WO2020078295A1 - 一种流体的增压方法 - Google Patents

一种流体的增压方法 Download PDF

Info

Publication number
WO2020078295A1
WO2020078295A1 PCT/CN2019/110910 CN2019110910W WO2020078295A1 WO 2020078295 A1 WO2020078295 A1 WO 2020078295A1 CN 2019110910 W CN2019110910 W CN 2019110910W WO 2020078295 A1 WO2020078295 A1 WO 2020078295A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
pressure
cylinder
deceleration
kinetic energy
Prior art date
Application number
PCT/CN2019/110910
Other languages
English (en)
French (fr)
Inventor
皇甫欢宇
Original Assignee
皇甫欢宇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 皇甫欢宇 filed Critical 皇甫欢宇
Publication of WO2020078295A1 publication Critical patent/WO2020078295A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G3/00Other motors, e.g. gravity or inertia motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B3/00Intensifiers or fluid-pressure converters, e.g. pressure exchangers; Conveying pressure from one fluid system to another, without contact between the fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/10Alleged perpetua mobilia
    • F03G7/122Alleged perpetua mobilia of closed energy loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/005Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for by means of hydraulic motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/10Alleged perpetua mobilia
    • F03G7/115Alleged perpetua mobilia harvesting energy from inertia forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention belongs to the technical field of fluid boosting and relates to a fluid boosting method.
  • the method of boosting the fluid mainly uses a traditional booster pump to boost the fluid.
  • the basic principle of the traditional booster pump is to use a motor to drive the booster pump to work, and then the booster pump to boost the fluid.
  • the technology of using fluid inertia to pressurize fluid has not yet appeared.
  • the purpose of the present invention is to provide a fluid pressurization method, which can effectively reduce the energy consumption of pressurization when pressurizing the fluid.
  • the technical solution adopted by the present invention is: a method for pressurizing a fluid, including the following steps: providing a fluid, which is specifically a liquid or a compressed gas; decelerating the fluid after accelerating the fluid; When decelerating the fluid, the decelerating kinetic energy of the fluid is not recovered; before accelerating the fluid, the fluid is pre-determined according to a predetermined proportional relationship between the predetermined value of the decelerating kinetic energy loss of the fluid and the acquisition of the predetermined value of the pressure energy of the fluid.
  • the ratio of the predetermined value of the deceleration kinetic energy loss, and according to the ratio range, the acceleration mass of the fluid that can meet the corresponding kinetic energy loss conditions under the corresponding acceleration conditions is predetermined; in the process of accelerating or decelerating the fluid, according to the fluid
  • the rate of change of speed and the state of motion control the pressure of the fluid from the first pressure to the second pressure; when the pressure of the fluid is controlled from the first pressure to the second pressure, if
  • the pressure energy of the acquired fluid is converted into electrical energy by the power generation device, and the electrical energy is transmitted to the power consumption terminal through the power transmission device.
  • the fluid is loaded into the carrying container;
  • decelerating the fluid after accelerating the fluid specifically: decelerating the fluid by the deceleration system after accelerating the fluid by the acceleration system;
  • the pressure of the fluid is emphasized and controlled from the first pressure to the second pressure according to the speed change rate and the movement state of the fluid, specifically: in the process of accelerating or decelerating the fluid
  • the pressure of the fluid is controlled from the first pressure to the second pressure according to the speed change rate and the movement state of the fluid;
  • the energy acquisition system acquires the pressure energy of the fluid.
  • the basic principle of the present invention is: after accelerating the fluid, decelerating the fluid.
  • the proportion range of the predetermined value of the deceleration kinetic energy loss of the fluid is determined in advance according to a predetermined proportional relationship between the predetermined value of the deceleration kinetic energy loss of the fluid and the predetermined value of the pressure energy acquisition of the fluid, And according to the ratio range, the fluid acceleration mass that can meet the corresponding kinetic energy loss conditions under the corresponding acceleration conditions is pre-determined.
  • the fluid pressure is adjusted by the acceleration effect during the acceleration or deceleration of the fluid. When the fluid depends on After the acceleration is adjusted, the pressure of the fluid can be obtained.
  • the proportion range of the predetermined value of the deceleration kinetic energy loss of the fluid is determined in advance according to the predetermined proportional relationship between the predetermined value of the deceleration kinetic energy loss of the fluid and the predetermined value of the pressure energy acquisition of the fluid
  • the fluid acceleration mass that can satisfy the corresponding kinetic energy loss conditions under the corresponding acceleration conditions is predetermined. Therefore, the beneficial effect of the present invention is that the acceleration energy consumption of the fluid can be prevented from exceeding a predetermined value by predetermining the acceleration mass of the fluid, and pressurizing the fluid by the inertial effect of the fluid can effectively reduce the pressurization energy consumption.
  • the invention can be widely used in the fields of power, electric power and industrial production.
  • FIG. 1 is a schematic structural diagram of a boosting device used in the boosting method of the present invention.
  • FIG. 2 is a schematic diagram of the transmission member in the booster device shown in FIG. 1.
  • FIG. 3 is a schematic side view of the lifting mechanism in the supercharging device shown in FIG. 1.
  • FIG. 4 is a schematic diagram of the first working state of the boosting device used in the boosting method of the present invention.
  • FIG. 5 is a schematic diagram of the second working state of the boosting device used in the boosting method of the present invention.
  • FIG. 6 is a schematic diagram of a third working state of the boosting device used in the boosting method of the present invention.
  • FIG. 7 is a schematic diagram of the fourth working state of the boosting device used in the boosting method of the present invention.
  • Vacuum container 2. Fixed beam, 3. Energy storage oil cylinder, 4. First high-pressure container, 5. Guide, 6. First cylinder, 7. First piston, 8. Upper moving beam, 9. The first rocker, 10. The first support beam, 11. The first pillar, 12. The low-pressure hose, 13. The second cylinder, 14. The first check valve, 15. The third cylinder, 16. Lower moving beam, 17. Second check valve, 18. First stop valve, 19. High-pressure hose, 20. Second high-pressure container, 21. Alternator, 22. First hydraulic motor, 23. First tube Road, 24. Base, 25. Lifting mechanism, 26. Second pipeline, 27. Third check valve, 28. Deceleration cylinder, 29. Fourth check valve, 30. Third pipeline, 31. Fourth Pipeline, 32.
  • First low-pressure container 33.
  • Third high-pressure container 35.
  • First electric hydraulic pump 36.
  • Second low-pressure container 37.
  • Fourth Cylinder block 39.
  • Sixth check valve 40.
  • First transmission member 41.
  • Second transmission member 42.
  • Second support beam 43.
  • Second pillar 44.
  • Connection cylinder 45.
  • Second rocker 46.
  • Second piston 47. Small piston head, 48. Pin hole, 49. Connecting rod, 50. Spring, 51. Large piston head, 52. Transmission guide rod, 53.
  • Second hydraulic pressure Up 54. mounting seat, 55. gear, 56. rack, 57. jack, 58. choke valve, 59. fifth pipeline, 60. iron block, 61. second shut-off valve, 62. third Low pressure container, 63. Magnet, 64. Second electric hydraulic pump.
  • the invention provides a fluid pressurization method, which is specifically performed according to the following steps:
  • the constructed fluid pressurizing device includes a base 24 on which two guide members 5 are vertically arranged side by side, and the top ends of the two guide members 5 are connected by a fixed beam 2 to fix the A first high-pressure container 4 is installed thereon, and an energy storage oil cylinder 3 is installed on the side wall of the fixed beam 2 facing the base 24, the inner cavity of the first high-pressure container 4 communicates with the inner cavity of the energy storage oil cylinder 3, and the piston of the energy storage oil cylinder 3 The rod faces the base 24;
  • a deceleration cylinder 28 is also vertically installed on the base 24.
  • the deceleration cylinder 28 is located between the two guides 5.
  • the piston rod of the deceleration cylinder 28 faces the fixed beam 2.
  • the magnet rod 63 is provided on the upper end of the deceleration cylinder 28;
  • an upper movable beam 8 and a lower movable beam 16 are provided in this order.
  • the upper movable beam 8 and the lower movable beam 16 are both provided on the two guide members 5 and can move up and down along the guide members 5 ;
