WO2020111783A2 - 무방향성 전기강판 및 그 제조방법 - Google Patents

무방향성 전기강판 및 그 제조방법 Download PDF

Info

Publication number
WO2020111783A2
WO2020111783A2 PCT/KR2019/016492 KR2019016492W WO2020111783A2 WO 2020111783 A2 WO2020111783 A2 WO 2020111783A2 KR 2019016492 W KR2019016492 W KR 2019016492W WO 2020111783 A2 WO2020111783 A2 WO 2020111783A2
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
oriented electrical
electrical steel
less
weight
Prior art date
Application number
PCT/KR2019/016492
Other languages
English (en)
French (fr)
Other versions
WO2020111783A3 (ko
Inventor
이헌주
신수용
김용수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2021531074A priority Critical patent/JP7253055B2/ja
Priority to EP19890722.2A priority patent/EP3889291A4/en
Priority to CN201980078872.0A priority patent/CN113166876A/zh
Priority to US17/298,128 priority patent/US20220018004A1/en
Publication of WO2020111783A2 publication Critical patent/WO2020111783A2/ko
Publication of WO2020111783A3 publication Critical patent/WO2020111783A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • It relates to a non-oriented electrical steel sheet and a method of manufacturing the same. Specifically, by controlling the relationship between Mn, Cu, and S appropriately and controlling the distribution of sulfides, it relates to a non-oriented electrical steel sheet having improved magnetic properties and a method for manufacturing the same.
  • the non-oriented electrical steel sheet is mainly used for a motor that converts electrical energy into mechanical energy, and requires excellent magnetic properties of the non-oriented electrical steel sheet to exhibit high efficiency in the process.
  • a motor that converts electrical energy into mechanical energy
  • excellent magnetic properties of the non-oriented electrical steel sheet to exhibit high efficiency in the process.
  • eco-friendly technology has attracted attention, it is considered very important to increase the efficiency of the motor, which accounts for the majority of the total electric energy consumption, and for this, the demand for non-oriented electrical steel sheets having excellent magnetic properties is also increasing.
  • the magnetic properties of non-oriented electrical steel sheet are mainly evaluated by iron loss and magnetic flux density.
  • Iron loss refers to energy loss generated at a specific magnetic flux density and frequency
  • magnetic flux density refers to the degree of magnetization obtained under a specific magnetic field. The lower the iron loss, the more energy-efficient the motor can be manufactured under the same conditions, and the higher the magnetic flux density, the smaller the motor or the smaller the copper loss, making a non-oriented electrical steel sheet with low iron loss and high magnetic flux density. It is important.
  • the characteristics of the non-oriented electrical steel sheet to be considered also varies.
  • many motors consider the iron loss W 15/50 most importantly when a 1.5T magnetic field is applied at a commercial frequency of 50Hz.
  • W 15/50 iron loss is not all motors for various applications, and may evaluate the iron loss at different frequencies or applied magnetic fields depending on the main operating conditions.
  • non-oriented electrical steel sheet having a thickness of 0.35 mm or less which is used in recent electric vehicle driving motors
  • magnetic properties are often important at low magnetic fields of 1.0 T or less and high frequencies of 400 Hz or more, so iron loss such as W 10/400 As a result, the properties of the non-oriented electrical steel sheet are evaluated.
  • a method commonly used to increase the magnetic properties of non-oriented electrical steel sheets is to add alloy elements such as Si.
  • the specific resistivity of the steel can be increased through the addition of these alloying elements.
  • the eddy current loss decreases, thereby reducing the total iron loss.
  • the amount of Si added increases, the magnetic flux density becomes inferior and the brittleness increases, and when it is added over a certain amount, cold rolling is impossible and commercial production becomes impossible.
  • the thickness of the electric steel sheet is reduced, the effect of reducing iron loss can be seen, and the reduction in rollability due to brittleness becomes a fatal problem.
  • non-oriented electrical steel sheet and a method for manufacturing the same. More specifically, by controlling the relationship between Mn, Cu, and S appropriately and controlling the distribution of sulfides, there is provided a non-oriented electrical steel sheet with improved magnetic properties and a method for manufacturing the same.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention, by weight, Si: 1.5 to 4.0%, Al: 0.7 to 2.5%, Mn: 1 to 2%, Cu: 0.003 to 0.02% and S: 0.005% or less (Excluding 0%), and contains the remaining Fe and unavoidable impurities, and satisfies the following expressions 1 and 2.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention may further include 0.005% by weight or less of one or more of C and N, respectively.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention may further include one or more of Nb, Ti, and V at 0.004% by weight or less, respectively.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention may further include one or more of P: 0.02% or less, B: 0.002% or less, Mg: 0.005% or less and Zr: 0.005% or less.
  • the number of sulfides having a diameter of 150 to 300 nm may be two or more times the number of sulfides having a diameter of 20 to 100 nm.
  • An area fraction of sulfides containing 150 to 300 nm in diameter and sulfides simultaneously containing Mn and Cu among sulfides having a diameter of 150 to 300 nm may be 70% or more.
  • the thickness of the steel sheet may be 0.1 to 0.3 mm.
  • the average grain size may be 40 to 100 ⁇ m.
  • Method of manufacturing a non-oriented electrical steel sheet according to an embodiment of the present invention is by weight, Si: 1.5 to 4.0%, Al: 0.7 to 2.5%, Mn: 1 to 2%, Cu: 0.003 to 0.02% and S: Heating a slab containing 0.005% or less (excluding 0%), containing the remaining Fe and unavoidable impurities, and satisfying the following expressions 1 and 2; Hot rolling a slab to produce a hot rolled sheet; It includes cold rolling the hot rolled sheet to produce a cold rolled sheet, and final annealing the cold rolled sheet.
  • the slab In the step of heating the slab, it may be heated to a temperature of 1200 °C or less.
  • the finish rolling temperature may be 750°C or higher.
  • the annealing of the hot rolled sheet in the range of 850 to 1150°C may be further included.
  • the cold rolling step may include one cold rolling step or two or more cold rolling steps between intermediate annealing.
  • the intermediate annealing temperature may be 850 to 1150°C.
  • the present invention by presenting the optimum alloy composition of the non-oriented electrical steel sheet, it is possible to form an appropriate sulfide-based precipitate, thereby producing an excellent non-oriented electrical steel sheet.
  • 1 to 4 are electron micrographs of sulfides containing Mn and Cu simultaneously.
  • first, second and third are used to describe various parts, components, regions, layers and/or sections, but are not limited thereto. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first portion, component, region, layer or section described below may be referred to as a second portion, component, region, layer or section without departing from the scope of the present invention.
  • % means weight%, and 1 ppm is 0.0001% by weight.
  • the meaning of further including an additional element means that the remaining amount of iron (Fe) is replaced by an additional amount of the additional element.
  • Non-oriented electrical steel sheet according to an embodiment of the present invention, by weight, Si: 1.5 to 4.0%, Al: 0.7 to 2.5%, Mn: 1 to 2%, Cu: 0.003 to 0.02% and S: 0.005% or less (Excluding 0%), and contains the remaining Fe and unavoidable impurities, and satisfies the following expressions 1 and 2.
  • Si is a major element added to reduce the vortex loss in iron loss by increasing the resistivity of steel. When Si is added too little, a problem arises that iron loss deteriorates. Conversely, if too much Si is added, the magnetic flux density is greatly reduced, and a problem may arise in workability. Therefore, Si can be included in the above-described range. More specifically, it may contain 2.0 to 3.9% by weight of Si. More specifically, it may contain 2.5 to 3.8% by weight of Si.
  • Aluminum (Al) plays an important role in reducing the iron loss by increasing the specific resistance together with Si, and also reduces the magnetic anisotropy, thereby reducing the magnetic deviation in the rolling direction and the rolling vertical direction. If Al is added too little, it may be difficult to form a fine nitride to obtain a magnetic improvement effect. If Al is added too much, excessive formation of nitride may deteriorate magnetic properties. Therefore, Al may be included in the above-described range. More specifically, it may contain 1.0 to 2.0% by weight of Al.
  • Manganese (Mn) increases the specific resistance of the material to improve iron loss and form sulfides. If too little Mn is added, sulfides may be finely formed and cause magnetic deterioration. Conversely, if Mn is added too much, MnS may be excessively precipitated and the formation of ⁇ 111 ⁇ aggregates, which are disadvantageous to magnetism, may be promoted, resulting in a rapid decrease in magnetic flux density. More specifically, Mn may include 0.9 to 1.9% by weight.
  • Copper (Cu) is an element that can form a metastable sulfide at high temperatures and is an element that causes defects in the surface when added in large amounts. When an appropriate amount is added, there is an effect of improving the magnetism by increasing the size of the sulfide and reducing the distribution density. More specifically, it may contain 0.005 to 0.015% by weight of Cu.
  • Sulfur (S) is a fine precipitate MnS, CuS, (Mn, Cu)S is formed to deteriorate the magnetic properties and hot workability, so it is good to keep it low. More specifically, it may contain 0.0001 to 0.005% by weight. More specifically, it may contain 0.0005 to 0.0035% by weight.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention may further include 0.005% by weight or less of one or more of C and N, respectively. More specifically, C: 0.005% by weight or less and N: 0.005% by weight or less may be further included.
