WO2020073863A1 - 一种冰箱 - Google Patents

一种冰箱 Download PDF

Info

Publication number
WO2020073863A1
WO2020073863A1 PCT/CN2019/109309 CN2019109309W WO2020073863A1 WO 2020073863 A1 WO2020073863 A1 WO 2020073863A1 CN 2019109309 W CN2019109309 W CN 2019109309W WO 2020073863 A1 WO2020073863 A1 WO 2020073863A1
Authority
WO
WIPO (PCT)
Prior art keywords
rib
partition
ribs
refrigerator
wall
Prior art date
Application number
PCT/CN2019/109309
Other languages
English (en)
French (fr)
Inventor
賢宏片桐
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Aqua株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司, Aqua株式会社 filed Critical 青岛海尔电冰箱有限公司
Priority to CN201980055146.7A priority Critical patent/CN112639380B/zh
Publication of WO2020073863A1 publication Critical patent/WO2020073863A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts

Definitions

  • the present invention relates to a refrigerator in which an evaporator is disposed in contact with an inner shell, and includes an inner surface of the inner shell in contact with the evaporator and a gas passage formed by opposed partition plates.
  • refrigerators like a wine cellar that keeps a large-capacity compartment at a constant temperature.
  • Such refrigerators have been developed to improve cooling efficiency and reduce power consumption to cool a large number of items.
  • a refrigerator is designed in which an evaporator for cooling is provided in contact with an inner case, and a gas passage (air passage) is defined by a partition.
  • the gas is forced convection by the fan and cooled by the evaporator when passing through the channel.
  • Patent Document 1 JP 2001-82846A describes a refrigerator in which, in order to increase the area where the gas contacts the cooling surface required for heat exchange, a high thermal conductivity defining an air passage is provided on the opposite side of the inner wall where the evaporator contacts When the gas passes through the gas channel, the gas is cooled by the separator and the evaporator.
  • Patent Document 1 since the refrigerator of Patent Document 1 is provided with a linear partition parallel to the air flow from the top to the bottom, the wind from the fan flows in a straight line, and the time for the gas to be cooled by the evaporator and the partition is short. Therefore, the gas cannot be sufficiently cooled.
  • an object of the present invention is to provide a refrigerator that increases the gas cooling time and increases the amount of heat exchange by increasing the length of the gas passage in contact with the evaporator and disturbing the air flow.
  • an object of the present invention is to provide a refrigerator that improves cooling efficiency and reduces power consumption.
  • a refrigerator of the present invention is characterized by comprising: an inner shell serving as a storage chamber; an evaporator pipe in contact with the outer surface of the inner shell; a partition plate, inside the storage chamber, along with the The inner surface of the inner shell area contacted by the evaporator duct is provided; a fan is used to send gas into a channel formed between the inner surface and the partition plate; wherein the channel makes the gas meander flow .
  • a gas passage is formed so that the gas flows meanderingly, so that the length of the passage can be increased and the airflow can be disturbed.
  • the refrigerator of the present invention can extend the cooling time and increase the amount of heat exchange by increasing the length of the gas passage and disturbing the airflow.
  • the refrigerator of the present invention can effectively cool the refrigerator by increasing the amount of heat exchange, and can reduce power consumption.
  • the present invention is characterized in that a rib facing the inner surface of the inner shell is provided on the channel surface of the partition; outer walls are provided at the left and right ends of the partition; one end of the rib is connected to the partition The outer wall of one side of the rib; the other end of the rib ends before connecting to the outer wall of the other side of the partition; the height of the other end of the rib is lower than the height of one end of the rib; wherein the gas flows from the bottom to top.
  • the channel length can be greatly increased.
  • the gas cooled by the evaporator may frost or dew on the ribs, but the refrigerator of the present invention may utilize the inclination of the ribs to incline the ribs to promote the drop of water droplets during defrosting.
  • the present invention is characterized in that the rib includes a first rib extending from the one side outer wall of the separator and a second rib extending from the other side outer wall of the separator; the first A rib and the second rib are alternately arranged in the vertical direction; the end of the first rib is arranged closer to the one side outer wall than the end of the second rib.
  • the refrigerator of the present invention can prevent the air from the fan from being blocked too much by the ribs by preventing the ribs from overlapping in the vertical direction.
  • the refrigerator of the present invention can prevent gas pressure loss and allow gas to flow efficiently.
  • the present invention is characterized in that, in the direction in which the storage chamber and the partition face each other, the gap between the front end of the rib and the inner surface is 4.0 mm to 6.0 mm.
  • the refrigerator of the present invention even if there are some dimensional changes, when the partition is assembled to the inner shell, the ribs will not hit the inner shell and damage the inner shell. In addition, since the interval is immediately filled with frost during cooling, the refrigerator of the present invention can prevent the flow of gas.
  • the present invention is characterized in that, in a plan view of the channel surface of the partition, the fan is located in the center below the partition; a horizontal eave is provided above the fan, the eaves are not connected to the partition Side and the other side outer wall; the ribs are provided above the eaves.
  • the gas generated from the lower fan meanders upward. Although the water droplets generated on the ribs fall toward the eaves, the eaves will not splash water on the fan, so the refrigerator of the present invention can protect the fan from the water droplets.
  • FIG. 1 is a schematic diagram of a refrigerator in an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a storage chamber in an embodiment of the invention.
  • FIG. 3 is a perspective view of the outer surface of the inner shell of the refrigerator in an embodiment of the present invention, showing an example of the arrangement of the evaporator piping.
  • FIG. 4 is a layout diagram of ribs in an embodiment of the present invention.
  • FIG. 5 is a view showing a specific example of the separator of the present invention.
  • FIG. 6 is an image diagram of a gas channel in an embodiment of the present invention.
  • FIG. 7 is an installation view of the rib of the comparative example viewed from the front of the separator.
  • FIG. 1 is a schematic diagram of a refrigerator in an embodiment of the present invention.
  • 2 is a cross-sectional view of a storage chamber in an embodiment of the invention.
