WO2020075417A1 - プロピレンオキサイド精製装置、及び、プロピレンオキサイドの製造方法 - Google Patents
プロピレンオキサイド精製装置、及び、プロピレンオキサイドの製造方法 Download PDFInfo
- Publication number
- WO2020075417A1 WO2020075417A1 PCT/JP2019/034247 JP2019034247W WO2020075417A1 WO 2020075417 A1 WO2020075417 A1 WO 2020075417A1 JP 2019034247 W JP2019034247 W JP 2019034247W WO 2020075417 A1 WO2020075417 A1 WO 2020075417A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- line
- distillation column
- propylene oxide
- outlet
- inlet
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/32—Separation; Purification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
- B01D3/143—Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/34—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
- B01D3/40—Extractive distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/04—Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
Definitions
- the present invention relates to a propylene oxide refining device and a method for producing propylene oxide.
- Patent Literature 1 discloses a refining device using four distillation columns.
- first distillation column crude propylene oxide is distilled, and a high-boiling point component having a boiling point higher than that of propylene oxide is discharged from the bottom of the column and a propylene oxide-containing stream from which the high-boiling point component is removed is discharged from the top of the column.
- second distillation column the overhead stream of the first distillation column is distilled together with the extractant, water is discharged from the column top, and the mixture of the extractant and propylene oxide from which water has been removed is discharged from the column bottom.
- the mixture of the extractant and propylene oxide is distilled, the extractant is discharged from the bottom of the column, and the purified propylene oxide is discharged from the top of the column.
- the extraction agent discharged from the bottom of the third distillation column is distilled, and the purified extraction agent is recycled to the second distillation column.
- the conventional apparatus cannot sufficiently remove C1 to C4 hydrocarbons without loss of propylene oxide.
- the present invention has been made in view of the above problems, and provides a propylene oxide purifying apparatus that can sufficiently remove C1 to C4 hydrocarbons in the obtained propylene oxide even when the loss of propylene oxide is suppressed to a low level.
- a propylene oxide purification apparatus is a first distillation column having an inlet for receiving crude propylene oxide, a column bottom outlet, and a column top outlet, A second distillation column having an inlet, a reflux inlet, a bottom outlet, and a top outlet, A liquefaction separation facility for liquefying at least a part of the flow supplied from the top outlet of the second distillation column, discharging the gas phase from the gas phase outlet, and discharging the liquid phase from the liquid phase outlet, A third distillation column having an inlet, a bottom outlet, and a top outlet, A line LA connecting the top outlet of the first distillation column and the inlet of the second distillation column, A line LC connecting the liquid phase outlet of the liquefaction separation facility and the reflux inlet of the second distillation column, A line LD connecting the bottom outlet of the second distillation column and the inlet of the third distillation column, and A line LE connecting the extractant supply source and at least one selected from the group consisting of the line LA, the
- crude propylene oxide is distilled to obtain a high-boiling point component having a boiling point higher than that of propylene oxide from the bottom, and a propylene oxide-containing stream from which the high-boiling point component is reduced ( F1) can be discharged.
- the extractant can be supplied from the extractant supply source to at least one selected from the group consisting of the line LA, the liquefaction separation facility, the line LC, and the second distillation column via the line LE, Further, in the second distillation column, the stream (F1) is distilled together with the extractant, the stream (F2) containing C1 to C4 hydrocarbons and propylene oxide is discharged from the top of the column, and the stream containing the extractant and propylene oxide (F3) is discharged. ) Can be discharged from the bottom of the tower. Here, more than half of the total weight of propylene oxide in stream (F1) is contained in stream (F3).
- the stream (F3) can be distilled in the third distillation column to discharge the stream (FS) containing the extractant from the bottom of the column and the purified propylene oxide from the top of the column.
- the flow (F2) is liquefied, and the flow containing the liquid phase and the gas phase is separated into a liquid phase flow (F2O) and a gas phase flow (F2G),
- the phase flow (F2O) can be returned to the second distillation column via the liquid phase outlet and line LC, while the gas phase flow (F2G) is returned to the second distillation column via the gas phase outlet. It can be discharged from the liquefaction separation facility.
- propylene oxide contained in the stream (F2) can be liquefied, separated from the gas phase and returned to the second distillation column, so that C1 to C4 hydrocarbons can be removed.
- the loss of propylene oxide can be reduced. Since C1 to C4 hydrocarbons are distributed at the top of the third distillation column together with propylene oxide, when C1 to C4 hydrocarbons are supplied to the third distillation column, C1 to C4 hydrocarbons should be separated from propylene oxide. Is difficult.
- the amount of C1 to C4 hydrocarbons in propylene oxide obtained from the third distillation column can be reduced by separating the gas containing C1 to C4 hydrocarbons from propylene oxide in the liquefaction separation facility. , The purity can be increased.
- the liquefaction separation equipment is a gas-liquid separator having the gas-phase outlet, the liquid-phase outlet, and a fluid inlet, a top outlet of the second distillation column, and a fluid inlet of the gas-liquid separator.
- a liquefaction unit provided in the line LB or the gas-liquid separator.
- the liquefaction unit may include a cooler.
- the liquefaction unit may include a connection unit that connects the line LE and the line LB or the gas-liquid separator.
- the liquefaction unit includes a connection unit that connects the line LH connected to a water supply source and the line LB or the gas-liquid separator, and satisfies the following (a) or (b):
- You can (A) The gas-liquid separator is a three-phase separator further having a water phase outlet.
- (B) The line LC is provided with an oil / water separator having a mixture inlet, an oil phase outlet, and a water phase outlet, the mixture inlet being connected to the liquid phase outlet of the gas-liquid separator, and the oil phase outlet. Is connected to the reflux inlet of the second distillation column.
- the propylene oxide contained in the stream (F2) is efficiently converted into the liquid phase (mixture of the water phase and the oil phase) in the line LB or the gas-liquid separator.
- a water-soluble impurity contained in the liquid phase such as formaldehyde, which is separated from the liquid phase (mixture of the water phase and the oil phase) with a three-phase separator or an oil-water separator.
- the concentration of acetaldehyde, methanol, acetone, etc. can be reduced. Therefore, the purity of the obtained propylene oxide can be further increased.
- the liquefaction separation facility has an inlet, the vapor phase outlet provided at the top of the column, and a fifth distillation column having the liquid phase outlet provided at the bottom of the column, and the fifth distillation column.
- Line LB that connects the inlet of the column and the column top outlet of the second distillation column.
- the liquefaction / separation facility may further include a connecting portion that connects the line LE and the line LB.
- the liquefaction separation facility may further include a cooler provided in the line LB.
- Each of the above devices can further include a line LJ connecting the abatement device and the vapor phase outlet of the liquefaction separation facility.
- the extraction agent supply source may be the bottom outlet of the third distillation column.
- a fourth distillation column having an inlet, a bottom outlet, and a top outlet, A line LF connecting the bottom outlet or the line connected to the bottom outlet of the third distillation column and the inlet of the fourth distillation column, and A line LG connecting the bottom outlet of the fourth distillation column and at least one selected from the group consisting of the second distillation column, the liquefaction separation equipment, the line LC, the line LA, and the third distillation column. Further provisions can be made.
- the method for producing purified propylene oxide according to the present invention is a method for producing purified propylene oxide using the propylene oxide purification apparatus according to any one of the above, In the first distillation column, crude propylene oxide is distilled to discharge a high-boiling point component having a higher boiling point than propylene oxide from the bottom of the column and a propylene oxide-containing stream (F1) from which the high-boiling point component has been removed from the top of the column.
- Process Supplying the extractant to at least one selected from the group consisting of the line LA, the liquefaction separation facility, the line LC, and the second distillation column;
- the stream (F1) is distilled together with the extractant
- the stream (F2) containing C1 to C4 hydrocarbons and propylene oxide is discharged from the top of the column, and the stream containing the extractant and propylene oxide (F3) is discharged.
- a part of the flow (FS) of the extractant discharged from the bottom outlet of the third distillation column is passed through a line LE to a line LA, the second distillation column, the liquefaction separation equipment, and It can be supplied to at least one selected from the group consisting of lines LC.