  • the upper moving beam 8 and the lower moving beam 16 are located between the energy storage cylinder 3 and the deceleration cylinder 28;
  • the upper moving beam 8 is mounted with a first cylinder block 6,
  • the first cylinder block 6 is provided with a first piston 7 and a second
  • the piston 46, the piston body of the first piston 7 and the piston body of the second piston 46 are located in the first cylinder 6, the piston rod of the first piston 7 and the piston rod of the second piston 46 extend out of the first cylinder 6
  • the piston rod of the first piston 7 and the piston rod of the second piston 46 are located in the 180 ° direction, and the center line of the piston rod of the first piston 7 and the center line of the piston rod of the second piston 46 and the center of the upper moving beam 8
  • the lines are
  • a second cylinder 13 is mounted on the lower moving beam 16.
  • An iron block 60 is provided below the second cylinder 13 directly opposite the magnet 63.
  • the second cylinder 13 is connected to the first cylinder 6 through a cylindrical connecting cylinder 44 Connected, the inner cavity of the first cylinder 6, the inner cavity of the connecting cylinder 44 and the inner cavity of the second cylinder 13 communicate to form a cavity; the outer wall of the second cylinder 13 is symmetrically fixed to the third cylinder 15 and
  • the fourth cylinder 38, the center line of the third cylinder 15 and the center line of the fourth cylinder 38 are located in the direction of 180 °, and are parallel to the center line of the lower moving beam 16;
  • the second transmission member 41 and the first transmission member 40 are provided in the fourth cylinder 38.
  • the first check valve 14 and the second check valve 17 are mounted on the third cylinder 15, and the fifth check valve 37 and the sixth check valve 39 are mounted on the fourth cylinder 38.
  • the first transmission member 40 includes a small piston head 47 and a large piston head arranged side by side 51.
  • the diameter of the large piston head 51 is larger than the diameter of the small piston head 47.
  • the diameter of the small piston head 47 matches the inner diameter of the fourth cylinder 38, and the diameter of the large piston head 51 matches the inner diameter of the second cylinder 13.
  • the small piston head 47 and the large piston head 51 are connected by a connecting rod 49 and a transmission guide rod 52.
  • the connecting rod 49 is provided with a pin hole 48, and the connecting rod 49 is covered with a spring 50.
  • the small piston head 47 and the pin hole 48 in the first transmission member 40 are located in the fourth cylinder 38, and the large piston head 51 and the spring 50 in the first transmission member 40 are located in the second cylinder 13, the first transmission A first pin shaft is installed in the pin hole 48 in the member 40, and the first pin shaft is movably connected with the lower end of the second rocker 45.
  • Both the small piston head 47 and the pin hole 48 in the second transmission member 41 are located in the third cylinder 15, and the large piston head 51 and the spring 50 in the second transmission member 41 are located in the second cylinder 13.
  • a second pin shaft is installed in the pin hole 48 in the second transmission member 41, and the second pin shaft is movably connected to the lower end of the first rocker 9.
  • the first support beam 10 and the second support beam 42 are symmetrically fixed to the side wall of the connecting cylinder 44.
  • the first support beam 10 is provided with a first pillar 11 which can reciprocally rotate around its own axis.
  • the first mounting hole, the first rocker 9 passes through the first mounting hole;
  • the second support beam 42 is provided with a second pillar 43 that can reciprocally rotate around its own axis, and the second pillar 43 is processed with a second mounting hole,
  • the second rocker 45 passes through the second mounting hole.
  • Each guide 5 has two sets of lifting mechanisms 25 as shown in FIG. 3 at the lower end.
  • the lifting mechanism 25 includes a rack 56 and a mounting seat 54.
  • a second hydraulic motor 53 and a second hydraulic motor are installed on the mounting seat 54.
  • the gear 55 is driven to rotate by a transmission mechanism.
  • the gear 55 and the rack 56 form a rack and pinion pair.
  • the rack 56 is fixedly connected to the guide 5.
  • the mounting base 54 is vertically fixed with a jack 57.
  • the upper end and the lower of the jack 57 The moving beam 16 is fixedly connected, and all the second hydraulic motors 53 communicate with the fourth pipeline 31.
  • a second pipeline 26 and a third pipeline 30 are respectively provided on the two opposite side walls of the deceleration cylinder 28, and a third one-way valve 27 and a choke valve 58 are installed on the second pipeline 26.
  • a third low-pressure container 62 is connected to the other end of the 26, a fourth check valve 29 is installed on the third line 30, and a first low-pressure container 32 is connected to the other end of the third line 30;
  • a pipeline 23 communicates with the second high-pressure container 20.
  • a first hydraulic motor 22 is installed on the first pipeline 23, and the first hydraulic motor 22 is connected to the alternator 21.
  • the third low-pressure container 62 communicates with the first pipeline 23 through a fifth pipeline 59, which is provided with a second cut-off valve 61 and a second electric hydraulic pump 64, and the second cut-off valve 61 is located on the second electric hydraulic Between the pump 64 and the third low-pressure container 62, the first hydraulic motor 22 is located on the first line 23 between the second high-pressure container 20 and the fifth line 59.
  • All the second hydraulic motors 53 are connected to the directional valve 33 through the fourth line 31, the directional valve 33 is connected to the third high-pressure container 34 and the second low-pressure container 36, the third high-pressure container 34 and the second low-pressure container 36 is also connected to the first electric hydraulic pump 35.
  • the second high-pressure container 20 is connected to the second one-way valve 17 and the fifth one-way valve 37 through a high-pressure hose 19, a first shut-off valve 18 is provided on the high-pressure hose 19, and the first low-pressure container 32 is connected to the low-pressure hose 12
  • the first check valve 14 and the sixth check valve 39 are connected.
  • the base 24 is provided with a vacuum container 1, a fixed beam 2, an energy storage oil cylinder 3, a first high-pressure container 4, a guide 5, a first cylinder 6, an upper moving beam 8, a first piston 7, a first rocker 9,
  • the rod 45, the second piston 46, the first shut-off valve 18, and all the lifting mechanisms 25 are located in the vacuum container 1.
  • a part of the high-pressure hose 19, a part of the low-pressure hose 12, a part of the second pipe 26 and a part of the third pipe 30 are also located in the vacuum container 1.
  • the first cylinder 6, the upper moving beam 8, the connecting cylinder 44, the second cylinder 13 and the lower moving beam 16 constitute an energy conversion mechanism; the inner diameter of the first cylinder 6 is equal to the inner diameter of the second cylinder 13.
  • the jack 57 pushes the lower moving beam 16 upward, and the lower moving beam 16 passes through the second cylinder 13, the connecting cylinder 44, and the first A cylinder 6 pushes the upper moving beam 8 to move upward, that is, energy conversion Moves upward configuration.
  • the mutual attraction between the iron block 60 installed below the second cylinder 13 and the magnet 63 mounted on the upper end of the piston rod of the deceleration cylinder 28 moves the piston rod of the deceleration cylinder 28 from the position shown in FIG. 4 Pulling up to the top dead center position shown in FIG. 5, in the process of pulling up the piston rod of the deceleration cylinder 28 from the position shown in FIG. 4 to the top dead center position shown in FIG.
  • the third check valve 27 is cut off, and the hydraulic oil in the first low-pressure container 32 enters the deceleration cylinder 28 through the third line 30 and the fourth check valve 29 under the pressure of the atmospheric pressure gas in the first low-pressure container 32.
  • the piston rod of the deceleration cylinder 28 is pulled up to the top dead center position shown in FIG. 5, the iron block 60 is separated from the magnet 63 under the pulling force;
  • the first cylinder 6 When the iron block 60 is separated from the magnet 63, the first cylinder 6 is in contact with the piston rod of the energy storage oil cylinder 3; after the first cylinder 6 is in contact with the piston rod of the energy storage oil cylinder 3, the piston rod of the energy storage oil cylinder 3 is pushed Moving into the energy storage oil cylinder 3, at this time, the hydraulic oil in the energy storage oil cylinder 3 is pressed into the first high-pressure container 4 until the piston rod of the energy storage oil cylinder 3 is pushed up to the top dead center shown in FIG. 5 In position, the directional valve 33 is adjusted to the second directional state.
  • the fourth line 31 is not in communication with the third high-pressure container 34, and the fourth line 31 is changed by The check valve 33 communicates with the second low-pressure container 36.
  • the second hydraulic motor 53 instantly loses the driving pressure from the third high-pressure container 34, and the high-pressure hydraulic oil in the first high-pressure container 4 instantly flows to the energy storage cylinder 3.