  • FIG. 3 is a perspective view of the outer surface of the inner shell of the refrigerator in an embodiment of the present invention, showing an example of the arrangement of the evaporator piping. The overall structure of the refrigerator of the present invention will be described with reference to FIGS. 1 to 3.
  • a refrigerator 101 includes a storage compartment 103 that can store food and the like.
  • the storage compartment 103 includes a revolving heat insulating door 105 that opens and closes the front opening.
  • the storage chamber 201 is defined by the inner shell 203.
  • the outer surface of the inner shell 203 corresponding to the rear surface of the storage chamber 201 is in contact with the evaporator duct 205 for cooling.
  • FIG. 3 An example of installation of the evaporator piping will be described with reference to FIG. 3.
  • an inner casing 301 defining a storage chamber is provided.
  • the evaporator duct 303 is provided in contact with the outer surface of the inner shell 301.
  • the evaporator duct 303 is closely attached to the heat conduction plate 305 to increase the contact area, and is provided in a reciprocating manner.
  • the liquid refrigerant which has been changed to normal temperature and high pressure by the condenser, passes through a capillary tube 307 (capillary tube) with a small pipe diameter to reduce the pressure, so that it easily enters the evaporator and evaporates.
  • the low-temperature and low-pressure liquid refrigerant sent to the evaporator cools and evaporates the inner shell and the gas in contact with the inner shell.
  • the refrigerator of one embodiment of the present invention can cool the inner case and circulate the refrigerant.
  • the partition 207 is provided inside the storage chamber 201 and along the inner surface of the area where the evaporator duct 205 contacts.
  • the gas passage 209 is formed between the inner surface of the inner case 203 and the partition 207 facing it.
  • the fan 211 is installed on the partition 207 and causes airflow to flow in the channel 209.
  • the gas sucked in from the lower part of the partition by the fan 211 is cooled by the inner surface of the inner shell 203 when passing through the passage 209, and is sent out from the upper part of the partition, where the evaporator duct 205 is in contact with the inner shell 203.
  • the passage 209 meanders so that the length of the gas passage increases and disturbs the gas flow.
  • the refrigerator of this embodiment can extend the cooling time of the gas and increase the amount of heat exchange by increasing the length of the pipe and disturbing the airflow. Moreover, the refrigerator of this embodiment can effectively cool the gas by increasing the amount of heat exchange, and can reduce the power consumption of the refrigerator.
  • the drain port 213 is located below the channel 209 between the partition plate 207 and the inner case 203, and can drain water during defrosting.
  • the fan 211 is below the refrigerator
  • the fan may be above the refrigerator. If the fan is above the refrigerator, the heated gas can flow down when it cools, so the flow occurs naturally.
  • FIG. 4 is a layout diagram of ribs in an embodiment of the present invention.
  • FIG. 5 is a specific example of the separator of the present invention. The structure of the rib for forming the gas passage of the present invention is described with reference to FIGS. 4 and 5.
  • the channel surface of the partition 401 facing the inner surface of the inner case is provided to include ribs 403 and 407.
  • the partition plate is provided with outer walls 405 and 409 at the left and right ends, and the gas discharged from the fan 411 flows between the channel surface of the partition plate 401 facing the inner surface of the inner shell and the inner surface of the inner shell.
  • One end of the rib 403 is connected to one side outer wall 405 of the partition, the other end of the rib 403 ends before being connected to the other side outer wall 409 of the partition, and the height of the other end of the rib 403 is lower than the height of one end.
  • One end of the rib 407 is connected to the other side outer wall 409 of the partition, the other end of the rib 407 is terminated before being connected to the outer wall 405 of the other side of the partition, and the height of the other end of the rib 407 is lower than the height of one end.
  • the rib 503 is formed integrally with the outer wall 505 on the partition 501 so as to stand upright.
  • the rib 507 is formed integrally with the outer wall 509.
  • the ribs 403 connected to the outer wall 405 and the ribs 407 connected to the outer wall 409 are alternately arranged in the vertical direction. This arrangement of the ribs 403 and 407 allows the gas to flow to avoid the ribs 403 and 407, and allows the gas to meander parallel to the partition.
  • the gas cooled by the evaporator may frost or dew on the ribs.
  • the refrigerator of this embodiment can utilize the inclination of the ribs 403 and 407 to promote the drop of water droplets during defrosting.
  • the ribs 403 and 407 are inclined downward from the outer walls 405 and 409 at an angle of 5 ° or more with respect to the horizontal direction. When the inclination becomes smaller, the effect of water drop falling is lost.
  • the ribs 503 and 507 are inclined downward from the outer walls 505 and 509 by 10 ° with respect to the horizontal direction. If the inclination of the rib becomes larger, the effect of the meandering air channel will be reduced.
  • the end of the rib 403 is provided closer to the outer wall 405 on the one side than the end of the rib 407.
  • the end of the rib 407 is provided closer to the other side outer wall 409 than the end of the rib 403.
  • the refrigerator of this embodiment can prevent the wind from the fan from being blocked too much by the ribs in this way. Therefore, the refrigerator of this embodiment can prevent the pressure loss of the wind from the fan and can efficiently make the gas flow.
  • the distance a between the rib 403 and the rib 407, the distance b between the rib 407 and the outer wall 405, and the distance c between the rib 403 and the outer wall 409 are set to not less than 50% of the maximum width of the channel.
  • the maximum width of the channel is the width with the largest channel area formed by the outer wall of the fan and the partition, for example, it is a line segment drawn along the inclination direction of the rib 407, and refers to the distance d from the rib 407 to the outer wall 405.
  • ribs may be formed at the end (portion E) of the channel, but the ribs in such a portion will not fall below the set value of 50%.
  • the minimum distance between the rib and the distance between the rib and the outer wall (here refers to the distance a, b, c) is set to not less than the maximum distance between the rib and the rib and the distance between the rib and the outer wall 80% of the distance. However, when the rib is formed at the end (portion E) of the channel, the portion of the rib does not correspond to the setting.
  • the height of the ribs 403 and 407 is set so that the gap between the front ends of the ribs 403 and 407 and the inner surface of the inner case is 4.0 mm to the direction in which the storage chamber and the partition face each other (here, the front-back direction of the storage chamber) 6.0mm.
  • the gap between the front end of the rib and the inner case prevents the front end of the rib from accidentally coming into contact with the inner case and causing damage.
