WO2020075385A1 - 計測装置及び試料の表面の計測方法 - Google Patents

計測装置及び試料の表面の計測方法 Download PDF

Info

Publication number
WO2020075385A1
WO2020075385A1 PCT/JP2019/031904 JP2019031904W WO2020075385A1 WO 2020075385 A1 WO2020075385 A1 WO 2020075385A1 JP 2019031904 W JP2019031904 W JP 2019031904W WO 2020075385 A1 WO2020075385 A1 WO 2020075385A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
profile
measuring
charged particle
particle beam
Prior art date
Application number
PCT/JP2019/031904
Other languages
English (en)
French (fr)
Inventor
高志 土橋
敦子 新谷
慎 榊原
惠眞 金
央和 玉置
琴子 廣瀬
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020075385A1 publication Critical patent/WO2020075385A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube

Definitions

  • the present invention relates to an apparatus and method for measuring the shape of a sample using a charged particle beam.
  • a method of measuring the shape of a sample such as a semiconductor As a method of measuring the shape of a sample such as a semiconductor, a method using a scanning electron microscope is known. In the following description, the scanning electron microscope is also referred to as SEM.
  • the SEM scans the sample with a primary electron beam, and detects emitted electrons (Auger electrons, secondary electrons, reflected electrons, etc.) emitted from the sample using a detector.
  • the detection signal in the emission direction corresponding to the emission electron detected by the detector is sampled at a constant cycle.
  • the sampling of the emitted electron signal is performed in synchronization with the scanning signal, and the extraction signal corresponding to the pixel of the two-dimensional image is obtained.
  • the SEM generates an image by converting the intensity of the extracted signal into brightness, or generates an image from the relationship between the coordinates of the scanning position of the primary electron beam and the brightness.
  • a sample stage on which a sample is mounted and one of a lens barrel are set on the sample stage by controlling a deflector of a scanning electron microscope capable of setting an arbitrary tilt angle.
  • the inclination angle is set to zero, and the secondary electron signal when the measuring section is irradiated with the electron beam is image-processed to calculate the bottom dimension of the pattern of the measuring section.
  • Patent Document 1 does not consider the structure of the profile obtained by irradiating the surface of the sample with an inclined electron beam. In order to improve the measurement accuracy, it is necessary to consider the above structure. Further, in Patent Document 1, it is not possible to determine the presence or absence of a notch.
  • the present invention provides an apparatus and method capable of measuring the shape of a sample efficiently and with high accuracy.
  • a typical example of the invention disclosed in the present application is as follows. That is, a measuring device for irradiating a charged particle beam to measure the shape of a sample having an uneven portion, the particle source outputting the charged particle beam, a lens for focusing the charged particle beam, and the charged particle beam.
  • the shape of a sample can be measured efficiently and with high accuracy.
  • FIG. 3 is a diagram showing an example of the configuration of a scanning electron microscope of Example 1.
  • FIG. 6 is a flowchart illustrating an example of processing executed by the scanning electron microscope according to the first embodiment.
  • 5 is a diagram showing the relationship between the shape of the sample and the line profile of Example 1.
  • FIG. 5 is a diagram showing the relationship between the shape of the sample and the line profile of Example 1.
  • FIG. 5 is a diagram showing the relationship between the shape of the sample and the line profile of Example 1.
  • FIG. 5 is a diagram showing the relationship between the shape of the sample and the line profile of Example 1.
  • FIG. 6 is a diagram illustrating characteristics of a characteristic amount A ( ⁇ ) according to the first embodiment.
  • FIG. 6 is a diagram illustrating characteristics of a characteristic amount A ( ⁇ ) according to the first embodiment.
  • FIG. 6 is a diagram illustrating characteristics of a characteristic amount A ( ⁇ ) according to the first embodiment.
  • 6 is a flowchart illustrating an example of an analysis process executed by the scanning electron microscope according to the first embodiment.
  • 6 is a diagram showing an example of the configuration of a scanning electron microscope of Example 2.
  • FIG. 9 is a flowchart illustrating an example of processing executed by the scanning electron microscope according to the second embodiment.
  • 9 is a flowchart illustrating an example of an analysis process executed by the scanning electron microscope according to the second embodiment.
  • FIG. 7 is a diagram showing the relationship between the shape of the side wall of the trench and the line profile of the sample of Example 2.
  • FIG. 7 is a diagram showing the relationship between the shape of the side wall of the trench and the line profile of the sample of Example 2.
  • FIG. 7 is a diagram showing the relationship between the shape of the side wall of the trench and the line profile of the sample of Example 2.
  • FIG. 7 is a diagram showing the relationship between the shape of the side wall of the trench and the line profile of the sample of Example 2.
  • 5 is a diagram showing characteristics of a line profile of a sample having a notch of Example 2.
  • FIG. 5 is a diagram showing characteristics of a line profile of a sample having a notch of Example 2.
  • FIG. 5 is a diagram showing characteristics of a line profile of a sample having a notch of Example 2.
  • FIG. 8 is a diagram showing an example of information included in an analysis result output by the scanning electron microscope of the second embodiment.
  • FIG. 8 is a diagram showing an example of information included in an analysis result output by the scanning electron microscope of the second embodiment.
  • FIG. 1 is a diagram showing an example of the configuration of the scanning electron microscope 10 of the first embodiment.
  • the scanning electron microscope 10 is used as an example of the measuring device (charged particle beam device) used to measure the shape of the sample, but an electron microscope using an intermittent electron beam may be used.
  • the scanning electron microscope 10 is composed of an electron optical system, a stage mechanism system, an SEM control system, a signal processing system, and an SEM operation system. More specifically, the scanning electron microscope 10 includes an electron optical system lens barrel 101 including an electron optical system and a stage mechanism system, and a control unit 102 including an SEM control system, a signal processing system, and an SEM operation system. It
  • the electron optical system includes an electron gun 111, a deflector 113, an objective lens 115, and a detector 119.
  • the electron gun 111 outputs a primary electron beam 112.
  • the focus of the primary electron beam 112 is adjusted when passing through the deflector 113 and the objective lens 115. Further, the trajectory of the primary electron beam 112 is deflected when passing through the deflector 113, and the sample 116 is two-dimensionally scanned. Emitted electrons such as secondary electrons or reflected electrons emitted from the sample 116 irradiated with the primary electron beam 112 are detected by the detector 119. The emitted electron signal detected by the detector 119 is processed by the control unit 102. The two-dimensional image corresponding to the irradiation position of the primary electron beam 112 is displayed on the output device 125, for example.
  • the stage mechanism system is composed of a sample holder 117 having a stage for mounting the sample 116.
  • the stage is capable of tilt control and movement control in three-dimensional directions (XYZ axes).
  • the sample 116 of Example 1 is assumed to be a semiconductor or the like that has been subjected to etching processing or the like.
  • the sample 116 has unevenness such as a trench formed by etching.
  • the primary electron beam 112 that is tilted at an arbitrary angle with respect to the vertical line of the surface of the sample 116 is realized by tilting the stage.
  • the irradiation of the above-mentioned primary electron beam 112 may be realized by adjusting the direction of the electron gun 111 or deflecting the deflector 113.
  • the control unit 102 includes a calculation device 121, a storage device 122, a scanning signal control device 123, an input device 124, and an output device 125.
  • the control unit 102 may include a storage medium such as a HDD (Hard Disk Drive) and an SSD (Solid State Drive).
  • the arithmetic unit 121 executes predetermined arithmetic processing according to a program stored in the storage unit 122.
  • the arithmetic unit 121 may be, for example, a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • the storage device 122 stores a program executed by the arithmetic device 121 and data used by the program.
  • the storage device 122 also includes a temporary storage area such as a work area used by the program.
  • the storage device 122 may be, for example, a memory. The programs and data stored in the storage device 122 will be described later.
  • the scanning signal control device 123 controls the scanning speed of the scanning electron beam.
  • the scanning signal control device 123 is connected so as to be able to communicate with the deflector 113.
  • the input device 124 is a device for inputting data, and includes a keyboard, a mouse, a touch panel, and the like.
  • the output device 125 is a device that outputs data, and includes a touch panel, a display, and the like.
  • the storage device 122 stores a program that realizes the control module 131.
  • the storage device 122 also stores line profile information 132.
