WO2017177499A1 - 柔性基板的剥离方法 - Google Patents

柔性基板的剥离方法 Download PDF

Info

Publication number
WO2017177499A1
WO2017177499A1 PCT/CN2016/081968 CN2016081968W WO2017177499A1 WO 2017177499 A1 WO2017177499 A1 WO 2017177499A1 CN 2016081968 W CN2016081968 W CN 2016081968W WO 2017177499 A1 WO2017177499 A1 WO 2017177499A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous metal
flexible substrate
metal substrate
buffer layer
peeling
Prior art date
Application number
PCT/CN2016/081968
Other languages
English (en)
French (fr)
Inventor
方宏
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to GB1811325.8A priority Critical patent/GB2560291B/en
Priority to KR1020187022322A priority patent/KR102081014B1/ko
Priority to JP2018543364A priority patent/JP6593902B2/ja
Priority to US15/100,317 priority patent/US9960374B1/en
Publication of WO2017177499A1 publication Critical patent/WO2017177499A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • B32B43/006Delaminating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/125Deposition of organic active material using liquid deposition, e.g. spin coating using electrolytic deposition e.g. in-situ electropolymerisation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method for peeling off a flexible substrate.
  • a flexible display As an example, it is a method for fabricating a device on a substrate surface made of a flexible material, such as an active-matrix organic light emitting diode (AMOLED), which needs to be first on a rigid substrate surface.
  • AMOLED active-matrix organic light emitting diode
  • the flexible substrate is prepared or adsorbed, followed by device fabrication, and finally the flexible substrate is stripped from the rigid substrate. Therefore, how to effectively peel the flexible substrate from the rigid substrate is one of the key technologies for producing flexible devices.
  • the stripping method of the mainstream flexible display device is carried out by laser ablation, that is, a high-intensity laser is applied at the interface between the polymer flexible substrate and the rigid glass substrate to ablate the polymer of the interface layer, thereby realizing a flexible and rigid substrate. Stripping.
  • this method can be mass-produced, the scanning size of the laser directly limits the rate of mass production, and the generated thermal energy may cause greater damage to the flexible display film, so this method is difficult to apply to large-scale flexibility.
  • the laser ablation equipment is not only complicated in operation, but also expensive in equipment, resulting in a cost burden. In order to improve product yield and reduce costs, it is extremely urgent to develop a gentle and easy-to-operate and low-cost method.
  • LG uses chemical etching of stainless steel substrates to achieve stripping of flexible substrates and rigid substrates, but corrosion of stainless steel chemical liquids to flexible devices. It also has corrosive effects, which leads to a significant reduction in the life of flexible displays.
  • Samsung uses the resistance heating detachment technology, which uses heating to detach the substrate from the glass.
  • too high a temperature requires an increase in the process to protect the illuminating device, resulting in no guarantee of yield and cost.
  • TCL Huaxing Optoelectronics adopts a second rigid substrate embedded between the flexible substrate and the rigid substrate to ensure that the area of the second rigid substrate is smaller than that of the rigid substrate and the flexible substrate, and then cut along the second rigid substrate to realize the flexible substrate and rigidity gently and effectively.
  • the peeling of the substrate although the method realizes the separation of the flexible substrate and the rigid substrate, the separation of the flexible substrate and the second rigid substrate faces the same peeling problem, and the damage of the flexible substrate is easily caused. hurt.
  • An object of the present invention is to provide a method for peeling a flexible substrate, which is highly efficient and has no damage, can improve the production yield of the flexible substrate, and reduce the production cost.
  • the present invention provides a method for peeling a flexible substrate, comprising the following steps:
  • Step 1 providing a porous metal substrate, the porous metal substrate is a metal plate having a plurality of holes therein, and forming a buffer layer on the porous metal substrate;
  • Step 2 forming a flexible substrate on the buffer layer
  • Step 3 providing an electrolysis device, the electrolysis device comprising an electrolysis cell, and an anode disposed in the electrolysis cell;
  • Step 4 adding an electrolyte in the electrolytic cell of the electrolysis device
