WO2020070788A1 - 濾過膜処理装置、膜濾過装置、および、濾過膜処理方法 - Google Patents

濾過膜処理装置、膜濾過装置、および、濾過膜処理方法

Info

Publication number
WO2020070788A1
WO2020070788A1 PCT/JP2018/036806 JP2018036806W WO2020070788A1 WO 2020070788 A1 WO2020070788 A1 WO 2020070788A1 JP 2018036806 W JP2018036806 W JP 2018036806W WO 2020070788 A1 WO2020070788 A1 WO 2020070788A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration membrane
ozone
measurement
containing fluid
value
Prior art date
Application number
PCT/JP2018/036806
Other languages
English (en)
French (fr)
Inventor
英二 今村
安永 望
野田 清治
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to SG11202103197YA priority Critical patent/SG11202103197YA/en
Priority to JP2019503758A priority patent/JP6576591B1/ja
Priority to KR1020217008373A priority patent/KR102569045B1/ko
Priority to US17/275,678 priority patent/US20220219123A1/en
Priority to CN201880097912.1A priority patent/CN112752605B/zh
Priority to PCT/JP2018/036806 priority patent/WO2020070788A1/ja
Publication of WO2020070788A1 publication Critical patent/WO2020070788A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/42Details of membrane preparation apparatus

