓度、空调风量、滤网的估算过滤效率求出的累计净化量是一个长期的累计值,故每次因测量、计算等导致的微小误差都会被逐渐累计到其中,导致其总误差越来越大。而预期累计净化量是根据实测的目标污染物浓度随时间的变化得出的,不存在累计误差,故其数值一般更准确。
因此,当预期累计净化量与根据目标污染物浓度、空调风量、滤网的估算过滤效率求出的累计净化量相差不太大时,则可用预期累计净化量修正累计净化量,以消除累计净化量中累计的误差。
而若预期累计净化量与根据目标污染物浓度、空调风量、滤网的估算过滤效率求出的累计净化量相差过大时,则表明当前的目标污染物浓度随时间的变化很可能是不准确的(如因为车内有人抽烟导致目标污染物浓度随时间的变化不能准确体现滤网过滤效果),故此时不再进行修正。
S211、根据累计净化量确定滤网的使用寿命。
也就是说,根据以上得到的累计净化量(可为替换后的),计算出滤网的使用寿命。
具体的,根据累计净化量计算使用寿命的方法是多样的。
例如,对每种型号的滤网,可直接设定其累计净化量的阈值;或者,也可根据预先在实验室测试得到的滤网使用到极限时的最大累计净化量,对累计净化量进行归一化处理(如采用min法、max法、z-score法 等任何已知的归一化方法),将其转变为100至0间的值,并设置对应的阈值(如10~30),更具体的,若累计净化量归一化处理为100至0间的值,则其代表滤网剩余的使用寿命,假设其设定的阈值为30,则当归一化的累计净化量降低至30时,就表示滤网使用寿命即将耗尽,提醒用户更换滤网;或者,也可设定对应累计净化量与最大累计净化量的比值的阈值。
或者,也可不设置阈值,而是根据累计净化量随时间的变化趋势进行判断,如当累计净化量基本不再随时间增大时则认为使用寿命耗尽。
当然,本步骤可与以上通过滤效率判断使用寿命的方式相似,也通过累计开启时间与累计净化量综合确定使用寿命。
当然,若本步骤中发现使用寿命低于预定值,则也可继续进行发出报警等步骤。
汽车空调滤网的使用寿命检测设备
本发明还提供一种汽车空调滤网的使用寿命检测设备,其可执行以上的方法,从而检测汽车空调滤网的使用寿命。
如图6和图7所示,该汽车空调滤网的使用寿命检测设备可包括:
获取单元,用于获取车内的目标污染物浓度随时间的变化;其中,目标污染物为能被汽车空调滤网过滤的污染物;
状态判断单元,用于根据目标污染物浓度随时间的变化确定循环状态;其中,循环状态为内循环或外循环,外循环为车内仅通过空调获得经过滤的车外空气的状态,内循环为仅通过空调对车内空气进行循环过滤的状态;
使用寿命计算单元,用于根据循环状态确定滤网的使用寿命。
可选的,使用寿命计算单元包括:
提取模块,用于根据目标污染物浓度随时间的变化以及循环状态得到外循环时车内的目标污染物浓度随时间的变化,以及内循环时车内的 目标污染物浓度随时间的变化;
风量计算模块,用于根据外循环时车内的目标污染物浓度随时间的变化确定空调风量,空调风量为单位时间内经过滤网的空气量;
过滤效率计算模块,用于根据内循环时车内的目标污染物浓度随时间的变化和空调风量确定滤网的过滤效率;其中,内循环时和外循环时所述空调风量相等;
使用寿命计算模块,用于根据过滤效率确定滤网的使用寿命。
可选的,使用寿命计算单元包括:
内循环累计净化量计算模块,用于在内循环时,根据车内的目标污染物浓度、空调风量、滤网的估算过滤效率计算汽车空调的内循环累计净化量;空调风量为单位时间内经过滤网的空气量;
外循环累计净化量计算模块,用于在外循环时,根据车外的目标污染物浓度、空调风量、滤网的估算过滤效率计算汽车空调的外循环累计净化量;
累计净化量计算模块,用于以内循环累计净化量与外循环累计净化量之和作为汽车空调的累计净化量;
使用寿命计算模块,用于根据累计净化量确定滤网的使用寿命。
进一步可选的,使用寿命计算单元还包括:
预期累计净化量计算模块,用于在预定时间内,根据多次内循环时车内的目标污染物浓度随时间的变化计算得到预期累计净化量;
替代模块,用于比较预期累计净化量与累计净化量,若二者的差异小于预定值,则以预期累计净化量取代累计净化量。
可选的,获取单元包括:
污染物传感器,其设于车内,用于持续检测车内的目标污染物浓度以得到车内的目标污染物浓度随时间的变化。
可选的,状态判断单元包括:
曲线生成模块,用于生成目标污染物浓度随时间的变化曲线;
片段获取模块,用于从目标污染物浓度随时间的变化曲线中分割出多个下降片段,在每个下降片段中,目标污染物浓度呈下降趋势;