  • the oil pressure of the first high-pressure container 4 pushes the piston rod of the energy storage cylinder 3 to move downward, and then ejects the energy conversion mechanism downward. As shown in FIG.
  • the energy conversion mechanism passes The jack 57 pushes the lifting mechanism 25 downward, and generates acceleration, which in turn Fluid acceleration, time, gear 55 is forced to rotate in reverse the hydraulic oil in the second hydraulic motor 53 through the fourth conduit 31 and the exhaust valve 33 to the second low-pressure container 36;
  • the pressure of the lower end of the fluid in the chamber (that is, the pressure in the second cylinder 13) will change according to the speed of the fluid and the state of motion under the action of the acceleration of the fluid . Therefore, during the acceleration or deceleration of the fluid, the pressure at the lower end of the fluid changes from the first pressure to the second pressure;
  • the pressure energy generated by the fluid under the second pressure can be obtained, specifically: if the energy When the acceleration of the conversion mechanism during downward acceleration is greater than 1 g (gravity acceleration), and the negative acceleration of the energy conversion mechanism during downward deceleration is also greater than 1 g, the energy conversion mechanism during the downward acceleration motion , Due to the acceleration, the pressure of the fluid in the second cylinder 13 is less than the pressure of the fluid in the first cylinder 6, at this time, the fluid pushes the first piston 7 and the second piston 46 gradually away, the movement process of the first piston 7 In the middle, push the upper end of the first rocker 9 to move away from the second piston 46.
  • 1 g gravitation acceleration
  • the negative acceleration of the energy conversion mechanism during downward deceleration is also greater than 1 g
  • the first rocker 9 passes through the first mounting hole on the first pillar 11, according to the principle of the lever, the first pillar 11 wraps around its axis Turning, the lower end of the first rocker 9 drives the second transmission member 41 to move in the direction of the first transmission member 40; similarly, during the movement of the second piston 46, the upper end of the second rocker 45 is pushed away from the first piston 7 Direction of movement Since the second rocker 45 passes through the second mounting hole on the second pillar 43, according to the principle of the lever, the second pillar 43 rotates around its own axis, and the lower end of the second rocker 45 drives the first transmission member 40 toward the second transmission member In the direction of 41, as shown in FIG.
  • the pressure of the fluid in the second cylinder 13 is greater than the pressure of the fluid in the first cylinder 6, at this time, the fluid pushes the first transmission member 40 and the first The second transmission member 41 gradually moves away.
  • the hydraulic oil in the third cylinder 15 and the hydraulic oil in the fourth cylinder 38 enter the high-pressure hose 19 via the second check valve 17 and the fifth check valve 37, respectively.
  • the first one-way valve 14 and the sixth one-way valve 39 are cut off; the hydraulic oil entering the high-pressure hose 19 is pressed into the second high-pressure container 20 under pressure.
  • the pressure at the lower end of the fluid in the chamber changes from the first pressure to the second pressure, and the first pressure is greater than the second pressure, the pressure at the lower end of the fluid is restored from the second pressure to the first pressure, and then
  • the pressure generated by the fluid under the action of the first pressure can be acquired; specifically: if the acceleration of the energy conversion mechanism during downward acceleration is equal to 1 g, and the negative acceleration of the energy conversion mechanism during downward deceleration is also equal to 1 In the case of g, due to the weightlessness of the energy conversion mechanism during the downward acceleration, the pressure of the fluid in the second cylinder 13 and the pressure of the fluid in the first cylinder 6 are both reduced to the zero pressure state.
  • the first transmission member 40 and the second transmission member 41 move toward each other.
  • the second transmission member 41 drives the first rocker 9 to rotate clockwise around the axis of the first pillar 11, and the first rocker 9 rotates In the same way, the first piston 7 is driven to move away from the second piston 46.
  • the first transmission member 40 drives the second rocker 45 to rotate counterclockwise around the axis of the second pillar 43.
  • Driving the second piston 46 Away from the direction of movement of the first piston 7;
  • the first shut-off valve 18 is closed until the energy conversion mechanism completes the downward deceleration process, and then the first shut-off valve 18 is opened.
  • the first shut-off valve 18 is opened Since the gravity of the fluid in the cavity has been restored to the gravity state before acceleration, that is, the non-weightless state, the pressure of the fluid in the second cylinder 13 is made stronger than that of the fluid in the first cylinder 6 under the gravity of the fluid Pressure, at this time, the fluid in the second cylinder 13 overcomes the elastic force of the spring 50 and pushes the first transmission member 40 and the second transmission member 41 away in opposite directions.
  • the first transmission member 40 drives the first transmission member 40 through the second rocker 45
  • the second piston 46 moves in the direction of the first piston 7, and the second transmission member 41 drives the first piston 7 in the direction of the second piston 46 through the first rocker 9.
  • the first transmission member 40 The hydraulic oil in the four cylinders 38 is pressed into the high-pressure hose 19 through the fifth check valve 37, and the second transmission member 41 presses the hydraulic oil in the third cylinder 15 into the high-pressure hose through the second check valve 17 In 19, the hydraulic oil in the high-pressure hose 19 is under pressure It is pressed into the second high-pressure container 20.
  • the acquired pressure energy of the fluid is converted into electrical energy by the power generation device, and the electrical energy is transmitted to the power consumption terminal through the power transmission device.
  • Figure 7. The specific operation is as follows: after the hydraulic oil in the high-pressure hose 19 is pressed into the second high-pressure container 20 under pressure, the hydraulic oil in the second high-pressure container 20 passes through the A hydraulic motor 22 and the first pipeline 23 enter the first low-pressure container 32; the hydraulic oil in the second high-pressure container 20 flows into the first low-pressure container 32, the first hydraulic motor 22 is driven to rotate by the pressure of the hydraulic oil The rotating first hydraulic motor 22 drives the alternator 21 to generate electricity, and the electrical energy generated by the alternator 21 is transmitted to the power consumption terminal through the power transmission system.
  • the second shut-off valve 61 on the fifth line 59 is opened, and the second electric hydraulic pump 64 is started.
  • the pump 64 pumps the hydraulic oil in the third low-pressure container 62 into the first low-pressure container 32 through the fifth line 59 and the first line 23.
  • the vertical relative distance between the second cylinder 13 and the first cylinder 6 in the supercharging device used in the supercharging method of the present invention is a fixed value, therefore, when the volume chamber accelerates or decelerates, the second cylinder 13 and the first cylinder
  • the change value of the fluid pressure in the body 6 will not change due to the radius of the inner cavity of the connecting cylinder 44, thus it can be known that when the first transmission member 40 and the second transmission member 41 rely on the fluid pressure in the cavity to perform work At this time, the output power of the first transmission member 40 and the second transmission member 41 does not change due to the radius of the cavity of the connecting cylinder 44, and the radius of the cavity of the connecting cylinder 44 is proportional to the volume of the fluid in the volume It can be known from this that the larger the radius value of the inner cavity of the connecting cylinder 44, the greater the corresponding acceleration mass of the fluid and the corresponding acceleration energy consumption.
  • a predetermined value must be obtained according to the predetermined value of the decelerating kinetic energy loss of the fluid and the pressure energy of the fluid
  • the predetermined proportional relationship between the fluid deceleration kinetic energy loss predetermined value of the proportion of the range is determined to be less than 51%, when the fluid deceleration kinetic energy loss predetermined value of the proportion of the range is determined, according to the proportion of the range in advance to determine the corresponding acceleration conditions (The acceleration value of the fluid)
  • the acceleration value of the fluid is 1 g or more.
  • the radius value of the inner cavity of the connecting cylinder 44 and the second cylinder 13 that can satisfy the relationship is determined.
  • r is the radius of the inner cavity of the connecting cylinder 44 in meters
  • m is the radius of the inner cavity of the second cylinder 13 in meters
  • is the pi.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Supplying Of Containers To The Packaging Station (AREA)