Definitions

  • the present application relates to a filtration membrane treatment apparatus, a membrane filtration apparatus, and a filtration membrane treatment method capable of performing ozone treatment on a filtration membrane with little variation.
  • the filtration membrane may be clogged by impurities and microorganisms in the water.
  • As a method of increasing the water permeability of the filtration membrane there is a method of chemically treating the generated filtration membrane to make it hydrophilic.
  • Patent Literature 1 discloses that a polyvinylidene-based resin porous membrane is treated with a base, then treated with an aqueous solution containing hydrogen peroxide or ozone, and further treated with perchlorate, perbromate, and periodate. And hydrophilizing by treating with an aqueous solution containing at least one salt selected from the group consisting of: Further, for example, Patent Literature 2 discloses a method in which when a membrane module is washed with ozone water, the flow of ozone water is stopped when the pressure difference reaches a specified value to make the membrane module hydrophilic.
  • Conventional filtration membrane treatment apparatuses and filtration membrane treatment methods are characterized in that the membrane is hydrophilized by immersion treatment under certain conditions, for example, ozone water having a concentration of 10 ppm for 100 hours, and the amount of permeation of pure water after hydrophilization is used as an index of hydrophilization.
  • the degree of hydrophilization is evaluated using the ratio of the water permeability before hydrophilization. This method hydrophilizes the membrane under fixed conditions. For this reason, it is not taken into account that there are individual differences in the membranes, and that even if the same polyvinylidene-based resin porous membrane has different characteristics depending on the manufacturer of the membrane. For this reason, there is a problem that the degree of hydrophilicity of the film varies, and it is not possible to efficiently perform appropriate treatment of the film.
  • the present application discloses a technique for solving the above-described problems, and provides a filtration membrane processing apparatus, a membrane filtration apparatus, and a filtration membrane processing method capable of performing ozone treatment on a filtration membrane with little variation.
  • the purpose is to:
  • the filtration membrane processing device disclosed in the present application In a filtration membrane processing apparatus that performs ozone treatment on the filtration membrane, A first supply unit that supplies an ozone-containing fluid to the filtration membrane, A measurement unit that measures a measurement value based on the pressure of the filtration membrane, A control unit that adjusts a supply amount of the ozone-containing fluid supplied by the first supply unit based on a change in the measurement value measured by the measurement unit.
  • the membrane filtration device disclosed in the present application In a membrane filtration device for treating a liquid to be treated using the filtration membrane treatment device described above, A storage tank for storing the liquid to be treated and immersing the filtration membrane, A transfer unit that transfers the liquid to be processed filtered by the filtration membrane to the outside of the storage tank, The control unit stops the transfer unit and supplies the ozone-containing fluid from the first supply unit to the filtration membrane immersed in the storage tank.
  • a supply step of supplying an ozone-containing fluid to the filtration membrane A measurement step of measuring a measurement value based on the pressure of the filtration membrane, A control step of adjusting a supply amount of the ozone-containing fluid based on a change in the measurement value.
  • a membrane filtration device According to the filtration membrane treatment device disclosed in the present application, a membrane filtration device, and a filtration membrane treatment method, Ozone treatment of the filtration membrane with less variation becomes possible.
  • FIG. 2 is a diagram showing a configuration of a filtration membrane processing device according to the first embodiment.
  • 2 is a flowchart illustrating a filtration membrane processing method of the filtration membrane processing apparatus illustrated in FIG. 1.
  • FIG. 4 is a diagram showing a configuration of another filtration membrane processing device according to the first embodiment.
  • FIG. 4 is a diagram showing a configuration of another filtration membrane processing device according to the first embodiment.
  • FIG. 4 is a diagram showing a configuration of another filtration membrane processing device according to the first embodiment.
  • FIG. 4 is a diagram showing a configuration of another filtration membrane processing device according to the first embodiment.
  • FIG. 4 is a diagram showing a configuration of another filtration membrane processing device according to the first embodiment.
  • FIG. 4 is a diagram showing a configuration of another filtration membrane processing device according to the first embodiment.
  • FIG. 4 is a diagram showing a configuration of another filtration membrane processing device according to the first embodiment.
  • FIG. 9 is a diagram showing a configuration of a filtration membrane processing device according to a second embodiment.
  • FIG. 9 is a diagram showing a configuration of another filtration membrane processing device according to the second embodiment.
  • FIG. 9 is a diagram showing a configuration of a filtration membrane processing device according to a third embodiment.
  • 11 is a flowchart showing a filtration membrane processing method of the filtration membrane processing apparatus shown in FIG.
  • FIG. 13 is a diagram showing a configuration of another filtration membrane processing device according to the third embodiment. It is a figure which shows the structure of the membrane filtration apparatus using the filtration membrane processing apparatus by Embodiment 4. It is the figure which showed the specification of the filtration membrane processing apparatus used in Example 1 and Comparative Example 1 and Comparative Example 2 in a table.
  • FIG. 7 is a table showing the results of Example 1.
  • FIG. 9 is a table showing the results of Comparative Examples 1 and 2 in a table.
  • FIG. 1 is a diagram showing a configuration of a filtration membrane processing apparatus according to the first embodiment.
  • FIG. 2 is a flowchart showing a filtration membrane processing method of the filtration membrane processing apparatus shown in FIG. 3 to 7 are diagrams showing the configuration of another filtration membrane processing device according to the first embodiment.
  • the filtration membrane processing apparatus performs an ozone treatment on the filtration membrane 1, thereby performing a purification process on the filtration membrane 1 that has processed the liquid to be treated, and again using the filtration membrane 1 for treating the liquid to be treated. Things.
  • the filtration membrane 1 is necessarily formed of a material having ozone resistance.
  • the filtration membrane 1 is made of a material that becomes hydrophilic by ozone.
  • those formed from a fluorine-based polymer can be used.
  • polyvinylidene fluoride PolyVinylidene @ DiFluoride, PVDF
  • polytetrafluoroethylene Polytetrafluoroethylene, PTFE
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the shape of the filtration membrane 1 is not particularly limited, and for example, a hollow fiber membrane, a flat membrane, and a tubular membrane can be used.
  • the form of the module of the filtration membrane 1 is not particularly limited.
  • an internal pressure type module, an external pressure type module, or an immersion type module housed in a cylindrical container can be used.
  • an example using a hollow fiber membrane module as an immersion type module is shown.
  • the filtration membrane processing device includes the first supply unit 3, the measurement unit 8, and the control unit 11.
  • the first supply unit 3 supplies an ozone-containing fluid to the filtration membrane 1.
  • the measuring section 8 measures a measured value H based on the pressure of the filtration membrane 1.
  • the control unit 11 adjusts the supply amount of the ozone-containing fluid supplied by the first supply unit 3 based on a change in the measurement value H measured by the measurement unit 8.
  • the filtration membrane 1 is a immersion type and a hollow fiber membrane module, it filters the liquid to be treated from the primary side to the secondary side.
  • the ozone-containing fluid is injected from the secondary side toward the primary side, which is a method similar to the so-called “back pressure washing”. An example is shown.
  • the filtration membrane 1 is stored in the storage tank 2.
  • the storage tank 2 is filled with a liquid 4, for example, water. Therefore, the filtration membrane 1 is immersed in the liquid 4. This is because the filtration membrane 1 is a immersion type hollow fiber membrane module and prevents performance deterioration due to drying. Therefore, if the filtration membrane 1 does not cause performance deterioration due to drying, it is not always necessary to perform the ozone treatment in a state where the filtration membrane 1 is immersed in the liquid 4 in the storage tank 2.
  • the filtration membrane 1, the measurement unit 8, and the first supply unit 3 are connected by a first pipe 7.
  • the first supply unit 3 includes a first storage tank 5 for storing an ozone-containing fluid, and a first pump 6 for supplying ozone from the first storage tank 5 to the filtration membrane 1 via the first pipe 7.
  • the ozone-containing fluid is, for example, any one of ozone gas, ozone water generated by dissolving ozone in a solvent such as water, and mixed water in which ozone water is mixed with a substance that promotes the generation of radicals generated by the decomposition of ozone. Or multiple types of use.
  • the measurement unit 8 measures a pressure value in the first pipe 7 as a pipe through which a fluid supplied to the filtration membrane 1, here, an ozone-containing fluid flows, for measuring a measurement value H based on the pressure of the filtration membrane 1.
  • a pressure gauge 9 is provided.
  • the specifications of the pressure gauge 9 are not limited as long as the pressure gauge 9 can transmit a measured pressure value to the control unit 11.
  • the control unit 11 receives the measurement value H of the pressure gauge 9 of the measurement unit 8 and controls the supply amount of the ozone-containing fluid supplied through the first pipe 7 by the first pump 6 based on a change in the measurement value H. .
  • the storage tank 2 is provided with a first discharge unit 10 for discharging a surplus of the liquid 4 or the ozone-containing fluid to the outside.
  • the filtration membrane processing apparatus according to the first embodiment is configured as described above, and observes a change in the measured value H based on the pressure when the ozone-containing fluid is supplied to the filtration membrane 1 to perform ozone treatment. The degree is quantified to determine the timing of the completion of the ozone treatment.
  • the inventors supply an ozone-containing fluid to the filtration membrane 1 and monitor and evaluate the ozone treatment of the filtration membrane 1 based on a change in a measured value H based on the pressure, so that the water permeability of the filtration membrane 1 and the water It has been found that it is possible to judge it by reading it as an index indicating the ease of passing.
  • the ozone treatment of the filtration membrane 1 is performed by supplying an ozone-containing fluid, the measured value H based on the pressure of the filtration membrane 1 gradually decreases, and when the ozone treatment is completed, the measured value H changes. Is extremely small.
  • the present inventors have found that by making a judgment based on the change in the measured value H, the limit point of the ozone treatment of the filtration membrane 1, that is, the point at which the ozone treatment should be completed.
  • treating the filtration membrane 1 with ozone is synonymous with treating the filtration membrane 1 with a hydrophilic treatment. Therefore, the limit of the hydrophilic treatment of the filtration membrane 1, that is, the point at which the hydrophilic treatment should be completed is found. Note that the contents described above are the same in other embodiments, and a description thereof will be omitted as appropriate.
  • the control unit 11 drives the first pump 6 to perform a supply step of supplying the ozone-containing fluid from the first storage tank 5 of the first supply unit 3 to the filtration membrane 1 via the first pipe 7 (see FIG. 2).
  • Step ST1 The supply of the ozone-containing fluid is continued at a constant amount.
  • a measurement step of measuring a measurement value H based on the pressure of the filtration membrane 1 is performed.
  • the measurement unit 8 first measures the first measurement value H1 after the first supply unit 3 supplies the ozone-containing fluid for the first time T1 as the measurement value H, and transmits the measurement value H to the control unit 11 (step in FIG. 2). ST2).
  • the second measurement value H2 after supplying the ozone-containing fluid is measured for a second time T2 longer than the first time T1, and transmitted to the control unit 11 (step ST3 in FIG. 3).
  • a preferable range of the first time T1, and the time from the first time T1 to the second time T2, measured as described above, is 1 minute to 20 minutes. If the time is shorter than 1 minute, the ozone treatment hardly progresses, and the previous measured value H or the difference from the initial state becomes unclear, and it may not be possible to determine the completion of the ozone treatment. On the other hand, if the time is longer than 20 minutes, the time until the next measurement is long, and even though the ozone treatment is actually completed, the determination may be delayed and the ozone treatment may be unnecessarily continued. There is. Note that the first time T1 and the time from the first time T1 to the second time T2 may be the same time or may be set individually. For example, it is conceivable that the time is set to be long at the beginning of the ozone treatment, and the time is set to be short when approaching the time when the normal treatment is considered to be completed.
  • control unit 11 determines whether or not the rate of change ⁇ between the first measurement value H1 and the second measurement value H2 in Expression 1 below is equal to or less than a threshold value ⁇ 1 (Expression 2 below) (Step ST4 in FIG. 2). .
  • the control unit 11 stops the first pump 6 and ends the supply of the ozone-containing fluid to the filtration membrane 1 (Step ST5 in FIG. 2).
  • step ST3 If the change rate ⁇ is larger than the threshold value ⁇ 1 (NO), the supply of the ozone-containing fluid by the first supply unit 3 is continued, and the processing from step ST3 is repeated.
