WO2020067794A1 - 무방향성 전기강판 및 그 제조방법 - Google Patents

무방향성 전기강판 및 그 제조방법 Download PDF

Info

Publication number
WO2020067794A1
WO2020067794A1 PCT/KR2019/012630 KR2019012630W WO2020067794A1 WO 2020067794 A1 WO2020067794 A1 WO 2020067794A1 KR 2019012630 W KR2019012630 W KR 2019012630W WO 2020067794 A1 WO2020067794 A1 WO 2020067794A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
electrical steel
less
oriented electrical
excluding
Prior art date
Application number
PCT/KR2019/012630
Other languages
English (en)
French (fr)
Inventor
김재훈
김용수
신수용
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US17/280,474 priority Critical patent/US20210355558A1/en
Priority to CN201980078372.7A priority patent/CN113166873B/zh
Priority to JP2021517326A priority patent/JP7445651B2/ja
Priority to EP19865506.0A priority patent/EP3859037A4/en
Publication of WO2020067794A1 publication Critical patent/WO2020067794A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a non-oriented electrical steel sheet and a method for manufacturing the same. More specifically, the present invention relates to a non-oriented electrical steel sheet used in the iron core of a motor and a method of manufacturing the same, and a non-oriented electrical steel sheet having a low high-frequency iron loss and a high magnetic flux density and a manufacturing method thereof.
  • Efficient use of electrical energy has become a major issue to improve the global environment, such as saving energy, reducing particulate matter generation, and reducing greenhouse gases. Since more than 50% of the total electric energy currently being generated is consumed by the electric motor, it is necessary to increase the efficiency of the electric motor for efficient use of electricity. Recently, with the rapid development of eco-friendly vehicles (hybrids, plug-in hybrids, electric vehicles, and fuel cell vehicles), interest in high-efficiency driving motors has increased rapidly.In addition, awareness and government of high-efficiency such as high-efficiency motors for home appliances and super premium motors for heavy electric vehicles has been increased. As regulations continue, the demand for efficient use of electrical energy is higher than ever.
  • iron loss refers to energy loss generated at a specific magnetic flux density and frequency
  • magnetic flux density refers to the degree of magnetization obtained under a specific magnetic field. The lower the iron loss, the more energy-efficient the motor can be manufactured under the same conditions, and the higher the magnetic flux density, the smaller the motor or the copper loss.
  • the high-frequency low-iron loss characteristics are very important for automobile driving motors or air conditioner compressor motors that must be driven not only in the commercial frequency range but also in the high frequency range.
  • the present invention is to provide a non-oriented electrical steel sheet and a method of manufacturing the same. More specifically, the present invention relates to a non-oriented electrical steel sheet used in the iron core of a motor and a method of manufacturing the same, and to provide a non-oriented electrical steel sheet having low high-frequency iron loss and high magnetic flux density and a manufacturing method thereof.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention, by weight, Si: 2.5 to 3.8%, Al: 0.5 to 2.5%, Mn: 0.2 to 4.5%, As: 0.0005 to 0.02%, Bi: 0.0005 to 0.01% and the balance contain Fe and unavoidable impurities, and satisfy the following [Equation 1].
  • [Surface fine grain size] means the average particle diameter ( ⁇ m) of the fine grains in the pole surface layer of the electrical steel sheet
  • [fine grain formation thickness] means the thickness (mm) of the pole surface layer where fine grains are formed.
  • [As] is the composition of As (wt%)
  • [Bi] is the composition of Bi (wt%).
  • the sum of As and Bi may be 0.0005 to 0.025%.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention may satisfy [Equation 2].
  • Equation 2 [As] means the composition of As in the slab (% by weight), and [Bi] means the composition of Bi in the slab (% by weight).
  • Fine grains of less than 25% of the average grain size may be present in the pole surface layer within 10% of the thickness of the electrical steel sheet.
  • N 0.0040% or less (excluding 0%), C: 0.0040% or less (excluding 0%), S: 0.0040% or less (excluding 0%), Ti: 0.0040% or less (0%) Excluding), Nb: 0.0040% or less (excluding 0%), V: 0.0040% or less (excluding 0%) may further include one or more.
  • the electrical steel sheet may have a specific resistance of 45 ⁇ ⁇ cm or more.
  • the electric steel sheet may have an iron loss (W 0.5 / 10000 ) of 10 W / kg or less.
  • the manufacturing method of the non-oriented electrical steel sheet according to an embodiment of the present invention by weight, Si: 2.5 to 3.8%, Al: 0.5 to 2.5%, Mn: 0.2 to 4.5%, As: 0.0005 to 0.02% , Bi: heating the slab containing 0.0005 to 0.01% and the balance of Fe and unavoidable impurities; Hot rolling a slab to produce a hot rolled sheet; Cold rolling the hot rolled sheet to produce a cold rolled sheet; And producing an electric steel sheet by final annealing the cold rolled sheet.
  • the sum of As and Bi may be 0.0005 to 0.025%.
  • the slab can satisfy [Equation 2].
  • Equation 2 [As] means the composition of As in the slab (% by weight), and [Bi] means the composition of Bi in the slab (% by weight).
  • the cold rolled steel sheet manufactured by the manufacturing method according to an embodiment of the present invention may satisfy [Equation 1].
  • [Surface fine grain size] means the average particle diameter ( ⁇ m) of the fine grains in the pole surface layer of the electrical steel sheet
  • [fine grain formation thickness] means the thickness (mm) of the pole surface layer where fine grains are formed.
  • [As] is the composition of As in the slab (% by weight)
  • [Bi] is the composition of Bi in the slab (% by weight).
  • N 0.0040% or less (excluding 0%)
  • C 0.0040% or less (excluding 0%)
  • S 0.0040% or less (excluding 0%)
  • Ti 0.0040% or less (0% Excluded)
  • Nb 0.0040% or less (excluding 0%)
  • V 0.0040% or less (excluding 0%) may further include one or more.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention is suitable for high-speed rotation.
  • first, second, and third are used to describe various parts, components, regions, layers and / or sections, but are not limited thereto. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first portion, component, region, layer or section described below may be referred to as a second portion, component, region, layer or section without departing from the scope of the present invention.
  • the term "combination of these" included in the expression of the marki form means one or more mixtures or combinations selected from the group consisting of the components described in the expression of the marki form, the components It means to include one or more selected from the group consisting of.
  • a part when it is said that a part is “on” or “on” another part, it may be directly on or on another part, or another part may be involved therebetween. In contrast, if one part is referred to as being “just above” another part, no other part is interposed therebetween.
  • % means weight%, and 1 ppm is 0.0001% by weight.
  • the meaning of further including an additional element means that the remaining amount of iron (Fe) is replaced by an additional amount of the additional element.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention in weight%, Si: 2.5 to 3.8%, Al: 0.5 to 2.5%, Mn: 0.2 to 4.5%, As: 0.0005 to 0.02%, Bi: 0.0005 to 0.01 % And the balance contain Fe and unavoidable impurities, and satisfy the following [Equation 1].