Abstract

一种流体的增压方法,对流体加速后再减速;减速时不回收流体减速动能;流体加速前,根据流体的减速动能损耗预定值与对流体压力能的获取预定值之间的预定比例关系预先确定流体的减速动能损耗预定值的占比范围,并根据占比范围预先确定在相应加速条件下可满足相应动能损耗条件的流体加速质量;流体加速或减速过程中,根据流体的速度变化率及运动状态将流体的压强从压强一调至压强二;若压强一小于压强二,获取流体在压强二作用下的压力能;若压强一大于压强二,从压强二恢复至压强一,再获取压强一作用下的压力能。该增压方法通过预先确定流体加速质量的方式来避免流体的加速能耗超出预定值,可广泛应用于动力、电力及工业生产领域。

Description

一种流体的增压方法 技术领域
本发明属于流体增压技术领域,涉及一种流体的增压方法。
背景技术
目前,对流体增压的方法主要采用传统增压泵对流体进行增压,传统增压泵的基本原理是利用电动机驱动增压泵工作,进而由增压泵对流体进行增压。但目前利用流体惯性作用对流体进行增压的技术还未出现。
发明内容
本发明的目的是提供一种流体的增压方法,采用本发明在对流体进行增压可有效降低增压能耗。
为实现上述目的,本发明所采用的技术方案是:一种流体的增压方法,包括以下步骤:提供流体,该流体具体为:液体或压缩气体;对流体进行加速之后对该流体进行减速;当对流体进行减速时,不回收流体的减速动能;在对流体进行加速之前,先根据流体的减速动能损耗预定值与对该流体的压力能的获取预定值之间的预定比例关系预先确定流体的减速动能损耗预定值的占比范围,并根据该占比范围预先确定在相应加速条件下可满足相应动能损耗条件的流体加速质量;在对流体进行加速或减速的过程中,根据该流体的速度变化率及运动状态将该流体的压强从第一压强调控至第二压强;当流体的压强从第一压强调控至第二压强后,若第一压强小于第二压强,则对该流 体在第二压强作用下产生的压力能进行获取;或当流体的压强从第一压强调控至第二压强后,若第一压强大于第二压强,则先将该流体的压强从第二压强恢复至第一压强,然后,再对该流体在第一压强作用下产生的压力能进行获取;其中,流体的减速动能损耗预定值的占比范围小于51%;其中,相应动能损耗条件具体为:流体的减速动能损耗预定值;
还包括:在流体变速运动期间或之后,将已获取的流体的压力能通过发电装置转换为电能,并将该电能通过输电装置输送至用电终端。
其中,在对流体进行加速之前将该流体装入承载容器内;
其中,对流体进行加速之后对该流体进行减速,具体为:由加速系统对流体进行加速之后由减速系统对该流体进行减速;
其中,在对流体进行加速或减速的过程中,根据该流体的速度变化率及运动状态将该流体的压强从第一压强调控至第二压强,具体为:在对流体进行加速或减速的过程中,该流体在变速运动的作用下,根据该流体的速度变化率及运动状态将该流体的压强从第一压强调控至第二压强;
其中,对流体在第二压强或第一压强作用下产生的压力能进行获取时,由能量获取系统获取该流体的压力能。
本发明的基本原理是:对流体进行加速之后对流体进行减速。其中,在对该流体进行加速之前,根据该流体的减速动能损耗预定值与对该流体的压力能的获取预定值之间的预定比例关系预先确定流体 的减速动能损耗预定值的占比范围,并根据该占比范围预先确定在相应加速条件下可满足相应动能损耗条件的流体加速质量,其次,利用在对流体进行加速或减速过程中的加速度作用对该流体进行调压,当该流体依靠其加速度作用进行调压后,对该流体的压力能进行获取。其中,在对流体进行加速之前,由于先根据流体的减速动能损耗预定值与对该流体的压力能的获取预定值之间的预定比例关系预先确定了流体的减速动能损耗预定值的占比范围,并根据该占比范围预先确定了在相应加速条件下可满足相应动能损耗条件的流体加速质量。因此,本发明的有益效果在于:可通过预先确定该流体的加速质量的方式来避免该流体的加速能耗超出预定值,利用流体惯性作用对流体进行增压可有效降低增压能耗。本发明可广泛应用于动力领域、电力领域及工业生产领域。
附图说明
图1是本发明的增压方法中采用的增压装置的结构示意图。
图2是图1所示增压装置中传动件的示意图。
图3是图1所示增压装置中提升机构的侧视示意图。
图4是本发明增压方法中所用增压装置第一种工作状态的示意图。
图5是本发明增压方法中所用增压装置第二种工作状态的示意图。
图6是本发明增压方法中所用增压装置第三种工作状态的示意图。
图7是本发明增压方法中所用增压装置第四种工作状态的示意图。
图中:1.真空容器,2.固定梁,3.储能油缸,4.第一高压容器,5.导向件,6.第一缸体,7.第一活塞,8.上移动梁,9.第一摇杆,10.第一支撑梁,11.第一支柱,12.低压软管,13.第二缸体,14.第一单向阀,15.第三缸体,16.下移动梁,17.第二单向阀,18.第一截止阀,19.高压软管,20.第二高压容器,21.交流发电机,22.第一液压马达,23.第一管路,24.底座,25.提升机构,26.第二管路,27.第三单向阀,28.减速油缸,29.第四单向阀,30.第三管路,31.第四管路,32.第一低压容器,33.换向阀,34.第三高压容器,35.第一电动液压泵,36.第二低压容器,37.第五单向阀,38.第四缸体,39.第六单向阀,40.第一传动件,41.第二传动件,42.第二支撑梁,43.第二支柱,44.连接缸,45.第二摇杆,46.第二活塞,47.小活塞头,48.销孔,49.连接杆,50.弹簧,51.大活塞头,52.传动导杆,53.第二液压马达,54.安装座,55.齿轮,56.齿条,57.顶杆,58.阻流阀,59.第五管路,60.铁块,61.第二截止阀,62.第三低压容器,63.磁铁,64.第二电动液压泵。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
本发明提供了一种流体的增压方法,具体按以下步骤进行:
1)构建一种流体增压装置的能量转换机构,并对上述流体增压装置进行整体构建;
如图1所示,构建的该流体增压装置,包括底座24,底座24上 并排竖直设有两根导向件5,两根导向件5的顶端通过固定梁2相连接,固定梁2的上面安装有第一高压容器4,固定梁2朝向底座24的侧壁上安装有储能油缸3,第一高压容器4的内腔与储能油缸3的内腔连通,储能油缸3的活塞杆朝向底座24;
底座24上还竖直安装有减速油缸28,减速油缸28位于两根导向件5之间,减速油缸28的活塞杆朝向固定梁2,减速油缸28的活塞杆上端设有磁铁63;
沿从固定梁2到底座24的方向依次设有上移动梁8和下移动梁16,上移动梁8和下移动梁16均设于两个导向件5上,并可沿导向件5上下移动;上移动梁8和下移动梁16位于储能油缸3和减速油缸28之间;上移动梁8上安装有第一缸体6,第一缸体6内设有第一活塞7和第二活塞46,第一活塞7的活塞体和第二活塞46的活塞体均位于第一缸体6内,第一活塞7的活塞杆和第二活塞46的活塞杆均伸出第一缸体6外,第一活塞7的活塞杆和第二活塞46的活塞杆位于180°方向上,且第一活塞7活塞杆的中心线和第二活塞46活塞杆的中心线与上移动梁8的中心线相平行;第一活塞7活塞杆伸出第一缸体6外的一端与第一摇杆9的上端铰接,第二活塞46活塞杆伸出第一缸体6外的一端与第二摇杆45的上端铰接;