  • the previously measured second measurement value H2 of the second time T2 becomes the first measurement value H1 of the first time T1 at the time of repetition.
  • the second measurement value H2 after the second time T2 of the subsequent time is newly measured, and the above-described method is repeated. That is, the first measurement value H1 at the first time T1 is the previous measurement value H, and the second measurement value H2 at the second time T2 is the current measurement value H.
  • a suitable range for the threshold value ⁇ 1 of the change rate ⁇ is 0 to 0.5. If the threshold value ⁇ 1 is larger than 0.5, it may be determined that the ozone treatment is completed even though there is still room for the ozone treatment to proceed.
  • the transmembrane pressure difference value (Trans @ Mebrane @ Pressure, TMP) from the side may be measured and used as the measured value H.
  • TMP Trans @ Mebrane @ Pressure
  • a pressure gauge may be installed on each of the primary side and the secondary side of the filtration membrane 1, and a transmembrane pressure difference value may be calculated from each value to obtain a measured value H.
  • TMP may be calculated from the liquid level of the storage tank 2 and the pressure value of the pressure gauge 9 to obtain the measured value H.
  • the first supply unit 3 is provided with the first storage tank 5 for storing the ozone-containing fluid, and the ozone-containing fluid is supplied.
  • ozone gas is used as the ozone-containing fluid.
  • an ozone gas generator 12 is provided as the first supply unit 3.
  • the control unit 11 controls the amount of ozone gas generated by the ozone gas generator 12.
  • the filtration membrane treatment can be performed in the same manner as in the first embodiment described above.
  • the concentration of the ozone gas is preferably 1 ppm to 1000 ppm. If the ozone gas concentration is lower than 1 ppm, the effect of the ozone treatment is low, and it takes time to complete the ozone treatment. If the ozone gas concentration is higher than 1000 ppm, the members constituting the filtration membrane 1 or the first pipe 7 may be deteriorated.
  • the first supply unit 3 includes an ozone gas generator 12, a first storage tank 5, and a first pump 6. Then, the control unit 11 controls the amount of ozone gas generated by the ozone gas generator 12. Then, the generated ozone gas is stored in the first storage tank 5 as an ozone-containing fluid, and the stored ozone gas is supplied to the filtration membrane 1 via the first pump 6, so that the filtration membrane is similar to the first embodiment described above. Processing can be performed.
  • the first storage tank 5 may be filled with a porous material such as silica gel as an adsorbent, adsorb and concentrate ozone gas, and store the first ozone gas.
  • the first supply unit 3 includes an ozone gas generator 12, a first storage tank 50, and a first pump 6.
  • the first storage tank 50 includes a second pipe 13 that supplies a solvent for dissolving ozone gas such as water, and a second discharge unit 14 that discharges excess ozone gas in the first storage tank 5 to the outside.
  • water is supplied to the first storage tank 50 through the second pipe 13.
  • ozone gas is supplied from the ozone gas generator 12 into the first storage tank 50 to create and store ozone water in the first storage tank 5.
  • the filtration membrane treatment can be performed in the same manner as in the first embodiment described above.
  • the concentration of dissolved ozone contained in the ozone water to be supplied to the filtration membrane 1 is preferably 1 mg / L to 100 mg / L. If the dissolved ozone concentration is lower than 1 mg / L, the effect of the ozone treatment is low, and it takes time to complete the treatment. If the dissolved ozone concentration is higher than 100 mg / L, a large amount of oxygen gas bubbles are generated due to the decomposition of ozone, which may hinder the supply of ozone water to the filtration membrane 1.
  • a pH adjuster such as hydrochloric acid or sulfuric acid may be added for use.
  • the pH of the ozone water to be supplied to the filtration membrane 1 is not particularly limited as long as it is within a range according to the pH resistance of the filtration membrane 1.
  • polyvinylidene fluoride Polyvinylidene DiFluoride, PVDF
  • the pH of the ozone water can be arbitrarily selected from 1 to 14 pH.
  • the ozone-containing fluid it is conceivable to use a mixture of ozone water and a substance that promotes the generation of radicals generated by the decomposition of ozone (hereinafter, abbreviated as an accelerator).
  • the mixed water generated by previously mixing the ozone water and the accelerator is stored in the first storage tank 5 shown in FIG. 1 and the stored mixed water is supplied to the filtration membrane 1 via the first pump 6.
  • the filtration membrane treatment can be performed in the same manner as in the first embodiment described above.
  • the ozone gas generator 12, the first storage tank 50, the first pump 6, and the addition unit 15 Is provided.
  • the addition section 15 is for adding an accelerator.
  • a third pipe 16 that connects the addition section 15 and the first pipe 7 is provided.
  • the control part 11 controls the addition amount of the promoter of the addition part 15.
  • the accelerator is supplied from the addition unit 15 to the first pipe 7 via the third pipe 16, and the accelerator is mixed with the ozone water in the first pipe 7 and supplied as mixed water to the filtration membrane 1.
  • the filtration membrane treatment can be performed in the same manner as in the first embodiment described above.
  • an oxidizing agent such as aqueous hydrogen peroxide and sodium hypochlorite, or an alkali such as caustic soda and potassium hydroxide can be used, and any one of them may be selected or a plurality of kinds may be used. May be used.
  • the example in which the first supply unit 3 injects the ozone-containing fluid from the secondary side to the primary side of the filtration membrane 1 has been described, but is not limited thereto.
  • An example in which the first supply unit 3 supplies the ozone-containing fluid from the primary side to the secondary side of the filtration membrane 1 will be described.
  • an ozone-containing fluid is supplied from the first pump 6 to the storage tank 2 via the first pipe 7.
  • the ozone-containing fluid is sucked from the first pipe 7 connected to the filtration membrane 1 via the suction pump 30, and the ozone-containing fluid is supplied to the filtration membrane 1 to perform ozone treatment.
  • the filtration membrane treatment can be performed in the same manner as in the first embodiment described above.
  • the pressure value measured by the pressure gauge 9 is a negative pressure.
  • each value is calculated by an absolute value, so that the same can be applied.
  • a first supply unit that supplies an ozone-containing fluid to the filtration membrane
  • a measurement unit that measures a measurement value based on the pressure of the filtration membrane
  • a control unit that adjusts a supply amount of the ozone-containing fluid supplied by the first supply unit based on a change in the measurement value measured by the measurement unit
  • a supply step of supplying an ozone-containing fluid to the filtration membrane A measurement step of measuring a measurement value based on the pressure of the filtration membrane, And a control step of adjusting the supply amount of the ozone-containing fluid based on the change in the measurement value.
  • the ozone-containing fluid is supplied to the filtration membrane, and the ozone treatment of the filtration membrane is monitored and evaluated based on a change in the measured value based on the pressure. I can judge.
  • the completion point of the ozone treatment of the filtration membrane can be determined by improving the water permeability as the hydrophilicity of the filtration membrane progresses. Therefore, the potential for hydrophilization of the filtration membrane can be maximized, and the ozone treatment can be reliably completed irrespective of variations in individual differences due to the type or properties of the filtration membrane or manufacturing.
  • the filtration membrane is for filtering the liquid to be treated from the primary side to the secondary side
  • the first supply unit injects the ozone-containing fluid from the secondary side to the primary side of the filtration membrane, or sucks or press-fits the ozone-containing fluid from the primary side to the secondary side of the filtration membrane.
  • the ozone treatment corresponding to the configuration of the filtration membrane can be performed.
  • the measurement unit supplies, as the measurement value, a first measurement value H1 after the first supply unit supplies the ozone-containing fluid for a first time and a second time period that is longer than the first time period.
  • the control unit continues to supply the ozone-containing fluid by the first supply unit when the rate of change ⁇ in Equation 1 between the first measurement value H1 and the second measurement value H2 is equal to or less than a threshold value ⁇ 1, When the change rate ⁇ is larger than a threshold ⁇ 1, the supply of the ozone-containing fluid by the first supply unit is suppressed, Further, the measuring step measures a first measurement value H1 after supplying the ozone-containing fluid for a first time and a second measurement value H2 after supplying the ozone-containing fluid for a second time which is longer than the first time.
  • control unit terminates the supply of the ozone-containing fluid by the first supply unit.
  • the supply of the ozone-containing fluid can be reduced.
  • the first supply unit may include, as the ozone-containing fluid, at least ozone gas or ozone water in which ozone is dissolved, or at least ozone mixed water in which ozone water is mixed with a substance that promotes the generation of radicals generated by the decomposition of ozone. Since any one type is supplied, the ozone treatment of the filtration membrane can be reliably performed.
  • the measurement value of the measurement unit may be measured as a pressure value in a pipe through which a fluid supplied to the filtration membrane flows, or the filtration membrane when a fluid passes through the filtration membrane. Is measured as the measured value, the measured value of the filtration membrane can be measured reliably, and the ozone treatment of the filtration membrane can be performed reliably.
  • the filtration membrane is configured to have a material that is made hydrophilic by ozone, Since the control unit determines the degree of hydrophilicity of the filtration membrane based on the change in the measured value, the degree of hydrophilicity can be determined by ozone treatment of the filtration membrane according to the configuration of the filtration membrane.
  • FIG. 8 and 9 are diagrams illustrating a configuration of a filtration membrane processing device according to the second embodiment.
  • the pressure value of the fluid in the first pipe 7 or the transmembrane pressure value (TMP) of the filtration membrane 1 is used as the measurement value H based on the pressure of the filtration membrane 1.
  • TMP transmembrane pressure value
  • a value obtained by further adding a flow rate value of the fluid in the first pipe 7 to the measured value is a measured value H based on the pressure of the filtration membrane 1.
  • 8 includes a pressure gauge 9 and a flow meter 17 installed in the first pipe 7.
  • 9 includes a pressure gauge 9, a flow meter 17 and a thermometer 170 installed in the first pipe 7.
  • the filtration membrane processing method of the filtration membrane processing apparatus shown in FIGS. 8 and 9 is performed according to the flowchart shown in FIG. 2 in the same manner as in the first embodiment.
  • the value calculated by the following equation 3 is used as the measured value H.
  • H Q ⁇ P Equation 3 H: measured value (L / h / kPa) Q: Flow rate value (L / h) P: pressure value (kPa) or transmembrane pressure difference (kPa)
  • a filtration membrane treatment method is performed in the same manner as in the first embodiment.
  • a filtration membrane treatment method is performed in the same manner as in the first embodiment.
  • the temperature of the ozone-containing fluid is further corrected for the measured value H in addition to the flow rate value described above.
  • a corrected measurement value H ' is obtained by adding a process such as the following Expression 5 to the measurement value H obtained by Expression 3 or 4 above.
  • H ′ H ⁇ ( ⁇ t ⁇ ⁇ s) Equation 5
  • H ′ Measured value ⁇ s after temperature correction: Viscosity value of ozone-containing fluid at an arbitrary reference temperature
  • ⁇ t Viscosity value of ozone-containing fluid at temperature at the time of measurement of measured value
  • the viscosity of the ozone-containing fluid is equal to the viscosity of water, so that known water viscosities can be used as ⁇ s and ⁇ t.
  • a reference temperature it is necessary to arbitrarily select a reference temperature, but there is no particular limitation.
  • the temperature may be appropriately set to room temperature or any one of 15 ° C. to 30 ° C. Then, using the measured value H ', a filtration membrane treatment method is performed in the same manner as in the first embodiment.
  • the measured value of the measuring unit can be the pressure value or the pressure value. Because the ratio between the transmembrane pressure value and the flow rate value of the fluid supplied to the filtration membrane is measured as the measurement value, A highly accurate measurement value can be detected without being influenced by the flow rate of the ozone-containing fluid, and the ozone treatment of the filtration membrane can be optimally controlled.
  • FIG. FIG. 10 is a diagram showing a configuration of a filtration membrane processing apparatus according to the third embodiment.
  • FIG. 11 is a flowchart showing a filtration membrane processing method of the filtration membrane processing apparatus shown in FIG.
  • FIG. 12 is a diagram showing a configuration of another filtration membrane processing apparatus according to the third embodiment.
  • the same parts as those in the above embodiments are denoted by the same reference numerals, and description thereof will be omitted.
  • the measurement value H based on the pressure of the filtration membrane 1 is measured while the ozone-containing fluid is supplied to the filtration membrane 1 has been described.
  • the measurement value H based on the pressure is measured, the case where the ozone-containing fluid to the filtration membrane 1 is temporarily stopped and the measurement is performed will be described.
  • a second supply unit 18 that supplies a measurement fluid different from the ozone-containing fluid to the filtration membrane 1 is provided.