- a part of the extractant stream (FS) discharged from the bottom of the third distillation column is distilled, and a low boiling point component having a lower boiling point than the extractant is discharged from the top of the column. And discharging the extractant stream (FSS) from which the low boiling point components have been removed from the column bottom,
- the flow of the extractant (FSS) is at least one selected from the group consisting of a line LA, the second distillation column, the liquefaction separation equipment, a line LC, and the third distillation column via a line LG. And a supplying step.
- a propylene oxide purification apparatus and a method using the same, which can reduce the loss of propylene oxide and can reduce the concentration of C1 to C4 hydrocarbons in the obtained propylene oxide.
- FIG. 1 is a flow chart of a propylene oxide refining apparatus according to the first embodiment of the present invention.
- FIG. 2 is a flow chart of the propylene oxide refining apparatus according to the second embodiment of the present invention.
- FIG. 3 is a flow chart of the propylene oxide refining apparatus according to the third embodiment of the present invention.
- FIG. 4 is a flow chart of the propylene oxide refining apparatus according to the fourth embodiment of the present invention.
- FIG. 5 is a flow chart of the propylene oxide refining apparatus according to the fifth embodiment of the present invention.
- FIG. 6 is a flow chart of the propylene oxide refining apparatus according to the sixth embodiment of the present invention.
- FIG. 7 is a flowchart of the propylene oxide refining apparatus according to the seventh embodiment of the present invention.
- the propylene oxide refining apparatus 100 mainly includes a first distillation column 10, a second distillation column 20, a liquefaction separation facility LQ, and a third distillation column 30.
- the first distillation column 10 is supplied with crude propylene oxide, that is, has an inlet 10i for receiving crude propylene oxide, a reflux inlet 10r, a bottom outlet 10b, and a top outlet 10t.
- the inlet 10i and the supply source of crude propylene oxide are connected by a line L1.
- the line LA is connected to the top outlet 10t of the first distillation column 10.
- the second distillation column 20 has an inlet 20i, a reflux inlet 20r, a column bottom outlet 20b, and a column top outlet 20t.
- the top outlet 10t of the first distillation column 10 and the inlet 20i of the second distillation column 20 are connected by a line LA.
- a line L3 branched from the line LA is connected to the reflux inlet 10r of the first distillation column 10.
- the reflux inlet 10r is provided above the inlet 10i.
- the liquefaction separation facility LQ includes a gas-liquid separator 22, a line LB, a cooler (liquefaction section) 26, and a connection section (liquefaction section) LBJ1.
- the gas-liquid separator 22 has a fluid inlet 22i, a gas phase outlet 22g, and a liquid phase outlet (oil phase outlet) 22o.
- the line LB connects the top outlet 20t of the second distillation column 20 and the fluid inlet 22i of the gas-liquid separator 22.
- the cooler 26 is provided in the line LB.
- the connecting portion LBJ1 is a joining portion of the line LE and the line LB. In the present embodiment, the connecting portion LBJ1 is provided on the downstream side of the cooler 26 (on the side of the gas-liquid separator 22) in the line LB.
- the line LE is connected to the extraction agent supply source.
- the cooler 26 and the connecting portion LBJ1 respectively pass through the line LB from the top outlet 20t of the second distillation column 20 due to the phase change from gas to liquid due to cooling and the contact between the flow (F2) and the liquid. At least a part of the supplied stream (F2) is liquefied.
- the gas-liquid separator 22 gas-liquid separates the fluid containing the liquid and gas supplied from the fluid inlet 22i, and discharges the gas phase from the gas phase outlet 22g and the liquid phase from the liquid phase outlet (oil phase outlet) 22o. .
- the cooler 26 can be a heat exchanger to which a refrigerant is supplied.
- the shape of the heat exchanger is not particularly limited, and examples thereof include a multi-tube heat exchanger and a plate heat exchanger.
- An example of the operating conditions of the cooler 26 is cooling such that the outlet temperature of the stream (F2) is not higher than the boiling point of propylene oxide, or at least the liquid phase is formed at the outlet of the stream (F2). .
- the specific configuration of the gas-liquid separator 22 is such that a fluid containing a liquid and a gas is stored to form a gas-liquid interface, the gas phase is above the gas-liquid interface, and the liquid phase is below the gas-liquid interface.
- Various forms can be used as long as they can be separated and the gas phase can be independently discharged from the gas phase outlet and the liquid phase can be independently discharged from the liquid phase outlet.
- the liquid phase outlet 22o is provided at the bottom of the drum-shaped gas-liquid separator 22, and the gas phase outlet 22g is provided at the top of the gas-liquid separator 22.
- the liquid phase outlet 22o of the gas-liquid separator 22 is connected to the reflux inlet 20r of the second distillation column 20 via a line LC.
- the reflux inlet 20r is provided above the inlet 20i.
- a line LJ is connected to the gas phase outlet 22g of the gas-liquid separator 22.
- the line LJ may be connected to an abatement device that incinerates the compound in the vapor phase.
- the line LE2 joins the line LC.
- the line LE2 is connected to the extraction agent supply source via the line LE.
- the third distillation column 30 has a first inlet 30i, a reflux inlet 30r, a column bottom outlet 30b, and a column top outlet 30t.
- the reflux inlet 30r is provided above the first inlet 30i.
- the bottom outlet 20b of the second distillation column 20 and the first inlet 30i of the third distillation column 30 are connected by a line LD.
- a line L7 is connected to the top outlet 30t of the third distillation column 30.
- a line L8 branches from the line L7, and the line L8 is connected to the reflux inlet 30r.
- a line L10 is connected to the bottom outlet 30b of the third distillation column 30.
- crude propylene oxide is supplied from the crude propylene oxide supply source to the first distillation column 10 via the line L1.
- the crude propylene oxide contains impurities in addition to propylene oxide.
- impurities include organic acids such as formic acid, acetic acid and propionic acid; esters such as methyl formate; water; alcohols such as methanol, ethanol, n-propyl alcohol and isopropyl alcohol; glycols such as propylene glycol; acetone and the like.
- Ketones formaldehyde, acetaldehyde, propionaldehyde, and other aldehydes; methane, ethane, propane, propylene, cyclopropane, n-butane, isobutane, 1-butene, 2-butene, butadiene, etc., having 1 to 4 carbon atoms Hydrocarbons (referred to as C1 to C4 hydrocarbons); hydrocarbons such as pentanes, pentenes, pentadienes, hexanes, hexenes, hexadienes (referred to as C5 to C6 hydrocarbons) can be included.
- C1 to C4 hydrocarbons hydrocarbons
- hydrocarbons such as pentanes, pentenes, pentadienes, hexanes, hexenes, hexadienes (referred to as C5 to C6 hydrocarbons) can be included.
- crude propylene oxide is a composition obtained by reacting a peroxide with propylene in the presence of a catalyst. If necessary, some impurities can be removed beforehand from this composition.
- peroxides examples include hydrogen peroxide, tert-butylbenzene hydroperoxide, ethylbenzene hydroperoxide, cumene hydroperoxide and the like.
- An example of a catalyst for reacting peroxide with propylene is the so-called titanium-silica catalyst, which contains titanium chemically bound to silicon oxide.
- the solvent may be a solvent that is liquid under the temperature and pressure during the reaction and is substantially inert to the reactants and products.
- solvents are cumene, aromatic monocyclic compounds (eg benzene, toluene, chlorobenzene, orthodichlorobenzene) and alkanes (eg octane, decane, dodecane), alcohols (methanol, ethanol), water.
- the reaction temperature is generally 0 to 200 ° C, but a temperature of 25 to 200 ° C is preferable.
- the pressure may be sufficient to keep the reaction mixture in a liquid state. Generally, the pressure is advantageously between 100 and 10,000 kPa.
- crude propylene oxide is distilled to remove a high boiling point component having a boiling point higher than that of propylene oxide from the column bottom outlet 10b, and a high boiling point component removed from the column top outlet 10t (F1). ) Is discharged and supplied to the second distillation column 20.
- Examples of impurities having a boiling point higher than that of propylene oxide include organic acids such as formic acid, acetic acid, and propionic acid; esters such as methyl formate; water; alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol; propylene glycol, etc. Glycols of acetone; ketones such as acetone; aldehydes such as formaldehyde, acetaldehyde, propionaldehyde; carbon such as methane, ethane, propane, cyclopropane, propylene, n-butane, isobutane, 1-butene, 2-butene, butadiene, etc.