下移动梁16上安装有第二缸体13,在第二缸体13下方正对磁铁63的位置设有铁块60,第二缸体13通过筒形的连接缸44与第一缸体6相连,第一缸体6的内腔、连接缸44的内腔和第二缸体13的内腔连通,形成容腔;第二缸体13的外壁上对称固接有第三缸体15 和第四缸体38,第三缸体15的中心线和第四缸体38的中心线位于180°方向上,且与下移动梁16的中心线相平行;第三缸体15内设有第二传动件41,第四缸体38内设有第一传动件40。第三缸体15上安装有第一单向阀14和第二单向阀17,第四缸体38上安装有第五单向阀37和第六单向阀39。
第一传动件40和第二传动件41的结构完全相同,以第一传动件40为例进行说明:如图2所示,第一传动件40包括并排设置的小活塞头47和大活塞头51,大活塞头51的直径大于小活塞头47的直径,小活塞头47的直径与第四缸体38的内径相适配,大活塞头51的直径与第二缸体13的内径相适配;小活塞头47和大活塞头51通过对接的连接杆49及传动导杆52相连接,连接杆49上设有销孔48,连接杆49上套装有弹簧50。
第一传动件40中的小活塞头47和销孔48均位于第四缸体38内,第一传动件40中的大活塞头51和弹簧50均位于第二缸体13内,第一传动件40中的销孔48内安装有第一销轴,该第一销轴与第二摇杆45的下端活动连接。
第二传动件41中的小活塞头47和销孔48均位于第三缸体15内,第二传动件41中的大活塞头51和弹簧50均位于第二缸体13内。第二传动件41中的销孔48内安装有第二销轴,该第二销轴与第一摇杆9的下端活动连接。
连接缸44的侧壁上对称固接有第一支撑梁10和第二支撑梁42,第一支撑梁10上设有可绕自身轴线往复转动的第一支柱11,第一支 柱11上加工有第一安装孔,第一摇杆9穿过该第一安装孔;第二支撑梁42上设有可绕自身轴线往复转动的第二支柱43,第二支柱43上加工有第二安装孔,第二摇杆45穿过该第二安装孔。
每根导向件5下端均安装有两套结构如图3所示的提升机构25,提升机构25包括齿条56和安装座54,安装座54上安装有第二液压马达53,第二液压马达53通过传动机构驱动齿轮55转动,齿轮55与齿条56组成齿轮齿条副,齿条56与导向件5固接,安装座54上竖直固接有顶杆57,顶杆57上端与下移动梁16固接,所有的第二液压马达53均与第四管路31连通。
减速油缸28左右相对的两个侧壁上分别设有第二管路26和第三管路30,第二管路26上安装有第三单向阀27和阻流阀58,第二管路26的另一端连接有第三低压容器62,第三管路30上安装有第四单向阀29,第三管路30的另一端连接有第一低压容器32;第一低压容器32通过第一管路23与第二高压容器20连通,第一管路23上安装有第一液压马达22,第一液压马达22与交流发电机21相连。第三低压容器62通过第五管路59与第一管路23连通,第五管路59上设有第二截止阀61和第二电动液压泵64,第二截止阀61位于第二电动液压泵64与第三低压容器62之间,第一液压马达22位于第二高压容器20与第五管路59之间的第一管路23上。
所有的第二液压马达53均通过第四管路31与换向阀33相连,换向阀33分别与第三高压容器34和第二低压容器36相连,第三高压容器34和第二低压容器36还与第一电动液压泵35相连。第二高 压容器20通过高压软管19与第二单向阀17和第五单向阀37相连,高压软管19上设有第一截止阀18,第一低压容器32通过低压软管12与第一单向阀14和第六单向阀39相连。
底座24上设有真空容器1,固定梁2、储能油缸3、第一高压容器4、导向件5、第一缸体6、上移动梁8、第一活塞7、第一摇杆9、第一支撑梁10、第二缸体13、第一单向阀14、第三缸体15、下移动梁16、第二单向阀17、第三单向阀27、减速油缸28、第四单向阀29、第五单向阀37、第四缸体38、第六单向阀39、第一传动件40、第二传动件41、第二支撑梁42、连接缸44、第二摇杆45、第二活塞46、第一截止阀18和所有的提升机构25均位于真空容器1内。高压软管的一部分19、低压软管12的一部分、第二管路26的一部分以及第三管路30的一部分也位于真空容器1内。
第一缸体6、上移动梁8、连接缸44、第二缸体13和下移动梁16组成能量转换机构;第一缸体6的内径与第二缸体13的内径相等。
2)将流体(液体或压缩气体)注满由第二缸体13、连接缸44与第一缸体6构成的容腔内;第一高压容器4、第二高压容器20和第三高压容器34内均储存有高压气体及液压油;第一低压容器32、第二低压容器36及第三低压容器62内均为常压气体及液压油;储能油缸3、减速油缸28、第一管路23、第二管路26、第三管路30、第四管路31、第五管路59、低压软管12和高压软管19内均充满液压油;
3)开启高压软管19上的第一截止阀18,并关闭第五管路59上 的第二截止阀61;将换向阀33调整为第一换向状态,换向阀33处于第一换向状态时,第四管路31通过换向阀33与第三高压容器34连通,第四管路31与第二低压容器36不连通;开启第一电动液压泵35,第二低压容器36内的液压油被第一电动液压泵35泵入第三高压容器34内,同时,第三高压容器34内的液压油在高压气体的压力作用下通过第四管路31进入所有的第二液压马达53内,第二液压马达53在液压油压力的作用下通过传动机构驱动齿轮55转动,转动的齿轮55沿齿条56向上爬升,齿轮55沿齿条56向上爬升过程中通过第二液压马达53带动安装座54沿导向件5向上移动,即沿图4中箭头所指方向移动,顶杆57推动下移动梁16向上移动,下移动梁16通过第二缸体13、连接缸44和第一缸体6推动上移动梁8向上移动,即能量转换机构向上移动。能量转换机构上升过程中,安装于第二缸体13下方的铁块60与安装于减速油缸28的活塞杆上端的磁铁63产生的相互吸力将减速油缸28的活塞杆从图4中所示位置向上拉至图5所示的上止点位置,在将减速油缸28的活塞杆从图4中所示位置向上拉至图5中所示的上止点位置的过程中,第三单向阀27截止,且第一低压容器32内的液压油在第一低压容器32内的常压气体的气压作用下通过第三管路30和第四单向阀29进入减速油缸28内。如图5所示,当减速油缸28的活塞杆被向上拉至图5中所示的上止点位置后,铁块60在拉力作用下与磁铁63分离;
当铁块60与磁铁63分离后,第一缸体6与储能油缸3的活塞杆相接触;第一缸体6与储能油缸3的活塞杆接触后,推动储能油缸3 的活塞杆向储能油缸3内移动,此时,储能油缸3内的液压油被压入第一高压容器4内,直至储能油缸3的活塞杆被上推至图5中所示的上止点位置时,将换向阀33调整为第二换向状态,当换向阀33处于第二换向状态时,第四管路31与第三高压容器34不连通,第四管路31通过换向阀33与第二低压容器36连通,此时,第二液压马达53瞬间失去来自于第三高压容器34的驱动压力,第一高压容器4内的高压液压油瞬时流向储能油缸3,在第一高压容器4的油压作用下推动储能油缸3的活塞杆向下移动,进而向下弹射能量转换机构,如图6所示,能量转换机构被向下弹射过程中,能量转换机构通过顶杆57推动提升机构25向下移动,并产生加速度,进而对容腔内的流体进行加速,此时,齿轮55被迫反向转动,将第二液压马达53内的液压油通过第四管路31及换向阀33排至第二低压容器36内;