  • [Surface fine grain size] means the average particle diameter ( ⁇ m) of the fine grains in the pole surface layer of the electrical steel sheet
  • [fine grain formation thickness] means the thickness (mm) of the pole surface layer where fine grains are formed.
  • [As] is the composition of As (wt%)
  • [Bi] is the composition of Bi (wt%).
  • N 0.0040% or less (excluding 0%)
  • C 0.0040% or less (excluding 0%)
  • S 0.0040% or less
  • Ti 0.0040% or less ( 0% is excluded)
  • Nb 0.0040% or less (excluding 0%)
  • V 0.0040% or less (excluding 0%), or more.
  • the sum of As and Bi may be 0.0005 to 0.025%.
  • Equation 2 [As] means the composition of As in the slab (% by weight), and [Bi] means the composition of Bi in the slab (% by weight).
  • Si serves to lower the iron loss by increasing the specific resistance of the material, and if added too little, the effect of improving the high-frequency iron loss may be insufficient. Conversely, if too much is added, the hardness of the material increases, and the cold rolling property is extremely deteriorated, which may degrade productivity and punchability. Therefore, Si can be added in the aforementioned range. More specifically, it may contain 2.7 to 3.5% by weight of Si.
  • Al serves to lower the iron loss by increasing the specific resistance of the material, and if it is added too little, it is not effective in reducing high-frequency iron loss and nitrides are finely formed to deteriorate magnetic properties. Conversely, if too much is added, problems may occur in all processes such as steelmaking and continuous casting, which can significantly decrease productivity. Therefore, Al can be added in the aforementioned range. More specifically, it may contain 0.5 to 2.0% by weight of Al. More specifically, it may contain 0.5 to 1.5% by weight of Al.
  • Mn increases the specific resistance of the material to improve iron loss and to form sulfides. When too little is added, MnS is finely precipitated and deteriorates magnetic properties. Conversely, if too much is added, it promotes the formation of [111] aggregates, which are unfavorable to magnetism, and the magnetic flux density can rapidly decrease. Therefore, Mn can be added in the aforementioned range. More specifically, Mn may include 0.3 to 4.0% by weight. More specifically, it may contain 0.4 to 3.0% by weight of Mn.
  • Bi serves as an additive to help As to segregate the surface. If added too little, it can help to segregate the surface of As and promote grain refinement in the polar surface layer in the annealing process. Conversely, if too much is added, it may promote the formation of fine precipitates and deteriorate iron loss. Therefore, Bi can be added in the above-mentioned range. More specifically, Bi may include 0.0007 to 0.01% by weight.
  • N is combined with Ti, Nb, and V to form nitrides or carbides. These nitrides or carbides have a smaller size, which decreases grain growth. Each nitride or carbide has a different degree and role, so the contents thereof can be added in the above-mentioned range.
  • S can form a sulfide and inferior to grain growth, so it can be added in the aforementioned range. More specifically, C, S, N, Ti, Nb and V may each contain 0.003% by weight or less.
  • the present invention includes Fe and unavoidable impurities. Addition of effective ingredients other than the above ingredients is not excluded.
  • the surface microcrystalline grain size and the fine grain formation thickness formed during annealing were found to depend on the ratio of [As] / [Bi], and were formulated. In too small a range, very few fine grains may be formed. Conversely, in a too large range, the surface fine crystal grains are coarsened and become almost the same as the average grains, and thus must be managed within the range.
  • [surface fine grain size] means the average particle diameter ( ⁇ m) of the fine grains in the pole surface layer of the electric steel sheet
  • [fine grain formation thickness] means the thickness (mm) of the pole surface layer in which the fine grains are formed
  • [ As] means the composition of As (wt%)
  • [Bi] means the composition of Bi (wt%).
  • [surface fine grain size] may mean the size of the fine grains, which is less than 25% of the average grain size present in the pole surface layer of the electrical steel sheet. More specifically, [surface fine grain size] may be 13 ⁇ m or more. More specifically, it may be 15 ⁇ m to 20 ⁇ m.
  • [fine grain formation thickness] may refer to a pole surface layer in which fine crystal grains within 10% of the thickness of the electrical steel sheet are present. More specifically, [fine grain formation thickness] may be 11 ⁇ m or more. More specifically, it may be 15 ⁇ m to 30 ⁇ m.
  • fine grains having a particle diameter of less than 25% of the average grain size may be present in the pole surface layer within 10% of the thickness of the electrical steel sheet.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention may have a specific resistance of 45 ⁇ ⁇ cm or more. More specifically, it may be 53 ⁇ ⁇ cm or more. More specifically, it may be 64 ⁇ ⁇ cm or more. The upper limit is not particularly limited, but may be 100 ⁇ ⁇ cm or less.
  • high-frequency iron loss (W 0.5 / 10000 ) may be 10 W / kg or less. More specifically, it may be 9W / kg or less. More specifically, it may be 8.5 W / kg or less.
  • the lower limit is not particularly limited, but may be 7.0 W / kg or more.
  • the iron loss (W 10/400 ) may be 15.5 W / kg or less. More specifically, it may be 14.8 W / kg or less.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention has a magnetic flux density (B 50 ) of 1.63T. It can be over. When the magnetic flux density is 1.63T, the torque is excellent when starting and accelerating when used as an automobile motor.
  • each step will be described in detail.
  • a slab satisfying the above-described composition is prepared.
  • the reason for limiting the addition ratio of each composition in the slab is the same as the reason for limiting the composition of the non-oriented electrical steel sheet described above, and thus repeated description will be omitted. Since the composition of the slab is not substantially changed in the manufacturing process of hot rolling, hot rolled sheet annealing, cold rolling, final annealing, which will be described later, the composition of the slab and the composition of the non-oriented electrical steel sheet are substantially the same.
  • the slab can be produced by solidifying the controlled molten steel in a continuous casting process.
  • the prepared slab is heated.
  • the subsequent hot rolling process can be performed smoothly and the slab can be homogenized. More specifically, heating may mean reheating.
  • the slab heating temperature may be 1100 to 1250 °C. If the heating temperature of the slab is too high, precipitates may be redissolved and finely precipitated after hot rolling.
  • hot-rolled slabs are produced by hot rolling the slabs.
  • the finish rolling temperature of hot rolling may be 800 ° C or higher.
  • the method may further include annealing the hot rolled sheet.
  • the hot-rolled sheet annealing temperature may be 850 to 1150 ° C.
  • the temperature range may be 950 to 1125 ° C.
  • the annealing temperature of the hot rolled sheet may be 900 to 1100 ° C. The hot-rolled sheet annealing is performed to increase the orientation favorable to magnetism as necessary, and may be omitted.