- organic acids such as formic acid, acetic acid, and propionic acid
- esters such as methyl formate
- water alcohols
- alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol
- propylene glycol etc.
- Hydrocarbons having a number of 1 to 4 (referred to as C1 to C4 hydrocarbons); hydrocarbons of pentanes, pentenes, pentadienes, hexanes, hexenes, hexadienes, etc. (referred to as C5 to C6 hydrocarbons)
- C1 to C4 hydrocarbons hydrocarbons of pentanes, pentenes, pentadienes, hexanes, hexenes, hexadienes, etc.
- Examples of suitable operating conditions for the first distillation column 10 are 5 to 200 theoretical plates, 0.01 to 5 MPa absolute operating pressure, and 0 to 300 ° C. temperature.
- a part of the stream (F1) discharged from the top outlet 10t can be refluxed to the first distillation column 10 via a line L3 to control the degree of removal of high-boiling components.
- the stream (F1) is supplied to the inlet 20i of the second distillation column 20 via the line LA for distillation.
- the second distillation column 20 distillation is performed in the presence of the extractant supplied via the line LE, the line LB, the gas-liquid separator 22 and the line LC.
- Examples of the extractant are saturated hydrocarbons having 7 to 10 carbon atoms such as heptane, octane, nonane and decane; aromatic hydrocarbons such as toluene, ethylbenzene, n-propylbenzene and isopropylbenzene; ketones such as acetone; ethylene. Glycols such as glycol and propylene glycol. Of these, saturated hydrocarbons having 7 to 10 carbon atoms and aromatic hydrocarbons are preferable, and saturated hydrocarbons having 7 to 10 carbon atoms are most preferable. When such an extractant is added, the relative volatility of low-boiling components such as methanol, water, acetaldehyde, hydrocarbons and the like and propylene oxide is increased to facilitate the separation thereof.
- saturated hydrocarbons having 7 to 10 carbon atoms such as heptane, octane, nonane and decane
- aromatic hydrocarbons such as toluene,
- a stream (F2) containing water, formaldehyde, acetaldehyde, methanol, methyl formate, etc. is discharged from the top outlet 20t and propylene oxide is discharged from the bottom outlet 20b by distillation in the presence of a solvent. And the flow (F3) containing the extractant is discharged.
- the concentration of propylene oxide in stream (F3) will be higher than the concentration of propylene oxide in stream (F1).
- suitable distillation conditions for the second distillation column are 5 to 200 theoretical plates, 0.01 to 5 MPa absolute pressure as operating pressure, and 0 to 300 ° C. temperature.
- the amount of the extractant supplied to the second distillation column can be 0.1 to 20 times as much as the weight of the propylene oxide supplied.
- the flow (F2) discharged from the tower top outlet 20t is cooled by the cooler 26 provided in the line LB to liquefy a part of the flow (F2). Specifically, it is preferable to lower the temperature of the stream (F2) to the boiling point of propylene oxide or lower to liquefy at least part of the propylene oxide.
- the liquid flow (FS) of the extractant supplied via the line LE is supplied from the connection portion LBJ1 to the line LB, and a part of the gas in the flow (F2) is dissolved in the liquid phase of the extractant.
- Absorb that is, liquefy a portion of the gas in stream (F2).
- a part of the propylene oxide gas in the stream (F2) is liquefied, that is, dissolved / absorbed in the liquid phase.
- the gas-liquid separator 22 separates the mixture of the stream (F2) and the stream (FS) into a gas phase and a liquid phase. Then, the gas phase flow (F2G) is discharged to the outside via the gas phase outlet 22g and the line LJ.
- This gas phase mainly contains C1-C4 hydrocarbons.
- a detoxifying device for removing C1 to C4 hydrocarbons can be connected to the line LJ, and detoxifying treatment can be performed as necessary.
- the abatement device are an adsorption device that adsorbs C1 to C4 hydrocarbons and a combustion device that combusts C1 to C4 hydrocarbons.
- One or more abatement devices for removing C1 to C4 hydrocarbons can be connected to the line LJ.
- liquid phase flow (F2O) is supplied to the reflux inlet 20r of the second distillation column 20 via the liquid phase outlet 22o and the line LC. If necessary, the liquid flow (FS) of the extractant supplied via the line LE2 may be supplied to the line LC.
- the operating conditions of the gas-liquid separator 22 may be such that the interface between the gas phase and the liquid phase is formed, and preferably the temperature is 0 to 80 ° C. and the pressure is atmospheric pressure to 2 MPa.
- the flow (F3) discharged from the bottom outlet 20b of the second distillation column 20 is supplied to the first inlet 30i of the third distillation column 30 via the line LD.
- the stream (F3) containing the extractant and propylene oxide is distilled, and the purified propylene oxide stream (F4) is discharged from the column top outlet 30t via the line L7, while the bottom of the column is discharged.
- the extractant flow (FS) is discharged through the line L10.
- the stream (FS) can be supplied to the line LB and / or the line LC via the line LE or the like, if necessary. Of course, it can be carried out without recycling the extractant. Further, the extractant can be further purified and recycled.
- a part of the stream (F4) discharged from the top outlet 30t is refluxed to the reflux inlet 30r of the third distillation column 30 via the line L8 to adjust the purity of the extractant contained in the stream (F4). be able to. In this way, a purified propylene oxide stream (F4) can be obtained from the line L7.
- Examples of suitable operating conditions for the third distillation column 30 are 5 to 200 theoretical plates, 0.01 to 5 MPa absolute operating pressure, and 0 to 300 ° C. temperature.
- crude propylene oxide is distilled in the first distillation column 10 to reduce high-boiling components having a boiling point higher than that of propylene oxide from the bottom outlet 10b and high-boiling components from the top outlet 10t.
- the propylene oxide-containing stream (F1) can be discharged.
- the stream (F1) is distilled together with the extractant, and the stream (F2) containing C1 to C4 hydrocarbons and propylene oxide is discharged from the top outlet 20t to contain the extractant and propylene oxide.
- Stream (F3) can be discharged from the bottom of the column.
- more than half of the total weight of propylene oxide in stream (F1) is contained in stream (F3).
- the stream (F3) is distilled in the third distillation column 30, the stream (FS) containing the extractant is discharged from the column bottom outlet 30b, and the purified propylene oxide is discharged as the stream (F4) from the column top outlet 30t. Can be made.
- the liquefaction separation facility LQ at least a part of the flow (F2) is liquefied, and the flow containing the liquid phase and the gas phase is separated into the liquid phase and the gas phase, and the liquid phase flow (F2O) is obtained.
- the gas phase flow (F2G) is discharged from the liquefaction separation facility LQ via the gas phase outlet 22g without returning to the second distillation column 20. Can be made.
- High boiling point components can be reduced in the first distillation column 10 from the crude propylene oxide, C1 to C4 hydrocarbons can be removed in the second distillation column 20 and the liquefaction separation facility LQ, and the third distillation can be performed.
- High-purity propylene oxide can be obtained from the top of the tower 30.
- the liquefaction separation facility LQ at least a part of propylene oxide contained in the stream (F2) is liquefied, separated from the gas phase and returned to the second distillation column 20, so that propylene is removed while removing C1 to C4 hydrocarbons.
- the loss of oxide can be reduced. Since the C1 to C4 hydrocarbons are distributed to the top outlet 30t together with the propylene oxide in the third distillation column 30, when the C1 to C4 hydrocarbons are supplied to the third distillation column 30, the C1 to C4 hydrocarbons are converted to propylene oxide. Difficult to separate from.
- the amount of C1 to C4 hydrocarbons of propylene oxide obtained from the third distillation column 30 is obtained by separating the gas containing C1 to C4 hydrocarbons from propylene oxide in the liquefaction separation facility LQ. Can be reduced, and the purity of propylene oxide can be increased.
- This embodiment is different from the first embodiment in that a connecting portion LBJ2 for connecting the line LB and the line LH connected to the water supply source is provided, and the gas-liquid separator 22 is replaced by 3 The point is that the phase separator 23 is provided.
