WO2020071287A1 - 銅張積層板、配線板、及び樹脂付き銅箔 - Google Patents

銅張積層板、配線板、及び樹脂付き銅箔

Info

Publication number
WO2020071287A1
WO2020071287A1 PCT/JP2019/038309 JP2019038309W WO2020071287A1 WO 2020071287 A1 WO2020071287 A1 WO 2020071287A1 JP 2019038309 W JP2019038309 W JP 2019038309W WO 2020071287 A1 WO2020071287 A1 WO 2020071287A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
copper foil
group
clad laminate
insulating layer
Prior art date
Application number
PCT/JP2019/038309
Other languages
English (en)
French (fr)
Inventor
裕輝 井ノ上
達也 有沢
峻 山口
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980064349.2A priority Critical patent/CN112789167A/zh
Priority to JP2020550403A priority patent/JP7445830B2/ja
Priority to KR1020217011712A priority patent/KR20210070310A/ko
Priority to US17/281,845 priority patent/US11895770B2/en
Publication of WO2020071287A1 publication Critical patent/WO2020071287A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • C08G65/485Polyphenylene oxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/227Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
    • G01N23/2273Measuring photoelectron spectrum, e.g. electron spectroscopy for chemical analysis [ESCA] or X-ray photoelectron spectroscopy [XPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/002Etching of the substrate by chemical or physical means by liquid chemical etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2371/00Polyethers, e.g. PEEK, i.e. polyether-etherketone; PEK, i.e. polyetherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0166Polymeric layer used for special processing, e.g. resist for etching insulating material or photoresist used as a mask during plasma etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Definitions