当储能油缸3的活塞杆下移至下止点后,储能油缸3的活塞杆与第一缸体6分离,同时铁块60与磁铁63碰撞接触,在惯性作用下,能量转换机构继续向下移动,推动减速油缸28的活塞杆向减速油缸28内移动,将减速油缸28内的液压油通过第三单向阀27、第二管路26及阻流阀58压入第三低压容器62内,在将减速油缸28内的液压油压入第三低压容器62内的过程中,第四单向阀29呈截止状态;减速油缸28内的液压油被压入第三低压容器62内的过程中,减速油缸28的内的液压油依靠阻流阀58的阻流作用对能量转换机构进行减速,进而使得容腔内的流体在加速之后又进行减速;
能量转换机构向下加速或减速期间,容腔内的流体下端的压强 (即第二缸体13内的压强)会在该流体的加速度的作用下根据该流体的速度变化率及运动状态发生变化。因此,流体进行加速或减速的过程中,该流体下端的压强从第一压强变化至第二压强;
当容腔内流体下端的压强从第一压强变化至第二压强后,若第一压强小于第二压强,则对该流体在第二压强作用下产生的压力能进行获取,具体为:若能量转换机构在向下加速期间的加速度大于1个g(重力加速度),且能量转换机构在向下减速期间的负加速度也大于1个g的情况下,该能量转换机构在向下加速运动过程中,由于加速度作用使得第二缸体13内的流体的压强小于第一缸体6内的流体的压强,此时,流体推动第一活塞7和第二活塞46逐渐远离,第一活塞7运动过程中,推动第一摇杆9的上端向远离第二活塞46的方向移动,由于第一摇杆9穿过第一支柱11上的第一安装孔,根据杠杆原理,第一支柱11绕自身轴线转动,第一摇杆9下端带动第二传动件41向第一传动件40的方向移动;同理,第二活塞46运动过程中,推动第二摇杆45的上端向远离第一活塞7的方向移动,由于第二摇杆45穿过第二支柱43上的第二安装孔,根据杠杆原理,第二支柱43绕自身轴线转动,第二摇杆45下端带动第一传动件40向第二传动件41的方向移动,如图6所示;第一传动件40和第二传动件41相向运动过程中,第三缸体15和第四缸体38的容积增大,产生吸力,该吸力将第一低压容器32中的液压油吸入低压软管12内,进入低压软管12内的液压油分成两路,一路经第一单向阀14进入第三缸体15内,另一路经第六单向阀39进入第四缸体38内,此过程中,第 二单向阀17和第五单向阀37均截止;
当能量转换机构进入向下减速运动过程时,由于超重作用使得第二缸体13内的流体的压强大于第一缸体6内的流体的压强,此时,流体推动第一传动件40和第二传动件41逐渐远离,第三缸体15内的液压油和第四缸体38内的液压油分别经第二单向阀17和第五单向阀37进入高压软管19内,此时,第一单向阀14和第六单向阀39截止;进入高压软管19内的液压油在压力作用下被压入第二高压容器20内。
若容腔内流体下端的压强从第一压强变化至第二压强后,第一压强大于第二压强,则先将该流体下端的压强从第二压强恢复至第一压强,然后,再对该流体在第一压强作用下产生的压力能进行获取;具体为:若能量转换机构在向下加速期间的加速度等于1个g,且该能量转换机构在向下减速期间的负加速度也等于1个g的情况下,由于能量转换机构在向下加速期间的失重作用使第二缸体13内的流体的压强与第一缸体6内的流体的压强都降至于0压强状态,此时,在弹簧50的弹力作用下,第一传动件40和第二传动件41相向运动,第二传动件41带动第一摇杆9绕第一支柱11的轴线顺时针转动,第一摇杆9转动过程中,带动第一活塞7向远离第二活塞46的方向移动,同理,第一传动件40带动第二摇杆45绕第二支柱43的轴线逆时针转动,第二摇杆45转动过程中,带动第二活塞46向远离第一活塞7的方向移动;
在能量转换机构进入向下减速运动过程之前,将第一截止阀18 关闭,直至能量转换机构在完成向下减速运动的过程之后,再开启第一截止阀18,当第一截止阀18开启时,由于容腔内的流体的重力已恢复至加速之前的重力状态即非失重状态,因此,在流体重力作用下使得第二缸体13内的流体的压强大于第一缸体6内的流体的压强,此时,第二缸体13内的流体克服弹簧50的弹力将第一传动件40和第二传动件41向相反的方向推离,第一传动件40通过第二摇杆45带动第二活塞46向第一活塞7的方向运动,第二传动件41通过第一摇杆9带动第一活塞7向第二活塞46的方向运动,在此过程中,由第一传动件40将第四缸体38内的液压油通过第五单向阀37压入高压软管19内,第二传动件41将第三缸体15内的液压油通过第二单向阀17压入高压软管19内,高压软管19内的液压油在压力作用下被压入第二高压容器20内。
在流体变速运动期间或之后,将已获取的流体的压力能通过发电装置转换为电能,并将该电能通过输电装置输送至用电终端。如图7所示。具体操作为:高压软管19内的液压油在压力作用下被压入第二高压容器20内后,第二高压容器20内的液压油在第二高压容器20内的气压驱动作用下经过第一液压马达22及第一管路23进入第一低压容器32;第二高压容器20内的液压油在流入第一低压容器32的过程中,由液压油的压力作用驱动第一液压马达22旋转,旋转的第一液压马达22驱动交流发电机21发电,交流发电机21产生的电能通过输电系统输送至用电终端。
当高压软管19内的液压油在压力作用下被压入第二高压容器20 后,开启第五管路59上的第二截止阀61,并启动第二电动液压泵64,第二电动液压泵64将第三低压容器62内的液压油通过第五管路59及第一管路23泵入第一低压容器32内。
本发明增压方法采用的增压装置中的第二缸体13与第一缸体6的垂直相对距离为固定值,因此,当容腔加速或减速时,第二缸体13与第一缸体6内的流体压强变化值不会因连接缸44内腔的半径大小而改变,由此可得知,当第一传动件40及第二传动件41在依靠容腔内的流体压强对外做功时,第一传动件40及第二传动件41的输出功率不因连接缸44内腔的半径大小而改变,而连接缸44内腔的半径大小则与该容腔内的流体体积成正比关系,由此可得知,连接缸44内腔的半径值越大,则流体的相应加速质量及相应加速能耗也就越大。因此,当对流体进行减速时,若不回收流体的减速动能,则在对流体进行加速之前的容腔构建阶段,必须根据流体的减速动能损耗预定值与对该流体的压力能的获取预定值之间的预定比例关系将流体的减速动能损耗预定值的占比范围确定在51%以下,当流体的减速动能损耗预定值的占比范围确定后,根据该占比范围预先确定在相应加速条件(流体的加速度值)下可满足流体的减速动能损耗预定值的流体加速质量;确定流体加速质量的计算公式为:流体加速质量=流体的减速动能损耗预定值÷流体的加速度值。其中,流体的加速度值为1个g或1个g以上。根据关系式πr 2<2πm 2,确定可满足该关系式的连接缸44及第二缸体13内腔的半径值。该关系式中,r为连接缸44内腔的半径,单位:米;m为第二缸体13内腔的半径,单位:米;π 为圆周率。