  • C The lower the carbon (C) is, the better it is because it causes self-aging and combines with other impurity elements to produce carbides, which lowers its magnetic properties.
  • C When C is further included, it may further include 0.005% by weight or less. More specifically, it may further include 0.003% by weight or less.
  • N Nitrogen (N) not only forms fine and long AlN precipitates inside the base material, but also combines with other impurities to form fine nitrides to suppress grain growth and worsen iron loss. Therefore, when N is further included, it may further include 0.005% by weight or less. More specifically, it may further include 0.003% by weight or less.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention may further include one or more of Nb, Ti, and V at 0.004% by weight or less, respectively. More specifically, Nb, Ti, and V may further include 0.004% by weight or less, respectively.
  • Niobium (Nb), titanium (Ti), and vanadium (V) are elements with a very strong tendency to form precipitates in the steel and deteriorate iron loss by inhibiting grain growth by forming fine carbides, nitrides, or sulfides inside the base material. Therefore, when one or more of Nb, Ti, and V are further included, each content may be 0.004% by weight or less, respectively. More specifically, it may contain 0.002% by weight or less, respectively.
  • the non-oriented electrical steel sheet according to an embodiment of the present invention may further include one or more of P: 0.02% or less, B: 0.002% or less, Mg: 0.005% or less and Zr: 0.005% or less. More specifically, P: 0.02% or less, B: 0.002% or less, Mg: 0.005% or less and Zr: 0.005% or less may be further included.
  • the balance contains Fe and unavoidable impurities.
  • the inevitable impurities are impurities that are incorporated in the steelmaking step and the manufacturing process of the grain-oriented electrical steel sheet, which are widely known in the art, and thus detailed description will be omitted.
  • addition of elements other than the above-described alloy components is not excluded, and may be variously included within a range not detrimental to the technical spirit of the present invention.
  • the balance of Fe is included.
  • the relationship between Mn, Cu, and S can be appropriately controlled to control the distribution of sulfides, thereby improving the magnetic properties.
  • the number of sulfides having a diameter of 150 to 300 nm may be two or more times the number of sulfides having a diameter of 20 to 100 nm. Since the sulfide having a diameter of 150 to 300 nm has a small characteristic that deteriorates magnetic properties by interfering with magnetic domain wall movement compared to a sulfide having a diameter of 20 to 100 nm, the number of sulfides having a diameter of 150 to 300 nm can be increased, thereby improving the magnetic properties.
  • the diameter of the sulfide means the diameter when the sulfide is observed on a plane parallel to the rolling surface (ND plane).
  • the diameter means the diameter of the circle, assuming a circle having the same area as the sulfide.
  • the ratio of the number of sulfides having a diameter of 150 to 300 nm and the number of sulfides having a diameter of 20 to 100 nm may be a ratio of the number when observed in an area of at least 5 ⁇ m ⁇ 5 ⁇ m. More specifically, the number of sulfides having a diameter of 150 to 300 nm may be 2 to 3.5 times the number of sulfides having a diameter of 20 to 100 nm.
  • the density of sulfide having a diameter of 20 to 100 nm may be 20 to 40/mm 2 .
  • the density of sulfide having a diameter of 150 to 300 nm may be 60 to 100/mm 2 .
  • An area fraction of sulfides containing Mn and Cu at the same time among sulfides having a diameter of 150 to 300 nm may be 70% or more.
  • the sulfide containing Mn and Cu at the same time has a large size and a small number per unit area, so that the effect of interfering with magnetic domain wall movement and grain growth is significantly lowered, and Mn and Cu are significantly reduced.
  • the area fraction of the sulfide contained is 70% or more, the above effect is remarkably improved, thereby improving the magnetic properties of the steel sheet.
  • the thickness of the steel sheet may be 0.1 to 0.3 mm.
  • the average grain size may be 40 to 100 ⁇ m. If it has an appropriate thickness and an average grain diameter, magnetic properties may be improved.
  • the relationship between Mn, Cu, and S can be appropriately controlled to control the distribution of sulfides, thereby improving the magnetic properties.
  • the iron loss (W 15/50 ) of the non-oriented electrical steel sheet may be 1.9 W/Kg or less, the iron loss (W 10/400 ) of 9.5 W/kg or less, and the magnetic flux density (B 50 ) of 1.65 T or more.
  • the iron loss (W 15/50 ) is the iron loss when a magnetic flux density of 1.5T is induced at a frequency of 50 Hz.
  • the iron loss (W 10/400 ) is the iron loss when the magnetic flux density of 1.0T is induced at a frequency of 400HZ.
  • the magnetic flux density (B 50 ) is the magnetic flux density derived from a magnetic field of 5000 A/m. More specifically, the iron loss (W 15/50 ) of the non-oriented electrical steel sheet may be 1.9 W/Kg or less, the iron loss (W 10/400 ) of 9.5 W/kg or less, and the magnetic flux density (B 50 ) of 1.65 T or more. .
  • Method of manufacturing a non-oriented electrical steel sheet comprises heating the slab; Hot rolling a slab to produce a hot rolled sheet; It includes cold rolling the hot rolled sheet to produce a cold rolled sheet, and final annealing the cold rolled sheet.
  • the slab is heated.
  • the alloy component of the slab has been described in the alloy component of the non-oriented electrical steel sheet described above, a duplicate description is omitted.
  • the alloy composition of the non-oriented electrical steel sheet and the slab is substantially the same.
  • the slab by weight Si: 1.5 to 4.0%, Al: 0.7 to 2.5%, Mn: 1 to 2%, Cu: 0.003 to 0.02% and S:0.005% or less (excluding 0%) , Residual Fe and unavoidable impurities, and may satisfy Equations 1 and 2 below.
  • the heating temperature of the slab is not limited, but the slab can be heated to 1200°C or less.
  • the slab heating temperature is too high, precipitates such as AlN and MnS present in the slab are re-used and fine precipitated during hot rolling and annealing to suppress grain growth and degrade magnetic properties.
  • a hot rolled sheet is manufactured by hot rolling the slab.
  • the hot-rolled sheet thickness may be 2.5 mm or less.
  • the finish rolling temperature may be 750°C or higher. Specifically, it may be 750 to 1000 °C.
  • the hot rolled sheet can be wound at a temperature of 700°C or lower.
  • the method may further include annealing the hot rolled sheet.
  • the hot-rolled sheet annealing temperature may be 850 to 1150°C. If the hot-rolled sheet annealing temperature is too low, the tissue does not grow or grows fine and it is not easy to obtain an aggregate structure favorable to magnetism during cold rolling and annealing. If the annealing temperature is too high, the crystal grains may grow excessively and the surface defects of the plate may be excessive.
  • the hot-rolled sheet annealing is performed to increase the orientation favorable to magnetism as necessary, and may be omitted.
  • the annealed hot rolled sheet can be pickled.
  • a cold rolled sheet is manufactured by cold rolling the hot rolled sheet. Cold rolling is finally rolled to a thickness of 0.1 mm to 0.3 mm.
  • the cold rolling step may include one cold rolling step or two or more cold rolling steps between intermediate annealing. At this time, the intermediate annealing temperature may be 850 to 1150°C.
  • the cold-rolled sheet is finally annealed.
  • the annealing temperature is not particularly limited as long as the temperature is applied to the non-oriented electrical steel sheet.
  • the iron loss of the non-oriented electrical steel sheet is closely related to the grain size, so it is suitable if it is 900 to 1100°C.
  • the average grain size may be 40 to 100 ⁇ m, and all the processed tissues formed in the cold rolling step (ie, 99% or more) may be recrystallized.
  • an insulating film can be formed.
  • the insulating film may be treated with an organic, inorganic and organic/inorganic composite film, or may be treated with other insulating coating agents.
  • Slabs were prepared with the ingredients shown in Table 1. This was heated to 1150°C and hot-rolled to a finishing temperature of 780°C to produce a hot-rolled sheet with a plate thickness of 2.0mm. The hot-rolled hot-rolled sheet was annealed at 1030°C for 100 seconds, followed by pickling and cold rolling to obtain a thickness of 0.15, 0.25, 0.27, 0.30 mm, and recrystallization annealing at 1000°C for 100 seconds.
  • Thickness of each specimen [Mn]/[Cu], [Cu]/[S], diameter 20 ⁇ 100nm sulfide distribution density (a), diameter 150 ⁇ 300nm sulfide distribution density (b), b/a, among sulfides
  • the fractions of sulfides containing Mn and Cu at the same time, W 15/50 , W 10/400 , and B 50 are shown in Table 2.
  • SDS is detected as a result of EDS analysis of precipitates found when measuring the area of 0.5 ⁇ m 2 by observing more than 5 ⁇ m ⁇ 5 ⁇ m ⁇ 20000 sheets in the TEM for the same specimen with the distribution density of sulfide having a diameter of 20 to 100nm and 150 to 300nm.
  • the diameter of the precipitates to be measured was measured.
  • the fraction containing Mn and Cu simultaneously means the fraction of sulfides in which Mn and Cu are simultaneously detected in all sulfides containing S found in the above-described TEM EDS observation.
  • 1 to 4 show electron micrographs of sulfides in which Mn and Cu are simultaneously detected.
  • Magnetic properties such as magnetic flux density and iron loss were averaged by measuring the width of 60 mm ⁇ length of 60 mm ⁇ 5 sheets of specimens for each specimen and measuring them in the rolling direction and the rolling vertical direction with a single sheet tester.
  • W 15/50 is the iron loss when the magnetic flux density of 1.5T is induced at a frequency of 50Hz
  • W 10/400 is the iron loss when the magnetic flux density of 1.0T is induced at a frequency of 400Hz
  • the B50 is 5000A It means the magnetic flux density derived from the magnetic field of /m.
  • A3, A4, B3, B4, C3, C4, D3, D4, E3, E4 with appropriately controlled alloy components have a small proportion of sulfide with a diameter of 20 to 100 nm and a sulfide with a diameter of 150 to 300 nm. Since he had politics, all of his magnetic properties were excellent.