  • the present invention relates to a copper-clad laminate, a wiring board, and a copper foil with resin.
  • Patent Document 1 As a metal-clad laminate obtained using such a resin composition containing polyphenylene ether as a substrate material, for example, a metal-clad laminate described in Patent Document 1 can be mentioned.
  • Patent Document 1 includes a cured insulating layer containing a polyphenylene ether compound, a metal layer bonded to the insulating layer, and an intermediate layer containing a silane compound interposed between the insulating layer and the metal layer.
  • a metal-clad laminate in which the metal layer has a bonding surface bonded to the insulating layer via the intermediate layer, and the ten-point average roughness Rz of the bonding surface is 0.5 ⁇ m or more and 4 ⁇ m or less.
  • Patent Literature 1 it is disclosed that a metal-clad laminate that can produce a printed wiring board with reduced loss during signal transmission can be obtained.
  • wiring boards such as printed wiring boards are required to further increase the signal transmission speed in order to cope with high frequencies.
  • wiring boards used in various electronic devices are also required to be hardly affected by changes in the external environment and the like. For example, high heat resistance is required to prevent delamination during heating.
  • various studies have been made on copper-clad laminates, wiring boards, and copper foil with resin.
  • the present invention has been made in view of such circumstances, and provides a copper-clad laminate and a resin-coated copper foil capable of suitably producing a wiring board having a high signal transmission speed and high heat resistance.
  • the purpose is to do.
  • Another object of the present invention is to provide a wiring board having a high signal transmission speed and high heat resistance.
  • One aspect of the present invention is a copper-clad laminate including an insulating layer and a copper foil in contact with at least one surface of the insulating layer, wherein the insulating layer is a carbon-carbon unsaturated double Including a cured product of a resin composition containing a modified polyphenylene ether compound terminal-modified by a substituent having a bond, the copper-clad laminate is subjected to etching treatment with a copper chloride solution to expose the insulating layer on the exposed surface.
  • the amount of chromium element measured by X-ray photoelectron spectroscopy is 7.5 atomic% or less based on the total amount of elements measured by X-ray photoelectron spectroscopy, and the surface roughness of the exposed surface is 10% or less. It is a copper-clad laminate having a point average roughness of 2.0 ⁇ m or less.
  • the substituent is preferably a group represented by the following formula (1) or the following formula (2).
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 2 represents an alkylene group having 1 to 10 carbon atoms or a direct bond.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • Another aspect of the present invention is a resin-coated copper foil including a resin layer and a copper foil present in contact with at least one surface of the resin layer, wherein the resin layer is formed of carbon-carbon.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of the copper-clad laminate according to the embodiment of the present invention.
  • FIG. 2 is a schematic sectional view showing an example of the prepreg according to the embodiment of the present invention.
  • FIG. 3 is a schematic sectional view showing an example of the wiring board according to the embodiment of the present invention.
  • FIG. 4 is a schematic sectional view showing another example of the wiring board according to the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing an example of the copper foil with resin according to the embodiment of the present invention.
  • a wiring board obtained by forming a wiring by partially removing a copper foil provided in a copper-clad laminate another insulating layer is formed on the surface of the insulating layer exposed by the wiring formation.
  • no wiring made of copper foil exists between these insulating layers. From this, it was thought that the delamination between the insulating layers was not affected by the copper foil provided on the copper-clad laminate used to obtain the wiring board.
  • the present inventors have conducted various studies on the effects of the remaining metal components and surface roughness.As a result, delamination between the insulating layers was performed by etching the copper-clad laminate with a copper chloride solution. It has been found that the likelihood of occurrence varies depending on the amount of chromium element present on the exposed surface where the insulating layer is exposed and the surface roughness.
  • the present inventors have performed an etching process on the copper-clad laminate with a copper chloride solution, and the exposed surface where the insulating layer is exposed has a predetermined chromium element amount and a predetermined surface roughness. It has been found that a copper-clad laminate can suppress the occurrence of delamination in a wiring board obtained using the same. That is, instead of specifying the copper foil removal conditions (etching conditions) and the composition of the copper foil, the amount of chromium element and the surface roughness of the exposed surface where the insulating layer is exposed by the predetermined etching process are set to predetermined values. It has been found that a copper-clad laminate as described below can suppress the occurrence of delamination in a wiring board obtained by using the same. From these facts, the following invention has been conceived.
  • a copper-clad laminate according to an embodiment of the present invention includes an insulating layer and a copper foil that is in contact with at least one surface of the insulating layer.
  • the copper-clad laminate 11 includes an insulating layer 12 and a copper foil 13 arranged so as to be in contact with both surfaces thereof.
  • the copper clad laminate may be provided with a copper foil in contact with only one surface of the insulating layer.
  • FIG. 1 is a schematic sectional view showing the configuration of the copper-clad laminate 11 according to the present embodiment.
  • the copper-clad laminate 11 includes a cured product of a resin composition in which the insulating layer 12 contains a modified polyphenylene ether compound terminal-modified with a substituent having a carbon-carbon unsaturated double bond. Further, the copper clad laminate 11 is subjected to an X-ray photoelectron spectroscopy (XPS) on the exposed surface where the insulating layer 12 is exposed by etching the copper clad laminate 11 with a copper chloride solution. ) Is 7.5 atomic% or less with respect to the total amount of elements measured by XPS.
  • the copper-clad laminate 11 has a surface roughness of the exposed surface of not more than 2.0 ⁇ m in ten-point average roughness.
  • the cured product contained in the insulating layer is a cured product obtained by curing a resin composition containing the modified polyphenylene ether compound. It is thought that the property can be improved.
  • the present inventors have found that delamination occurring between layers is affected by the originally existing copper foil even when no copper foil exists between them. From this, it is considered that an etching residue derived from the copper foil exists on the exposed surface where the insulating layer is exposed by the etching process. The present inventors have guessed that if a compound containing a chromium element is present as this etching residue, delamination is likely to occur when heated.
  • the amount of chromium element present on the exposed surface is small as described above, the amount of chromium element also present on the surface of the insulating layer existing between wirings in the wiring board manufactured from the copper-clad laminate, that is, It is considered that the amount of the compound containing chromium element is small. From this, it is considered that the copper-clad laminate has high heat resistance that can sufficiently suppress delamination even when heated.
  • the copper-clad laminate has high heat resistance.
  • the cured product contained in the insulating layer is a cured product obtained by curing the resin composition containing the modified polyphenylene ether compound, the cured product has a low dielectric constant and a low dielectric loss tangent. From this, it is considered that this wiring board can reduce the transmission loss due to the dielectric around the wiring and can increase the signal transmission speed.
  • the smoothness of the contact surface between the copper foil and the insulating layer is also high. From this, it is considered that the wiring board obtained from the copper-clad laminate has high smoothness of the contact surface between the wiring and the insulating layer. It is considered that the signal transmitted through the wiring is concentrated near the surface of the conductor forming the wiring due to the skin effect. This effect is considered to be more remarkable as the signal transmitted through the wiring has a higher frequency. Then, when the contact surface between the wiring and the insulating layer becomes smooth, the signal flowing through the wiring flows near the surface having high smoothness, so that the transmission distance is shortened. From this, it is considered that this wiring board can reduce the transmission loss caused by the conductor forming the wiring and can increase the signal transmission speed.
  • this wiring board can reduce both the transmission loss caused by the conductor forming the wiring and the transmission loss caused by the dielectric around the wiring, and can increase the signal transmission speed.
  • the copper-clad laminate is a copper-clad laminate capable of suitably producing a wiring board having a high signal transmission speed and high heat resistance.
  • the resin composition used in the present embodiment contains the modified polyphenylene ether compound.
  • modified polyphenylene ether compound used in the present embodiment is not particularly limited as long as it is a polyphenylene ether terminal-modified with a substituent having a carbon-carbon unsaturated double bond.
  • the substituent having a carbon-carbon unsaturated double bond is not particularly limited.
  • Examples of the substituent include a substituent represented by the following formula (1) or the following formula (2).
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 2 represents an alkylene group having 1 to 10 carbon atoms or a direct bond.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • Examples of the substituent represented by the formula (1) include a vinylbenzyl group (ethenylbenzyl group) such as a p-ethenylbenzyl group and an m-ethenylbenzyl group.
  • Examples of the substituent represented by the formula (2) include an acrylate group and a methacrylate group.
  • the modified polyphenylene ether has a polyphenylene ether chain in the molecule, and preferably has, for example, a repeating unit represented by the following formula (3) in the molecule.
  • R 4 to R 7 are each independent. That is, R 4 to R 7 may be the same or different groups.
  • R 4 to R 7 each represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among them, a hydrogen atom and an alkyl group are preferable.
  • R 4 to R 7 specific examples of the functional groups include the following.
  • the alkyl group is not particularly limited, but is preferably, for example, an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
  • the alkenyl group is not particularly limited, but is preferably, for example, an alkenyl group having 2 to 18 carbon atoms, more preferably an alkenyl group having 2 to 10 carbon atoms. Specific examples include a vinyl group, an allyl group, and a 3-butenyl group.
  • the alkynyl group is not particularly limited, but is preferably, for example, an alkynyl group having 2 to 18 carbon atoms, more preferably an alkynyl group having 2 to 10 carbon atoms. Specific examples include an ethynyl group and a prop-2-yn-1-yl group (propargyl group).
  • the alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group.
  • an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferable.
  • Specific examples include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, and a cyclohexylcarbonyl group.
  • the alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group.
  • an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferable.
  • Specific examples include an acryloyl group, a methacryloyl group, and a crotonoyl group.
  • the alkynylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group.
  • an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferable.
  • a propioloyl group and the like can be mentioned.
  • the weight average molecular weight (Mw) of the modified polyphenylene ether compound used in the present embodiment is not particularly limited. Specifically, it is preferably from 500 to 5,000, more preferably from 800 to 4,000, and still more preferably from 1,000 to 3,000.
  • the weight average molecular weight may be a value measured by a general molecular weight measuring method, and specifically, a value measured using gel permeation chromatography (GPC) and the like can be mentioned.
  • GPC gel permeation chromatography
  • m is a value such that the weight average molecular weight of the modified polyphenylene ether compound falls within such a range. It is preferred that Specifically, m is preferably 1 to 50.
  • the polyphenylene ether has excellent low dielectric properties and is not only excellent in heat resistance of the cured product but also excellent in moldability. Become. This is thought to be due to the following.
  • the weight average molecular weight of the ordinary polyphenylene ether is within such a range, the heat resistance of the cured product tends to decrease because the molecular weight is relatively low.
  • the modified polyphenylene ether compound has an unsaturated double bond at a terminal, it is considered that a cured product having sufficiently high heat resistance can be obtained.
  • the modified polyphenylene ether compound When the weight average molecular weight of the modified polyphenylene ether compound is within such a range, the modified polyphenylene ether compound has a relatively low molecular weight, and thus is considered to be excellent in moldability. Therefore, it is considered that such a modified polyphenylene ether compound is not only excellent in heat resistance of the cured product but also excellent in moldability.
  • the average number of the substituents (the number of terminal functional groups) at the molecular end per one molecule of the modified polyphenylene ether is not particularly limited. Specifically, the number is preferably 1 to 5, more preferably 1 to 3, and even more preferably 1.5 to 3. If the number of the terminal functional groups is too small, the cured product tends to be insufficient in heat resistance. Further, when the number of terminal functional groups is too large, the reactivity becomes too high, and for example, problems such as a decrease in storage stability of the resin composition and a decrease in fluidity of the resin composition may occur. .
  • the number of terminal functional groups of the modified polyphenylene ether compound includes a numerical value representing the average value of the substituents per molecule of all the modified polyphenylene ether compounds present in 1 mol of the modified polyphenylene ether compound.
  • This number of terminal functional groups can be measured, for example, by measuring the number of hydroxyl groups remaining in the obtained modified polyphenylene ether compound and calculating the decrease from the number of hydroxyl groups of the polyphenylene ether before modification. The decrease from the number of hydroxyl groups of the polyphenylene ether before modification is the number of terminal functional groups.
  • a method for measuring the number of hydroxyl groups remaining in the modified polyphenylene ether compound is as follows: a quaternary ammonium salt (tetraethylammonium hydroxide) associated with a hydroxyl group is added to a solution of the modified polyphenylene ether compound, and the UV absorbance of the mixed solution is measured. By doing so.
  • a quaternary ammonium salt tetraethylammonium hydroxide
  • the intrinsic viscosity of the modified polyphenylene ether compound used in the present embodiment is not particularly limited. Specifically, it is preferably from 0.03 to 0.12 dl / g, more preferably from 0.04 to 0.11 dl / g, and further preferably from 0.06 to 0.095 dl / g. preferable. If the intrinsic viscosity is too low, the molecular weight tends to be low, and it tends to be difficult to obtain low dielectric properties such as a low dielectric constant and a low dielectric loss tangent. On the other hand, if the intrinsic viscosity is too high, the viscosity is high, sufficient fluidity cannot be obtained, and the moldability of the cured product tends to decrease. Therefore, when the intrinsic viscosity of the modified polyphenylene ether compound is within the above range, excellent heat resistance and moldability of the cured product can be realized.
  • the intrinsic viscosity here is an intrinsic viscosity measured in methylene chloride at 25 ° C. More specifically, for example, a 0.18 g / 45 ml methylene chloride solution (liquid temperature 25 ° C.) is measured using a viscometer. And the like.
  • a viscometer for example, AVS500 ⁇ Visco ⁇ System manufactured by Schott and the like can be mentioned.
  • modified polyphenylene ether compound examples include a modified polyphenylene ether compound represented by the following formula (4) and a modified polyphenylene ether compound represented by the following formula (5). Further, as the modified polyphenylene ether compound, these modified polyphenylene ether compounds may be used alone, or two kinds of modified polyphenylene ether compounds may be used in combination.
  • R 8 to R 15 and R 16 to R 23 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl.
  • X 1 and X 2 each independently represent a substituent having a carbon-carbon unsaturated double bond.
  • a and B each represent a repeating unit represented by the following formula (6) and the following formula (7).
  • Y represents a linear, branched, or cyclic hydrocarbon having 20 or less carbon atoms.
  • R 24 to R 27 and R 28 to R 31 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
  • R 8 to R 15 and R 16 to R 23 are each independent as described above. That is, R 8 to R 15 and R 16 to R 23 may be the same group or different groups.
  • R 8 to R 15 and R 16 to R 23 each represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
  • a hydrogen atom and an alkyl group are preferable.
  • s and t preferably indicate 0 to 20, respectively, as described above. It is preferable that s and t indicate numerical values such that the sum of s and t is 1 to 30. Therefore, it is more preferable that s represents 0 to 20, t represents 0 to 20, and the sum of s and t represents 1 to 30.
  • R 24 to R 27 and R 28 to R 31 are independent of each other. That is, R 24 to R 27 and R 28 to R 31 may be the same or different groups.
  • R 24 to R 27 and R 28 to R 31 each represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among them, a hydrogen atom and an alkyl group are preferable.
  • R 8 to R 31 are the same as R 5 to R 8 in the above formula (3).
  • Y is a linear, branched or cyclic hydrocarbon having 20 or less carbon atoms as described above.
  • Examples of Y include a group represented by the following formula (8).
  • R 32 and R 33 each independently represent a hydrogen atom or an alkyl group.
  • the alkyl group include a methyl group.
  • the group represented by the formula (8) include a methylene group, a methylmethylene group, and a dimethylmethylene group. Among them, a dimethylmethylene group is preferable.
  • modified polyphenylene ether compound represented by the formula (4) include, for example, a modified polyphenylene ether compound represented by the following formula (9).
  • modified polyphenylene ether compound represented by the formula (5) include, for example, a modified polyphenylene ether compound represented by the following formula (10) and a modified polyphenylene ether represented by the following formula (11) And the like.
  • s and t are the same as s and t in the formulas (6) and (7).
  • R 1 and R 2 are the same as R 1 and R 2 in the formula (1).
  • Y is the same as Y in the above (5).
  • R 3 is the same as R 3 in the above formula (2).
  • the method for synthesizing the modified polyphenylene ether compound used in the present embodiment is not particularly limited as long as the modified polyphenylene ether compound terminal-modified with a substituent having a carbon-carbon unsaturated double bond can be synthesized. Specific examples include a method of reacting a compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded to polyphenylene ether.
  • Examples of the compound in which a substituent having a carbon-carbon unsaturated double bond is bonded to a halogen atom include, for example, a compound in which the substituent represented by the above formulas (2) and (3) is bonded to a halogen atom. And the like.
  • Specific examples of the halogen atom include a chlorine atom, a bromine atom, an iodine atom, and a fluorine atom, and among them, a chlorine atom is preferable.
  • Specific examples of the compound in which a substituent having a carbon-carbon unsaturated double bond is bonded to a halogen atom include p-chloromethylstyrene and m-chloromethylstyrene.
  • the raw material polyphenylene ether is not particularly limited as long as it can finally synthesize a predetermined modified polyphenylene ether compound.
  • a polyphenylene ether such as polyphenylene ether or poly (2,6-dimethyl-1,4-phenylene oxide) comprising 2,6-dimethylphenol and at least one of bifunctional phenol and trifunctional phenol is used. And the like as a main component.
  • the bifunctional phenol is a phenol compound having two phenolic hydroxyl groups in a molecule, for example, tetramethylbisphenol A and the like.
  • the trifunctional phenol is a phenol compound having three phenolic hydroxyl groups in a molecule.
  • the method described above can be used as a method for synthesizing the modified polyphenylene ether compound. Specifically, the above-mentioned polyphenylene ether and a compound in which a substituent having a carbon-carbon unsaturated double bond is bonded to a halogen atom are dissolved in a solvent and stirred. By doing so, the polyphenylene ether reacts with the compound in which the substituent having a carbon-carbon unsaturated double bond is bonded to a halogen atom, and the modified polyphenylene ether compound used in the present embodiment is obtained.
  • the reaction is preferably performed in the presence of an alkali metal hydroxide. By doing so, it is believed that this reaction proceeds favorably. This is presumably because the alkali metal hydroxide functions as a dehydrohalogenating agent, specifically, a dehydrochlorinating agent. That is, an alkali metal hydroxide desorbs hydrogen halide from a compound in which a phenol group of polyphenylene ether, a substituent having a carbon-carbon unsaturated double bond, and a halogen atom are bonded, and so on. Thus, it is considered that a substituent having a carbon-carbon unsaturated double bond is bonded to the oxygen atom of the phenol group instead of the hydrogen atom of the phenol group of the polyphenylene ether.
  • a dehydrohalogenating agent specifically, a dehydrochlorinating agent. That is, an alkali metal hydroxide desorbs hydrogen halide from a compound in which a phenol group of polyphenylene ether,
  • the alkali metal hydroxide is not particularly limited as long as it can function as a dehalogenating agent, and examples thereof include sodium hydroxide.
  • the alkali metal hydroxide is usually used in the form of an aqueous solution, and specifically, is used as an aqueous sodium hydroxide solution.
  • reaction conditions such as the reaction time and the reaction temperature also differ depending on the compound in which the substituent having a carbon-carbon unsaturated double bond is bonded to a halogen atom, etc., and may be any conditions under which the above-described reaction suitably proceeds.
  • the reaction temperature is preferably from room temperature to 100 ° C., more preferably from 30 to 100 ° C.
  • reaction time is preferably 0.5 to 20 hours, more preferably 0.5 to 10 hours.
  • the solvent used in the reaction can dissolve polyphenylene ether and a compound in which a substituent having a carbon-carbon unsaturated double bond is bonded to a halogen atom, and polyphenylene ether and a carbon-carbon unsaturated double bond can be dissolved.
  • the above reaction is preferably carried out in the presence of not only an alkali metal hydroxide but also a phase transfer catalyst. That is, the above reaction is preferably performed in the presence of an alkali metal hydroxide and a phase transfer catalyst. By doing so, it is considered that the above reaction proceeds more suitably. This is thought to be due to the following.
  • the phase transfer catalyst has a function of incorporating an alkali metal hydroxide, and is soluble in both a polar solvent phase such as water and a non-polar solvent phase such as an organic solvent. This is considered to be due to the fact that the catalyst is capable of transporting.
  • the aqueous solution of sodium hydroxide is used for the reaction. It is considered that even when the solvent is dropped, the solvent and the aqueous solution of sodium hydroxide are separated, and the sodium hydroxide is hardly transferred to the solvent. In that case, it is considered that the aqueous sodium hydroxide solution added as the alkali metal hydroxide hardly contributes to the promotion of the reaction.
  • phase transfer catalyst is not particularly limited, but examples thereof include quaternary ammonium salts such as tetra-n-butylammonium bromide.
  • the resin composition used in the present embodiment preferably contains the modified polyphenylene ether compound obtained as described above as the modified polyphenylene ether compound.
  • the resin composition may contain a curing agent.
  • the resin composition may not contain a curing agent, but preferably contains a curing agent in order to suitably cure the modified polyphenylene ether compound.
  • the curing agent is a curing agent that can react with the polyphenylene ether compound to cure the resin composition containing the polyphenylene ether compound.
  • the curing agent is not particularly limited as long as it is a curing agent that can cure the resin composition containing the polyphenylene ether compound.
  • the curing agent examples include styrene, a styrene derivative, a compound having an acryloyl group in a molecule, a compound having a methacryloyl group in a molecule, a compound having a vinyl group in a molecule, a compound having an allyl group in a molecule, and a molecule.
  • examples thereof include a compound having an acenaphthylene structure, a compound having a maleimide group in a molecule, and a compound having an isocyanurate group in a molecule.
  • styrene derivative examples include bromostyrene and dibromostyrene.
  • the compound having an acryloyl group in the molecule is an acrylate compound.
  • the acrylate compound include a monofunctional acrylate compound having one acryloyl group in the molecule and a polyfunctional acrylate compound having two or more acryloyl groups in the molecule.
  • the monofunctional acrylate compound include methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate.
  • Examples of the polyfunctional acrylate compound include diacrylate compounds such as tricyclodecane dimethanol diacrylate.
  • the compound having a methacryloyl group in the molecule is a methacrylate compound.
  • the methacrylate compound include a monofunctional methacrylate compound having one methacryloyl group in the molecule and a polyfunctional methacrylate compound having two or more methacryloyl groups in the molecule.
  • the monofunctional methacrylate compound include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate.
  • Examples of the polyfunctional methacrylate compound include dimethacrylate compounds such as tricyclodecane dimethanol dimethacrylate.
  • the compound having a vinyl group in the molecule is a vinyl compound.
  • the vinyl compound include a monofunctional vinyl compound having one vinyl group in the molecule (monovinyl compound) and a polyfunctional vinyl compound having two or more vinyl groups in the molecule.
  • the polyfunctional vinyl compound include divinylbenzene and polybutadiene.
  • the compound having an allyl group in the molecule is an allyl compound.
  • the allyl compound include a monofunctional allyl compound having one allyl group in the molecule and a polyfunctional allyl compound having two or more allyl groups in the molecule.
  • the polyfunctional allyl compound include triallyl isocyanurate compounds such as triallyl isocyanurate (TAIC), diallyl bisphenol compounds, and diallyl phthalate (DAP).
  • the compound having an acenaphthylene structure in the molecule is an acenaphthylene compound.
  • examples of the acenaphthylene compound include acenaphthylene, alkylacenaphthylenes, halogenated acenaphthylenes, and phenylacenaphthylenes.
  • alkyl acenaphthylenes examples include 1-methylacenaphthylene, 3-methylacenaphthylene, 4-methylacenaphthylene, 5-methylacenaphthylene, 1-ethylacenaphthylene, and 3-ethylacena Phthalene, 4-ethylacenaphthylene, 5-ethylacenaphthylene and the like.
  • halogenated acenaphthylenes examples include 1-chloroacenaphthylene, 3-chloroacenaphthylene, 4-chloroacenaphthylene, 5-chloroacenaphthylene, 1-bromoacenaphthylene, and 3-bromoacenaphthylene Len, 4-bromoacenaphthylene, 5-bromoacenaphthylene and the like.
  • phenylacenaphthylene examples include 1-phenylacenaphthylene, 3-phenylacenaphthylene, 4-phenylacenaphthylene, 5-phenylacenaphthylene and the like.
  • the acenaphthylene compound may be a monofunctional acenaphthylene compound having one acenaphthylene structure in the molecule, or a polyfunctional acenaphthylene compound having two or more acenaphthylene structures in the molecule, as described above. .
  • the compound having a maleimide group in the molecule is a maleimide compound.
  • the maleimide compound include a monofunctional maleimide compound having one maleimide group in a molecule, a polyfunctional maleimide compound having two or more maleimide groups in a molecule, and a modified maleimide compound.
  • the modified maleimide compound include a modified maleimide compound in which a part of the molecule is modified with an amine compound, a modified maleimide compound in which a part of the molecule is modified with a silicone compound, and a part of the molecule which is an amine compound. And a modified maleimide compound modified with a silicone compound.
  • the compound having an isocyanurate group in the molecule is an isocyanurate compound.
  • the isocyanurate compound include a compound further having an alkenyl group in the molecule (alkenyl isocyanurate compound), and examples thereof include trialkenyl isocyanurate compounds such as triallyl isocyanurate (TAIC).
  • the curing agent among the above, for example, the polyfunctional acrylate compound, the polyfunctional methacrylate compound, the polyfunctional vinyl compound, the styrene derivative, the allyl compound, the maleimide compound, the acenaphthylene compound, and the isocyanurate compound And the like, and the polyfunctional vinyl compound, the acenaphthylene compound, and the allyl compound are more preferable.
  • the polyfunctional vinyl compound divinylbenzene is preferable.
  • the allyl compound an allyl isocyanurate compound having two or more allyl groups in a molecule is preferable, and triallyl isocyanurate (TAIC) is more preferable.
  • the above curing agents may be used alone or in combination of two or more.