  • the hot rolled sheet is pickled and cold rolled to a predetermined plate thickness to produce a cold rolled sheet. It can be applied differently depending on the thickness of the hot rolled sheet, but it can be produced by cold rolling to a final thickness of 0.2 to 0.65 mm by applying a reduction ratio of 70 to 95%.
  • an electric steel sheet is manufactured by final annealing the cold rolled sheet.
  • the final annealing temperature can be 800 to 1050 ° C. If the final annealing temperature is too low, recrystallization does not occur sufficiently, and if the final annealing temperature is too high, rapid growth of crystal grains may occur, resulting in magnetic flux density and high-frequency iron loss. More specifically, final annealing may be performed at a temperature of 900 to 1000 ° C. In the final annealing process, all the processed tissues formed in the cold rolling step (ie, 99% or more) may be recrystallized.
  • the heating rate up to 700 ° C can be controlled to 10 ° C / s or more. This is to promote the fine particles of the polar surface through the surface segregation of special additive elements.
  • the pole surface layer may mean within 10% of the thickness of the steel sheet, and the fine grain means a fine grain size of less than 25% of the average grain size. More specifically, it can be controlled to 13 to 35 ° C / s or more.
  • the heating may be performed at a rate of 10 to 30 ° C / s from 700 ° C to the final annealing temperature described above.
  • an optical microscope can be used to check the grain size of the fine grains on the surface of the pole, and the observation surface is a cross-section (TD surface) in the rolling vertical direction.
  • a slab was prepared as shown in Table 1 below, and the remaining Fe and unavoidable impurities were prepared.
  • the impurities C, S, N and Ti of the slab were all controlled to 0.003%.
  • the slab was heated to 1150 ° C and hot rolled to a hot finishing temperature of 850 ° C to produce a hot-rolled sheet with a plate thickness of 2.0 mm.
  • the hot-rolled hot-rolled sheet was annealed at 1100 ° C for 4 minutes, and then pickled and cold-rolled to a thickness of 0.25 mm, and final annealing was performed at a temperature range and a temperature increase rate in Table 2. Therefore, as shown in Table 2, an annealing plate having an average grain size of 80 to 100 ⁇ m was produced.
  • an optical microscope may be used to check the grain size of the fine grains on the pole surface, and the observation surface is a cross section (TD) in the vertical direction of rolling.
  • B 50 magnetic flux density
  • W 10/400 iron loss
  • W 0.5 / 100000 high-frequency iron loss
  • B 50 is the magnetic flux density derived from the magnetic field of 5000 A / m
  • W 10/400 is the iron loss when the magnetic flux density of 1.0T is induced at a frequency of 400 Hz
  • W 0.5 / 100000 is the frequency of 100000 Hz It means the iron loss when the magnetic flux density of 0.05T is induced.
  • a fine surface layer having a thickness of about 15 ⁇ m or more was formed, and the diameter of the fine surface particles was about 15 ⁇ m or more. In this case, high-frequency iron loss is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

본 발명은 고주파철손이 우수한 무방향성 전기강판 및 그 제조방법에 관한 것이다. 본 발명의 일 실시예에 의한 무방향성 전기강판은 중량%로, Si: 2.5 내지 3.8%, Al: 0.5 내지 2.5%, Mn: 0.2 내지 4.5%, As: 0.0005 내지 0.02%, Bi: 0.0005 내지 0.01% 및 잔부는 Fe 및 불가피한 불순물을 포함하고, 하기 [식 1]을 만족한다. [식 1] 0.3 ≤ [표면미세결정립경] × [미세립형성두께] × ([As]/[Bi]) ≤ 5.0 식 1에서, [표면미세결정립경]은 전기강판 극표면층의 미세한 결정립의 평균 입경(㎛)을 의미하고, [미세립형성두께]는 미세한 결정립이 형성되는 극표면층의 두께(mm)를 의미하며, [As]는 As의 조성(중량%), [Bi]는 Bi의 조성(중량%)을 의미한다.

Description

무방향성 전기강판 및 그 제조방법
본 발명은 무방향성 전기강판 및 그 제조방법에 관한 것이다. 보다 구체적으로 모터의 철심에 사용되는 무방향성 전기강판 및 그 제조방법에 관한 것으로, 고주파철손이 낮고 자속밀도가 높은 무방향성 전기강판 및 그 제조방법에 관한 것이다.
에너지 절약, 미세먼지 발생 저감 및 온실가스 저감 등 지구 환경 개선을 위해 전기에너지의 효율적인 사용이 큰 이슈가 되고 있다. 현재 발전되는 전체 전기에너지의 50% 이상이 전동기에서 소비되고 있기 때문에 전기의 효율적인 사용을 위해서는 전동기의 고효율화가 반드시 필요한 실정이다. 최근, 친환경 자동차(하이브리드, 플러그인하이브리드, 전기차, 연료전지차) 분야가 급격히 발전함에 따라 고효율 구동모터에 대한 관심이 급증하고 있으며, 아울러 가전용 고효율 모터, 중전기용 슈퍼프리미엄 모터 등 고효율화에 대한 인식 및 정부 규제가 지속되고 있어, 효율적인 전기에너지 사용을 위한 요구가 그 어느 때보다 높다고 할 수 있다.
한편, 전동기의 고효율화를 위해서는 소재의 선택부터 설계, 조립, 제어에 이르기까지 모든 영역에서 최적화가 매우 중요하다. 특히 소재 측면에서는 전기강판의 자성특성이 가장 중요하여, 저철손 및 고자속 밀도에 대한 요구가 높다. 철손은 특정 자속밀도와 주파수에서 발생하는 에너지 손실을 의미하며, 자속밀도는 특정 자장 하에서 얻어지는 자화의 정도를 의미한다. 철손이 낮을수록 동일한 조건에서 에너지 효율이 높은 모터를 제조할 수 있으며, 자속밀도가 높을수록 모터를 소형화시키거나 구리손을 감소시킬 수 있다. 이 때, 상용주파수 영역뿐만 아니라 고주파 영역에서도 구동해야 하는 자동차 구동모터나 에어컨 컴프레셔용 모터는 고주파 저철손 특성이 아주 중요하다.
이러한 고주파 저철손 특성을 얻기 위해서 강판의 제조 과정에서는 Si, Al, Mn과 같은 비저항 원소를 다량 첨가해야 하고, 강판 내부에 존재하는 개재물 및 미세 석출물을 적극 제어하여 이들이 자벽 이동을 방해하지 못하도록 해야 한다. 하지만, 개재물 및 미세 석출물 제어를 위해서 불순물 원소인 C, S, N, Ti, Nb, V 등과 같은 원소를 제강에서 극저로 정제하려면 고급 원료를 사용해야 하며, 아울러 2차 정련에 많은 시간이 걸려 생산성이 떨어지는 문제점이 있다.
따라서, Si, Al, Mn과 같은 비저항 원소의 다량 첨가 방법 및 불순물 원소의 극저 제어를 위한 연구가 이루어지고 있지만, 이에 대한 실질적인 적용 결과는 미미한 수준이다.