  • the second supply unit 18 includes a second storage tank 20 and a second pump 19.
  • the second storage tank 20 stores a measurement fluid.
  • the measurement fluid is not particularly limited as long as it is not an ozone-containing fluid, and may be used as long as it does not contain a substance that causes the filtration membrane 1 to be fouled. For example, tap water, pure water, ultrapure water, or Use of alkaline chemicals such as caustic soda and acidic chemicals such as hydrochloric acid, sulfuric acid, and citric acid can be considered.
  • the second pump 19 supplies a measurement fluid from the second storage tank 20 to the first pipe 7 and the filtration membrane 1 via the fourth pipe 21.
  • the first pipe 7 is provided with a valve 23.
  • the fourth pipe 21 is provided with a valve 22.
  • the control unit 11 closes the valve 23 of the first pipe 7 and stops the first pump 6 when the measurement value H is measured by the measurement unit 8 to stop the supply of the ozone-containing fluid from the first supply unit 3.
  • the valve 22 of the fourth pipe 21 is opened, the second pump 19 is driven, and the measurement fluid is discharged from the second storage tank 20 of the second supply unit 18 via the fourth pipe 21 to the first pipe 7 and the filtration port. Supply to membrane 1.
  • the valve 22 of the fourth pipe 21 is closed, the second pump 19 is stopped, and the supply of the measurement fluid from the second supply unit 18 is stopped.
  • the valve 23 of the first pipe 7 is opened, and the first pump 6 is driven to supply the ozone-containing fluid from the first storage tank 5 of the first supply unit 3 to the filtration membrane 1 via the first pipe 7.
  • the control unit 11 drives the first pump 6 to perform a supply step of supplying the ozone-containing fluid from the first storage tank 5 of the first supply unit 3 to the filtration membrane 1 via the first pipe 7 (see FIG. 11). Step ST11).
  • the control unit 11 stops the first pump 6 and closes the valve 23 of the first pipe 7 to stop the supply of the ozone-containing fluid to the filtration membrane 1;
  • the ozone treatment of the film 1 is interrupted (Step ST12 in FIG. 11).
  • the control unit 11 opens the valve 22 of the fourth pipe 21 and drives the second pump 19 to transfer the measurement fluid from the second storage tank 20 of the second supply unit 18 through the fourth pipe 21 to the first. It is supplied to the pipe 7 and the filtration membrane 1.
  • a measurement step of measuring the measurement value H based on the pressure of the filtration membrane 1 is performed while the supply of the measurement fluid is continued.
  • the measurement unit 8 measures the first measurement value H1 after supplying the ozone-containing fluid to the filtration membrane 1 for the first time T1 as the measurement value H, and transmits the measurement value H to the control unit 11 (step ST13 in FIG. 11). .
  • control unit 11 stops the second pump 19, closes the valve 22 of the fourth pipe 21, stops supply of the measurement fluid to the filtration membrane 1, and drives the first pump 6. Then, the ozone-containing fluid is supplied from the first storage tank 5 of the first supply unit 3 to the filtration membrane 1 via the first pipe 7, and the ozone treatment of the filtration membrane 1 is restarted (step ST14 in FIG. 11).
  • the control unit 11 stops the first pump 6 and closes the valve 23 of the first pipe 7 to stop the supply of the ozone-containing fluid to the filtration membrane 1;
  • the ozone treatment of the film 1 is interrupted (Step ST15 in FIG. 11).
  • the control unit 11 opens the valve 22 of the fourth pipe 21 and drives the second pump 19 to transfer the measurement fluid from the second storage tank 20 of the second supply unit 18 through the fourth pipe 21 to the first. It is supplied to the pipe 7 and the filtration membrane 1.
  • a measurement step of measuring the measurement value H based on the pressure of the filtration membrane 1 is performed.
  • the measurement unit 8 measures the second measurement value H2 after supplying the ozone-containing fluid to the filtration membrane 1 for the second time T2 as the measurement value H, and transmits the measurement value H to the control unit 11 (step ST16 in FIG. 11).
  • a control step of adjusting the supply amount of the ozone-containing fluid based on the change in the measured value H is performed (steps ST17 and ST18 in FIG. 11).
  • At least the first pump 6 is stopped and the valve 23 is closed to stop the supply of the hydrophilizing fluid to the filtration membrane.
  • the ozone gas generator 12 is stopped or a separate bypass pipe or the like is provided on the first pipe 7 and the flow path is switched to temporarily supply the ozone gas to the filtration membrane 1.
  • the supply of ozone gas may be shut off.
  • the control unit 11 opens the valve 22 of the fourth pipe 21 and drives the second pump 19 to move the fourth pipe 21 from the second storage tank 20 of the second supply unit 18. Is supplied to the storage tank 2 via the first pipe 7.
  • the measurement fluid is sucked from the first pipe 7 connected to the filtration membrane 1 via the suction pump 30, and the measurement fluid sucked by the suction pump 30 is discharged to the outside by the first discharge unit 10.
  • the pressure value measured by the pressure gauge 9 is a negative pressure.
  • each value with respect to the pressure value is calculated by an absolute value. is there.
  • a second supply unit that supplies a measurement fluid different from the ozone-containing fluid to the filtration membrane The control unit, at the time of measurement of the measurement unit, stops the first supply unit and supplies the measurement fluid from the second supply unit to the filtration membrane, and causes the measurement unit to measure the measurement value. Since the measurement fluid is different from the ozone-containing fluid, the measurement value is measured using the measurement fluid, so that the ozone treatment is not performed on the filtration membrane during the measurement, and the measurement value can be stabilized. Yes, more accurate measurement values can be measured, and the control of ozonation of the filtration membrane is further improved.
  • the filtration membrane is for filtering the liquid to be treated from the primary side to the secondary side
  • the second supply unit injects the measurement fluid from the secondary side to the primary side of the filtration membrane, or suctions or presses the measurement fluid from the primary side to the secondary side of the filtration membrane.
  • the ozone treatment corresponding to the configuration of the filtration membrane can be performed.
  • FIG. FIG. 13 is a diagram showing a configuration of a membrane filtration device using the filtration membrane processing device according to the fourth embodiment.
  • the filtration membrane 1 of the filtration membrane processing apparatus shown in each of the above embodiments is used for membrane filtration, and both the filtration of the fluid to be treated by the filtration membrane 1 and the cleaning of the filtration membrane 1 are performed. Is what you can do. That is, when the filtration membrane 1 is subjected to filtration such as drainage treatment and water purification treatment of the liquid to be treated, and the filtration membrane 1 is contaminated, an ozone-containing fluid is supplied to the filtration membrane 1 to thereby contaminate the filtration membrane 1. Is separated and decomposed with an ozone-containing fluid, and the filter membrane 1 is washed, and the filter membrane 1 is made hydrophilic.
  • FIG. 13 shows a configuration in which a filtration membrane processing device is incorporated in a membrane filtration device.
  • the membrane filtration device shown in FIG. 13 is, for example, a membrane separation bioreactor, and an aeration tank 25 as a storage tank in which activated sludge 26 is stored, and a fifth pipe 24 for supplying a fluid to be treated to the activated sludge 26 in the aeration tank 25.
  • the aeration tank 25 also functions as the storage tank 2 of the filtration membrane processing device described above.
  • the 1st discharge part 10 discharges the excess activated sludge 26 in the aeration tank 25.
  • the first pipe 7 is connected to a sixth pipe 28, and a third pump 27 as a transfer unit is installed in the sixth pipe 28.
  • the sixth pipe 28 is provided with a valve 29.
  • the third pump 27 is connected to the third discharge part 31.
  • the liquid to be treated is supplied to the aeration tank 25 from the fifth pipe 24.
  • the activated sludge 26 stored in the aeration tank 25 and the liquid to be treated are mixed. Organic substances contained in the liquid to be treated are adsorbed and decomposed on the activated sludge 26.
  • the control unit 11 opens the valve 29 and drives the third pump 27.
  • the activated sludge 26 is filtered by the filtration membrane 1.
  • the filtration fluid obtained by the filtration is discharged to the outside of the device by the third discharge part 31 via the first pipe 7 and the sixth pipe 28.
  • the valve 23 of the first pipe 7 is in a closed state.
  • the filtering operation need not always be continuous, but may be performed intermittently.
  • the ozone treatment of the filtration membrane 1 is performed when a predetermined transmembrane pressure difference value is reached, when the filtration is performed for a predetermined time, or at an arbitrary timing, by stopping the filtration operation.
  • the control unit 11 stops the third pump 27, closes the valve 29, and ends the filtration operation. Then, the control unit 11 opens the valve 23 of the first pipe 7 and drives the first pump 6 to supply the ozone-containing fluid to the filtration membrane 1 to perform the ozone treatment on the filtration membrane 1. Since this filtration membrane treatment method can be performed in the same manner as in each of the above embodiments, the description thereof will be omitted as appropriate. Then, when the ozone treatment of the filtration membrane 1 ends, the control unit 11 stops the first pump 6, closes the valve 23 of the first pipe 7, and ends the filtration membrane treatment. Then, the control unit 11 opens the valve 29 of the sixth pipe 28, drives the third pump 27, and restarts the filtration of the filtration membrane 1.
  • the ozone treatment of the filtration membrane 1 does not need to be performed every time the filtration membrane 1 is washed, but may be performed each time it is necessary to judge whether or not it is necessary.
  • the ozone treatment may be performed before starting the filtration of the activated sludge 26, and then the filtration of the activated sludge 26 may be started.
  • a storage tank for storing the liquid to be treated and immersing the filtration membrane A transfer unit that transfers the liquid to be processed filtered by the filtration membrane to the outside of the storage tank, The control unit stops the transfer unit and supplies the ozone-containing fluid from the first supply unit to the filtration membrane immersed in the storage tank.
  • Example 1 Example 1 and Comparative Examples 1 and 2 will be described.
  • a description will be given based on the result of performing ozone treatment on the filtration membrane 1 using an apparatus similar to the filtration membrane treatment apparatus shown in FIG.
  • the main specifications of the filtration membrane processing apparatus used in Example 1 are as shown in the table of FIG.
  • pure water is injected at 3 (L / h) from the secondary side to the primary side of the filtration membrane 1, and the flow rate value, the pressure value at this time, and the filtration
  • An initial measurement value H was previously obtained from the effective area (film area) of the film 1 using Equation 4.
  • the ozone treatment was performed according to the procedure of the flowchart shown in FIG.
  • the change rate ⁇ in the first determination is 0.4, which is larger than the threshold ⁇ 1 of 0.2, so the measurement value H is measured again 10 minutes later, and the second determination is performed.
  • the determination was performed in the same manner as the first determination.
  • the second measurement value H2 in the first determination becomes the first measurement value H1, and after the second time T2, that is, the second measurement value H2 after 30 minutes as the cumulative processing time from the start of ozone. Is newly measured.
  • the change rate ⁇ was 0.38, which was larger than the threshold value ⁇ 1, 0.2. Therefore, the measurement value H was measured again 10 minutes later, and the third determination was performed in the same manner as the above determinations.
  • the rate of change ⁇ in the third determination was 0.28, and the measured value H was measured again 10 minutes later, and the fourth determination was performed in the same manner as in each of the above determinations. Then, the change rate ⁇ in the fourth determination is 0.08, which is 0.2 or less of the threshold value ⁇ 1, and thus the ozone treatment is terminated.
  • Comparative Example 1 the filtration membrane treatment apparatus used in Example 1 was used, and the ozone treatment of the filtration membrane was also performed under the same conditions.
  • Comparative Example 1 is a measurement value only when ozone water was injected at 3 (L / h) for 30 minutes as ozone treatment, and the measurement value was not measured in the middle.
  • Comparative Example 2 shown in FIG. 16 the filtration membrane was subjected to ozone treatment using the filtration membrane processing apparatus used in Example 1.
  • the ozone water was only injected for 90 minutes at 3 (L / h) for the hydrophilization treatment, and no measurement was performed during the process.
  • Each measured value was calculated using Expression 4 from the pressure value, the flow rate value, and the effective area of the filtration membrane, as in Example 1 described above.
  • Example 1 The results of Example 1 are as shown in the table of FIG.
  • the change rate ⁇ 50 minutes after the start of the ozone treatment was less than the threshold value ⁇ 1 of 0.2, and the ozone treatment was completed.
  • the measured value increases from the initial measured value of 11 (L / m2 / h / kPa) to 33.3 (L / m2 / h / kPa), and the ozone treatment is sufficiently performed to promote the hydrophilization. That was confirmed.
  • Comparative Examples 1 and 2 are as shown in the table of FIG.
  • the measured value of the ozone treatment was 23 (L / m2 / h / kPa), and the measured value in Example 1 was 33 (L / m2 / h / kPa). This means that the ozone treatment was stopped while leaving room for ozone treatment.
  • Comparative Example 2 the measured value was 33.6 (L / m2 / h / kPa), which indicates that the ozone treatment was sufficient.
  • the ozone treatment of the filtration membrane 1 used in the present example 1 and the comparative example 2 is sufficient for 50 minutes, and the ozone treatment for 90 minutes as in the comparative example 2 is uneconomical. Efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