Claims (3)

  1. 一种流体的增压方法,其特征在于,包括以下步骤:提供流体,该流体具体为:液体或压缩气体;对流体进行加速之后对该流体进行减速;当对流体进行减速时,不回收流体的减速动能;在对流体进行加速之前,先根据流体的减速动能损耗预定值与对该流体的压力能的获取预定值之间的预定比例关系预先确定流体的减速动能损耗预定值的占比范围,并根据该占比范围预先确定在相应加速条件下可满足相应动能损耗条件的流体加速质量;在对流体进行加速或减速的过程中,根据该流体的速度变化率及运动状态将该流体的压强从第一压强调控至第二压强;当流体的压强从第一压强调控至第二压强后,若第一压强小于第二压强,则对该流体在第二压强作用下产生的压力能进行获取;或当流体的压强从第一压强调控至第二压强后,若第一压强大于第二压强,则先将该流体的压强从第二压强恢复至第一压强,然后,再对该流体在第一压强作用下产生的压力能进行获取;其中,流体的减速动能损耗预定值的占比范围小于51%;其中,相应动能损耗条件具体为:流体的减速动能损耗预定值。
  2. 根据权利要求1所述的一种流体的增压方法,其特征在于,该赠与方法还包括:在流体变速运动期间或之后,将已获取的流体的压力能通过发电装置转换为电能,并将该电能通过输电装置输送至用电终端。
  3. 根据权利要求1所述的一种流体的增压方法,其特征在于,其中,在对流体进行加速之前将该流体装入承载容器内;其中,对流 体进行加速之后对该流体进行减速,具体为:由加速系统对流体进行加速之后由减速系统对该流体进行减速;其中,在对流体进行加速或减速的过程中,根据该流体的速度变化率及运动状态将该流体的压强从第一压强调控至第二压强,具体为:在对流体进行加速或减速的过程中,该流体在变速运动的作用下,根据该流体的速度变化率及运动状态将该流体的压强从第一压强调控至第二压强;其中,对流体在第二压强或第一压强作用下产生的压力能进行获取时,由能量获取系统获取该流体的压力能。
PCT/CN2019/110910 2018-10-15 2019-10-13 一种流体的增压方法 WO2020078295A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811195099.X 2018-10-15
CN201811195099 2018-10-15
CN201910961950.3 2019-10-11
CN201910961950.3A CN110735819A (zh) 2018-10-15 2019-10-11 一种流体的增压方法

Publications (1)

Publication Number Publication Date
WO2020078295A1 true WO2020078295A1 (zh) 2020-04-23

Family

ID=69269906

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/110910 WO2020078295A1 (zh) 2018-10-15 2019-10-13 一种流体的增压方法
PCT/CN2020/120157 WO2021068931A1 (zh) 2018-10-15 2020-10-10 一种流体的增压方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120157 WO2021068931A1 (zh) 2018-10-15 2020-10-10 一种流体的增压方法

Country Status (9)