Abstract

본 발명의 일 실시예에 의한 무방향성 전기강판은 중량%로, Si: 1.5 내지 4.0%, Al: 0.7 내지 2.5%, Mn: 1 내지 2%, Cu: 0.003 내지 0.02% 및 S:0.005% 이하(0%를 제외함) 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하고, 하기 식 1 및 식 2를 만족한다. [식 1] 150 ≤ [Mn]/[Cu] ≤ 250 [식 2] 3 ≤ [Cu]/[S] ≤ 7 (식 1 및 식 2에서, [Mn], [Cu] 및 [S]는 각각 Mn, Cu 및 S의 함량(중량%)을 나타낸다.)

Description

무방향성 전기강판 및 그 제조방법
무방향성 전기강판 및 그 제조 방법에 관한 것이다. 구체적으로 Mn, Cu, S 간의 관계를 적절히 제어하여, 황화물의 분포를 제어함으로써, 자성을 개선한 무방향성 전기강판 및 그 제조 방법에 관한 것이다.
무방향성 전기강판은 전기에너지를 기계적에너지로 변환시키는 모터에 주로 사용되는데, 그 과정에서 높은 효율을 발휘하기 위해 무방향성 전기강판의 우수한 자기적 특성을 요구한다. 특히 근래에는 친환경 기술이 주목받게 되면서 전체 전기에너지 사용량의 과반을 차지하는 모터의 효율을 증가시키는 것이 매우 중요하게 생각되고 있으며, 이를 위해 우수한 자기적 특성을 갖는 무방향성 전기강판의 수요 또한 증가하고 있다.
무방향성 전기강판의 자기적 특성은 주로 철손과 자속밀도로 평가한다. 철손은 특정 자속밀도와 주파수에서 발생하는 에너지 손실을 의미하며, 자속밀도는 특정 자장 하에서 얻어지는 자화의 정도를 의미한다. 철손이 낮을수록 동일한 조건에서 에너지 효율이 높은 모터를 제조할 수 있으며, 자속밀도가 높을수록 모터를 소형화시키거나 구리손을 감소시킬 수 있으므로, 낮은 철손과 높은 자속밀도를 갖는 무방향성 전기강판을 만드는 것이 중요하다.
모터의 작동조건에 따라 고려 해야 되는 무방향성 전기강판의 특성 또한 달라지게 된다. 모터에 사용되는 무방향성 전기강판의 특성을 평가하기 위한 기준으로 다수의 모터들이 상용주파수 50Hz에서 1.5T 자장이 인가되었을 때의 철손인 W15/50을 가장 중요하게 여기고 있다. 그러나 다양한 용도의 모터들이 모두 W15/50 철손을 가장 중요하게 여기고 있는 것은 아니며, 주 작동조건에 따라 다른 주파수나 인가자장에서의 철손을 평가하기도 한다. 특히 최근의 전기자동차 구동모터에 사용되는 두께 0.35mm 이하의 무방향성 전기강판에서는 1.0T 또는 그 이하의 저자장과 400Hz 이상의 고주파에서 자기적 특성이 중요한 경우가 많으므로, W10/400 등의 철손으로 무방향성 전기강판의 특성을 평가하게 된다.
무방향성 전기강판의 자기적 특성을 증가시키기 위해 통상적으로 사용되는 방법은 Si 등의 합금원소를 첨가하는 것이다. 이러한 합금원소의 첨가를 통해 강의 비저항을 증가시킬 수 있는데, 비저항이 높아질수록 와전류 손실이 감소하여 전체 철손을 낮출 수 있게 된다. 반면 Si 첨가량이 증가할수록 자속밀도가 열위해지고 취성이 증가하는 단점이 있으며, 일정량 이상 첨가하면 냉간압연이 불가능하여 상업적 생산이 불가능해진다. 특히 전기강판은 두께를 얇게 만들수록 철손이 저감되는 효과를 볼 수 있는데, 취성에 의한 압연성 저하는 치명적인 문제가 된다. 한편, Si 외에 추가적인 강의 비저항 증가를 위해 Al, Mn 등의 원소를 첨가하는 시도가 있었다.
특히 Mn의 첨가는 강의 취성 증가를 최소화하면서 비저항을 증가시킬 수 있기 때문에, 비저항이 중요하게 고려되는 고주파 용도 무방향성 전기강판 제조방법에 적극 활용되고 있다. 다만 Mn의 첨가량이 증가할수록 Mn과 화학적으로 결합하기 쉬운 황과 결합하여 황화물이 형성되거나, 합금철에 함유된 불순물이 석출물을 형성하여 자성을 악화시킬 수 있다. 이러한 이유 때문에 Mn 첨가를 통한 강의 철손 향상은 매우 까다로운 제조기술을 요구한다.
무방향성 전기강판 및 그 제조 방법을 제공한다. 더욱 구체적으로 Mn, Cu, S 간의 관계를 적절히 제어하여, 황화물의 분포를 제어함으로써, 자성을 개선한 무방향성 전기강판 및 그 제조 방법을 제공한다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 중량%로, Si: 1.5 내지 4.0%, Al: 0.7 내지 2.5%, Mn: 1 내지 2%, Cu: 0.003 내지 0.02% 및 S:0.005% 이하(0%를 제외함) 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하고, 하기 식 1 및 식 2를 만족한다.
[식 1]
Figure PCTKR2019016492-appb-I000001
[식 2]
Figure PCTKR2019016492-appb-I000002
(식 1 및 식 2에서, [Mn], [Cu] 및 [S]는 각각 Mn, Cu 및 S의 함량(중량%)을 나타낸다.)
본 발명의 일 실시예에 의한 무방향성 전기강판은 C 및 N 중 1종 이상을 각각 0.005 중량% 이하로 더 포함할 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 Nb, Ti 및 V 중 1종 이상을 각각 0.004 중량% 이하로 더 포함할 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 P : 0.02%이하, B : 0.002%이하, Mg : 0.005%이하 및 Zr : 0.005%이하 중 1종 이상을 더 포함할 수 있다.
직경 150 내지 300nm의 황화물 개수가 직경 20 내지 100nm의 황화물 개수의 2배 이상일 수 있다.
직경 150 내지 300nm의 황화물을 포함하고, 직경 150 내지 300nm의 황화물 중 Mn과 Cu를 동시에 포함하는 황화물의 면적 분율이 70% 이상일 수 있다.
강판의 두께가 0.1 내지 0.3 mm일 수 있다.