  • the storage device 122 may store programs and information (not shown). For example, the storage device 122 may store measurement condition information that manages measurement conditions such as acceleration voltage, irradiation current, scanning width (irradiation time), pixel split number (irradiation cycle), and timing delay. The storage device 122 may also store image management information that manages an electron microscope image such as a potential contrast image generated from the detected emitted electrons.
  • measurement condition information that manages measurement conditions such as acceleration voltage, irradiation current, scanning width (irradiation time), pixel split number (irradiation cycle), and timing delay.
  • the storage device 122 may also store image management information that manages an electron microscope image such as a potential contrast image generated from the detected emitted electrons.
  • the control module 131 controls each component of the electron optical system lens barrel 101.
  • the control module 131 also generates an image from the signal of the secondary electron.
  • the control unit 102 may include an image generation module that generates an image, in addition to the control module 131.
  • the line profile information 132 is information for managing the line profile.
  • the line profile is information in which pixels and the intensity of contrast in the pixels (intensity of the signal of the emitted electron) are associated with each other, and also information indicating the shape of the sample 116.
  • the line profile of this embodiment is generated based on an image of an electron microscope image generated from secondary electrons.
  • the SEM control system is composed of the control module 131 and the scanning signal control device 123
  • the signal processing system is composed of the control module 131
  • the SEM operation system is composed of the input device 124 and the output device 125.
  • FIG. 2 is a flowchart illustrating an example of processing executed by the scanning electron microscope 10 according to the first embodiment.
  • 3A, 3B, 3C, and 3D are diagrams showing the relationship between the shape and the line profile of the sample 116 of Example 1.
  • FIG. 4A, FIG. 4B, and FIG. 4C are diagrams for explaining the characteristic of the characteristic amount A ( ⁇ ) of the first embodiment.
  • the scanning electron microscope 10 starts the process described below when a start request is received from the user or when the measurement conditions are satisfied.
  • the scanning electron microscope 10 sets the angle ⁇ of incidence of the primary electron beam 112 with respect to the direction perpendicular to the plane formed by the sample 116 (step S101).
  • control module 131 sets the angle ⁇ .
  • the angle ⁇ may be set based on the measurement condition information or may be set based on the input from the user.
  • the scanning signal control device 123 controls the stage based on the angle ⁇ .
  • the scanning electron microscope 10 irradiates the sample 116 with the primary electron beam 112 (step S102).
  • the detector 119 detects the emitted electrons emitted from the sample 116 and outputs a signal of the emitted electrons to the control unit 102.
  • the control module 131 of the control unit 102 stores the detection data in which the angle ⁇ and the signal of the emitted electron are associated with each other in the storage device 122.
  • the scanning electron microscope 10 executes image processing using the emitted electron signal (step S103).
  • control module 131 generates an electron microscope image using the signal of the emitted electron detected in a certain time range. That is, an electron microscope image showing the shape of a part of the sample 116 is generated. At this time, the control module 131 generates one image by combining a plurality of electron microscope images.
  • the scanning electron microscope 10 determines whether or not the image is appropriate (step S104).
  • control module 131 determines whether or not the directions of the combined electron microscope images match. If the orientations of the combined electron microscope images match, the control module 131 determines that the images are suitable.
  • the scanning electron microscope 10 returns to step S102 and executes the same processing.
  • the scanning electron microscope 10 may return to step S103.
  • the scanning electron microscope 10 When it is determined that the image is appropriate, the scanning electron microscope 10 generates a line profile using the image (step S105).
  • control module 131 generates a line profile using the image.
  • the control module 131 also stores information in which the angle ⁇ and the line profile are associated with each other in the storage device 122 as the line profile information 132.
  • FIG. 3A shows a state where the primary electron beam 112 is emitted at an angle ⁇ of 0 degrees
  • FIG. 3C shows a state where the primary electron beam 112 is emitted at an angle ⁇ that is larger than 0 degrees.
  • control module 131 tapers the range from the point where the increase rate of the signal strength becomes larger than the first threshold value to the point where the signal strength reaches the minimum value in the line profile. Calculate as width.
  • the first threshold value is set in advance. When there are a plurality of ranges that satisfy the above definition, the largest range is calculated as the taper width.
  • the range from the point where the signal strength is greater than the minimum value to the point where the decrease rate of the signal strength changes from the maximum value of the signal strength via the maximum value of the signal strength is equivalent to the taper width defined above. It is a range.
  • the range from the minimum value to the maximum value is set as the taper width.
  • the line profile shown in FIG. 3D is generated.
  • the maximum value on the right side can be defined in the line profile, there is also a maximum value near the maximum value.
  • the relationship between the maximum value and the maximum value may be inverted due to the influence of charging on the sample surface, and the taper width may be mistaken in the conventional technique. Therefore, in the first embodiment, the measurement accuracy can be improved by considering the structure and setting the above range as the taper width.
  • Example 1 a taper that becomes thinner from the opening of the trench to the bottom is defined as a forward taper, and a taper that becomes thicker from the opening of the trench to the bottom is defined as an inverse taper. Further, as shown in FIG. 3A, the angle formed by the bottom surface and the side wall is defined as a taper angle. In the case of the forward taper, the taper angle is smaller than 90 degrees, and in the case of the reverse taper, the taper angle is larger than 90 degrees.
  • the scanning electron microscope 10 determines whether or not the feature amount A ( ⁇ ) can be calculated (step S106).
  • control module 131 determines whether or not there are two pieces of line profile information 132 having different angles ⁇ . When it is determined that the two line profile information 132 having different angles ⁇ do not exist, the control module 131 determines that the feature amount A ( ⁇ ) cannot be calculated.
  • the scanning electron microscope 10 returns to step S101 and executes the same processing.
  • the scanning electron microscope 10 calculates the characteristic amount A ( ⁇ ) (step S107).
  • the scanning electron microscope 10 calculates the characteristic amount A ( ⁇ ) by substituting the taper widths Ta_1 and Ta_2 of the two line profiles into the equation (1).
  • the feature amount A ( ⁇ ) is a function having an angle as a variable.
  • Ta_1 represents the taper width of the line profile whose angle ⁇ is ⁇ 1
  • Ta_2 represents the taper width of the line profile whose angle ⁇ is ⁇ 2. Note that ⁇ 1 is larger than ⁇ 2.
  • the absolute value of the angle at which the characteristic amount A ( ⁇ ) becomes 0 or more corresponds to the taper angle of the trench. Further, the slope of the characteristic amount A ( ⁇ ) represents the depth of the trench.
  • the characteristic amount A ( ⁇ ) is as shown in FIG. 4A.
  • the characteristic amount A ( ⁇ ) is as shown in FIG. 4B.
  • the characteristic amount A ( ⁇ ) is as shown in FIG. 4C.
  • the inclination angle has a positive value
  • the trench has a forward taper shape
  • the inclination angle has a negative value.
  • step S108 determines whether the feature amount A ( ⁇ ) is larger than a threshold value (second threshold value) (step S108).
  • the process of step S108 is a process for determining whether the feature value A ( ⁇ ) is a significant value. Note that the second threshold value is set in advance.
  • the scanning electron microscope 10 returns to step S101 and executes the same processing.
  • the control module 131 may delete the two line profile information 132 stored in the storage device 122, or may delete any one of the line profile information 132.
  • the scanning electron microscope 10 executes the analysis process (step S109). Details of the analysis process will be described with reference to FIG.
  • the scanning electron microscope 10 outputs the analysis result (step S110) and ends the process.
  • control module 131 generates display information for displaying the analysis result, and outputs the display information to the output device 125.
  • FIG. 5 is a flowchart illustrating an example of analysis processing executed by the scanning electron microscope 10 according to the first embodiment.
  • the control module 131 calculates the depth w of the trench by substituting the feature values A ( ⁇ ) and ⁇ 1 into the equation (2) (step S201).
  • control module 131 calculates the taper angle using the feature values A ( ⁇ ), ⁇ 1, and the trench depth w (step S202).
  • a method of calculating the taper angle will be described.