- the connecting portion LBJ2 is provided between the cooler 26 and the second distillation column 20 in the line LB, but is provided between the cooler 26 and the three-phase separator 23. Is also good.
- the line LH supplies liquid or gas water from the connection portion LBJ2 to the line LB.
- the three-phase separator 23 has a fluid inlet 23i, a gas phase outlet 23g, an oil phase outlet (liquid phase outlet) 23o, and a water phase outlet 23w, and converts the fluid into a gas phase, a water phase, and an oil phase.
- the fluid inlet 23i is connected to the line LB
- the gas phase outlet 23g is connected to the line LJ
- the oil phase outlet (liquid phase outlet) 23o is connected to the line LC
- the water phase outlet 23w is connected to the line L5.
- the three-phase separator 23 can be a drum having a main drum 23c and a boot portion 23b protruding downward from the main drum 23c, as shown in FIG.
- an oil-water interface can be formed in the boot portion 23b
- a gas-liquid (gas-oil) interface can be formed in the main drum 23c.
- the fluid inlet 23i can be provided above the main drum 23c
- the oil phase outlet 23o can be provided below the main drum 23c
- the water phase outlet 23w can be provided below the boot portion 23b.
- liquid or gas water is supplied from the line LH to the connecting portion LBJ2 of the line LB.
- the connection part LBJ2 dissolves at least a part of the stream (F2) in water by bringing the water into contact with the stream (F2) supplied from the top outlet 20t of the second distillation column 20 through the line LB.
- components that can be dissolved / absorbed in propylene oxide gas and water in the flow aldehydes such as formaldehyde and acetaldehyde, alcohols such as methanol, glycols such as propylene glycol, ketones such as acetone, and methyl formate.
- aldehydes such as formaldehyde and acetaldehyde
- alcohols such as methanol
- glycols such as propylene glycol
- ketones such as acetone
- methyl formate can be liquefied by dissolving / absorbing a
- the mixture of the stream (F2), water, and the stream (FS) is separated into a gas phase, an aqueous phase, and an oil phase. Then, the gas phase flow (F2G) is discharged to the outside via the line LJ, the oil phase flow (F2O) is returned to the reflux inlet 20r of the second distillation column 20 via the line LC, and the water phase The stream (F2W) is discharged to the outside via the line L5 without returning to the second distillation column 20.
- a known water treatment device can be connected to the line L5.
- At least a part of the flow (F2) is liquefied by the cooler 26, the connecting portion LBJ2, and the connecting portion LBJ1, and the fluid containing the liquid and the gas is the three-phase separator 23,
- the gas phase, the water phase, and the oil phase are separated, the oil phase is refluxed from the oil phase outlet (liquid phase outlet) 23o to the second distillation column 20 via the line LC, and the water phase is discharged from the water phase outlet 23w to the line.
- the gas phase is discharged via L5, and the gas phase is discharged from the gas phase outlet 23g as in the first embodiment.
- the supply of water to the line LB by the connection portion LBJ2 causes the components of the gas in the flow (F2) that can be dissolved / absorbed in water to be dissolved / absorbed in water.
- components that can be dissolved / absorbed in flowing water aldehydes such as formaldehyde and acetaldehyde, alcohols such as methanol, glycols such as propylene glycol, ketones such as acetone, esters such as methyl formate, etc. Etc.
- aldehydes such as formaldehyde and acetaldehyde
- alcohols such as methanol
- glycols such as propylene glycol
- ketones such as acetone
- esters such as methyl formate, etc. Etc.
- the water phase separated from the oil phase is discharged by the three-phase separator 23 without returning to the second distillation column 20, whereby the components that can be dissolved / absorbed in water can be separated, and the purified propylene oxide The purity can be made higher.
- the difference between this embodiment and the first embodiment is the configuration of the liquefaction separation facility LQ.
- the liquefaction separation facility LQ of this embodiment mainly includes a fifth distillation column (liquefaction section) 50 and a line LB.
- the fifth distillation column 50 has an inlet 50i, a reflux inlet 50r, a column top outlet (gas phase outlet) 50t, and a column bottom outlet (liquid phase outlet) 50b.
- the line LB connects the top outlet 20t of the second distillation column 20 and the inlet 50i of the fifth distillation column 50. Similar to the first embodiment, the line LB is provided with the connection portion LBJ1 with the line LE and the cooler 26.
- the cooler 26 is preferably provided between the connecting portion LBJ1 and the second distillation column 20, but may be provided between the connecting portion LBJ1 and the fifth distillation column 50.
- a line LJ is connected to the top outlet 50t of the fifth distillation column 50.
- a line L19 is branched from the line LJ, and the line L19 is connected to the reflux inlet 50r.
- the reflux inlet 50r is provided above the inlet 50i.
- a cooler for converting at least a part of the flow into a liquid phase in order from the upstream side, and a gas-liquid A separator may be provided.
- the bottom outlet 50b of the fifth distillation column 50 is connected to the reflux inlet 20r of the second distillation column 20 via a line LC.
- the fifth distillation column 50 is also distilled. That is, a mixture of a stream (F2) containing C1 to C4 hydrocarbons and propylene oxide discharged from the top outlet 20t of the second distillation column 20 and a stream of extractant (FS) supplied from the line LE is used.
- the fifth distillation column 50 is distilled to discharge a stream (F2G) mainly containing C1 to C4 hydrocarbons through the column top outlet 50t and a line LJ, and the C1 to C4 hydrocarbons are reduced.
- a stream (F2O) containing propylene oxide are discharged from the bottom outlet 50b to the reflux inlet 20r of the second distillation column 20.
- An example of a suitable operating condition of the fifth distillation column 50 is a temperature at which the C1 to C4 hydrocarbons in the fluid flowing in from the inlet 50i can be withdrawn to the top outlet 50t and the propylene oxide and the extractant can be withdrawn to the bottom outlet 50b.
- pressure conditions Specifically, the theoretical stage is 5 to 200 stages, the operating pressure is 0.01 to 5 MPa in absolute pressure, and the temperature is 0 ° C to 300 ° C.
- propylene oxide in the stream (F2) supplied from the top outlet 20t of the second distillation column 20 is liquefied and converted into a liquid from the bottom outlet 50b corresponding to the liquid phase outlet as a liquid. While being discharged, the C1 to C4 hydrocarbons in the stream (F2) remain as a gas and are discharged from the column top outlet 50t corresponding to the gas phase outlet.
- the flow (F2) discharged from the top outlet 20t of the second distillation column 20 is cooled by the cooler 26 provided in the line LB to flow ( Part of F2) can be liquefied. Further, it is also possible to supply the liquid flow (FS) of the extractant supplied through the line LE from the connection portion LBJ1 to the line LB to liquefy a part of the gas in the flow (F2).
- the liquefaction separation facility LQ in the liquefaction separation facility LQ, at least part of propylene oxide contained in the stream (F2) is liquefied and separated from the gas phase to the second distillation column 20. Since it is returned, the loss of propylene oxide can be reduced while removing C1-C4 hydrocarbons.
- the main difference of this embodiment from the first embodiment is that the extractant supply source of the lines LE and LE2 is the bottom outlet 30b of the third distillation column 30, and the fourth distillation column 40, the line LF, And a line LG.
- the bottom outlet 30b of the third distillation column 30 is connected to the line LE, and as described above, the flow (FS) of the solvent discharged from the bottom outlet 30b of the third distillation column 30 is the line LE and It is supplied to the line LE2.
- the fourth distillation column 40 has an inlet 40i, a reflux inlet 40r, a column bottom outlet 40b, and a column top outlet 40t.
- the line LE and the inlet 40i of the fourth distillation column 40 are connected via the line LF.
- a line L20 connected to the extraction agent supply source is joined to the line LF.
- a line L9 is connected to the top outlet 40t of the fourth distillation column 40.
- a line L11 is branched from the line L9, and the line L11 is connected to the reflux inlet 40r.
- the reflux inlet 40r is provided above the inlet 40i.
- a cooler for converting at least a part of the flow into a liquid phase in order from the upstream side, and a gas-liquid A separator may be provided.
- the third distillation column 30 has a second inlet 30i2 above the first inlet 30i, and the bottom outlet 40b of the fourth distillation column 40 is connected to the second inlet 30i2 of the third distillation column 30 by a line LG. Has been done.
