WO2020073606A1 - 柔性基板的制造方法 - Google Patents

柔性基板的制造方法 Download PDF

Info

Publication number
WO2020073606A1
WO2020073606A1 PCT/CN2019/078423 CN2019078423W WO2020073606A1 WO 2020073606 A1 WO2020073606 A1 WO 2020073606A1 CN 2019078423 W CN2019078423 W CN 2019078423W WO 2020073606 A1 WO2020073606 A1 WO 2020073606A1
Authority
WO
WIPO (PCT)
Prior art keywords
multilayer board
flexible substrate
metal layer
film metal
manufacturing
Prior art date
Application number
PCT/CN2019/078423
Other languages
English (en)
French (fr)
Inventor
项小群
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US16/625,766 priority Critical patent/US11450823B2/en
Publication of WO2020073606A1 publication Critical patent/WO2020073606A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED

Definitions

  • the present invention relates to the field of display technology, and in particular to a method for manufacturing a flexible substrate.
  • flexible devices made of flexible substrates such as displays, chips, circuits, power supplies, sensors and other flexible devices, are expected to become the mainstream equipment for next-generation optoelectronic devices, which can achieve The implemented functions have many advantages in terms of cost and user experience.
  • flexible display it is a technology for preparing devices on the surface of a substrate composed of flexible materials, such as flexible organic light-emitting diodes (FlexibleOrganic) Light-Emitting Diode display or flexible LCD needs to prepare or adsorb the flexible substrate on the surface of the rigid substrate first, and then prepare the device, and finally peel off the flexible substrate from the rigid substrate. Therefore, how to effectively peel off the flexible substrate from the rigid substrate is one of the key technologies for producing flexible devices.
  • the flexible substrate When the flexible substrate is peeled off from the rigid substrate, the flexible substrate is often damaged, resulting in a failure to guarantee the yield and cost, and the life of the flexible display is greatly reduced.
  • the object of the present invention is to provide a method for manufacturing a flexible substrate, which has a simple manufacturing process and effectively protects the device, which can improve the yield of the flexible substrate and reduce the manufacturing cost.
  • the present invention provides a method for manufacturing a flexible substrate, which is characterized by comprising:
  • a multilayer board preparation step comprising: forming a thin film metal layer on a substrate; forming a transparent protective layer on the thin film metal layer; and forming a flexible substrate on the transparent protective layer to form the multilayer board;
  • An electrolysis step includes: providing an electrolytic cell, wherein the electrolytic cell includes an anode and a cathode, the electrolytic cell contains an electrolytic solution, the anode and the cathode are provided in the electrolytic solution in the electrolytic cell;
  • the obtained multilayer board including the base, the thin-film metal layer, the transparent protective layer, and the flexible substrate is placed in the electrolytic cell; and electrolyzing the thin-film metal layer dissolves the thin-film metal layer and When it disappears, the base is detached from the multilayer board, and a structure in which the transparent protective layer and the flexible substrate are left is obtained to form the flexible substrate.
  • the step of forming a thin film metal layer on the substrate uses an evaporation method to form the thin film metal layer.
  • the step of forming a transparent protective layer on the thin-film metal layer uses a coating method to form the transparent protective layer.
  • the method for manufacturing a flexible substrate of the present invention further includes:
  • the inverting device inverts the remaining part of the assembly after the substrate is detached so that the other multilayer board is below the device layer;
  • the electrolysis step is performed on the another multilayer board, so that the substrate of the other multilayer board comes off from the other multilayer board.
  • the method for manufacturing a flexible substrate of the present invention further includes:
  • the adsorption device Before performing the electrolysis step on the multilayer board of the assembly, the adsorption device adsorbs the assembly and puts it in the electrolytic cell so that the thin-film metal layer of the multilayer board contacts The anode, and the flexible substrate of the multilayer board is located above the electrolyte level in the electrolytic cell;
  • the adsorption device Before performing the electrolysis step on the another multilayer board, the adsorption device adsorbs and places the remaining part of the turned over assembly into the electrolytic tank, so that the The thin film metal layer contacts the anode, and the flexible substrate of the other multilayer board is located above the electrolyte liquid level in the electrolytic cell.
  • the present invention provides a method for manufacturing a flexible substrate, which is characterized by comprising:
  • a multilayer board preparation step comprising: forming a thin film metal layer on a substrate; forming a transparent protective layer on the thin film metal layer; and forming a flexible substrate on the transparent protective layer to form the multilayer board;