  • the gap between the rib and the inner shell is immediately filled with frost during the cooling process, and as a result, the air flow is hindered.
  • the heat exchange performance is not impaired because the air flow in the direction perpendicular to the partition is disturbed.
  • the sponge is attached to the outer periphery of the side wall, including the outer walls 505 and 509 and the lower side, so as to fill the space (not shown) between the outer wall and the inner shell.
  • the lateral air channel is defined by this sponge.
  • the separator of the present invention by providing a sponge to fill the space between the outer wall and the inner shell, when the separator is assembled into the inner shell, the ribs are prevented from hitting the inner shell and damaging the inner shell.
  • the fan 411 is provided below the partition.
  • the drain port 419 is provided in a slope below the side of the fan 411, and can drain water during defrosting.
  • a horizontal eaves 413 which is not connected to one side partition and the other side outer wall is provided.
  • the ribs 403 and 407 are arranged above the eaves 413, and a plurality of ribs 403 and 407 are inclined toward the eaves 413 and alternately arranged, so the eaves 413 can prevent water droplets dripping from the ribs 403 and 407 from entering the fan.
  • the fan is installed in the space 511 below the partition.
  • the eaves 513 are provided on top of the fan.
  • the eaves protrude slightly above the ribs.
  • the eaves are installed horizontally, but it is also possible to use a structure in which water is dropped by tilting downward.
  • the wiring 515 for supplying power to move the fan or the like is arranged at various positions on the partition 501.
  • the wiring 515 is provided to pass through each protrusion provided on the partition including the rib.
  • use vinyl etc. to protect the connection and wiring from water.
  • FIG 6 is an image diagram of channels in an embodiment of the present invention.
  • Figure 6 shows an image of the channel of the present invention.
  • the fan 611 is provided in the center below the partition 601.
  • the fan causes flow in the channel from the lower side to the upper side of the center.
  • the fan 611 rotates counterclockwise.
  • the rib 607 closest to the fan in plan view and protruding from the left outer wall 609 is provided to be inclined downward at the center of the partition 601. That is, the rib 607 is inclined toward the flow direction generated by the fan 611.
  • the refrigerator of the present embodiment can effectively convection by setting the rib inclined from the outer wall toward the fan rotation direction closest to the fan.
  • the rib closest to the fan protrudes from the right outer wall and terminates near the center.
  • the gas 615 generated from the fan 611 moves toward the rib 607 while avoiding the eaves 613.
  • the gas 615 that is disturbed by hitting the rib 607 moves to the upper right to avoid the rib 607 and further moves to the upper left to avoid the rib 603.
  • the gas 617 generated from the fan 611 avoids the eaves 613, moves to the upper right to avoid the rib 607, and moves toward the rib 603.
  • the gas 617 that is disturbed by hitting the rib 603 moves to the upper left to avoid the rib 603.
  • the passage is meandering.
  • the length of the channel is increased by the meandering of the channel, and the amount of heat exchange is increased by disturbing the flow, thereby extending the cooling time.
  • the refrigerator of this embodiment can effectively cool the gas and reduce power consumption by extending the cooling time.
  • the channel shows a large meander in the parallel direction, it can be combined with a meander in the vertical direction.
  • FIG. 7 shows a layout view of the rib of the comparative example viewed from the front of the separator.
  • FIG. 7 shows a plurality of large cylindrical ribs 701 arranged in the vertical direction of the air flow, and a plurality of cylindrical ribs arranged in the vertical direction of the air flow are arranged in a direction parallel to the air flow so as to fill the plurality of ribs And repeat the example of this process.
  • the air passage can be meandered by passing air through the gap between the cylindrical ribs.
  • the cylindrical portion does not contribute to heat exchange, the heat exchange efficiency decreases.
  • the flow may change during frost formation.
  • Fig. 7 (b) shows an example in which pin-shaped ribs are provided.
  • the passage can be finely meandered by passing air between the plurality of pins 703.
  • the flow may change during frost formation.
  • the pin becomes thinner, it becomes more likely to break and the effect of meandering flow is lost.
  • FIG. 7 (c) shows that a plurality of horizontally extending short ribs 705 are arranged in the vertical direction of the airflow, and a plurality of short ribs arranged in the vertical direction of the airflow are arranged parallel to the airflow direction so as to fill the space And repeat the example of this process.
  • the wind path can be made to meander by blowing wind onto ribs such as the roof.
  • stagnation that does not contribute to heat exchange is formed in the portion indicated by A.
  • the flow may change during frost formation.
  • FIG. 7 (d) shows that a plurality of short ribs 707 directed toward the wind direction are arranged in the vertical direction of the wind, and a plurality of short ribs arranged in the vertical direction of the wind are arranged in a direction parallel to the wind flow so as to fill the ribs And repeat the example of this process.
  • the air path may be meandered by blowing air on a rib such as a roof.
  • a rib such as a roof.
  • stagnation that does not contribute to heat exchange is formed in the portion indicated by B.
  • the flow may change during frost formation.
  • FIG. 7 (e) shows that a plurality of short ribs 709 pointing in the direction opposite to the wind direction are arranged in the vertical direction of the wind direction, and a plurality of short ribs arranged in the vertical direction of the wind are arranged in a direction parallel to the wind flow so as to fill the ribs And repeat the example of this process.
  • the air path may be meandered by blowing air on the ribs.
  • the flow may change during frost formation.
  • the air path can be made to meander, but the ribs that meander the air passage of the present invention are arranged so that the cold air meanders greatly to the left and right. Therefore, the present invention is not a short rib as shown in FIGS. 7 (a) to (e).
  • Comparing the ribs meandering through the air channel of the present invention with the comparative examples of FIGS. 7 (a) to (e) has the following advantages: (1) The length of the channel can be made the longest, (2) can be formed as expected The cold air flow, even if frost occurs, the flow will not change, (3) It is not easy to form a part that is not helpful for heat exchange, (4) It does not affect the processability during mass production, (5) The strength of the separator is not damaged , But strengthen, (6) costs remain unchanged.
  • the invention is particularly suitable for refrigerators that evenly cool a large number of items in a compartment like a wine cellar.
  • baffle 419 drain outlet 613 eaves
  • Ribs short ribs ribs short ribs