濾過膜(1)にオゾン処理を行う濾過膜処理装置において、濾過膜(1)にオゾン含有流体を供給する第一供給部(3)と、濾過膜(1)の圧力に基づいた測定値(H)を測定する測定部(8)と、測定部(8)で測定する測定値(H)の変化に基づいて、第一供給部(3)が供給するオゾン含有流体の供給量を調整する制御部(11)とを備える。

Description

濾過膜処理装置、膜濾過装置、および、濾過膜処理方法
 本願は、ばらつきの少ない濾過膜のオゾン処理が可能な濾過膜処理装置、膜濾過装置、および、濾過膜処理方法に関するものである。
 被処理液体を濾過膜にて分離すると、水中の不純物および微生物によって濾過膜が目詰まりする可能性がある。このような濾過膜を処理する上において、濾過膜の透水性を高めることで、このような目詰まりを防止することが可能である。濾過膜の透水性を高める方法として、生成した濾過膜を化学処理して親水化する等の方法がある。
 例えば、特許文献1には、ポリビニリデン系樹脂多孔質膜を塩基で処理した後に、過酸化水素またはオゾンを含有する水溶液で処理し、さらに過塩素酸塩、過臭素酸塩および過ヨウ素酸塩から選ばれた少なくとも1種類の塩を含有する水溶液で処理して親水化する方法が示されている。さらに、例えば、特許文献2には、オゾン水で膜モジュールを洗浄する際に、圧力差が規定値に達したときにオゾン水の通水を停止して親水化する方法が示されている。
特開2004-230280号公報 特開2004-249168号公報
 従来の濾過膜処理装置および濾過膜処理方法は、ある一定の条件、例えば濃度10ppmのオゾン水で100時間浸漬処理して膜を親水化し、親水化の指標として親水化後の純水の透水量と親水化前の透水量の比を用いて親水化の程度を評価している。この方法は固定した条件で膜を親水化している。そのため、膜には個体差があること、また同じポリビニリデン系樹脂多孔質の膜でも膜の製造メーカによってその特性が異なることが考慮されていない。そのため、膜の親水化程度にばらつきが生じ、膜の適切な処理を効率的に行うことができないという問題点があった。
 本願は、上記のような課題を解決するための技術を開示するものであり、ばらつきの少ない濾過膜のオゾン処理が可能な濾過膜処理装置、膜濾過装置、および、濾過膜処理方法を提供することを目的とする。
 本願に開示される濾過膜処理装置は、
 濾過膜にオゾン処理を行う濾過膜処理装置において、
 前記濾過膜にオゾン含有流体を供給する第一供給部と、
 前記濾過膜の圧力に基づいた測定値を測定する測定部と、
 前記測定部で測定する前記測定値の変化に基づいて、前記第一供給部が供給する前記オゾン含有流体の供給量を調整する制御部とを備えるものである。
 また、本願に開示される膜濾過装置は、
上記に記載の濾過膜処理装置を用いた被処理液体を処理する膜濾過装置において、
 前記被処理液体を貯留するとともに前記濾過膜を浸漬する貯留槽と、
 前記濾過膜が濾過した前記被処理液体を前記貯留槽の外部に移送する移送部とを備え、
 前記制御部は、前記移送部を停止するとともに、前記貯留槽に浸漬された前記濾過膜に前記オゾン含有流体を前記第一供給部から供給するものである。
 また、本願に開示される濾過膜処理方法は、
 濾過膜にオゾン含有流体を供給する供給工程と、
 前記濾過膜の圧力に基づいた測定値を測定する測定工程と、
 前記測定値の変化に基づいて、前記オゾン含有流体の供給量を調整する制御工程とを備えるものである。
 本願に開示される濾過膜処理装置、膜濾過装置、および、濾過膜処理方法によれば、
 ばらつきの少ない濾過膜のオゾン処理が可能となる。
実施の形態1による濾過膜処理装置の構成を示す図である。 図1に示した濾過膜処理装置の濾過膜処理方法を示したフローチャートである。 実施の形態1による他の濾過膜処理装置の構成を示す図である。 実施の形態1による他の濾過膜処理装置の構成を示す図である。 実施の形態1による他の濾過膜処理装置の構成を示す図である。 実施の形態1による他の濾過膜処理装置の構成を示す図である。 実施の形態1による他の濾過膜処理装置の構成を示す図である。 実施の形態2による濾過膜処理装置の構成を示す図である。 実施の形態2による他の濾過膜処理装置の構成を示す図である。 実施の形態3による濾過膜処理装置の構成を示す図である。 図10に示した濾過膜処理装置の濾過膜処理方法を示したフローチャートである。 実施の形態3による他の濾過膜処理装置の構成を示す図である。 実施の形態4による濾過膜処理装置を用いた膜濾過装置の構成を示す図である。 実施例1および比較例1および比較例2において使用した濾過膜処理装置の仕様を表で示した図である。 実施例1の結果を表で示した図である。 比較例1および比較例2の結果を表で示した図である。
実施の形態1.
 図1は実施の形態1による濾過膜処理装置の構成を示す図である。図2は図1に示した濾過膜処理装置の濾過膜処理方法を示したフローチャートである。図3から図7は実施の形態1による他の濾過膜処理装置の構成を示す図である。図において、濾過膜処理装置は濾過膜1のオゾン処理を行うことにより、被処理液体を処理した濾過膜1の浄化処理を行い、再度、濾過膜1を被処理液体の処理に利用するためのものである。
 よって、濾過膜1は、必然的にオゾン耐性を有する材質にて形成される。また、濾過膜1は、オゾンにより親水化する素材にて構成される。具体的には、フッ素系高分子から形成されるものなどが使用できる。例えば、ポリフッ化ビニリデン(PolyVinylidene DiFluoride、PVDF)または、ポリテトラフルオロエチレン(polytetrafluoroethylene、PTFE)が代表例である。
 濾過膜1の形状は、特に限定はなく、例えば、中空糸膜、平膜、チューブラー膜が使用できる。また、濾過膜1のモジュール形態は、特に限定はなく、例えば、円筒容器に収納された内圧式モジュールあるいは外圧式モジュールまたは、浸漬型モジュールが使用できる。尚、ここでは浸漬型モジュールであって中空糸膜モジュールを使用した例にて示す。
 濾過膜処理装置は、第一供給部3と、測定部8と、制御部11とを備える。第一供給部3は、濾過膜1にオゾン含有流体を供給する。測定部8は、濾過膜1の圧力に基づいた測定値Hを測定する。制御部11は、測定部8で測定する測定値Hの変化に基づいて、第一供給部3が供給するオゾン含有流体の供給量を調整する。
 ここでは、濾過膜1は、浸漬型であって中空糸膜モジュールであるため、被処理液体を一次側から二次側に濾過するものである。また、濾過膜1は浸漬型の中空糸膜モジュールを使用しているため、オゾン含有流体は、二次側から一次側に向けて注入される、いわゆる「逆圧洗浄」と同様な注入方法の例にて示す。
 濾過膜1は、収容槽2に収容される。収容槽2には例えば水である液体4が充填される。よって、濾過膜1を液体4に浸漬させる。これは、濾過膜1が、浸漬型の中空糸膜モジュールであり、乾燥による性能劣化を防止するためである。よって、乾燥による性能劣化が生じない濾過膜1であれば、必ずしも収容槽2内の液体4に浸漬した状態でオゾン処理を行う必要はない。
 濾過膜1と、測定部8と、第一供給部3とは第一配管7にて接続される。第一供給部3は、オゾン含有流体を貯留する第一貯槽5と、第一貯槽5から第一配管7を介して濾過膜1にオゾンを供給するための第一ポンプ6とを備える。尚、オゾン含有流体とは、例えばオゾンガス、オゾンを水等の溶媒に溶解させて生成したオゾン水、オゾン水にオゾンの分解により生じるラジカルの発生を促す物質を混合した混合水のいずれか一種類、または複数種類の使用を想定する。
 測定部8は、濾過膜1の圧力に基づいた測定値Hを測定するものとして、濾過膜1に供給する流体、ここではオゾン含有流体が流れる配管としての第一配管7内の圧力値を測定する圧力計9を備える。圧力計9としては、測定した圧力値を制御部11に伝送可能なタイプであれば、仕様に限定はない。制御部11は、測定部8の圧力計9の測定値Hを受信し、測定値Hの変化に基づいて第一配管7を通して供給するオゾン含有流体の供給量を第一ポンプ6にて制御する。収容槽2には、液体4またはオゾン含有流体の余剰分を外部に排出する第一排出部10が設置される。
 次に上記のように構成された実施の形態1の濾過膜処理装置の濾過膜処理方法について説明する。まず、本実施の形態1の濾過膜処理装置は上記のように構成され、オゾン含有流体を濾過膜1に供給する際の圧力に基づいた測定値Hの変化を観測することで、オゾン処理の程度を定量化し、オゾン処理の完了のタイミングを判断するものである。
 このことは、発明者らが鋭意検討した結果、オゾン含有流体を濾過膜1に接触させると、濾過膜1を構成する、オゾンにより親水化する素材の分子鎖上に、ヒドロキシル基等の親水性の官能基が付加される。よって濾過膜1の親水性が向上する。これにより、濾過膜1の透水性、すなわち水の通り易さが向上する。そしてこのことより、濾過膜1のオゾン処理による浄化が行われていることが判断できる。
 さらに、発明者らは、オゾン含有流体を濾過膜1に供給し、圧力に基づいた測定値Hの変化により濾過膜1のオゾン処理を監視、評価することで、濾過膜1の透水性、水の通し易さを示した指標と読み替えて判断できることを見出した。そして、濾過膜1のオゾン処理が、オゾン含有流体を供給して行われる場合、濾過膜1の圧力に基づいた測定値Hが次第に低下し、さらにオゾン処理が完了すると、この測定値Hの変化が極端に小さくなることを見出した。これは、発明者らが鋭意検討を行ったところ、濾過膜1の前記分子鎖上に付加可能な親水基の量には限りがあり、この限度を超えると、濾過膜1にオゾン含有流体を供給しても親水化度の変化が極端に小さくなることを見出した。
 よって、発明者らは、この測定値Hの変化に基づいて判断することにより、濾過膜1のオゾン処理の限界点、すなわちオゾン処理の完了すべき点とすることを見出した。このように、濾過膜1をオゾン処理するとは、濾過膜1を親水化処理することと同義である。よって、濾過膜1の親水化処理の限界、すなわち親水化処理の完了すべき点を見出したこととなる。尚、以上に示した内容は他の実施の形態においても同様であり、この説明は適宜省略する。
 以下、これらのことふまえて、図2のフローチャートに基づいて濾過膜処理方法について説明する。まず、制御部11は第一ポンプ6を駆動して、第一供給部3の第一貯槽5から第一配管7を経てオゾン含有流体を濾過膜1へ供給する供給工程を行う(図2のステップST1)。尚、オゾン含有流体の供給量は、一定量にて供給が継続される。
 次に、供給工程を継続しながら、濾過膜1の圧力に基づいた測定値Hを測定する測定工程を行う。測定部8は、まず、測定値Hとして、第一供給部3がオゾン含有流体を第一時間T1供給した後の第一測定値H1を測定し、制御部11に伝送する(図2のステップST2)。次に、第一時間T1よりも長い時間である第二時間T2、オゾン含有流体を供給した後の第二測定値H2を測定し、制御部11に伝送する(図3のステップST3)。
 上記のように測定される、第一時間T1、および第一時間T1から第二時間T2までの時間として好適な範囲は1分~20分である。1分より短いとオゾン処理がほとんど進んでおらず、前回の測定値H、または、初期状態からの差が不明瞭となり、オゾン処理の完了を判定できない可能性がある。一方、20分よりも長いと、次の測定までの時間が長くなり、オゾン処理が実際には完了しているにもかかわらず、その判断が遅れ不必要にオゾン処理を継続してしまう可能性がある。尚、第一時間T1と、第一時間T1から第二時間T2までの時間とは同一時間でも良いし、個別に設定しても良い。例えば、オゾン処理の開始当初は当該時間は長く設定し、通常処理が終了されると考えられる時間に近づくと当該時間は短く設定することも考えられる。
 次に、測定値Hの変化に基づいて、オゾン含有流体の供給量を調整する制御工程を行う。制御部11は、第一測定値H1と第二測定値H2との下記式1における変化率αが、閾値α1以下であるか否か(下記式2)を判断する(図2のステップST4)。
|H1-H2|÷|H1|=α       ・・・式1
α≦α1       ・・・式2
 また、変化率αが閾値α1以下である(YES)と、第一供給部3によるオゾン含有流体の供給を抑制する。ここでは、制御部11は、第一ポンプ6を停止させ、濾過膜1へのオゾン含有流体の供給を終了する(図2のステップST5)。
 また、変化率αが閾値α1よりも大きい(NO)と、第一供給部3によるオゾン含有流体の供給を継続し、ステップST3からの処理を繰り返す。ステップST3から動作が繰り返される場合、先に測定した第二時間T2の第二測定値H2が、繰り返す際の第一時間T1の第一測定値H1となる。そして、これ以降の時間の第二時間T2後の第二測定値H2が新たに測定され、上記に示した方法が繰り返される。すなわち、第一時間T1の第一測定値H1は前回の測定値Hであり、第二時間T2の第二測定値H2は現在の測定値Hである。
 変化率αの閾値α1として好適な範囲は0~0.5である。閾値α1が0.5よりも大きいと、まだオゾン処理が進行する余地があるにも関わらずオゾン処理を完了と判断してしまう可能性がある。
 上記に示した実施の形態1においては、測定値Hとして、第一配管7内の圧力値を用いる例を示したが、これに限られることはなく、例えば濾過膜1の一次側と二次側との膜間差圧値(Trans Membrane Pressure、TMP)を測定して測定値Hとしても良い。この場合、例えば濾過膜1の一次側と二次側にそれぞれ圧力計を設置して、それぞれの値から膜間差圧値を算出して測定値Hとしても良い。また、図1のような浸漬型の濾過膜1を用いる場合、収容槽2の液位と圧力計9の圧力値とからTMPを算出して測定値Hとしても良い。