  • the multilayer board comprising the flexible substrate, the buffer layer, and the porous metal substrate prepared in the step 2 is placed in the electrolytic cell with the porous metal substrate facing downward, and the porous metal substrate is brought into contact with the electrolyte to
  • the porous metal substrate is a cathode, and a power source is connected between the porous metal substrate and the anode to electrolyze water in the electrolyte, and water located in the vicinity of the porous metal substrate and entering the hole in the porous metal substrate is Hydrogen is generated after electrolysis, and the hydrogen exerts a force on the buffer layer to peel the buffer layer from the porous metal substrate to obtain a flexible substrate having a buffer layer at the bottom.
  • the material of the porous metal substrate is iron, nickel, or copper.
  • the material of the buffer layer is a silicon oxide layer, a silicon nitride layer, or a composite layer composed of a silicon oxide layer and a silicon nitride layer.
  • the step 1 forms the buffer layer by a chemical vapor deposition method.
  • the material of the flexible substrate is an organic polymer.
  • the organic polymer is a polyimide.
  • the step 2 further includes: fabricating a device on the flexible substrate.
  • the material of the anode of the electrolysis device is carbon, platinum, or gold.
  • the side of the porous metal substrate that is away from the flexible substrate is immersed in the electrolyte, and the side close to the flexible substrate is exposed to the outside of the electrolyte.
  • the electrolyte is a sulfuric acid solution, a sodium hydroxide solution, a sodium sulfate solution, a potassium nitrate solution, or water.
  • the invention also provides a peeling method of a flexible substrate, comprising the following steps:
  • Step 1 providing a porous metal substrate, the porous metal substrate is a metal plate having a plurality of holes therein, and forming a buffer layer on the porous metal substrate;
  • Step 2 forming a flexible substrate on the buffer layer
  • Step 3 providing an electrolysis device, the electrolysis device comprising an electrolysis cell, and an anode disposed in the electrolysis cell;
  • Step 4 adding an electrolyte in the electrolytic cell of the electrolysis device
  • the multilayer board comprising the flexible substrate, the buffer layer, and the porous metal substrate prepared in the step 2 is placed in the electrolytic cell with the porous metal substrate facing downward, and the porous metal substrate is brought into contact with the electrolyte to
  • the porous metal substrate is a cathode, and a power source is connected between the porous metal substrate and the anode to electrolyze water in the electrolyte, and water located in the vicinity of the porous metal substrate and entering the hole in the porous metal substrate is After electrolysis, hydrogen gas is generated, and the hydrogen gas applies a force to the buffer layer, and the buffer layer is peeled off from the porous metal substrate to obtain a flexible substrate with a buffer layer at the bottom;
  • the material of the porous metal substrate is iron, nickel, or copper;
  • the material of the buffer layer is a silicon oxide layer, a silicon nitride layer, or a composite layer formed by superposing a silicon oxide layer and a silicon nitride layer;
  • step 1 is formed by chemical vapor deposition to form the buffer layer
  • the material of the flexible substrate is an organic polymer.
  • the present invention provides a method for peeling a flexible substrate, comprising: providing a porous metal substrate; forming a buffer layer on the porous metal substrate; forming a flexible substrate on the buffer layer; and placing the flexible substrate Into the electrolytic cell, partially immersing the porous metal substrate in the electrolyte, using the porous metal substrate as a cathode, electrolyzing the water in the electrolyte, releasing hydrogen gas on the porous metal substrate, and applying the flexible substrate under the force of hydrogen And the buffer layer is peeled off from the porous metal substrate to obtain a flexible substrate with a buffer layer at the bottom, the method is high-efficiency and non-destructive, and the production yield of the flexible substrate can be improved; the speed of peeling off the flexible substrate is fast, and the device on the flexible substrate is ensured. It is not affected during the stripping process; in addition, the porous metal substrate can be reused, thereby reducing production costs.
  • FIG. 1 is a schematic flow chart of a peeling method of a flexible substrate of the present invention