  • the taper angle can be obtained as the absolute value of the intersection of the straight line of the slope w and the axis of the angle as shown in the equation (3).
  • control module 131 calculates the constant b by substituting the feature values A ( ⁇ ), ⁇ 1 and the trench depth w into the equation (3). Further, the control module 131 calculates ⁇ (tilt angle) at which A ( ⁇ ) becomes 0 based on the equation (3), and calculates the absolute value as the taper angle.
  • the taper angle can be calculated regardless of the difference in taper type.
  • the above is the description of the calculation method of the taper angle.
  • control module 131 determines whether the shape of the trench is a forward taper based on the inclination angle (step S203).
  • control module 131 determines whether the tilt angle is smaller than 0 degree. When the taper angle is smaller than 0 degree, the control module 131 determines that the shape of the trench is a forward taper.
  • control module 131 proceeds to step S205.
  • control module 131 determines whether the trench shape is an inverse taper based on the inclination angle (step S204).
  • control module 131 determines whether the tilt angle is larger than 0 degree. When the taper angle is larger than 0 degree, the control module 131 determines that the shape of the trench is an inverse taper.
  • control module 131 proceeds to step S205.
  • control module 131 proceeds to step S205.
  • step S205 the control module 131 generates an analysis result (step S205). Then, the control module 131 ends the analysis process.
  • control module 131 generates information including a taper angle, a taper width, and a taper type as an analysis result.
  • the analysis result may include a line profile and an image.
  • the trench abnormality can be determined by using the two line profiles obtained by irradiating the primary electron beam 112 inclined with respect to the perpendicular of the surface of the sample 116.
  • the abnormality of the side wall of the trench is determined using the line profile obtained by irradiating the primary electron beam 112 inclined with respect to the perpendicular of the surface of the sample 116.
  • the second embodiment will be described focusing on the differences from the first embodiment.
  • FIG. 6 is a diagram showing an example of the configuration of the scanning electron microscope 10 of the second embodiment.
  • the scanning electron microscope 10 includes an electron optical system lens barrel 101 and a control unit 102.
  • the configuration of the electron optical system lens barrel 101 is the same as that of the first embodiment.
  • the hardware configuration of the control unit 102 is the same as that of the first embodiment.
  • the software configuration of the control unit 102 is partially different. Specifically, the storage device 122 holds the comparison line profile information 133.
  • the comparative line profile information 133 is information for managing the line profile obtained from the sample 116 in which the sidewall of the trench is normal.
  • the comparison line profile information 133 includes data in which an angle and a line profile are associated with each other.
  • the line profile of the normal sample 116 is stored in advance as a comparison line profile.
  • the comparison line profile may be generated based on the actual measurement result or may be generated based on the simulation result.
  • FIG. 7 is a flowchart illustrating an example of processing executed by the scanning electron microscope 10 according to the second embodiment.
  • step S101 to step S105 and the processing of step S110 are the same as the processing described in the first embodiment.
  • step S115 the scanning electron microscope 10 executes the analysis processing (step S115). Details of the analysis process will be described with reference to FIG.
  • FIG. 8 is a flowchart illustrating an example of analysis processing executed by the scanning electron microscope 10 according to the second embodiment.
  • 9A, 9B, 9C, and 9D are diagrams showing the relationship between the shape of the sidewall of the trench and the line profile of the sample 116 of Example 2.
  • 10A, 10B, and 10C are diagrams showing the characteristics of the line profile of the sample 116 having the notch of Example 2.
  • 11A and 11B are diagrams illustrating an example of information included in the analysis result output by the scanning electron microscope 10 according to the second embodiment.
  • the control module 131 compares the line profile of one line profile information 132 with the line profile of the comparison line profile information 133 (step S301).
  • control module 131 refers to the comparison line profile information 133 and acquires the comparison line profile corresponding to the angle ⁇ set in step S101.
  • the control module 131 compares the acquired comparison line profile with the line profile generated in step S105.
  • the control module 131 determines whether the shapes of the two line profiles are different (step S302).
  • 9A and 9C show an example of the sample 116. It should be noted that parts of the sample 116 having different materials are distinguished by using a pattern.
  • the line profile bar graph 901 represents the surface of the sample 116 irradiated with the primary electron beam 112.
  • FIG. 9A when the primary electron beam 112 is applied to the trench portion where the side wall has no notch, a line profile as shown in FIG. 9B is obtained.
  • FIG. 9C when the primary electron beam 112 is applied to the trench portion where the side wall has a notch, a line profile as shown in FIG. 9D is obtained.
  • the line profile obtained from the sample 116 having a notch has a portion different from the line profile obtained from the normal sample 116.
  • the control module 131 determines whether there is a different portion based on the comparison result of the two line profiles. If there is a different portion, the control module 131 determines that the shapes of the two line profiles are different. The difference in signal strength is not taken into consideration.
  • control module 131 proceeds to step S304.
  • control module 131 calculates an index indicating the degree of abnormality (step S303). After that, the control module 131 proceeds to step S304.
  • 10A, 10B, and 10C are enlarged views of the portion 902.
  • the dotted line shows a line profile for comparison. As shown in the figure, the size of the difference from the comparison line profile differs depending on the size of the notch. That is, the larger the notch, the larger the extreme values of the shaded portion (area ABE) and the dotted portion (area ECD), and the larger the shaded portion and the dotted portion.
  • control module 131 calculates the area of the shaded area or the distance between the CDs as an index.
  • the above is the description of the index indicating the degree of abnormality.
  • step S304 the control module 131 generates an analysis result (step S304). Then, the control module 131 ends the analysis process.
  • control module 131 generates information including the presence or absence of a notch and an index as an analysis result.
  • the analysis result may include a line profile and an image.
  • the analysis result including the graphs shown in FIGS. 11A and 11B may be output by executing the analysis process on a plurality of portions of the sample 116.
  • FIG. 11A is a graph output when the area of the shaded area is calculated as an index. Note that the sidewall abnormality degree is set based on the relative value of the size of the area and the like.
  • the abnormality of the sidewall of the trench of the sample 116 can be grasped efficiently and with high accuracy. Further, it is possible to grasp the size of the abnormality on the side wall of the trench.
  • FIG. 11B is a graph output when the distance between CDs is calculated as an index.
  • the size of the side wall can be estimated by referring to the graph shown in FIG. 11B. This makes it possible to reduce the cost and time of process development.
  • the sidewall of the trench of the sample 116 is abnormal. Can be determined.
  • the present invention is not limited to the above-described embodiments, but includes various modifications.
  • the above-described embodiment is a detailed description of the configuration in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of each embodiment can be added, deleted, or replaced with another configuration.
  • the above-described respective configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them, for example, with an integrated circuit.
  • the present invention can also be realized by a program code of software that realizes the functions of the embodiments.
  • the storage medium recording the program code is provided to the computer, and the processor included in the computer reads the program code stored in the storage medium.
  • the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code itself and the storage medium storing the program code constitute the present invention.
  • a storage medium for supplying such a program code for example, a flexible disk, a CD-ROM, a DVD-ROM, a hard disk, an SSD (Solid State Drive), an optical disk, a magneto-optical disk, a CD-R, a magnetic tape, A non-volatile memory card, ROM or the like is used.
  • the program code that implements the functions described in this embodiment can be implemented in a wide range of programs or script languages such as assembler, C / C ++, perl, Shell, PHP, Python, and Java (registered trademark).
  • the program code is stored in a storage means such as a hard disk or a memory of a computer or a storage medium such as a CD-RW or a CD-R.
  • the processor included in the computer may read and execute the program code stored in the storage unit or the storage medium.
  • control lines and information lines are shown to be necessary for explanation, and not all the control lines and information lines in the product are necessarily shown. All configurations may be connected to each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