  • An electrolysis step including: providing an electrolysis cell; placing the prepared multilayer board including the base, the thin-film metal layer, the transparent protective layer, and the flexible substrate into the electrolysis cell; and The thin-film metal layer is electrolyzed to dissolve and disappear the thin-film metal layer, so that the base is detached from the multilayer board to obtain a structure in which the transparent protective layer and the flexible substrate are left to form the flexibility Substrate.
  • the step of forming a thin film metal layer on the substrate uses an evaporation method to form the thin film metal layer.
  • the step of forming a transparent protective layer on the thin-film metal layer uses a coating method to form the transparent protective layer.
  • the method before the electrolysis step, the method further includes:
  • the flexible substrate of the other multilayer board faces the device layer on the multilayer board, and the other multilayer board and the multilayer board are joined to form an assembly.
  • the method for manufacturing a flexible substrate of the present invention further includes:
  • the inverting device inverts the remaining part of the assembly after the substrate is detached so that the other multilayer board is below the device layer;
  • the electrolysis step is performed on the another multilayer board, so that the substrate of the other multilayer board comes off from the other multilayer board.
  • the method for manufacturing a flexible substrate of the present invention further includes:
  • the adsorption device Before performing the electrolysis step on the multilayer board of the assembly, the adsorption device adsorbs the assembly and puts it in the electrolytic cell, so that the thin film metal layer of the multilayer board contacts An anode, and the flexible substrate of the multilayer board is located above the electrolyte level in the electrolytic cell;
  • the adsorption device Before performing the electrolysis step on the another multilayer board, the adsorption device adsorbs and places the remaining part of the turned over assembly into the electrolytic tank, so that the The thin film metal layer contacts the anode, and the flexible substrate of the other multilayer board is located above the electrolyte liquid level in the electrolytic cell.
  • the device layer includes a light emitting device.
  • the base is a glass substrate.
  • the material of the thin-film metal layer is copper or aluminum.
  • the material of the transparent protective layer is silicon nitride compound (SiNx) or silicon oxide compound (SiOx).
  • the material of the flexible substrate is an organic polymer.
  • the organic polymer is polyimide.
  • the electrolytic cell includes an anode and a cathode
  • the electrolytic cell contains an electrolytic solution
  • the anode and the cathode are provided in the electrolytic solution in the electrolytic cell.
  • the electrolyte is a copper sulfate solution.
  • the manufacturing method of the flexible substrate of the present invention has a simple manufacturing process and effectively protects the device, which can improve the production yield of the flexible substrate and reduce the manufacturing cost.
  • FIG. 1 is a flowchart of a method for manufacturing a flexible substrate according to an embodiment of the present invention.
  • FIG. 2-5 are schematic cross-sectional views of the step S01 of preparing the multilayer board of FIG. 1.
  • 6 to 7 are schematic cross-sectional views of applying the electrolysis step S02 of FIG. 1 to the multilayer board 1.
  • FIG. 8 to 11 are schematic cross-sectional views of applying the electrolysis step S02 of FIG. 1 to the multilayer board 1a.
  • FIG. 12 is a schematic cross-sectional view of a flexible substrate manufactured according to the manufacturing method of the present invention.
  • FIG. 1 is a flowchart of a method for manufacturing a flexible substrate according to an embodiment of the present invention, which includes a multi-layer board preparation step S01 and an electrolysis step S02:
  • FIG. 2-5 are schematic cross-sectional views of the step S01 of preparing the multilayer board of FIG. 1.
  • a thin film metal layer 20 is formed on the substrate 10 (see FIG. 2).
  • the thin film metal layer 20 is formed by an evaporation method.
  • the base 10 is a glass substrate.
  • the material of the thin-film metal layer 20 is copper or aluminum.
  • a transparent protective layer 30 is formed on the thin-film metal layer 20. Specifically, the transparent protective layer 30 is formed by a coating method.
  • the material of the transparent protective layer 30 is silicon nitride compound (SiNx) or silicon oxide compound (SiOx).
  • a flexible substrate 40 is formed on the transparent protective layer 30 to form a multilayer board 1.
  • the material of the flexible substrate 40 is an organic polymer, such as polyimide (PI).
  • the manufacturing method of the present invention further includes: manufacturing the device layer 50 on the flexible substrate 40 of the multilayer board 1 (as shown in FIG. 4); preparing another one through the multilayer board preparation step S01 The multilayer board 1a (see FIG. 5); and the flexible substrate 40a of the other multilayer board 1a faces the device layer 50 on the multilayer board 1, and the other multilayer board 1a and the multilayer board 1 Joining is performed to form an assembly 8 (see FIG. 5).
  • the device layer 50 includes a thin film transistor structure (not shown) in a conventional OLED or LCD structure and a light emitting device 60 (see FIG. 4).