  • FIG. 2 is a schematic view showing the first step of the peeling method of the flexible substrate of the present invention
  • step 2 of the peeling method of the flexible substrate of the present invention is a schematic view of step 2 of the peeling method of the flexible substrate of the present invention.
  • FIG. 4 is a schematic view showing the step 3 of the peeling method of the flexible substrate of the present invention.
  • 5-6 is a schematic view of the step 4 of the peeling method of the flexible substrate of the present invention.
  • the present invention provides a method for peeling a flexible substrate, comprising the following steps:
  • a porous metal substrate 10 is provided.
  • the porous metal substrate 10 is a metal plate having a plurality of fine holes therein, and a buffer layer 20 is formed on the porous metal substrate 10.
  • the material of the porous metal substrate 10 may be iron (Fe), nickel (Ni), or copper (Cu).
  • the step 1 forms the buffer layer 20 by a chemical vapor deposition method.
  • the porous metal plate 10 in the late thermal process can be prevented from affecting the flatness of the bottom of the flexible substrate.
  • Step 2 As shown in FIG. 3, a flexible substrate 30 is formed on the buffer layer 20.
  • the material of the flexible substrate 30 is an organic polymer such as polyimide (PI).
  • step 2 further includes: fabricating the device 40 on the flexible substrate 30.
  • the device 40 includes a thin film transistor structure and a light emitting device structure in a conventional OLED structure, and the light emitting device structure includes an electrode layer, a light emitting layer, and the like.
  • the internal structure of the device 40 in this embodiment belongs to the prior art, and is not More specific description.
  • an electrolysis device 50 is provided.
  • the electrolysis device 50 includes an electrolysis cell 51 and an anode 53 disposed in the electrolysis cell 51.
  • the material of the anode 53 may be a metal oxide, a metal having a difference in activity compared to the material of the porous metal substrate 10, or a carbon element; preferably, the material of the anode 53 is carbon (C) or platinum. (Pt), or gold (Au).
  • Step 4 adding an electrolyte in the electrolytic cell 51 of the electrolysis device 50;
  • the multilayer board including the flexible substrate 30, the buffer layer 20, and the porous metal substrate 10 prepared in the step 2 is placed in the electrolytic cell 51 with the porous metal substrate 10 facing downward, so that the porous metal substrate 10 and the porous metal substrate 10 are
  • the electrolyte solution is in contact with the porous metal substrate 10 as a cathode, and a power source (not shown) is connected between the porous metal substrate 10 and the anode 53 to electrolyze water in the electrolyte solution, and the porous metal substrate is located on the porous metal substrate.
  • Water near the 10 and into the pores inside the porous metal substrate 10 is electrolyzed to generate hydrogen gas (H 2 ), which exerts a force on the buffer layer 20, and the buffer layer 20 is removed from the porous metal substrate.
  • the upper substrate 10 is peeled off (as shown in Fig. 5) to obtain a flexible substrate 30 having a buffer layer 20 at the bottom (as shown in Fig. 6).
  • the side of the porous metal substrate 10 away from the flexible substrate 30 is immersed in the electrolyte, and the side close to the flexible substrate 30 is exposed to the outside of the electrolyte.
  • the electrolyte is a sulfuric acid solution, a sodium hydroxide solution, a sodium sulfate solution, a potassium nitrate solution, or water.
  • the present invention provides a method for peeling a flexible substrate, comprising: providing a porous metal substrate; forming a buffer layer on the porous metal substrate; forming a flexible substrate on the buffer layer; and placing the flexible substrate
  • the porous metal substrate is partially immersed in the electrolyte, the porous metal substrate is used as a cathode, and the water in the electrolyte is electrolyzed by electrolysis, hydrogen gas is released on the porous metal substrate, and the flexible substrate and the flexible substrate are under the force of hydrogen.
  • the buffer layer is peeled off from the porous metal substrate to obtain a flexible substrate with a buffer layer at the bottom.
  • the method is efficient and damage-free, and the production yield of the flexible substrate can be improved; the speed of peeling off the flexible substrate is fast, and the device on the flexible substrate is ensured.
  • the stripping process is not affected; in addition, the porous metal substrate can be reused, thereby reducing production costs.