循环判断模块,用于从多个下降片段中筛选出对应内循环的下降片段和对应外循环的下降片段。
可选的,汽车空调滤网的使用寿命检测设备还包括:
运动状态获取单元,用于获取汽车的运动状态;
曲线生成模块用于仅生成汽车行驶时目标污染物浓度随时间的变化曲线。
进一步可选的,运动状态获取单元包括:
OBD接口,用于与OBD连接,以从OBD获取汽车的运动状态;
和/或,
加速度传感器,其设于汽车上,用于获取汽车的加速度,并根据加速度判断汽车的运动状态。
可选的,汽车空调滤网的使用寿命检测设备还包括:
电子标签读取器,用于从设于滤网上的电子标签中读取滤网的信息。
可选的,汽车空调滤网的使用寿命检测设备还包括:
报警单元,用于在使用寿命低于预定值时发出报警。
其中,本发明的汽车空调滤网的使用寿命检测设备中的各单元和模块可执行以上的汽车空调滤网的使用寿命检测方法,从而可准确的获知滤网的使用寿命。
其中,以上汽车空调滤网的使用寿命检测设备可包括OBD接口,用于与汽车的OBD相连,以便直接从OBD获取汽车的运动状态,并用其作为是否生成汽车行驶时目标污染物浓度随时间的变化曲线的依据。
或者,汽车空调滤网的使用寿命检测设备还可包括加速度传感器,用于根据检测到的加速度判断汽车是否在运动。
当然,如果汽车空调滤网的使用寿命检测设备同时具有OBD接口和 加速度传感器,也是可行的。
其中,以上汽车空调滤网的使用寿命检测设备还可包括电子标签读取器,用于从设于滤网上的电子标签中读取滤网的信息,从而在安装滤网时获知滤网的相关参数(如滤网型号、初始过滤效率、最大累计净化量等),以作为判断使用寿命的基础。
计算机可读存储介质
本发明还提供一种计算机可读存储介质,其中存储有能被处理器执行的程序,当处理器执行程序时,能进行上述的汽车空调滤网的使用寿命检测方法。
也就是说,可在计算机可读存储介质中存储对应以上方法的程序,从而当处理器运行该程序时,即可实现以上的汽车空调滤网的使用寿命检测方法。
其中,计算机可读存储介质可为硬盘、移动硬盘、U盘、CD、DVD、RAM、ROM等任意易失或非易失的存储介质。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (25)

  1. 一种汽车空调滤网的使用寿命检测方法,其特征在于,包括:
    获取车内的目标污染物浓度随时间的变化;其中,所述目标污染物为能被汽车空调滤网过滤的污染物;
    根据目标污染物浓度随时间的变化确定循环状态;其中,所述循环状态为内循环或外循环,所述外循环为车内仅通过空调获得经过滤的车外空气的状态,所述内循环为仅通过空调对车内空气进行循环过滤的状态;
    根据所述循环状态确定滤网的使用寿命。
  2. 根据权利要求1所述的汽车空调滤网的使用寿命检测方法,其特征在于,所述根据所述循环状态确定滤网的使用寿命包括:
    根据目标污染物浓度随时间的变化以及循环状态得到外循环时车内的目标污染物浓度随时间的变化,以及内循环时车内的目标污染物浓度随时间的变化;
    根据外循环时车内的目标污染物浓度随时间的变化确定空调风量,所述空调风量为单位时间内经过滤网的空气量;
    根据内循环时车内的目标污染物浓度随时间的变化和空调风量确定滤网的过滤效率;其中,内循环时和外循环时所述空调风量相等;
    根据过滤效率确定滤网的使用寿命。
  3. 根据权利要求2所述的汽车空调滤网的使用寿命检测方法,其特征在于,所述根据外循环时车内的目标污染物浓度随时间的变化确定空调风量包括:
    根据公式n t1=a+b*e -f*t1/V确定空调风量f,其中,n t1为本次外循环开始t1时间后车内的目标污染物浓度,a、b在每次外循环中为固定值,e为自然常数,V为车内空间体积。
  4. 根据权利要求2所述的汽车空调滤网的使用寿命检测方法,其特征在于,所述根据内循环时车内的目标污染物浓度随时间的变化和空调风量确定滤网的过滤效率包括:
    根据公式n t2=n 0*e -f*θ*t2/V确定滤网的过滤效率θ,其中,n t2为本次内循环开始t2时间后车内的目标污染物浓度,n 0为本次内循环开始时的车内的目标污染物浓度,e为自然常数,f为空调风量,V为车内空间体积。
  5. 根据权利要求1所述的汽车空调滤网的使用寿命检测方法,其特征在于,所述根据所述循环状态确定滤网的使用寿命包括:
    在内循环时,根据车内的目标污染物浓度、空调风量、滤网的估算过滤效率计算汽车空调的内循环累计净化量;在外循环时,根据车外的目标污染物浓度、空调风量、滤网的估算过滤效率计算汽车空调的外循环累计净化量;所述空调风量为单位时间内经过滤网的空气量;其中,内循环累计净化量与外循环累计净化量之和作为汽车空调的累计净化量;
    根据累计净化量确定滤网的使用寿命。
  6. 根据权利要求5所述的汽车空调滤网的使用寿命检测方法,其特征在于,所述根据累计净化量确定滤网的使用寿命包括:
    在预定时间内,根据多次内循环时车内的目标污染物浓度随时间的变化计算得到预期累计净化量;
    比较所述预期累计净化量与累计净化量,若二者的差异小于预定值,则以预期累计净化量取代累计净化量。
  7. 根据权利要求1所述的汽车空调滤网的使用寿命检测方法,其特征在于,所述获取车内的目标污染物浓度随时间的变化包括:
    持续检测车内的目标污染物浓度以得到车内的目标污染物浓度随时间的变化。
  8. 根据权利要求1所述的汽车空调滤网的使用寿命检测方法,其特征在于,所述根据目标污染物浓度随时间的变化确定循环状态包括:
    曲线生成步骤:生成目标污染物浓度随时间的变化曲线;
    片段获取步骤:从目标污染物浓度随时间的变化曲线中分割出多个下降片段,在每个下降片段中,所述目标污染物浓度呈下降趋势;
    循环判断步骤:从多个下降片段中筛选出对应内循环的下降片段和对应外循环的下降片段。
  9. 根据权利要求8所述的汽车空调滤网的使用寿命检测方法,其特征在于,在所述片段获取步骤和循环判断步骤之间还包括:
    状态判断步骤:判断每个下降片段时汽车空调是否处于开启状态,舍弃汽车空调处于关闭状态的下降片段。
  10. 根据权利要求8所述的汽车空调滤网的使用寿命检测方法,其特征在于,
    每个所述下降片段的时间长度在3~20分钟。
  11. 根据权利要求1所述的汽车空调滤网的使用寿命检测方法,其特征在于,
    在所述根据所述循环状态确定滤网的使用寿命前,还包括:获取空调的累计开启时间;
    所述根据所述循环状态确定滤网的使用寿命包括:根据累计开启时间和循环状态共同确定滤网的使用寿命。
  12. 根据权利要求1所述的汽车空调滤网的使用寿命检测方法,其特征在于,还包括:
    获取汽车的运动状态;
    所述根据所述循环状态确定滤网的使用寿命包括:仅根据汽车运动 时的所述循环状态确定滤网的使用寿命。
  13. 根据权利要求1所述的汽车空调滤网的使用寿命检测方法,其特征在于,所述目标污染物包括:
    PM2.5、PM10、PM0.3、异味物质,总挥发性有机物、花粉中的任意一种或多种。
  14. 根据权利要求1所述的汽车空调滤网的使用寿命检测方法,其特征在于,在所述根据过滤效率确定滤网的使用寿命后,还包括:
    若所述使用寿命低于预定值,则发出报警。
  15. 一种汽车空调滤网的使用寿命检测设备,其特征在于,包括:
    获取单元,用于获取车内的目标污染物浓度随时间的变化;其中,所述目标污染物为能被汽车空调滤网过滤的污染物;
    状态判断单元,用于根据目标污染物浓度随时间的变化确定循环状态;其中,所述循环状态为内循环或外循环,所述外循环为车内仅通过空调获得经过滤的车外空气的状态,所述内循环为仅通过空调对车内空气进行循环过滤的状态;
    使用寿命计算单元,用于根据所述循环状态确定滤网的使用寿命。
  16. 根据权利要求15所述的汽车空调滤网的使用寿命检测设备,其特征在于,所述使用寿命计算单元包括:
    提取模块,用于根据目标污染物浓度随时间的变化以及循环状态得到外循环时车内的目标污染物浓度随时间的变化,以及内循环时车内的目标污染物浓度随时间的变化;
    风量计算模块,用于根据外循环时车内的目标污染物浓度随时间的变化确定空调风量,所述空调风量为单位时间内经过滤网的空气量;
    过滤效率计算模块,用于根据内循环时车内的目标污染物浓度随时间的变化和空调风量确定滤网的过滤效率;其中,内循环时和外循环时 所述空调风量相等;
    使用寿命计算模块,用于根据过滤效率确定滤网的使用寿命。
  17. 根据权利要求15所述的汽车空调滤网的使用寿命检测设备,其特征在于,所述使用寿命计算单元包括:
    内循环累计净化量计算模块,用于在内循环时,根据车内的目标污染物浓度、空调风量、滤网的估算过滤效率计算汽车空调的内循环累计净化量;所述空调风量为单位时间内经过滤网的空气量;