  • the internal structure of the device layer 50 belongs to the prior art, and will not be repeated here.
  • the processes and materials of the base 10a, the thin film metal layer 20a, the transparent protective layer 30a, and the flexible substrate 40a of the other multilayer board 1a can be It is the same as the flexible substrate 40, but is not limited thereto.
  • an electrolytic cell 2 is provided.
  • the electrolytic cell 2 includes an anode 3 and a cathode 4, the electrolytic cell 2 contains an electrolytic solution 5, and the anode 3 and the cathode 4 are provided in the electrolytic solution 5 in the electrolytic cell 2.
  • the electrolyte 5 is a copper sulfate solution.
  • performing the electrolysis step S02 on the multi-layer board 1 of the assembly 8 includes the steps of: preparing the base 10, the thin-film metal layer 20, the transparent protective layer 30, and the flexible substrate 40
  • the multilayer board 1 is put into the electrolytic cell 2; and electrolysis of the thin-film metal layer 20 dissolves the thin-film metal layer 20 and disappears, so that the substrate 10 is detached from the multilayer board 1 to obtain a transparent protective layer 30 and the structure of the flexible substrate 40 to form the flexible substrate 7 (see FIG. 7).
  • a power source (not shown) is connected between the anode 3 and the cathode 4, and the thin-film metal layer 20 is electrolyzed to dissolve the thin-film metal layer 20 and disappear.
  • the manufacturing method of the present invention further includes: providing an adsorption device 6; before performing the electrolysis step S02 on the multilayer board 1 of the assembly 8, the adsorption device 6 adsorbs the assembly 8 and Put into the electrolytic cell 2, make the thin-film metal layer 20 of the multilayer board 1 contact the anode 3, and the flexible substrate 40 of the multilayer board 1 is located above the liquid surface of the electrolyte 5 in the electrolytic cell 2.
  • the manufacturing method of the present invention further includes: providing an adsorption device 6; before performing the electrolysis step S02 on the multilayer board 1 of the assembly 8, the adsorption device 6 adsorbs the assembly 8 and Put into the electrolytic cell 2, make the thin-film metal layer 20 of the multilayer board 1 contact the anode 3, and the flexible substrate 40 of the multilayer board 1 is located above the liquid surface of the electrolyte 5 in the electrolytic cell 2.
  • the adsorption device 6 adsorbs the assembly 8 by means of vacuum adsorption or physical adhesion, etc., so that the multilayer board 1 is immersed in the electrolyte 5 by adsorbing the base 10a of the multilayer board 1a.
  • the manufacturing method of the present invention further includes providing a flipping device 9 that flips the remaining part of the assembly 8 after the substrate 10 is detached, so that the other multilayer board 1a is in the device layer Below 50 (see Figure 8).
  • the turning device 9 also has an adsorption function. When the adsorption device 6 releases the remaining part of the assembly 8, the turning device 9 then sucks the remaining part of the assembly 8 and turns it over, finally obtaining the state shown in FIG. 8.
  • the adsorption device 6 adsorbs and places the remaining part of the assembly 8 that has been turned over into the electrolytic cell 2,
  • the thin film metal layer 20a of another multilayer board 1a is brought into contact with the anode 3, and the flexible substrate 40a of the other multilayer board 1a is located above the liquid surface of the electrolyte 5 in the electrolytic cell 2.
  • the turning device 9 will release the remaining part of the assembly 8 and then be adsorbed by the adsorption device 6.
  • the adsorption device 6 absorbs the transparent protective layer 30 of the flexible substrate 7 by vacuum adsorption or physical adhesion, etc., so that the multilayer board 1a is immersed in the electrolyte 5.
  • performing the electrolysis step S02 on the other multi-layer board 1a includes: preparing the substrate including the base 10a, the thin-film metal layer 20a, the transparent protective layer 30a, and the flexible substrate 40a. Put another multilayer board 1a into the electrolytic cell 2; and electrolyze the thin-film metal layer 20a to dissolve the thin-film metal layer 20a and disappear, so that the substrate 10a is detached from the other multilayer board 1a, leaving a transparent
  • the structure of the protective layer 30a and the flexible substrate 40a to form the flexible substrate 7a (see FIG. 11).
  • a power source (not shown) is connected between the anode 3 and the cathode 4, and the thin-film metal layer 20a is electrolyzed to dissolve the thin-film metal layer 20a and disappear.
  • FIG. 12 is a schematic cross-sectional view of a flexible substrate manufactured according to the manufacturing method of the present invention.
  • the figure shows a display structure with a double-layer flexible substrate 7, 7a, such as a flexible OLED, which can be specifically bent or curled.
  • the manufacturing method of the flexible substrate provided by the present invention has a simple manufacturing process and effectively protects the device, which can improve the production yield of the flexible substrate and reduce the manufacturing cost.
  • the manufacturing method of the flexible substrate provided by the invention has a simple manufacturing process and effectively protects the device, which can improve the production yield of the flexible substrate and reduce the manufacturing cost.