Abstract

一种柔性基板(20)的剥离方法,包括:提供一多孔金属基板(10);在多孔金属基板(10)上形成缓冲层(20);在所述缓冲层(20)上形成柔性基板(30);将柔性基板(30)放入电解槽(51)中,使多孔金属基板(10)部分浸入电解液中,将多孔金属基板(10)作为阴极,通电对电解液中的水进行电解,多孔金属基板(10)上会释放出氢气,在氢气的作用力下将柔性基板(30)和缓冲层(20)从多孔金属基板(10)上剥离,得到底部留有缓冲层(20)的柔性基板(30),该方法高效、无损伤,可提高柔性基板(30)的生产良率;剥离柔性基板(30)的速度较快,保证柔性基板(30)上的器件在剥离过程中不会受到影响;另外,多孔金属基板(30)可以重复使用,从而降低生产成本。

Description

柔性基板的剥离方法 技术领域
本发明涉及显示技术领域,尤其涉及一种柔性基板的剥离方法。
背景技术
随着科技的不断更新与发展,采用柔性基板制成的可弯曲的柔性器件有望成为下一代光电子器件的主流设备,如显示器、芯片、电路、电源、传感器等柔性器件可以实现传统光电子器件所不能实现的功能,在成本和用户体验方面具有较大优势。以柔性显示为例,它是一种在柔性材料构成的基板表面制备器件的方法,如柔性有源矩阵有机发光二极体(Active-matrix organic light emitting diode,AMOLED),需要在刚性基板表面先制备或吸附柔性基板,继而进行器件制备,最后再将柔性基板从刚性基板上剥离。因此,如何将柔性基板与刚性基板有效剥离是生产柔性器件的关键技术之一。
目前主流的柔性显示器件的剥离方式是采用激光烧蚀的方式进行,即在聚合物柔性基板和刚性玻璃基板的界面施加高强度的激光,烧蚀界面层的聚合物,从而实现柔性和刚性基板的剥离。虽然这种方式可以实现量产,但是激光的扫描尺寸直接限制了量产的速率,而且产生的热能可能会对柔性显示膜造成较大的损坏,因此这种方式很难应用于大尺寸的柔性显示器的制备。值得一提的是,激光烧蚀的设备不仅操作复杂,而且设备昂贵,造成成本负担。为了提高产品的良率和降低成本,开发出温和易操作且成本低廉的方法迫在眉睫。
现阶段显示行业的多家公司和科研机构就此技术提出了不同的解决方案,如LG采用化学法腐蚀不锈钢衬底的方法实现柔性基板与刚性基板的剥离,但是腐蚀不锈钢的化学药液对柔性器件亦有腐蚀作用,导致柔性显示器的寿命大打折扣。三星则采用电阻加热感脱离技术,其使用加热的方法使基板与玻璃脱离,但是过高的温度需要增加制程对发光器件进行保护,造成良率和成本都得不到保障。TCL华星光电采用在柔性基板和刚性基板之间嵌入第二刚性基板,保证第二刚性基板的面积小于刚性基板和柔性基板,然后沿着第二刚性基板进行切割,温和有效地实现柔性基板和刚性基板的剥离,该方法虽然实现了柔性基板和刚性基板的分离,但是分离柔性基板和第二刚性基板会面临同样的剥离问题,而且容易造成柔性基板的损 伤。
因此,有必要提供一种柔性基板的剥离方法,以解决上述问题。
发明内容
本发明的目的在于提供一种柔性基板的剥离方法,高效、无损伤,可提高柔性基板的生产良率,降低生产成本。
为实现上述目的,本发明提供一种柔性基板的剥离方法,包括如下步骤:
步骤1、提供一多孔金属基板,所述多孔金属基板为内部具有多个孔洞的金属板,在所述多孔金属基板上形成缓冲层;
步骤2、在所述缓冲层上形成柔性基板;
步骤3、提供一电解装置,所述电解装置包括一电解槽、及设于电解槽内的阳极;
步骤4、在所述电解装置的电解槽内加入电解液;
将所述步骤2制得的包括柔性基板、缓冲层、及多孔金属基板的多层板以多孔金属基板朝下的方式放入所述电解槽中,使多孔金属基板与电解液相接触,以所述多孔金属基板为阴极,在所述多孔金属基板与阳极之间接入电源,对电解液中的水进行电解,位于所述多孔金属基板附近以及进入所述多孔金属基板内部孔洞中的水被电解后产生氢气,所述氢气对所述缓冲层施加作用力,将所述缓冲层从所述多孔金属基板上剥离,得到底部留有缓冲层的柔性基板。
所述多孔金属基板的材料为铁、镍、或铜。
所述缓冲层的材料为氧化硅层、氮化硅层、或者由氧化硅层与氮化硅层叠加构成的复合层。
所述步骤1采用化学气相沉积方法形成所述缓冲层。
所述柔性基板的材料为有机聚合物。
所述有机聚合物为聚酰亚胺。
所述步骤2还包括:在所述柔性基板上制作器件。
所述电解装置的阳极的材料为碳、铂、或金。
所述步骤4中,所述多孔金属基板上远离所述柔性基板的一侧浸入电解液中,接近所述柔性基板的一侧暴露于电解液之外。
所述步骤4中,所述电解液为硫酸溶液、氢氧化钠溶液、硫酸钠溶液、硝酸钾溶液、或者水。
本发明还提供一种柔性基板的剥离方法,包括如下步骤:
步骤1、提供一多孔金属基板,所述多孔金属基板为内部具有多个孔洞的金属板,在所述多孔金属基板上形成缓冲层;
步骤2、在所述缓冲层上形成柔性基板;
步骤3、提供一电解装置,所述电解装置包括一电解槽、及设于电解槽内的阳极;
步骤4、在所述电解装置的电解槽内加入电解液;