荷電粒子線を照射して凹凸部を有する試料の形状を計測する計測装置であって、試料に対して任意の角度で荷電粒子線を照射することによって、照射位置及び放出電子の強度の関係を示すプロファイルを生成し、二つのプロファイルを用いて、試料の形状を解析するための解析処理を実行する。

Description

計測装置及び試料の表面の計測方法 参照による取り込み
 本出願は、2018年10月9日に出願された日本特許出願第2018-190848号の優先権を主張し、その内容を参照することにより、本出願に取り込む。
 本発明は、荷電粒子線を用いて試料の形状を計測する装置及び方法に関する。
 半導体のプロセス開発では、エッチング処理が行われた試料のトレンチの深さ及びテーパ角、ノッチの有無を確認する必要がある。
 半導体等の試料の形状を計測する方法として、走査型電子顕微鏡を用いる方法が知られている。なお、以下の説明では、走査型電子顕微鏡をSEMとも記載する。
 前述の計測方法では、SEMが、試料に対して一次電子線を走査し、試料から放出される放出電子(オージェ電子、二次電子、及び反射電子等)を検出器を用いて検出する。検出器を用いて検出された放出電子に対応する放出方向の検出信号は、一定の周期でサンプリングされる。放出電子の信号のサンプリングは、走査信号に同期するように行われ、二次元画像の画素に対応した抽出信号が得られる。SEMは、抽出された信号の強度を明るさに変換することによって画像を生成し、又は、一次電子線の走査位置の座標及び明るさの関係から画像を生成する。
 例えば、特許文献1には、「試料が載置される試料ステージ及び鏡筒の一方を任意の傾斜角に設定することのできる走査型電子顕微鏡の偏向器を制御して前記試料ステージ上に載置された試料の測定部に電子ビームを照射し、前記測定部からの2次電子信号を画像処理し、この画像処理された信号に基づいて前記測定部のパターン形状を測定するパターン形状測定方法において、傾斜角を零にし、測定部に電子ビームを照射した時の2次電子信号を画像処理して前記測定部のパターンの底部寸法を算出する第1のステップと、傾斜角を第1の所定角度に設定し、測定部に電子ビームを照射した時の2次電子信号を画像処理して前記測定部のパターンのテーパ部の画素数を求める第2のステップと、傾斜角を前記第1の所定角度と異なる第2の所定角度に設定し、測定部に電子ビームを照射した時の2次電子信号を画像処理して前記テーパ部の画素数を求める第3のステップと、前記第2及び第3のステップによって求められた前記テーパ部の画素数、及び第1並びに第2の所定角度に基づいて前記パターンのテーパ角度及び深さを算出する第4のステップと、前記テーパ部の2次電子信号の強度の変化に基づいて前記テーパ部のプロファイルを求める第5のステップと、前記第1及び第5のステップによって求められたパターンの底部寸法及びテーパ部のプロファイルに基づいて前記測定パターンの表面積を算出する第6のステップとを備える」パターン形状測定方法が開示されている。
特開平3-233309号公報
 特許文献1では、試料の表面に対して傾斜した電子線を照射することによって得られるプロファイルの構造が考慮されていない。測定精度を向上させるためには、前述の構造を考慮する必要がある。また、特許文献1では、ノッチの有無を判定することができない。
 本発明は、効率的かつ高い精度で、試料の形状を計測することができる装置及び方法を提供する。
 本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、荷電粒子線を照射して凹凸部を有する試料の形状を計測する計測装置であって、前記荷電粒子線を出力する粒子源と、前記荷電粒子線を集束するレンズと、前記荷電粒子線を照射した前記試料から放出される放出電子の信号を検出する検出器と、前記荷電粒子線の出力及び前記放出電子の信号の検出を制御する制御装置と、を備え、前記制御装置は、前記試料に対して任意の角度で前記荷電粒子線を照射することによって、照射位置及び前記放出電子の強度の関係を示すプロファイルを生成し、二つの前記プロファイルを用いて、前記試料の形状を解析するための解析処理を実行し、前記解析処理の結果を出力する。
 本発明によれば、効率的かつ高い精度で、試料の形状を計測できる。上記した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。
実施例1の走査電子顕微鏡の構成の一例を示す図である。 実施例1の走査電子顕微鏡が実行する処理の一例を説明するフローチャートである。 実施例1の試料の形状及びラインプロファイルの関係性を示す図である。 実施例1の試料の形状及びラインプロファイルの関係性を示す図である。 実施例1の試料の形状及びラインプロファイルの関係性を示す図である。 実施例1の試料の形状及びラインプロファイルの関係性を示す図である。 実施例1の特徴量A(θ)の特性を説明する図である。 実施例1の特徴量A(θ)の特性を説明する図である。 実施例1の特徴量A(θ)の特性を説明する図である。 実施例1の走査電子顕微鏡が実行する解析処理の一例を説明するフローチャートである。 実施例2の走査電子顕微鏡の構成の一例を示す図である。 実施例2の走査電子顕微鏡が実行する処理の一例を説明するフローチャートである。 実施例2の走査電子顕微鏡が実行する解析処理の一例を説明するフローチャートである。 実施例2の試料のトレンチの側壁の形状及びラインプロファイルの関係性を示す図である。 実施例2の試料のトレンチの側壁の形状及びラインプロファイルの関係性を示す図である。 実施例2の試料のトレンチの側壁の形状及びラインプロファイルの関係性を示す図である。 実施例2の試料のトレンチの側壁の形状及びラインプロファイルの関係性を示す図である。 実施例2のノッチを有する試料のラインプロファイルの特性を示す図である。 実施例2のノッチを有する試料のラインプロファイルの特性を示す図である。 実施例2のノッチを有する試料のラインプロファイルの特性を示す図である。 実施例2の走査電子顕微鏡が出力する解析結果に含まれる情報の一例を示す図である。 実施例2の走査電子顕微鏡が出力する解析結果に含まれる情報の一例を示す図である。
 以下、本発明の実施例を、図面を用いて説明する。ただし、本発明は以下に示す実施例の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。
 以下に説明する発明の構成において、同一又は類似する構成又は機能には同一の符号を付し、重複する説明は省略する。
 本明細書等における「第1」、「第2」、「第3」等の表記は、構成要素を識別するために付するものであり、必ずしも、数又は順序を限定するものではない。
 図面等において示す各構成の位置、大きさ、形状、及び範囲等は、発明の理解を容易にするため、実際の位置、大きさ、形状、及び範囲等を表していない場合がある。したがって、本発明では、図面等に開示された位置、大きさ、形状、及び範囲等に限定されない。
 図1は、実施例1の走査電子顕微鏡10の構成の一例を示す図である。
 なお、実施例1では試料の形状の計測に使用する計測装置(荷電粒子線装置)の一例として走査電子顕微鏡10を用いているが、断続的な電子線を用いた電子顕微鏡でもよい。
 走査電子顕微鏡10は、電子光学系、ステージ機構系、SEM制御系、信号処理系、及びSEM操作系から構成される。より具体的には、走査電子顕微鏡10は、電子光学系及びステージ機構系を含む電子光学系鏡筒101、並びに、SEM制御系、信号処理系、及びSEM操作系を含む制御ユニット102から構成される。
 電子光学系は、電子銃111、偏向器113、対物レンズ115、及び検出器119から構成される。電子銃111は、一次電子線112を出力する。
 一次電子線112は、偏向器113及び対物レンズ115の通過時にフォーカス等が調整される。また、一次電子線112は、偏向器113の通過時に軌道が偏向され、試料116を二次元に走査する。一次電子線112が照射された試料116から放出された二次電子又は反射電子等の放出電子は、検出器119によって検出される。検出器119によって検出された放出電子の信号は、制御ユニット102によって処理される。一次電子線112の照射位置に対応した二次元画像は、例えば、出力装置125に表示される。
 ステージ機構系は、試料116を設置するステージを備える試料ホルダ117から構成される。ステージは、傾斜制御及び三次元方向(XYZ軸)の移動制御が可能である。実施例1の試料116は、エッチング加工等が行われた半導体等を想定する。また、試料116は、エッチング加工によるトレンチ等の凹凸を有するものとする。
 実施例1では、ステージを傾斜させることによって、試料116の表面の垂線に対して任意の角度で傾斜した一次電子線112の照射を実現する。なお、電子銃111の向きを調整又は偏向器113による偏向等によって、前述の一次電子線112の照射を実現してもよい。
 制御ユニット102は、演算装置121、記憶装置122、走査信号制御装置123、入力装置124、及び出力装置125を有する。なお、制御ユニット102は、HDD(Hard Disk Drive)及びSSD(Solid State Drive)等の記憶媒体を含んでもよい。
 演算装置121は、記憶装置122に格納されるプログラムにしたがって、所定の演算処理を実行する。演算装置121は、例えば、CPU(Central Processing Unit)及びGPU(Graphics Processing Unit)等が考えられる。
 記憶装置122は、演算装置121が実行するプログラム及び当該プログラムが使用するデータを格納する。また、記憶装置122は、プログラムが使用するワークエリア等の一時記憶領域を含む。記憶装置122は、例えば、メモリ等が考えられる。記憶装置122に格納されるプログラム及びデータについては後述する。
 走査信号制御装置123は、走査電子線の走査速度を制御する。例えば、走査信号制御装置123は、偏向器113と通信可能なように接続される。
 入力装置124は、データの入力を行う装置であり、キーボード、マウス、及びタッチパネル等を含む。また、出力装置125は、データの出力を行う装置であり、タッチパネル及びディスプレイ等を含む。