- the second inlet 30i2 is located below the reflux inlet 30r.
- the fourth distillation column 40 a part of the flow (FS) of the extractant discharged from the bottom outlet 30b of the third distillation column 30 is partially distilled, and components having a lower boiling point than the extractant are mainly contained.
- the containing stream (F20) is discharged from the top outlet 40t and the line L9, and the stream (FSS) having a higher purity than the stream (FS) is discharged from the bottom outlet 40b.
- components having a boiling point higher than that of propylene oxide for example, pentanes, pentenes, pentadienes, hexanes, hexenes, hexadienes, etc. (C5 to Often referred to as C6 hydrocarbons) hydrocarbons).
- the fourth distillation column 40 makes it possible to reduce the concentration of the aforementioned compounds from the stream (FS) and obtain a highly pure stream (FSS).
- Examples of suitable operating conditions for the fourth distillation column 40 are 5 to 200 theoretical plates, 0.01 to 5 MPa absolute pressure as operating pressure, and 0 to 300 ° C. temperature.
- a part of the stream (F20) discharged from the tower top outlet 40t is refluxed to the reflux inlet 40r of the fourth distillation column 40 via the line L11 to adjust the purity of the extractant contained in the stream (FSS). be able to.
- the second inlet 30i2 of the third distillation column 30 receives the extraction agent discharged from the bottom outlet 30b of the third distillation column 30 via the line LG from the bottom outlet 40b of the fourth distillation column 40.
- a stream of extractant (FSS) having a higher purity than the stream (FS) is supplied.
- the line LE and the bottom outlet 30b of the third distillation column 30 are connected to each other, and the extractant can be recycled to suitably perform the extractive distillation in the second distillation column 20.
- the extractant supply source of the lines LE and LE2 is the bottom outlet 30b of the third distillation column 30, and the fourth distillation column 40, the line LF, And a line LG.
- the extractant supply source of the lines LE and LE2 is the bottom outlet 30b of the third distillation column 30, and the fourth distillation column 40, the line LF, And a line LG.
- the main difference of this embodiment from the second embodiment is that a combination of a gas-liquid separator 22 and an oil / water separator 24 is used instead of the three-phase separator 23.
- the gas-liquid separator 22 is the same as that described in the first embodiment.
- the oil / water separator 24 has a mixture inlet 24i for receiving a liquid containing oil and water, an oil phase outlet 24o, and a water phase outlet 24w.
- the liquid phase outlet 22o of the gas-liquid separator 22 and the mixture inlet 24i of the oil / water separator 24 are connected by a line LC1 (LC).
- the oil phase outlet 24o of the oil / water separator 24 and the reflux inlet 20r of the second distillation column 20 are connected via a line LC2 (LC), and the water phase outlet 24w of the oil / water separator 24 is connected to a line L5. .
- the oil-water separator 24 stores a liquid containing oil and water to form an oil-water interface, separates the oil phase above the oil-water interface, separates the water phase below the oil-water interface, and separates the oil phase into the oil phase.
- Various forms can be used as long as the water phase can be independently discharged from the outlet 24o from the water phase outlet 24w.
- the oil phase outlet 24o is provided in the upper part of the drum-shaped oil water separator 24, and the water phase outlet 24w is provided in the bottom part of the oil water separator 24.
- the liquid phase that is, the mixture of the water phase and the oil phase and the gas phase are separated, and the gas phase flow (F2G) is passed through the gas phase outlet 22g and the line LF. Is discharged.
- the flow of the mixture of the water phase and the oil phase is supplied to the oil / water separator 24 through the liquid phase outlet 22o, the line LC1 and the mixture inlet 24i to be separated into the oil phase and the water phase.
- F2O) is discharged via the oil phase outlet 24o and line LC
- the aqueous phase flow (F2W) is discharged via the water phase outlet 24w and line L5.
- the present invention is not limited to the above embodiment and can take various modifications.
- gas-liquid separator 22 may be capable of separating the mixture of the gas phase and the liquid phase into the gas phase and the liquid phase, and separating the gas phase and the liquid phase from each other and discharging them.
- the three-phase separator 23 may separate the mixture of the gas phase, the water phase, and the oil phase into the gas phase, the water phase, and the oil phase, and can separate the gas phase, the water phase, and the oil phase from each other and discharge them.
- the oil-water separator 24 is only required to be able to separate the mixture of the oil phase and the water phase into the oil phase and the water phase, and to separate the oil phase and the water phase from each other and discharge them.
- the shape of each separator is not particularly limited, and when it has a drum shape, it may be vertical or horizontal, or may have a baffle for gas-liquid separation or oil-water separation in the separator.
- a combination of the gas-liquid separator 22 and the oil / water separator 24 may be adopted as in the seventh embodiment.
- the line LB of the liquefaction separation facility LQ includes both the connection part LBJ1 as the liquefaction part and the cooler 26, but may include only one of them.
- the line LB may be equipped with two or more coolers. Of the connection portion LBJ1 and the cooler 26, those not provided in the line LB can be provided in other members of the liquefaction separation facility LQ, that is, the gas-liquid separator 22.
- the line LB of the liquefaction separation facility LQ does not have any of the connection portion LBJ1 and the cooler 26, and the other portion of the liquefaction separation equipment LQ, that is, the gas-liquid separator 22 is connected to the connection portion LBJ1 and / or the cooler. Implementation is possible even if 26 is provided.
- the connection part LBJ1 when the connection part LBJ1 is not provided in the liquefaction separation facility LQ, the connection part LBJ1 can be provided in the line LA, the line LC, and the second distillation column 20 in order to supply the extraction agent.
- the line LB of the liquefaction / separation facility LQ includes all the connection parts LBJ1, LBJ2 and the cooler 26 as the liquefaction part, but any one of the three. Only one or a combination of only two of the three may be provided. Of the connecting portions LBJ1, LBJ2 and the cooler 26, those not provided in the line LB may be provided in other members of the liquefaction separation facility LQ, that is, the three-phase separator 23 or the gas-liquid separator 22. it can.
- the line LB of the liquefaction separation facility LQ does not have any of the connection portions LBJ1, LBJ2, and the cooler 26, and other members of the liquefaction separation facility LQ, that is, the three-phase separator 23, or the gas Even if the liquid separator 22 is provided with the connection portions LBJ1, LBJ2 and / or the cooler 26, the implementation is possible.
- the connection part LBJ1 when the connection part LBJ1 is not provided in the liquefaction separation facility LQ, the connection part LBJ1 can be provided in the line LA, the line LC, and the second distillation column 20 in order to supply the extraction agent.
- the line LB of the liquefaction separation facility LQ has the cooler 26 and the connection portion LBJ1, but it may have only one of these, It may not have any of the above. Even when neither the cooler 26 nor the connecting portion LBJ1 is provided in the line LB, the fifth distillation column 50 can also fulfill the function of liquefaction.
- the connection part LBJ1 when the connection part LBJ1 is not provided in the line LB, the connection part LBJ1 can be provided in another member of the liquefaction separation facility LQ such as the fifth distillation column 50.
- the connection part LBJ1 can be provided in the line LA, the line LC, and the second distillation column 20 in order to supply the extraction agent.
- the cooler 26 and the connecting portion LBJ1 are provided in the line LB, whichever may be provided in the upstream side (the column top outlet 20t side of the second distillation column) in the line LB. From the viewpoint of equipment cost, it is preferable that the cooler 26 is provided on the upstream side.
- connection portion LBJ2 when the connection portion LBJ2 is provided in the line LB, the connection portion LBJ2 may be upstream or downstream of the cooler 26, or may be upstream or downstream of the connection portion LBJ1. However, from the viewpoint of achieving sufficient liquefaction, the upstream side of the cooler 26 and the connecting portion LBJ1 is preferable.
- the line LE is connected to the line LA, the line LC, or the second distillation column 20 to supply the extractant.
- the extractant may be supplied to these from the source, even if the liquefaction separation facility LQ has the connection portion LBJ1, the flow of the extractant (such as the line LE2 branched from the line LE) ( FS) may be supplied to the line LA, the line LC, or the second distillation column 20.