将所述步骤2制得的包括柔性基板、缓冲层、及多孔金属基板的多层板以多孔金属基板朝下的方式放入所述电解槽中,使多孔金属基板与电解液相接触,以所述多孔金属基板为阴极,在所述多孔金属基板与阳极之间接入电源,对电解液中的水进行电解,位于所述多孔金属基板附近以及进入所述多孔金属基板内部孔洞中的水被电解后产生氢气,所述氢气对所述缓冲层施加作用力,将所述缓冲层从所述多孔金属基板上剥离,得到底部留有缓冲层的柔性基板;
其中,所述多孔金属基板的材料为铁、镍、或铜;
其中,所述缓冲层的材料为氧化硅层、氮化硅层、或者由氧化硅层与氮化硅层叠加构成的复合层;
其中,所述步骤1采用化学气相沉积方法形成所述缓冲层;
其中,所述柔性基板的材料为有机聚合物。
本发明的有益效果:本发明提供的一种柔性基板的剥离方法,包括:提供一多孔金属基板;在多孔金属基板上形成缓冲层;在所述缓冲层上形成柔性基板;将柔性基板放入电解槽中,使多孔金属基板部分浸入电解液中,将多孔金属基板作为阴极,通电对电解液中的水进行电解,多孔金属基板上会释放出氢气,在氢气的作用力下将柔性基板和缓冲层从多孔金属基板上剥离,得到底部留有缓冲层的柔性基板,该方法高效、无损伤,可提高柔性基板的生产良率;剥离柔性基板的速度较快,保证柔性基板上的器件在剥离过程中不会受到影响;另外,多孔金属基板可以重复使用,从而降低生产成本。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的柔性基板的剥离方法的示意流程图;
图2为本发明的柔性基板的剥离方法的步骤1的示意图;
图3为本发明的柔性基板的剥离方法的步骤2的示意图;
图4为本发明的柔性基板的剥离方法的步骤3的示意图;
图5-6为本发明的柔性基板的剥离方法的步骤4的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种柔性基板的剥离方法,包括如下步骤:
步骤1、如图2所示,提供一多孔金属基板10,所述多孔金属基板10为内部具有多个细小孔洞的金属板,在所述多孔金属基板10上形成缓冲层20。
具体的,所述多孔金属基板10的材料可以为铁(Fe)、镍(Ni)、或铜(Cu)。
具体的,所述缓冲层20的材料为氧化硅(SiOx)层、氮化硅(SiNx)层、或者由氧化硅层与氮化硅层叠加构成的复合层。
具体的,所述步骤1采用化学气相沉积方法形成所述缓冲层20。
具体的,所述步骤1通过在多孔金属基板10上形成缓冲层20,可以防止后期热制程中多孔金属板10影响柔性基板底部的平整度。
步骤2、如图3所示,在所述缓冲层20上形成柔性基板30。
具体的,所述柔性基板30的材料为有机聚合物,如聚酰亚胺(PI)。
进一步的,所述步骤2还包括:在所述柔性基板30上制作器件40。
具体的,所述器件40包括常规OLED结构中的薄膜晶体管结构及发光器件结构,该发光器件结构包括电极层、发光层等,本实施例中器件40的内部结构属于现有技术范畴,这里不再具体说明。
步骤3、如图4所示,提供一电解装置50,所述电解装置50包括一电解槽51、及设于电解槽51内的阳极53。
具体的,所述阳极53的材料可以为金属氧化物、活泼性能比所述多孔金属基板10的材料差的金属、或者碳元素;优选的,所述阳极53的材料为碳(C)、铂(Pt)、或金(Au)。
步骤4、在所述电解装置50的电解槽51内加入电解液;
将所述步骤2制得的包括柔性基板30、缓冲层20、及多孔金属基板10 的多层板以多孔金属基板10朝下的方式放入所述电解槽51中,使多孔金属基板10与电解液相接触,以所述多孔金属基板10为阴极,在所述多孔金属基板10与阳极53之间接入电源(未图示),对电解液中的水进行电解,位于所述多孔金属基板10附近以及进入所述多孔金属基板10内部孔洞中的水被电解后产生氢气(H2),所述氢气对所述缓冲层20施加作用力,将所述缓冲层20从所述多孔金属基板10上剥离(如图5所示),得到底部留有缓冲层20的柔性基板30(如图6所示)。
具体的,所述步骤4中,所述多孔金属基板10上远离所述柔性基板30的一侧浸入电解液中,接近所述柔性基板30的一侧暴露于电解液之外。
具体的,所述步骤4中,所述电解液为硫酸溶液、氢氧化钠溶液、硫酸钠溶液、硝酸钾溶液、或者水。
具体的,所述步骤4中,电解水的反应式为:2H2O=O2↑+2H2↑;
其中,阴极(即多孔金属基板10)的反应式为:2H2O+2e-=H2↑+2OH-
阳极53的反应式为:2H2O-4e-=O2↑+4H+
综上所述,本发明提供的一种柔性基板的剥离方法,包括:提供一多孔金属基板;在多孔金属基板上形成缓冲层;在所述缓冲层上形成柔性基板;将柔性基板放入电解槽中,使多孔金属基板部分浸入电解液中,将多孔金属基板作为阴极,通电对电解液中的水进行电解,多孔金属基板上会释放出氢气,在氢气的作用力下将柔性基板和缓冲层从多孔金属基板上剥离,得到底部留有缓冲层的柔性基板,该方法高效、无损伤,可提高柔性基板的生产良率;剥离柔性基板的速度较快,保证柔性基板上的器件在剥离过程中不会受到影响;另外,多孔金属基板可以重复使用,从而降低生产成本。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (16)