본 발명은 무방향성 전기강판 및 그 제조방법을 제공하고자 한다. 보다 구체적으로 모터의 철심에 사용되는 무방향성 전기강판 및 그 제조방법에 관한 것으로, 고주파철손이 낮고 자속밀도가 높은 무방향성 전기강판 및 그 제조방법을 제공하고자 한다.
본 발명의 일 실시예에 의한 무방향성 전기강판은, 중량%로, Si: 2.5 내지 3.8%, Al: 0.5 내지 2.5%, Mn: 0.2 내지 4.5%, As: 0.0005 내지 0.02%, Bi: 0.0005 내지 0.01% 및 잔부는 Fe 및 불가피한 불순물을 포함하고, 하기 [식 1]을 만족한다.
[식 1]
Figure PCTKR2019012630-appb-I000001
식 1에서, [표면미세결정립경]은 전기강판 극표면층의 미세한 결정립의 평균 입경(㎛)을 의미하고, [미세립형성두께]는 미세한 결정립이 형성되는 극표면층의 두께(mm)를 의미하며, [As]는 As의 조성(중량%), [Bi]는 Bi의 조성(중량%)을 의미한다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 As와 Bi의 합계는 0.0005 내지 0.025% 일 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 [식 2]를 만족할 수 있다.
[식 2]
Figure PCTKR2019012630-appb-I000002
식 2에서, [As]는 슬라브 내의 As의 조성(중량%), [Bi]는 슬라브 내의 Bi의 조성(중량%)을 의미한다.
전기강판 두께의 10% 이내의 극표면층에 평균 결정립경의 25% 미만의 미세한 결정립이 존재할 수 있다.
전기강판은 N: 0.0040% 이하(0%를 제외함), C: 0.0040% 이하(0%를 제외함), S: 0.0040% 이하(0%를 제외함), Ti: 0.0040% 이하(0%를 제외함), Nb: 0.0040% 이하(0%를 제외함), V: 0.0040% 이하(0%를 제외함) 중 1종 이상을 더 포함할 수 있다.
전기강판은 비저항이 45μΩ·㎝ 이상일 수 있다.
전기강판은 철손(W0.5/10000)이 10W/kg 이하일 수 있다.
한편, 본 발명의 일 실시예에 의한 무방향성 전기강판의 제조방법은, 중량%로, Si: 2.5 내지 3.8%, Al: 0.5 내지 2.5%, Mn: 0.2 내지 4.5%, As: 0.0005 내지 0.02%, Bi: 0.0005 내지 0.01% 및 잔부는 Fe 및 불가피한 불순물을 포함하는 슬라브를 가열하는 단계; 슬라브를 열간 압연하여 열연판을 제조하는 단계; 열연판을 냉간압연하여 냉연판을 제조하는 단계; 및 냉연판을 최종 소둔하여 전기강판을 제조하는 단계;를 포함한다.
슬라브는 As와 Bi의 합계는 0.0005 내지 0.025% 일 수 있다.
슬라브는 [식 2]를 만족할 수 있다.
[식 2]
Figure PCTKR2019012630-appb-I000003
식 2에서, [As]는 슬라브 내의 As의 조성(중량%), [Bi]는 슬라브 내의 Bi의 조성(중량%)을 의미한다.
냉연판을 최종 소둔하는 단계;에서, 700℃까지의 가열속도를 10℃/s이상으로 할 수 있다.
본 발명의 일 실시예에 의한 제조방법으로 제조된 냉연강판은 [식 1]을 만족할 수 있다.
[식 1]
Figure PCTKR2019012630-appb-I000004
식 1에서, [표면미세결정립경]은 전기강판 극표면층의 미세한 결정립의 평균 입경(㎛)을 의미하고, [미세립형성두께]는 미세한 결정립이 형성되는 극표면층의 두께(mm)를 의미하며, [As]는 슬라브 내의 As의 조성(중량%), [Bi]는 슬라브 내의 Bi의 조성(중량%)을 의미한다.
슬라브는 N: 0.0040% 이하(0%를 제외함), C: 0.0040% 이하(0%를 제외함), S: 0.0040% 이하(0%를 제외함), Ti: 0.0040% 이하(0%를 제외함), Nb: 0.0040% 이하(0%를 제외함), V: 0.0040% 이하(0%를 제외함) 중 1종 이상을 더 포함할 수 있다.
열연판을 제조하는 단계; 이후, 열연판을 열연판 소둔하는 단계;를 더 포함할 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은, As와 Bi를 일정 비율로 첨가하여 최종 소둔 시 승온 속도를 최적화하면 표면미세결정립을 조장하여 스킨효과에 따른 고주파영역의 철손을 개선할 수 있다.
따라서 본 발명의 일 실시예에 의한 무방향성 전기강판은, 고속회전에 적합하다.
이러한 무방향성 전기강판을 제조할 수 있는 기술을 제공하여, 친환경 자동차용 모터, 고효율 가전용 모터, 슈퍼프리미엄급 전동기를 제조할 수 있도록 기여할 수 있다.
본 명세서에서, 제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
본 명세서에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서, 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
본 명세서에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본 명세서에서, 어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
또한, 특별히 언급하지 않는 한 %는 중량%를 의미하며, 1ppm 은 0.0001중량%이다.
본 발명의 일 실시예에서 추가 원소를 더 포함하는 것의 의미는 추가 원소의 추가량 만큼 잔부인 철(Fe)을 대체하여 포함하는 것을 의미한다.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
무방향성 전기강판의 고주파철손을 개선하기 위해서는 결정립경을 작게 만들어야 하며, 아울러 스킨효과로 인하여 표면층의 결정립을 더욱 미세하게 만들어야 할 필요가 있다. 하지만 강판 내에서 결정립경을 이원화시키는 것은 석출물의 도입 등으로 인해 자성열화를 가져올 수 있다. 본 발명에서는 특수 원소인 As, Bi를 이용하여 표면에 미세한 결정립을 제조하여 생산성이 우수할 뿐만 아니라 고주파철손이 우수한 전기강판을 더욱 쉽게 제조할 수 있도록 하는 것을 목적으로 한다. 이하 상기 목적을 달성하기 위한 조건을 설명한다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 중량%로, Si: 2.5 내지 3.8%, Al: 0.5 내지 2.5%, Mn: 0.2 내지 4.5%, As: 0.0005 내지 0.02%, Bi: 0.0005 내지 0.01% 및 잔부는 Fe 및 불가피한 불순물을 포함하고, 하기 [식 1]을 만족한다.
[식 1]
Figure PCTKR2019012630-appb-I000005
식 1에서, [표면미세결정립경]은 전기강판 극표면층의 미세한 결정립의 평균 입경(㎛)을 의미하고, [미세립형성두께]는 미세한 결정립이 형성되는 극표면층의 두께(mm)를 의미하며, [As]는 As의 조성(중량%), [Bi]는 Bi의 조성(중량%)을 의미한다.