 また、上記に示した実施の形態1においては、第一供給部3にオゾン含有流体を貯留する第一貯槽5を備えて、オゾン含有流体を供給する例にて示し、特にオゾン含有流体について示していないが、オゾン含有流体としてオゾンガスを用いる場合が考えられる。図3に示すように、第一供給部3として、オゾンガス発生器12を備える。そして、制御部11がオゾンガス発生器12のオゾンガスの発生量を制御する。そして、オゾンガスを第一配管7を介して直接、濾過膜1に供給すれば、上記に示した実施の形態1と同様に濾過膜処理を行うことができる。
 そして、オゾンガスをオゾン含有流体として用いる場合には、オゾンガス濃度として1ppm~1000ppmが好適である。1ppmよりオゾンガス濃度が低いとオゾン処理の効果が低く、オゾン処理完了に時間を要するためである。また、1000ppmよりもオゾンガス濃度が高いと、濾過膜1を構成する部材または第一配管7等の劣化を招く可能性がある。
 また、オゾンガスを用いる場合の他の例としては、図4に示すように、第一供給部3として、オゾンガス発生器12と、第一貯槽5と、第一ポンプ6とを備える。そして、制御部11がオゾンガス発生器12のオゾンガスの発生量を制御する。そして、発生したオゾンガスをオゾン含有流体として第一貯槽5に貯留し、貯留したオゾンガスを第一ポンプ6を介して濾過膜1に供給すれば、上記に示した実施の形態1と同様に濾過膜処理を行うことができる。この際、第一貯槽5には、内部にシリカゲル等の多孔質を吸着剤として充填し、オゾンガスを吸着、濃縮して貯留しても良い。
 また、他の例として、オゾン含有流体として、オゾン水を用いる場合が考えられる。図5に示すように、第一供給部3として、オゾンガス発生器12と、第一貯槽50と、第一ポンプ6とを備える。第一貯槽50は、水などのオゾンガスを溶解するための溶媒を供給する第二配管13と、第一貯槽5内の余剰オゾンガスを外部に排出する第二排出部14とを備える。そして、第二配管13にて第一貯槽50に例えば水を供給する。次に、第一貯槽50内にオゾンガス発生器12からオゾンガスを供給して第一貯槽5にてオゾン水を作成して貯留する。そして、貯留したオゾン水を第一ポンプ6を介して濾過膜1に供給すれば、上記に示した実施の形態1と同様に濾過膜処理を行うことができる。
 そして、オゾン水をオゾン含有流体として用いる場合には、濾過膜1に供給すべきオゾン水に含まれる溶存オゾン濃度としては、1mg/L~100mg/Lが好適である。これは、1mg/Lよりも溶存オゾン濃度が低いとオゾン処理の効果が低く、処理完了までに時間を要する。また、100mg/Lよりも溶存オゾン濃度が高いとオゾンの分解による酸素ガス気泡が多量に発生し、濾過膜1へのオゾン水供給の妨げとなる可能性がある。
 そして、オゾン水をオゾン含有流体として用いる場合には、塩酸、硫酸等のpH調整剤を添加して使用しても良い。濾過膜1に供給すべきオゾン水のpHは、濾過膜1のpH耐性に応じる範囲内であれば特に制限はない。例えば、濾過膜1にポリフッ化ビニリデン(Poly Vinylidene DiFluoride、PVDF)を使用する場合は、オゾン水のpHは1pH~14pHの間で任意のpHを選択可能である。
 また、他の例として、オゾン含有流体として、オゾン水にオゾンの分解により生じるラジカルの発生を促す物質(以下、促進剤と略して示す)を混和した混合水を用いる場合が考えられる。この場合、図1に示す第一貯槽5にオゾン水と促進剤とをあらかじめ混合して生成した混合水を貯留し、貯留した混合水を第一ポンプ6を介して濾過膜1に供給すれば、上記に示した実施の形態1と同様に濾過膜処理を行うことができる。
 また、混合水を用いる場合の他の例としては、図6に示すように、第一供給部3として、オゾンガス発生器12と、第一貯槽50と、第一ポンプ6と、添加部15とを備える。添加部15は、促進剤を添加するためのものである。添加部15と第一配管7とを接続する第三配管16が設置される。そして、制御部11が添加部15の促進剤の添加量を制御する。
 そして、促進剤は添加部15から第三配管16を介して第一配管7に供給され、第一配管7内にてオゾン水に促進剤が混合され、濾過膜1に混合水として供給すれば、上記に示した実施の形態1と同様に濾過膜処理を行うことができる。促進剤としては、例えば過酸化水素水、次亜塩素酸ナトリウム等の酸化剤、または、苛性ソーダ、水酸化カリウム等のアルカリが使用でき、いずれか1種類を選択しても良いし、複数種類を使用しても良い。
 また、上記に示した実施の形態1においては、第一供給部3が、濾過膜1の二次側から一次側にオゾン含有流体を注入する例を示したが、これに限られることはなく、第一供給部3が、濾過膜1の一次側から二次側にオゾン含有流体を供給する例について示す。図7に示すように、第一ポンプ6から第一配管7を介して収容槽2にオゾン含有流体が供給される。濾過膜1に接続された第一配管7から吸引ポンプ30を介してオゾン含有流体を吸引し、濾過膜1にオゾン含有流体を供給してオゾン処理を行う。そして、吸引ポンプ30にて吸引したオゾン含有流体を第一排出部10にて外部に排出する。このように構成しても、上記に示した実施の形態1と同様に濾過膜処理を行うことができる。尚、この場合、圧力計9にて測定される圧力値は、負圧となるが、上記式1に示すように、各値は絶対値により算出されるため、同様に対応可能である。
 上記のように構成された実施の形態1の濾過膜処理装置によれば、
 濾過膜にオゾン処理を行う濾過膜処理装置において、
 前記濾過膜にオゾン含有流体を供給する第一供給部と、
 前記濾過膜の圧力に基づいた測定値を測定する測定部と、
 前記測定部で測定する前記測定値の変化に基づいて、前記第一供給部が供給する前記オゾン含有流体の供給量を調整する制御部とを備え、
 また、実施の形態1の濾過膜処理方法によれば、
 濾過膜にオゾン含有流体を供給する供給工程と、
 前記濾過膜の圧力に基づいた測定値を測定する測定工程と、
 前記測定値の変化に基づいて、前記オゾン含有流体の供給量を調整する制御工程とを備えるので、
 オゾン含有流体を濾過膜に供給し、圧力に基づいた測定値の変化により濾過膜のオゾン処理を監視、評価することで、濾過膜の透水性、水の通し易さを示した指標と読み替えて判断できる。そしてこれにより、濾過膜のオゾン処理の完了点を、濾過膜の親水化が進行すると透水性が向上することにより判断が可能になる。よって、濾過膜が潜在的に有する親水化のポテンシャルを最大限に引き出し、濾過膜のタイプまたは性状または製造による個体差のばらつきによらずオゾン処理を確実に完了できる。
 また、前記濾過膜は、被処理液体を一次側から二次側に濾過するものであり、
 前記第一供給部は、前記濾過膜の二次側から一次側に前記オゾン含有流体を注入するか、または、前記濾過膜の一次側から二次側に前記オゾン含有流体を吸引もしくは圧入するかのいずれかにて構成されるので、濾過膜の構成に対応したオゾン処理が可能となる。
 また、前記測定部は、前記測定値として、前記第一供給部が前記オゾン含有流体を第一時間供給した後の第一測定値H1および前記第一時間よりも長い時間である第二時間供給した後の第二測定値H2をそれぞれ測定し、
 前記制御部は、前記第一測定値H1と前記第二測定値H2との式1における変化率αが閾値α1以下であると、前記第一供給部による前記オゾン含有流体の供給を継続し、前記変化率αが閾値α1よりも大きいと、前記第一供給部による前記オゾン含有流体の供給を抑制する、
 また、前記測定工程は、前記オゾン含有流体を第一時間供給した後の第一測定値H1および前記第一時間よりも長い時間である第二時間供給した後の第二測定値H2をそれぞれ測定し、
 前記制御工程は、前記第一測定値H1と前記第二測定値H2との式1における変化率αが閾値α1以下であると、前記オゾン含有流体の供給を継続し、前記変化率αが閾値α1よりも大きいと、前記オゾン含有流体の供給を抑制するので、
濾過膜の圧力に基づいた第一測定値および第二測定値の各測定値の変化により濾過膜のオゾン処理の制御がより確実に可能となる。
 また、前記制御部は、前記測定値の前記変化率αが前記閾値α1よりも大きいと、前記第一供給部による前記オゾン含有流体の供給を終了するので、濾過膜のオゾン処理において、無駄なオゾン含有流体の供給を低減できる。
 また、前記第一供給部は、前記オゾン含有流体として、オゾンガス、または、オゾンを溶解したオゾン水、または、オゾン水にオゾンの分解により生じるラジカルの発生を促す物質を混和したオゾン混合水の少なくともいずれか一種類を供給するので、濾過膜のオゾン処理を確実に行うことが可能となる。
 また、前記測定部の前記測定値は、前記濾過膜に供給する流体が流れる配管内の圧力値を前記測定値として測定されるか、または、流体が前記濾過膜を通過するときの前記濾過膜の内外の膜間差圧値を前記測定値として測定されるかなので、濾過膜の測定値を確実に測定でき、濾過膜のオゾン処理を確実に行うことが可能となる。
 また、前記濾過膜は、オゾンにより親水化する素材を有して構成され、
 前記制御部は、前記測定値の変化により前記濾過膜の親水化度を判断するので、濾過膜の構成に応じて、濾過膜のオゾン処理により親水化度の判断が可能となる。
実施の形態2.
 図8および図9は実施の形態2における濾過膜処理装置の構成を示す図である。上記実施の形態1においては、濾過膜1の圧力に基づいた測定値Hとして、第一配管7内の流体の圧力値または濾過膜1の膜間差圧値(TMP)を用いる例を示したが、本実施の形態2においては、これら測定値にさらに、第一配管7内の流体の流量値を加味したものを、濾過膜1の圧力に基づいた測定値Hとする場合について説明する。
 図において、上記実施の形態1と同様の部分は同一符号を付して説明を省略する。図8の測定部8は、圧力計9と、第一配管7に設置された流量計17とを備える。図9の測定部8は、圧力計9と、第一配管7に設置された流量計17および温度計170を備える。また、図8および図9に示した濾過膜処理装置の濾過膜処理方法は、上記実施の形態1と同様に図2に示したフローチャートに沿って行うが、本実施の形態2の図8に示した濾過膜処理装置によれば、圧力計9で得た第一配管7内の圧力値と、流量計17で得た第一配管7内の流量値との比で算出して得た値を測定値Hとして使用する点で異なる。
 すなわち、本実施の形態2においては下記式3で算出した値を測定値Hとして使用する。
 H=Q÷P     ・・・式3
H:測定値(L/h/kPa)
Q:流量値(L/h)
P:圧力値(kPa)または膜間差圧値(kPa)
  当該測定値Hを用いて、上記実施の形態1と同様に濾過膜処理方法を行う。
 また、さらに、濾過膜1の有効膜面積が既知の場合は、下記式4にて算出された値を測定値Hとして使用する。
 H=Q÷A÷P     ・・・式4
A:濾過膜1の有効面積(m2)
 当該測定値Hを用いて、上記実施の形態1と同様に濾過膜処理方法を行う。
 また、さらに、本実施の形態2の図9に示した濾過膜処理装置によれば、上記に示した流量値に加えて、さらに、測定値Hに対してオゾン含有流体の温度の補正を行う。具体的には、上記式3、または、上記式4で求めた測定値Hに下記式5のような処理を加えることで補正後の測定値H’を得る。
 H’=H×(μt÷μs)     ・・・式5
H’:温度補正後の測定値
μs:任意の基準温度におけるオゾン含有流体の粘度値
μt:測定値の測定時の温度におけるオゾン含有流体の粘度値
 尚、オゾンの溶媒として水を用いる場合、オゾン含有流体の粘度は水の粘度と等しいため、公知の水の粘度をμs、μtとして使用できる。またμsを決定する上で、任意に基準温度を選定する必要があるが、特に限定はない。例えば、常温、15℃~30℃のいずれかに適宜設定すれば良い。そして、当該測定値H’を用いて、上記実施の形態1と同様に濾過膜処理方法を行う。
 上記のように構成された実施の形態2の濾過膜処理装置によれば、上記実施の形態1と同様の効果を奏するのはもちろんのこと、前記測定部の前記測定値は、前記圧力値または前記膜間差圧値と前記濾過膜に供給する流体の流量値との比を前記測定値として測定されるため、
オゾン含有流体の流量に左右されることのない精度に優れた測定値が検出でき、濾過膜のオゾン処理の最適な制御が可能となる。
実施の形態3.
 図10は実施の形態3における濾過膜処理装置の構成を示す図である。図11は図10に示した濾過膜処理装置の濾過膜処理方法を示したフローチャートである。図12は実施の形態3による他の濾過膜処理装置の構成を示す図である。図において、上記各実施の形態と同様の部分は同一符号を付して説明を省略する。上記各実施の形態においては、オゾン含有流体を濾過膜1に供給しながら、濾過膜1の圧力に基づいた測定値Hを測定する例を示したが、本実施の形態3では、濾過膜1の圧力に基づいた測定値Hを測定する場合に、濾過膜1へのオゾン含有流体を一旦停止して測定する場合について説明する。
 図において、上記各実施の形態と同様の部分は同一符号を付して説明省略する。濾過膜1にオゾン含有流体と異なる測定用流体を供給する第二供給部18を備える。第二供給部18は、第二貯槽20と、第二ポンプ19とを備える。第二貯槽20は、測定用流体を貯留する。測定用流体は、オゾン含有流体以外であれば特に限定されるものはなく、濾過膜1の汚損を招く物質を含んだものでなければ使用でき、例えば水道水、純水、超純水、あるいは苛性ソーダ等のアルカリ性薬品、塩酸、硫酸、クエン酸等の酸性薬品の使用が考えられる。
 第二ポンプ19は、第二貯槽20から第四配管21を介して第一配管7および濾過膜1に測定用流体を供給する。第一配管7にはバルブ23が設置される。第四配管21にはバルブ22が設置される。
 制御部11は、測定部8にて測定値Hを測定する際に、第一配管7のバルブ23を閉じるとともに第一ポンプ6を停止させて、第一供給部3のオゾン含有流体の供給を停止するとともに、第四配管21のバルブ22を開け、第二ポンプ19を駆動して第二供給部18の第二貯槽20から測定用流体を第四配管21を介して第一配管7および濾過膜1に供給する。また、測定部8の測定値Hの測定が終了すると、第四配管21のバルブ22を閉じるとともに第二ポンプ19を停止させて、第二供給部18の測定用流体の供給を停止するとともに、第一配管7のバルブ23を開け、第一ポンプ6を駆動して第一供給部3の第一貯槽5からオゾン含有流体を第一配管7を介して濾過膜1に供給する。