Abstract

一种冰箱,包括:内部为储存室的内壳(203);与内壳(203)的外表面接触的蒸发器管道(205);在储存室的内部,沿与蒸发器管道(205)接触的内壳区域的内表面设置的隔板(207);将气体送到在内表面和隔板(207)之间形成的通道(209)内的风扇(211);其中,通道(209)使得气体蜿蜒流动。

Description

一种冰箱 技术领域
本发明涉及一种冰箱,其中蒸发器设置成与内壳接触,并且包括与蒸发器接触的内壳的内表面和由相向的隔板形成的气体通道。
背景技术
现有一种使大容量的间室保持恒温的如酒窖般的冰箱。已经研发了这种冰箱以提高冷却效率并降低功耗以冷却大量物品。
因此,设计了一种冰箱,其中用于冷却的蒸发器设置成与内壳接触,气体通道(空气通道)由隔板限定。气体通过风扇强制对流,并在通过通道时由蒸发器冷却。
专利文献1(JP 2001-82846 A)中描述了一种冰箱,其中为了增加气体与热交换所需的冷却表面相接触的面积,在蒸发器接触的内壁的对面设置有限定空气通道的高导热率的隔板,气体在通过气体通道时,被隔板和蒸发器冷却。
发明内容
然而,由于专利文献1的冰箱设置有与从顶部到底部的气流平行的直线形隔板,来自风扇的风沿直线流动,并且气体被蒸发器和隔板冷却的时间很短。因此,气体不能充分冷却。
因此,本发明的目的在于提供一种冰箱,该冰箱通过增加与蒸发器接触的气体通道的长度并扰乱气流来增加气体冷却时间并增加热交换量。此外,本发明的目的还在于提供一种提高冷却效率并降低功耗的冰箱。
本发明的一种冰箱,其特征在于,包括:用作储存室的内壳;与所述内壳的外表面接触的蒸发器管道;隔板,在所述储存室的内部,沿与所述蒸发器管道接触的所述内壳区域的内表面设置;风扇,用于将气体送到在所述内表面和所述隔板之间形成的通道内;其中,所述通道使得气体蜿蜒流动。
在本发明的冰箱中,形成气体通道,使得气体蜿蜒流动,从而可以增加通道长度并扰乱气流。本发明的冰箱可以通过增加气体通道长度和扰乱气流来延长冷却时间并增加热交换量。而且,本发明的冰箱可以通过增加热交换量来有效地冷却冰箱,并且可以降低功耗。
另外,本发明的特征在于,在所述隔板的通道面上设有面向所述内壳内表面的肋条;在所述隔板的左右两端具有外壁;所述肋条的一端连接到隔板的一侧所述外壁;肋条的另一端在连接到隔板的另一侧所述外壁之前终止;所述肋条的另一端的高度低于所述肋条的一端的高度;其中气体从底部流到顶部。
在本发明的冰箱中,在面向隔板的内壳的平面图中,通过在水平方向上大幅蜿蜒,可以大大增加通道长度。由蒸发器冷却的气体可能在肋条上结霜或结露,但是本发明的冰箱可以利用肋条的倾斜,通过倾斜肋条来促进除霜时水滴的下落。
另外,本发明的特征在于,所述肋条包括从所述隔板的所述一侧外壁延伸的第一肋条和从所述隔板的所述另一侧外壁延伸的第二肋条;所述第一肋条和所述第二肋条在垂直方向上交替设置;所述第一肋条的末端设置成比所述第二肋条的末端更靠近所述一侧外壁。
本发明的冰箱通过防止肋条在垂直方向上重叠,可以防止来自风扇的空气被肋条阻挡得过多。本发明的冰箱可以防止气体压力损失并使气体有效地流动。
另外,本发明的特征在于,在所述储存室和所述隔板彼此面对的方向上,所述肋条的前端与所述内表面之间的间隙为4.0mm至6.0mm。
在本发明的冰箱中,即使存在一些尺寸变化,当将隔板组装到内壳时,肋条也不会碰到内壳并损坏内壳。另外,由于在冷却过程中该间隔会立即充满霜,因此本发明的冰箱能够防止气体的流动。
另外,本发明的特征在于,在所述隔板的通道面的平面图中,所述风扇位于所述隔板下方的中央;在所述风扇上方设置水平檐,该檐不连接到隔板的一侧和另一侧外壁;所述肋条设置在所述檐的上方。
在本发明的冰箱中,从下部风扇产生的气体向上蜿蜒。尽管在肋条上产生的水滴落向檐,但是檐不会溅水在风扇上,因此本发明的冰箱可以保护风扇免受水滴的影响。
附图说明
图1为本发明的一个实施例中的冰箱的示意图。
图2为本发明的一个实施例中的储存室的剖面图。
图3为本发明一个实施例中冰箱内壳的外表面立体图,示出了蒸发器管路的一个设置例。
图4为本发明的一个实施例中的肋条的设置图。
图5为表示本发明的隔板的一个具体示例图。
图6为本发明的一个实施例中的气体通道的图像图。
图7为从隔板的前面观察的比较例的肋条的设置图。
具体实施方式
在下文中,参照附图描述用于实施本发明的实施例。在每个附图中,可以省略对具有相同功能的相应构件的描述。
(关于冰箱的整体结构)
图1为本发明的一个实施例中的冰箱的示意图。图2为本发明的一个实施例中的储存室的剖面图。图3为本发明一个实施例中冰箱内壳的外表面立体图,示出了蒸发器管路的一个设置例。将参照图1至图3描述本发明的冰箱的整体结构。
如图1所示,根据本发明的一个实施例的冰箱101包括可以储存食物等的储存室103。储存室103包括打开和关闭前开口的旋转隔热门105。
如图2所示,除了隔热门之外,储存室201由内壳203限定。与储存室201的后表面对应的内壳203的外表面与蒸发器管道205接触以进行冷却。
参考图3描述蒸发器管道的一个设置例。如图3所示,设置了限定储存室的内壳301。蒸发器管道303设置为与内壳301的外表面接触。
蒸发器管道303紧密地附接到导热板305以增加接触面积,并且以往复方式设置。通过冷凝器变为常温和高压的液体制冷剂通过管径小的毛细管307(capillary tube),使压力降低,从而容易进入蒸发器并蒸发。
送到蒸发器管道(evaporator)的低温和低压液体制冷剂冷却并蒸发内壳和与内壳接触的气体。通过这样做,本发明的一个实施例的冰箱能够冷却内壳并使制冷剂循环。
返回图2,隔板207在储存室201的内部且沿蒸发器管道205接触的区域的内表面设置。气体通道209形成在内壳203的内表面和面对它的隔板207之间。