보다 구체적으로는, N: 0.0040% 이하(0%를 제외함), C: 0.0040% 이하(0%를 제외함), S: 0.0040% 이하(0%를 제외함), Ti: 0.0040% 이하(0%를 제외함), Nb: 0.0040% 이하(0%를 제외함), V: 0.0040% 이하(0%를 제외함) 중 1종 이상을 더 포함할 수 있다.
보다 구체적으로는, As와 Bi의 합계는 0.0005 내지 0.025% 일 수 있다.
보다 구체적으로는, [식 2]를 만족할 수 있다.
[식 2]
Figure PCTKR2019012630-appb-I000006
식 2에서, [As]는 슬라브 내의 As의 조성(중량%), [Bi]는 슬라브 내의 Bi의 조성(중량%)을 의미한다.
먼저, 무방향성 전기강판의 성분을 한정한 이유를 설명한다.
Si: 2.5 내지 3.8 중량%
Si는 재료의 비저항을 높여 철손을 낮추어주는 역할을 하며, 너무 적게 첨가될 경우, 고주파 철손 개선 효과가 부족할 수 있다. 반대로 너무 많이 첨가될 경우 재료의 경도가 상승하여 냉간압연성이 극도로 악화되어 생산성 및 타발성이 열위해질 수 있다. 따라서 전술한 범위에서 Si를 첨가할 수 있다. 더욱 구체적으로 Si를 2.7 내지 3.5 중량% 포함할 수 있다.
Al: 0.5 내지 2.5 중량%
Al은 재료의 비저항을 높여 철손을 낮추는 역할을 하며, 너무 적게 첨가되면, 고주파 철손 저감에 효과가 없고 질화물이 미세하게 형성되어 자성을 열화시킬 수 있다. 반대로 너무 많이 첨가될 경우 제강과 연속주조 등의 모든 공정상에 문제를 발생시켜 생산성을 크게 저하시킬 수 있다. 따라서, 전술한 범위에서 Al을 첨가할 수 있다. 더욱 구체적으로 Al을 0.5 내지 2.0 중량% 포함할 수 있다. 더욱 구체적으로 Al을 0.5 내지 1.5 중량% 포함할 수 있다.
Mn: 0.2 내지 4.5 중량%
Mn은 재료의 비저항을 높여 철손을 개선하고 황화물을 형성시키는 역할을 하며, 너무 적게 첨가되면, MnS가 미세하게 석출되어 자성을 열화시킨다. 반대로 너무 많이 첨가되면 자성에 불리한 [111]집합조직의 형성을 조장하여 자속밀도가 급격히 감소할 수 있다. 따라서, 전술한 범위에서 Mn을 첨가할 수 있다. 더욱 구체적으로 Mn을 0.3 내지 4.0 중량% 포함할 수 있다. 더욱 구체적으로 Mn을 0.4 내지 3.0 중량% 포함할 수 있다.
As: 0.0005 내지 0.02 중량%
As는 표면층에 편석하여 결정립 성장성을 조절하는 역할을 한다. 기본적으로 본 발명의 일 실시예에서는 종래 기술의 문제점을 해결하고자 주요 첨가 성분인 Si, Al 및 Mn의 범위를 최적화할 뿐 아니라, 특수 첨가 원소인 As 및 Bi를 일정한 비율로 소량 첨가한다. 또한 추후 제조 방법의 설명에서 언급할 최종 소둔 시의 승온 속도까지 제어하여, 표면에 미세립을 형성시켜 자성이 우수한 범위를 한정하였다. 이 때, As이 너무 적게 첨가되면 충분히 편석되지 못하여 결정립 성장성을 조장하는 역할을 하지 못할 수 있다. 반대로 너무 많이 첨가되면 강판 전체의 결정립 성장성을 억제하여 자성이 열위해질 수 있다. 따라서, 전술한 범위에서 As를 첨가할 수 있다. 더욱 구체적으로 As를 0.001 내지 0.02 중량% 포함할 수 있다.
Bi: 0.0005 내지 0.01 중량%
Bi는 As의 표면 편석을 돕는 첨가제 역할을 한다. 너무 적게 첨가되면 As의 표면 편석을 도와 소둔 공정에서 극표면층에 결정립미세화를 촉진시키는 역할을 할 수 있다. 반대로 너무 많이 첨가되면 미세한 석출물의 형성을 조장하여 철손을 열화시킬 수 있다. 따라서, 전술한 범위에서 Bi를 첨가할 수 있다. 더욱 구체적으로 Bi를 0.0007 내지 0.01 중량% 포함할 수 있다.
기타 불술문 원소 C, S, N, Ti, Nb, V: 각 0.004 중량% 이하
N는 Ti, Nb, V과 결합하여 질화물 혹은 탄화물을 형성한다. 이러한 질화물 또는 탄화물은 그 크기가 미세할수록 결정립 성장성을 저하시키는데, 각 질화물 또는 탄화물은 그 정도 및 역할이 다르므로 이를 고려하여 그 함량은 전술한 범위에서 첨가할 수 있다.
C는 N, Ti, Nb, V등과 반응하여 미세한 탄화물을 만들어 결정립성장성 및 자구이동을 방해하는 역할을 하며, 자기시효를 일으키므로 전술한 범위에서 첨가할 수 있다.
S는 황화물을 형성하여 결정립 성장성을 열위시키므로 전술한 범위에서 첨가할 수 있다. 더욱 구체적으로 C, S, N, Ti, Nb 및 V를 각각 0.003 중량% 이하로 포함할 수 있다.
상기 성분 이외에 본 발명은 Fe 및 불가피한 불순물을 포함한다. 상기 성분 이외에 유효한 성분의 첨가를 배제하는 것은 아니다.
다음으로, 무방향성 전기강판의 성분 원소간 첨가 비율을 한정한 이유를 설명한다.
[As]+[Bi]: 0.0005 내지 0.025, [As]/[Bi]: 1 내지 10
[As]+[Bi]는 일정량이상 존재하여 극표면층에 편석하면 되므로, As 혹은 Bi 중 1종만 존재하면 되며, 그 합계가 너무 많으면 미세한 석출물형성으로 결정립 성장성이 극히 열위하게 될 수 있다. 또한 [As]/[Bi]비를 한정하는 이유는 너무 작은 범위에서는 극표면 편석이 충분하게 발생하지 않아 결정립 조장이 어려울 수 있다. 반대로 너무 큰 범위에서는 Bi의 촉매역할이 없어 표면미세결정립경을 거의 생성하지 못하므로 그 비율을 한정할 수 있다.