    外循环累计净化量计算模块,用于在外循环时,根据车外的目标污染物浓度、空调风量、滤网的估算过滤效率计算汽车空调的外循环累计净化量;
    累计净化量计算模块,用于以内循环累计净化量与外循环累计净化量之和作为汽车空调的累计净化量;
    使用寿命计算模块,用于根据累计净化量确定滤网的使用寿命。
  18. 根据权利要求17所述的汽车空调滤网的使用寿命检测设备,其特征在于,所述使用寿命计算单元还包括:
    预期累计净化量计算模块,用于在预定时间内,根据多次内循环时车内的目标污染物浓度随时间的变化计算得到预期累计净化量;
    替代模块,用于比较所述预期累计净化量与累计净化量,若二者的差异小于预定值,则以预期累计净化量取代累计净化量。
  19. 根据权利要求15所述的汽车空调滤网的使用寿命检测设备,其特征在于,所述获取单元包括:
    污染物传感器,其设于车内,用于持续检测车内的目标污染物浓度以得到车内的目标污染物浓度随时间的变化。
  20. 根据权利要求15所述的汽车空调滤网的使用寿命检测设备,其特征在于,所述状态判断单元包括:
    曲线生成模块,用于生成目标污染物浓度随时间的变化曲线;
    片段获取模块,用于从目标污染物浓度随时间的变化曲线中分割出多个下降片段,在每个下降片段中,所述目标污染物浓度呈下降趋势;
    循环判断模块,用于从多个下降片段中筛选出对应内循环的下降片段和对应外循环的下降片段。
  21. 根据权利要求15所述的汽车空调滤网的使用寿命检测设备,其特征在于,还包括:
    运动状态获取单元,用于获取汽车的运动状态;
    所述使用寿命计算单元用于仅根据汽车运动时的所述循环状态确定滤网的使用寿命。
  22. 根据权利要求21所述的汽车空调滤网的使用寿命检测设备,其特征在于,所述运动状态获取单元包括:
    车载自动诊断系统接口,用于与车载自动诊断系统连接,以从车载自动诊断系统获取汽车的运动状态;
    和/或,
    加速度传感器,其设于汽车上,用于获取汽车的加速度,并根据加速度判断汽车的运动状态。
  23. 根据权利要求15所述的汽车空调滤网的使用寿命检测设备,其特征在于,还包括:
    电子标签读取器,用于从设于滤网上的电子标签中读取滤网的信息。
  24. 根据权利要求15所述的汽车空调滤网的使用寿命检测设备,其特征在于,还包括:
    报警单元,用于在所述使用寿命低于预定值时发出报警。
  25. 一种计算机可读存储介质,其中存储有能被处理器执行的程序, 其特征在于,
    当所述处理器执行所述程序时,能进行权利要求1至14中任意一项所述的汽车空调滤网的使用寿命检测方法。
PCT/CN2019/111735 2018-10-15 2019-10-17 汽车空调滤网的使用寿命检测方法和设备、存储介质 WO2020078436A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980068107.0A CN112996682A (zh) 2018-10-15 2019-10-17 汽车空调滤网的使用寿命检测方法和设备、存储介质
KR1020217014129A KR20210095625A (ko) 2018-10-15 2019-10-17 자동차 에어컨 필터를 위한 사용 수명 검출 방법 및 디바이스, 및 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811196418.9A CN109532384B (zh) 2018-10-15 2018-10-15 汽车空调滤网的使用寿命检测方法和设备、存储介质
CN201811196418.9 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020078436A1 true WO2020078436A1 (zh) 2020-04-23

Family

ID=65843950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111735 WO2020078436A1 (zh) 2018-10-15 2019-10-17 汽车空调滤网的使用寿命检测方法和设备、存储介质

Country Status (3)

Country Link