风扇211安装在隔板207上,并且使气流在通道209中流动。通过风扇 211从隔板的下部吸入的气体在通过通道209时被内壳203的内表面冷却,并从隔板的上部送出,其中蒸发器管道205与内壳203接触。
通道209蜿蜒使得气体通道长度增加并且扰乱气流。本实施例的冰箱可以通过增加管道长度和扰乱气流来延长气体的冷却时间并增加热交换量。而且,该实施例的冰箱可以通过增加热交换量来有效地冷却气体,并且可以降低冰箱的功耗。
排水口213位于隔板207和内壳203之间的通道209下方,并且可以在除霜时排水。
在本实施例中,示出了风扇211在冰箱下方的示例,但是风扇可以在冰箱上方。如果风扇在冰箱上方,则加热的气体可以在冷却时向下流,因此流动自然发生。
(肋条的结构)
图4为本发明的一个实施例中的肋条的设置图。图5为本发明的隔板的一个具体示例。参考图4和5描述用于形成本发明的气体通道的肋条的结构。
如图4所示,隔板401的面向内壳的内表面的通道表面设置成包括肋条403和407。隔板在左右两端设置有外壁405和409,并且从风扇411排出的气体在隔板401的面向内壳的内表面的通道表面和内壳的内表面之间流动。
肋条403的一端连接到隔板的一侧外壁405,肋条403的另一端在连接到隔板的另一侧外壁409之前终止,肋条403的另一端的高度低于一端的高度。
肋条407的一端连接到隔板的另一侧外壁409,肋条407的另一端在连接到隔板另一侧的外壁405之前终止,肋条407的另一端的高度低于一端的高度。
具体地,如图5所示,肋条503与外壁505一体地形成在隔板501上,以便竖直竖立。类似地,肋条507与外壁509一体形成。
返回图4,连接到外壁405的肋条403和连接到外壁409的肋条407沿垂直方向交替设置。肋条403和407的这种设置允许气体流动以避开肋条403和407,并允许气体平行于隔板蜿蜒。
由蒸发器冷却的气体可能在肋条上结霜或结露。如图4所示,通过使肋条403和407的另一端的高度低于一端的高度并倾斜,本实施例的冰箱可以在除霜时利用肋条403和407的倾斜促进水滴下落。
肋条403和407从外壁405和409相对于水平方向以5°或更大的角度向下倾斜。当倾斜度变小时,失去水滴下落的效果。
参照图5的具体示例,肋条503和507相对于水平方向从外壁505和509向下倾斜10°。如果肋条倾斜度变大,则会降低蜿蜒空气通道的效果。
参考图4考虑肋条的设置。肋条403的端部设置成比肋条407的端部更靠近一侧外壁405。类似地,肋条407的端部设置成比肋条403的端部更靠近另一侧外壁409。
也就是说,肋条403和肋条407在垂直方向上不重叠。本实施例的冰箱可以通过这种方式防止来自风扇的风被肋条阻挡得过多。因此,该实施例的冰箱可以防止来自风扇的风的压力损失并且可以有效地使气体流动。
此外,肋条403与肋条407之间的距离a,肋条407与外壁405之间的距离b以及肋条403与外壁409之间的距离c设定为不小于通道最大宽度的50%。通道的最大宽度是具有由风扇和隔板的外壁形成的最大通道面积的宽度,例如,它是沿肋条407的倾斜方向绘制的线段,并且是指从肋条407到外壁405的距离d。
在本实施例的冰箱中,肋条可以形成在通道的端部(部分E)处,但是这样的部分中的肋条不会低于50%的设定值。
肋条和肋条之间的距离以及肋条和外壁之间的距离(这里指距离a,b,c)的最小距离设定为不小于肋条和肋条之间的距离以及肋条和外壁之间的距离的最大距离的80%。然而,当在通道的端部(部分E)处形成肋条时,肋条的该部分不对应于该设定。
肋条403和407的高度设置成使得肋条403和407的前端与内壳的内表面之间的间隙在储存室和隔板彼此面对的方向(这里指储存室的前后方向)上为4.0mm至6.0mm。
在本实施例的冰箱中,当将隔板装配到内壳中时,肋条的前端和内壳之间的间隙防止肋条的前端意外地与内壳接触并造成损坏。
肋条和内壳之间的间隙在冷却过程中立即充满霜,结果,气流会受到阻碍。在本实施例的冰箱中,即使在内壳和肋条之间打开4.0mm至6.0mm的间隙,也不会损害热交换性能,因为扰乱了垂直于隔板的方向上的气流。
参照图5,在隔板的具体示例中,海绵附接到侧壁的外周,包括外壁505和509以及下侧,以便填充外壁和内壳之间的空间(未示出)。侧面空气通 道由这种海绵限定。
另外,在本发明的隔板的具体示例中,通过设置海绵以填充外壁和内壳之间的空间,当将隔板装配到内壳中时,防止肋条撞到内壳并损坏内壳。
如图4所示,风扇411设置在隔板下方。排水口419设置在风扇411侧面下方的斜坡中,并且可以在除霜时排水。在风扇411上方设置有不与一侧隔板和另一侧外壁连接的水平檐413。
肋条403和407布置在檐413上方,有多个肋条403和407朝向檐413倾斜并交替设置,因此,檐413可以防止从肋条403和407滴下的水滴进风扇。
参照图5的具体示例,风扇安装在隔板下方的空间511中。檐513设置在风扇的顶部。檐突出略高于肋条。檐是水平设置的,但也可以使用通过向下倾斜而使水落下的结构。
此外,在图5的具体示例中,用于供电以移动风扇等的布线515布置在隔板501上的各个位置处。布线515设置成穿过设置在包括肋条的隔板上的每个突起。此外,用乙烯基等保护连接和布线免受水的影响。
(通道详情)
图6为本发明的一个实施例中的通道的图像图。图6示出了本发明的通道的图像。
如图6所示,在隔板的通道面的平面图中,风扇611设置在隔板601下方的中央。风扇引起从中央下侧到上侧的通道中的流动。这里,风扇611逆时针旋转。
在平面图中最靠近风扇并从左外壁609突出的肋条607设置成在隔板601的中央向下倾斜。也就是说,肋条607朝向风扇611产生的流动方向倾斜。