- the flow (FSS) supplied via the line LG is not supplied to the third distillation column 30, but to the second distillation column 20, the liquefaction separation facility LQ (that is, the gas-liquid separator 22, It may be supplied to the three-phase separator 23, the fifth distillation column 50, and at least one selected from the group consisting of line LB), line LC, and line LA.
- the line LF is branched from the line LE, but the line LF may be connected to the bottom outlet 30b of the third distillation column.
- Three phase separator 23g ... Gas phase outlet, 23o ... oil phase outlet, 23i ... fluid inlet, 23w ... water phase outlet, 24 ... oil-water separator, 24o ... oil phase outlet, 24w ... water phase outlet, 40i ... inlet, 40b ... tower bottom outlet, 40t ... tower outlet, 40 ... Fourth distillation column, 50i ... Inlet, 50b ... Tower bottom outlet, 50t ... Tower top outlet, 0 ... 5 distillation column, LQ ... liquefaction separation equipment, 100,110,120,200,210,220,300 ... propylene oxide purification unit.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epoxy Compounds (AREA)
Abstract
Description
入口、還流入口、塔底出口、及び、塔頂出口を有する第2蒸留塔、
第2蒸留塔の塔頂出口から供給される流の少なくとも一部を液化し、気相を気相出口から、液相を液相出口から排出する、液化分離設備、
入口、塔底出口、及び、塔頂出口を有する第3蒸留塔、
前記第1蒸留塔の塔頂出口と前記第2蒸留塔の入口とを接続するラインLA、
前記液化分離設備の液相出口と前記第2蒸留塔の還流入口とを接続するラインLC、
前記第2蒸留塔の塔底出口と前記第3蒸留塔の入口とを接続するラインLD、並びに、
抽剤供給源と、ラインLA、前記液化分離設備、ラインLC、及び、前記第2蒸留塔、からなる群より選ばれる少なくとも一つとを接続するラインLE、を備える。
(a)前記気液分離器は水相出口をさらに有する3相分離器である。
(b)前記ラインLCに、混合物入口、油相出口、及び、水相出口を有する油水分離器が設けられ、前記混合物入口は前記気液分離器の液相出口に接続され、前記油相出口は前記第2蒸留塔の還流入口に接続される。
入口、塔底出口、及び、塔頂出口を有する第4蒸留塔、
前記第3蒸留塔の塔底出口又は前記塔底出口に接続されたラインと前記第4蒸留塔の入口とを接続するラインLF、及び、
前記第4蒸留塔の塔底出口と、前記第2蒸留塔、前記液化分離設備、ラインLC、ラインLA、及び、前記第3蒸留塔からなる群より選ばれる少なくとも一つとを接続するラインLGを更に備えることができる。
前記第1蒸留塔で、粗プロピレンオキサイドを蒸留して、塔底からプロピレンオキサイドよりも高い沸点を有する高沸点成分を、塔頂から高沸点成分を除去したプロピレンオキサイド含有流(F1)を排出させる工程と、
抽剤を、前記ラインLA、前記液化分離設備、前記ラインLC、及び、前記第2蒸留塔、からなる群より選ばれる少なくとも一つに供給する工程と、
前記第2蒸留塔で、前記流(F1)を抽剤と共に蒸留し、C1~C4炭化水素及びプロピレンオキサイドを含む流(F2)を塔頂から排出させ、抽剤及びプロピレンオキサイドを含む流(F3)を塔底から排出させる工程と、
前記液化分離設備で、前記流(F2)に含まれるプロピレンオキサイドの少なくとも一部を液化し、気相流(F2G)を前記気相出口から、液相流(F2O)を液相出口から排出する工程と、
前記液相流(F2O)を、ラインLCを介して前記第2蒸留塔に戻す工程と、
前記第3蒸留塔で、流(F3)を蒸留して、塔底から抽剤を含む流(FS)を排出させ、塔頂から精製プロピレンオキサイドを排出させる工程と、を備える。
前記抽剤の流(FSS)を、ラインLGを介して、ラインLA、前記第2蒸留塔、前記液化分離設備、ラインLC、及び、前記第3蒸留塔からなる群より選ばれる少なくとも一つに供給する工程とを有することができる。
図1を参照して、第1実施形態にかかるプロピレンオキサイド精製装置100について説明する。
続いて、第1実施形態にかかるプロピレンオキサイド精製装置100を用いたプロピレンオキサイドの製造方法について説明する。
粗プロピレンオキサイドは、プロピレンオキサイド以外に不純物を含む。不純物の例は、蟻酸、酢酸、プロピオン酸等の有機酸類;蟻酸メチル等のエステル類;水;メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール等のアルコール類;プロピレングリコール等のグリコール類;アセトン等のケトン類;ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド類;メタン、エタン、プロパン、プロピレン、シクロプロパン、n-ブタン、イソブタン、1-ブテン、2-ブテン、ブタジエン等の炭素数が1~4の炭化水素(C1~C4炭化水素と呼ぶ);ペンタン類、ペンテン類、ペンタジエン類、ヘキサン類、ヘキセン類、ヘキサジエン類等の炭化水素(C5~C6炭化水素と呼ぶ)を含むことができる。
本実施形態によれば、第1蒸留塔10で、粗プロピレンオキサイドを蒸留して、塔底出口10bからプロピレンオキサイドよりも高い沸点を有する高沸点成分を、塔頂出口10tから高沸点成分を低減したプロピレンオキサイド含有流(F1)を排出させることができる。また、第2蒸留塔20で、流(F1)を抽剤と共に蒸留し、C1~C4炭化水素及びプロピレンオキサイドを含む流(F2)を塔頂出口20tから排出させ、抽剤及びプロピレンオキサイドを含む流(F3)を塔底から排出させることができる。ここで、流(F1)中のプロピレンオキサイドの全重量の半分以上が、流(F3)に含まれる。また、第3蒸留塔30で、流(F3)を蒸留して、塔底出口30bから抽剤を含む流(FS)を排出させ、塔頂出口30tから精製プロピレンオキサイドを流(F4)として排出させることができる。
図2を参照して、第2実施形態にかかるプロピレンオキサイド精製装置110について説明する。ここでは、第1実施形態と異なる点のみについて説明する。
続いて、図3を参照して、本発明の第3実施形態にかかるプロピレンオキサイド精製装置120について説明する。ここでは、第1実施形態と異なる点のみについて説明する。
続いて、図4を参照して、本発明の第4実施形態にかかるプロピレンオキサイド精製装置200について説明する。ここでは、第1実施形態と異なる点のみについて説明する。
続いて、図5を参照して、本発明の第5実施形態にかかるプロピレンオキサイド精製装置210について説明する。ここでは、第2実施形態と異なる点のみについて説明する。
続いて、図6を参照して、本発明の第6実施形態にかかるプロピレンオキサイド精製装置220について説明する。ここでは、第3実施形態と異なる点のみについて説明する。
続いて、図7を参照して、本発明の第7実施形態にかかるプロピレンオキサイド精製装置300について説明する。ここでは、第2実施形態と異なる点のみについて説明する。
例えば、気液分離器22、3相分離器23、及び油水分離器24の形態は上記に限られない。気液分離器22は、気相と液相との混合物を気相と液相に分離し、気相と液相を互いに分離して排出できればよい。3相分離器23は、気相と水相と油相との混合物を気相と水相と油相に分離し、気相と水相と油相を互いに分離して排出できればよい。油水分離器24は、油相と水相との混合物を油相と水相に分離し、油相と水相を互いに分離して排出できればよい。例えば、各分離器の形状に特に限定はなく、ドラム形状を有する場合には、縦型でも横型でもよいし、分離器内に気液分離、油水分離用のバッフルを有していても良い。また、例えば、図5の装置210において、3相分離器23に代えて、第7実施形態のように、気液分離器22、及び、油水分離器24の組み合わせを採用しても良い。
第1、及び、第4実施形態において、液化分離設備LQのラインLBは、液化部としての接続部LBJ1及び冷却器26を両方備えているが、いずれか一つのみを備えていてもよい。ラインLBは2以上の冷却器を備えていてもよい。接続部LBJ1及び冷却器26の内、ラインLBに設けられないものは、液化分離設備LQの他の部材すなわち気液分離器22に設けられることができる。また、液化分離設備LQのラインLBが、接続部LBJ1及び冷却器26のうちのいずれも有さず、液化分離設備LQの他の部材すなわち気液分離器22に接続部LBJ1及び/又は冷却器26が設けられていても実施は可能である。なお、接続部LBJ1が液化分離設備LQに設けられない場合、抽剤を供給するために、接続部LBJ1を、ラインLA、ラインLC、及び、第2蒸留塔20に設けることができる。
上記実施形態において、液化分離設備LQが接続部LBJ1を有していない場合、上述のように、ラインLEを、ラインLA、ラインLC、又は、第2蒸留塔20に接続して、抽剤供給源からこれらに対して抽剤を供給してもよいが、液化分離設備LQが接続部LBJ1を有している場合であっても、ラインLEから分岐するラインLE2などによって、抽剤の流(FS)を、ラインLA、ラインLC、又は、第2蒸留塔20に供給してもよい。
Claims (12)
- 粗プロピレンオキサイドを受け入れる入口、塔底出口、及び、塔頂出口を有する第1蒸留塔、
入口、還流入口、塔底出口、及び、塔頂出口を有する第2蒸留塔、
第2蒸留塔の塔頂出口から供給される流の少なくとも一部を液化し、気相を気相出口から、液相を液相出口から排出する、液化分離設備、
入口、塔底出口、及び、塔頂出口を有する第3蒸留塔、