  1. 一种柔性基板的剥离方法,包括如下步骤:
    步骤1、提供一多孔金属基板,所述多孔金属基板为内部具有多个孔洞的金属板,在所述多孔金属基板上形成缓冲层;
    步骤2、在所述缓冲层上形成柔性基板;
    步骤3、提供一电解装置,所述电解装置包括一电解槽、及设于电解槽内的阳极;
    步骤4、在所述电解装置的电解槽内加入电解液;
    将所述步骤2制得的包括柔性基板、缓冲层、及多孔金属基板的多层板以多孔金属基板朝下的方式放入所述电解槽中,使多孔金属基板与电解液相接触,以所述多孔金属基板为阴极,在所述多孔金属基板与阳极之间接入电源,对电解液中的水进行电解,位于所述多孔金属基板附近以及进入所述多孔金属基板内部孔洞中的水被电解后产生氢气,所述氢气对所述缓冲层施加作用力,将所述缓冲层从所述多孔金属基板上剥离,得到底部留有缓冲层的柔性基板。
  2. 如权利要求1所述的柔性基板的剥离方法,其中,所述多孔金属基板的材料为铁、镍、或铜。
  3. 如权利要求1所述的柔性基板的剥离方法,其中,所述缓冲层的材料为氧化硅层、氮化硅层、或者由氧化硅层与氮化硅层叠加构成的复合层。
  4. 如权利要求3所述的柔性基板的剥离方法,其中,所述步骤1采用化学气相沉积方法形成所述缓冲层。
  5. 如权利要求1所述的柔性基板的剥离方法,其中,所述柔性基板的材料为有机聚合物。
  6. 如权利要求5所述的柔性基板的剥离方法,其中,所述有机聚合物为聚酰亚胺。
  7. 如权利要求1所述的柔性基板的剥离方法,其中,所述步骤2还包括:在所述柔性基板上制作器件。
  8. 如权利要求1所述的柔性基板的剥离方法,其中,所述电解装置的阳极的材料为碳、铂、或金。
  9. 如权利要求1所述的柔性基板的剥离方法,其中,所述步骤4中,所述多孔金属基板上远离所述柔性基板的一侧浸入电解液中,接近所述柔性基板的一侧暴露于电解液之外。
  10. 如权利要求1所述的柔性基板的剥离方法,其中,所述步骤4中,所述电解液为硫酸溶液、氢氧化钠溶液、硫酸钠溶液、硝酸钾溶液、或者水。
  11. 一种柔性基板的剥离方法,包括如下步骤:
    步骤1、提供一多孔金属基板,所述多孔金属基板为内部具有多个孔洞的金属板,在所述多孔金属基板上形成缓冲层;
    步骤2、在所述缓冲层上形成柔性基板;
    步骤3、提供一电解装置,所述电解装置包括一电解槽、及设于电解槽内的阳极;
    步骤4、在所述电解装置的电解槽内加入电解液;
    将所述步骤2制得的包括柔性基板、缓冲层、及多孔金属基板的多层板以多孔金属基板朝下的方式放入所述电解槽中,使多孔金属基板与电解液相接触,以所述多孔金属基板为阴极,在所述多孔金属基板与阳极之间接入电源,对电解液中的水进行电解,位于所述多孔金属基板附近以及进入所述多孔金属基板内部孔洞中的水被电解后产生氢气,所述氢气对所述缓冲层施加作用力,将所述缓冲层从所述多孔金属基板上剥离,得到底部留有缓冲层的柔性基板;
    其中,所述多孔金属基板的材料为铁、镍、或铜;
    其中,所述缓冲层的材料为氧化硅层、氮化硅层、或者由氧化硅层与氮化硅层叠加构成的复合层;
    其中,所述步骤1采用化学气相沉积方法形成所述缓冲层;
    其中,所述柔性基板的材料为有机聚合物。
  12. 如权利要求11所述的柔性基板的剥离方法,其中,所述有机聚合物为聚酰亚胺。
  13. 如权利要求11所述的柔性基板的剥离方法,其中,所述步骤2还包括:在所述柔性基板上制作器件。
  14. 如权利要求11所述的柔性基板的剥离方法,其中,所述电解装置的阳极的材料为碳、铂、或金。
  15. 如权利要求11所述的柔性基板的剥离方法,其中,所述步骤4中,所述多孔金属基板上远离所述柔性基板的一侧浸入电解液中,接近所述柔性基板的一侧暴露于电解液之外。
  16. 如权利要求11所述的柔性基板的剥离方法,其中,所述步骤4中,所述电解液为硫酸溶液、氢氧化钠溶液、硫酸钠溶液、硝酸钾溶液、或者水。
PCT/CN2016/081968 2016-04-12 2016-05-13 柔性基板的剥离方法 WO2017177499A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1811325.8A GB2560291B (en) 2016-04-12 2016-05-13 Stripping method of flexible substrate
KR1020187022322A KR102081014B1 (ko) 2016-04-12 2016-05-13 플랙시블 기판의 스트립핑 방법
JP2018543364A JP6593902B2 (ja) 2016-04-12 2016-05-13 フレキシブル基板の剥離方法
US15/100,317 US9960374B1 (en) 2016-04-12 2016-05-13 Stripping method of flexible substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610225895.8A CN105702625B (zh) 2016-04-12 2016-04-12 柔性基板的剥离方法
CN201610225895.8 2016-04-12