 記憶装置122は、制御モジュール131を実現するプログラムを格納する。また、記憶装置122は、ラインプロファイル情報132を格納する。
 なお、記憶装置122は、図示しないプログラム及び情報を格納してもよい。例えば、記憶装置122は、加速電圧、照射電流、走査幅(照射時間)、ピクセルスプリット数(照射周期)、及びタイミングディレイ等の計測条件を管理する計測条件情報を格納してもよい。また、記憶装置122は、検出された放出電子から生成された電位コントラスト像等の電子顕微鏡像を管理する画像管理情報を格納してもよい。
 制御モジュール131は、電子光学系鏡筒101の各構成部品を制御する。また、制御モジュール131は、二次電子の信号から画像を生成する。なお、制御ユニット102は、制御モジュール131とは別に、画像を生成する画像生成モジュールを有してもよい。
 ラインプロファイル情報132は、ラインプロファイルを管理するための情報である。ラインプロファイルは、画素及び画素におけるコントラストの強度(放出電子の信号の強度)を対応づけた情報であり、また、試料116の形状を示す情報である。本実施例のラインプロファイルは、二次電子から生成される電子顕微鏡像の画像に基づいて生成される。
 本実施例では、SEM制御系は制御モジュール131及び走査信号制御装置123から構成され、信号処理系は制御モジュール131から構成され、SEM操作系は入力装置124及び出力装置125から構成される。
 図2は、実施例1の走査電子顕微鏡10が実行する処理の一例を説明するフローチャートである。図3A、図3B、図3C、及び図3Dは、実施例1の試料116の形状及びラインプロファイルの関係性を示す図である。図4A、図4B、及び図4Cは、実施例1の特徴量A(θ)の特性を説明する図である。
 走査電子顕微鏡10は、ユーザから開始要求を受信した場合、又は、計測条件を満たした場合、以下で説明する処理を開始する。
 走査電子顕微鏡10は、試料116が形成する平面に垂直な方向に対して、一次電子線112を入射する角度θを設定する(ステップS101)。
 具体的には、制御モジュール131が角度θを設定する。角度θは、計測条件情報に基づいて設定してもよいし、また、ユーザからの入力に基づいて設定してもよい。このとき、走査信号制御装置123は、角度θに基づいてステージを制御する。
 次に、走査電子顕微鏡10は、一次電子線112を試料116に対して照射する(ステップS102)。このとき、検出器119は、試料116から放出された放出電子を検出し、制御ユニット102に放出電子の信号を出力する。制御ユニット102の制御モジュール131は、角度θと放出電子の信号とを対応づけた検出データを記憶装置122に格納する。
 次に、走査電子顕微鏡10は、放出電子の信号を用いた画像処理を実行する(ステップS103)。
 例えば、制御モジュール131が、一定の時間範囲に検出された放出電子の信号を用いて電子顕微鏡像を生成する。すなわち、試料116の一部分の形状を示す電子顕微鏡像が生成される。このとき、制御モジュール131は、複数の電子顕微鏡像を結合することによって一つの画像を生成する。
 次に、走査電子顕微鏡10は、画像が適切であるか否かを判定する(ステップS104)。
 例えば、制御モジュール131は、結合された電子顕微鏡像の向きが一致しているか否かを判定する。結合された電子顕微鏡像の向きが一致している場合、制御モジュール131は、画像が適切であると判定する。
 画像が適切でないと判定された場合、走査電子顕微鏡10は、ステップS102に戻り、同様の処理を実行する。なお、走査電子顕微鏡10は、ステップS103に戻ってもよい。
 画像が適切であると判定された場合、走査電子顕微鏡10は、画像を用いてラインプロファイルを生成する(ステップS105)。
 具体的には、制御モジュール131が、画像を用いてラインプロファイルを生成する。また、制御モジュール131は、角度θ及びラインプロファイルを対応づけた情報を、ラインプロファイル情報132として記憶装置122に格納する。
 例えば、図3Aに示すような表面の形状の場合、図3Bに示すようなラインプロファイルが生成される。また、図3Cに示すような表面の形状の場合、図3Dに示すようなラインプロファイルが生成される。なお、図3Aは、角度θが0度で一次電子線112を照射した状態を示し、図3Cは、0度より大きい角度θで一次電子線112を照射した状態を示す。
 また、制御モジュール131は、ラインプロファイルにおいて、信号強度の増加率が第1の閾値より大きくなる点から信号強度の最大値を経由して、信号強度が最小値となる点までの範囲を、テーパ幅として算出する。第1の閾値は予め設定されているものとする。前述の定義を満たす範囲が複数存在する場合、最も大きい範囲がテーパ幅として算出される。
 なお、信号強度が最小値より大きくなる点から信号強度の最大値を経由し、信号強度の最大値からの信号強度の減少率が変化する点までの範囲は、上記定義のテーパ幅と等価な範囲である。
 特許文献1等の従来技術では、最小値及から最大値までの範囲をテーパ幅として設定している。しかし、試料116の表面の垂線に対して傾斜させた一次電子線112を照射した場合、図3Dに示すラインプロファイルが生成される。当該ラインプロファイルでは右側の最大値を定めることが可能だが、最大値近くに極大値もある。走査電子顕微鏡10及び試料116の条件によっては試料表面における帯電等の影響で最大値と極大値の関係が反転することがあり、従来技術ではテーパ幅を見誤るおそれがある。そこで、実施例1では、当該構造を考慮し、前述の範囲をテーパ幅として設定することで、計測精度を向上させることができる。
 実施例1では、図3Aに示すように、トレンチの開口部から底部に向けて細くなるテーパを順テーパと定義し、トレンチの開口部から底部に向けて太くなるテーパを逆テーパと定義する。また、図3Aに示すように、底面と側壁とがなす角をテーパ角と定義する。順テーパの場合、テーパ角は90度より小さく、逆テーパの場合、テーパ角は90度より大きい。
 次に、走査電子顕微鏡10は、特徴量A(θ)を算出できるか否かを判定する(ステップS106)。
 具体的には、制御モジュール131は、角度θが異なるラインプロファイル情報132が二つ存在するか否かを判定する。角度θが異なるラインプロファイル情報132が二つ存在しないと判定された場合、制御モジュール131は、特徴量A(θ)を算出できないと判定する。
 特徴量A(θ)を算出できないと判定された場合、走査電子顕微鏡10は、ステップS101に戻り、同様の処理を実行する。
 特徴量A(θ)を算出できると判定された場合、走査電子顕微鏡10は、特徴量A(θ)を算出する(ステップS107)。
 具体的には、走査電子顕微鏡10は、二つのラインプロファイルのテーパ幅Ta_1、Ta_2を式(1)に代入することによって特徴量A(θ)を算出する。なお、特徴量A(θ)は角度を変数とする関数である。
Figure JPOXMLDOC01-appb-M000001
 Ta_1は角度θがθ1であるラインプロファイルのテーパ幅を表し、Ta_2は角度θがθ2であるラインプロファイルのテーパ幅を表す。なお、θ1はθ2より大きい。
 ここで、図4A、図4B、及び図4Cを用いて特徴量A(θ)と試料116の形状との関係性について説明する。
 特徴量A(θ)が0以上となる角度の絶対値はトレンチのテーパ角に対応する。また、特徴量A(θ)の傾きはトレンチの深さを表す。
 試料116のトレンチの形状が順テーパである場合、特徴量A(θ)は図4Aに示すようになる。試料116のトレンチの形状がテーパを形成しない場合、特徴量A(θ)は図4Bに示すようになる。試料116のトレンチの形状が逆テーパである場合、特徴量A(θ)は図4Cに示すようになる。このように、トレンチの形状が逆テーパの場合、傾斜角は正の値となり、トレンチの形状が順テーパの場合、傾斜角は負の値となる。
 図2の説明に戻る。
 次に、走査電子顕微鏡10は、特徴量A(θ)が閾値(第2の閾値)より大きいか否かを判定する(ステップS108)。ステップS108の処理は、特徴量A(θ)が有意な値であるか否かを判定するための処理である。なお、第2の閾値は予め設定されているものとする。
 特徴量A(θ)が第2の閾値以下であると判定された場合、走査電子顕微鏡10は、ステップS101に戻り、同様の処理を実行する。このとき、制御モジュール131は、記憶装置122に格納される二つのラインプロファイル情報132を削除してもよいし、いずれか一つのラインプロファイル情報132を削除してもよい。
 特徴量A(θ)が第2の閾値より大きいと判定された場合、走査電子顕微鏡10は解析処理を実行する(ステップS109)。解析処理の詳細は図5を用いて説明する。
 次に、走査電子顕微鏡10は、解析結果を出力し(ステップS110)、処理を終了する。
 具体的には、制御モジュール131は、解析結果を表示するための表示情報を生成し、出力装置125に表示情報を出力する。
 図5は、実施例1の走査電子顕微鏡10が実行する解析処理の一例を説明するフローチャートである。
 制御モジュール131は、式(2)に特徴量A(θ)及びθ1を代入することによって、トレンチの深さwを算出する(ステップS201)。
Figure JPOXMLDOC01-appb-M000002
 次に、制御モジュール131は、特徴量A(θ)、θ1、及びトレンチの深さwを用いてテーパ角を算出する(ステップS202)。ここで、テーパ角の算出方法について説明する。
 図4A、図4B、及び図4Cに示すように、テーパ角は、式(3)に示すように傾きwの直線と角度の軸との交点の絶対値として求めることができる。
Figure JPOXMLDOC01-appb-M000003
 そこで、制御モジュール131は、式(3)に特徴量A(θ)、θ1、及びトレンチの深さwを代入して、定数bを算出する。さらに、制御モジュール131は、式(3)に基づいてA(θ)が0となるθ(傾斜角)を算出し、当該絶対値をテーパ角として算出する。
 前述のように、実施例1では、テーパの種類の違いにかかわらず、テーパ角を算出できる。以上が、テーパ角の算出方法の説明である。
 次に、制御モジュール131は、傾斜角に基づいて、トレンチの形状が順テーパであるか否かを判定する(ステップS203)。