前記第1蒸留塔の塔頂出口と前記第2蒸留塔の入口とを接続するラインLA、
前記液化分離設備の液相出口と前記第2蒸留塔の還流入口とを接続するラインLC、
前記第2蒸留塔の塔底出口と前記第3蒸留塔の入口とを接続するラインLD、並びに、
抽剤供給源と、ラインLA、前記液化分離設備、ラインLC、及び、前記第2蒸留塔、からなる群より選ばれる少なくとも一つとを接続するラインLE、を備える、プロピレンオキサイド精製装置。 - 前記液化分離設備が、前記気相出口、前記液相出口、及び、流体入口を有する気液分離器と、前記第2蒸留塔の塔頂出口と前記気液分離器の流体入口とを接続するラインLBと、前記ラインLB又は前記気液分離器に設けられた液化部と、を有する、請求項1記載のプロピレンオキサイド精製装置。
- 前記液化部は、冷却器を含む、請求項2に記載のプロピレンオキサイド精製装置。
- 前記液化部は、前記ラインLEと、前記ラインLB又は前記気液分離器とを接続させる接続部を含む、請求項2又は3に記載のプロピレンオキサイド精製装置。
- 前記液化部は、水供給源に接続されたラインLHと、前記ラインLB又は前記気液分離器とを接続させる接続部を含み、及び、以下の(a)又は(b)を満たす、請求項2~4のいずれか一項に記載のプロピレンオキサイド精製装置。
(a)前記気液分離器は水相出口をさらに有する3相分離器である。
(b)前記ラインLCに、混合物入口、油相出口、及び、水相出口を有する油水分離器が設けられ、前記混合物入口は前記気液分離器の液相出口に接続され、前記油相出口は前記第2蒸留塔の還流入口に接続される。 - 前記液化分離設備が、入口、塔頂に設けられた前記気相出口、及び、塔底に設けられた前記液相出口を有する第5蒸留塔と、前記第5蒸留塔の入口と前記第2蒸留塔の塔頂出口とを接続するラインLBと、を有する、請求項1記載のプロピレンオキサイド精製装置。
- 前記液化分離設備が、さらに、前記ラインLEと、前記ラインLBとを接続させる接続部を有する、請求項6に記載のプロピレンオキサイド精製装置。
- 前記液化分離設備が、前記ラインLBに設けられた冷却器をさらに有する、請求項6又は7に記載のプロピレンオキサイド精製装置。
- 除害装置と前記液化分離設備の気相出口とを接続するラインLJと、を更に備える、請求項1~8のいずれか1項に記載のプロピレンオキサイド精製装置。
- 前記抽剤供給源は、前記第3蒸留塔の塔底出口である、請求項1~9のいずれか一項記載のプロピレンオキサイド精製装置。
- 入口、塔底出口、及び、塔頂出口を有する第4蒸留塔、
前記第3蒸留塔の塔底出口又は前記塔底出口に接続されたラインと前記第4蒸留塔の入口とを接続するラインLF、及び、
前記第4蒸留塔の塔底出口と、前記第2蒸留塔、前記液化分離設備、ラインLC、ラインLA、及び、前記第3蒸留塔からなる群より選ばれる少なくとも一つとを接続するラインLGを更に備える、請求項1~10のいずれか1項記載のプロピレンオキサイド精製装置。 - 請求項1~11のいずれか1項に記載のプロピレンオキサイド精製装置を用いた、精製プロピレンオキサイドの製造方法であって、
前記第1蒸留塔で、粗プロピレンオキサイドを蒸留して、塔底からプロピレンオキサイドよりも高い沸点を有する高沸点成分を、塔頂から高沸点成分を除去したプロピレンオキサイド含有流(F1)を排出させる工程と、
抽剤を、前記ラインLA、前記液化分離設備、前記ラインLC、及び、前記第2蒸留塔、からなる群より選ばれる少なくとも一つに供給する工程と、
前記第2蒸留塔で、前記流(F1)を抽剤と共に蒸留し、C1~C4炭化水素及びプロピレンオキサイドを含む流(F2)を塔頂から排出させ、抽剤及びプロピレンオキサイドを含む流(F3)を塔底から排出させる工程と、
前記液化分離設備で、前記流(F2)に含まれるプロピレンオキサイドの少なくとも一部を液化し、気相流(F2G)を前記気相出口から、液相流(F2O)を液相出口から排出させる工程と、
前記液相流(F2O)を、ラインLCを介して前記第2蒸留塔に戻す工程と、
前記第3蒸留塔で、流(F3)を蒸留して、塔底から抽剤を含む流を排出させ、塔頂から精製プロピレンオキサイドを排出させる工程と、を備える、方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980064395.2A CN112789268A (zh) | 2018-10-11 | 2019-08-30 | 环氧丙烷纯化装置和环氧丙烷的制造方法 |
KR1020217013302A KR102710528B1 (ko) | 2018-10-11 | 2019-08-30 | 프로필렌옥사이드 정제 장치, 및, 프로필렌옥사이드의 제조방법 |
MX2021003962A MX2021003962A (es) | 2018-10-11 | 2019-08-30 | Sistema de purificacion de oxido de propileno y metodo para producir oxido de propileno. |
SG11202101638YA SG11202101638YA (en) | 2018-10-11 | 2019-08-30 | Propylene oxide purification system and method for producing propylene oxide |
EP19872236.5A EP3868743B8 (en) | 2018-10-11 | 2019-08-30 | Propylene oxide purification system and method for producing propylene oxide |
PL19872236.5T PL3868743T3 (pl) | 2018-10-11 | 2019-08-30 | System oczyszczania tlenku propylenu i sposób wytwarzania tlenku propylenu |
JP2020550210A JP7328982B2 (ja) | 2018-10-11 | 2019-08-30 | プロピレンオキサイド精製装置、及び、プロピレンオキサイドの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018192452 | 2018-10-11 | ||
JP2018-192452 | 2018-10-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020075417A1 true WO2020075417A1 (ja) | 2020-04-16 |
Family
ID=70163683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/034247 WO2020075417A1 (ja) | 2018-10-11 | 2019-08-30 | プロピレンオキサイド精製装置、及び、プロピレンオキサイドの製造方法 |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP3868743B8 (ja) |
JP (1) | JP7328982B2 (ja) |
KR (1) | KR102710528B1 (ja) |
CN (1) | CN112789268A (ja) |
HU (1) | HUE062399T2 (ja) |
MX (1) | MX2021003962A (ja) |
PL (1) | PL3868743T3 (ja) |
SG (1) | SG11202101638YA (ja) |
WO (1) | WO2020075417A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7504011B2 (ja) | 2020-12-09 | 2024-06-21 | 株式会社安川電機 | ロボットシステム |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5319562B1 (ja) * | 1969-03-22 | 1978-06-21 | ||
JPH07309853A (ja) * | 1993-10-26 | 1995-11-28 | Texaco Chem Inc | プロピレンオキシドの精製法 |
WO2001083468A1 (fr) * | 2000-04-28 | 2001-11-08 | Sumitomo Chemical Company, Limited | Procede de purification d'oxyde de propylene |
JP2005089413A (ja) * | 2003-09-19 | 2005-04-07 | Sumitomo Chemical Co Ltd | プロピレンオキサイドの精製方法 |
JP2005281163A (ja) * | 2004-03-29 | 2005-10-13 | Nippon Oxirane Kk | プロピレンオキサイドの精製方法 |
JP2006232744A (ja) * | 2005-02-25 | 2006-09-07 | Sumitomo Chemical Co Ltd | 軽沸点化合物除去方法 |
CN104109138A (zh) | 2013-04-16 | 2014-10-22 | 中国石油化工股份有限公司 | 环氧丙烷的纯化方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3881996A (en) * | 1973-11-21 | 1975-05-06 | Oxirane Corp | Recovery of propylene oxide by plural stage distillation |
US4410634A (en) * | 1979-10-26 | 1983-10-18 | Dynasciences Corporation | Method of passively adsorbing immuno-reactive haptens to solid phases |
US5006206A (en) * | 1990-03-12 | 1991-04-09 | Arco Chemical Technology, Inc. | Propylene oxide purification |
US5106458A (en) * | 1991-07-26 | 1992-04-21 | Texaco Chemical Company | Method for the purification of propylene oxide |