Abstract

一种柔性基板的制造方法,包括多层板制备步骤及电解步骤。其中,多层板制备步骤包括:在一基底上形成薄膜金属层。接着,在薄膜金属层上形成透明保护层。然后,在透明保护层上形成柔性衬底以形成一多层板。电解步骤包括:提供一电解槽;將制得的包括基底、薄膜金属层、透明保护层、及柔性衬底的多层板放入电解槽中。对薄膜金属层进行电解使薄膜金属层溶解并至消失,使得基底从多层板上脱落。最后,得到留有透明保护层及柔性衬底的结构以形成柔性基板。

Description

柔性基板的制造方法 技术领域
本发明涉及显示技术领域,尤其涉及一种柔性基板的制造方法。
背景技术
随着技术的快速发展,采用柔性基板制成的可弯曲柔性器件,如:显示器、芯片、电路、电源、传感器等柔性器件,有望成为下一代光电子器件的主流设备,可以实现传统光电子器件所不能实现的功能,同时在成本和用户体验方面具有较多优势。以柔性显示器为例,它是一种在柔性材料构成的基板表面制备器件的技术,如柔性有机发光二极管(FlexibleOrganic Light-Emitting Diode)显示器或柔性液晶显示器(Flexible LCD),需要在刚性基板表面先制备或吸附柔性基板,继而进行器件制备,最后再将柔性基板从刚性基板上剥离。因此,如何将柔性基板与刚性基板有效剥离是生产柔性器件的关键技术之一。
目前柔性基板的剥离主要有以下几种方式:(1)机械式、(2)化学蚀刻式、(3)激光式。虽然这些方式可以有效地实现柔性基板和刚性基板的剥离,并实现量产,但是常常会对柔性基板造成较大的损坏,导致良率和成本都得不到保障,且柔性显示器的寿命亦大打折扣。为了提高产品的良率和降低成本,开发出温和易操作且成本低廉的方法迫在眉睫。
因此,有必要提供一种柔性基板的制造方法,以解决上述问题。
技术问题
将柔性基板从刚性基板上剥离时,常会对柔性基板造成较大的损坏,导致良率和成本都得不到保障,且柔性显示器的寿命亦大打折扣。
技术解决方案
本发明的目的在于提供一种柔性基板的制造方法, 其制程简单、有效保护器件,可提高柔性基板的生产良率,降低制造成本。
为实现上述目的,本发明提供一种柔性基板的制造方法, 其特征在于,包括:
一多层板制备步骤,包括:在一基底上形成薄膜金属层;在所述薄膜金属层上形成透明保护层;以及在所述透明保护层上形成柔性衬底以形成所述多层板;
在所述多层板的柔性衬底上制作器件层;
通过所述多层板制备步骤以制备另一多层板;
将所述另一多层板的柔性衬底面向所述多层板上的器件层,对所述另一多层板和所述多层板进行接合以形成一组合件;以及
一电解步骤,包括:提供一电解槽,其中所述电解槽包括阳极及阴极,所述电解槽内容纳有电解液, 所述阳极及阴极设于所述电解槽内的电解液中;将制得的包括所述基底、薄膜金属层、透明保护层、及柔性衬底的所述多层板放入所述电解槽中;以及对所述薄膜金属层进行电解使所述薄膜金属层溶解并至消失,使得所述基底从所述多层板上脱落,得到留有所述透明保护层及所述柔性衬底的结构以形成所述柔性基板。
在一些实施方式中,所述在基底上形成薄膜金属层之步骤采用蒸镀方法形成所述薄膜金属层。
在一些实施方式中,所述在薄膜金属层上形成透明保护层之步骤采用涂复方法形成所述透明保护层。
在一些实施方式中,本发明的柔性基板的制造方法,还包括:
对所述组合件的所述多层板进行所述电解步骤,使得所述多层板的基底从所述多层板上脱落;
提供一翻转装置;
所述翻转装置翻转所述基底脱落后的所述组合件的剩余部分,使得所述另一多层板在所述器件层的下方;以及
对所述另一多层板进行所述电解步骤,使得所述另一多层板的基底从所述另一多层板上脱落。
在一些实施方式中,本发明的柔性基板的制造方法,还包括:
提供一吸附装置;
在对所述组合件的所述多层板进行所述电解步骤之前,所述吸附装置将所述组合件吸附且放入所述电解槽中,使所述多层板的薄膜金属层接触所述阳极,且所述多层板的柔性衬底位于所述电解槽中的电解液液面的上方;以及
在对所述另一多层板进行所述电解步骤之前,所述吸附装置将翻转后的所述组合件的剩余部分吸附且放入所述电解槽中,使所述另一多层板的薄膜金属层接触所述阳极,且所述另一多层板的柔性衬底位于所述电解槽中的电解液液面的上方。