  • the weight average molecular weight of the curing agent is not particularly limited, and is, for example, preferably from 100 to 5,000, more preferably from 100 to 4,000, and still more preferably from 100 to 3,000. If the weight average molecular weight of the curing agent is too low, the curing agent may be likely to volatilize from the components of the resin composition. If the weight average molecular weight of the curing agent is too high, the viscosity of the varnish of the resin composition and the melt viscosity during heat molding may be too high. Therefore, when the weight average molecular weight of the curing agent is within such a range, a resin composition having more excellent heat resistance of the cured product can be obtained.
  • the resin composition containing the polyphenylene ether compound can be appropriately cured by the reaction with the polyphenylene ether compound.
  • the weight average molecular weight may be a value measured by a general molecular weight measuring method, and specifically, a value measured using gel permeation chromatography (GPC) and the like can be mentioned.
  • the average number of functional groups (functional groups) per molecule of the curing agent that contributes to the reaction with the polyphenylene ether compound varies depending on the weight average molecular weight of the curing agent. And preferably 2 to 18. If the number of the functional groups is too small, the cured product tends to have insufficient heat resistance. On the other hand, if the number of functional groups is too large, the reactivity becomes too high, and for example, problems such as a decrease in storage stability of the resin composition and a decrease in fluidity of the resin composition may occur.
  • the content of the modified polyphenylene ether compound is preferably 30 to 90 parts by mass, more preferably 50 to 90 parts by mass, based on 100 parts by mass of the total of the modified polyphenylene ether compound and the curing agent.
  • the content of the curing agent is preferably from 10 to 70 parts by mass, more preferably from 10 to 50 parts by mass, based on 100 parts by mass of the total of the modified polyphenylene ether compound and the curing agent.
  • the content ratio of the modified polyphenylene ether compound to the curing agent is preferably from 90:10 to 30:70 by mass, and more preferably from 90:10 to 50:50.
  • the resin composition according to the exemplary embodiment may contain components (other components) other than the modified polyphenylene ether compound and the crosslinking agent as needed, as long as the effects of the present invention are not impaired.
  • Other components contained in the resin composition according to the present embodiment include, for example, a silane coupling agent, a flame retardant, an initiator, an antifoaming agent, an antioxidant, a heat stabilizer, an antistatic agent, and ultraviolet absorption.
  • the composition may further include additives such as an agent, a dye or a pigment, a lubricant, and an inorganic filler.
  • the resin composition may contain a thermosetting resin such as an epoxy resin, an unsaturated polyester resin, a thermosetting polyimide resin, a maleimide compound, and a modified maleimide compound.
  • a thermosetting resin such as an epoxy resin, an unsaturated polyester resin, a thermosetting polyimide resin, a maleimide compound, and a modified maleimide compound.
  • the modified maleimide compound include a maleimide compound in which at least a part of the molecule is modified with a silicone compound, a maleimide compound in which at least a part of the molecule is modified with an amine compound, and the like.
  • the resin composition according to the present embodiment may contain a silane coupling agent.
  • the silane coupling agent may be contained in the resin composition, or may be contained as a silane coupling agent surface-treated in advance with the inorganic filler contained in the resin composition.
  • the silane coupling agent is preferably contained as a silane coupling agent surface-treated in advance with an inorganic filler, and thus contained as a silane coupling agent surface-treated with an inorganic filler in advance.
  • the resin composition also contains a silane coupling agent.
  • the prepreg may contain a silane coupling agent which has been surface-treated on a fibrous base material in advance.
  • the silane coupling agent examples include a silane coupling agent having at least one functional group selected from the group consisting of a vinyl group, a styryl group, a methacryl group, an acrylic group, and a phenylamino group. That is, the silane coupling agent has at least one of a vinyl group, a styryl group, a methacryl group, an acryl group, and a phenylamino group as a reactive functional group, and further has a methoxy group or an ethoxy group. Examples include compounds having a hydrolyzable group.
  • silane coupling agent those having a vinyl group include, for example, vinyltriethoxysilane, vinyltrimethoxysilane and the like.
  • examples of the silane coupling agent having a styryl group include p-styryltrimethoxysilane and p-styryltriethoxysilane.
  • Examples of the silane coupling agent having a methacryl group include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-methacryloxypropylmethyl. Examples include diethoxysilane and 3-methacryloxypropylethyldiethoxysilane.
  • silane coupling agent having an acryl group examples include 3-acryloxypropyltrimethoxysilane and 3-acryloxypropyltriethoxysilane.
  • silane coupling agent having a phenylamino group examples include N-phenyl-3-aminopropyltrimethoxysilane and N-phenyl-3-aminopropyltriethoxysilane.
  • the resin composition according to the present embodiment may contain a flame retardant, as described above. By containing a flame retardant, the flame retardancy of a cured product of the resin composition can be increased.
  • the flame retardant is not particularly limited. Specifically, in the field of using a halogen-based flame retardant such as a brominated flame retardant, for example, ethylenedipentabromobenzene, ethylenebistetrabromoimide, decabromodiphenyloxide, and tetradecabromomelting point having a melting point of 300 ° C. or more are used. Diphenoxybenzene is preferred.
  • a phosphate ester-based flame retardant a phosphate ester-based flame retardant, a phosphazene-based flame retardant, a bisdiphenylphosphine oxide-based flame retardant, and a phosphinate-based flame retardant are exemplified.
  • Specific examples of the phosphate ester-based flame retardant include a condensed phosphate ester of dixylenyl phosphate.
  • Specific examples of the phosphazene-based flame retardant include phenoxyphosphazene.
  • the bisdiphenylphosphine oxide-based flame retardant include xylylenebisdiphenylphosphine oxide.
  • Specific examples of the phosphinate-based flame retardant include, for example, metal phosphinates of aluminum dialkylphosphinates. As the flame retardant, each exemplified flame retardant may be used alone, or two or more flame retardants may be used in combination.
  • the resin composition according to the present embodiment may contain an initiator (reaction initiator). Even if the polyphenylene ether resin composition is composed of the maleimide compound, the modified polyphenylene ether compound, and the crosslinking agent, the curing reaction can proceed. In addition, the curing reaction can proceed with only the modified polyphenylene ether. However, depending on the process conditions, it may be difficult to raise the temperature until curing progresses, so a reaction initiator may be added.
  • the reaction initiator is not particularly limited as long as it can promote a curing reaction between the maleimide compound, the modified polyphenylene ether compound, and the crosslinking agent.
  • An oxidizing agent such as lonitrile can be used. If necessary, a metal carboxylate can be used in combination. By doing so, the curing reaction can be further accelerated.
  • ⁇ , ⁇ ′-bis (t-butylperoxy-m-isopropyl) benzene is preferably used. Since ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene has a relatively high reaction initiation temperature, it suppresses the acceleration of the curing reaction at the time when it is not necessary to cure the prepreg, for example. Thus, the storage stability of the polyphenylene ether resin composition can be prevented from lowering. Further, ⁇ , ⁇ ′-bis (t-butylperoxy-m-isopropyl) benzene has low volatility, so that it does not volatilize during prepreg drying or storage and has good stability.
  • the reaction initiator may be used alone or in combination of two or more.
  • the resin composition according to the present embodiment may contain a filler such as an inorganic filler.
  • a filler such as an inorganic filler.
  • the filler include, but are not particularly limited to, those added to the cured product of the resin composition to enhance heat resistance and flame retardancy. Further, by including a filler, heat resistance and flame retardancy can be further improved.
  • Specific examples of the filler include silica such as spherical silica, metal oxides such as alumina, titanium oxide and mica, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, talc, aluminum borate, and sulfuric acid. Barium, calcium carbonate, and the like. As the filler, silica, mica, and talc are preferable, and spherical silica is more preferable.
  • filler may be used alone, or two or more kinds may be used in combination.
  • the filler may be used as it is, or may be one that has been surface-treated with the silane coupling agent.
  • its content is preferably from 30 to 270% by mass, more preferably from 50 to 250% by mass, based on the resin composition.
  • the copper foil is not particularly limited as long as the exposed surface is as described above when the copper-clad laminate is etched with a copper chloride solution. Specifically, the amount of chromium element measured by XPS on the exposed surface is 7.5 atomic% or less based on the total amount of elements measured by XPS, and the surface roughness of the exposed surface is: There is no particular limitation as long as the copper foil has a ten-point average roughness of 2.0 ⁇ m or less.
  • the etching process of the copper-clad laminate when forming the exposed surface is an etching process with a copper chloride solution, and is a process of removing the copper foil.
  • this solution is etched at a temperature of 45 ° C. for 90 seconds (for example, when the thickness of the copper foil is 18 ⁇ m), and thereafter, using city water or pure water at room temperature. This is a process in which the copper foil is removed by washing with water.
  • the chromium element amount measured by XPS is 7.5 atomic% or less and 7.0 atomic% or less with respect to the total element amount measured by XPS, as described above. Is preferable, and it is more preferable that it is 6.5 atomic% or less. If the amount of the chromium element is too large, the heat resistance tends to decrease, for example, the adhesion between the layers decreases, and the resulting copper-clad laminate tends to undergo delamination when heated. For this reason, the smaller the amount of the chromium element is, the better, but in practice, the limit is about 0.1 atomic%. For this reason, it is preferable that the amount of the chromium element be 0.1 to 7.5 atomic%.
  • the XPS can be measured by using general X-ray photoelectron spectroscopy. Specifically, the sample can be measured by irradiating the sample with X-rays under vacuum using PHI $ 5000 Versaprobe manufactured by ULVAC-PHI, Inc.
  • a nitrogen element which can be confirmed by XPS is present on the exposed surface.
  • the nitrogen element that can be confirmed by XPS means that the amount of nitrogen element is equal to or greater than the detection limit of XPS, specifically, 0.1 atomic% or more.
  • the exposed surface preferably has a nitrogen element amount measured by XPS of at least 1.0 atomic%, and more preferably 2.5 atomic% with respect to the total element amount measured by XPS. Is more preferably 3.5 atomic% or more.
  • the present inventors have found that when a nitrogen element which can be confirmed by XPS is present on the exposed surface, delamination hardly occurs even when the obtained wiring board is heated. As described above, the present inventors speculated that if a compound containing a chromium element is present as an etching residue, delamination is likely to occur when heated. On the other hand, when a compound containing a nitrogen element is present as an etching residue in an amount that can be confirmed by X-ray photoelectron spectroscopy, the surface of an insulating layer existing between wirings in a wiring board manufactured from the copper-clad laminate is measured. It is considered that a compound containing a certain amount or more of nitrogen element is present also on the top.
  • the compound containing the nitrogen element enhances the interlayer adhesion between the insulating layer and the insulating layer, and makes it difficult for delamination to occur.
  • This is considered to provide a copper-clad laminate capable of suitably producing a wiring board having higher heat resistance.
  • the amount of the nitrogen element is too small, the effect of suppressing the occurrence of delamination due to the presence of the nitrogen element tends to be insufficient.
  • the nitrogen element is preferably derived from a nitrogen atom contained in a compound having an amino group, and more preferably derived from a nitrogen atom contained in a silane coupling agent having an amino group.
  • the fact that the nitrogen element is derived from a nitrogen atom contained in a compound having an amino group means that the compound containing a nitrogen element, which is present as an etching residue, is a compound having an amino group. It is considered that such a copper foil is specifically a copper foil having a layer treated with a silane coupling agent having an amino group in a molecule as a silane coupling agent layer described later.
  • the compound having an amino group that is, the silane coupling agent having an amino group in the molecule, enhances the interlayer adhesion between the insulating layer and the insulating layer, and has the effect of preventing the occurrence of delamination. It is thought to play effectively. From this, it is considered that a copper-clad laminate capable of suitably producing a wiring board having higher heat resistance is obtained.
  • chromium (Cr) element and the nitrogen (N) element copper (Cu) element, carbon (C) element, oxygen (O) element, silicon (Si)
  • Cu copper
  • C carbon
  • O oxygen
  • Si silicon
  • One or more elements selected from elements, nickel (Ni), zinc (Zn), and cobalt (Co) may be present.
  • the amount of each of these elements is, for example, preferably from 0 to 90 atomic%, more preferably from 0 to 80 atomic%, and more preferably from 0 to 80 atomic%, based on the total amount of elements measured by XPS. More preferably, it is 70 atomic%.
  • the copper foil include a copper foil obtained by subjecting a copper foil base material to various treatments.
  • the treatment is not particularly limited as long as the treatment is performed on a copper foil used for a copper-clad laminate.
  • Examples of the treatment include a roughening treatment, a heat treatment, a rust prevention treatment, and a silane coupling agent treatment.
  • the copper foil may be subjected to any one of the treatments, or may be a combination of two or more kinds. When two or more treatments are performed, it is preferable to perform the roughening treatment, the heat treatment, the rust prevention treatment, and the silane coupling agent treatment in this order.
  • the copper foil substrate only needs to contain copper, and examples thereof include a foil-like substrate made of copper or a copper alloy.
  • the copper alloy include an alloy containing copper and at least one selected from the group consisting of nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, cobalt, and zinc.
  • the roughening treatment may be a roughening treatment generally performed when manufacturing a copper foil, and is not particularly limited, and the surface of the copper foil base material or the like to be treated is provided with roughened particles. And the like.
  • the copper foil surface is covered with roughened particles made of copper or a copper alloy.
  • the region composed of the roughened particles is also called a roughened layer.
  • the copper foil may have a layer (roughened layer) formed by the roughening treatment.
  • the heat treatment may be a heat treatment generally performed when producing a copper foil, is not particularly limited, for example, nickel, cobalt, copper, and zinc, a heat-resistant layer containing a simple substance or an alloy.
  • the processing to be formed is exemplified. Even if the region formed by this heat treatment is not completely layered, it is also called a heat-resistant layer.
  • the copper foil may have a layer (heat-resistant layer) formed by the heat-resistant treatment.
  • the rust prevention treatment may be a rust prevention treatment generally performed when producing a copper foil, and is not particularly limited, but is preferably a treatment for forming a rust prevention layer containing nickel.
  • examples of the rust prevention treatment include a chromate treatment. Even if the region formed by this rust-proof treatment is not completely layered, it is also called a rust-proof layer.
  • the copper foil may have a layer (rust prevention layer) formed by the rust prevention treatment.
  • the silane coupling agent treatment may be a silane coupling agent treatment that is generally performed when producing a copper foil, and is not particularly limited.
  • the silane coupling agent treatment may be performed on the surface of the copper foil or the like that is an object to be treated. And a process of applying a silane coupling agent.
  • the silane coupling agent treatment the silane coupling agent may be applied and then dried or heated.
  • an alkoxy group of the silane coupling agent reacts and binds to copper or the like constituting a copper foil to be processed.
  • the region formed by the combined silane coupling agent is a silane coupling agent layer.
  • the copper foil may have a layer (silane coupling agent layer) formed by the silane coupling agent treatment.
  • the copper foil include a copper foil including a copper foil substrate and a coating layer disposed on the copper foil substrate.
  • the coating layer include a roughened layer, a heat-resistant layer, a rust-proof layer, and a silane coupling agent layer.
  • the copper foil may be provided with these layers alone as the coating layer, or may be provided by laminating two or more layers.
  • the said coating layer consists of multiple layers, it is preferable to provide in order of the said copper foil base material, a roughening layer, a heat-resistant layer, a rust prevention layer, and a silane coupling agent layer.
  • the roughened layer examples include a layer containing roughened particles made of copper or a copper alloy.
  • the copper alloy is the same as the copper alloy in the copper foil substrate.
  • the roughened layer is obtained by, for example, roughening the copper foil base material.
  • the roughening layer after forming roughened particles obtained by roughening the copper foil substrate, nickel, cobalt, copper, zinc and the like, particles composed of a simple substance or an alloy, secondary particles and Examples include a layer formed as tertiary particles. That is, the roughened layer may be a layer containing not only the roughened particles but also particles made of a simple substance or an alloy, such as nickel, cobalt, copper, and zinc.
  • Examples of the heat-resistant layer include a layer containing a simple substance or an alloy of nickel, cobalt, copper, and zinc.
  • the heat-resistant layer may be a single layer or two or more layers.
  • Examples of the heat-resistant layer include a layer in which a nickel layer and a zinc layer are stacked.
  • Examples of the rust preventive layer include a layer containing chromium, such as a chromate treatment layer.
  • the rustproof layer is obtained, for example, by subjecting a copper foil substrate provided with the heat-resistant layer and the like to a chromate treatment.
  • the silane coupling agent layer is a layer obtained by treating with a silane coupling agent.
  • a layer obtained by treating a copper foil substrate provided with the rust-preventive layer or the like with a silane coupling agent may be mentioned.
  • silane coupling agent examples include a silane coupling agent having an amino group in a molecule and a silane coupling agent having a carbon-carbon unsaturated double bond in a molecule.
  • the silane coupling agent having an amino group in the molecule includes a compound having an amino group as a reactive functional group and further having a hydrolyzable group such as a methoxy group and an ethoxy group.
  • Specific examples of the silane coupling agent having an amino group in the molecule include N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane and N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane.
  • Ethoxysilane 1-aminopropyltrimethoxysilane, 2-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 1,2-diaminopropyltrimethoxysilane, 3-amino-1-propenyltrimethoxysilane, 3- Aminopropyl triethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl- 3-aminopropyltrimethoxysilane, 3-aminopro Rutriethoxysilane, 3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-amino
  • the silane coupling agent having a carbon-carbon unsaturated double bond in the molecule include at least one functional group selected from the group consisting of a methacryloxy group, a styryl group, a vinyl group, and an acryloxy group. And the like. That is, the silane coupling agent has at least one of a methacryloxy group, a styryl group, a vinyl group, and an acryloxy group as a reactive functional group, and further has a hydrolyzable group such as a methoxy group or an ethoxy group. And the like.
  • Examples of the silane coupling agent having a carbon-carbon unsaturated double bond in a molecule include the following silane coupling agents.
  • silane coupling agents having a methacryloxy group in a molecule include, for example, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldiethoxy Silane and 3-methacryloxypropylethyldiethoxysilane.
  • silane coupling agent having a styryl group in a molecule include p-styryltrimethoxysilane and p-styryltriethoxysilane.
  • silane coupling agent having a vinyl group in a molecule examples include vinyl triethoxy silane and vinyl trimethoxy silane.
  • silane coupling agent having an acryloxy group in a molecule examples include 3-acryloxypropyltrimethoxysilane and 3-acryloxypropyltriethoxysilane.
  • the chromium element amount can be adjusted, for example, by adjusting the thickness of a layer containing chromium, such as a chromate layer, in the coating layer.
  • the nitrogen element can be present by forming a layer using a silane coupling agent having an amino group in the molecule as the silane coupling agent layer. Further, the amount (nitrogen element amount) can be adjusted by adjusting the thickness and the like of a layer obtained by using a silane coupling agent having an amino group in a molecule as a silane coupling agent layer.
  • the average roughness of the exposed surface is 10 ⁇ m or less in average roughness, preferably 1.8 ⁇ m or less, more preferably 1.5 ⁇ m or less. It is considered that the lower the surface roughness of the exposed surface, that is, the higher the smoothness of the exposed surface, the higher the smoothness of the contact surface between the copper foil and the insulating layer, thereby reducing loss during signal transmission. It is preferable in that it can be performed. On the other hand, the surface roughness of the exposed surface is limited to about 0.2 ⁇ m in ten-point average roughness Rz, even if it is low.
  • the surface roughness of the exposed surface is 0.2 ⁇ m or more in ten-point average roughness Rz. Accordingly, the surface roughness of the exposed surface is preferably 0.2 to 2.0 ⁇ m, more preferably 0.5 to 2.0 ⁇ m, and more preferably 0.6 to 1 ⁇ m in ten-point average roughness Rz. It is more preferably 0.8 ⁇ m, most preferably 0.6 to 1.5 ⁇ m.
  • the ten-point average roughness Rz which is the surface roughness here, is based on JIS B 0601: 1994, and can be measured by a general surface roughness measuring instrument or the like. Specifically, for example, it can be measured using a surface roughness shape measuring instrument (SURFCOM500DX) manufactured by Tokyo Seimitsu Co., Ltd.
  • SURFCOM500DX surface roughness shape measuring instrument
  • the average roughness of the exposed surface can be adjusted by adjusting the average roughness of the surface of the copper foil on the side in contact with the insulating layer.
  • the average roughness of the surface of the copper foil on the side in contact with the insulating layer is preferably 0.5 to 2.0 ⁇ m as a ten-point average roughness Rz.
  • the copper foil has a surface having a large average roughness, a so-called M surface, as a surface in contact with the insulating layer. Then, it is sufficient that the above-mentioned coating layer is formed on the M surface side.
  • the surface of the copper foil having a small average roughness may be formed with the above-mentioned coating layer as in the case of the M surface, or may be formed with only the rust prevention layer. However, the coating layer may not be formed.
  • the resin composition used in the present embodiment may be prepared and used in a varnish form.
  • a varnish form for the purpose of impregnating a base material (fibrous base material) for forming the prepreg. That is, the resin composition may be used as one prepared in a varnish form (resin varnish).
  • the modified polyphenylene ether compound and the curing agent are dissolved in a resin varnish.
  • Such a varnish-like composition (resin varnish) is prepared, for example, as follows.
  • each component that can be dissolved in an organic solvent is put into an organic solvent and dissolved. At this time, heating may be performed if necessary. Thereafter, if necessary, a component that does not dissolve in the organic solvent is added, and the mixture is dispersed using a ball mill, a bead mill, a planetary mixer, a roll mill, or the like until a predetermined dispersion state is obtained. Is prepared.
  • the organic solvent used here is not particularly limited as long as it dissolves the modified polyphenylene ether compound and the curing agent and does not inhibit the curing reaction. Specifically, for example, toluene, methyl ethyl ketone (MEK) and the like are mentioned.
  • the insulating layer may include not only a cured product of the resin composition but also a fibrous base material.
  • the fibrous base material the same as the fibrous base material contained in the prepreg described later can be used.
  • the resin composition not only the copper-clad laminate but also a prepreg, a copper foil with resin, and a wiring board can be obtained as follows.
  • the above-mentioned varnish-like composition may be used as the resin composition.
  • the prepreg 1 includes the resin composition or a semi-cured product 2 of the resin composition, and a fibrous base material 3.
  • the prepreg 1 includes a resin composition or a semi-cured product 2 of the resin composition in which a fibrous base material 3 is present. That is, the prepreg 1 includes the resin composition or the semi-cured product 2 of the resin composition, and the fibrous base material 3 existing in the resin composition or the semi-cured product 2 of the resin composition.
  • FIG. 2 is a schematic sectional view showing an example of the prepreg 1 according to the present embodiment.
  • the semi-cured product is a resin composition in which the resin composition is partially cured to such a degree that it can be further cured. That is, the semi-cured product is a semi-cured resin composition (B-staged). For example, when heated, the viscosity of the resin composition first decreases gradually, and thereafter, the curing starts, and the viscosity gradually increases. In such a case, the semi-cured state includes a state after the viscosity starts to increase and before complete curing.
  • the prepreg may include a semi-cured resin composition as described above, or may include the uncured resin composition itself. That is, a prepreg including a semi-cured product of the resin composition (the B-stage resin composition) and a fibrous base material may be used, or the resin composition before curing (the A-stage resin composition) ) And a prepreg comprising a fibrous base material. Specifically, a resin composition in which a fibrous base material is present may be used. In addition, the resin composition or the semi-cured product of the resin composition may be obtained by drying and / or heating the resin composition.
  • the method for producing the prepreg is not particularly limited as long as it is a method capable of producing the prepreg.
  • a method capable of producing the prepreg for example, there is a method of impregnating a fibrous base material with a resin composition, for example, a resin composition prepared in a varnish form. That is, examples of the prepreg include those obtained by impregnating a fibrous base material with the resin composition.
  • the method of impregnation is not particularly limited as long as the method can impregnate the fibrous base material with the resin composition.
  • a method using a roll, a die coat, and a bar coat, spraying, and the like are not limited to the dip.
  • a method for producing a prepreg after the impregnation, at least one of drying and heating may be performed on the fibrous base material impregnated with the resin composition. That is, as a method of manufacturing a prepreg, for example, a method of impregnating a resin composition prepared in a varnish form into a fibrous base material, followed by drying, a method of drying the resin composition prepared in a varnish form on the fibrous base material After impregnation, a method of heating, a method of impregnating a fibrous base material with a resin composition prepared in a varnish form, drying, and then heating are used.
  • the fibrous base material used when producing the prepreg include, for example, glass cloth, aramid cloth, polyester cloth, liquid crystal polymer (Liquid Crystal Plastic): nonwoven fabric, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric , Pulp paper, and linter paper.
  • a glass cloth is used, a laminate having excellent mechanical strength can be obtained, and particularly, a flattened glass cloth is preferable.
  • the glass cloth is not particularly limited, and examples thereof include glass cloths made of low dielectric constant glass such as E glass, S glass, NE glass, L glass, and Q glass.
  • the flattening treatment can be performed by continuously pressing the glass cloth with an appropriate pressure with a press roll to compress the yarn flatly.
  • the thickness of the fibrous base material for example, a thickness of 0.01 to 0.3 mm can be generally used.
  • Impregnation of the fibrous base material with the resin composition is performed by dipping, coating or the like. This impregnation can be repeated a plurality of times as necessary. At this time, it is also possible to repeat the impregnation using a plurality of resin compositions having different compositions and concentrations, and finally adjust the composition and the impregnation amount to the desired values.
  • the fibrous base material impregnated with the resin composition (resin varnish) is heated at a desired heating condition, for example, at 80 to 180 ° C. for 1 to 10 minutes.
  • a desired heating condition for example, at 80 to 180 ° C. for 1 to 10 minutes.
  • the solvent is volatilized from the resin varnish, and the solvent is reduced or removed to obtain a prepreg in a pre-cured (A stage) or semi-cured state (B stage).
  • the method of manufacturing the copper-clad laminate according to the present embodiment is not particularly limited as long as the copper-clad laminate can be manufactured.
  • a method for producing the copper-clad laminate for example, except for using the resin composition and the copper foil, it is possible to obtain a copper-clad laminate in the same manner as a general method for producing a copper-clad laminate. it can.