KR (1) KR20210095625A (zh)
CN (2) CN109532384B (zh)
WO (1) WO2020078436A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112581654A (zh) * 2020-12-29 2021-03-30 华人运通(江苏)技术有限公司 一种车辆功能的使用频度评价系统及方法
CN113002263A (zh) * 2021-01-28 2021-06-22 浙江合众新能源汽车有限公司 一种空调滤芯更换提醒方法
CN113513823A (zh) * 2021-03-22 2021-10-19 珠海格力电器股份有限公司 一种新风过滤机组的控制装置、方法和新风过滤机组
CN113959061A (zh) * 2021-11-24 2022-01-21 美的集团武汉制冷设备有限公司 新风设备的提醒方法、装置、存储介质及新风设备
CN114506191A (zh) * 2022-01-26 2022-05-17 武汉格罗夫氢能汽车有限公司 氢能汽车的智能换气控制方法、终端设备及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109532384B (zh) * 2018-10-15 2022-03-08 3M创新有限公司 汽车空调滤网的使用寿命检测方法和设备、存储介质
CN111780345A (zh) * 2019-04-04 2020-10-16 广东美的环境电器制造有限公司 滤网寿命的计算方法、装置及净化设备
CN111140991B (zh) * 2019-12-31 2022-03-08 Tcl空调器(中山)有限公司 过滤网运行寿命的判断方法、装置、空气净化器及介质
CN111516457A (zh) * 2020-04-30 2020-08-11 三一重机有限公司 一种堵塞检测方法、装置及工程机械
CN113415129B (zh) * 2021-07-02 2022-05-31 一汽奔腾轿车有限公司 一种基于环境pm2.5的汽车空调滤芯的更换提醒方法及系统
CN115214315B (zh) * 2021-07-14 2024-02-23 广州汽车集团股份有限公司 一种汽车空调滤芯的剩余寿命检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262941A (ja) * 1993-03-15 1994-09-20 Kansei Corp フィルター交換時期警報装置
KR20040043334A (ko) * 2002-11-18 2004-05-24 현대자동차주식회사 차량용 에어필터의 자동교환장치
DE102005012502A1 (de) * 2004-03-24 2005-11-10 Behr Gmbh & Co. Kg Vorrichtung zur Überwachung eines Filters, sowie Verfahren zur Filterüberwachung
CN1982866A (zh) * 2005-12-12 2007-06-20 起亚自动车株式会社 通知在车辆的hvac系统中的气体过滤器的更换时间的方法
KR20080035301A (ko) * 2006-10-19 2008-04-23 한라공조주식회사 차량용 송풍장치의 필터 교환 시기 체크 장치
CN107054014A (zh) * 2017-02-28 2017-08-18 上海蔚来汽车有限公司 汽车空调滤网使用寿命的检测方法和装置
CN107415632A (zh) * 2017-06-29 2017-12-01 上海思致汽车工程技术有限公司 一种用于计算空调滤清器使用寿命的系统及其计算方法
CN107825939A (zh) * 2017-09-11 2018-03-23 惠州市德赛西威汽车电子股份有限公司 一种汽车空调滤网使用寿命的检测方法和装置
CN109532384A (zh) * 2018-10-15 2019-03-29 3M创新有限公司 汽车空调滤网的使用寿命检测方法和设备、存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012209126A1 (de) * 2012-05-30 2013-12-05 Behr Gmbh & Co. Kg Anordnung, umfassend ein Dichtungselement und einen Wärmeübertrager, in einem Luftkanal