为实现上述目的,本发明提供一种柔性基板的制造方法, 其特征在于,包括:
一多层板制备步骤,包括:在一基底上形成薄膜金属层;在所述薄膜金属层上形成透明保护层;以及在所述透明保护层上形成柔性衬底以形成所述多层板;
一电解步骤,包括:提供一电解槽;将制得的包括所述基底、薄膜金属层、透明保护层、及柔性衬底的所述多层板放入所述电解槽中;以及对所述薄膜金属层进行电解使所述薄膜金属层溶解并至消失,使得所述基底从所述多层板上脱落,得到留有所述透明保护层及所述柔性衬底的结构以形成所述柔性基板。
在一些实施方式中,所述在基底上形成薄膜金属层之步骤采用蒸镀方法形成所述薄膜金属层。
在一些实施方式中,所述在薄膜金属层上形成透明保护层之步骤采用涂复方法形成所述透明保护层。
在一些实施方式中,在所述电解步骤之前还包括:
在所述多层板的柔性衬底上制作器件层;
通过所述多层板制备步骤以制备另一多层板;以及
将所述另一多层板的柔性衬底面向所述多层板上的器件层,对所述另一多层板和所述多层板进行接合以形成一组合件。
在一些实施方式中,本发明的柔性基板的制造方法,还包括:
对所述组合件的所述多层板进行所述电解步骤,使得所述多层板的基底从所述多层板上脱落;
提供一翻转装置;
所述翻转装置翻转所述基底脱落后的所述组合件的剩余部分,使得所述另一多层板在所述器件层的下方;以及
对所述另一多层板进行所述电解步骤,使得所述另一多层板的基底从所述另一多层板上脱落。
在一些实施方式中,本发明的柔性基板的制造方法,还包括:
提供一吸附装置;
在对所述组合件的所述多层板进行所述电解步骤之前,所述吸附装置将所述组合件吸附且放入所述电解槽中,使所述多层板的薄膜金属层接触一阳极,且所述多层板的柔性衬底位于所述电解槽中的电解液液面的上方;以及
在对所述另一多层板进行所述电解步骤之前,所述吸附装置将翻转后的所述组合件的剩余部分吸附且放入所述电解槽中,使所述另一多层板的薄膜金属层接触所述阳极,且所述另一多层板的柔性衬底位于所述电解槽中的电解液液面的上方。
在一些实施方式中,所述器件层包括发光器件。
在一些实施方式中,所述基底为玻璃基板。
在一些实施方式中,所述薄膜金属层的材料为铜、或铝。
在一些实施方式中,所述透明保护层的材料为氮化矽化合物(SiNx)、或氧化矽化合物(SiOx)。
在一些实施方式中,所述柔性衬底的材料为有机聚合物。
在一些实施方式中,所述有机聚合物为聚酰亚胺。
在一些实施方式中,所述电解槽包括阳极及阴极,所述电解槽内容纳有电解液, 所述阳极及阴极设于所述电解槽内的电解液中。
在一些实施方式中,所述电解液为硫酸铜溶液。
有益效果
本发明的柔性基板的制造方法, 其制程简单、有效保护器件,可提高柔性基板的生产良率,降低制造成本。
附图说明
为让本发明的特征以及技术内容能更明显易懂,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考用,并非用来对本发明加以限制。
图1为根据本发明实施例的柔性基板之制造方法的流程图。
图2–5为实施图1的多层板制备步骤S01的剖面示意图。
图6–7为对多层板1实施图1的电解步骤S02的剖面示意图。
图8–11为对多层板1a实施图1的电解步骤S02的剖面示意图。
图12为根据本发明之制造方法所制得的柔性基板的剖面示意图。
本发明的实施方式
为了使本发明的目的、技术手段及其效果更加清楚明确,以下将结合附图对本发明作进一步地阐述。应当理解,此处所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,并不用于限定本发明。
请参阅图1,图1为根据本发明实施例的柔性基板之制造方法的流程图,其包括多层板制备步骤S01及电解步骤S02:
图2–5为实施图1的多层板制备步骤S01的剖面示意图。首先,在基底10上形成薄膜金属层20(如图2)。具体地,采用蒸镀方法形成所述薄膜金属层20。基底10为玻璃基板。薄膜金属层20的材料为铜、或铝。
如图3所示,在薄膜金属层20上形成透明保护层30。具体地,采用涂覆方法形成所述透明保护层30。透明保护层30的材料为氮化矽化合物(SiNx)、或氧化矽化合物(SiOx)。