Country Link
US (1) US20210231131A1 (zh)
EP (1) EP3869037A4 (zh)
JP (1) JP7296464B2 (zh)
KR (1) KR102627263B1 (zh)
CN (2) CN110735819A (zh)
AU (1) AU2019310811A1 (zh)
BR (1) BR112021007136A2 (zh)
TW (3) TWI822877B (zh)
WO (2) WO2020078295A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3869037A4 (en) * 2018-10-15 2022-08-10 Huangfu, Huanyu INERTIAL ENERGY STORAGE DEVICE HAVING FLUID PRESSURE REGULATING FUNCTION AND ENERGY STORAGE METHOD
CN112007572B (zh) * 2020-10-29 2021-01-05 莱州耀胜自动化设备有限公司 多流体混合装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009573A (ja) * 2004-05-07 2006-01-12 Ebina Koji 発電機等の電力発生用動力源の構造
CN102477934A (zh) * 2010-11-26 2012-05-30 解昆 一种运用地球向心引力新能源开发于做功、移行、发电的方法与系统装置
CN102933868A (zh) * 2010-02-05 2013-02-13 剑桥企业有限公司 阻尼和惯性液压设备
CN104100469A (zh) * 2014-07-21 2014-10-15 阮建军 重力能发电机
CN104487706A (zh) * 2012-05-16 2015-04-01 诺沃皮尼奥内股份有限公司 用于往复式压缩机的电磁致动器
CN108343579A (zh) * 2017-01-24 2018-07-31 皇甫欢宇 一种流体加压得到能量的装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139983A (en) * 1979-04-18 1980-11-01 Sansei Kako Kk Electric powergenerating method and apparatus using road surface and track
JPS56121881A (en) * 1980-02-28 1981-09-24 Masamitsu Kumagai Power generation by gravity energy generator
US4418542A (en) * 1981-02-04 1983-12-06 Ferrell Robert D Vehicular thoroughfares for power generation
DK153719B (da) * 1984-10-30 1988-08-22 Hans Moeller Rasmussen Fremgangsmaade og stempelpumpe til drift af et hydraulisk anlaeg
JP2001032764A (ja) * 1999-07-22 2001-02-06 Mitsubishi Electric Corp エネルギ回収装置
JP2001241375A (ja) * 2000-02-28 2001-09-07 Takashi Chihara エネルギー発生装置
BRPI0412074A (pt) * 2003-07-09 2006-09-05 Fernando Erriu dispositivo fluido para recuperação da energia cinética de veìculos
US6812588B1 (en) * 2003-10-21 2004-11-02 Stephen J. Zadig Wave energy converter
US7629698B2 (en) * 2005-10-19 2009-12-08 Dimitrios Horianopoulos Traffic-actuated electrical generator apparatus
US7530761B2 (en) * 2007-03-16 2009-05-12 Terry Douglas Kenney System and method for electrical power generation utilizing vehicle traffic on roadways
CN101372913A (zh) * 2007-08-21 2009-02-25 清华大学深圳研究生院 双组元液压自由活塞发动机
CN201110251Y (zh) * 2007-11-06 2008-09-03 张晓东 运动物体发电装置
EP2424759A4 (en) * 2008-11-26 2017-03-08 Kinetic Energy Corporation Adaptive vehicle energy harvesting
JP2010196693A (ja) * 2009-02-26 2010-09-09 Masakichi Watakuchi 流動体の慣性力や惰力を的確に利用する発電システム。
WO2010141079A1 (en) * 2009-06-05 2010-12-09 Steven Ivy Energy storage system
TW201132849A (en) * 2010-03-16 2011-10-01 Huang-Hsing Hu Zero-carbon energy clean engine and device structure
KR20120045832A (ko) * 2010-11-01 2012-05-09 이준형 소형 유압펌프를 이용한 유량 증대장치
CN102678431B (zh) * 2012-06-06 2014-05-14 浪能电力科研有限公司 一种波浪能量转换系统
CN102734099B (zh) * 2012-06-25 2016-08-31 浙江大学 低品位热源驱动的驻波型气液相变热声发动机
CN203009189U (zh) * 2012-06-25 2013-06-19 浙江大学 一种低品位热源驱动的驻波型气液相变热声发动机
CN202645891U (zh) * 2012-07-04 2013-01-02 隆力液压机械(北京)有限公司 重力蓄能发电装置
TW201533319A (zh) * 2014-02-17 2015-09-01 zhi-yang Li 一種慣性惰輪儲能機構
KR101632008B1 (ko) 2014-04-30 2016-07-01 엘지전자 주식회사 이동단말기 및 그 제어방법
JP2016031031A (ja) * 2014-07-28 2016-03-07 泰孝 坂本 空油圧変換式発電装置
US10138875B2 (en) * 2014-09-18 2018-11-27 James Francis Kellinger Gravity field energy storage and recovery system
FR3053411A1 (fr) * 2016-06-30 2018-01-05 Pi Co Systeme de propulsion a inertie comportant un freinage par un fluide de la trajectoire retour de la masse
JP2018044529A (ja) * 2016-09-16 2018-03-22 アイシン精機株式会社 弁開閉時期制御装置
JP6781651B2 (ja) * 2017-03-13 2020-11-04 住友重機械工業株式会社 極低温冷凍機、極低温冷凍機用のロータリーバルブユニット及びロータリーバルブ
JP6652101B2 (ja) * 2017-04-05 2020-02-19 株式会社アドヴィックス 車両の制動制御装置
CN110454339A (zh) * 2018-07-26 2019-11-15 皇甫欢宇 一种具有流体调压作用的惯性储能装置及储能方法
EP3869037A4 (en) * 2018-10-15 2022-08-10 Huangfu, Huanyu INERTIAL ENERGY STORAGE DEVICE HAVING FLUID PRESSURE REGULATING FUNCTION AND ENERGY STORAGE METHOD
US10823135B2 (en) * 2018-10-18 2020-11-03 King Abdulaziz University Power by gravity
KR102312150B1 (ko) 2020-07-15 2021-10-13 주식회사 피엠코리아 작동유체를 이용한 동력 발생 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009573A (ja) * 2004-05-07 2006-01-12 Ebina Koji 発電機等の電力発生用動力源の構造
CN102933868A (zh) * 2010-02-05 2013-02-13 剑桥企业有限公司 阻尼和惯性液压设备
CN102477934A (zh) * 2010-11-26 2012-05-30 解昆 一种运用地球向心引力新能源开发于做功、移行、发电的方法与系统装置
CN104487706A (zh) * 2012-05-16 2015-04-01 诺沃皮尼奥内股份有限公司 用于往复式压缩机的电磁致动器
CN104100469A (zh) * 2014-07-21 2014-10-15 阮建军 重力能发电机
CN108343579A (zh) * 2017-01-24 2018-07-31 皇甫欢宇 一种流体加压得到能量的装置

Also Published As

Publication number Publication date
KR102627263B1 (ko) 2024-01-18
WO2021068931A1 (zh) 2021-04-15
TWI757912B (zh) 2022-03-11
TW202115320A (zh) 2021-04-16
TW202041778A (zh) 2020-11-16
TWI822877B (zh) 2023-11-21
CN110735819A (zh) 2020-01-31
KR20210074361A (ko) 2021-06-21
CN112096668A (zh) 2020-12-18
US20210231131A1 (en) 2021-07-29
BR112021007136A2 (pt) 2021-07-20
AU2019310811A1 (en) 2021-05-27
EP3869037A1 (en) 2021-08-25
JP2021534350A (ja) 2021-12-09
EP3869037A4 (en) 2022-08-10
TW202100878A (zh) 2021-01-01
JP7296464B2 (ja) 2023-06-22

Similar Documents

Publication Publication Date Title
WO2020078295A1 (zh) 一种流体的增压方法
CN1137246A (zh) 用于打桩驱动器的液压控制回路
CN213451090U (zh) 一种多级联动的伸缩式气液驱动装置
WO2015085648A1 (zh) 内循环高速液压系统、液压平台及液压平台组件
CN106593970A (zh) 一种刚性材料疲劳试验液压加载装置
WO2020020314A1 (zh) 一种具有流体调压作用的惯性储能装置及储能方法
CN111809892A (zh) 一种辅助安装建筑钢的装置
JPH0988906A (ja) 弾み車を有する液圧駆動装置
CN213297915U (zh) 一种天平式平衡液压抽油机
CN212603650U (zh) 一种液压数控压力机
CN110345037B (zh) 一种气动油压泵浦
CN2924061Y (zh) 脉动泵
CN205260010U (zh) 一种天平式平衡差抽油机
CN204108609U (zh) 一种用于柱塞泵的翻转工装
RU2797686C2 (ru) Способ накопления энергии на основе инерции
CN217976484U (zh) 一种电动泥浆泵
CN114837997B (zh) 一种位置可调的高速离心泵进口装置
CN215979741U (zh) 一种螺杆驱动活塞运动的柱塞泵
CN207261187U (zh) 一种气动增压泵
CN109854668B (zh) 一种与弹簧组件组合使用的高频率振动气缸
CN2189218Y (zh) 功率回收型液压抽油机
CN2352505Y (zh) 直动输液器
CN206545612U (zh) 用于震击作业绞车的传动控制系统
GB568834A (en) Shaft straightening press
CN2145275Y (zh) 新型液压推动器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874263

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19874263

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19874263

Country of ref document: EP

Kind code of ref document: A1