평균 결정립 직경이 40 내지 100㎛일 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판의 제조방법은 중량%로, Si: 1.5 내지 4.0%, Al: 0.7 내지 2.5%, Mn: 1 내지 2%, Cu: 0.003 내지 0.02% 및 S:0.005% 이하(0%를 제외함) 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하고, 하기 식 1 및 식 2를 만족하는 슬라브를 가열하는 단계; 슬라브를 열간 압연하여 열연판을 제조하는 단계; 열연판을 냉간압연하여 냉연판을 제조하는 단계 및 냉연판을 최종 소둔하는 단계를 포함한다.
[식 1]
Figure PCTKR2019016492-appb-I000003
[식 2]
Figure PCTKR2019016492-appb-I000004
(식 1 및 식 2에서, [Mn], [Cu] 및 [S]는 각각 Mn, Cu 및 S의 함량(중량%)을 나타낸다.)
슬라브를 가열하는 단계에서, 1200℃ 이하의 온도로 가열할 수 있다.
열간 압연하는 단계에서 마무리 압연 온도는 750℃ 이상일 수 있다.
열간 압연하는 단계 이후, 850 내지 1150℃의 범위에서 열연판 소둔하는 단계를 더 포함할 수 있다.
냉간압연하는 단계는 1회의 냉간압연 단계 또는 중간 소둔을 사이에 둔 2회 이상의 냉간압연 단계를 포함할 수 있다.
중간 소둔 온도는 850 내지 1150℃일 수 있다.
본 발명의 일 실시예에 따르면, 무방향성 전기강판의 최적 합금 조성을 제시함으로서, 적절한 황화물계 석출물을 형성하여, 자성이 우수한 무방향성 전기강판을 제조할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 자성이 우수한 무방향성 전기강판을 통해 모터 및 발전기의 효율 향상에 기여할 수 있다.
도 1 내지 도 4는 Mn 및 Cu를 동시에 포함하는 황화물의 전자 현미경 사진이다.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.
또한, 특별히 언급하지 않는 한 %는 중량%를 의미하며, 1ppm 은 0.0001중량%이다.
본 발명의 일 실시예에서 추가 원소를 더 포함하는 것의 의미는 추가 원소의 추가량 만큼 잔부인 철(Fe)을 대체하여 포함하는 것을 의미한다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 중량%로, Si: 1.5 내지 4.0%, Al: 0.7 내지 2.5%, Mn: 1 내지 2%, Cu: 0.003 내지 0.02% 및 S:0.005% 이하(0%를 제외함) 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하고, 하기 식 1 및 식 2를 만족한다.
[식 1]
Figure PCTKR2019016492-appb-I000005
[식 2]
Figure PCTKR2019016492-appb-I000006
(식 1 및 식 2에서, [Mn], [Cu] 및 [S]는 각각 Mn, Cu 및 S의 함량(중량%)을 나타낸다.)
이하에서는 무방향성 전기강판의 성분 한정의 이유부터 설명한다.
Si: 1.5 내지 4.0 중량%
실리콘(Si)은 강의 비저항을 증가시켜서 철손 중 와류손실을 낮추기 위해 첨가되는 주요 원소이다. Si가 너무 적게 첨가되면, 철손이 열화되는 문제가 발생한다. 반대로 Si가 너무 많이 첨가되면, 자속밀도가 크게 감소하며, 가공성에 문제가 발생할 수 있다. 따라서, 전술한 범위로 Si를 포함할 수 있다. 더욱 구체적으로 Si를 2.0 내지 3.9 중량% 포함할 수 있다. 더욱 구체적으로 Si를 2.5 내지 3.8 중량% 포함할 수 있다.
Al: 0.7 내지 2.5 중량%
알루미늄(Al)은 Si과 함께 비저항을 증가시켜 철손을 감소시키는 중요한 역할을 하며 또한 자기 이방성을 감소시켜 압연 방향과 압연수직 방향의 자성 편차를 감소시키는 역할을 한다. Al이 너무 적게 첨가되면, 미세 질화물을 형성하여 자성 개선 효과를 얻기 어려울 수 있다. Al이 너무 많이 첨가되면, 질화물이 과다하게 형성되어 자성을 열화시킬 수 있다. 따라서, 전술한 범위로 Al을 포함할 수 있다. 더욱 구체적으로 Al을 1.0 내지 2.0 중량% 포함할 수 있다.
Mn: 1.0 내지 2.0 중량%
망간(Mn)은 재료의 비저항을 높여 철손을 개선하고 황화물을 형성시키는 역할을 한다. Mn이 너무 적게 첨가되면, 황화물이 미세하게 형성되어 자성 열화를 일으킬 수 있다. 반대로 Mn이 너무 많이 첨가되면, MnS가 과다하게 석출되고 자성에 불리한 {111} 집합조직의 형성을 조장하여 자속밀도가 급격히 감소하게 될 수 있다. 더욱 구체적으로 Mn을 0.9 내지 1.9 중량% 포함할 수 있다.
Cu: 0.003 내지 0.020 중량%
구리(Cu)는 고온에서 준안정 황화물을 형성할 수 있는 원소이며 다량으로 첨가시에는 표면부의 결함을 야기하는 원소이다. 적정량의 첨가시 황화물의 크기를 증가시키고 분포밀도를 감소시켜 자성을 개선시키는 효과가 있다. 더욱 구체적으로 Cu를 0.005 내지 0.015 중량% 포함할 수 있다.
S: 0.005 중량% 이하
황(S)는 미세한 석출물인 MnS, CuS, (Mn, Cu)S를 형성하여 자기특성을 악화시키고 열간가공성을 악화시키기 때문에 낮게 관리하는 것이 좋다. 더욱 구체적으로 0.0001 내지 0.005 중량% 포함할 수 있다. 더욱 구체적으로 0.0005 내지 0.0035 중량% 포함할 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 C 및 N 중 1종 이상을 각각 0.005 중량% 이하로 더 포함할 수 있다. 더욱 구체적으로 C: 0.005 중량% 이하 및 N: 0.005 중량% 이하 더 포함할 수 있다.
C: 0.005 중량% 이하
탄소(C)는 자기시효를 일으키고 기타 불순물 원소와 결합하여 탄화물을 생성하여 자기적 특성을 저하시키므로 낮을수록 바람직하다. C를 더 포함하는 경우, 0.005 중량% 이하로 더 포함할 수 있다. 보다 구체적으로는 0.003 중량%이하로 더 포함할 수 있다.
N: 0.005 중량% 이하