因此,本实施例的冰箱可以通过将从外壁倾斜的肋条朝向最靠近风扇的风扇旋转方向设置来有效地对流。在本发明的冰箱中,如果风扇顺时针旋转,则最靠近风扇的肋条从右外壁伸出并在中央附近终止。
从风扇611产生的气体615朝向肋条607移动,同时避开檐613。通过撞击肋条607而受到干扰的气体615向右上方移动以避开肋条607并进一步向左上方移动以避开肋条603。
类似地,从风扇611产生的气体617避开了檐613,向右上方移动以避 开肋条607,并朝向肋条603移动。通过撞击肋条603而受到干扰的气体617向左上方移动,以避开肋条603。
如上所述,由于从风扇产生的气流615和617都是蜿蜒的并且指向上方,所以通道是蜿蜒的。在本实施例的冰箱中,通道的长度通过通道的蜿蜒而增加,并且通过扰乱流动来增加热交换量,从而延长冷却时间。此外,本实施例的冰箱通过延长冷却时间,可以有效地冷却气体并降低功耗。
此外,尽管在隔板的通道的平面图中,通道在平行方向上显示出大幅蜿蜒,但是可以与垂直方向的蜿蜒相结合。
(比较例的肋条的设置)
图7示出了从隔板的前面观察的比较例的肋条的设置图。参考图7,将描述蜿蜒空气通道并扰乱流动的比较例的肋条的设置图。图7(a)示出了沿气流的垂直方向排列的多个大圆柱形肋条701,以及沿气流的垂直方向排列的多个圆柱形肋条沿平行于气流的方向布置,以便填充多个肋条之间的空间,并重复此过程的示例。
在图7(a)的比较例中,通过使空气穿过圆柱形肋条之间的间隙,可以使空气通道蜿蜒。但是,在该比较例中,由于圆柱部分不会有助于热交换,因此热交换效率降低。此外,在该比较例中,整体上难以使流动均匀,并且流动倾向于向左或向右偏倚。此外,在该比较例中,在结霜期间流动可能会发生变化。
图7(b)示出了设置销状肋条的示例。在图7(b)的比较例中,通过在多个销703之间通过空气可以使通道精细地蜿蜒。然而,在该比较例中,整体上难以使流动均匀,并且流动倾向于向左或向右偏倚。此外,在该比较例中,在结霜期间流动可能会发生变化。此外,在该比较例中,随着销变得更薄,它变得更容易破裂并且蜿蜒流动的效果丧失。
图7(c)示出了多个水平延伸的短肋条705沿气流的垂直方向排列,以及沿气流的垂直方向排列的多个短肋条沿平行于气流的方向布置,以便填充多个肋条之间的空间,并重复此过程的示例。
在图7(c)的比较例中,通过将风吹到诸如房顶的肋条上,可以使风路蜿蜒。然而,在该比较例中,整体上难以使流动均匀,并且流动倾向于向左或向右偏倚。此外,在该比较例中,在由A表示的部分中形成无助于热交换的停滞。此外,在该比较例中,在结霜期间流动可能会发生变化。
图7(d)示出了指向风向的多个诸如房顶的短肋条707沿风的垂直方向排列,以及沿风的垂直方向排列的多个短肋条沿平行于风流的方向布置,以便填充肋条之间的空间,并重复此过程的示例。
在图7(d)的比较示例中,可以通过在诸如房顶的肋条上吹风来使风路蜿蜒。然而,在该比较例中,整体上难以使流动均匀,并且流动倾向于向左或向右偏倚。此外,在该比较例中,在由B表示的部分中形成无助于热交换的停滞。此外,在该比较例中,在结霜期间流动可能会发生变化。
图7(e)示出了指向与风向相反的方向的多个短肋条709沿风向的垂直方向排列,以及沿风的垂直方向排列的多个短肋条沿平行于风流的方向布置,以便填充肋条之间的空间,并重复此过程的示例。
在图7(e)的比较示例中,可以通过在肋条上吹风来使风路蜿蜒。然而,在该比较例中,整体上难以使流动均匀,并且流动倾向于向左或向右偏倚。此外,在该比较例中,在结霜期间流动可能会发生变化。此外,在该比较例中,除霜时的水积存在由C表示的部分。
因此,即使在图7(a)至(e)的比较例中,也可以使风路蜿蜒,但是蜿蜒本发明的空气通道的肋条被布置成使得冷空气左右大幅蜿蜒。因此,本发明不是如图7(a)至(e)所示的短肋条。
将蜿蜒于本发明的空气通道的肋条与图7(a)至(e)的比较例进行比较,具有以下优点:(1)通道的长度可以做成最长,(2)可以按预期形成冷气流,即使发生结霜,流动也不会改变,(3)不易形成无助于热交换的部分,(4)不影响批量生产时的加工性,(5)隔板的组件强度不受损害,而是加强,(6)成本保持不变等。
工业实用性
本发明特别适用于如酒窖般在一个间室内均匀冷却大量物品的冰箱。
符号说明
101冰箱           403肋条            601隔板
103储存室         405外壁            603肋条
105隔热门         407肋条            605外壁
201储存室         409外壁            607肋条
203内壳           411风扇            609外壁
205蒸发器管道     413檐             611风扇
207隔板           419排水口         613檐
209通道           501隔板           615气流
211风扇           503肋条           617气流
213排水口         505外壁           619排水口
301内壳           507肋条           701圆柱形肋条
303蒸发器管道     509外壁           703销
305导热板         511空间           705水平延伸的短肋条
307毛细管         513檐             707指向风向的短肋条
401隔板           515布线           709指向与风向相反的
                                    短肋条