0.3 ≤[표면미세결정립경(μm)]×[미세립형성두께(mm)]×([As]/[Bi])≤ 5.0
소둔시 형성되는 표면미세결정립경과 미세립형성두께는 [As]/[Bi]의 비율에 의존함을 찾아내어 수식화 하였다. 너무 작은 범위에서는 미세립이 거의 형성되지 않을 수 있다. 반대로 너무 큰 범위에서는 표면 미세결정립이 조대화되어 평균결정립과 거의 동일해지므로 그 이내의 범위에서 관리되어야 한다. 여기서, [표면미세결정립경]은 전기강판 극표면층의 미세한 결정립의 평균 입경(㎛)을 의미하고, [미세립형성두께]는 미세한 결정립이 형성되는 극표면층의 두께(mm)를 의미하며, [As]는 As의 조성(중량%), [Bi]는 Bi의 조성(중량%)을 의미한다.
보다 구체적으로, [표면미세결정립경]은 전기강판 극표면층에 존재하는 평균 결정립경의 25% 미만의 크기인 미세결정립의 크기를 의미할 수 있다. 더욱 구체적으로, [표면미세결정립경]은 13μm 이상일 수 있다. 더욱 구체적으로, 15μm 내지 20㎛일 수 있다.
보다 구체적으로, [미세립형성두께]는 전기강판 두께의 10% 이내의 미세결정립이 존재하는 극표면층을 의미할 수 있다. 더욱 구체적으로, [미세립형성두께]는 11μm 이상일 수 있다. 더욱 구체적으로, 15μm 내지 30㎛일 수 있다.
따라서, 본 발명의 일 실시예에 의한 무방향성 전기강판은, 전기강판 두께의 10% 이내의 극표면층에 평균 결정립경의 25% 미만의 입경을 갖는 미세한 결정립이 존재할 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은, 비저항이 45μΩ·㎝ 이상일 수 있다. 보다 구체적으로는, 53μΩ·㎝ 이상일 수 있다. 더욱 구체적으로는, 64μΩ·㎝ 이상일 수 있다. 상한은 특별히 제한되지 않으나, 100 μΩ·㎝ 이하일 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은, 고주파 철손(W0.5/10000)이 10W/kg 이하일 수 있다. 보다 구체적으로는, 9W/kg 이하일 수 있다. 더욱 구체적으로는, 8.5W/kg 이하일 수 있다. 하한은 특별히 제한되지 않으나, 7.0W/kg 이상일 수 있다. 본 발명의 일 실시예에서 고주파 철손이 매우 낮기 때문에, 특히 자동차 모터로 사용할 시 고속주행에서 연비가 우수하다.
본 발명의 일 실시예에 의한 무방향성 전기강판은, 철손(W10/400)이 15.5W/kg 이하일 수 있다. 보다 구체적으로는, 14.8W/kg 이하일 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은, 자속밀도(B50)가 1.63T 이상 일 수 있다. 자속밀도가 1.63T 인 경우는 자동차 모터로 사용시 출발 및 가속시 토크가 우수한 특징이 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판의 제조방법은 중량%로 Si: 2.5 내지 3.8%, Al: 0.5 내지 2.5%, Mn: 0.2 내지 4.5%, As: 0.0005 내지 0.02%, Bi: 0.0005 내지 0.01% 및 잔부는 Fe 및 불가피한 불순물을 포함하는 슬라브를 준비하는 단계; 슬리브를 가열하는 단계; 가열된 슬라브를 열간압연하여 열연판을 제조하는 단계; 열연판을 냉간압연하여 냉연판을 제조하는 단계; 및 냉연판을 최종 소둔하여 전기강판을 제조하는 단계;를 포함하고, 냉연판을 최종 소둔하는 단계;에서, 700 ℃까지의 가열속도를 10 ℃/s이상으로 한다. 이하에서는 각 단계별로 구체적으로 설명한다.
먼저, 전술한 조성을 만족하는 슬라브를 준비한다. 슬라브 내의 각 조성의 첨가 비율을 한정한 이유는 전술한 무방향성 전기강판의 조성 한정 이유와 동일하므로, 반복되는 설명을 생략한다. 후술할 열간압연, 열연판 소둔, 냉간압연, 최종 소둔 등의 제조 과정에서 슬라브의 조성은 실질적으로 변동되지 아니하므로, 슬라브의 조성과 무방향성 전기강판의 조성은 실질적으로 동일하다.
이러한 제강 단계에서 용강 내에 합금원소를 첨가할 시에는 Si, Al 및 Mn을 우선 첨가한 후, As 또는 Bi 중 1종 이상을 투입한 후, Ar 가스 등을 이용하여 5분 이상의 충분한 버블링(Bubbling)을 실시하여 As와 Bi가 반응할 수 있도록 할 수 있다. 그 후, 제어된 용강을 연속 주조 공정에서 응고시켜 슬라브를 제조할 수 있다.
다음으로, 제조된 슬라브를 가열한다. 가열함으로써 후속되는 열간압연 공정을 원활히 수행하고, 슬라브를 균질화 처리할 수 있다. 보다 구체적으로, 가열은 재가열을 의미할 수 있다. 이 때, 슬라브 가열 온도는 1100 내지 1250 ℃일 수 있다. 슬라브의 가열 온도가 너무 높으면 석출물이 재용해되어 열간압연 이후 미세하게 석출될 수 있다.
다음으로, 가열된 슬라브를 열간압연하여 열연판을 제조한다. 열간압연의 마무리 압연 온도는 800℃ 이상일 수 있다.
열연판을 제조하는 단계 이후, 열연판을 열연판 소둔하는 단계를 더 포함할 수 있다. 이 때 열연판 소둔 온도는 850 내지 1150℃일 수 있다. 열연판 소둔 온도가 너무 낮으면 조직이 성장하지 않거나 미세하게 성장하여 자속밀도의 상승 효과가 적으며, 반대로 열연판 소둔 온도가 너무 높으면 자기특성이 오히려 열화되고, 판형상의 변형으로 인해 압연작업성이 나빠질 수 있다. 더욱 구체적으로 온도범위는 950 내지 1125℃일 수 있다. 더욱 구체적으로 열연판의 소둔온도는 900 내지 1100℃일 수 있다. 열연판 소둔은 필요에 따라 자성에 유리한 방위를 증가시키기 위하여 수행되는 것이며, 생략도 가능하다.
다음으로, 열연판을 산세하고 소정의 판두께가 되도록 냉간압연하여 냉연판을 제조한다. 열연판 두께에 따라 다르게 적용될 수 있으나, 70 내지 95%의 압하율을 적용하여 최종두께가 0.2 내지 0.65 mm가 되도록 냉간압연하여 냉연판을 제조 할 수 있다.
다음으로, 냉연판을 최종 소둔하여 전기강판을 제조한다. 최종 소둔 온도는 800 내지 1050℃가 될 수 있다. 최종 소둔 온도가 너무 낮으면 재결정이 충분히 발생하지 못하고, 최종 소둔 온도가 너무 높으면 결정립의 급격한 성장이 발생하여 자속밀도와 고주파 철손이 열위해 질 수 있다. 더욱 구체적으로 900 내지 1000℃의 온도에서 최종 소둔할 수 있다. 최종 소둔 과정에서 전 단계인 냉간압연 단계에서 형성된 가공 조직이 모두(즉, 99% 이상) 재결정될 수 있다.