 次に、上記のように構成された実施の形態3の濾過膜処理装置の濾過膜処理方法について図11のフローチャートに基づいて説明する。まず、制御部11は第一ポンプ6を駆動して、第一供給部3の第一貯槽5から第一配管7を経てオゾン含有流体を濾過膜1へ供給する供給工程を行う(図11のステップST11)。
 次に、第一時間T1供給した後、制御部11は第一ポンプ6を停止するとともに、第一配管7のバルブ23を閉じて、濾過膜1へのオゾン含有流体の供給を停止し、濾過膜1のオゾン処理を中断する(図11のステップST12)。次に、制御部11は第四配管21のバルブ22を開くとともに、第二ポンプ19を駆動して、第二供給部18の第二貯槽20から第四配管21を経て測定用流体を第一配管7および濾過膜1に供給する。そして、測定用流体の供給を継続しながら、濾過膜1の圧力に基づいた測定値Hを測定する測定工程を行う。測定部8は、測定値Hとして、オゾン含有流体を濾過膜1に対して第一時間T1供給した後の第一測定値H1を測定し、制御部11に伝送する(図11のステップST13)。
 次に、制御部11は第二ポンプ19を停止するとともに、第四配管21のバルブ22を閉じて、濾過膜1への測定用流体の供給を停止し、かつ、第一ポンプ6を駆動して、第一供給部3の第一貯槽5から第一配管7を経てオゾン含有流体を濾過膜1へ供給し、濾過膜1のオゾン処理を再開する(図11のステップST14)。
 次に、第二時間T2供給した後、制御部11は第一ポンプ6を停止するとともに、第一配管7のバルブ23を閉じて、濾過膜1へのオゾン含有流体の供給を停止し、濾過膜1のオゾン処理を中断する(図11のステップST15)。次に、制御部11は第四配管21のバルブ22を開くとともに、第二ポンプ19を駆動して、第二供給部18の第二貯槽20から第四配管21を経て測定用流体を第一配管7および濾過膜1に供給する。
 そして、測定用流体の供給を継続しながら、濾過膜1の圧力に基づいた測定値Hを測定する測定工程を行う。測定部8は、測定値Hとして、オゾン含有流体を濾過膜1に対して第二時間T2供給した後の第二測定値H2を測定し、制御部11に伝送する(図11のステップST16)。次に、上記実施の形態1と同様に、測定値Hの変化に基づいて、オゾン含有流体の供給量を調整する制御工程を行う(図11のステップST17およびステップST18)。
 尚、上記実施の形態3においては、少なくとも第一ポンプ6を停止しバルブ23を閉じて、親水化流体の濾過膜への供給を停止する。例えば親水化流体としてオゾンガスを供給する場合にはオゾンガス発生器12を停止するか、第一配管7上に別途バイパス配管等を設けておき、流路を切り替えることで一時的に濾過膜1へのオゾンガス供給を遮断しても良い。
 また、上記実施の形態1の図7にて示した、第一供給部3が、濾過膜1の一次側から二次側にオゾン含有流体を供給する場合であっても、上記に示した実施の形態3の第二供給部18の測定用流体による測定を同様に行うことができる。例えば、図12に示すように、上記実施の形態1にて示した図7および本実施の形態3にて示した図10を組み合わせたような構成にて実施の形態3における他の濾過膜処理装置の構成する。すなわち、上記実施の形態3と同様に、制御部11が第四配管21のバルブ22を開くとともに、第二ポンプ19を駆動して、第二供給部18の第二貯槽20から第四配管21を経て第一配管7を介して収容槽2に測定用流体が供給される。
 そして、濾過膜1に接続された第一配管7から吸引ポンプ30を介して測定用流体を吸引し、吸引ポンプ30にて吸引した測定用流体を第一排出部10にて外部に排出する。このように構成しても、上記に示した実施の形態3と同様に濾過膜処理方法を行うことができる。尚、この場合、圧力計9にて測定される圧力値は、負圧となるが、上記各式に示すように、圧力値に対する各値は絶対値により算出されるため、同様に対応可能である。
 上記のように構成された実施の形態3の濾過膜処理装置によれば、上記各実施の形態と同様の効果を奏するのはもちろんのこと、
 前記濾過膜に前記オゾン含有流体と異なる測定用流体を供給する第二供給部を備え、
 前記制御部は、前記測定部の測定時に、前記第一供給部を停止するとともに前記第二供給部から前記測定用流体を前記濾過膜に供給させ、前記測定部にて前記測定値を測定させるので、測定用流体はオゾン含有流体と異なるため、測定用流体を用いて測定値を測定することで、測定中に濾過膜に対してオゾン処理が行われないため測定値の安定化が可能であり、より正確な測定値の測定が可能となり、濾過膜のオゾン処理の制御がさらに向上する。
 また、前記濾過膜は、被処理液体を一次側から二次側に濾過するものであり、
 前記第二供給部は、前記濾過膜の二次側から一次側に前記測定用流体を注入するか、または、前記濾過膜の一次側から二次側に前記測定用流体を吸引もしくは圧入するかのいずれかにて構成されるので、濾過膜の構成に対応したオゾン処理が可能となる。
実施の形態4.
 図13は実施の形態4による濾過膜処理装置を用いた膜濾過装置の構成を示す図である。本実施の形態4は上記各実施の形態において示した濾過膜処理装置の濾過膜1を膜濾過に用いるものであり、濾過膜1による被処理流体の濾過も、濾過膜1の洗浄も両方に行うことができるものである。すなわち、濾過膜1で、被処理液体の排水処理、浄水処理等の濾過を行って濾過膜1が汚染された場合、オゾン含有流体を濾過膜1に供給することで濾過膜1に付着した汚れをオゾン含有流体で剥離、分解し、濾過膜1の洗浄を行うとともに、濾過膜1の親水化を果たす。
 この一例として、図13には膜濾過装置に濾過膜処理装置を組み入れた場合の構成を示す。図において、上記各実施の形態と同様の部分は同一符号を付して説明を省略する。図13に示す膜濾過装置は例えば膜分離バイオリアクタであり、活性汚泥26が貯留される貯留槽としての曝気槽25と、曝気槽25の活性汚泥26に被処理流体を供給する第五配管24とを備える。曝気槽25が上記に示した濾過膜処理装置の収容槽2としても機能する。そして、第一排出部10は、曝気槽25内の余剰な活性汚泥26を排出する。第一配管7は第六配管28に接続され、第六配管28には移送部としての第三ポンプ27が設置される。第六配管28にはバルブ29が設置されている。第三ポンプ27は第三排出部31に接続される。
 次に、上記のように構成された実施の形態4の膜濾過装置の動作について説明する。まず、第五配管24から被処理液体が曝気槽25に供給される。そして、曝気槽25内に貯留されている活性汚泥26と被処理液体とは混合される。被処理液体中に含まれる有機物は活性汚泥26に吸着、分解される。同時に、制御部11はバルブ29を開くとともに、第三ポンプ27が駆動する。そして、濾過膜1で活性汚泥26の濾過を行う。濾過によって得られた濾過流体は第一配管7および第六配管28を介して第三排出部31により装置外へと排出される。この際、第一配管7のバルブ23は閉じた状態である。当該濾過動作は必ずしも連続する必要はなく、間欠的に行って良い。
 そして、当該濾過動作に伴って濾過膜1に有機物等の汚れが付着すると、濾過膜1の膜間差圧値が上昇する。よって、濾過膜1のオゾン処理は、所定の膜間差圧値に到達した場合、または、ある所定時間濾過を行った場合、または、任意のタイミングで、濾過動作を停止して行う。
 制御部11は、第三ポンプ27を停止させ、バルブ29を閉じて濾過動作を終了する。そして、制御部11は第一配管7のバルブ23を開いて第一ポンプ6を駆動して、オゾン含有流体を濾過膜1に供給して濾過膜1のオゾン処理を行う。この濾過膜処理方法は、上記各実施の形態と同様に行うことができるため、その説明は適宜省略する。そして、濾過膜1のオゾン処理が終了すると、制御部11は第一ポンプ6を停止するとともに、第一配管7のバルブ23を閉じ濾過膜処理を終了する。そして、制御部11は第六配管28のバルブ29を開いて、第三ポンプ27を駆動して、濾過膜1の濾過処理を再開する。
 尚、濾過膜1のオゾン処理は濾過膜1の洗浄のたびに実施する必要はなく、実施の要否を判断し必要の都度行って良い。また、オゾン処理は、活性汚泥26の濾過を開始する前にあらかじめ行ってから、活性汚泥26の濾過を開始しても良い。
 上記のように構成された実施の形態4の膜濾過装置によれば、上記各実施の形態と同様の効果を奏するのはもちろんのこと、
 前記被処理液体を貯留するとともに前記濾過膜を浸漬する貯留槽と、
 前記濾過膜が濾過した前記被処理液体を前記貯留槽の外部に移送する移送部とを備え、
 前記制御部は、前記移送部を停止するとともに、前記貯留槽に浸漬された前記濾過膜に前記オゾン含有流体を前記第一供給部から供給するので、被処理液体の膜濾過装置に、濾過膜処理装置を組み入れて、濾過膜の濾過と、濾過膜の洗浄および親水化処理とを兼ねことで、濾過膜の洗浄における過不足発生を防ぐことができる。
実施例1.
 以下、実施例1と比較例1、2とを示す。ここでは、図8に示した濾過膜処理装置と同様な装置を使用して、濾過膜1のオゾン処理を行った結果に基づいて説明する。本実施例1で使用した濾過膜処理装置の主な仕様は、図14の表に示す通りである。本実施例1ではオゾン処理開始前に、純水を3(L/h)で濾過膜1の二次側から一次側に向けて注入し、当該流量値と、この際の圧力値、および濾過膜1の有効面積(膜面積)から式4を用いて初期の測定値Hをあらかじめ求めた。オゾン処理は、図2に示したフローチャートの手順で実施した。
 濾過膜1にオゾン含有流体として、オゾン水を3(L/h)で供給を開始した。そして、第一時間T1である10分後に濾過膜1の第一測定値H1を測定した。第一測定値H1は式4を用いて算出した。次に、第二時間T2後、すなわち第一時間T1から10分後に、第二測定値H2を算出した。次に、判定1回目として、第一測定値H1と第二測定値H2との変化率αを式1に基づいて算出した。そしてここでは、閾値α1をα1=0.2として設定し、式2を用いて変化率αと閾値α1との比較を行った。
 図15の表に示すように、判定1回目の変化率αは、0.4であり、閾値α1の0.2よりも大きいため、再度10分後に測定値Hを測定し、判定2回目を上記判定1回目と同様に実施した。判定2回目においては、判定1回目の第二測定値H2が、第一測定値H1となり、第二時間T2後、すなわち、オゾン開始からの累積処理時間としては30分後の第二測定値H2が新たに測定される。そして、この変化率αは、0.38であり、閾値α1の0.2よりも大きいため、再度10分後に測定値Hを測定し、判定3回目を上記各判定と同様に実施した。そして、判定3回目の変化率αは、0.28であり、再度10分後に測定値Hを測定し、判定4回目を上記各判定と同様に実施した。そして、判定4回目の変化率αは、0.08であり、閾値α1の0.2以下であるため、オゾン処理を終了した。
 これに対し、図16に示す比較例1は、実施例1で使用した濾過膜処理装置を使用し、濾過膜のオゾン処理も同一条件にて実施した。比較例1は、オゾン処理としてオゾン水を3(L/h)で30分間注入した時点のみの測定値であり、途中にて測定値の測定は実施されていない。また、図16に示す比較例2は、実施例1で使用した濾過膜処理装置を使用し、濾過膜のオゾン処理を行った。比較例2は、親水化処理を3(L/h)でオゾン水を90分間注入したのみとし、途中、測定値の測定は実施されていない。各測定値は、上記実施例1と同様に、圧力値、流量値、および濾過膜の有効面積とから式4を用いて算出されたものである。
 実施例1の結果は、図15の表に示す通りである。オゾン処理開始から50分後の変化率αが閾値α1の0.2を下回り、オゾン処理を完了した。このとき測定値は初期の測定値の11(L/m2/h/kPa)から33.3(L/m2/h/kPa)まで上昇し、十分にオゾン処理がなされ親水化が促進されていることが確認できた。
 これに対し、比較例1、2の結果は図16の表に示す通りである。比較例1ではオゾン処理の測定値が23(L/m2/h/kPa)であり、実施例1での測定値が33(L/m2/h/kPa)であることから、比較例1はオゾン処理の余地を残した状態で、オゾン処理を停止したこととなる。
 一方、比較例2では測定値が33.6(L/m2/h/kPa)であり、オゾン処理は十分であったと考えられる。しかしながら、オゾン処理を50分間実施した実施例1の最終測定値とほとんど差がなかった。すなわち、本実施例1および比較例2において使用した濾過膜1のオゾン処理は50分間で十分であり、比較例2のようにオゾン処理を90分間オゾン処理を行うことは不経済であり、非効率である。
 以上に示したように、本濾過膜処理方法によれば濾過膜のオゾン処理の完了点を見出して、必要最低限のオゾン処理で濾過膜の親水化を確実に完了できることが示された。以上より、本実施例の優位性は明らかである。
 本開示は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 1 濾過膜、2 収容槽、3 第一供給部、30 吸引ポンプ、4 液体、5 第一貯槽、50 第一貯槽、6 第一ポンプ、7 第一配管、8 測定部、9 圧力計、10 第一排出部、11 制御部、12 オゾンガス発生器、13 第二配管、14 第二排出部、15 添加部、16 第三配管、17 流量計、170 温度計、18 第二供給部、19 第二ポンプ、20 第二貯槽、21 第四配管、22 バルブ、23 バルブ、24 第五配管、25 曝気槽、26 活性汚泥、27 第三ポンプ、28 第六配管、29 バルブ、30 吸引ポンプ、31 第三排出部、H 測定値、H’ 測定値、H1 第一測定値、H2 第二測定値、T1 第一時間、T2 第二時間。