  • a method using the prepreg is exemplified.
  • one or more prepregs are stacked, and further, on both upper and lower surfaces or one surface thereof, the copper foil is contacted with the prepreg so that the copper foil is A method of stacking and laminating them by heating and pressing to form a laminate and the like can be given.
  • a step of obtaining the resin composition a step of impregnating the resin composition with a fibrous base material to obtain a prepreg, and laminating the copper foil on the prepreg
  • a step of obtaining a copper-clad laminate including an insulating layer containing a cured product of the resin composition and a copper foil present in contact with at least one surface of the insulating layer by heat-press molding
  • a copper-clad laminate having copper foil on both sides or a copper-clad laminate having copper foil on one side can be produced.
  • the heating and pressing conditions can be set as appropriate depending on the thickness of the laminated board to be manufactured, the type of the resin composition contained in the prepreg, and the like.
  • the temperature can be 170 to 210 ° C.
  • the pressure can be 3.5 to 4 MPa
  • the time can be 60 to 150 minutes.
  • the copper-clad laminate may be manufactured without using a prepreg. For example, there is a method in which a varnish-like resin composition or the like is applied on the copper foil, a layer containing the curable composition is formed on the copper foil, and then heating and pressing are performed.
  • a wiring board according to another embodiment of the present invention includes a wiring obtained by partially removing the copper foil provided on the copper-clad laminate, and the insulating layer. That is, as shown in FIG. 3, the wiring board 21 includes the insulating layer 12 and, on both surfaces thereof, the wiring 14 obtained by partially removing the copper foil provided in the copper-clad laminate. Is mentioned. Further, the wiring board may be provided with wiring in contact with only one surface of the insulating layer.
  • FIG. 3 is a cross-sectional view illustrating the configuration of the wiring board 21 according to the present embodiment.
  • the wiring board 21 includes the insulating layer 12 and the wiring 14 existing in contact with at least one surface of the insulating layer 12.
  • Examples of the wiring board 21 include a wiring board in which the surface 15 of the insulating layer 12 existing between the wirings 14 has the following surface, like the exposed surface.
  • the amount of chromium element measured by XPS is 7.5 atomic% or less with respect to the total amount of elements measured by XPS.
  • the surface roughness of the surface 15 is 2.0 ⁇ m or less in ten-point average roughness.
  • the insulating layer 12 includes the surface 15 corresponding to the exposed surface.
  • the same layer as the insulating layer of the copper clad laminate may be used.
  • the wiring 17 include a wiring formed by partially removing a copper foil of the copper-clad laminate.
  • Such wirings include, for example, subtractive, additive, semi-additive (Semi Additive Process), modified semi-additive (Modified Semi Additive Process), chemical mechanical polishing (CMP), trench, ink jet, and the like. And wiring formed by a method using transfer or the like.
  • This copper-clad laminate has high signal transmission speed and high heat resistance. This is considered to be due to the wiring board obtained using the copper-clad laminate. Specifically, as described above, it is considered that the occurrence of delamination can be sufficiently suppressed because the amount of the compound containing a chromium element existing between the wirings is small. Further, it is considered that the high signal transmission speed is due to the fact that, as described above, the insulating layer has a low dielectric constant and a low dielectric loss tangent, and further, the smoothness of the contact surface between the wiring and the insulating property is high. Can be
  • the wiring board according to the present embodiment may have one insulating layer as shown in FIG. 3, or may have a plurality of insulating layers as shown in FIG. .
  • the wiring may be disposed on a surface of the plurality of the insulating layers, or may be disposed between the insulating layers. It may be.
  • the wiring board 31 according to the present embodiment has a plurality of the insulating layers 12 as shown in FIG. Then, in the wiring board 31, the wiring 14 is disposed between the insulating layers 12.
  • FIG. 4 is a schematic sectional view showing another example of the wiring board 31 according to the embodiment of the present invention.
  • the wiring board as shown in FIG. 4 is manufactured, for example, as follows.
  • the prepreg is laminated on at least one side of a wiring board as shown in FIG. 3, and further, if necessary, a copper foil is laminated thereon, followed by heating and pressing. Wiring is formed by etching the copper foil on the surface of the laminate thus obtained. In this way, a multilayer wiring board as shown in FIG. 4 can be manufactured.
  • Such a wiring board is a multilayer wiring board having a high signal transmission speed and high heat resistance. Specifically, it is a multi-layer wiring board, high heat resistance, delamination hardly occurs even when heated, so even if the wiring is arranged between the insulating layer and the insulating layer, The occurrence of separation between the insulating layer and the insulating layer can be suppressed.
  • a copper foil with resin according to another embodiment of the present invention includes a resin layer and a copper foil present in contact with one surface of the resin layer.
  • the resin-attached copper foil 41 includes a resin layer 42 and a copper foil 43 arranged to be in contact with one surface thereof.
  • FIG. 5 is a cross-sectional view showing the configuration of the copper foil with resin 41 according to the present embodiment.
  • the resin layer 42 contains the resin composition (A-stage resin composition) or a semi-cured resin composition (B-stage resin composition) as described above. Further, the resin layer only needs to contain the resin composition or a semi-cured product of the resin composition, and may or may not contain a fibrous base material. Further, as the fibrous base material, the same as the fibrous base material of the prepreg can be used.
  • the copper foil 43 is the same as the copper foil provided on the copper-clad laminate.
  • the amount of chromium measured by X-ray photoelectron spectroscopy on the exposed surface where the resin layer after curing and etching the resin-coated copper foil with a copper chloride solution is exposed It is 7.5 atomic% or less with respect to the total amount of elements measured by X-ray photoelectron spectroscopy, and the surface roughness of the exposed surface is 2.0 ⁇ m or less in ten-point average roughness.
  • Such a resin-coated copper foil can suitably produce a wiring board having a higher signal transmission speed and a higher heat resistance.
  • the method for manufacturing the resin-coated copper foil according to the present embodiment is not particularly limited as long as the method can manufacture the resin-coated copper foil.
  • a resin-attached copper foil can be obtained in the same manner as a general method for producing a resin-attached copper foil, except that the resin composition and the copper foil are used.
  • there is a method of applying the resin composition for example, a resin composition prepared in a varnish form, on the copper foil. That is, examples of the copper foil with resin according to the embodiment of the present invention include those obtained by applying the resin composition to the copper foil.
  • the method of applying is not particularly limited as long as the method can apply the resin composition to the copper foil.
  • a method using a roll, a die coat, and a bar coat, spraying, and the like can be mentioned.
  • a method for producing a copper foil with a resin after the application, at least one of drying and heating may be performed on the copper foil to which the resin composition has been applied. That is, as a method of producing a resin-coated copper foil, for example, a method of applying a resin composition prepared in a varnish form on a copper foil and then drying the resin composition prepared in a varnish form, Examples of the method include a method in which the resin composition is applied on a foil and then heated, and a method in which the resin composition prepared in a varnish form is applied on a copper foil, dried, and then heated.
  • the copper foil to which the resin composition has been applied is heated under desired heating conditions, for example, at 80 to 180 ° C. for 1 to 10 minutes, so that the copper foil before curing (A stage) or semi-cured state (B stage) can be obtained.
  • a resin-coated copper foil is obtained.
  • a copper-clad laminate according to one embodiment of the present invention is a copper-clad laminate including an insulating layer and a copper foil that is in contact with at least one surface of the insulating layer, wherein the insulating layer includes carbon.
  • the amount of chromium element measured by X-ray photoelectron spectroscopy on the exposed surface is 7.5 atomic% or less based on the total amount of elements measured by X-ray photoelectron spectroscopy.
  • the surface roughness is not more than 2.0 ⁇ m in ten-point average roughness.
  • the cured product contained in the insulating layer is a cured product obtained by curing the resin composition containing the modified polyphenylene ether compound, it is considered that the heat resistance of the insulating layer can be increased. .
  • the present inventors have found that delamination occurring between layers is affected by the originally existing copper foil even when no copper foil exists between them. From this, it is considered that an etching residue derived from the copper foil exists on the exposed surface where the insulating layer is exposed by the etching process. The present inventors have guessed that if a compound containing a chromium element is present as this etching residue, delamination is likely to occur when heated.
  • the amount of chromium element present on the exposed surface is small as described above, the amount of chromium element also present on the surface of the insulating layer existing between wirings in the wiring board manufactured from the copper-clad laminate, that is, It is considered that the amount of the compound containing chromium element is small. From this, it is considered that the copper-clad laminate has high heat resistance that can sufficiently suppress delamination even when heated.
  • the cured product contained in the insulating layer is a cured product obtained by curing the resin composition containing the modified polyphenylene ether compound, the cured product has a low dielectric constant and a low dielectric loss tangent. From this, it is considered that this wiring board can reduce the transmission loss due to the dielectric around the wiring and can increase the signal transmission speed.
  • the smoothness of the contact surface between the copper foil and the insulating layer is also high. From this, it is considered that the wiring board obtained from the copper-clad laminate has high smoothness of the contact surface between the wiring and the insulating layer. It is considered that the signal transmitted through the wiring is concentrated near the surface of the conductor forming the wiring due to the skin effect. This effect is considered to be more remarkable as the signal transmitted through the wiring has a higher frequency. Then, when the contact surface between the wiring and the insulating layer becomes smooth, the signal flowing through the wiring flows near the surface having high smoothness, so that the transmission distance is shortened. From this, it is considered that this wiring board can reduce the transmission loss caused by the conductor forming the wiring and can increase the signal transmission speed.
  • this wiring board can reduce both the transmission loss caused by the conductor forming the wiring and the transmission loss caused by the dielectric around the wiring, and can increase the signal transmission speed.
  • the copper-clad laminate is a copper-clad laminate capable of suitably producing a wiring board having a high signal transmission speed and high heat resistance.
  • the substituent is preferably a group represented by the formula (1) or the formula (2).
  • the modified polyphenylene ether can maintain the low dielectric constant and dielectric loss tangent of polyphenylene ether, and can further enhance the curability. Therefore, the insulating layer containing the cured product of the modified polyphenylene ether is considered to be a layer having a low dielectric constant and a low dielectric loss tangent and a high heat resistance. From these facts, it is considered that a copper-clad laminate can be obtained in which a signal transmission speed is higher and a wiring board having higher heat resistance can be suitably manufactured.
  • the copper-clad laminate it is preferable that a nitrogen element which can be confirmed by X-ray photoelectron spectroscopy exists on the exposed surface.
  • the present inventors have found that, when a nitrogen element which can be confirmed by X-ray photoelectron spectroscopy is present on the exposed surface, delamination hardly occurs even when heated. As described above, the present inventors speculated that if a compound containing a chromium element is present as an etching residue, delamination is likely to occur when heated. On the other hand, when a compound containing a nitrogen element is present as an etching residue in an amount that can be confirmed by X-ray photoelectron spectroscopy, the surface of an insulating layer existing between wirings in a wiring board manufactured from the copper-clad laminate is measured. It is considered that a compound containing a certain amount or more of nitrogen element is present also on the top.
  • the compound containing the nitrogen element enhances the interlayer adhesion between the insulating layer and the insulating layer, and makes it difficult for delamination to occur.
  • This is considered to provide a copper-clad laminate capable of suitably producing a wiring board having higher heat resistance.
  • the amount of nitrogen element measured by X-ray photoelectron spectroscopy on the exposed surface is 1.0 atomic% or more based on the total amount of elements measured by X-ray photoelectron spectroscopy. It is preferred that
  • the nitrogen element is preferably derived from a nitrogen atom contained in the compound having an amino group.
  • the nitrogen element is derived from a nitrogen atom contained in a compound having an amino group means that the compound containing a nitrogen element, which is present as an etching residue, is a compound having an amino group. Then, it is considered that the compound having the amino group enhances the interlayer adhesion between the insulating layer and the insulating layer, and more effectively exerts the effect that interlayer delamination hardly occurs. From this, it is considered that a copper-clad laminate capable of suitably producing a wiring board having higher heat resistance is obtained.
  • a wiring board according to another aspect of the present invention is characterized by including a wiring obtained by partially removing the copper foil provided in the copper-clad laminate, and the insulating layer.
  • the wiring board has a plurality of the insulating layers, and the wiring is disposed between the insulating layers.
  • a multilayer wiring board having a high signal transmission speed and high heat resistance can be provided. Specifically, it is a multi-layer wiring board, high heat resistance, delamination hardly occurs even when heated, so even if the wiring is arranged between the insulating layer and the insulating layer, The occurrence of separation between the insulating layer and the insulating layer can be suppressed.
  • the resin-coated copper foil according to another embodiment of the present invention is a resin-coated copper foil including a resin layer and a copper foil that is in contact with at least one surface of the resin layer, wherein the resin The layer contains a resin composition containing a modified polyphenylene ether compound terminal-modified with a substituent having a carbon-carbon unsaturated double bond or a semi-cured product of the resin composition, and the resin layer is cured.
  • the amount of chromium measured by X-ray photoelectron spectroscopy on the exposed surface where the resin layer after the resin-coated copper foil is cured by etching with a copper chloride solution is measured by X-ray photoelectron spectroscopy. It is 7.5 atomic% or less with respect to the element amount, and the surface roughness of the exposed surface is 2.0 ⁇ m or less in ten-point average roughness.
  • the resin layer contains a resin composition containing the modified polyphenylene ether compound or a semi-cured product of the resin composition. From this, when the resin-coated copper foil is used when manufacturing a wiring board, the insulating layer obtained by curing the resin layer has the resin composition or a semi-cured product of the resin composition cured. It is considered that the heat resistance of the insulating layer can be improved because the cured product is included.
  • an etching residue derived from the copper foil is present on the exposed surface where the resin layer after the resin layer is cured by etching the copper foil with the resin obtained by curing the resin layer with a copper chloride solution.
  • the amount of chromium element present on the exposed surface as the etching residue is small as described above, when the resin-coated copper foil is used in manufacturing a wiring board, an insulating layer existing between wirings in the wiring board is used. It is considered that the amount of the chromium element existing on the surface of, that is, the amount of the compound containing the chromium element is small. From this, it is considered that the copper foil with resin has high heat resistance, which can sufficiently suppress delamination even when heated.
  • the insulating layer obtained by curing the resin layer includes a cured product obtained by curing the resin composition or a semi-cured product of the resin composition.
  • the cured product includes a cured product obtained by curing a resin composition containing the modified polyphenylene ether compound. Therefore, an insulating layer obtained by curing the resin layer has a low dielectric constant and a low dielectric tangent. From this, it is considered that this wiring board can reduce the transmission loss due to the dielectric around the wiring and can increase the signal transmission speed.
  • the smoothness of the contact surface between the copper foil and the resin layer is also high. From this, it is considered that when the resin-coated copper foil is used in manufacturing a wiring board, the smoothness of the contact surface between the wiring and the insulating layer obtained by curing the resin layer is high. It is considered that the signal transmitted through the wiring is concentrated near the surface of the conductor forming the wiring due to the skin effect. This effect is considered to be more remarkable as the signal transmitted through the wiring has a higher frequency. Then, when the contact surface between the wiring and the insulating layer becomes smooth, the signal flowing through the wiring flows near the surface having high smoothness, so that the transmission distance is shortened. From this, it is considered that this wiring board can reduce the transmission loss caused by the conductor forming the wiring and can increase the signal transmission speed.
  • this wiring board can reduce both the transmission loss caused by the conductor forming the wiring and the transmission loss caused by the dielectric around the wiring, and can increase the signal transmission speed.
  • the resin-coated copper foil is a copper-clad laminate that can suitably produce a wiring board having a high signal transmission speed and high heat resistance.
  • the present invention it is possible to provide a copper-clad laminate and a resin-coated copper foil capable of suitably producing a wiring board having a high signal transmission speed and a high heat resistance. Further, according to the present invention, it is possible to provide a wiring board having a high signal transmission speed and high heat resistance.
  • Modified polyphenylene ether compound Modified PPE-1: It is a modified polyphenylene ether obtained by reacting polyphenylene ether with chloromethylstyrene.
  • polyphenylene ether (SA90 manufactured by SABIC Innovative Plastics, two terminal hydroxyl groups, weight average molecular weight Mw 1700) was placed in a 1-liter three-necked flask equipped with a temperature controller, a stirrer, a cooling device, and a dropping funnel.
  • the obtained solid was analyzed by 1 H-NMR (400 MHz, CDCl 3 , TMS). As a result of NMR measurement, a peak derived from a vinylbenzyl group (ethenylbenzyl group) was confirmed at 5 to 7 ppm. Thus, it was confirmed that the obtained solid was a modified polyphenylene ether having a vinylbenzyl group as a substituent in the molecule at the molecular terminal. Specifically, it was confirmed that the polyphenylene ether was ethenylbenzylated.
  • the obtained modified polyphenylene ether compound is represented by the above formula (10), wherein Y is a dimethylmethylene group (represented by the formula (8), and R 32 and R 33 in the formula (8) are methyl groups). ), Wherein R 1 was a hydrogen atom and R 2 was a methylene group.
  • the number of terminal functional groups of the modified polyphenylene ether was measured as follows.
  • the modified polyphenylene ether was accurately weighed. The weight at that time is defined as X (mg).
  • TEAH tetraethylammonium hydroxide
  • the absorbance (Abs) at 318 nm was measured using a UV spectrophotometer (UV-1600 manufactured by Shimadzu Corporation). Then, from the measurement results, the number of terminal hydroxyl groups of the modified polyphenylene ether was calculated using the following equation.
  • Residual OH amount ( ⁇ mol / g) [(25 ⁇ Abs) / ( ⁇ ⁇ OPL ⁇ X)] ⁇ 10 6
  • indicates the extinction coefficient, which is 4700 L / mol ⁇ cm.
  • OPL is the cell optical path length, which is 1 cm.
  • the calculated residual OH content (the number of terminal hydroxyl groups) of the modified polyphenylene ether was almost zero, indicating that the hydroxyl groups of the polyphenylene ether before modification were substantially modified. From this, it was found that the decrease from the number of terminal hydroxyl groups of the polyphenylene ether before modification was the number of terminal hydroxyl groups of the polyphenylene ether before modification. That is, it was found that the number of terminal hydroxyl groups of the polyphenylene ether before modification was the number of terminal functional groups of the modified polyphenylene ether. That is, the number of terminal functional groups was two.
  • the intrinsic viscosity (IV) of the modified polyphenylene ether was measured in methylene chloride at 25 ° C. Specifically, the intrinsic viscosity (IV) of the modified polyphenylene ether was measured by using a 0.18 g / 45 ml methylene chloride solution (liquid temperature: 25 ° C.) of the modified polyphenylene ether using a viscometer (AVS500, manufactured by Schott, Visco, System). It was measured. As a result, the intrinsic viscosity (IV) of the modified polyphenylene ether was 0.09 dl / g.
  • Modified PPE-2 Modified polyphenylene ether in which the terminal hydroxyl group of polyphenylene ether is modified with a methacryl group (having a structure represented by formula (11), wherein in formula (11), R 3 is a methyl group, Y is a dimethylmethylene group (formula (8) Wherein R 32 and R 33 in the formula (8) are methyl groups), a modified polyphenylene ether compound, SA9000 manufactured by SABIC Innovative Plastics, and an intrinsic viscosity (IV) in methylene chloride at 25 ° C. 0.085 dl / g, weight average molecular weight Mw2000, number of terminal functional groups 1.8)
  • thermosetting curing agent having two or more carbon-carbon unsaturated double bonds at molecular terminals
  • TAIC triallyl isocyanurate (a thermosetting curing agent having three carbon-carbon unsaturated double bonds at molecular terminals, TAIC manufactured by Nippon Kasei Co., Ltd., weight average molecular weight Mw 249)
  • DVB divinylbenzene (a thermosetting curing agent having two carbon-carbon unsaturated double bonds at molecular terminals, DVB810 manufactured by Nippon Steel & Sumitomo Metal Corporation, molecular weight 130)
  • Epoxy compound dicyclopentadiene epoxy resin (HP-7200 manufactured by DIC Corporation)
  • Phenol novolak resin Phenol novolak resin (TD2131 manufactured by DIC Corporation)
  • Silica 1 spherical silica treated with vinylsilane (SC2300-SVJ manufactured by Admatechs Co., Ltd.)
  • Silica 2 spherical silica treated with aminosilane (SC2500-SXJ manufactured by Admatechs Co., Ltd.)
  • Flame retardants Flame retardants: SAYTEX8010 manufactured by Albemarle
  • the obtained varnish was impregnated in a glass cloth, and then heated and dried at 100 to 170 ° C. for about 3 to 6 minutes to produce a prepreg.
  • the glass cloth is specifically a # 1078 type, L glass manufactured by Asahi Kasei Corporation. At that time, the content (resin content) of the resin composition was adjusted to be about 66% by mass.
  • Copper foil-1 Copper foil whose entire surface is treated with a silane coupling agent having an amino group in the molecule (FV-WS (amino) manufactured by Furukawa Electric Co., Ltd., copper foil treated with aminosilane, M-face chromium (Attached amount: 7.4 atomic%, ten-point average roughness Rz of M plane: 1.3 ⁇ m, thickness: 18 ⁇ m)
  • Copper foil-2 Copper foil whose surface is entirely treated with a silane coupling agent having a vinyl group in the molecule (FV-WS (low chrome) manufactured by Furukawa Electric Co., Ltd., copper foil treated with vinylsilane, M surface) (Chromium adhesion amount: 3.7 atomic%, M-plane ten-point average roughness Rz: 1.3 ⁇ m, thickness: 18 ⁇ m)
  • Copper foil-3 Copper foil whose surface has been entirely treated with a silane coupling agent having an amino group in the molecule (TLC-V1, manufactured by Nanya
  • the obtained copper-clad laminate was etched using a cupric chloride solution (solution temperature: 45 ° C.) for 90 seconds, and then washed with city water or pure water at normal temperature. By doing so, the copper foil was removed.
  • a surface element analysis by XPS was performed on a surface (exposed surface) of the insulating layer exposed by the etching treatment.
  • the M surface (contact surface) was irradiated with X-rays under the following conditions in a direction perpendicular to the M surface under vacuum, the irradiation height was adjusted, and the M surface (contact surface) was released with ionization of the sample The measurement was performed at a position where the photoelectrons to be detected can be detected with the highest intensity.
  • the XPS was measured under the following conditions using PHI $ 5000 Versaprobe manufactured by ULVAC-PHI, Inc.
  • X-ray used Monochrome Al-K ⁇ ray X-ray beam diameter: about 100 ⁇ m ⁇ (25 W, 15 kV) Analysis area: about 100 ⁇ m ⁇ The value obtained by the above measurement was quantitatively converted by using a relative sensitivity coefficient incorporated in analysis software provided in the above device.
  • the surface roughness (ten-point average roughness Rz) of the exposed surface, the ten-point average roughness Rz, which is the surface roughness herein, is based on JIS B 0601: 1994, and is a surface roughness manufactured by Tokyo Seimitsu Co., Ltd.
  • the shape was measured using a shape measuring instrument (SURFCOM500DX).
  • One metal foil (copper foil) of the evaluation substrate was processed to form ten wires having a line width of 100 to 300 ⁇ m, a line length of 1000 mm, and a line length of 20 mm.
  • a two-layered prepreg and a metal foil (copper foil) were secondarily laminated on the surface of the substrate on which the wiring was formed, on the side where the wiring was formed, to produce a three-layer board.
  • the line width of the wiring was adjusted so that the characteristic impedance of the wiring after forming the three-layer plate was 50 ⁇ .
  • the transmission loss (pass loss) (dB / m) at 12.5 GHz of the wiring formed on the obtained three-layer plate was measured using a network analyzer (N5230A manufactured by Keysight Technology Co., Ltd.).
  • the prepreg is stacked one by one on the front and back sides of the copper-clad laminate subjected to the entire surface etching treatment, and heated and pressed at a temperature of 200 ° C. and a pressure of 3 MPa for 100 minutes, so that both sides are formed.
  • a copper-clad laminate to which a copper foil was adhered was obtained.
  • the formed copper-clad laminate was cut into 50 mm ⁇ 50 mm, and the double-sided copper foil was removed by etching.
  • the laminate for evaluation thus obtained was immersed in a solder bath at 288 ° C. for 30 seconds. Then, the immersed laminate was visually observed for the occurrence of blistering. This observation was made on the two laminates.
  • solder heat resistance 1 A laminate for evaluation was obtained in the same manner as in the evaluation of the solder heat resistance, and the laminate for evaluation was immersed in boiling ion-exchanged water for 4 hours before being immersed in a solder bath at 288 ° C. for 30 seconds. Other than the above, the evaluation was the same as in the evaluation of the solder heat resistance. The evaluation criteria were the same as in the evaluation of the solder heat resistance.
  • solder heat resistance 2 In the same manner as in the evaluation of the solder heat resistance, a laminate for evaluation was obtained, and the laminate for evaluation was immersed in boiling ion-exchanged water for 6 hours before being immersed in a solder bath at 288 ° C. for 30 seconds. Other than the above, the evaluation was the same as in the evaluation of the solder heat resistance. The evaluation criteria were the same as in the evaluation of the solder heat resistance.
  • each metal-clad laminate shows that the copper foil marked with “ ⁇ ” was used in the column of copper foil in Table 1.
  • the amount of chromium element obtained by XPS measurement on the exposed surface is 7.5 atomic% or less, and the surface roughness of the exposed surface is 2.0 ⁇ m or less in ten-point average roughness.
  • the transmission loss is lower than that in the case of not (Comparative Examples 1 to 4), and Heat resistance was high.
  • the heat resistance of the copper-clad laminates according to Examples 1 to 7 was higher than that in the case where the chromium element amount exceeded 7.5 atomic% (Comparative Examples 1 and 2).
  • the copper-clad laminates according to Examples 1 to 7 are not a resin composition containing the modified polyphenylene ether compound but a resin composition containing an epoxy compound and a phenol novolak compound as the insulating layer ( The transmission loss was lower than that of Comparative Example 3). Further, the copper-clad laminates according to Examples 1 to 7 have lower transmission loss than the case where the surface roughness of the exposed surface exceeds 2.0 ⁇ m in ten-point average roughness (Comparative Example 4). Was.
  • a copper-clad laminate and a resin-coated copper foil capable of suitably producing a wiring board having a high signal transmission speed and high heat resistance. Further, according to the present invention, a wiring board having a high signal transmission speed and high heat resistance is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本発明の一局面は、絶縁層と、前記絶縁層の少なくとも一方の表面に接触して存在する銅箔とを備える銅張積層板であって、前記絶縁層は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物を含有する樹脂組成物の硬化物を含み、前記銅張積層板を塩化銅溶液でエッチング処理して前記絶縁層が露出された露出面における、X線光電子分光法により測定されるクロム元素量が、X線光電子分光法により測定される全元素量に対して、7.5原子%以下であり、前記露出面の表面粗さが、十点平均粗さで2.0μm以下である銅張積層板である。