냉연판을 최종 소둔하는 단계에서, 700℃까지의 가열속도를 10℃/s이상으로 제어할 수 있다. 이는 특수 첨가 원소의 표면 편석을 통하여 극표면 미세립을 조장하기 위한 것이다. 극표면층은 강판 두께의 10%이내를 의미할 수 있고, 미세립은 평균 결정립경의 25%미만의 크기의 미세한 결정립경을 의미한다. 더욱 구체적으로 13 내지 35℃/s 이상으로 제어할 수 있다.
이후, 700℃ 초과 내지 전술한 최종 소둔 온도까지는 10 내지 30℃/s 의 속도로 가열할 수 있다.
이때의 극표면 미세립의 결정립경의 확인은 광학현미경을 이용할 수 있고, 관찰면은 압연수직방향의 단면(TD면)이다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
실시예
하기 표 1과 같이 조성되고, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 제조하였다. 슬라브의 불순물 C, S, N 및 Ti는 모두 0.003%로 제어하였다. 슬라브를 1150℃로 가열하고, 850℃의 열간 마무리온도로 열간압연하여, 판두께 2.0mm의 열연판을 제조하였다. 열간압연된 열연판은 1100℃에서 4분간 열연판 소둔 후, 산세 및 냉간압연하여 두께를 0.25mm로 만들고 표 2의 온도 범위 및 승온 속도로 최종 소둔을 시행하였다. 따라서 표 2에 기재된 바와 같이, 80 내지 100μm의 평균 결정립경의 소둔판을 제작하였다. 이때의 극표면 미세립의 결정립경의 확인은 광학현미경을 이용할 수 있고, 관찰면은 압연수직방향의 단면(TD)이다.
각 시편에 대한 비저항, 자속밀도(B50), 철손(W10/400) 및 고주파철손(W0.5/100000)을 하기 표 3에 나타내었다. 이러한 자기적 성질은 Single Sheet tester를 이용하여 압연방향 및 수직방향의 평균값으로 결정하였다. 이 때, B50은 5000A/m의 자기장에서 유도되는 자속밀도이고, W10/400은 400Hz의 주파수로 1.0T의 자속밀도를 유기하였을 때의 철손을 의미하며, W0.5/100000은 100000Hz의 주파수로 0.05T의 자속밀도를 유기하였을 때의 철손을 의미한다.
발명의 범위에 속하는 강종의 경우, 두께 약 15μm 이상의 미세표면층이 형성되었으며, 표면미세립의 직경도 약 15μm 이상이 되었다. 이 경우 고주파 철손이 우수하다.
Figure PCTKR2019012630-appb-T000001
Figure PCTKR2019012630-appb-T000002
Figure PCTKR2019012630-appb-I000007
Figure PCTKR2019012630-appb-T000003
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (13)

  1. 중량%로, Si: 2.5 내지 3.8%, Al: 0.5 내지 2.5%, Mn: 0.2 내지 4.5%, As: 0.0005 내지 0.02%, Bi: 0.0005 내지 0.01% 및 잔부는 Fe 및 불가피한 불순물을 포함하고, 하기 [식 1]을 만족하는 무방향성 전기강판.
    [식 1]
    Figure PCTKR2019012630-appb-I000008
    (식 1에서, [표면미세결정립경]은 전기강판 극표면층의 미세한 결정립의 평균 입경(㎛)을 의미하고, [미세립형성두께]는 미세한 결정립이 형성되는 극표면층의 두께(mm)를 의미하며, [As]는 As의 조성(중량%), [Bi]는 Bi의 조성(중량%)을 의미한다.)
  2. 제1항에 있어서,
    상기 As와 Bi의 합계는 0.0005 내지 0.025%인 무방향성 전기강판.
  3. 제1항에 있어서,
    하기 [식 2]를 만족하는 무방향성 전기강판.
    [식 2]
    Figure PCTKR2019012630-appb-I000009
    (식 2에서, [As]는 슬라브 내의 As의 조성(중량%), [Bi]는 슬라브 내의 Bi의 조성(중량%)을 의미한다.)
  4. 제1항에 있어서,
    상기 전기강판 두께의 10% 이내의 극표면층에 평균 결정립경의 25% 미만의 미세한 결정립이 존재하는 무방향성 전기강판.
  5. 제1항에 있어서,
    N: 0.0040% 이하(0%를 제외함), C: 0.0040% 이하(0%를 제외함), S: 0.0040% 이하(0%를 제외함), Ti: 0.0040% 이하(0%를 제외함), Nb: 0.0040% 이하(0%를 제외함), V: 0.0040% 이하(0%를 제외함) 중 1종 이상을 더 포함하는 무방향성 전기강판.
  6. 제1항에 있어서,
    비저항이 45μΩ·㎝ 이상인 무방향성 전기강판.
  7. 제1항에 있어서,
    철손(W0.5/10000)이 10W/kg 이하인 무방향성 전기강판.
  8. 중량%로, Si: 2.5 내지 3.8%, Al: 0.5 내지 2.5%, Mn: 0.2 내지 4.5%, As: 0.0005 내지 0.02%, Bi: 0.0005 내지 0.01% 및 잔부는 Fe 및 불가피한 불순물을 포함하는 슬라브를 준비하는 단계;
    상기 슬라브를 가열하는 단계;
    상기 가열된 슬라브를 열간압연하여 열연판을 제조하는 단계;
    상기 열연판을 냉간압연하여 냉연판을 제조하는 단계; 및
    상기 냉연판을 최종 소둔하여 전기강판을 제조하는 단계;
    를 포함하고,
    상기 냉연판을 최종 소둔하는 단계;에서, 700℃까지의 가열속도를 10℃/s이상으로 하는 무방향성 전기강판의 제조방법.
  9. 제8항에 있어서,
    상기 슬라브의 As와 Bi의 합계는 0.0005 내지 0.025% 인 무방향성 전기강판의 제조방법.
  10. 제8항에 있어서,
    상기 슬라브는 [식 2]를 만족하는 무방향성 전기강판의 제조방법.
    [식 2]
    Figure PCTKR2019012630-appb-I000010
    (식 2에서, [As]는 슬라브 내의 As의 조성(중량%), [Bi]는 슬라브 내의 Bi의 조성(중량%)을 의미한다.)
  11. 제 8 항에 있어서,
    상기 슬라브는 N: 0.0040% 이하(0%를 제외함), C: 0.0040% 이하(0%를 제외함), S: 0.0040% 이하(0%를 제외함), Ti: 0.0040% 이하(0%를 제외함), Nb: 0.0040% 이하(0%를 제외함), V: 0.0040% 이하(0%를 제외함) 중 1 종 이상을 더 포함하는 무방향성 전기강판의 제조방법.