질소(N)은 모재 내부에 미세하고 긴 AlN 석출물을 형성할 뿐 아니라, 기타 불순물과 결합하여 미세한 질화물을 형성하여 결정립 성장을 억제하여 철손을 악화시킨다. 따라서, N을 더 포함하는 경우, 0.005 중량% 이하로 더 포함할 수 있다. 보다 구체적으로는 0.003 중량% 이하로 더 포함할 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 Nb, Ti 및 V 중 1종 이상을 각각 0.004 중량% 이하로 더 포함할 수 있다. 더욱 구체적으로 Nb, Ti 및 V를 각각 0.004 중량% 이하로 더 포함할 수 있다.
니오븀(Nb), 티타늄(Ti) 및 바나듐(V)은 강내 석출물 형성 경향이 매우 강한 원소들이며, 모재 내부에 미세한 탄화물 또는 질화물 또는 황화물을 형성하여 결정립 성장을 억제함으로써 철손을 열화시킨다. 따라서 Nb, Ti, V 중 1종 이상을 더 포함하는 경우, 각각의 함량은 각각 0.004 중량% 이하가 될 수 있다. 더욱 구체적으로 각각 0.002 중량% 이하로 포함할 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판은 P : 0.02%이하, B : 0.002%이하, Mg : 0.005%이하 및 Zr : 0.005%이하 중 1종 이상을 더 포함할 수 있다. 더욱 구체적으로 P : 0.02%이하, B : 0.002%이하, Mg : 0.005%이하 및 Zr : 0.005%이하 더 포함할 수 있다.
이들 원소는 미량이지만 강내 개재물 형성 등을 통한 자성 악화를 야기할 수 있으므로, P : 0.02%이하, B : 0.002%이하, Mg : 0.005%이하, Zr : 0.005%이하로 관리될 수 있다.
잔부는 Fe 및 불가피한 불순물을 포함한다. 불가피한 불순물에 대해서는 제강 단계 및 방향성 전기강판의 제조 공정 과정에서 혼입되는 불순물이며, 이는 해당 분야에서 널리 알려져 있으므로, 구체적인 설명은 생략한다. 본 발명의 일 실시예예서 전술한 합금 성분 외에 원소의 추가를 배제하는 것은 아니며, 본 발명의 기술 사상을 해치지 않는 범위 내에서 다양하게 포함될 수 있다. 추가 원소를 더 포함하는 경우 잔부인 Fe를 대체하여 포함한다.
전술하였듯이, 본 발명의 일 실시예에서 Mn, Cu, S 간의 관계를 적절히 제어하여, 황화물의 분포를 제어함으로써, 자성을 향상시킬 수 있다.
구체적으로 직경 150 내지 300nm의 황화물 개수가 직경 20 내지 100nm의 황화물 개수의 2배 이상일 수 있다. 직경 150 내지 300nm의 황화물은 직경 20 내지 100nm의 황화물에 비해 자벽이동을 방해하여 자기적 특성을 열화시키는 특성이 작기 때문에 직경 150 내지 300nm의 황화물 개수를 많게 형성함으로써, 자성을 향상시킬 수 있다. 이 때, 황화물의 직경이란 압연면(ND면)과 평행한 면에서 황화물을 관찰하였을 때의 직경을 의미한다. 직경이란 황화물과 동일한 면적의 원을 가정하였을 때, 그 원의 직경을 의미한다. 직경 150 내지 300nm의 황화물 개수가 직경 20 내지 100nm의 황화물 개수의 비는 적어도 5㎛×5㎛ 이상의 면적에서 관찰할 때의 개수의 비가 될 수 있다. 더욱 구체적으로 직경 150 내지 300nm의 황화물 개수가 직경 20 내지 100nm의 황화물 개수의 2배 내지 3.5배 일 수 있다.
구체적으로 직경 20 내지 100nm의 황화물의 밀도는 20 내지 40개/mm2일 수 있다. 직경 150 내지 300nm의 황화물의 밀도는 60 내지 100개/mm2일 수 있다.
직경 150 내지 300nm의 황화물 중 Mn과 Cu를 동시에 포함하는 황화물의 면적 분율이 70% 이상일 수 있다. Mn 또는 Cu를 단독으로 포함하는 황화물에 비해 Mn과 Cu를 동시에 포함하는 황화물은 그 크기가 크고 단위면적 당 개수가 적기 때문에 자벽 이동 및 결정립 성장을 방해하는 효과가 현저히 낮아지게 되며, Mn과 Cu를 동시에 포함하는 황화물의 면적 분율이 70% 이상 인 경우에 상기 효과가 극명하게 나타나므로 강판의 자성이 향상된다.
강판의 두께가 0.1 내지 0.3 mm일 수 있다. 평균 결정립 직경이 40 내지 100㎛일 수 있다. 적절한 두께 및 평균 결정립 직경을 가질 경우, 자성이 향상될 수 있다.
전술하였듯이, 본 발명의 일 실시예에서 Mn, Cu, S 간의 관계를 적절히 제어하여, 황화물의 분포를 제어함으로써, 자성을 향상시킬 수 있다. 구체적으로 무방향성 전기강판의 철손(W15/50)이 1.9W/Kg이하, 철손(W10/400)이 9.5W/kg이하, 자속밀도(B50)이 1.65T이상이 될 수 있다. 철손(W15/50)은 50Hz의 주파수로 1.5T의 자속밀도를 유기하였을 때의 철손이다. 철손(W10/400)은 400HZ의 주파수로 1.0T의 자속밀도를 유기하였을 때의 철손이다. 자속밀도(B50)는 5000A/m의 자기장에서 유도되는 자속밀도이다. 더욱 구체적으로 무방향성 전기강판의 철손(W15/50)이 1.9W/Kg이하, 철손(W10/400)이 9.5W/kg이하, 자속밀도(B50)이 1.65T이상이 될 수 있다.
본 발명의 일 실시예에 의한 무방향성 전기강판의 제조방법은 슬라브를 가열하는 단계; 슬라브를 열간 압연하여 열연판을 제조하는 단계; 열연판을 냉간압연하여 냉연판을 제조하는 단계 및 냉연판을 최종 소둔하는 단계를 포함한다.
먼저, 슬라브를 가열한다.
슬라브의 합금 성분에 대해서는 전술한 무방향성 전기강판의 합금성분에서 설명하였으므로, 중복되는 설명은 생략한다. 무방향성 전기강판의 제조 과정에서 합금 성분이 실질적으로 변동되지 않으므로, 무방향성 전기강판과 슬라브의 합금 성분은 실질적으로 동일하다.
구체적으로 슬라브는 중량%로, Si: 1.5 내지 4.0%, Al: 0.7 내지 2.5%, Mn: 1 내지 2%, Cu: 0.003 내지 0.02% 및 S:0.005% 이하(0%를 제외함) 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하고, 하기 식 1 및 식 2를 만족할 수 있다.
[식 1]