 具体的には、制御モジュール131は傾斜角が0度より小さいか否かを判定する。テーパ角が0度より小さい場合、制御モジュール131は、トレンチの形状が順テーパであると判定する。
 トレンチの形状が順テーパであると判定された場合、制御モジュール131はステップS205に進む。
 トレンチの形状が順テーパでないと判定された場合、制御モジュール131は、傾斜角に基づいて、トレンチの形状が逆テーパであるか否かを判定する(ステップS204)。
 具体的には、制御モジュール131は傾斜角が0度より大きいか否かを判定する。テーパ角が0度より大きい場合、制御モジュール131は、トレンチの形状が逆テーパであると判定する。
 トレンチの形状が逆テーパであると判定された場合、制御モジュール131はステップS205に進む。
 トレンチの形状が逆テーパでない、すなわち、テーパを有さないと判定された場合、制御モジュール131はステップS205に進む。
 ステップS205では、制御モジュール131は解析結果を生成する(ステップS205)。その後、制御モジュール131は解析処理を終了する。
 例えば、制御モジュール131は、テーパ角、テーパ幅、及びテーパの種類を含む情報を解析結果として生成する。解析結果にはラインプロファイル及び画像が含まれてもよい。
 実施例1によれば、試料116の表面の垂線に対して傾斜した一次電子線112を照射して得られた二つのラインプロファイルを用いることによって、トレンチの異常を判定することができる。
 試料116を計測するために、試料116の加工等の作業が不要であるため、プロセス開発の効率の向上及びコストの削減を実現できる。また、角度が異なる画像を三つ以上取得する必要がないため、処理コストを低減することができる。
 実施例2では、試料116の表面の垂線に対して傾斜した一次電子線112を照射して得られたラインプロファイルを用いて、トレンチの側壁の異常を判定する。以下、実施例1との差異を中心に、実施例2について説明する。
 図6は、実施例2の走査電子顕微鏡10の構成の一例を示す図である。
 実施例2の走査電子顕微鏡10は電子光学系鏡筒101及び制御ユニット102から構成される。電子光学系鏡筒101の構成は実施例1と同一である。制御ユニット102のハードウェア構成は実施例1と同一である。
 実施例2では、制御ユニット102のソフトウェア構成が一部異なる。具体的には、記憶装置122は、比較用ラインプロファイル情報133を保持する。
 比較用ラインプロファイル情報133は、トレンチの側壁が正常である試料116から得られたラインプロファイルを管理するための情報である。比較用ラインプロファイル情報133は、角度及びラインプロファイルを対応づけたデータを含む。実施例2では、予め、正常な試料116のラインプロファイルを比較用ラインプロファイルとして格納する。
 なお、比較用ラインプロファイルは、実際の計測結果に基づいて生成されてもよいし、また、シミュレーションの結果に基づいて生成されてもよい。
 その他の構成は実施例1と同一である。
 図7は、実施例2の走査電子顕微鏡10が実行する処理の一例を説明するフローチャートである。
 ステップS101からステップS105までの処理、及びステップS110の処理は実施例1で説明した処理と同一である。
 ステップS105の処理が実行された後、走査電子顕微鏡10は解析処理を実行する(ステップS115)。解析処理の詳細は図8を用いて説明する。
 図8は、実施例2の走査電子顕微鏡10が実行する解析処理の一例を説明するフローチャートである。図9A、図9B、図9C、及び図9Dは、実施例2の試料116のトレンチの側壁の形状及びラインプロファイルの関係性を示す図である。図10A、図10B、及び図10Cは、実施例2のノッチを有する試料116のラインプロファイルの特性を示す図である。図11A及び図11Bは、実施例2の走査電子顕微鏡10が出力する解析結果に含まれる情報の一例を示す図である。
 制御モジュール131は、一つのラインプロファイル情報132のラインプロファイルと、比較用ラインプロファイル情報133のラインプロファイルとを比較する(ステップS301)。
 具体的には、制御モジュール131は、比較用ラインプロファイル情報133を参照し、ステップS101において設定された角度θに対応する比較用ラインプロファイルを取得する。制御モジュール131は、取得した比較用ラインプロファイルと、ステップS105において生成されたラインプロファイルとを比較する。
 制御モジュール131は、二つのラインプロファイルの形状が異なるか否かを判定する(ステップS302)。
 ここで、ラインプロファイルの形状の比較について説明する。
 図9A及び図9Cは試料116の一例を示す。なお、試料116の素材が異なる部分は、パターンを用いて区別している。
 図9B及び図9Dはラインプロファイルの一例を示す。なお、ラインプロファイルの棒グラフ901は、一次電子線112が照射された試料116の面を表す。
 図9Aに示すように、側壁にノッチが存在しないトレンチ部分に一次電子線112を照射した場合、図9Bに示すようなラインプロファイルが得られる。図9Cに示すように、側壁にノッチが存在するトレンチ部分に一次電子線112を照射した場合、図9Dに示すようなラインプロファイルが得られる。
 図9B及び図9Dに示すように、ノッチが存在する試料116から得られたラインプロファイルは、正常な試料116からえら得たラインプロファイルと相違する部分が存在する。
 制御モジュール131は、二つのラインプロファイルの比較結果に基づいて、相違する部分が存在するか否かを判定する。相違する部分が存在する場合、制御モジュール131は、二つのラインプロファイルの形状が異なると判定する。なお、信号強度の大きさの違いは考慮されない。
 二つのラインプロファイルの形状が一致すると判定された場合、制御モジュール131はステップS304に進む。
 二つのラインプロファイルの形状が異なると判定された場合、制御モジュール131は、異常の程度を示す指標を算出する(ステップS303)。その後、制御モジュール131はステップS304に進む。
 ここで、図10A、図10B、及び図10Cを用いて、算出される指標について説明する。
 図10A、図10B、及び図10Cは、部分902を拡大した図である。なお、点線は比較用ラインプロファイルを示す。図に示すように、ノッチの大きさに応じて、比較用ラインプロファイルとの相違の大きさが異なる。すなわち、ノッチが大きいほど斜線部分(領域ABE)及び点線部分(領域ECD)の極値が大きくなり、また、斜線部分及び点線部分が大きくなる。
 そこで、制御モジュール131は、斜線部分の面積又はCD間の距離等を指標として算出する。以上が異常の程度を示す指標の説明である。
 ステップS304では、制御モジュール131は解析結果を生成する(ステップS304)。その後、制御モジュール131は解析処理を終了する。
 例えば、制御モジュール131は、ノッチの有無及び指標を含む情報を解析結果として生成する。解析結果にはラインプロファイル及び画像が含まれてもよい。なお、試料116の複数の箇所に対して解析処理を実行することによって、図11A及び図11Bに示すようなグラフを含む解析結果を出力してもよい。
 図11Aは、斜線部分の面積が指標として算出された場合に出力されるグラフである。なお、側壁異常度は、面積の大きさの相対値等に基づいて設定されているものとする。
 図11Aに示すグラフを参照することによって、効率的かつ高い精度で試料116のトレンチの側壁の異常を把握できる。また、トレンチの側壁の異常の大きさも把握することができる。
 図11Bは、CD間の距離が指標として算出された場合に出力されるグラフである。図11Bに示すグラフを参照することによって、側壁の大きさを見積もることができる。これによって、プロセス開発のコスト及び時間の削減が可能となる。
 実施例2によれば、試料116の表面の垂線に対して傾斜した一次電子線112を照射して得られたラインプロファイル及び比較用ラインプロファイルを比較することによって、試料116のトレンチの側壁の異常を判定することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。また、例えば、上記した実施例は本発明を分かりやすく説明するために構成を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成に追加、削除、置換することが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、本発明は、実施例の機能を実現するソフトウェアのプログラムコードによっても実現できる。この場合、プログラムコードを記録した記憶媒体をコンピュータに提供し、そのコンピュータが備えるプロセッサが記憶媒体に格納されたプログラムコードを読み出す。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施例の機能を実現することになり、そのプログラムコード自体、及びそれを記憶した記憶媒体は本発明を構成することになる。このようなプログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、CD-ROM、DVD-ROM、ハードディスク、SSD(Solid State Drive)、光ディスク、光磁気ディスク、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。
 また、本実施例に記載の機能を実現するプログラムコードは、例えば、アセンブラ、C/C++、perl、Shell、PHP、Python、Java(登録商標)等の広範囲のプログラム又はスクリプト言語で実装できる。
 さらに、実施例の機能を実現するソフトウェアのプログラムコードを、ネットワークを介して配信することによって、それをコンピュータのハードディスクやメモリ等の記憶手段又はCD-RW、CD-R等の記憶媒体に格納し、コンピュータが備えるプロセッサが当該記憶手段や当該記憶媒体に格納されたプログラムコードを読み出して実行するようにしてもよい。
 上述の実施例において、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていてもよい。