  12. 제 8 항에 있어서,
    상기 열연판을 제조하는 단계; 이후,
    상기 열연판을 열연판 소둔하는 단계;를 더 포함하는 무방향성 전기강판의 제조방법.
  13. 제8항에 있어서,
    상기 전기강판은 [식 1]을 만족하는 무뱡항성 전기강판의 제조방법.
    [식 1]
    Figure PCTKR2019012630-appb-I000011
    (식 1에서, [표면미세결정립경]은 전기강판 극표면층의 미세한 결정립의 평균 입경(㎛)을 의미하고, [미세립형성두께]는 미세한 결정립이 형성되는 극표면층의 두께(mm)를 의미하며, [As]는 As의 조성(중량%), [Bi]는 Bi의 조성(중량%)을 의미한다.)
PCT/KR2019/012630 2018-09-27 2019-09-27 무방향성 전기강판 및 그 제조방법 WO2020067794A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/280,474 US20210355558A1 (en) 2018-09-27 2019-09-27 Non-oriented electrical steel sheet and manufacturing method therefor
CN201980078372.7A CN113166873B (zh) 2018-09-27 2019-09-27 无取向电工钢板及其制备方法
JP2021517326A JP7445651B2 (ja) 2018-09-27 2019-09-27 無方向性電磁鋼板およびその製造方法
EP19865506.0A EP3859037A4 (en) 2018-09-27 2019-09-27 NON-ORIENTED GRAIN ELECTRIC STEEL SHEET AND ITS MANUFACTURING PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0115276 2018-09-27
KR1020180115276A KR102105530B1 (ko) 2018-09-27 2018-09-27 무방향성 전기강판 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2020067794A1 true WO2020067794A1 (ko) 2020-04-02

Family

ID=69950135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012630 WO2020067794A1 (ko) 2018-09-27 2019-09-27 무방향성 전기강판 및 그 제조방법

Country Status (6)

Country Link
US (1) US20210355558A1 (ko)
EP (1) EP3859037A4 (ko)
JP (1) JP7445651B2 (ko)
KR (1) KR102105530B1 (ko)
CN (1) CN113166873B (ko)
WO (1) WO2020067794A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102597512B1 (ko) * 2020-12-22 2023-11-01 주식회사 포스코 방향성 전기강판 및 그의 제조방법
WO2024070807A1 (ja) * 2022-09-29 2024-04-04 日本製鉄株式会社 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183248A (ja) * 1996-12-26 1998-07-14 Nippon Steel Corp 磁気特性の優れたセミプロセス無方向性電磁鋼板及びその製造方法
KR20120014576A (ko) * 2009-06-03 2012-02-17 신닛뽄세이테쯔 카부시키카이샤 무방향성 전자기 강판 및 그 제조 방법
JP2014185365A (ja) * 2013-03-22 2014-10-02 Jfe Steel Corp 高周波鉄損特性に優れる無方向性電磁鋼板
KR101728028B1 (ko) * 2015-12-23 2017-04-18 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP2017119897A (ja) * 2015-12-28 2017-07-06 新日鐵住金株式会社 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007592A (ja) * 2007-06-26 2009-01-15 Sumitomo Metal Ind Ltd 回転子用無方向性電磁鋼板の製造方法
CN107002160A (zh) * 2014-05-08 2017-08-01 材料开发中心股份公司 用于制备具有高冷轧压下度的晶粒非取向的电炉钢带材的方法
KR101705235B1 (ko) * 2015-12-11 2017-02-09 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP6210182B1 (ja) * 2015-12-28 2017-10-11 Jfeスチール株式会社 無方向性電磁鋼板および無方向性電磁鋼板の製造方法
BR112018075826B1 (pt) * 2016-08-05 2022-08-16 Nippon Steel Corporation Chapa de aço elétrica não orientada, método de fabricação de chapa de aço elétrica não orientada e método de fabricação de núcleo de motor
JP6724712B2 (ja) * 2016-10-18 2020-07-15 日本製鉄株式会社 無方向性電磁鋼板
KR101918720B1 (ko) * 2016-12-19 2018-11-14 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR102009392B1 (ko) * 2017-12-26 2019-08-09 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183248A (ja) * 1996-12-26 1998-07-14 Nippon Steel Corp 磁気特性の優れたセミプロセス無方向性電磁鋼板及びその製造方法
KR20120014576A (ko) * 2009-06-03 2012-02-17 신닛뽄세이테쯔 카부시키카이샤 무방향성 전자기 강판 및 그 제조 방법
JP2014185365A (ja) * 2013-03-22 2014-10-02 Jfe Steel Corp 高周波鉄損特性に優れる無方向性電磁鋼板
KR101728028B1 (ko) * 2015-12-23 2017-04-18 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP2017119897A (ja) * 2015-12-28 2017-07-06 新日鐵住金株式会社 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
KR20200035761A (ko) 2020-04-06
US20210355558A1 (en) 2021-11-18
KR102105530B1 (ko) 2020-04-28
CN113166873A (zh) 2021-07-23
EP3859037A4 (en) 2021-09-15
JP2022502572A (ja) 2022-01-11
CN113166873B (zh) 2023-05-26
JP7445651B2 (ja) 2024-03-07
EP3859037A1 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
WO2016099191A1 (ko) 방향성 전기강판 및 그 제조방법
WO2012087016A2 (ko) 자성이 우수한 방향성 전기강판 및 이의 제조방법
WO2012087045A2 (ko) 저철손 고강도 무방향성 전기강판 및 그 제조방법
WO2011040723A2 (ko) 저철손 고자속밀도 방향성 전기강판 및 그 제조방법
WO2013094777A1 (ko) 저철손 고자속밀도 방향성 전기강판 및 이의 제조방법
WO2020067794A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2020111783A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2020111570A1 (ko) 자성이 우수한 무방향성 전기강판 및 그 제조방법
WO2020111736A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2020111741A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2023121191A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2020067723A1 (ko) 무방향성 전기강판 및 그 제조방법
JP7037657B2 (ja) 方向性電磁鋼板およびその製造方法
KR20180071640A (ko) 무방향성 전기강판 및 그 제조방법
KR101565510B1 (ko) 무방향성 전기강판 및 그 제조방법
WO2022139336A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2024025245A1 (ko) 무방향성 전기강판 및 그 제조 방법
WO2022139335A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2023121270A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2024071628A1 (ko) 무방향성 전기 강판 및 그 제조 방법
WO2023121200A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2021125723A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2023113527A1 (ko) 방향성 전기강판 및 이의 제조 방법
JPH05186828A (ja) 低鉄損方向性電磁鋼板の製造方法
WO2020111832A2 (ko) 방향성 전기강판 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021517326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019865506

Country of ref document: EP

Effective date: 20210428