Claims (5)

  1. 一种冰箱,包括:
    用作储存室的内壳;
    与所述内壳的外表面接触的蒸发器管道;
    在所述储存室的内部,沿与所述蒸发器管道接触的所述内壳区域的内表面设置的隔板;
    将气体送到在所述内表面和所述隔板之间形成的通道内的风扇;其中,
    所述通道使得所述气体蜿蜒流动。
  2. 根据权利要求1所述的冰箱,其中,
    在所述隔板的通道面上设有面向所述内壳的内表面的肋条;
    在所述隔板的左右两端具有外壁;
    所述肋条的一端连接到隔板的一侧所述外壁;
    所述肋条的另一端在连接到隔板的另一侧所述外壁之前终止;
    所述肋条的另一端的高度低于所述肋条的一端的高度;其中
    所述气体从底部流到顶部。
  3. 根据权利要求2所述的冰箱,其中,
    所述肋条包括从所述隔板的一侧所述外壁延伸的第一肋条和从隔板的另一侧所述外壁延伸的第二肋条;
    所述第一肋条和所述第二肋条沿垂直方向交替设置;
    所述第一肋条的末端设置成比所述第二肋条的末端更靠近一侧所述外壁。
  4. 根据权利要求2或3所述的冰箱,其中,
    在所述储存室和所述隔板彼此面对的方向上,所述肋条的前端与所述内表面之间的间隙为4.0mm至6.0mm。
  5. 根据权利要求2至4之一所述的冰箱,其中,
    在所述隔板的所述通道面的平面图中,
    所述风扇位于所述隔板下方的中央;
    在所述风扇上方设置有水平檐,所述檐不连接到所述隔板的所述一侧和另一侧外壁;
    所述肋条设置在所述檐的上方。
PCT/CN2019/109309 2018-10-09 2019-09-30 一种冰箱 WO2020073863A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980055146.7A CN112639380B (zh) 2018-10-09 2019-09-30 一种冰箱