JP4466224B2 (ja) * | 2004-06-23 | 2010-05-26 | 住友化学株式会社 | プロピレンオキサイドの精製方法 |
JP5319562B2 (ja) | 2010-01-13 | 2013-10-16 | キユーピー株式会社 | 電子レンジ用カレーソース、電子レンジ用容器詰カレーソース及びカレー煮の製造方法 |
CN104109137B (zh) * | 2013-04-16 | 2016-06-08 | 中国石油化工股份有限公司 | 环氧丙烷纯化方法 |
US9593090B2 (en) * | 2013-07-29 | 2017-03-14 | Lyondell Chemical Technology, L.P. | Alkylene oxide separation systems, methods, and apparatuses |
ES2759230T3 (es) * | 2013-12-06 | 2020-05-08 | Shell Int Research | Mejoras relacionadas con la purificación de óxido de propileno |
CN105524027A (zh) * | 2014-10-27 | 2016-04-27 | 中国石油化工股份有限公司 | 环氧丙烷组合物 |
TWI824372B (zh) * | 2015-10-12 | 2023-12-01 | 美商再生元醫藥公司 | 活化瘦素受體的抗原結合蛋白 |
RU2752955C1 (ru) * | 2018-02-05 | 2021-08-11 | Лионделл Кемикал Текнолоджи, Л.П. | Система отделения окиси алкилена |
KR20200141461A (ko) * | 2018-04-06 | 2020-12-18 | 리제너론 파마슈티칼스 인코포레이티드 | 렙틴 수용체 작용제 항체를 사용한 치료 방법 |
JOP20200260A1 (ar) | 2018-04-19 | 2019-10-19 | Estetra Sprl | مركبات واستخداماتها للتخفيف من الأعراض المصاحبة لانقطاع الطمث |
-
2019
- 2019-08-30 KR KR1020217013302A patent/KR102710528B1/ko active IP Right Grant
- 2019-08-30 JP JP2020550210A patent/JP7328982B2/ja active Active
- 2019-08-30 PL PL19872236.5T patent/PL3868743T3/pl unknown
- 2019-08-30 WO PCT/JP2019/034247 patent/WO2020075417A1/ja active Application Filing
- 2019-08-30 MX MX2021003962A patent/MX2021003962A/es unknown
- 2019-08-30 SG SG11202101638YA patent/SG11202101638YA/en unknown
- 2019-08-30 CN CN201980064395.2A patent/CN112789268A/zh active Pending
- 2019-08-30 EP EP19872236.5A patent/EP3868743B8/en active Active
- 2019-08-30 HU HUE19872236A patent/HUE062399T2/hu unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5319562B1 (ja) * | 1969-03-22 | 1978-06-21 | ||
JPH07309853A (ja) * | 1993-10-26 | 1995-11-28 | Texaco Chem Inc | プロピレンオキシドの精製法 |
WO2001083468A1 (fr) * | 2000-04-28 | 2001-11-08 | Sumitomo Chemical Company, Limited | Procede de purification d'oxyde de propylene |
JP2005089413A (ja) * | 2003-09-19 | 2005-04-07 | Sumitomo Chemical Co Ltd | プロピレンオキサイドの精製方法 |
JP2005281163A (ja) * | 2004-03-29 | 2005-10-13 | Nippon Oxirane Kk | プロピレンオキサイドの精製方法 |
JP2006232744A (ja) * | 2005-02-25 | 2006-09-07 | Sumitomo Chemical Co Ltd | 軽沸点化合物除去方法 |
CN104109138A (zh) | 2013-04-16 | 2014-10-22 | 中国石油化工股份有限公司 | 环氧丙烷的纯化方法 |
Also Published As
Publication number | Publication date |
---|---|
SG11202101638YA (en) | 2021-03-30 |
HUE062399T2 (hu) | 2023-10-28 |
JPWO2020075417A1 (ja) | 2021-09-02 |
EP3868743B8 (en) | 2023-06-07 |
EP3868743A1 (en) | 2021-08-25 |
JP7328982B2 (ja) | 2023-08-17 |
CN112789268A (zh) | 2021-05-11 |
EP3868743B1 (en) | 2023-05-03 |
PL3868743T3 (pl) | 2023-08-14 |
EP3868743A4 (en) | 2022-07-13 |
KR102710528B1 (ko) | 2024-09-27 |
KR20210076032A (ko) | 2021-06-23 |
MX2021003962A (es) | 2021-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6301952B2 (ja) | エチレン流から軽質成分を除去する方法 | |
CA2724146C (en) | Absorber demethanizer for methanol to olefins process | |
TWI464146B (zh) | 藉由萃取蒸餾之芳香化合物回收 | |
JP5074489B2 (ja) | 選択的溶剤を用いる抽出蒸留によるc4カットの分離のための方法 | |
JP5780124B2 (ja) | 共役ジエンの製造方法 | |
JP2010522234A (ja) | プロピレンオキサイドの回収方法 | |
KR20150135488A (ko) | 산화적 탈수소화 공정으로부터의 1,3-부타디엔의 정제 방법 | |
WO2020075417A1 (ja) | プロピレンオキサイド精製装置、及び、プロピレンオキサイドの製造方法 | |
US20130172653A1 (en) | "process for removing oxygenated contaminants from an hydrocarbonstream" | |
ES2297230T3 (es) | Procedimiento para la elaboracion de 1,3-butadieno en bruto. | |
JPH07278127A (ja) | 実質的に無水のプロピレンオキシドの製造方法 | |
JP6617389B2 (ja) | ブタジエンの製造方法 | |
US10654763B2 (en) | Process for producing butadiene from ethanol integrated with extractive distillation | |
US11958791B2 (en) | Method for preventing three-phase separation of butenes from C4 hydrocarbon streams | |
JP2020506184A (ja) | 純粋な1,3−ブタジエンを得る方法 | |
JP2019509343A (ja) | 増大する圧力を有する二つのカラム中でのヒドロホルミル化によって得られるアルデヒドを回収するための方法 | |
US10501391B2 (en) | Process for producing butadiene from ethanol, comprising purification of a butadiene-loaded effluent by extractive distillation | |
JP7076465B2 (ja) | 純粋な1,3-ブタジエンを単離するための簡素化された方法 | |
JP3693404B2 (ja) | イソプロピルアルコールの製造方法 | |
JPS60174733A (ja) | 1,3−ブタジエンの製造方法 | |
US9156769B2 (en) | Method of recovering carboxylic acids from dilute aqueous streams | |
JPH0271801A (ja) | パラフイン系c↓4‐炭化水素とオレフイン系c↓4‐炭化水素の分離法 | |
Heida et al. | Method for the separation of a crude C 4 cut | |
JPH0212453B2 (ja) | ||
JPS61191674A (ja) | N−メチルピロリドンの分離回収法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19872236 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020550210 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2101002021 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217013302 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019872236 Country of ref document: EP Effective date: 20210511 |