Figure PCTKR2019016492-appb-I000007
[식 2]
Figure PCTKR2019016492-appb-I000008
(식 1 및 식 2에서, [Mn], [Cu] 및 [S]는 각각 Mn, Cu 및 S의 함량(중량%)을 나타낸다.)
그 밖의 추가 원소에 대해서는 무방향성 전기강판의 합금성분에서 설명하였으므로, 중복되는 설명은 생략한다.
슬라브의 가열 온도는 제한되지 않으나, 슬라브를 1200℃이하로 가열할 수 있다. 슬라브 가열 온도가 너무 높으면, 슬라브 내에 존재하는 AlN, MnS등의 석출물이 재고용된 후 열간압연 및 소둔시 미세 석출되어 결정립 성장을 억제하고 자성을 저하시킬 수 있다.
다음으로, 슬라브를 열간 압연하여 열연판을 제조한다. 열연판 두께는 2.5mm 이하가 될 수 있다. 열연판을 제조하는 단계에서 마무리 압연 온도는 750℃ 이상일 수 있다. 구체적으로 750 내지 1000℃ 일 수 있다. 열연판은 700℃ 이하의 온도에서 권취될 수 있다.
열연판을 제조하는 단계 이후, 열연판을 열연판 소둔하는 단계를 더 포함할 수 있다. 이 때 열연판 소둔 온도는 850 내지 1150℃일 수 있다. 열연판소둔 온도가 너무 낮으면, 조직이 성장하지 않거나 미세하게 성장하여 냉간압연 후 소둔 시 자성에 유리한 집합조직을 얻기가 쉽지 않다. 소둔온도가 너무 높으면 자결정립이 과도하게 성장하고 판의 표면 결함이 과다해 질 수 있다. 열연판 소둔은 필요에 따라 자성에 유리한 방위를 증가시키기 위하여 수행되는 것이며, 생략도 가능하다. 소둔된 열연판을 산세할 수 있다.
다음으로, 열연판을 냉간압연하여 냉연판을 제조한다. 냉간압연은 0.1mm 내지 0.3 mm의 두께로 최종 압연한다. 필요시 냉간압연하는 단계는 1회의 냉간압연 단계 또는 중간 소둔을 사이에 둔 2회 이상의 냉간압연 단계를 포함할 수 있다. 이 때, 중간 소둔 온도는 850 내지 1150℃일 수 있다.
다음으로, 냉연판을 최종 소둔한다. 냉연판을 소둔하는 공정에서 소둔 온도는 통상적으로 무방향성 전기강판에 적용되는 온도면 크게 제한은 없다. 무방향성 전기강판의 철손은 결정립 크기와 밀접하게 연관되므로 900 내지 1100℃라면 적당하다. 최종 소둔 과정에서 평균 결정립 입경이 40 내지 100㎛이 될 수 있으며, 전 단계인 냉간압연 단계에서 형성된 가공 조직이 모두(즉, 99% 이상) 재결정될 수 있다.
최종 소둔 후, 절연피막을 형성할 수 있다. 상기 절연피막은 유기질, 무기질 및 유무기 복합피막으로 처리될 수 있으며, 기타 절연이 가능한 피막제로 처리하는 것도 가능하다.
이하에서는 실시예를 통하여 본 발명을 좀더 상세하게 설명한다. 그러나 이러한 실시예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다.
실시예
표 1과 같은 성분으로 슬라브를 제조하였다. 이를 1150℃로 가열하고 780℃의 마무리온도로 열간압연하여, 판두께 2.0mm의 열연판을 제조하였다. 열간압연된 열연판은 1030℃에서 100초간 열연판 소둔 후, 산세 및 냉간압연하여 두께를 0.15, 0.25, 0.27, 0.30mm로 만들고 1000℃에서 100초간 재결정 소둔을 시행하였다.
각 시편에 대한 두께, [Mn]/[Cu], [Cu]/[S], 직경 20~100nm 황화물 분포밀도 (a), 직경 150~300nm 황화물 분포밀도 (b), b/a, 황화물 중 Mn과 Cu를 동시에 포함하는 황화물의 분율, W15/50, W10/400, B50을 표 2에 나타내었다. 직경 20 내지 100nm, 150 내지 300nm의 황화물 분포밀도는 동일 시편에 대해 TEM으로 5㎛×5㎛×20000장 이상의 관찰하여 0.5㎛2 이상의 면적을 측정하였을 때 발견되는 석출물들을 EDS 분석한 결과 S가 검출되는 석출물들의 직경을 측정하여 나타내었다. 황화물 중 Mn, Cu 동시포함 분율은 전술한 TEM EDS 관찰에서 발견된 S를 포함하는 황화물 전체에서 Mn과 Cu가 동시에 검출되는 황화물들의 분율을 의미한다. 도 1 내지 도 4에서는 Mn과 Cu가 동시에 검출되는 황화물의 전자 현미경 사진을 나타내었다. 자속밀도, 철손 등의 자기적 특성은 각각의 시편에 대해 너비 60mm × 길이 60mm × 매수 5매의 시편을 절단하여 Single sheet tester로 압연방향과 압연수직방향으로 측정하여 평균값을 나타내었다. 이 때, W15/50은 50Hz의 주파수로 1.5T의 자속밀도를 유기하였을 때의 철손이고, W10/400은 400Hz의 주파수로 1.0T의 자속밀도를 유기하였을 때의 철손이며, B50은 5000A/m의 자기장에서 유도되는 자속밀도를 의미한다.
[표 1]
Figure PCTKR2019016492-appb-I000009
[표 2]
Figure PCTKR2019016492-appb-I000010
Figure PCTKR2019016492-appb-I000011
Figure PCTKR2019016492-appb-I000012
표 1과 표 2에 나타나듯이 합금 성분이 적절히 제어된 A3, A4, B3, B4, C3, C4, D3, D4, E3, E4는 직경 20 내지 100nm의 황화물과 직경 150 내지 300nm의 황화물 비율이 적정치를 가졌으므로, 자기적 특성이 모두 우수하게 나타났다.
반면 A1, A2는 Cu 함량이 미달되거나 초과하였으므로 자성에 유해한 미세한 크기의 황화물이 증가하고 조대한 크기의 황화물 형성이 억제되어 철손이 불량하고 자속밀도도 열위하였다. B1, B2는 Mn과 Cu의 함량비, C1, C2는 Cu와 S의 함량비가 벗어나서 각각 자성에 유해한 크기의 황화물이 증가하고 조대한 복합황화물 형성이 억제되었으므로 철손과 자속밀도가 열위하였다. D1, D2는 Mn 함량이 미달되거나 초과하여 철손과 자속밀도가 열위하게 나타났다. E1, E2는 S 함량이 초과하여 자성에 유해한 미세한 크기의 황화물이 급격히 증가하여 철손과 자속밀도가 열위하였다.
본 발명은 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (14)