Publications (1)

Publication Number Publication Date
WO2017177499A1 true WO2017177499A1 (zh) 2017-10-19

Family

ID=56219886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081968 WO2017177499A1 (zh) 2016-04-12 2016-05-13 柔性基板的剥离方法

Country Status (6)

Country Link
US (1) US9960374B1 (zh)
JP (1) JP6593902B2 (zh)
KR (1) KR102081014B1 (zh)
CN (1) CN105702625B (zh)
GB (1) GB2560291B (zh)
WO (1) WO2017177499A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552225B (zh) * 2016-01-20 2020-04-17 京东方科技集团股份有限公司 用于制造柔性基板的方法、柔性基板和显示装置
CN106312207A (zh) * 2016-09-26 2017-01-11 南京航空航天大学 采用多孔金属工具阴极微细电解加工阵列微坑的方法
CN106711175B (zh) * 2016-12-14 2020-06-16 武汉华星光电技术有限公司 柔性基板剥离方法
CN107299360B (zh) * 2017-05-22 2019-06-11 朱可可 利用光伏电源电解含硫酸废水工艺
WO2019010607A1 (zh) * 2017-07-10 2019-01-17 深圳市柔宇科技有限公司 柔性基板的剥离方法和剥离设备
CN107742618B (zh) * 2017-10-24 2020-07-03 京东方科技集团股份有限公司 柔性面板的制备方法、柔性面板及显示装置
CN109461844B (zh) 2018-10-09 2020-02-18 深圳市华星光电技术有限公司 柔性基板的制造方法
CN110299466B (zh) * 2019-06-17 2022-06-14 纳晶科技股份有限公司 一种基板及剥离方法
CN111081743B (zh) * 2019-12-11 2022-06-07 深圳市华星光电半导体显示技术有限公司 显示面板的制造方法及显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070054440A1 (en) * 2005-09-13 2007-03-08 Tarng-Shiang Hu Method for fabricating a device with flexible substrate and method for stripping flexible-substrate
CN102769109A (zh) * 2012-07-05 2012-11-07 青岛海信电器股份有限公司 柔性显示器的制作方法以及制作柔性显示器的基板
CN105137634A (zh) * 2015-08-05 2015-12-09 深圳市华星光电技术有限公司 柔性显示面板的制作方法以及用于其制作的基板组件
CN105428312A (zh) * 2015-11-18 2016-03-23 上海大学 柔性衬底的制备和分离方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988674A (en) * 1989-02-09 1991-01-29 Eastman Kodak Company Electrically conductive articles and processes for their fabrication
JP3809681B2 (ja) * 1996-08-27 2006-08-16 セイコーエプソン株式会社 剥離方法
JP4884592B2 (ja) * 2000-03-15 2012-02-29 株式会社半導体エネルギー研究所 発光装置の作製方法及び表示装置の作製方法
KR101141533B1 (ko) * 2005-06-25 2012-05-04 엘지디스플레이 주식회사 기판 반송방법 및 이를 이용한 플렉서블 디스플레이의제조방법
KR100889978B1 (ko) * 2007-10-12 2009-03-25 전남대학교산학협력단 반도체 영역의 선택적 식각방법, 반도체층의 분리방법 및반도체소자를 기판으로부터 분리하는 방법
KR101824425B1 (ko) * 2008-12-17 2018-02-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 전자 기기
TWI468092B (zh) * 2013-04-08 2015-01-01 Au Optronics Corp 可撓性基板的分離方法與可撓性基板結構
CN103700662B (zh) * 2013-12-09 2017-02-15 京东方科技集团股份有限公司 一种承载基板和柔性显示器件制作方法
SG11201606287VA (en) * 2014-01-31 2016-08-30 Lockheed Corp Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
JP6271454B2 (ja) * 2015-02-16 2018-01-31 日本電信電話株式会社 機能性材料の転写方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070054440A1 (en) * 2005-09-13 2007-03-08 Tarng-Shiang Hu Method for fabricating a device with flexible substrate and method for stripping flexible-substrate
CN102769109A (zh) * 2012-07-05 2012-11-07 青岛海信电器股份有限公司 柔性显示器的制作方法以及制作柔性显示器的基板
CN105137634A (zh) * 2015-08-05 2015-12-09 深圳市华星光电技术有限公司 柔性显示面板的制作方法以及用于其制作的基板组件
CN105428312A (zh) * 2015-11-18 2016-03-23 上海大学 柔性衬底的制备和分离方法