如图4所示,在透明保护层30上形成柔性衬底40以形成一多层板1。具体地,所述柔性衬底40的材料为有机聚合物,如聚酰亚胺(PI)。
进一步的,本发明之制造方法在电解步骤S02之前还包括:在多层板1的柔性衬底40上制作器件层50(如图4);通过所述多层板制备步骤S01以制备另一多层板1a(如图5);以及将所述另一多层板1a的柔性衬底40a面向多层板1上的器件层50,对所述另一多层板1a和多层板1进行接合以形成一组合件8(如图5)。具体地,所述器件层50包括常规OLED或LCD结构中的薄膜晶体管结构(未图示)及发光器件60(如图4)。在本实施例中, 器件层50的内部结构属于现有技术范畴,此处不再赘述。另外,所述另一多层板1a的基底10a、薄膜金属层20a、透明保护层30a、及柔性衬底40a的制程及材料具体地可与基底10、薄膜金属层20、透明保护层30、及柔性衬底40相同,但不限于此。
图6–7为对多层板1实施图1的电解步骤S02的剖面示意图。首先,提供一电解槽2。具体地,所述电解槽2包括阳极3及阴极4,所述电解槽2内容纳有电解液5, 所述阳极3及阴极4设于电解槽2内的电解液5中。所述电解液5为硫酸铜溶液。
如图6所示,对所述组合件8的多层板1进行所述电解步骤S02,包括:將制得的包括基底10、薄膜金属层20、透明保护层30、及柔性衬底40的所述多层板1放入电解槽2中;以及对所述薄膜金属层20进行电解使薄膜金属层20溶解并至消失,使得基底10从多层板1上脱落,得到留有透明保护层30及柔性衬底40的结构以形成柔性基板7(如图7)。具体地,阳极3与阴极4之间会接入电源(未图示),对所述薄膜金属层20进行电解使薄膜金属层20溶解并至消失。
图6进一步显示,本发明之制造方法还包括:提供一吸附装置6;在对所述组合件8的多层板1进行所述电解步骤S02之前,所述吸附装置6将组合件8吸附且放入电解槽2中,使多层板1的薄膜金属层20接触所述阳极3,且多层板1的柔性衬底40位于电解槽2中的电解液5液面的上方。具体地,
吸附装置6以真空吸附或物理黏附等方式吸附组合件8,透过吸附多层板1a的基底10a,来让多层板1浸入电解液5中。
图8–11为对多层板1a实施图1的电解步骤S02的剖面示意图。进一步的,本发明之制造方法还包括提供一翻转装置9,所述翻转装置9翻转基底10脱落后的所述组合件8的剩余部分,使得所述另一多层板1a在所述器件层50的下方(如图8)。具体地,翻转装置9亦具有吸附功能,当吸附装置6释放组合件8的剩余部分,接着由翻转装置9吸附组合件8的剩余部分且进行翻转,最后得到图8所呈现的态样。
如图9,10所示,在对所述另一多层板1a进行所述电解步骤S02之前,吸附装置6将翻转后的所述组合件8的剩余部分吸附且放入电解槽2中,使另一多层板1a的薄膜金属层20a接触所述阳极3,且另一多层板1a的柔性衬底40a位于电解槽2中的电解液5液面的上方。具体地,翻转装置9会释放所述组合件8的剩余部分,接着由吸附装置6吸附。吸附装置6以真空吸附或物理黏附等方式,透过吸附柔性基板7的透明保护层30,来让多层板1a浸入电解液5中。
如图10所示,对所述另一多层板1a进行所述电解步骤S02,包括:將制得的包括基底10a、薄膜金属层20a、透明保护层30a、及柔性衬底40a的所述另一多层板1a放入电解槽2中;以及对所述薄膜金属层20a进行电解使薄膜金属层20a溶解并至消失,使得基底10a从另一多层板1a上脱落,得到留有透明保护层30a及柔性衬底40a的结构以形成柔性基板7a(如图11)。具体地,阳极3与阴极4之间会接入电源(未图示),对所述薄膜金属层20a进行电解使薄膜金属层20a溶解并至消失。
图12为根据本发明之制造方法所制得的柔性基板的剖面示意图。图中所示为一种具有双层柔性基板7,7a的显示器结构,如柔性OLED,可具体地实现弯折或捲曲等态样。而且,本发明所提供的柔性基板的制造方法,其制程简单、有效保护器件,可提高柔性基板的生产良率,降低制造成本。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。
工业实用性
本发明所提供的柔性基板的制造方法,其制程简单、有效保护器件,可提高柔性基板的生产良率,降低制造成本。