  1. 중량%로, Si: 1.5 내지 4.0%, Al: 0.7 내지 2.5%, Mn: 1 내지 2%, Cu: 0.003 내지 0.02% 및 S:0.005% 이하(0%를 제외함) 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하고, 하기 식 1 및 식 2를 만족하는 무방향성 전기강판.
    [식 1]
    Figure PCTKR2019016492-appb-I000013
    [식 2]
    Figure PCTKR2019016492-appb-I000014
    (식 1 및 식 2에서, [Mn], [Cu] 및 [S]는 각각 Mn, Cu 및 S의 함량(중량%)을 나타낸다.)
  2. 제1항에 있어서,
    C 및 N 중 1종 이상을 각각 0.005 중량% 이하로 더 포함하는 무방향성 전기강판.
  3. 제1항에 있어서,
    Nb, Ti 및 V 중 1종 이상을 각각 0.004 중량% 이하로 더 포함하는 무방향성 전기강판.
  4. 제1항에 있어서,
    P : 0.02%이하, B : 0.002%이하, Mg : 0.005%이하 및 Zr : 0.005%이하 중 1종 이상을 더 포함하는 무방향성 전기강판.
  5. 제1항에 있어서,
    직경 150 내지 300nm의 황화물 개수가 직경 20 내지 100nm의 황화물 개수의 2배 이상인 무방향성 전기강판.
  6. 제1항에 있어서,
    직경 150 내지 300nm의 황화물을 포함하고,
    상기 직경 150 내지 300nm의 황화물 중 Mn과 Cu를 동시에 포함하는 황화물의 면적 분율이 70% 이상인 무방향성 전기강판.
  7. 제1항에 있어서,
    강판의 두께가 0.1 내지 0.3 mm인 무방향성 전기강판.
  8. 제1항에 있어서,
    평균 결정립 직경이 40 내지 100㎛인 무방향성 전기강판.
  9. 중량%로, Si: 1.5 내지 4.0%, Al: 0.7 내지 2.5%, Mn: 1 내지 2%, Cu: 0.003 내지 0.02% 및 S:0.005% 이하(0%를 제외함) 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하고, 하기 식 1 및 식 2를 만족하는 슬라브를 가열하는 단계;
    상기 슬라브를 열간 압연하여 열연판을 제조하는 단계;
    상기 열연판을 냉간압연하여 냉연판을 제조하는 단계 및
    상기 냉연판을 최종 소둔하는 단계를 포함하는 무방향성 전기강판의 제조방법.
    [식 1]
    Figure PCTKR2019016492-appb-I000015
    [식 2]
    Figure PCTKR2019016492-appb-I000016
    (식 1 및 식 2에서, [Mn], [Cu] 및 [S]는 각각 Mn, Cu 및 S의 함량(중량%)을 나타낸다.)
  10. 제9항에 있어서,
    상기 슬라브를 가열하는 단계에서, 1200℃ 이하의 온도로 가열하는 무방향성 전기강판의 제조방법.
  11. 제9항에 있어서,
    상기 열간 압연하는 단계에서 마무리 압연 온도는 750℃ 이상인 무방향성 전기강판의 제조방법.
  12. 제9항에 있어서,
    상기 열간 압연하는 단계 이후, 850 내지 1150℃의 범위에서 열연판 소둔하는 단계를 더 포함하는 무방향성 전기강판의 제조방법.
  13. 제9항에 있어서,
    상기 냉간압연하는 단계는 1회의 냉간압연 단계 또는 중간 소둔을 사이에 둔 2회 이상의 냉간압연 단계를 포함하는 무방향성 전기강판의 제조방법.
  14. 제13항에 있어서,
    상기 중간 소둔 온도는 850 내지 1150℃인 무방향성 전기강판의 제조방법.
PCT/KR2019/016492 2018-11-30 2019-11-27 무방향성 전기강판 및 그 제조방법 WO2020111783A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021531074A JP7253055B2 (ja) 2018-11-30 2019-11-27 無方向性電磁鋼板およびその製造方法
EP19890722.2A EP3889291A4 (en) 2018-11-30 2019-11-27 NON-ORIENTED ELECTRIC STEEL SHEET AND METHOD OF MANUFACTURING THEREOF
CN201980078872.0A CN113166876A (zh) 2018-11-30 2019-11-27 无取向电工钢板及其制造方法
US17/298,128 US20220018004A1 (en) 2018-11-30 2019-11-27 Non-oriented electrical steel sheet and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180153084A KR102176347B1 (ko) 2018-11-30 2018-11-30 무방향성 전기강판 및 그 제조방법
KR10-2018-0153084 2018-11-30