Claims (12)

  1.  荷電粒子線を照射して凹凸部を有する試料の形状を計測する計測装置であって、
     前記荷電粒子線を出力する粒子源と、
     前記荷電粒子線を集束するレンズと、
     前記荷電粒子線を照射した前記試料から放出される放出電子の信号を検出する検出器と、
     前記荷電粒子線の出力及び前記放出電子の信号の検出を制御する制御装置と、を備え、
     前記制御装置は、
     前記試料に対して任意の角度で前記荷電粒子線を照射することによって、照射位置及び前記放出電子の強度の関係を示すプロファイルを生成し、
     二つの前記プロファイルを用いて、前記試料の形状を解析するための解析処理を実行し、
     前記解析処理の結果を出力することを特徴とする計測装置。
  2.  請求項1に記載の計測装置であって、
     前記制御装置は、
     第1の角度で前記荷電粒子線を前記試料に対して照射することによって、第1のプロファイルを生成し、
     第2の角度で前記荷電粒子線を前記試料に対して照射することによって、第2のプロファイルを生成し、
     前記第1のプロファイルにおける、信号強度の増加率が第1の閾値より大きくなる点から信号強度の最大値を経由して、信号強度が最小値となる点までの範囲を第1のテーパ幅として算出し、
     前記第2のプロファイルにおける、信号強度の増加率が前記第1の閾値より大きくなる点から信号強度の最大値を経由して、信号強度が最小値となる点までの範囲を第2のテーパ幅として算出し、
     前記第1のテーパ幅及び前記第2のテーパ幅に基づいて、前記凹凸部のテーパ幅及び深さに関連する特徴量を算出し、
     前記特徴量に基づいて、前記凹凸部のテーパ幅及び深さを算出し、
     前記凹凸部のテーパ幅及び深さを含む前記解析処理の結果を出力することを特徴とする計測装置。
  3.  請求項2に記載の計測装置であって、
     前記制御装置は、
     前記特徴量に基づいて、前記凹凸部のテーパの種別を特定し、
     前記凹凸部のテーパの種別を含む前記解析処理の結果を出力することを特徴とする計測装置。
  4.  請求項1に記載の計測装置であって、
     前記制御装置は、
     角度に対応づけられる比較用プロファイルを格納する比較用プロファイル情報を管理し、
     第3の角度で前記荷電粒子線を前記試料に対して照射することによって、第3のプロファイルを生成し、
     前記第3の角度に対応づけられる前記比較用プロファイル及び前記第3のプロファイルを比較することによって、前記凹凸部の側壁の異常の有無を判定し、
     前記凹凸部の側壁の異常の有無に関する情報を含む前記解析処理の結果を出力することを特徴とする計測装置。
  5.  請求項4に記載の計測装置であって、
     前記制御装置は、前記第3のプロファイルの形状が、前記第3の角度に対応づけられる前記比較用プロファイルの形状と異なる場合、前記凹凸部の側壁に異常があると判定することを特徴とする計測装置。
  6.  請求項5に記載の計測装置であって、
     前記制御装置は、
     前記凹凸部の側壁に異常があると判定された場合、前記第3のプロファイルの形状及び前記第3の角度に対応づけられる前記比較用プロファイルの形状の違いを示す値を、前記凹凸部の側壁の異常の大きさを示す指標として算出し、
     前記指標を含む前記解析処理の結果を出力することを特徴とする計測装置。
  7.  荷電粒子線を照射して凹凸部を有する試料の形状を計測する計測装置が実行する試料の計測方法であって、
     前記荷電粒子線を出力する粒子源と、
     前記荷電粒子線を集束するレンズと、
     前記荷電粒子線を照射した前記試料から放出される放出電子の信号を検出する検出器と、
     前記荷電粒子線の出力及び前記放出電子の信号の検出を制御する制御装置と、を有し、
     前記試料の計測方法は、
     前記制御装置が、前記試料に対して任意の角度で前記荷電粒子線を照射することによって、照射位置及び前記放出電子の強度の関係を示すプロファイルを生成する第1のステップと、
     前記制御装置が、二つの前記プロファイルを用いて、前記試料の形状を解析するための解析処理を実行する第2のステップと、
     前記制御装置が、前記解析処理の結果を出力する第3のステップと、を含むことを特徴とする試料の計測方法。
  8.  請求項7に記載の試料の計測方法であって、
     前記第1のステップは、
     前記制御装置が、第1の角度で前記荷電粒子線を前記試料に対して照射することによって、第1のプロファイルを生成するステップと、
     前記制御装置が、第2の角度で前記荷電粒子線を前記試料に対して照射することによって、第2のプロファイルを生成するステップと、を含み、
     前記第2のステップは、
     前記制御装置が、前記第1のプロファイルにおける、信号強度の増加率が第1の閾値より大きくなる点から信号強度の最大値を経由して、信号強度が最小値となる点までの範囲を第1のテーパ幅として算出するステップと、
     前記制御装置が、前記第2のプロファイルにおける、信号強度の増加率が前記第1の閾値より大きくなる点から信号強度の最大値を経由して、信号強度が最小値となる点までの範囲を第2のテーパ幅として算出するステップと、
     前記制御装置が、前記第1のテーパ幅及び前記第2のテーパ幅に基づいて、前記凹凸部のテーパ幅及び深さに関連する特徴量を算出するステップと、
     前記制御装置が、前記特徴量に基づいて、前記凹凸部のテーパ幅及び深さを算出するステップと、を含み、
     前記第3のステップは、前記制御装置が、前記凹凸部のテーパ幅及び深さを含む前記解析処理の結果を出力するステップを含むことを特徴とする試料の計測方法。
  9.  請求項8に記載の試料の計測方法であって、
     前記第2のステップは、前記制御装置が、前記特徴量に基づいて、前記凹凸部のテーパの種別を特定するステップを含み、
     前記第3のステップは、前記制御装置が、前記凹凸部のテーパの種別を含む前記解析処理の結果を出力するステップを含むことを特徴とする試料の計測方法。
  10.  請求項7に記載の試料の計測方法であって、
     前記制御装置は、角度に対応づけられる比較用プロファイルを格納する比較用プロファイル情報を管理し、
     前記第1のステップは、前記制御装置が、第3の角度で前記荷電粒子線を前記試料に対して照射することによって、第3のプロファイルを生成するステップを含み、
     前記第2のステップは、前記制御装置が、前記第3の角度に対応づけられる前記比較用プロファイル及び前記第3のプロファイルを比較することによって、前記凹凸部の側壁の異常の有無を判定するステップを含み、
     前記第3のステップは、前記制御装置が、前記凹凸部の側壁の異常の有無に関する情報を含む前記解析処理の結果を出力するステップを含むことを特徴とする試料の計測方法。
  11.  請求項10に記載の試料の計測方法であって、
     前記第2のステップでは、前記第3のプロファイルの形状が、前記第3の角度に対応づけられる前記比較用プロファイルの形状と異なる場合、前記制御装置が、前記凹凸部の側壁に異常があると判定することを特徴とする試料の計測方法。
  12.  請求項11に記載の試料の計測方法であって、
     前記第2のステップは、前記制御装置が、前記凹凸部の側壁に異常があると判定された場合、前記第3のプロファイルの形状及び前記第3の角度に対応づけられる前記比較用プロファイルの形状の違いを示す値を、前記凹凸部の側壁の異常の大きさを示す指標として算出するステップを含み、
     前記第3のステップは、前記制御装置が、前記指標を含む前記解析処理の結果を出力するステップを含むことを特徴とする試料の計測方法。
PCT/JP2019/031904 2018-10-09 2019-08-14 計測装置及び試料の表面の計測方法 WO2020075385A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018190848A JP7120873B2 (ja) 2018-10-09 2018-10-09 計測装置及び試料の表面の計測方法
JP2018-190848 2018-10-09