Claims (19)

  1. 一种柔性基板的制造方法, 其特征在于包括:
    一多层板制备步骤,包括:在一基底上形成薄膜金属层;在所述薄膜金属层上形成透明保护层;以及在所述透明保护层上形成柔性衬底以形成所述多层板;
    在所述多层板的柔性衬底上制作器件层;
    通过所述多层板制备步骤以制备另一多层板;
    将所述另一多层板的柔性衬底面向所述多层板上的器件层,对所述另一多层板和所述多层板进行接合以形成一组合件;以及
    一电解步骤,包括:提供一电解槽,其中所述电解槽包括阳极及阴极,所述电解槽内容纳有电解液, 所述阳极及阴极设于所述电解槽内的电解液中;将制得的包括所述基底、薄膜金属层、透明保护层、及柔性衬底的所述多层板放入所述电解槽中;以及对所述薄膜金属层进行电解使所述薄膜金属层溶解并至消失,使得所述基底从所述多层板上脱落,得到留有所述透明保护层及所述柔性衬底的结构以形成所述柔性基板。
  2. 如权利要求1所述的柔性基板的制造方法,其特征在于:所述在基底上形成薄膜金属层之步骤采用蒸镀方法形成所述薄膜金属层。
  3. 如权利要求1所述的柔性基板的制造方法,其特征在于:所述在薄膜金属层上形成透明保护层之步骤采用涂复方法形成所述透明保护层。
  4. 如权利要求1所述的柔性基板的制造方法,其特征在于,还包括:
    对所述组合件的所述多层板进行所述电解步骤,使得所述多层板的基底从所述多层板上脱落;
    提供一翻转装置;
    所述翻转装置翻转所述基底脱落后的所述组合件的剩余部分,使得所述另一多层板在所述器件层的下方;以及
    对所述另一多层板进行所述电解步骤,使得所述另一多层板的基底从所述另一多层板上脱落。
  5. 如权利要求4所述的柔性基板的制造方法,其特征在于,还包括:
    提供一吸附装置;
    在对所述组合件的所述多层板进行所述电解步骤之前,所述吸附装置将所述组合件吸附且放入所述电解槽中,使所述多层板的薄膜金属层接触所述阳极,且所述多层板的柔性衬底位于所述电解槽中的电解液液面的上方;以及
    在对所述另一多层板进行所述电解步骤之前,所述吸附装置将翻转后的所述组合件的剩余部分吸附且放入所述电解槽中,使所述另一多层板的薄膜金属层接触所述阳极,且所述另一多层板的柔性衬底位于所述电解槽中的电解液液面的上方。
  6. 一种柔性基板的制造方法, 其特征在于包括:
    一多层板制备步骤,包括:在一基底上形成薄膜金属层;在所述薄膜金属层上形成透明保护层;以及在所述透明保护层上形成柔性衬底以形成所述多层板;
    一电解步骤,包括:提供一电解槽;将制得的包括所述基底、薄膜金属层、透明保护层、及柔性衬底的所述多层板放入所述电解槽中;以及对所述薄膜金属层进行电解使所述薄膜金属层溶解并至消失,使得所述基底从所述多层板上脱落,得到留有所述透明保护层及所述柔性衬底的结构以形成所述柔性基板。
  7. 如权利要求6所述的柔性基板的制造方法,其特征在于:所述在基底上形成薄膜金属层之步骤采用蒸镀方法形成所述薄膜金属层。
  8. 如权利要求6所述的柔性基板的制造方法,其特征在于:所述在薄膜金属层上形成透明保护层之步骤采用涂复方法形成所述透明保护层。
  9. 如权利要求6所述的柔性基板的制造方法,其特征在于,在所述电解步骤之前还包括:
    在所述多层板的柔性衬底上制作器件层;
    通过所述多层板制备步骤以制备另一多层板;以及
    将所述另一多层板的柔性衬底面向所述多层板上的器件层,对所述另一多层板和所述多层板进行接合以形成一组合件。
  10. 如权利要求9所述的柔性基板的制造方法,其特征在于,还包括:
    对所述组合件的所述多层板进行所述电解步骤,使得所述多层板的基底从所述多层板上脱落;
    提供一翻转装置;
    所述翻转装置翻转所述基底脱落后的所述组合件的剩余部分,使得所述另一多层板在所述器件层的下方;以及
    对所述另一多层板进行所述电解步骤,使得所述另一多层板的基底从所述另一多层板上脱落。
  11. 如权利要求10所述的柔性基板的制造方法,其特征在于,还包括:
    提供一吸附装置;
    在对所述组合件的所述多层板进行所述电解步骤之前,所述吸附装置将所述组合件吸附且放入所述电解槽中,使所述多层板的薄膜金属层接触一阳极,且所述多层板的柔性衬底位于所述电解槽中的电解液液面的上方;以及
    在对所述另一多层板进行所述电解步骤之前,所述吸附装置将翻转后的所述组合件的剩余部分吸附且放入所述电解槽中,使所述另一多层板的薄膜金属层接触所述阳极,且所述另一多层板的柔性衬底位于所述电解槽中的电解液液面的上方。
  12. 如权利要求9所述的柔性基板的制造方法,其特征在于:所述器件层包括发光器件。
  13. 如权利要求6所述的柔性基板的制造方法,其特征在于:所述基底为玻璃基板。
  14. 如权利要求6所述的柔性基板的制造方法,其特征在于:所述薄膜金属层的材料为铜、或铝。
  15. 如权利要求6所述的柔性基板的制造方法,其特征在于:所述透明保护层的材料为氮化矽化合物(SiNx)、或氧化矽化合物(SiOx)。
  16. 如权利要求6所述的柔性基板的制造方法,其特征在于:所述柔性衬底的材料为有机聚合物。
  17. 如权利要求16所述的柔性基板的制造方法,其特征在于:所述有机聚合物为聚酰亚胺。
  18. 如权利要求6所述的柔性基板的制造方法,其特征在于:所述电解槽包括阳极及阴极,所述电解槽内容纳有电解液, 所述阳极及阴极设于所述电解槽内的电解液中。
  19. 如权利要求18所述的柔性基板的制造方法,其特征在于:所述电解液为硫酸铜溶液。
PCT/CN2019/078423 2018-10-09 2019-03-18 柔性基板的制造方法 WO2020073606A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/625,766 US11450823B2 (en) 2018-10-09 2019-03-18 Method of manufacturing flexible substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811172445.2 2018-10-09
CN201811172445.2A CN109461844B (zh) 2018-10-09 2018-10-09 柔性基板的制造方法