Claims (12)

  1.  濾過膜にオゾン処理を行う濾過膜処理装置において、
     前記濾過膜にオゾン含有流体を供給する第一供給部と、
     前記濾過膜の圧力に基づいた測定値を測定する測定部と、
     前記測定部で測定する前記測定値の変化に基づいて、前記第一供給部が供給する前記オゾン含有流体の供給量を調整する制御部とを備える濾過膜処理装置。
  2.  前記濾過膜は、被処理液体を一次側から二次側に濾過するものであり、
     前記第一供給部は、前記濾過膜の二次側から一次側に前記オゾン含有流体を注入するか、または、前記濾過膜の一次側から二次側に前記オゾン含有流体を吸引もしくは圧入するかのいずれかにて構成される請求項1に記載の濾過膜処理装置。
  3.  前記濾過膜に前記オゾン含有流体と異なる測定用流体を供給する第二供給部を備え、
     前記制御部は、前記測定部の測定時に、前記第一供給部を停止するとともに前記第二供給部から前記測定用流体を前記濾過膜に供給させ、前記測定部にて前記測定値を測定させる請求項1または請求項2に記載の濾過膜処理装置。
  4.  前記濾過膜は、被処理液体を一次側から二次側に濾過するものであり、
     前記第二供給部は、前記濾過膜の二次側から一次側に前記測定用流体を注入するか、または、前記濾過膜の一次側から二次側に前記測定用流体を吸引もしくは圧入するかのいずれかにて構成される請求項3に記載の濾過膜処理装置。
  5.  前記測定部は、前記測定値として、前記第一供給部が前記オゾン含有流体を第一時間供給した後の第一測定値H1および前記第一時間よりも長い時間である第二時間供給した後の第二測定値H2をそれぞれ測定し、
     前記制御部は、前記第一測定値H1と前記第二測定値H2との下記式1における変化率αが閾値α1よりも大きいと、前記第一供給部による前記オゾン含有流体の供給を継続し、前記変化率αが閾値α1以下であると、前記第一供給部による前記オゾン含有流体の供給を抑制する
    |H1-H2|÷|H1|=α       ・・・式1
    請求項1から請求項4のいずれか1項に記載の濾過膜処理装置。
  6.  前記制御部は、前記測定値の前記変化率αが前記閾値α1よりも大きいと、前記第一供給部による前記オゾン含有流体の供給を終了する請求項5に記載の濾過膜処理装置。
  7.  前記第一供給部は、前記オゾン含有流体として、オゾンガス、または、オゾンを溶解したオゾン水、または、オゾン水にオゾンの分解により生じるラジカルの発生を促す物質を混和したオゾン混合水の少なくともいずれか一種類を供給する請求項1から請求項6のいずれか1項に記載の濾過膜処理装置。
  8. 前記測定部の前記測定値は、前記濾過膜に供給する流体が流れる配管内の圧力値を前記測定値として測定されるか、または、流体が前記濾過膜を通過するときの前記濾過膜の内外の膜間差圧値を前記測定値として測定されるか、または、前記圧力値または前記膜間差圧値と前記濾過膜に供給する流体の流量値との比を前記測定値として測定されるかのいずれかである請求項1から請求項7のいずれか1項に記載の濾過膜処理装置。
  9.  前記濾過膜は、オゾンにより親水化する素材を有して構成され、
     前記制御部は、前記測定値の変化により前記濾過膜の親水化度を判断する請求項1から請求項8のいずれか1項に記載の濾過膜処理装置。
  10. 請求項1から請求項9のいずれか1項に記載の濾過膜処理装置を用いた被処理液体を処理する膜濾過装置において、
     前記被処理液体を貯留するとともに前記濾過膜を浸漬する貯留槽と、
     前記濾過膜が濾過した前記被処理液体を前記貯留槽の外部に移送する移送部とを備え、
     前記制御部は、前記移送部を停止するとともに、前記貯留槽に浸漬された前記濾過膜に前記オゾン含有流体を前記第一供給部から供給する膜濾過装置。
  11.  濾過膜にオゾン含有流体を供給する供給工程と、
     前記濾過膜の圧力に基づいた測定値を測定する測定工程と、
     前記測定値の変化に基づいて、前記オゾン含有流体の供給量を調整する制御工程とを備える濾過膜処理方法。
  12.  前記測定工程は、前記オゾン含有流体を第一時間供給した後の第一測定値H1および前記第一時間よりも長い時間である第二時間供給した後の第二測定値H2をそれぞれ測定し、
     前記制御工程は、前記第一測定値H1と前記第二測定値H2との下記式1における変化率αが閾値α1よりも大きいと、前記オゾン含有流体の供給を継続し、前記変化率αが閾値α1以下であると、前記オゾン含有流体の供給を抑制する
    |H1-H2|÷|H1|=α       ・・・式1
    請求項11に記載の濾過膜処理方法。
PCT/JP2018/036806 2018-10-02 2018-10-02 濾過膜処理装置、膜濾過装置、および、濾過膜処理方法 WO2020070788A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11202103197YA SG11202103197YA (en) 2018-10-02 2018-10-02 Filtration membrane treatment device, membrane filtration device, and filtration membrane treatment method
JP2019503758A JP6576591B1 (ja) 2018-10-02 2018-10-02 濾過膜処理装置、膜濾過装置、および、濾過膜処理方法
KR1020217008373A KR102569045B1 (ko) 2018-10-02 2018-10-02 여과막 처리 장치, 막 여과 장치, 및 여과막 처리 방법
US17/275,678 US20220219123A1 (en) 2018-10-02 2018-10-02 Filtration membrane treatment device, membrane filtration device, and filtration membrane treatment method
CN201880097912.1A CN112752605B (zh) 2018-10-02 2018-10-02 过滤膜处理装置、膜过滤装置及过滤膜处理方法
PCT/JP2018/036806 WO2020070788A1 (ja) 2018-10-02 2018-10-02 濾過膜処理装置、膜濾過装置、および、濾過膜処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036806 WO2020070788A1 (ja) 2018-10-02 2018-10-02 濾過膜処理装置、膜濾過装置、および、濾過膜処理方法

Publications (1)

Publication Number Publication Date
WO2020070788A1 true WO2020070788A1 (ja) 2020-04-09

Family

ID=67982928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036806 WO2020070788A1 (ja) 2018-10-02 2018-10-02 濾過膜処理装置、膜濾過装置、および、濾過膜処理方法

Country Status (6)

Country Link
US (1) US20220219123A1 (ja)
JP (1) JP6576591B1 (ja)
KR (1) KR102569045B1 (ja)
CN (1) CN112752605B (ja)
SG (1) SG11202103197YA (ja)
WO (1) WO2020070788A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300071A (ja) * 2002-04-11 2003-10-21 Fuji Electric Co Ltd 膜ろ過を利用した水処理方法
JP2004283783A (ja) * 2003-03-25 2004-10-14 Hitachi Plant Eng & Constr Co Ltd 膜濾過器の膜洗浄装置
JP2005230730A (ja) * 2004-02-20 2005-09-02 Kurita Water Ind Ltd 水処理方法及び水処理装置
JP6072994B1 (ja) * 2016-03-04 2017-02-01 三菱電機株式会社 膜ろ過装置、ろ過膜洗浄方法、およびろ過膜の製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11179172A (ja) * 1997-12-22 1999-07-06 Matsushita Electric Works Ltd 浴水浄化膜の洗浄方法
JP2001205269A (ja) * 2000-01-26 2001-07-31 Matsushita Electric Works Ltd 浴槽水浄化装置
JP3841735B2 (ja) * 2002-09-19 2006-11-01 磯村豊水機工株式会社 ろ過膜の洗浄方法
JP2004230280A (ja) 2003-01-30 2004-08-19 Toray Ind Inc 親水性ポリフッ化ビニリデン系樹脂多孔質膜の製造方法
JP2004249168A (ja) 2003-02-18 2004-09-09 Fuji Electric Systems Co Ltd 水処理装置の運転方法
JP2005146903A (ja) * 2003-11-12 2005-06-09 Babcock Hitachi Kk ディーゼル排ガス処理装置および処理方法
JP4497406B2 (ja) * 2004-07-06 2010-07-07 オルガノ株式会社 浸漬型膜モジュールの洗浄方法及び洗浄装置
JP4245527B2 (ja) * 2004-07-30 2009-03-25 Jfeエンジニアリング株式会社 廃棄物処理装置の運転方法
JP2007270231A (ja) * 2006-03-31 2007-10-18 Tokyo Electron Ltd 高圧処理装置用チャンバークリーニング方法、高圧処理装置及び記憶媒体
US7459083B1 (en) * 2007-05-07 2008-12-02 I. Kruger Inc. Method for controlling fouling of a membrane filter
CN105921017B (zh) * 2008-02-19 2019-08-13 Abb研究有限公司 膜分离过程的在线性能管理
CN101284213B (zh) * 2008-05-30 2011-08-03 北京汉青天朗水处理科技有限公司 一种清洗膜分离设备的方法及装置
KR101478878B1 (ko) * 2012-10-29 2015-01-02 도레이케미칼 주식회사 막오염 지수를 이용한 막여과 공정 시스템 및 그 방법
CN103176483B (zh) * 2013-04-09 2015-07-08 北京国环清华环境工程设计研究院有限公司 用于控制膜池曝气量的方法
CN103588324B (zh) * 2013-11-16 2015-02-04 康乃尔化学工业股份有限公司 全流过滤超滤反洗水回收工艺
CN103864230B (zh) * 2014-03-05 2015-03-11 长沙中联重科环卫机械有限公司 阻垢剂添加控制系统、方法、装置及污水处理设备
CN115121124A (zh) * 2014-08-29 2022-09-30 三菱电机株式会社 过滤膜的清洗方法及清洗装置、以及水处理系统
US20170275189A1 (en) * 2014-09-03 2017-09-28 Mitsubishi Heavy Industries, Ltd. Deposit monitoring device for water treatment device, water treatment device, operating method for same, and washing method for water treatment device
JP6486732B2 (ja) * 2015-03-16 2019-03-20 メタウォーター株式会社 時期調整方法および時期調整装置
KR101674984B1 (ko) * 2015-06-09 2016-11-10 주식회사 포스코건설 오존제어장치 및 오존제어방법
CN105084520B (zh) * 2015-08-17 2017-05-24 北京金控数据技术股份有限公司 优化的膜生物反应器反冲洗的方法
JP6103794B1 (ja) * 2015-08-27 2017-03-29 三菱電機株式会社 水処理方法および水処理装置
CN108339407A (zh) * 2018-05-22 2018-07-31 吴迪 一种高效反渗透离线清洗测试装置与方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300071A (ja) * 2002-04-11 2003-10-21 Fuji Electric Co Ltd 膜ろ過を利用した水処理方法
JP2004283783A (ja) * 2003-03-25 2004-10-14 Hitachi Plant Eng & Constr Co Ltd 膜濾過器の膜洗浄装置
JP2005230730A (ja) * 2004-02-20 2005-09-02 Kurita Water Ind Ltd 水処理方法及び水処理装置
JP6072994B1 (ja) * 2016-03-04 2017-02-01 三菱電機株式会社 膜ろ過装置、ろ過膜洗浄方法、およびろ過膜の製造方法

Also Published As

Publication number Publication date
US20220219123A1 (en) 2022-07-14
JP6576591B1 (ja) 2019-09-18
CN112752605A (zh) 2021-05-04
CN112752605B (zh) 2023-03-24
KR102569045B1 (ko) 2023-08-21
SG11202103197YA (en) 2021-04-29
KR20210044277A (ko) 2021-04-22
JPWO2020070788A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
CN103492054B (zh) 膜组件的洗涤方法
WO2012057188A1 (ja) 造水方法および造水装置
US10576427B2 (en) Method and apparatus for cleaning filter membrane, and water treatment system
JP6432914B2 (ja) 水処理方法および水処理装置
JP5431493B2 (ja) 浸漬型分離膜装置の洗浄方法、及び浸漬型分離膜装置の洗浄システム
TWI704956B (zh) 過濾膜清洗裝置、過濾膜清洗方法、以及水處理系統
JP2008237980A (ja) 飲料水製造用膜分離装置及びその運転方法
TWI717743B (zh) 膜洗淨裝置及膜洗淨方法
WO2020070788A1 (ja) 濾過膜処理装置、膜濾過装置、および、濾過膜処理方法
JP2009214023A (ja) 固液分離膜の保管方法
WO2022157926A1 (ja) 濾過膜の洗浄装置、水処理装置及び濾過膜の洗浄方法
JP6952930B1 (ja) 水処理装置および水処理方法
CN113993611B (zh) 水处理装置及水处理方法
WO2019202775A1 (ja) 濾過モジュールの洗浄方法及び濾過装置
WO2021191997A1 (ja) 膜洗浄装置および膜分離活性汚泥システム、並びに膜洗浄方法
JP2019195761A (ja) 濾過モジュールの洗浄方法及び濾過装置
TW201114477A (en) Cleaning method and cleaning system for soaking type membrane separating device
JP2007098321A (ja) 膜ろ過装置ならびにその運転方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019503758

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217008373

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936194

Country of ref document: EP

Kind code of ref document: A1