Publications (1)

Publication Number Publication Date
WO2020075385A1 true WO2020075385A1 (ja) 2020-04-16

Family

ID=70164268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031904 WO2020075385A1 (ja) 2018-10-09 2019-08-14 計測装置及び試料の表面の計測方法

Country Status (2)

Country Link
JP (1) JP7120873B2 (ja)
WO (1) WO2020075385A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083548A1 (ja) * 2013-12-02 2015-06-11 株式会社日立ハイテクノロジーズ 走査電子顕微鏡システム及びそれを用いたパターン計測方法並びに走査電子顕微鏡
JP2017016791A (ja) * 2015-06-29 2017-01-19 株式会社東芝 計測装置、計測方法および半導体装置の製造方法
JP2017062174A (ja) * 2015-09-25 2017-03-30 株式会社日立ハイテクノロジーズ 荷電粒子線装置及びパターン測定装置
US20170102343A1 (en) * 2015-10-08 2017-04-13 Samsung Electronics Co., Ltd. Apparatus for measuring semiconductor device
WO2017179138A1 (ja) * 2016-04-13 2017-10-19 株式会社 日立ハイテクノロジーズ パターン計測装置およびパターン計測方法
WO2018052083A1 (ja) * 2016-09-14 2018-03-22 株式会社日立ハイテクノロジーズ 電子顕微鏡装置及びそれを用いた傾斜ホールの測定方法
JP2019087518A (ja) * 2017-11-10 2019-06-06 株式会社日立ハイテクノロジーズ パターン計測装置および計測方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311551A (ja) * 1988-06-08 1989-12-15 Toshiba Corp パターン形状測定装置
JPH02199755A (ja) * 1989-01-30 1990-08-08 Hitachi Ltd 試料表面観察方法および観察装置
JP4270229B2 (ja) * 2001-07-12 2009-05-27 株式会社日立製作所 荷電粒子線装置
JP2003065743A (ja) * 2001-08-29 2003-03-05 Hitachi Ltd 試料凹凸判定方法
JP4057928B2 (ja) * 2003-02-12 2008-03-05 株式会社日立ハイテクノロジーズ 半導体パターン評価システム
JP4585822B2 (ja) * 2004-09-22 2010-11-24 株式会社日立ハイテクノロジーズ 寸法計測方法及びその装置
WO2011013342A1 (ja) * 2009-07-27 2011-02-03 株式会社日立ハイテクノロジーズ パターン評価方法、その装置、及び電子線装置
JP5546290B2 (ja) * 2010-03-02 2014-07-09 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び荷電粒子線を用いた測長方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083548A1 (ja) * 2013-12-02 2015-06-11 株式会社日立ハイテクノロジーズ 走査電子顕微鏡システム及びそれを用いたパターン計測方法並びに走査電子顕微鏡
JP2017016791A (ja) * 2015-06-29 2017-01-19 株式会社東芝 計測装置、計測方法および半導体装置の製造方法
JP2017062174A (ja) * 2015-09-25 2017-03-30 株式会社日立ハイテクノロジーズ 荷電粒子線装置及びパターン測定装置
US20170102343A1 (en) * 2015-10-08 2017-04-13 Samsung Electronics Co., Ltd. Apparatus for measuring semiconductor device
WO2017179138A1 (ja) * 2016-04-13 2017-10-19 株式会社 日立ハイテクノロジーズ パターン計測装置およびパターン計測方法
WO2018052083A1 (ja) * 2016-09-14 2018-03-22 株式会社日立ハイテクノロジーズ 電子顕微鏡装置及びそれを用いた傾斜ホールの測定方法
JP2019087518A (ja) * 2017-11-10 2019-06-06 株式会社日立ハイテクノロジーズ パターン計測装置および計測方法

Also Published As

Publication number Publication date
JP7120873B2 (ja) 2022-08-17
JP2020061240A (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
US7230243B2 (en) Method and apparatus for measuring three-dimensional shape of specimen by using SEM
TW201824329A (zh) 帶電粒子束裝置和控制方法
US11211226B2 (en) Pattern cross-sectional shape estimation system and program
JP4129439B2 (ja) 画像処理方法および画像処理装置
WO2020075385A1 (ja) 計測装置及び試料の表面の計測方法
TWI709155B (zh) 帶電粒子線裝置,截面形狀推定程式
JP3959379B2 (ja) 形状測定装置及び形状測定方法
JP5317556B2 (ja) 電子線回折像の解析方法及び透過型電子顕微鏡
JP5589089B2 (ja) パターンの判定装置、及びコンピュータプログラム
KR20190143458A (ko) 반도체 웨이퍼들을 검사하기 위한 기법
WO2012053650A1 (ja) 形状計測方法およびそのシステム
JP7091263B2 (ja) 電子顕微鏡及び3次元構造の深さ算出方法
JP4783629B2 (ja) エッジ検出方法およびエッジ検出装置
JP2008241569A (ja) 画像処理装置、画像処理方法および画像処理プログラム
JP7260675B2 (ja) パターン検査装置
WO2022070498A1 (ja) 荷電粒子線装置及びそれを用いる試料観察方法
JP6101445B2 (ja) 信号処理装置及び荷電粒子線装置
US11355304B2 (en) Electronic microscope device
JP2020144995A (ja) 画像歪みの除去方法
JP2024008451A (ja) 荷電粒子線装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870880

Country of ref document: EP

Kind code of ref document: A1