Description

銅張積層板、配線板、及び樹脂付き銅箔
 本発明は、銅張積層板、配線板、及び樹脂付き銅箔に関する。
 各種電子機器は、情報処理量の増大に伴い、搭載される半導体デバイスの高集積化、配線の高密度化、及び多層化等の実装技術が急速に進展している。また、各種電子機器に用いられる配線板としては、例えば、車載用途におけるミリ波レーダ基板等の、高周波対応の配線板であることが求められる。
 配線板に備えられる配線に信号を伝送すると、配線を形成する導体に起因する伝送損失、及び配線周辺の誘導体に起因する伝送損失等が発生する。これらの伝送損失は、配線板に備えられる配線に高周波信号を伝送する場合に、特に発生しやすいことが知られている。このことから、配線板には、信号の伝送速度を高めるために、信号伝送時の損失を低減させることが求められる。高周波対応の配線板には、特にそれが求められる。この要求を満たすためには、配線板を構成する絶縁層を製造するための基板材料として、誘電率及び誘電正接が低い材料を用いることが考えられる。このような基板材料としては、ポリフェニレンエーテルを含む樹脂組成物等が挙げられる。
 このようなポリフェニレンエーテルを含む樹脂組成物を基板材料として用いて得られた金属張積層板としては、例えば、特許文献1に記載の金属張積層板が挙げられる。特許文献1には、ポリフェニレンエーテル化合物を含み、硬化した絶縁層と、前記絶縁層と接合した金属層と、前記絶縁層と前記金属層との間に介在するシラン化合物を含む中間層とを備え、前記金属層は、前記中間層を介して前記絶縁層と接合した接合面を有し、前記接合面の十点平均粗さRzが0.5μm以上4μm以下である金属張積層板が記載されている。特許文献1によれば、信号伝送時の損失を低減させたプリント配線板を製造できる金属張積層板が得られる旨が開示されている。
 プリント配線板等の配線板には、上述したように、高周波に対応するためにも、信号の伝送速度をより高めることが求められている。また、各種電子機器において用いられる配線板には、外部環境の変化等の影響を受けにくいことも求められる。例えば、加熱時に、層間剥離が発生しないような、高い耐熱性が求められる。これらの要求を満たすために、銅張積層板、配線板、及び樹脂付き銅箔に対して、種々検討されている。
特開2016-28885号公報
 本発明は、かかる事情に鑑みてなされたものであって、信号の伝送速度が高く、かつ、耐熱性の高い配線板を好適に製造することができる銅張積層板及び樹脂付き銅箔を提供することを目的とする。また、本発明は、信号の伝送速度が高く、かつ、耐熱性の高い配線板を提供することを目的とする。
 本発明の一局面は、絶縁層と、前記絶縁層の少なくとも一方の表面に接触して存在する銅箔とを備える銅張積層板であって、前記絶縁層は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物を含有する樹脂組成物の硬化物を含み、前記銅張積層板を塩化銅溶液でエッチング処理して前記絶縁層が露出された露出面における、X線光電子分光法により測定されるクロム元素量が、X線光電子分光法により測定される全元素量に対して、7.5原子%以下であり、前記露出面の表面粗さが、十点平均粗さで2.0μm以下である銅張積層板である。
 また、前記銅張積層板において、前記置換基が、下記式(1)又は下記式(2)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 
 式(1)中、Rは、水素原子、又は炭素数1~10のアルキル基を示し、Rは、炭素数1~10のアルキレン基又は直接結合を示す。
Figure JPOXMLDOC01-appb-C000004
 式(2)中、Rは、水素原子、又は炭素数1~10のアルキル基を示す。
 また、本発明の他の一局面は、樹脂層と、前記樹脂層の少なくとも一方の表面に接触して存在する銅箔とを備える樹脂付き銅箔であって、前記樹脂層は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物を含有する樹脂組成物又は前記樹脂組成物の半硬化物を含み、前記樹脂層を硬化させた前記樹脂付き銅箔を塩化銅溶液でエッチング処理して硬化後の前記樹脂層が露出された露出面における、X線光電子分光法により測定されるクロム元素量が、X線光電子分光法により測定される全元素量に対して、7.5原子%以下であり、前記露出面の表面粗さが、十点平均粗さで2.0μm以下である樹脂付き銅箔である。
図1は、本発明の実施形態に係る銅張積層板の一例を示す概略断面図である。 図2は、本発明の実施形態に係るプリプレグの一例を示す概略断面図である。 図3は、本発明の実施形態に係る配線板の一例を示す概略断面図である。 図4は、本発明の実施形態に係る配線板の他の一例を示す概略断面図である。 図5は、本発明の実施形態に係る樹脂付き銅箔の一例を示す概略断面図である。
 銅張積層板に備えられる銅箔を部分的に除去することにより配線形成されて得られた配線板において、その配線形成により露出した絶縁層の表面上に、他の絶縁層が形成されていても、これらの絶縁層間には、銅箔からなる配線が存在しない。このことから、絶縁層と絶縁層との間における層間剥離には、配線板を得るために用いられた銅張積層板に備えられる銅箔には影響されないと考えられていた。
 しかしながら、本発明者等の検討によれば、絶縁層と絶縁層との間における層間剥離は、銅張積層板に備えられる銅箔によって、発生しやすさが異なることを見出した。本発明者等は、配線形成により露出した絶縁層の表面である露出面上に、銅箔に由来の導体が全く存在しないと、前記露出面と他の絶縁層とが好適に接着され、層間剥離の発生に、前記露出面の状態が影響しないと推察した。このことから、銅張積層板における銅箔をエッチングにより除去した際、前記露出面上に、銅箔に由来の金属成分が極わずか残存しうると推察した。また、前記露出面の状態としては、その表面粗さの影響が大きいと推察した。本発明者等は、この残存する金属成分及び表面粗さの影響を種々検討した結果、絶縁層と絶縁層との間における層間剥離は、銅張積層板を塩化銅溶液でエッチング処理して前記絶縁層が露出された露出面に存在するクロム元素量及び表面粗さによって、発生しやすさが異なることを見出した。
 そして、本発明者等は、種々検討した結果、銅張積層板を塩化銅溶液でエッチング処理して前記絶縁層が露出された露出面が、所定のクロム元素量及び所定の表面粗さになる銅張積層板であれば、それを用いて得られた配線板において、前記層間剥離の発生を抑制できることを見出した。すなわち、銅箔の除去条件(エッチング処理条件)及び銅箔の組成を規定するのではなく、所定のエッチング処理により前記絶縁層が露出された露出面のクロム元素量及び表面粗さが所定の値になるような銅張積層板であれば、それを用いて得られた配線板において、前記層間剥離の発生を抑制できることを見出した。これらのことから、以下のような本発明を想到するに至った。
 以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。
 [銅張積層板]
 本発明の実施形態に係る銅張積層板は、絶縁層と、前記絶縁層の少なくとも一方の表面に接触して存在する銅箔とを備える。この銅張積層板11は、図1に示すように、絶縁層12と、その両面に接触するように配置される銅箔13とを備えるものが挙げられる。また、前記銅張積層板は、前記絶縁層の一方の面上にのみ、銅箔が接触して備えられるものであってもよい。なお、図1は、本実施形態に係る銅張積層板11の構成を示す概略断面図である。
 前記銅張積層板11は、前記絶縁層12が、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物を含有する樹脂組成物の硬化物を含む。また、前記銅張積層板11は、前記銅張積層板11を塩化銅溶液でエッチング処理して前記絶縁層12が露出された露出面における、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)により測定されるクロム元素量が、XPSにより測定される全元素量に対して、7.5原子%以下である。また、前記銅張積層板11は、前記露出面の表面粗さが、十点平均粗さで2.0μm以下である。
 このような銅張積層板は、まず、前記絶縁層に含まれる前記硬化物は、前記変性ポリフェニレンエーテル化合物を含有する樹脂組成物を硬化させて得られる硬化物であるので、前記絶縁層の耐熱性を高めることができると考えられる。
 上述したように、銅張積層板から製造された配線板において、配線間に存在する絶縁層の表面上に、他の絶縁層が形成されているときの、配線間の絶縁層と他の絶縁層との間に発生する層間剥離は、その間には銅箔が存在しなくても、元々存在した銅箔に影響されることを、本発明者等は見出した。このことから、エッチング処理により前記絶縁層が露出された露出面には、銅箔に由来のエッチング残渣が存在すると考えられる。このエッチング残渣として、クロム元素を含む化合物が存在していると、加熱した際に、層間剥離が発生しやすいと本発明者等は推察した。また、前記露出面に存在するクロム元素量が上記のように少ないと、前記銅張積層板から製造された配線板における配線間に存在する絶縁層の表面上にも存在するクロム元素量、すなわち、クロム元素を含む化合物の量が少ないと考えられる。このことから、前記銅張積層板は、加熱しても層間剥離を充分に抑制できる耐熱性の高いものであると考えられる。
 以上のことから、前記銅張積層板は、耐熱性の高いものであると考えられる。
 前記絶縁層に含まれる前記硬化物は、前記変性ポリフェニレンエーテル化合物を含有する樹脂組成物を硬化させて得られる硬化物であるので、誘電率及び誘電正接が低い。このことから、この配線板は、配線周辺の誘導体に起因する伝送損失を低減でき、信号の伝送速度を高めることができると考えられる。
 また、前記露出面の表面粗さが低いことから、前記銅箔と前記絶縁層との接触面の平滑性も高いと考えられる。このことから、前記銅張積層板から得られた配線板は、配線と絶縁層との接触面の平滑性も高いと考えられる。配線を伝送させる信号は、表皮効果により、配線を構成する導体の表面付近に集中すると考えられる。この効果は、配線を伝送させる信号が高周波になるほど、顕著になると考えられる。そして、前記配線と前記絶縁層との接触面が平滑になると、前記配線に流れる信号が、平滑性の高い表面付近を流れることになるので、伝送距離が短くなる。このことから、この配線板は、配線を形成する導体に起因する伝送損失を低減でき、信号の伝送速度を高めることができると考えられる。
 これらのことから、この配線板は、配線を形成する導体に起因する伝送損失も、配線周辺の誘導体に起因する伝送損失も低減でき、信号の伝送速度を高めることができると考えられる。
 以上のことから、前記銅張積層板は、信号の伝送速度が高く、かつ、耐熱性の高い配線板を好適に製造することができる銅張積層板であると考えられる。
 (樹脂組成物)
 本実施形態において用いられる樹脂組成物は、上述したように、前記変性ポリフェニレンエーテル化合物を含有する。
 (変性ポリフェニレンエーテル化合物)
 本実施形態において用いられる変性ポリフェニレンエーテル化合物は、炭素-炭素不飽和二重結合を有する置換基により末端変性されたポリフェニレンエーテルであれば、特に限定されない。
 前記炭素-炭素不飽和二重結合を有する置換基としては、特に限定されない。前記置換基としては、例えば、下記式(1)又は下記式(2)で表される置換基等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Rは、水素原子、又は炭素数1~10のアルキル基を示し、Rは、炭素数1~10のアルキレン基又は直接結合を示す。
Figure JPOXMLDOC01-appb-C000006
 式(2)中、Rは、水素原子、又は炭素数1~10のアルキル基を示す。
 前記式(1)で表される置換基としては、例えば、p-エテニルベンジル基及びm-エテニルベンジル基等のビニルベンジル基(エテニルベンジル基)等が挙げられる。
 前記式(2)で表される置換基としては、例えば、アクリレート基及びメタクリレート基等が挙げられる。
 前記変性ポリフェニレンエーテルは、ポリフェニレンエーテル鎖を分子中に有しており、例えば、下記式(3)で表される繰り返し単位を分子中に有していることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 式(3)において、mは、1~50を示す。また、R~Rは、それぞれ独立している。すなわち、R~Rは、それぞれ同一の基であっても、異なる基であってもよい。また、R~Rは、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。
 R~Rにおいて、挙げられた各官能基としては、具体的には、以下のようなものが挙げられる。
 アルキル基は、特に限定されないが、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
 また、アルケニル基は、特に限定されないが、例えば、炭素数2~18のアルケニル基が好ましく、炭素数2~10のアルケニル基がより好ましい。具体的には、例えば、ビニル基、アリル基、及び3-ブテニル基等が挙げられる。
 また、アルキニル基は、特に限定されないが、例えば、炭素数2~18のアルキニル基が好ましく、炭素数2~10のアルキニル基がより好ましい。具体的には、例えば、エチニル基、及びプロパ-2-イン-1-イル基(プロパルギル基)等が挙げられる。
 また、アルキルカルボニル基は、アルキル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数2~18のアルキルカルボニル基が好ましく、炭素数2~10のアルキルカルボニル基がより好ましい。具体的には、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、及びシクロヘキシルカルボニル基等が挙げられる。
 また、アルケニルカルボニル基は、アルケニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルケニルカルボニル基が好ましく、炭素数3~10のアルケニルカルボニル基がより好ましい。具体的には、例えば、アクリロイル基、メタクリロイル基、及びクロトノイル基等が挙げられる。
 また、アルキニルカルボニル基は、アルキニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルキニルカルボニル基が好ましく、炭素数3~10のアルキニルカルボニル基がより好ましい。具体的には、例えば、プロピオロイル基等が挙げられる。
 本実施形態において用いられる変性ポリフェニレンエーテル化合物の重量平均分子量(Mw)は、特に限定されない。具体的には、500~5000であることが好ましく、800~4000であることがより好ましく、1000~3000であることがさらに好ましい。なお、ここで、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。また、変性ポリフェニレンエーテル化合物が、式(3)で表される繰り返し単位を分子中に有している場合、mは、変性ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内になるような数値であることが好ましい。具体的には、mは、1~50であることが好ましい。
 変性ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内であると、ポリフェニレンエーテルの有する優れた低誘電特性を有し、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものとなる。このことは、以下のことによると考えられる。通常のポリフェニレンエーテルでは、その重量平均分子量がこのような範囲内であると、比較的低分子量のものであるので、硬化物の耐熱性が低下する傾向がある。この点、前記変性ポリフェニレンエーテル化合物は、末端に不飽和二重結合を有するので、硬化物の耐熱性が充分に高いものが得られると考えられる。また、変性ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内であると、比較的低分子量のものであるので、成形性にも優れると考えられる。よって、このような変性ポリフェニレンエーテル化合物は、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものが得られると考えられる。
 本実施形態において用いられる変性ポリフェニレンエーテル化合物における、変性ポリフェニレンエーテル1分子当たりの、分子末端に有する、前記置換基の平均個数(末端官能基数)は、特に限定されない。具体的には、1~5個であることが好ましく、1~3個であることがより好ましく、1.5~3個であることがさらに好ましい。この末端官能基数が少なすぎると、硬化物の耐熱性としては充分なものが得られにくい傾向がある。また、末端官能基数が多すぎると、反応性が高くなりすぎ、例えば、樹脂組成物の保存性が低下したり、樹脂組成物の流動性が低下してしまう等の不具合が発生するおそれがある。すなわち、このような変性ポリフェニレンエーテルを用いると、流動性不足等により、例えば、多層成形時にボイドが発生する等の成形不良が発生し、信頼性の高い配線板が得られにくいという成形性の問題が生じるおそれがあった。
 なお、変性ポリフェニレンエーテル化合物の末端官能基数は、変性ポリフェニレンエーテル化合物1モル中に存在する全ての変性ポリフェニレンエーテル化合物の1分子あたりの、前記置換基の平均値を表した数値等が挙げられる。この末端官能基数は、例えば、得られた変性ポリフェニレンエーテル化合物に残存する水酸基数を測定して、変性前のポリフェニレンエーテルの水酸基数からの減少分を算出することによって、測定することができる。この変性前のポリフェニレンエーテルの水酸基数からの減少分が、末端官能基数である。そして、変性ポリフェニレンエーテル化合物に残存する水酸基数の測定方法は、変性ポリフェニレンエーテル化合物の溶液に、水酸基と会合する4級アンモニウム塩(テトラエチルアンモニウムヒドロキシド)を添加し、その混合溶液のUV吸光度を測定することによって、求めることができる。
 また、本実施形態において用いられる変性ポリフェニレンエーテル化合物の固有粘度は、特に限定されない。具体的には、0.03~0.12dl/gであることが好ましく、0.04~0.11dl/gであることがより好ましく、0.06~0.095dl/gであることがさらに好ましい。この固有粘度が低すぎると、分子量が低い傾向があり、低誘電率や低誘電正接等の低誘電性が得られにくい傾向がある。また、固有粘度が高すぎると、粘度が高く、充分な流動性が得られず、硬化物の成形性が低下する傾向がある。よって、変性ポリフェニレンエーテル化合物の固有粘度が上記範囲内であれば、優れた、硬化物の耐熱性及び成形性を実現できる。
 なお、ここでの固有粘度は、25℃の塩化メチレン中で測定した固有粘度であり、より具体的には、例えば、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計で測定した値等である。この粘度計としては、例えば、Schott社製のAVS500 Visco System等が挙げられる。
 前記変性ポリフェニレンエーテル化合物としては、例えば、下記式(4)で表される変性ポリフェニレンエーテル化合物、及び下記式(5)で表される変性ポリフェニレンエーテル化合物等が挙げられる。また、前記変性ポリフェニレンエーテル化合物としては、これらの変性ポリフェニレンエーテル化合物を単独で用いてもよいし、この2種の変性ポリフェニレンエーテル化合物を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 式(4)及び式(5)中、R~R15並びにR16~R23は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。X及びXは、それぞれ独立して、炭素-炭素不飽和二重結合を有する置換基を示す。A及びBは、それぞれ、下記式(6)及び下記式(7)で表される繰り返し単位を示す。また、式(5)中、Yは、炭素数20以下の直鎖状、分岐状、又は環状の炭化水素を示す。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 式(6)及び式(7)中、s及びtは、それぞれ、0~20を示す。R24~R27並びにR28~R31は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。
 前記式(4)で表される変性ポリフェニレンエーテル化合物、及び前記式(5)で表される変性ポリフェニレンエーテル化合物は、上記構成を満たす化合物であれば特に限定されない。具体的には、前記式(4)及び前記式(5)において、R~R15並びにR16~R23は、上述したように、それぞれ独立している。すなわち、R~R15並びにR16~R23は、それぞれ同一の基であっても、異なる基であってもよい。また、R~R15並びにR16~R23は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。
 また、式(6)及び式(7)中、s及びtは、それぞれ、上述したように、0~20を示すことが好ましい。また、s及びtは、sとtとの合計値が、1~30となる数値を示すことが好ましい。よって、sは、0~20を示し、tは、0~20を示し、sとtとの合計は、1~30を示すことがより好ましい。また、R24~R27並びにR28~R31は、それぞれ独立している。すなわち、R24~R27並びにR28~R31は、それぞれ同一の基であっても、異なる基であってもよい。また、R24~R27並びにR28~R31は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。
 R~R31は、上記式(3)におけるR~Rと同じである。
 前記式(5)中において、Yは、上述したように、炭素数20以下の直鎖状、分岐状、又は環状の炭化水素である。Yとしては、例えば、下記式(8)で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 前記式(8)中、R32及びR33は、それぞれ独立して、水素原子又はアルキル基を示す。前記アルキル基としては、例えば、メチル基等が挙げられる。また、式(8)で表される基としては、例えば、メチレン基、メチルメチレン基、及びジメチルメチレン基等が挙げられ、この中でも、ジメチルメチレン基が好ましい。
 前記式(4)で表される変性ポリフェニレンエーテル化合物のより具体的な例示としては、例えば、下記式(9)で表される変性ポリフェニレンエーテル化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 前記式(5)で表される変性ポリフェニレンエーテル化合物のより具体的な例示としては、例えば、下記式(10)で表される変性ポリフェニレンエーテル化合物、下記式(11)で表される変性ポリフェニレンエーテル化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 上記式(9)~式(11)において、s及びtは、上記式(6)及び上記式(7)におけるs及びtと同じである。また、上記式(9)及び上記式(10)において、R及びRは、上記式(1)におけるR及びRと同じである。また、上記式(10)及び上記式(11)において、Yは、上記(5)におけるYと同じである。また、上記式(11)において、Rは、上記式(2)におけるRと同じである。
 本実施形態において用いられる変性ポリフェニレンエーテル化合物の合成方法は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物を合成できれば、特に限定されない。具体的には、ポリフェニレンエーテルに、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物を反応させる方法等が挙げられる。
 炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物としては、例えば、前記式(2)及び(3)で表される置換基とハロゲン原子とが結合された化合物等が挙げられる。前記ハロゲン原子としては、具体的には、塩素原子、臭素原子、ヨウ素原子、及びフッ素原子が挙げられ、この中でも、塩素原子が好ましい。炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物としては、より具体的には、p-クロロメチルスチレンやm-クロロメチルスチレン等が挙げられる。
 原料であるポリフェニレンエーテルは、最終的に、所定の変性ポリフェニレンエーテル化合物を合成することができるものであれば、特に限定されない。具体的には、2,6-ジメチルフェノールと2官能フェノール及び3官能フェノールの少なくともいずれか一方とからなるポリフェニレンエーテルやポリ(2,6-ジメチル-1,4-フェニレンオキサイド)等のポリフェニレンエーテルを主成分とするもの等が挙げられる。また、2官能フェノールとは、フェノール性水酸基を分子中に2個有するフェノール化合物であり、例えば、テトラメチルビスフェノールA等が挙げられる。また、3官能フェノールとは、フェノール性水酸基を分子中に3個有するフェノール化合物である。
 変性ポリフェニレンエーテル化合物の合成方法は、上述した方法が挙げられる。具体的には、上記のようなポリフェニレンエーテルと、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とを溶媒に溶解させ、攪拌する。そうすることによって、ポリフェニレンエーテルと、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とが反応し、本実施形態で用いられる変性ポリフェニレンエーテル化合物が得られる。
 前記反応の際、アルカリ金属水酸化物の存在下で行うことが好ましい。そうすることによって、この反応が好適に進行すると考えられる。このことは、アルカリ金属水酸化物が、脱ハロゲン化水素剤、具体的には、脱塩酸剤として機能するためと考えられる。すなわち、アルカリ金属水酸化物が、ポリフェニレンエーテルのフェノール基と、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とから、ハロゲン化水素を脱離させ、そうすることによって、ポリフェニレンエーテルのフェノール基の水素原子の代わりに、炭素-炭素不飽和二重結合を有する置換基が、フェノール基の酸素原子に結合すると考えられる。
 アルカリ金属水酸化物は、脱ハロゲン化剤として働きうるものであれば、特に限定されないが、例えば、水酸化ナトリウム等が挙げられる。また、アルカリ金属水酸化物は、通常、水溶液の状態で用いられ、具体的には、水酸化ナトリウム水溶液として用いられる。
 反応時間や反応温度等の反応条件は、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物等によっても異なり、上記のような反応が好適に進行する条件であれば、特に限定されない。具体的には、反応温度は、室温~100℃であることが好ましく、30~100℃であることがより好ましい。また、反応時間は、0.5~20時間であることが好ましく、0.5~10時間であることがより好ましい。
 反応時に用いる溶媒は、ポリフェニレンエーテルと、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とを溶解させることができ、ポリフェニレンエーテルと、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物との反応を阻害しないものであれば、特に限定されない。具体的には、トルエン等が挙げられる。
 上記の反応は、アルカリ金属水酸化物だけではなく、相間移動触媒も存在した状態で反応させることが好ましい。すなわち、上記の反応は、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させることが好ましい。そうすることによって、上記反応がより好適に進行すると考えられる。このことは、以下のことによると考えられる。相間移動触媒は、アルカリ金属水酸化物を取り込む機能を有し、水のような極性溶剤の相と、有機溶剤のような非極性溶剤の相との両方の相に可溶で、これらの相間を移動することができる触媒であることによると考えられる。具体的には、アルカリ金属水酸化物として、水酸化ナトリウム水溶液を用い、溶媒として、水に相溶しない、トルエン等の有機溶剤を用いた場合、水酸化ナトリウム水溶液を、反応に供されている溶媒に滴下しても、溶媒と水酸化ナトリウム水溶液とが分離し、水酸化ナトリウムが、溶媒に移行しにくいと考えられる。そうなると、アルカリ金属水酸化物として添加した水酸化ナトリウム水溶液が、反応促進に寄与しにくくなると考えられる。これに対して、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させると、アルカリ金属水酸化物が相間移動触媒に取り込まれた状態で、溶媒に移行し、水酸化ナトリウム水溶液が、反応促進に寄与しやすくなると考えられる。このため、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させると、上記反応がより好適に進行すると考えられる。
 相間移動触媒は、特に限定されないが、例えば、テトラ-n-ブチルアンモニウムブロマイド等の第4級アンモニウム塩等が挙げられる。
 本実施形態で用いられる樹脂組成物には、変性ポリフェニレンエーテル化合物として、上記のようにして得られた変性ポリフェニレンエーテル化合物を含むことが好ましい。
 (硬化剤)
 前記樹脂組成物は、硬化剤を含有してもよい。前記樹脂組成物には、硬化剤を含有しなくてもよいが、前記変性ポリフェニレンエーテル化合物を好適に硬化させるために、硬化剤を含有していることが好ましい。前記硬化剤は、前記ポリフェニレンエーテル化合物と反応して前記ポリフェニレンエーテル化合物を含む樹脂組成物を硬化させることができる硬化剤である。また、前記硬化剤は、前記ポリフェニレンエーテル化合物を含む樹脂組成物を硬化させることができる硬化剤であれば、特に限定されない。前記硬化剤としては、例えば、スチレン、スチレン誘導体、分子中にアクリロイル基を有する化合物、分子中にメタクリロイル基を有する化合物、分子中にビニル基を有する化合物、分子中にアリル基を有する化合物、分子中にアセナフチレン構造を有する化合物、分子中にマレイミド基を有する化合物、及び分子中にイソシアヌレート基を有する化合物等が挙げられる。
 前記スチレン誘導体としては、例えば、ブロモスチレン及びジブロモスチレン等が挙げられる。
 前記分子中にアクリロイル基を有する化合物が、アクリレート化合物である。前記アクリレート化合物としては、分子中にアクリロイル基を1個有する単官能アクリレート化合物、及び分子中にアクリロイル基を2個以上有する多官能アクリレート化合物が挙げられる。前記単官能アクリレート化合物としては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、及びブチルアクリレート等が挙げられる。前記多官能アクリレート化合物としては、例えば、トリシクロデカンジメタノールジアクリレート等のジアクリレート化合物等が挙げられる。
 前記分子中にメタクリロイル基を有する化合物が、メタクリレート化合物である。前記メタクリレート化合物としては、分子中にメタクリロイル基を1個有する単官能メタクリレート化合物、及び分子中にメタクリロイル基を2個以上有する多官能メタクリレート化合物が挙げられる。前記単官能メタクリレート化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、及びブチルメタクリレート等が挙げられる。前記多官能メタクリレート化合物としては、例えば、トリシクロデカンジメタノールジメタクリレート等のジメタクリレート化合物等が挙げられる。
 前記分子中にビニル基を有する化合物が、ビニル化合物である。前記ビニル化合物としては、分子中にビニル基を1個有する単官能ビニル化合物(モノビニル化合物)、及び分子中にビニル基を2個以上有する多官能ビニル化合物が挙げられる。前記多官能ビニル化合物としては、例えば、ジビニルベンゼン、及びポリブタジエン等が挙げられる。
 前記分子中にアリル基を有する化合物が、アリル化合物である。前記アリル化合物としては、分子中にアリル基を1個有する単官能アリル化合物、及び分子中にアリル基を2個以上有する多官能アリル化合物が挙げられる。前記多官能アリル化合物としては、例えば、トリアリルイソシアヌレート(TAIC)等のトリアリルイソシアヌレート化合物、ジアリルビスフェノール化合物、及びジアリルフタレート(DAP)、等が挙げられる。
 前記分子中にアセナフチレン構造を有する化合物が、アセナフチレン化合物である。前記アセナフチレン化合物としては、例えば、アセナフチレン、アルキルアセナフチレン類、ハロゲン化アセナフチレン類、及びフェニルアセナフチレン類等が挙げられる。前記アルキルアセナフチレン類としては、例えば、1-メチルアセナフチレン、3-メチルアセナフチレン、4-メチルアセナフチレン、5-メチルアセナフチレン、1-エチルアセナフチレン、3-エチルアセナフチレン、4-エチルアセナフチレン、5-エチルアセナフチレン等が挙げられる。前記ハロゲン化アセナフチレン類としては、例えば、1-クロロアセナフチレン、3-クロロアセナフチレン、4-クロロアセナフチレン、5-クロロアセナフチレン、1-ブロモアセナフチレン、3-ブロモアセナフチレン、4-ブロモアセナフチレン、5-ブロモアセナフチレン等が挙げられる。前記フェニルアセナフチレン類としては、例えば、1-フェニルアセナフチレン、3-フェニルアセナフチレン、4-フェニルアセナフチレン、5-フェニルアセナフチレン等が挙げられる。前記アセナフチレン化合物としては、前記のような、分子中にアセナフチレン構造を1個有する単官能アセナフチレン化合物であってもよいし、分子中にアセナフチレン構造を2個以上有する多官能アセナフチレン化合物であってもよい。