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018191073A JP7190160B2 (ja) 2018-10-09 2018-10-09 冷蔵庫
JP2018-191073 2018-10-09

Publications (1)

Publication Number Publication Date
WO2020073863A1 true WO2020073863A1 (zh) 2020-04-16

Family

ID=70165114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109309 WO2020073863A1 (zh) 2018-10-09 2019-09-30 一种冰箱

Country Status (3)

Country Link
JP (1) JP7190160B2 (zh)
CN (1) CN112639380B (zh)
WO (1) WO2020073863A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023169561A1 (zh) * 2022-03-11 2023-09-14 青岛海尔电冰箱有限公司 冰箱

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164199A (ja) * 2003-12-05 2005-06-23 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2005221144A (ja) * 2004-02-05 2005-08-18 Matsushita Electric Ind Co Ltd 冷蔵庫
CN201757555U (zh) * 2010-07-23 2011-03-09 海信容声(广东)冰箱有限公司 一种风直冷冰箱的风道结构
CN107543349A (zh) * 2017-09-08 2018-01-05 海信(山东)冰箱有限公司 一种风直冷冰箱

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747579Y2 (zh) * 1975-09-26 1982-10-19
KR920004982Y1 (ko) * 1990-09-28 1992-07-25 삼성전자 주식회사 냉장고의 냉동실 냉기 공급장치
JP3784286B2 (ja) * 2001-09-04 2006-06-07 シャープ株式会社 スターリング冷凍機用熱交換器およびスターリング冷蔵庫
JP2006023035A (ja) 2004-07-09 2006-01-26 Hitachi Home & Life Solutions Inc 冷蔵庫
JP2006145151A (ja) 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd 冷蔵庫
US7694727B2 (en) * 2007-01-23 2010-04-13 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device with multiple heat pipes
CN103836871B (zh) * 2012-11-26 2016-01-06 海尔集团公司 冷柜送风和制冷系统及冷柜
JP6161925B2 (ja) 2013-03-14 2017-07-12 株式会社アイテックシステム 照明装置
JP2015190723A (ja) 2014-03-28 2015-11-02 フタバ産業株式会社 熱交換器
KR102604833B1 (ko) * 2016-09-29 2023-11-22 엘지전자 주식회사 냉장고
CN206235070U (zh) * 2016-12-03 2017-06-09 广东奥马冰箱有限公司 一种带送风口的冰箱装饰结构
JP3211879U (ja) * 2017-05-29 2017-08-10 さくら製作所株式会社 ワインセラー

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164199A (ja) * 2003-12-05 2005-06-23 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2005221144A (ja) * 2004-02-05 2005-08-18 Matsushita Electric Ind Co Ltd 冷蔵庫
CN201757555U (zh) * 2010-07-23 2011-03-09 海信容声(广东)冰箱有限公司 一种风直冷冰箱的风道结构
CN107543349A (zh) * 2017-09-08 2018-01-05 海信(山东)冰箱有限公司 一种风直冷冰箱

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023169561A1 (zh) * 2022-03-11 2023-09-14 青岛海尔电冰箱有限公司 冰箱

Also Published As

Publication number Publication date
JP7190160B2 (ja) 2022-12-15
CN112639380A (zh) 2021-04-09
JP2020060312A (ja) 2020-04-16
CN112639380B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
US11525610B2 (en) Refrigerator
CN107883645B (zh) 冰箱
US7210305B2 (en) Outdoor unit for air conditioner
US6666045B1 (en) Kimchi refrigerator
KR101520704B1 (ko) 냉장고
AU2016286893B2 (en) Refrigerator
WO2020073863A1 (zh) 一种冰箱
JP7032055B2 (ja) 冷蔵庫
JP2009036451A (ja) 冷蔵庫
CN107560270B (zh) 冰箱
EP4273474A1 (en) Ice-making assembly and refrigerator
JP6937843B2 (ja) 製氷装置
CN220206106U (zh) 蒸发器、制冷装置及制冷设备
CN216159167U (zh) 空调室内机
JP3919597B2 (ja) 冷蔵庫
WO2023123937A1 (zh) 风道组件及制冷设备
JP5188564B2 (ja) ショーケース及び冷凍装置
WO2022037718A1 (zh) 将冷凝器布置于压机舱内的冰箱
CN220750472U (zh) 冰箱
CN112984895B (zh) 圆形制冷设备
WO2023273573A1 (zh) 冷藏冷冻装置
CN112923437B (zh) 空调室内机
WO2023123938A1 (zh) 排水板、风道组件、箱胆及制冷设备
JP5367553B2 (ja) 冷却貯蔵庫
JP2023060414A (ja) 冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871074

Country of ref document: EP

Kind code of ref document: A1