Also Published As

Publication number Publication date
JP6593902B2 (ja) 2019-10-23
CN105702625B (zh) 2017-11-03
GB201811325D0 (en) 2018-08-29
GB2560291A8 (en) 2018-10-10
CN105702625A (zh) 2016-06-22
GB2560291A (en) 2018-09-05
KR102081014B1 (ko) 2020-02-24
US20180123058A1 (en) 2018-05-03
JP2019513280A (ja) 2019-05-23
US9960374B1 (en) 2018-05-01
KR20180100386A (ko) 2018-09-10
GB2560291B (en) 2020-10-14

Similar Documents

Publication Publication Date Title
WO2017177499A1 (zh) 柔性基板的剥离方法
WO2020042556A1 (zh) 一种多支撑膜辅助的石墨烯电化学转移方法
EP2151854A3 (en) Method to direct pattern metals on a substrate
CN1750250A (zh) 成膜方法、电子器件及电子仪器
US9982360B2 (en) Method for transfering a graphene layer
CN100389479C (zh) 掩模及其制造方法、成膜方法、电子器件、以及电子仪器
CN103280541A (zh) 一种在cvd石墨烯上制备柔性器件和柔性衬底的工艺方法
TW200723536A (en) Method for manufacturing conductive copper lines on panel for display device
KR101328275B1 (ko) 화학적 박리 방법을 이용한 플렉서블 전자소자의 제조방법, 플렉서블 전자소자 및 플렉서블 기판
TW201528541A (zh) 發光二極體之製造方法
SE0400973D0 (sv) Förfarande för tillverkning av kiselkarbidhalvledarordning
JP6652740B2 (ja) 膜付きガラス板の製造方法
CN103066179B (zh) 蓝宝石衬底可自剥离的氮化镓薄膜制备用外延结构及方法
CN105428215A (zh) 一种基于金属应力层及亲水剂处理的外延片整面剥离方法
CN109461844B (zh) 柔性基板的制造方法
KR101173210B1 (ko) 급속 알루미늄 애노다이징 방법 및 이를 이용한 메탈 피씨비 제조 방법
CN103646923A (zh) 一种晶圆级基板微通孔电镀方法
TWI722290B (zh) 配線用基板之製造方法
CN105070658B (zh) 石墨烯图案及其形成方法、显示基板制备方法及显示装置
TWI740521B (zh) 脫層方法及藉以製造薄膜裝置之方法
JP4742791B2 (ja) III族窒化物系化合物半導体のp型活性化方法
JP2006161090A (ja) 電解エッチング方法及び電解エッチング装置
CN115148591A (zh) 基于恒温电解液振荡的电化学剥离GaN衬底的方法
JP2007103396A5 (zh)
TW200503086A (en) New method to improve the performance of electroplating

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15100317

Country of ref document: US

ENP Entry into the national phase

Ref document number: 201811325

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160513

WWE Wipo information: entry into national phase

Ref document number: 1811325.8

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 20187022322

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187022322

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2018543364

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898314

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898314

Country of ref document: EP

Kind code of ref document: A1