 前記分子中にマレイミド基を有する化合物が、マレイミド化合物である。前記マレイミド化合物としては、分子中にマレイミド基を1個有する単官能マレイミド化合物、分子中にマレイミド基を2個以上有する多官能マレイミド化合物、及び変性マレイミド化合物等が挙げられる。前記変性マレイミド化合物としては、例えば、分子中の一部がアミン化合物で変性された変性マレイミド化合物、分子中の一部がシリコーン化合物で変性された変性マレイミド化合物、及び分子中の一部がアミン化合物及びシリコーン化合物で変性された変性マレイミド化合物等が挙げられる。
 前記分子中にイソシアヌレート基を有する化合物が、イソシアヌレート化合物である。前記イソシアヌレート化合物としては、分子中にアルケニル基をさらに有する化合物(アルケニルイソシアヌレート化合物)等が挙げられ、例えば、トリアリルイソシアヌレート(TAIC)等のトリアルケニルイソシアヌレート化合物等が挙げられる。
 前記硬化剤は、上記の中でも、例えば、前記多官能アクリレート化合物、前記多官能メタクリレート化合物、前記多官能ビニル化合物、前記スチレン誘導体、前記アリル化合物、前記マレイミド化合物、前記アセナフチレン化合物、及び前記イソシアヌレート化合物等が好ましく、前記多官能ビニル化合物、前記アセナフチレン化合物、及び前記アリル化合物がより好ましい。また、前記多官能ビニル化合物としては、ジビニルベンゼンが好ましい。また、前記アリル化合物としては、分子中に2個以上のアリル基を有するアリルイソシアヌレート化合物が好ましく、トリアリルイソシアヌレート(TAIC)がより好ましい。
 前記硬化剤は、上記硬化剤を単独で用いてもよいし、2種以上組み合わせて用いてもよい。
 前記硬化剤の重量平均分子量は、特に限定されず、例えば、100~5000であることが好ましく、100~4000であることがより好ましく、100~3000であることがさらに好ましい。前記硬化剤の重量平均分子量が低すぎると、前記硬化剤が樹脂組成物の配合成分系から揮発しやすくなるおそれがある。また、前記硬化剤の重量平均分子量が高すぎると、樹脂組成物のワニスの粘度や、加熱成形時の溶融粘度が高くなりすぎるおそれがある。よって、前記硬化剤の重量平均分子量がこのような範囲内であると、硬化物の耐熱性により優れた樹脂組成物が得られる。このことは、前記ポリフェニレンエーテル化合物との反応により、前記ポリフェニレンエーテル化合物を含有する樹脂組成物を好適に硬化させることができるためと考えられる。なお、ここで、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。
 前記硬化剤は、前記ポリフェニレンエーテル化合物との反応に寄与する官能基の、前記硬化剤1分子当たりの平均個数(官能基数)は、前記硬化剤の重量平均分子量によって異なるが、例えば、1~20個であることが好ましく、2~18個であることがより好ましい。この官能基数が少なすぎると、硬化物の耐熱性としては充分なものが得られにくい傾向がある。また、官能基数が多すぎると、反応性が高くなりすぎ、例えば、樹脂組成物の保存性が低下したり、樹脂組成物の流動性が低下してしまう等の不具合が発生するおそれがある。
 前記変性ポリフェニレンエーテル化合物の含有量は、前記変性ポリフェニレンエーテル化合物と前記硬化剤との合計100質量部に対して、30~90質量部であることが好ましく、50~90質量部であることがより好ましい。また、前記硬化剤の含有量が、前記変性ポリフェニレンエーテル化合物と前記硬化剤との合計100質量部に対して、10~70質量部であることが好ましく、10~50質量部であることがより好ましい。すなわち、前記変性ポリフェニレンエーテル化合物と前記硬化剤との含有比が、質量比で90:10~30:70であることが好ましく、90:10~50:50であることが好ましい。前記変性ポリフェニレンエーテル化合物及び前記硬化剤の各含有量が、上記比を満たすような含有量であれば、硬化物の耐熱性及び難燃性により優れた樹脂組成物になる。このことは、前記変性ポリフェニレンエーテル化合物と前記硬化剤との硬化反応が好適に進行するためと考えられる。
 (その他の成分)
 本実施形態に係る樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、前記変性ポリフェニレンエーテル化合物及び前記架橋剤以外の成分(その他の成分)を含有してもよい。本実施の形態に係る樹脂組成物に含有されるその他の成分としては、例えば、シランカップリング剤、難燃剤、開始剤、消泡剤、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料、滑剤、及び無機充填材等の添加剤をさらに含んでもよい。また、前記樹脂組成物には、前記変性ポリフェニレンエーテル化合物以外にも、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性ポリイミド樹脂、マレイミド化合物、及び変性マレイミド化合物等の熱硬化性樹脂を含有してもよい。前記変性マレイミド化合物としては、例えば、分子中の少なくとも一部がシリコーン化合物で変性されたマレイミド化合物、及び分子中の少なくとも一部がアミン化合物で変性されたマレイミド化合物等が挙げられる。
 本実施形態に係る樹脂組成物は、上述したように、シランカップリング剤を含有してもよい。シランカップリング剤は、樹脂組成物に含有してもよいし、樹脂組成物に含有されている無機充填材に予め表面処理されたシランカップリング剤として含有していてもよい。この中でも、前記シランカップリング剤としては、無機充填材に予め表面処理されたシランカップリング剤として含有することが好ましく、このように無機充填材に予め表面処理されたシランカップリング剤として含有し、さらに、樹脂組成物にもシランカップリング剤を含有させることがより好ましい。また、プリプレグの場合、そのプリプレグには、繊維質基材に予め表面処理されたシランカップリング剤として含有していてもよい。
 前記シランカップリング剤としては、例えば、ビニル基、スチリル基、メタクリル基、アクリル基、フェニルアミノ基からなる群から選ばれる少なくとも1種の官能基を有するシランカップリング剤等が挙げられる。すなわち、このシランカップリング剤は、反応性官能基として、ビニル基、スチリル基、メタクリル基、アクリル基、及びフェニルアミノ基のうち、少なくとも1つを有し、さらに、メトキシ基やエトキシ基等の加水分解性基を有する化合物等が挙げられる。
 前記シランカップリング剤としては、ビニル基を有するものとして、例えば、ビニルトリエトキシシラン、及びビニルトリメトキシシラン等が挙げられる。前記シランカップリング剤としては、スチリル基を有するものとして、例えば、p-スチリルトリメトキシシラン、及びp-スチリルトリエトキシシラン等が挙げられる。前記シランカップリング剤としては、メタクリル基を有するものとして、例えば、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、及び3-メタクリロキシプロピルエチルジエトキシシラン等が挙げられる。前記シランカップリング剤としては、アクリル基を有するものとして、例えば、3-アクリロキシプロピルトリメトキシシラン、及び3-アクリロキシプロピルトリエトキシシラン等が挙げられる。前記シランカップリング剤としては、フェニルアミノ基を有するものとして、例えば、N-フェニル-3-アミノプロピルトリメトキシシラン及びN-フェニル-3-アミノプロピルトリエトキシシラン等が挙げられる。
 本実施形態に係る樹脂組成物は、上述したように、難燃剤を含有してもよい。難燃剤を含有することによって、樹脂組成物の硬化物の難燃性を高めることができる。前記難燃剤は、特に限定されない。具体的には、臭素系難燃剤等のハロゲン系難燃剤を使用する分野では、例えば、融点が300℃以上のエチレンジペンタブロモベンゼン、エチレンビステトラブロモイミド、デカブロモジフェニルオキサイド、及びテトラデカブロモジフェノキシベンゼンが好ましい。ハロゲン系難燃剤を使用することにより、高温時におけるハロゲンの脱離が抑制でき、耐熱性の低下を抑制できると考えられる。また、ハロゲンフリーが要求される分野では、リン酸エステル系難燃剤、ホスファゼン系難燃剤、ビスジフェニルホスフィンオキサイド系難燃剤、及びホスフィン酸塩系難燃剤が挙げられる。リン酸エステル系難燃剤の具体例としては、ジキシレニルホスフェートの縮合リン酸エステルが挙げられる。ホスファゼン系難燃剤の具体例としては、フェノキシホスファゼンが挙げられる。ビスジフェニルホスフィンオキサイド系難燃剤の具体例としては、キシリレンビスジフェニルホスフィンオキサイドが挙げられる。ホスフィン酸塩系難燃剤の具体例としては、例えば、ジアルキルホスフィン酸アルミニウム塩のホスフィン酸金属塩が挙げられる。前記難燃剤としては、例示した各難燃剤を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本実施形態に係る樹脂組成物には、上述したように、開始剤(反応開始剤)を含有してもよい。ポリフェニレンエーテル樹脂組成物は、前記マレイミド化合物と前記変性ポリフェニレンエーテル化合物と前記架橋剤とからなるものであっても、硬化反応は進行し得る。また、変性ポリフェニレンエーテルのみであっても、硬化反応は進行し得る。しかしながら、プロセス条件によっては硬化が進行するまで高温にすることが困難な場合があるので、反応開始剤を添加してもよい。反応開始剤は、前記マレイミド化合物と前記変性ポリフェニレンエーテル化合物と前記架橋剤との硬化反応を促進することができるものであれば、特に限定されない。具体的には、例えば、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン、過酸化ベンゾイル、3,3’,5,5’-テトラメチル-1,4-ジフェノキノン、クロラニル、2,4,6-トリ-t-ブチルフェノキシル、t-ブチルペルオキシイソプロピルモノカーボネート、アゾビスイソブチロニトリル等の酸化剤が挙げられる。また、必要に応じて、カルボン酸金属塩等を併用することができる。そうすることによって、硬化反応を一層促進させるができる。これらの中でも、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンが好ましく用いられる。α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンは、反応開始温度が比較的に高いため、プリプレグ乾燥時等の硬化する必要がない時点での硬化反応の促進を抑制することができ、ポリフェニレンエーテル樹脂組成物の保存性の低下を抑制することができる。さらに、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンは、揮発性が低いため、プリプレグ乾燥時や保存時に揮発せず、安定性が良好である。また、反応開始剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
 本実施形態に係る樹脂組成物には、上述したように、無機充填材等の充填材を含有してもよい。充填材としては、樹脂組成物の硬化物の、耐熱性及び難燃性を高めるために添加するもの等が挙げられ、特に限定されない。また、充填材を含有させることによって、耐熱性及び難燃性等をさらに高めることができる。充填材としては、具体的には、球状シリカ等のシリカ、アルミナ、酸化チタン、及びマイカ等の金属酸化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、タルク、ホウ酸アルミニウム、硫酸バリウム、及び炭酸カルシウム等が挙げられる。また、充填材としては、この中でも、シリカ、マイカ、及びタルクが好ましく、球状シリカがより好ましい。また、充填材は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、充填材としては、そのまま用いてもよいし、前記シランカップリング剤で表面処理したものを用いてもよい。また、充填材を含有する場合、その含有率(フィラーコンテンツ)は、前記樹脂組成物に対して、30~270質量%であることが好ましく、50~250質量%であることがより好ましい。
 (銅箔)
 前記銅箔は、前記銅張積層板を塩化銅溶液でエッチング処理したら、前記露出面が、上記のようになる銅箔であれば、特に限定されない。具体的には、前記露出面における、XPSにより測定されるクロム元素量が、XPSにより測定される全元素量に対して、7.5原子%以下であり、前記露出面の表面粗さは、十点平均粗さで2.0μm以下となるような銅箔であれば、特に限定されない。前記露出面を形成するときの、前記銅張積層板のエッチング処理は、塩化銅溶液でのエッチング処理であり、前記銅箔が除去される処理である。具体的には、塩化第二銅溶液を用い、この液温が45℃で、90秒間(例えば、銅箔の厚みが18μmの場合)エッチングし、その後、市水又は純水を用い、常温で水洗することにより、前記銅箔が除去される処理である。
 前記露出面は、XPSにより測定されるクロム元素量が、XPSにより測定される全元素量に対して、上述したように、7.5原子%以下であり、7.0原子%以下であることが好ましく、6.5原子%以下であることがより好ましい。このクロム元素量が多すぎると、層間密着性が低下し、得られた銅張積層板を加熱したときに層間剥離が発生しやすくなる等、耐熱性が低下する傾向がある。このため、前記クロム元素量は少なければ少ないほど好ましいが、実際には、0.1原子%程度が限界である。このことから、前記クロム元素量は、0.1~7.5原子%であることが好ましい。
 なお、XPSとしては、一般的なX線光電子分光法を用いることが測定することができる。具体的には、アルバック・ファイ株式会社社製のPHI 5000 Versaprobeを用いて、真空下で試料にX線を照射し測定することができる。
 前記露出面には、XPSにより確認可能な窒素元素が存在することが好ましい。なお、XPSにより確認可能な窒素元素とは、窒素元素量がXPSの検出限界以上であり、具体的には、0.1原子%以上である。また、前記露出面は、XPSにより測定される窒素元素量が、XPSにより測定される全元素量に対して、1.0原子%以上であることが好ましく、2.5原子%以上であることがより好ましく、3.5原子%以上であることがさらに好ましい。
 本発明者等は、XPSにより確認可能な窒素元素が前記露出面に存在すると、得られた配線板を加熱した際であっても、層間剥離が発生しにくくなったことを見出した。上述したように、エッチング残渣として、クロム元素を含む化合物が存在すると、加熱した際に、層間剥離が発生しやすいと本発明者等は推察した。その一方で、エッチング残渣として、窒素元素を含む化合物が、X線光電子分光法により確認可能な量で存在すると、前記銅張積層板から製造された配線板における配線間に存在する絶縁層の表面上にも、ある程度以上の窒素元素を含む化合物が存在すると考えられる。この窒素元素を含む化合物により、前記絶縁層と前記絶縁層との層間密着性が高まり、層間剥離が発生しにくくなると考えられる。このことにより、耐熱性のより高い配線板を好適に製造することができる銅張積層板が得られると考えられる。このことから、前記窒素元素量が少なすぎると、この窒素元素が存在することによる層間剥離の発生を抑制する効果を充分に発揮することができなくなる傾向がある。また、前記窒素元素量は多ければ多いほどよいが、実際には、5.0原子%程度が限界である。このことから、前記窒素元素量は、1.0~5.0原子%であることが好ましい。
 前記窒素元素は、アミノ基を有する化合物に含まれる窒素原子由来であることが好ましく、アミノ基を有するシランカップリング剤に含まれる窒素原子由来であることがより好ましい。前記窒素元素は、アミノ基を有する化合物に含まれる窒素原子由来であるということは、エッチング残渣として存在する、窒素元素を含む化合物が、アミノ基を有する化合物であると考えられる。このような銅箔としては、具体的には、後述するシランカップリング剤層として、分子中にアミノ基を有するシランカップリング剤で処理された層を有する銅箔であると考えられる。そして、このアミノ基を有する化合物、すなわち、分子中にアミノ基を有するシランカップリング剤が、前記絶縁層と前記絶縁層との層間密着性を高め、層間剥離が発生しにくくなるという効果をより効果的に奏すると考えられる。このことから、耐熱性のより高い配線板を好適に製造することができる銅張積層板が得られると考えられる。
 前記露出面には、XPSにより確認可能な元素として、クロム(Cr)元素及び窒素(N)元素以外に、銅(Cu)元素、炭素(C)元素、酸素(O)元素、ケイ素(Si)元素、ニッケル(Ni)元素、亜鉛(Zn)元素、及びコバルト(Co)元素等から選択される1種以上が存在してもよい。これらの元素の各元素量は、それぞれ、XPSにより測定される全元素量に対して、例えば、0~90原子%であることが好ましく、0~80原子%であることがより好ましく、0~70原子%であることがさらに好ましい。
 前記銅箔としては、具体的には、銅箔基材に対して、種々の処理が施された銅箔等が挙げられる。前記処理としては、銅張積層板に用いられる銅箔に施される処理であれば、特に限定されない。前記処理としては、例えば、粗化処理、耐熱処理、防錆処理、及びシランカップリング剤処理等が挙げられる。前記銅箔は、いずれか1つの処理を施したものであってもよいし、2種以上を組み合わせて施したものであってもよい。また、前記処理を2種以上行う場合、前記粗化処理、前記耐熱処理、前記防錆処理、及び前記シランカップリング剤処理の順で行うことが好ましい。
 前記銅箔基材は、銅を含んでいればよく、例えば、銅又は銅合金からなる箔状の基材等が挙げられる。前記銅合金としては、例えば、銅と、ニッケル、リン、タングステン、ヒ素、モリブデン、クロム、コバルト、及び亜鉛からなる群から選ばれる少なくとも1種とを含む合金等が挙げられる。
 前記粗化処理は、銅箔を製造する際に一般的に行われる粗化処理であってもよく、特に限定されないが、被処理物である前記銅箔基材等の表面に、粗化粒子を形成する処理等が挙げられる。この粗化処理により、銅箔表面上が、銅又は銅合金からなる粗化粒子で覆われることになる。この粗化粒子からなる領域を、粗化層とも呼ぶ。前記銅箔は、前記粗化処理によって形成された層(粗化層)が形成されたものであってもよい。
 前記耐熱処理は、銅箔を製造する際に一般的に行われる耐熱処理であってもよく、特に限定されないが、例えば、ニッケル、コバルト、銅、及び亜鉛の、単体又は合金を含む耐熱層が形成される処理等が挙げられる。この耐熱処理により形成された領域が仮に完全な層状になっていなかったとしても、耐熱層とも呼ぶ。前記銅箔は、前記耐熱処理によって形成された層(耐熱層)が形成されたものであってもよい。
 前記防錆処理は、銅箔を製造する際に一般的に行われる防錆処理であってもよく、特に限定されないが、ニッケルを含む防錆層が形成される処理であることが好ましい。また、前記防錆処理としては、例えば、クロメート処理等も挙げられる。この防錆処理により形成された領域が仮に完全な層状になっていなかったとしても、防錆層とも呼ぶ。前記銅箔は、前記防錆処理によって形成された層(防錆層)が形成されたものであってもよい。
 前記シランカップリング剤処理は、銅箔を製造する際に一般的に行われるシランカップリング剤処理であってもよく、特に限定されないが、例えば、被処理物である前記銅箔等の表面に、シランカップリング剤を塗布する処理等が挙げられる。前記シランカップリング剤処理としては、シランカップリング剤を塗布した後、乾燥させたり、加熱させてもよい。シランカップリング剤で処理することで、被処理物である銅箔を構成する銅等にシランカップリング剤の有するアルコキシ基が反応して結合する。この結合されたシランカップリング剤により形成された領域をシランカップリング剤層である。前記銅箔は、前記シランカップリング剤処理によって形成された層(シランカップリング剤層)が形成されたものであってもよい。
 前記銅箔としては、具体的には、銅箔基材と、前記銅箔基材上に配置される被膜層とを備える銅箔が挙げられる。前記被膜層は、例えば、粗化層、耐熱層、防錆層、及びシランカップリング剤層等が挙げられる。前記銅箔は、前記被膜層として、これらの層を単独で備えていてもよいし、2種以上の層を積層して備えていてもよい。また、前記被膜層が複数層からなる場合、前記銅箔基材から、粗化層、耐熱層、防錆層、及びシランカップリング剤層の順で備えていることが好ましい。
 前記粗化層としては、例えば、銅又は銅合金からなる粗化粒子を含む層等が挙げられる。前記銅合金としては、前記銅箔基材における銅合金と同じである。また、前記粗化層は、例えば、前記銅箔基材を粗化処理して得られる。前記粗化層は、前記銅箔基材を粗化処理して得られる粗化粒子を形成した後に、ニッケル、コバルト、銅、及び亜鉛等の、単体又は合金からなる粒子を、二次粒子及び三次粒子として形成させた層等が挙げられる。すなわち、前記粗化層は、前記粗化粒子だけではなく、ニッケル、コバルト、銅、及び亜鉛等の、単体又は合金からなる粒子を含む層等が挙げられる。
 前記耐熱層としては、ニッケル、コバルト、銅、及び亜鉛の、単体又は合金を含む層等が挙げられる。前記耐熱層としては、単層であってもよいし、2層以上の層であってもよい。前記耐熱層としては、例えば、ニッケル層と亜鉛層とを積層した層等が挙げられる。
 前記防錆層としては、例えば、クロメート処理層等の、クロムを含む層等が挙げられる。また、前記防錆層は、例えば、前記耐熱層等を備えた銅箔基材をクロメート処理して得られる。
 前記シランカップリング剤層は、シランカップリング剤で処理することにより得られる層である。例えば、前記防錆層等を備えた銅箔基材に対して、シランカップリング剤で処理することにより得られる層等が挙げられる。
 前記シランカップリング剤としては、アミノ基を分子中に有するシランカップリング剤、及び炭素-炭素不飽和二重結合を分子中に有するシランカップリング剤等が挙げられる。
 前記アミノ基を分子中に有するシランカップリング剤は、反応性官能基として、アミノ基を有し、さらに、メトキシ基やエトキシ基等の加水分解性基を有する化合物等が挙げられる。前記アミノ基を分子中に有するシランカップリング剤の具体例としては、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、1-アミノプロピルトリメトキシシラン、2-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、1,2-ジアミノプロピルトリメトキシシラン、3-アミノ-1-プロペニルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルエチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-(N-スチリルメチル-2-アミノエチルアミノ)プロピルトリメトキシシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-(3-アクリルオキシ-2-ヒドロキシプロピル)-3-アミノプロピルトリエトキシシラン、4-アミノブチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、N-(2-アミノエチル-3-アミノプロピル)トリス(2-エチルヘキソキシ)シラン、6-(アミノヘキシルアミノプロピル)トリメトキシシラン、アミノフェニルトリメトキシシラン、3-(1-アミノプロポキシ)-3,3-ジメチル-1-プロペニルトリメトキシシラン、3-アミノプロピルトリス(メトキシエトキシエトキシ)シラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、ω-アミノウンデシルトリメトキシシラン、3-(2-N-ベンジルアミノエチルアミノプロピル)トリメトキシシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリメトキシシラン、(N,N-ジエチル-3-アミノプロピル)トリメトキシシラン、(N,N-ジメチル-3-アミノプロピル)トリメトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-フェニルアミノプロピルトリエトキシシラン、及び3-(N-スチリルメチル-2-アミノエチルアミノ)プロピルトリエトキシシラン等が挙げられる。
 前記炭素-炭素不飽和二重結合を分子中に有するシランカップリング剤としては、具体的には、メタクリロキシ基、スチリル基、ビニル基、及びアクリロキシ基からなる群から選ばれる少なくとも1種の官能基を有するシランカップリング剤等が挙げられる。すなわち、このシランカップリング剤は、反応性官能基として、メタクリロキシ基、スチリル基、ビニル基、及びアクリロキシ基のうち、少なくとも1つを有し、さらに、メトキシ基やエトキシ基等の加水分解性基を有する化合物等が挙げられる。前記炭素-炭素不飽和二重結合を分子中に有するシランカップリング剤としては、例えば、以下のシランカップリング剤等が挙げられる。メタクリロキシ基を分子中に有するシランカップリング剤として、例えば、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、及び3-メタクリロキシプロピルエチルジエトキシシラン等が挙げられる。スチリル基を分子中に有するシランカップリング剤として、例えば、p-スチリルトリメトキシシラン、及びp-スチリルトリエトキシシラン等が挙げられる。ビニル基を分子中に有するシランカップリング剤として、例えば、ビニルトリエトキシシラン、及びビニルトリメトキシシラン等が挙げられる。また、アクリロキシ基を分子中に有するシランカップリング剤として、例えば、3-アクリロキシプロピルトリメトキシシラン、及び3-アクリロキシプロピルトリエトキシシラン等が挙げられる。
 前記クロム元素量は、例えば、前記被膜層において、クロメート層等の、クロムを含む層の厚み等を調整することによって、調整できる。
 前記窒素元素は、シランカップリング剤層として、アミノ基を分子中に有するシランカップリング剤を用いた層とすることで存在させることができる。さらに、その量(窒素元素量)は、シランカップリング剤層として、アミノ基を分子中に有するシランカップリング剤を用いて得られた層の厚み等を調整することによって、調整できる。
 前記露出面の平均粗さは、十点平均粗さで2.0μm以下であり、1.8μm以下であることが好ましく、1.5μm以下であることがより好ましい。前記露出面の表面粗さは低いほうが、すなわち、前記露出面の平滑性が高いほうが、前記銅箔と前記絶縁層との接触面の平滑性も高いと考えられ、信号伝送時の損失を低減させることができる点で好ましい。その一方で、前記露出面の表面粗さは、低くするとしても、十点平均粗さRzで0.2μm程度が限界である。また、前記露出面の表面粗さが低すぎると、前記銅箔と前記絶縁層との接触面の平滑性も高くなりすぎると考えられ、銅箔と絶縁層との接着性が低下してしまう傾向がある。この点からも、前記露出面の表面粗さは、十点平均粗さRzで0.2μm以上であることが好ましい。よって、前記露出面の表面粗さは、十点平均粗さRzで0.2~2.0μmであることが好ましく、0.5~2.0μmであることがより好ましく、0.6~1.8μmであることがさらに好ましく、0.6~1.5μmであることが最も好ましい。
 なお、ここでの表面粗さである十点平均粗さRzは、JIS B 0601:1994に準拠したものであり、一般的な表面粗さ測定器等で測定することができる。具体的には、例えば、株式会社東京精密製の表面粗さ形状測定機(SURFCOM500DX)を用いて測定することができる。
 前記露出面の平均粗さは、前記銅箔の、前記絶縁層と接触する側の表面の平均粗さを調整することによって、調整できる。具体的には、前記銅箔の、前記絶縁層と接触する側の表面の平均粗さは、十点平均粗さRzで0.5~2.0μmであることが好ましい。また、前記銅箔は、平均粗さが大きい面、いわゆるM面を、前記絶縁層と接触する側の表面とする。そして、このM面側に、上述したような被膜層が形成されていればよい。前記銅箔の、平均粗さが小さい面、いわゆるS面は、M面と同様に、上述したような被膜層が形成されていてもよいが、前記防錆層のみが形成されていてもよいし、前記被膜層が形成されていなくてもよい。
 (製造方法)
 本実施形態で用いる樹脂組成物は、ワニス状に調製して用いてもよい。例えば、プリプレグを製造する際に、プリプレグを形成するための基材(繊維質基材)に含浸することを目的として、ワニス状に調製して用いてもよい。すなわち、樹脂組成物は、ワニス状に調製されたもの(樹脂ワニス)として用いてもよい。また、本実施形態で用いる樹脂組成物において、前記変性ポリフェニレンエーテル化合物と前記硬化剤とは、樹脂ワニス中に溶解されたものである。このようなワニス状の組成物(樹脂ワニス)は、例えば、以下のようにして調製される。
 まず、有機溶媒に溶解できる各成分を、有機溶媒に投入して溶解させる。この際、必要に応じて、加熱してもよい。その後、必要に応じて用いられる、有機溶媒に溶解しない成分を添加して、ボールミル、ビーズミル、プラネタリーミキサー、ロールミル等を用いて、所定の分散状態になるまで分散させることにより、ワニス状の組成物が調製される。ここで用いられる有機溶媒としては、前記変性ポリフェニレンエーテル化合物と前記硬化剤を溶解させ、硬化反応を阻害しないものであれば、特に限定されない。具体的には、例えば、トルエンやメチルエチルケトン(MEK)等が挙げられる。
 また、前記絶縁層には、上述したように、前記樹脂組成物の硬化物だけではなく、繊維質基材も含んでいてもよい。この繊維質基材としては、後述するプリプレグに含まれる繊維質基材と同様のものが挙げられる。
 また、前記樹脂組成物を用いることによって、前記銅張積層板だけではなく、以下のように、プリプレグ、樹脂付き銅箔、及び配線板を得ることができる。この際、樹脂組成物として、上記のようなワニス状の組成物を用いてもよい。
 前記プリプレグ1は、図2に示すように、前記樹脂組成物又は前記樹脂組成物の半硬化物2と、繊維質基材3とを備える。このプリプレグ1は、前記樹脂組成物又は前記樹脂組成物の半硬化物2の中に繊維質基材3が存在するものが挙げられる。すなわち、このプリプレグ1は、前記樹脂組成物又は前記樹脂組成物の半硬化物2と、前記樹脂組成物又は前記樹脂組成物の半硬化物2の中に存在する繊維質基材3とを備える。なお、図2は、本実施形態に係るプリプレグ1の一例を示す概略断面図である。
 なお、本実施形態において、半硬化物とは、樹脂組成物を、さらに硬化しうる程度に途中まで硬化された状態のものである。すなわち、半硬化物は、樹脂組成物を半硬化した状態の(Bステージ化された)ものである。例えば、樹脂組成物は、加熱すると、最初、粘度が徐々に低下し、その後、硬化が開始し、粘度が徐々に上昇する。このような場合、半硬化としては、粘度が上昇し始めてから、完全に硬化する前の間の状態等が挙げられる。
 また、前記プリプレグとしては、上記のような、前記樹脂組成物の半硬化物を備えるものであってもよいし、また、硬化させていない前記樹脂組成物そのものを備える物であってもよい。すなわち、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよいし、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよい。具体的には、前記樹脂組成物の中に繊維質基材が存在するものが挙げられる。なお、前記樹脂組成物又は前記樹脂組成物の半硬化物とは、前記樹脂組成物を乾燥及び加熱のいずれか少なくとも一方をしたものであってもよい。
 前記プリプレグの製造方法は、前記プリプレグを製造することができる方法であれば、特に限定されない。例えば、樹脂組成物、例えば、ワニス状に調製された樹脂組成物を、繊維質基材に含浸させる方法等が挙げられる。すなわち、前記プリプレグとしては、前記樹脂組成物を繊維質基材に含浸させて得られたもの等が挙げられる。含浸する方法としては、繊維質基材に、樹脂組成物を含浸させることができる方法であれば、特に限定されない。例えば、ディップに限らず、ロール、ダイコート、及びバーコートを用いた方法や噴霧等が挙げられる。また、プリプレグの製造方法としては、前記含浸の後に、樹脂組成物が含浸された繊維質基材に対して、乾燥及び加熱のいずれか少なくとも一方をしてもよい。すなわち、プリプレグの製造方法としては、例えば、ワニス状に調製された樹脂組成物を繊維質基材に含浸させた後、乾燥させる方法、ワニス状に調製された樹脂組成物を繊維質基材に含浸させた後、加熱させる方法、及びワニス状に調製された樹脂組成物を、繊維質基材に含浸させ、乾燥させた後、加熱する方法等が挙げられる。
 プリプレグを製造する際に用いられる繊維質基材としては、具体的には、例えば、ガラスクロス、アラミドクロス、ポリエステルクロス、液晶ポリマー(Liquid Crystal Plastic:LCP)不織布、ガラス不織布、アラミド不織布、ポリエステル不織布、パルプ紙、及びリンター紙等が挙げられる。なお、ガラスクロスを用いると、機械強度が優れた積層板が得られ、特に偏平処理加工したガラスクロスが好ましい。前記ガラスクロスとしては、特に限定されず、例えば、Eガラス、Sガラス、NEガラス、Lガラス、及びQガラス等の、低誘電率ガラスからなるガラスクロスが挙げられる。偏平処理加工としては、具体的には、例えば、ガラスクロスを適宜の圧力でプレスロールにて連続的に加圧してヤーンを偏平に圧縮することにより行うことができる。なお、繊維質基材の厚みとしては、例えば、0.01~0.3mmのものを一般的に使用できる。
 樹脂組成物(樹脂ワニス)の繊維質基材への含浸は、浸漬及び塗布等によって行われる。この含浸は、必要に応じて複数回繰り返すことも可能である。また、この際、組成や濃度の異なる複数の樹脂組成物を用いて含浸を繰り返し、最終的に希望とする組成及び含浸量に調整することも可能である。
 前記樹脂組成物(樹脂ワニス)が含浸された繊維質基材を、所望の加熱条件、例えば、80~180℃で1~10分間加熱する。加熱によって、樹脂ワニスから溶媒を揮発させ、溶媒を減少又は除去させて、硬化前(Aステージ)又は半硬化状態(Bステージ)のプリプレグが得られる。