Publications (1)

Publication Number Publication Date
WO2020073606A1 true WO2020073606A1 (zh) 2020-04-16

Family

ID=65607418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078423 WO2020073606A1 (zh) 2018-10-09 2019-03-18 柔性基板的制造方法

Country Status (3)

Country Link
US (1) US11450823B2 (zh)
CN (1) CN109461844B (zh)
WO (1) WO2020073606A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461844B (zh) 2018-10-09 2020-02-18 深圳市华星光电技术有限公司 柔性基板的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102362305A (zh) * 2009-03-24 2012-02-22 旭硝子株式会社 电子设备的制造方法
KR20120062193A (ko) * 2010-12-06 2012-06-14 엘지디스플레이 주식회사 플렉서블 표시장치의 제조방법
CN105702625A (zh) * 2016-04-12 2016-06-22 武汉华星光电技术有限公司 柔性基板的剥离方法
CN106232351A (zh) * 2014-04-25 2016-12-14 旭硝子株式会社 玻璃层叠体及电子器件的制造方法
CN109461844A (zh) * 2018-10-09 2019-03-12 深圳市华星光电技术有限公司 柔性基板的制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516388A (ja) * 2005-11-18 2009-04-16 レプリソールス テクノロジーズ アーベー 多層構造の形成方法
CN102769109B (zh) 2012-07-05 2015-05-13 青岛海信电器股份有限公司 柔性显示器的制作方法以及制作柔性显示器的基板
CN103280541B (zh) * 2013-05-23 2016-02-17 北京工业大学 一种在cvd石墨烯上制备柔性器件和柔性衬底的工艺方法
CN107170758B (zh) * 2017-05-25 2020-08-14 京东方科技集团股份有限公司 柔性显示基板及其制作方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102362305A (zh) * 2009-03-24 2012-02-22 旭硝子株式会社 电子设备的制造方法
KR20120062193A (ko) * 2010-12-06 2012-06-14 엘지디스플레이 주식회사 플렉서블 표시장치의 제조방법
CN106232351A (zh) * 2014-04-25 2016-12-14 旭硝子株式会社 玻璃层叠体及电子器件的制造方法
CN105702625A (zh) * 2016-04-12 2016-06-22 武汉华星光电技术有限公司 柔性基板的剥离方法
CN109461844A (zh) * 2018-10-09 2019-03-12 深圳市华星光电技术有限公司 柔性基板的制造方法

Also Published As

Publication number Publication date
US20210296598A1 (en) 2021-09-23
US11450823B2 (en) 2022-09-20
CN109461844A (zh) 2019-03-12
CN109461844B (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
CN105374748B (zh) 薄膜晶体管基板的制作方法及制得的薄膜晶体管基板
TWI583562B (zh) 一種柔性電子器件的製備方法
CN107093680B (zh) 金属辅助电极及使用其的显示器件的制造方法
US20170179425A1 (en) Package substrate and manufacturing method thereof, and oled display device
US9620659B2 (en) Preparation method of glass film, photoelectric device and packaging method thereof, display device
US20150382474A1 (en) Method for fabricating flexible electronic device and substrate for fabricating the same
US9287077B2 (en) Manufacturing method of a flexible display
JPWO2015163134A1 (ja) ガラス積層体および電子デバイスの製造方法
WO2017177499A1 (zh) 柔性基板的剥离方法
CN1862329A (zh) 柔性显示器的制造方法
CN103531715B (zh) 柔性光电器件衬底、柔性光电器件及制备方法
CN104485344A (zh) 一种柔性显示器制备方法
US11307688B2 (en) Thermal transfer substrate, touch display panel and manufacturing methods therefor, and display device
KR20100051499A (ko) 플렉시블 표시장치 제조방법
TWI533034B (zh) 軟性彩色濾光片及軟性彩色顯示元件之製造方法
WO2020214825A3 (en) Systems and methods for manufacturing flexible electronics
WO2020073606A1 (zh) 柔性基板的制造方法
CN107195658A (zh) 柔性基板及其制作方法
CN107680992B (zh) 显示装置及其制作方法、显示装置的修复方法
CN104993070A (zh) 一种制作柔性oled显示器件的方法
CN102709492A (zh) 一种柔性有机电致发光显示器及其制作方法
CN107393944A (zh) 显示面板及制作方法
KR101585731B1 (ko) 유기전자소자용 봉지재, 상기 봉지재의 제조방법, 상기 봉지재를 이용한 유기전자소자의 봉지방법 및 봉지된 유기전자소자
US10522770B2 (en) Fabricating method of flexivle panel and flexible display device
CN104538433A (zh) 有源矩阵有机发光显示器基板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870443

Country of ref document: EP

Kind code of ref document: A1