CN104180465B (zh) * 2013-05-23 2017-03-22 深圳市中兴新地通信器材有限公司 具自洁除尘功能的新风通风装置及其除尘方法
AT514742A2 (de) * 2014-11-10 2015-03-15 Ditest Fahrzeugdiagnose Gmbh Vorrichtung und Verfahren zum Warten einer Klimaanlage
CN105363297A (zh) * 2015-11-25 2016-03-02 佛山市城市森林净化科技有限公司 一种判断空气净化器滤网寿命的方法
DE102016005092A1 (de) * 2016-04-27 2017-11-02 Daimler Ag Befülladapter zum Befüllen von Klimaanlagen von Fahrzeugen mit einem Kältemittel
CN108105941A (zh) * 2017-12-19 2018-06-01 广东美的制冷设备有限公司 空气净化设备及其滤网寿命估算方法、装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262941A (ja) * 1993-03-15 1994-09-20 Kansei Corp フィルター交換時期警報装置
KR20040043334A (ko) * 2002-11-18 2004-05-24 현대자동차주식회사 차량용 에어필터의 자동교환장치
DE102005012502A1 (de) * 2004-03-24 2005-11-10 Behr Gmbh & Co. Kg Vorrichtung zur Überwachung eines Filters, sowie Verfahren zur Filterüberwachung
CN1982866A (zh) * 2005-12-12 2007-06-20 起亚自动车株式会社 通知在车辆的hvac系统中的气体过滤器的更换时间的方法
KR20080035301A (ko) * 2006-10-19 2008-04-23 한라공조주식회사 차량용 송풍장치의 필터 교환 시기 체크 장치
CN107054014A (zh) * 2017-02-28 2017-08-18 上海蔚来汽车有限公司 汽车空调滤网使用寿命的检测方法和装置
CN107415632A (zh) * 2017-06-29 2017-12-01 上海思致汽车工程技术有限公司 一种用于计算空调滤清器使用寿命的系统及其计算方法
CN107825939A (zh) * 2017-09-11 2018-03-23 惠州市德赛西威汽车电子股份有限公司 一种汽车空调滤网使用寿命的检测方法和装置
CN109532384A (zh) * 2018-10-15 2019-03-29 3M创新有限公司 汽车空调滤网的使用寿命检测方法和设备、存储介质

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112581654A (zh) * 2020-12-29 2021-03-30 华人运通(江苏)技术有限公司 一种车辆功能的使用频度评价系统及方法
CN112581654B (zh) * 2020-12-29 2022-09-30 华人运通(江苏)技术有限公司 一种车辆功能的使用频度评价系统及方法
CN113002263A (zh) * 2021-01-28 2021-06-22 浙江合众新能源汽车有限公司 一种空调滤芯更换提醒方法
CN113002263B (zh) * 2021-01-28 2022-08-19 浙江合众新能源汽车有限公司 一种空调滤芯更换提醒方法
CN113513823A (zh) * 2021-03-22 2021-10-19 珠海格力电器股份有限公司 一种新风过滤机组的控制装置、方法和新风过滤机组
CN113513823B (zh) * 2021-03-22 2023-03-24 珠海格力电器股份有限公司 一种新风过滤机组的控制装置、方法和新风过滤机组