 本実施形態に係る銅張積層板の製造方法としては、前記銅張積層板を製造することができれば、特に限定されない。前記銅張積層板の製造方法としては、例えば、前記樹脂組成物及び前記銅箔を用いること以外は、一般的な銅張積層板の製造方法と同様にして、銅張積層板を得ることができる。例えば、前記プリプレグを用いる方法等が挙げられる。プリプレグを用いて銅張積層板を作製する方法としては、プリプレグを1枚又は複数枚重ね、さらにその上下の両面又は片面に、前記銅箔と前記プリプレグとが接触するように、前記銅箔を重ね、これを加熱加圧成形して積層一体化する方法等が挙げられる。すなわち、前記銅張積層板の製造方法としては、前記樹脂組成物を得る工程と、前記樹脂組成物を繊維質基材に含浸させて、プリプレグを得る工程と、前記プリプレグに前記銅箔を積層して、加熱加圧成形することによって、前記樹脂組成物の硬化物を含む絶縁層と、前記絶縁層の少なくとも一方の表面に接触して存在する銅箔とを備える銅張積層板を得る工程とを備える。この方法によって、両面に銅箔を備える銅張積層板又は片面に銅箔を備える銅張積層板を作製することができる。また、加熱加圧条件は、製造する積層板の厚みやプリプレグに含まれる樹脂組成物の種類等により適宜設定することができる。例えば、温度を170~210℃、圧力を3.5~4MPa、時間を60~150分間とすることができる。また、銅張積層板は、プリプレグを用いずに、製造してもよい。例えば、ワニス状の樹脂組成物等を前記銅箔上に塗布し、前記銅箔上に硬化性組成物を含む層を形成した後、加熱加圧する方法等が挙げられる。
 [配線板]
 本発明の他の実施形態に係る配線板は、前記銅張積層板に備えられる前記銅箔を部分的に除去されてなる配線と、前記絶縁層とを備える。すなわち、この配線板21は、図3に示すように、前記絶縁層12と、その両面に、前記銅張積層板に備えられる前記銅箔を部分的に除去されてなる配線14とを備えるものが挙げられる。また、前記配線板は、前記絶縁層の一方の面上にのみ、配線が接触して備えられるものであってもよい。なお、図3は、本実施形態に係る配線板21の構成を示す断面図である。
 前記配線板21は、絶縁層12と、前記絶縁層12の少なくとも一方の表面に接触して存在する配線14とを備える。そして、前記配線板21としては、前記配線14間に存在する、前記絶縁層12の表面15が、前記露出面と同様、以下のような表面である配線板等が挙げられる。前記表面15において、XPSにより測定されるクロム元素量が、XPSにより測定される全元素量に対して、7.5原子%以下である。また、前記表面15の表面粗さが、十点平均粗さで2.0μm以下である。なお、この露出面に相当する表面15には、エッチング残渣が残っていると考えられるが、この露出面に相当する表面15を含めて、前記絶縁層12である。
 前記絶縁層12としては、前記銅張積層板の絶縁層と同様の層が挙げられる。また、前記配線17としては、例えば、前記銅張積層板の銅箔を部分的に除去して形成された配線等が挙げられる。また、このような配線としては、例えば、サブトラクティブ、アディティブ、セミアディティブ(Semi Additive Process:SAP)、モディファイドセミアディティブ(Modified Semi Additive Process:MSAP)、化学機械研磨(CMP)、トレンチ、インクジェット、スキージ、及び転写等を用いた方法により形成された配線等が挙げられる。
 この銅張積層板は、信号の伝送速度が高く、かつ、耐熱性の高い。このことは、前記銅張積層板を用いて得られる配線板であることによると考えられる。具体的には、上述したように、前記配線間に存在する、クロム元素を含有する化合物の量が少ないことから、層間剥離の発生を充分に抑制できることによると考えられる。また、信号の伝送速度が高いのは、上述したように、前記絶縁層が、誘電率及び誘電正接の低く、さらに、前記配線と前記絶縁性との接触面の平滑性が高いことによると考えられる。
 本実施形態に係る配線板は、図3に示すように、前記絶縁層を1層有するものであってもよいし、図4に示すように、前記絶縁層を複数有するものであってもよい。また、前記絶縁層を複数有する場合、図4に示すように、前記配線が、複数の前記絶縁層の表面上に配置されていてもよいし、前記絶縁層と前記絶縁層との間に配置されていてもよい。本実施形態に係る配線板31は、図4に示すように、前記絶縁層12を複数層有する。そして、前記配線板31において、前記絶縁層12と前記絶縁層12との間に、配線14を配置する。なお、図4は、本発明の実施形態に係る配線板31の他の一例を示す概略断面図である。
 図4に示すような配線板は、例えば、以下のように製造する。図3に示すような配線板の少なくとも片面に、前記プリプレグを積層し、さらに、必要に応じて、その上に銅箔を積層して、加熱加圧成形する。このようにして得られた積層板の表面の銅箔をエッチング加工等して配線形成をする。このようにして、図4に示すような、多層の配線板を製造することができる。
 このような配線板は、信号の伝送速度が高く、かつ、耐熱性の高い、多層の配線板である。具体的には、多層の配線板であって、耐熱性の高く、加熱しても層間剥離が生じにくいので、前記絶縁層と前記絶縁層との間に、前記配線を配置しても、前記絶縁層と前記絶縁層との間に剥離が発生することを抑制することができる。
 [樹脂付き銅箔]
 本発明の他の実施形態に係る樹脂付き銅箔は、樹脂層と、前記樹脂層の一方の表面に接触して存在する銅箔とを備える。この樹脂付き銅箔41は、図5に示すように、樹脂層42と、その一方の面に接触するように配置される銅箔43とを備えるものが挙げられる。なお、図5は、本実施形態に係る樹脂付き銅箔41の構成を示す断面図である。
 前記樹脂層42としては、上記のような、前記樹脂組成物(Aステージの前記樹脂組成物)、又は、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)を含むものである。また、前記樹脂層としては、前記樹脂組成物、又は、前記樹脂組成物の半硬化物を含んでいればよく、繊維質基材を含んでいても、含んでいなくてもよい。また、繊維質基材としては、プリプレグの繊維質基材と同様のものを用いることができる。また、銅箔43としては、前記銅張積層板に備えられる銅箔と同様のものである。また、前記樹脂層を硬化させた前記樹脂付き銅箔を塩化銅溶液でエッチング処理して硬化後の前記樹脂層が露出された露出面における、X線光電子分光法により測定されるクロム量が、X線光電子分光法により測定される全元素量に対して、7.5原子%以下であり、前記露出面の表面粗さが、十点平均粗さで2.0μm以下である。
 このような樹脂付き銅箔は、信号の伝送速度がより高く、かつ、耐熱性のより高い配線板を好適に製造することができる。
 また、本実施形態に係る樹脂付き銅箔の製造方法は、前記樹脂付き銅箔を製造することができる方法であれば、特に限定されない。前記樹脂付き銅箔の製造方法としては、前記樹脂組成物及び前記銅箔を用いること以外は、一般的な樹脂付き銅箔の製造方法と同様にして、樹脂付き銅箔を得ることができる。例えば、前記樹脂組成物、例えば、ワニス状に調製された樹脂組成物を、前記銅箔上に塗布する方法等が挙げられる。すなわち、本発明の実施形態に係る樹脂付き銅箔としては、前記樹脂組成物を前記銅箔に塗布させて得られたもの等が挙げられる。塗布する方法としては、銅箔に、樹脂組成物を塗布させることができる方法であれば、特に限定されない。例えば、ロール、ダイコート、及びバーコートを用いた方法や噴霧等が挙げられる。また、樹脂付き銅箔の製造方法としては、前記塗布の後に、樹脂組成物が塗布された銅箔に対して、乾燥及び加熱の少なくともいずれか一方をしてもよい。すなわち、樹脂付き銅箔の製造方法としては、例えば、ワニス状に調製された樹脂組成物を、銅箔上に塗布させた後、乾燥させる方法、ワニス状に調製された樹脂組成物を、銅箔上に塗布させた後、加熱させる方法、及びワニス状に調製された樹脂組成物を、銅箔上に塗布させ、乾燥させた後、加熱する方法等が挙げられる。なお、樹脂組成物が塗布された銅箔は、所望の加熱条件、例えば、80~180℃で1~10分間加熱されることにより、硬化前(Aステージ)又は半硬化状態(Bステージ)の樹脂付き銅箔が得られる。
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 本発明の一態様に係る銅張積層板は、絶縁層と、前記絶縁層の少なくとも一方の表面に接触して存在する銅箔とを備える銅張積層板であって、前記絶縁層は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物を含有する樹脂組成物の硬化物を含み、前記銅張積層板を塩化銅溶液でエッチング処理して前記絶縁層が露出された露出面における、X線光電子分光法により測定されるクロム元素量が、X線光電子分光法により測定される全元素量に対して、7.5原子%以下であり、前記露出面の表面粗さが、十点平均粗さで2.0μm以下であることを特徴とする。
 このような構成によれば、信号の伝送速度が高く、かつ、耐熱性の高い配線板を好適に製造することができる銅張積層板を提供することができる。
 このことは、以下のことによると考えられる。
 まず、前記絶縁層に含まれる前記硬化物は、前記変性ポリフェニレンエーテル化合物を含有する樹脂組成物を硬化させて得られる硬化物であるので、前記絶縁層の耐熱性を高めることができると考えられる。
 上述したように、銅張積層板から製造された配線板において、配線間に存在する絶縁層の表面上に、他の絶縁層が形成されているときの、配線間の絶縁層と他の絶縁層との間に発生する層間剥離は、その間には銅箔が存在しなくても、元々存在した銅箔に影響されることを、本発明者等は見出した。このことから、エッチング処理により前記絶縁層が露出された露出面には、銅箔に由来のエッチング残渣が存在すると考えられる。このエッチング残渣として、クロム元素を含む化合物が存在していると、加熱した際に、層間剥離が発生しやすいと本発明者等は推察した。また、前記露出面に存在するクロム元素量が上記のように少ないと、前記銅張積層板から製造された配線板における配線間に存在する絶縁層の表面上にも存在するクロム元素量、すなわち、クロム元素を含む化合物の量が少ないと考えられる。このことから、前記銅張積層板は、加熱しても層間剥離を充分に抑制できる耐熱性の高いものであると考えられる。
 前記絶縁層に含まれる前記硬化物は、前記変性ポリフェニレンエーテル化合物を含有する樹脂組成物を硬化させて得られる硬化物であるので、誘電率及び誘電正接が低い。このことから、この配線板は、配線周辺の誘導体に起因する伝送損失を低減でき、信号の伝送速度を高めることができると考えられる。
 また、前記露出面の表面粗さが低いことから、前記銅箔と前記絶縁層との接触面の平滑性も高いと考えられる。このことから、前記銅張積層板から得られた配線板は、配線と絶縁層との接触面の平滑性も高いと考えられる。配線を伝送させる信号は、表皮効果により、配線を構成する導体の表面付近に集中すると考えられる。この効果は、配線を伝送させる信号が高周波になるほど、顕著になると考えられる。そして、前記配線と前記絶縁層との接触面が平滑になると、前記配線に流れる信号が、平滑性の高い表面付近を流れることになるので、伝送距離が短くなる。このことから、この配線板は、配線を形成する導体に起因する伝送損失を低減でき、信号の伝送速度を高めることができると考えられる。
 これらのことから、この配線板は、配線を形成する導体に起因する伝送損失も、配線周辺の誘導体に起因する伝送損失も低減でき、信号の伝送速度を高めることができると考えられる。
 以上のことから、前記銅張積層板は、信号の伝送速度が高く、かつ、耐熱性の高い配線板を好適に製造することができる銅張積層板であると考えられる。
 また、前記銅張積層板において、前記置換基が、前記式(1)又は前記式(2)で表される基であることが好ましい。
 このような構成によれば、信号の伝送速度がより高く、かつ、耐熱性のより高い配線板を好適に製造することができる銅張積層板を提供することができる。
 このことは、以下のことによると考えられる。
 前記変性ポリフェニレンエーテルは、ポリフェニレンエーテルの有する低い誘電率及び誘電正接を維持でき、さらに、硬化性を高めることができることによると考えられる。このため、前記変性ポリフェニレンエーテルの硬化物を含む前記絶縁層は、誘電率及び誘電正接が低く、耐熱性に高い層になると考えられる。これらのことから、信号の伝送速度がより高く、かつ、耐熱性のより高い配線板を好適に製造することができる銅張積層板が得られると考えられる。
 また、前記銅張積層板において、前記露出面には、X線光電子分光法により確認可能な窒素元素が存在することが好ましい。
 このような構成によれば、耐熱性のより高い配線板を好適に製造することができる銅張積層板を提供することができる。
 このことは、以下のことによると考えられる。
 まず、本発明者等は、X線光電子分光法により確認可能な窒素元素が前記露出面に存在すると、加熱した際であっても、層間剥離が発生しにくくなったことを見出した。上述したように、エッチング残渣として、クロム元素を含む化合物が存在すると、加熱した際に、層間剥離が発生しやすいと本発明者等は推察した。その一方で、エッチング残渣として、窒素元素を含む化合物が、X線光電子分光法により確認可能な量で存在すると、前記銅張積層板から製造された配線板における配線間に存在する絶縁層の表面上にも、ある程度以上の窒素元素を含む化合物が存在すると考えられる。この窒素元素を含む化合物により、前記絶縁層と前記絶縁層との層間密着性が高まり、層間剥離が発生しにくくなると考えられる。このことにより、耐熱性のより高い配線板を好適に製造することができる銅張積層板が得られると考えられる。
 また、前記銅張積層板において、前記露出面における、X線光電子分光法により測定される窒素元素量が、X線光電子分光法により測定される全元素量に対して、1.0原子%以上であることが好ましい。
 このような構成によれば、耐熱性のより高い配線板を好適に製造することができる銅張積層板を提供することができる。
 このことは、エッチング残渣として存在する、窒素元素を含む化合物の、上記効果により、前記絶縁層と前記絶縁層との層間密着性が高まり、層間剥離が発生しにくくなることによると考えられる。
 また、前記銅張積層板において、前記窒素元素は、アミノ基を有する化合物に含まれる窒素原子由来であることが好ましい。
 このような構成によれば、信号の伝送速度がより高く、かつ、耐熱性のより高い配線板を好適に製造することができる銅張積層板を提供することができる。
 このような構成によれば、耐熱性のより高い配線板を好適に製造することができる銅張積層板を提供することができる。
 このことは、以下のことによると考えられる。
 前記窒素元素は、アミノ基を有する化合物に含まれる窒素原子由来であるということは、エッチング残渣として存在する、窒素元素を含む化合物が、アミノ基を有する化合物であると考えられる。そして、このアミノ基を有する化合物が、前記絶縁層と前記絶縁層との層間密着性を高め、層間剥離が発生しにくくなるという効果をより効果的に奏すると考えられる。このことから、耐熱性のより高い配線板を好適に製造することができる銅張積層板が得られると考えられる。
 また、本発明の他の一態様に係る配線板は、前記銅張積層板に備えられる前記銅箔を部分的に除去されてなる配線と、前記絶縁層とを備えることを特徴とする。
 このような構成によれば、信号の伝送速度が高く、かつ、耐熱性の高い配線板を提供することができる。
 このことは、前記銅張積層板を用いて得られる配線板であることによると考えられる。具体的には、上述したように、前記配線間に存在する、クロム元素を含有する化合物の量が少ないことから、層間剥離の発生を充分に抑制できることによると考えられる。また、信号の伝送速度が高いのは、上述したように、前記絶縁層が、誘電率及び誘電正接の低く、さらに、前記配線と前記絶縁性との接触面の平滑性が高いことによると考えられる。
 また、前記配線板において、前記絶縁層を複数層有し、前記配線が、前記絶縁層と前記絶縁層との間に配置されることが好ましい。
 このような構成によれば、信号の伝送速度が高く、かつ、耐熱性の高い、多層の配線板を提供することができる。具体的には、多層の配線板であって、耐熱性の高く、加熱しても層間剥離が生じにくいので、前記絶縁層と前記絶縁層との間に、前記配線を配置しても、前記絶縁層と前記絶縁層との間に剥離が発生することを抑制することができる。
 また、本発明の他の一態様に係る樹脂付き銅箔は、樹脂層と、前記樹脂層の少なくとも一方の表面に接触して存在する銅箔とを備える樹脂付き銅箔であって、前記樹脂層は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物を含有する樹脂組成物又は前記樹脂組成物の半硬化物を含み、前記樹脂層を硬化させた前記樹脂付き銅箔を塩化銅溶液でエッチング処理して硬化後の前記樹脂層が露出された露出面における、X線光電子分光法により測定されるクロム量が、X線光電子分光法により測定される全元素量に対して、7.5原子%以下であり、前記露出面の表面粗さが、十点平均粗さで2.0μm以下であることを特徴とする。
 このような構成によれば、信号の伝送速度がより高く、かつ、耐熱性のより高い配線板を好適に製造することができる樹脂付き銅箔を提供することができる。
 このことは、以下のことによると考えられる。
 まず、前記樹脂層に前記変性ポリフェニレンエーテル化合物を含有する樹脂組成物又は前記樹脂組成物の半硬化物が含まれる。このことから、前記樹脂付き銅箔が配線板を製造する際に用いられると、前記樹脂層が硬化して得られる絶縁層には、前記樹脂組成物又は前記樹脂組成物の半硬化物が硬化した硬化物が含まれるので、前記絶縁層の耐熱性を高めることができると考えられる。
 また、前記樹脂層を硬化させた前記樹脂付き銅箔を塩化銅溶液でエッチング処理して硬化後の前記樹脂層が露出された露出面には、銅箔に由来のエッチング残渣が存在すると考えられる。このエッチング残渣として、前記露出面に存在するクロム元素量が上記のように少ないと、前記樹脂付き銅箔が配線板を製造する際に用いられると、前記配線板における配線間に存在する絶縁層の表面上にも存在するクロム元素量、すなわち、クロム元素を含む化合物の量が少ないと考えられる。このことから、前記樹脂付き銅箔は、加熱しても層間剥離を充分に抑制できる耐熱性の高いものであると考えられる。
 前記樹脂層が硬化して得られる絶縁層には、前記樹脂組成物又は前記樹脂組成物の半硬化物が硬化した硬化物が含まれる。この硬化物には、前記変性ポリフェニレンエーテル化合物を含有する樹脂組成物を硬化させて得られる硬化物が含まれる。よって、前記樹脂層が硬化して得られる絶縁層は、誘電率及び誘電正接が低い。このことから、この配線板は、配線周辺の誘導体に起因する伝送損失を低減でき、信号の伝送速度を高めることができると考えられる。
 また、前記露出面の表面粗さが低いことから、前記銅箔と前記樹脂層との接触面の平滑性も高いと考えられる。このことから、前記樹脂付き銅箔が配線板を製造する際に用いられると、配線と前記樹脂層を硬化して得られた絶縁層との接触面の平滑性も高いと考えられる。配線を伝送させる信号は、表皮効果により、配線を構成する導体の表面付近に集中すると考えられる。この効果は、配線を伝送させる信号が高周波になるほど、顕著になると考えられる。そして、前記配線と前記絶縁層との接触面が平滑になると、前記配線に流れる信号が、平滑性の高い表面付近を流れることになるので、伝送距離が短くなる。このことから、この配線板は、配線を形成する導体に起因する伝送損失を低減でき、信号の伝送速度を高めることができると考えられる。
 これらのことから、この配線板は、配線を形成する導体に起因する伝送損失も、配線周辺の誘導体に起因する伝送損失も低減でき、信号の伝送速度を高めることができると考えられる。
 以上のことから、前記樹脂付き銅箔は、信号の伝送速度が高く、かつ、耐熱性の高い配線板を好適に製造することができる銅張積層板であると考えられる。
 本発明によれば、信号の伝送速度が高く、かつ、耐熱性の高い配線板を好適に製造することができる銅張積層板及び樹脂付き銅箔を提供することができる。また、本発明によれば、信号の伝送速度が高く、かつ、耐熱性の高い配線板を提供することができる。
 以下に、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれに限定されない。
 [実施例1~7、及び比較例1~4]
 本実施例において、樹脂組成物を調製する際に用いる各成分について説明する。
 (変性ポリフェニレンエーテル化合物)
 変性PPE-1:
 ポリフェニレンエーテルとクロロメチルスチレンとを反応させて得られた変性ポリフェニレンエーテルである。
 具体的には、以下のように反応させて得られた変性ポリフェニレンエーテルである。
 まず、温度調節器、攪拌装置、冷却設備、及び滴下ロートを備えた1リットルの3つ口フラスコに、ポリフェニレンエーテル(SABICイノベーティブプラスチックス社製のSA90、末端水酸基数2個、重量平均分子量Mw1700)200g、p-クロロメチルスチレンとm-クロロメチルスチレンとの質量比が50:50の混合物(東京化成工業株式会社製のクロロメチルスチレン:CMS)30g、相間移動触媒として、テトラ-n-ブチルアンモニウムブロマイド1.227g、及びトルエン400gを仕込み、攪拌した。そして、ポリフェニレンエーテル、クロロメチルスチレン、及びテトラ-n-ブチルアンモニウムブロマイドが、トルエンに溶解するまで攪拌した。その際、徐々に加熱し、最終的に液温が75℃になるまで加熱した。そして、その溶液に、アルカリ金属水酸化物として、水酸化ナトリウム水溶液(水酸化ナトリウム20g/水20g)を20分間かけて、滴下した。その後、さらに、75℃で4時間攪拌した。次に、10質量%の塩酸でフラスコの内容物を中和した後、多量のメタノールを投入した。そうすることによって、フラスコ内の液体に沈殿物を生じさせた。すなわち、フラスコ内の反応液に含まれる生成物を再沈させた。そして、この沈殿物をろ過によって取り出し、メタノールと水との質量比が80:20の混合液で3回洗浄した後、減圧下、80℃で3時間乾燥させた。
 得られた固体を、H-NMR(400MHz、CDCl、TMS)で分析した。NMRを測定した結果、5~7ppmにビニルベンジル基(エテニルベンジル基)に由来するピークが確認された。これにより、得られた固体が、分子末端に、前記置換基としてビニルベンジル基を分子中に有する変性ポリフェニレンエーテルであることが確認できた。具体的には、エテニルベンジル化されたポリフェニレンエーテルであることが確認できた。この得られた変性ポリフェニレンエーテル化合物は、上記式(10)で表され、Yがジメチルメチレン基(式(8)で表され、式(8)中のR32及びR33がメチル基である基)であり、Rが水素原子であり、Rがメチレン基である変性ポリフェニレンエーテル化合物であった。
 また、変性ポリフェニレンエーテルの末端官能基数を、以下のようにして測定した。
 まず、変性ポリフェニレンエーテルを正確に秤量した。その際の重量を、X(mg)とする。そして、この秤量した変性ポリフェニレンエーテルを、25mLの塩化メチレンに溶解させ、その溶液に、10質量%のテトラエチルアンモニウムヒドロキシド(TEAH)のエタノール溶液(TEAH:エタノール(体積比)=15:85)を100μL添加した後、UV分光光度計(株式会社島津製作所製のUV-1600)を用いて、318nmの吸光度(Abs)を測定した。そして、その測定結果から、下記式を用いて、変性ポリフェニレンエーテルの末端水酸基数を算出した。
 残存OH量(μmol/g)=[(25×Abs)/(ε×OPL×X)]×10
 ここで、εは、吸光係数を示し、4700L/mol・cmである。また、OPLは、セル光路長であり、1cmである。
 そして、その算出された変性ポリフェニレンエーテルの残存OH量(末端水酸基数)は、ほぼゼロであることから、変性前のポリフェニレンエーテルの水酸基が、ほぼ変性されていることがわかった。このことから、変性前のポリフェニレンエーテルの末端水酸基数からの減少分は、変性前のポリフェニレンエーテルの末端水酸基数であることがわかった。すなわち、変性前のポリフェニレンエーテルの末端水酸基数が、変性ポリフェニレンエーテルの末端官能基数であることがわかった。つまり、末端官能基数が、2個であった。
 また、変性ポリフェニレンエーテルの、25℃の塩化メチレン中で固有粘度(IV)を測定した。具体的には、変性ポリフェニレンエーテルの固有粘度(IV)を、変性ポリフェニレンエーテルの、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計(Schott社製のAVS500 Visco System)で測定した。その結果、変性ポリフェニレンエーテルの固有粘度(IV)は、0.09dl/gであった。
 また、変性ポリフェニレンエーテルの分子量分布を、GPCを用いて、測定した。そして、その得られた分子量分布から、重量平均分子量(Mw)を算出した。その結果、Mwは、2300であった。
 変性PPE-2:
 ポリフェニレンエーテルの末端水酸基をメタクリル基で変性した変性ポリフェニレンエーテル(式(11)に示す構造を有し、式(11)中、Rがメチル基であり、Yがジメチルメチレン基(式(8)で表され、式(8)中のR32及びR33がメチル基である基)である変性ポリフェニレンエーテル化合物、SABICイノベーティブプラスチックス社製のSA9000、25℃の塩化メチレン中で固有粘度(IV)0.085dl/g、重量平均分子量Mw2000、末端官能基数1.8個)
 (硬化剤:炭素-炭素不飽和二重結合を分子末端に2つ以上有する熱硬化性硬化剤)
 TAIC:トリアリルイソシアヌレート(炭素-炭素不飽和二重結合を分子末端に3つ有する熱硬化性硬化剤、日本化成株式会社製のTAIC、重量平均分子量Mw249)
 DVB:ジビニルベンゼン(炭素-炭素不飽和二重結合を分子末端に2つ有する熱硬化性硬化剤、新日鐵住金株式会社製のDVB810、分子量130)
 エポキシ化合物:ジシクロペンタジエンエポキシ樹脂(DIC株式会社製のHP-7200)
 フェノールノボラック樹脂:フェノールノボラック樹脂(DIC株式会社製のTD2131)
 (充填材)
 シリカ1:ビニルシラン処理された球状シリカ(株式会社アドマテックス製のSC2300-SVJ)
 シリカ2:アミノシラン処理された球状シリカ(株式会社アドマテックス製のSC2500-SXJ)
 (開始剤)
 PBP:α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン(日油株式会社製のパーブチルP(PBP))
 イミダゾール化合物:2-エチル-4-イミダゾール(四国化成工業株式会社製の2E4MZ)
 (難燃剤)
 難燃剤:アルベマール社製のSAYTEX8010
 [樹脂組成物の調製方法]
 次に、樹脂組成物の調製方法について説明する。
 まず、開始剤以外の各成分を下記表1に記載の配合割合で、固形分濃度が60質量%となるように、トルエンに添加し、混合させた。その混合物を、80℃になるまで加熱し、80℃のままで60分間攪拌した。その後、その攪拌した混合物を40℃まで冷却した後、開始剤を下記表1に記載の配合割合で添加することによって、ワニス状の硬化性組成物(ワニス)が得られた。その混合物を、60分間攪拌することによって、ワニス状の樹脂組成物(ワニス)を調製した。
 [銅張積層板の調製方法]
 次に、得られたワニスをガラスクロスに含浸させた後、100~170℃で約3~6分間加熱乾燥することによりプリプレグを作製した。上記ガラスクロスは、具体的には、旭化成株式会社製の♯1078タイプ、Lガラスである。その際、樹脂組成物の含有量(レジンコンテント)が約66質量%となるように調整した。
 次に、製造したプリプレグを2枚重ね合わせ、その両側に、それぞれ表1に示す下記銅箔を配置して被圧体とし、温度200℃、圧力3MPa(メガパスカル)の条件で100分加熱・加圧して両面に銅箔が接着された銅張積層板を作製した。
 (銅箔)
 銅箔-1:分子中にアミノ基を有するシランカップリング剤で全面を表面処理した銅箔(古河電気工業株式会社製のFV-WS(アミノ)、アミノシラン処理を施した銅箔、M面クロム付着量:7.4原子%、M面の十点平均粗Rz:1.3μm、厚み:18μm)
 銅箔-2:分子中にビニル基を有するシランカップリング剤で全面を表面処理した銅箔(古河電気工業株式会社製のFV-WS(低クロム)、ビニルシラン処理を施した銅箔、M面クロム付着量:3.7原子%、M面の十点平均粗Rz:1.3μm、厚み:18μm)
 銅箔-3:分子中にアミノ基を有するシランカップリング剤で全面を表面処理した銅箔(南亜プラスチック社製のTLC-V1、アミノシラン処理を施した銅箔、M面クロム付着量:1.8原子%、M面の十点平均粗Rz:1.3μm、厚み:18μm)
 銅箔-4:分子中にアミノ基を有するシランカップリング剤で全面を表面処理した銅箔(台日古河銅箔股彬有限公司製のFX-WS、アミノシラン処理を施した銅箔、M面クロム付着量:7.4原子%、M面の十点平均粗Rz:1.3μm、厚み:18μm)
 銅箔-5:分子中にアミノ基を有するシランカップリング剤で全面を表面処理した銅箔(長春ジャパン株式会社製のVFPR1、アミノシラン処理を施した銅箔、M面クロム付着量:7.4原子%、M面の十点平均粗Rz:1.3μm、厚み:18μm)
 銅箔-6:分子中にビニル基を有するシランカップリング剤で全面を表面処理した銅箔(古河電気工業株式会社製のFV-WS(ビニル)、ビニルシラン処理を施した銅箔、M面クロム付着量:7.4原子%、M面の十点平均粗Rz:1.3μm、厚み:18μm)
 銅箔-7:分子中にアミノ基を有するシランカップリング剤で全面を表面処理した銅箔(三井金属鉱業株式会社製のMLS-G、アミノシラン処理を施した銅箔、M面クロム付着量:2.2原子%、M面の十点平均粗Rz:2.8μm、厚み:18μm)
 [クロム元素量及び窒素元素量]
 得られた銅張積層板に対して、塩化第二銅溶液(液温45℃)を用い、90秒間エッチングし、その後、市水又は純水を用い、常温で水洗した。そうすることによって、前記銅箔が除去された。
 前記エッチング処理により絶縁層の露出された面(露出面)に対して、XPSによる表面元素分析を行った。なお、この表面元素分析は、M面(接触面)に、下記条件のX線を、真空下でM面に対して垂直方向から照射し、照射高さを調整し、試料のイオン化に伴い放出される光電子が最も強い強度で検出できる位置で行った。XPSとしては、アルバック・ファイ株式会社社製のPHI 5000 Versaprobeを用いて、下記の条件で測定した。
 使用X線:モノクロAl-Kα線
 X線ビーム径:約100μmφ(25W、15kV)
 分析領域:約100μmφ
 上記測定により得られた値を、上記装置に備えられる解析ソフトに組み込まれた相対感度係数を用いて、定量換算した。
 この結果、XPSにより測定される全元素量に対する、クロム元素量及び窒素元素量を測定した。
 [表面粗さRz]
 前記露出面の表面粗さ(十点平均粗さRz)を、ここでの表面粗さである十点平均粗さRzは、JIS B 0601:1994に準拠し、株式会社東京精密製の表面粗さ形状測定機(SURFCOM500DX)を用いて測定した。
 [評価]
 前記銅張積層板(評価基板)を、以下に示す方法により評価を行った。
 [伝送損失]
 評価基板(金属張積層板)の一方の金属箔(銅箔)を加工して、線幅100~300μm、線長1000mm、線間20mmの配線を10本形成させた。この配線を形成させた基板の、配線を形成させた側の表面上に、前記プリプレグ2枚及び金属箔(銅箔)を2次積層することによって、3層板を作製した。なお、配線の線幅は、3層板を作製した後の配線の特性インピーダンスが50Ωとなるように調整した。
 得られた3層板に形成された配線の12.5GHzでの伝送損失(通過損失)(dB/m)は、ネットワーク・アナライザ(キーサイト・テクノロジー株式会社製のN5230A)を用いて測定した。
 [半田耐熱性]
 前記評価基板を作製する際に、全面エッチング処理した銅張積層板に対して、プリプレグを表裏に一枚ずつ重ね、温度200℃、圧力3MPaの条件で100分間加熱・加圧することによって、両面に銅箔が接着された銅張積層板を得た。この形成された銅張積層板を50mm×50mmに切断し、両面銅箔をエッチングして除去した。このようにして得られた評価用積層体を、288℃の半田槽中に30秒間浸漬した。そして、浸漬した積層体に、膨れの発生の有無を目視で観察した。この観察を2つの積層体に対して行った。膨れの発生が確認されなければ(膨れの発生数が0であれば)、「○」と評価した。また、膨れの発生数が1であれば、「△」と評価し、膨れの発生数が2であれば、「×」と評価した。
 [煮沸半田耐熱性1]
 前記半田耐熱性の評価と同様にして、評価用積層体を得て、その評価用積層体を288℃の半田槽中に30秒間浸漬する前に、沸騰したイオン交換水に4時間浸漬させたこと以外、前記半田耐熱性の評価と同様にした。評価基準も、前記半田耐熱性の評価と同様にした。
 [煮沸半田耐熱性2]
 前記半田耐熱性の評価と同様にして、評価用積層体を得て、その評価用積層体を288℃の半田槽中に30秒間浸漬する前に、沸騰したイオン交換水に6時間浸漬させたこと以外、前記半田耐熱性の評価と同様にした。評価基準も、前記半田耐熱性の評価と同様にした。
 上記各評価における結果は、表1に示す。なお、それぞれの金属張積層板は、表1の銅箔の欄において、「○」を付した銅箔を用いたことを示す。
Figure JPOXMLDOC01-appb-T000016
 表1からわかるように、前記露出面における、XPS測定により得られるクロム元素量が、7.5原子%以下であり、前記露出面の表面粗さが、十点平均粗さで2.0μm以下となるような銅箔を用いて得られた銅張積層板である場合(実施例1~7)は、そうでない場合(比較例1~4)と比較して、伝送損失が低く、かつ、耐熱性が高かった。例えば、実施例1~7に係る銅張積層板は、前記クロム元素量が7.5原子%を超える場合(比較例1及び比較例2)と比較して、耐熱性が高かった。また、実施例1~7に係る銅張積層板は、前記絶縁層として、前記変性ポリフェニレンエーテル化合物を含有する樹脂組成物ではなく、エポキシ化合物及びフェノールノボラック化合物を含有する樹脂組成物である場合(比較例3)と比較して、伝送損失が低かった。また、実施例1~7に係る銅張積層板は、前記露出面の表面粗さが、十点平均粗さで2.0μmを超える場合(比較例4)と比較して、伝送損失が低かった。
 この出願は、2018年10月5日に出願された日本国特許出願特願2018-190282を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、信号の伝送速度が高く、かつ、耐熱性の高い配線板を好適に製造することができる銅張積層板及び樹脂付き銅箔が提供される。また、本発明によれば、信号の伝送速度が高く、かつ、耐熱性の高い配線板が提供される。