CN113959061A (zh) * 2021-11-24 2022-01-21 美的集团武汉制冷设备有限公司 新风设备的提醒方法、装置、存储介质及新风设备
CN114506191A (zh) * 2022-01-26 2022-05-17 武汉格罗夫氢能汽车有限公司 氢能汽车的智能换气控制方法、终端设备及存储介质
CN114506191B (zh) * 2022-01-26 2023-08-08 武汉格罗夫氢能汽车有限公司 氢能汽车的智能换气控制方法、终端设备及存储介质

Also Published As

Publication number Publication date
CN109532384B (zh) 2022-03-08
KR20210095625A (ko) 2021-08-02
CN109532384A (zh) 2019-03-29
CN112996682A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2020078436A1 (zh) 汽车空调滤网的使用寿命检测方法和设备、存储介质
US20090236432A1 (en) Retrofitting a constant volume air handling unit with a variable frequency drive
US7261762B2 (en) Technique for detecting and predicting air filter condition
JP5068040B2 (ja) 車室の空気汚染監視制御装置および車室の空気汚染監視制御方法
US10828986B2 (en) Cabin air filter element monitoring and analysis system and associated methods
CN109074066B (zh) 优化过滤器寿命周期的方法和监测通风系统的系统
CN102514526B (zh) 汽车空调滤清器更换提醒装置、汽车空调系统和汽车
KR101203500B1 (ko) 지하 실내 공기질 모니터링 방법 및 지하 실내 공기질 제어 시스템
WO2023273143A1 (zh) 一种基于环境pm2.5的汽车空调滤芯的更换提醒方法及系统
CN105817091B (zh) 用于监控过滤器寿命的方法和装置
CN211926038U (zh) 车载空调滤芯寿命的预测系统及车辆
US20220113718A1 (en) Cabinet with filter life prediction and method of predicting filter life
CN112619320B (zh) 汽车空调过滤器使用总计时间确定方法、更换提醒方法及系统
US11009246B2 (en) Systems and methods to detect dirt level of filters
US10518206B1 (en) Systems and methods of predicting life of a filter in an HVAC system
CN116619972A (zh) 车载空调滤芯的寿命检测方法、装置、设备及存储介质
CN111090916A (zh) 车内空调过滤器的内芯寿命的计算方法及其计算系统
JP4762086B2 (ja) トンネル換気制御装置
JP2000210518A (ja) フィルタ汚れ検知装置及びフィルタを備えた空調装置
CN110248826A (zh) 车辆用测定装置
CN112434859B (zh) 一种结合客流预测技术的轨道交通地下站环控调节方法
JPH11229798A (ja) 道路トンネルの換気制御システム
US20230392807A1 (en) Presence detection
CN113757916B (zh) 基于tcms数据判断列车空调制冷系统异常的方法
CN114619851B (zh) 车辆用空调装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872780

Country of ref document: EP

Kind code of ref document: A1