Claims (8)

  1.  絶縁層と、前記絶縁層の少なくとも一方の表面に接触して存在する銅箔とを備える銅張積層板であって、
     前記絶縁層は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物を含有する樹脂組成物の硬化物を含み、
     前記銅張積層板を塩化銅溶液でエッチング処理して前記絶縁層が露出された露出面における、X線光電子分光法により測定されるクロム元素量が、X線光電子分光法により測定される全元素量に対して、7.5原子%以下であり、
     前記露出面の表面粗さが、十点平均粗さで2.0μm以下であることを特徴とする銅張積層板。
  2.  前記置換基が、下記式(1)又は下記式(2)で表される基である請求項1に記載の銅張積層板。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Rは、水素原子、又は炭素数1~10のアルキル基を示し、Rは、炭素数1~10のアルキレン基又は直接結合を示す。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、Rは、水素原子、又は炭素数1~10のアルキル基を示す。]
  3.  前記露出面には、X線光電子分光法により確認可能な窒素元素が存在する請求項1又は請求項2に記載の銅張積層板。
  4.  前記露出面における、X線光電子分光法により測定される窒素元素量が、X線光電子分光法により測定される全元素量に対して、1.0原子%以上である請求項1~3のいずれか1項に記載の銅張積層板。
  5.  前記窒素元素は、アミノ基を有する化合物に含まれる窒素原子由来である請求項3又は請求項4に記載の銅張積層板。
  6.  請求項1~5のいずれか1項に記載の銅張積層板に備えられる前記銅箔を部分的に除去されてなる配線と、前記絶縁層とを備えることを特徴とする配線板。
  7.  前記絶縁層を複数層有し、
     前記配線が、前記絶縁層と前記絶縁層との間に配置される請求項6に記載の配線板。
  8.  樹脂層と、前記樹脂層の少なくとも一方の表面に接触して存在する銅箔とを備える樹脂付き銅箔であって、
     前記樹脂層は、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物を含有する樹脂組成物又は前記樹脂組成物の半硬化物を含み、
     前記樹脂層を硬化させた前記樹脂付き銅箔を塩化銅溶液でエッチング処理して硬化後の前記樹脂層が露出された露出面における、X線光電子分光法により測定されるクロム元素量が、X線光電子分光法により測定される全元素量に対して、7.5原子%以下であり、
     前記露出面の表面粗さが、十点平均粗さで2.0μm以下であることを特徴とする樹脂付き銅箔。
PCT/JP2019/038309 2018-10-05 2019-09-27 銅張積層板、配線板、及び樹脂付き銅箔 WO2020071287A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980064349.2A CN112789167A (zh) 2018-10-05 2019-09-27 覆铜箔层压板、布线板、以及带树脂的铜箔
JP2020550403A JP7445830B2 (ja) 2018-10-05 2019-09-27 銅張積層板、配線板、及び樹脂付き銅箔
KR1020217011712A KR20210070310A (ko) 2018-10-05 2019-09-27 구리 클래드 적층판, 배선판, 및 수지 부착 구리박
US17/281,845 US11895770B2 (en) 2018-10-05 2019-09-27 Copper-clad laminate, wiring board, and copper foil provided with resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018190282 2018-10-05
JP2018-190282 2018-10-05

Publications (1)

Publication Number Publication Date
WO2020071287A1 true WO2020071287A1 (ja) 2020-04-09

Family

ID=70055071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038309 WO2020071287A1 (ja) 2018-10-05 2019-09-27 銅張積層板、配線板、及び樹脂付き銅箔

Country Status (6)

Country Link
US (1) US11895770B2 (ja)
JP (1) JP7445830B2 (ja)
KR (1) KR20210070310A (ja)
CN (1) CN112789167A (ja)
TW (1) TW202019692A (ja)
WO (1) WO2020071287A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079819A1 (ja) * 2019-10-25 2021-04-29 パナソニックIpマネジメント株式会社 銅張積層板、配線板、及び樹脂付き銅箔

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162056A1 (ja) * 2019-02-04 2020-08-13 パナソニックIpマネジメント株式会社 銅張積層板、樹脂付銅箔、および、それらを用いた回路基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030326A (ja) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd 樹脂付銅箔、プリント配線板製造用積層体及び多層プリント配線板
JP2011014647A (ja) * 2009-06-30 2011-01-20 Jx Nippon Mining & Metals Corp プリント配線板用銅箔
WO2017033784A1 (ja) * 2015-08-25 2017-03-02 三井金属鉱業株式会社 樹脂層付金属箔、金属張積層板、及びプリント配線板の製造方法
WO2017122249A1 (ja) * 2016-01-14 2017-07-20 パナソニックIpマネジメント株式会社 金属張積層板および樹脂付金属箔

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5370794B2 (ja) 2005-01-12 2013-12-18 日立化成株式会社 接着補助剤付銅箔並びにこれを用いた積層板、プリント配線板及びプリント配線板の製造方法
KR101088571B1 (ko) 2007-01-24 2011-12-05 스미토모 긴조쿠 고잔 가부시키가이샤 2층 플렉시블 기판과 그 제조 방법 및 이 2층 플렉시블 기판으로부터 얻어진 플렉시블 프린트 배선 기판
JP5104507B2 (ja) * 2007-04-26 2012-12-19 日立化成工業株式会社 セミipn型複合体の熱硬化性樹脂を含有する樹脂ワニスの製造方法、並びにこれを用いたプリント配線板用樹脂ワニス、プリプレグ及び金属張積層板
WO2009040921A1 (ja) 2007-09-27 2009-04-02 Panasonic Electric Works Co., Ltd. エポキシ樹脂組成物、そのエポキシ樹脂組成物を用いたプリプレグ及び金属張積層板
JP5215631B2 (ja) * 2007-10-24 2013-06-19 三井金属鉱業株式会社 表面処理銅箔
JP4907580B2 (ja) 2008-03-25 2012-03-28 新日鐵化学株式会社 フレキシブル銅張積層板
JP5846396B2 (ja) * 2011-03-24 2016-01-20 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ及び樹脂シート並びに金属箔張り積層板
JP5971934B2 (ja) 2011-12-08 2016-08-17 古河電気工業株式会社 高周波基板用銅張り積層板及びそれに用いる表面処理銅箔
CN102807658B (zh) * 2012-08-09 2014-06-11 广东生益科技股份有限公司 聚苯醚树脂组合物及使用其制作的半固化片与覆铜箔层压板
JP5470487B1 (ja) 2013-05-29 2014-04-16 Jx日鉱日石金属株式会社 銅箔、それを用いた半導体パッケージ用銅張積層体、プリント配線板、プリント回路板、樹脂基材、回路の形成方法、セミアディティブ工法、半導体パッケージ用回路形成基板及び半導体パッケージ
JP5764700B2 (ja) 2013-06-07 2015-08-19 古河電気工業株式会社 高周波基板用銅張り積層板及び表面処理銅箔
JP5885791B2 (ja) 2013-08-20 2016-03-15 Jx金属株式会社 表面処理銅箔及びそれを用いた積層板、キャリア付銅箔、銅箔、プリント配線板、電子機器、電子機器の製造方法、並びに、プリント配線板の製造方法
JP6601814B2 (ja) * 2014-05-21 2019-11-06 住友電工プリントサーキット株式会社 プリント配線板及びプリント配線板の製造方法
US10897818B2 (en) 2014-07-16 2021-01-19 Panasonic Intellectual Property Management Co., Ltd. Metal-clad laminate, method for producing same, metal foil with resin, and printed wiring board
JP6639775B2 (ja) * 2014-10-21 2020-02-05 住友電工プリントサーキット株式会社 樹脂フィルム、プリント配線板用カバーレイ、プリント配線板用基板及びプリント配線板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030326A (ja) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd 樹脂付銅箔、プリント配線板製造用積層体及び多層プリント配線板
JP2011014647A (ja) * 2009-06-30 2011-01-20 Jx Nippon Mining & Metals Corp プリント配線板用銅箔
WO2017033784A1 (ja) * 2015-08-25 2017-03-02 三井金属鉱業株式会社 樹脂層付金属箔、金属張積層板、及びプリント配線板の製造方法
WO2017122249A1 (ja) * 2016-01-14 2017-07-20 パナソニックIpマネジメント株式会社 金属張積層板および樹脂付金属箔

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079819A1 (ja) * 2019-10-25 2021-04-29 パナソニックIpマネジメント株式会社 銅張積層板、配線板、及び樹脂付き銅箔

Also Published As

Publication number Publication date
JP7445830B2 (ja) 2024-03-08
JPWO2020071287A1 (ja) 2021-09-02
CN112789167A (zh) 2021-05-11
KR20210070310A (ko) 2021-06-14
US20220015230A1 (en) 2022-01-13
TW202019692A (zh) 2020-06-01
US11895770B2 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
US11401393B2 (en) Prepreg, metal-clad laminate, and wiring board
JP5181221B2 (ja) 低熱膨張性低誘電損失プリプレグ及びその応用品
JP7531109B2 (ja) 金属張積層板、配線板、及び樹脂付き金属箔
US11820105B2 (en) Prepreg, metal-clad laminate, and wiring board
WO2021079819A1 (ja) 銅張積層板、配線板、及び樹脂付き銅箔
CN110831761B (zh) 覆金属箔层压板、带树脂的金属箔及布线板
WO2021010432A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP7325022B2 (ja) 銅張積層板、樹脂付銅箔、および、それらを用いた回路基板
WO2020071287A1 (ja) 銅張積層板、配線板、及び樹脂付き銅箔
JP6967732B2 (ja) 金属張積層板、樹脂付き金属部材、及び配線板
WO2021024924A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2020230870A1 (ja) 銅張積層板、樹脂付銅箔、および、それらを用いた回路基板
WO2022202347A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP7519587B2 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
CN116997576A (zh) 树脂组合物、预浸料、带树脂的膜、带树脂的金属箔、覆金属箔层压板、以及布线板
WO2021079817A1 (ja) 金属張積層板、配線板、樹脂付き金属箔、及び樹脂組成物
JP7300613B2 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2024018946A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550403

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217011712

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19868914

Country of ref document: EP

Kind code of ref document: A1