Publications (2)

Publication Number Publication Date
WO2020111783A2 true WO2020111783A2 (ko) 2020-06-04
WO2020111783A3 WO2020111783A3 (ko) 2020-08-13

Family

ID=70852148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016492 WO2020111783A2 (ko) 2018-11-30 2019-11-27 무방향성 전기강판 및 그 제조방법

Country Status (6)

Country Link
US (1) US20220018004A1 (ko)
EP (1) EP3889291A4 (ko)
JP (1) JP7253055B2 (ko)
KR (1) KR102176347B1 (ko)
CN (1) CN113166876A (ko)
WO (1) WO2020111783A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210890A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070489A1 (ja) * 2022-09-30 2024-04-04 日本製鉄株式会社 無方向性電磁鋼板および無方向性電磁鋼板の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164343A (ja) * 1999-12-06 2001-06-19 Kawasaki Steel Corp 加工劣化の小さい高効率モータ用無方向性電磁鋼板およびその製造方法
JP4542306B2 (ja) * 2002-04-05 2010-09-15 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
JP5375678B2 (ja) * 2002-04-05 2013-12-25 新日鐵住金株式会社 鉄損および磁束密度が極めて優れた無方向性電磁鋼板
JP4331969B2 (ja) * 2003-05-06 2009-09-16 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
WO2007007423A1 (ja) * 2005-07-07 2007-01-18 Sumitomo Metal Industries, Ltd. 無方向性電磁鋼板およびその製造方法
CN101466851B (zh) * 2006-06-16 2012-08-22 新日本制铁株式会社 高强度电磁钢板的制造方法
JP5699642B2 (ja) * 2010-04-30 2015-04-15 Jfeスチール株式会社 モータコア
KR101329717B1 (ko) * 2011-06-27 2013-11-14 주식회사 포스코 자성이 우수한 무방향성 전기강판 및 그 제조방법
KR101329716B1 (ko) * 2011-06-27 2013-11-14 주식회사 포스코 자성이 우수한 무방향성 전기강판 및 그 제조방법
KR101353460B1 (ko) * 2011-12-28 2014-01-21 주식회사 포스코 무방향성 전기강판 및 그 제조방법
PL2985360T3 (pl) * 2013-04-09 2018-12-31 Nippon Steel & Sumitomo Metal Corporation Blacha cienka ze stali magnetycznej niezorientowanej i sposób jej wytwarzania
KR20150048690A (ko) * 2015-04-17 2015-05-07 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR101918720B1 (ko) * 2016-12-19 2018-11-14 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR101919529B1 (ko) * 2016-12-20 2018-11-16 주식회사 포스코 무방향성 전기강판 및 그 제조방법
CN107964631B (zh) * 2017-12-15 2020-02-18 武汉钢铁有限公司 屈服强度≥500MPa的高速电机转子用无取向硅钢及生产方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210890A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板及びその製造方法
JP7222444B1 (ja) * 2021-03-31 2023-02-15 日本製鉄株式会社 無方向性電磁鋼板及びその製造方法

Also Published As

Publication number Publication date
KR102176347B1 (ko) 2020-11-09
EP3889291A2 (en) 2021-10-06
KR20200066042A (ko) 2020-06-09
US20220018004A1 (en) 2022-01-20
WO2020111783A3 (ko) 2020-08-13
EP3889291A4 (en) 2021-10-06
CN113166876A (zh) 2021-07-23
JP7253055B2 (ja) 2023-04-05
JP2022509677A (ja) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2012087016A2 (ko) 자성이 우수한 방향성 전기강판 및 이의 제조방법
WO2012087045A2 (ko) 저철손 고강도 무방향성 전기강판 및 그 제조방법
WO2021125682A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2016099191A1 (ko) 방향성 전기강판 및 그 제조방법
WO2013100698A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2016105058A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2020111783A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2013094777A1 (ko) 저철손 고자속밀도 방향성 전기강판 및 이의 제조방법
WO2021125683A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2020111736A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2020111570A1 (ko) 자성이 우수한 무방향성 전기강판 및 그 제조방법
WO2020067794A1 (ko) 무방향성 전기강판 및 그 제조방법
KR101353463B1 (ko) 무방향성 전기강판 및 그 제조방법
WO2020111741A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2022139337A1 (ko) 무방향성 전기강판 및 그 제조방법
KR20210080658A (ko) 무방향성 전기강판 및 그 제조방법
WO2022139314A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2020067723A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2024071628A1 (ko) 무방향성 전기 강판 및 그 제조 방법
WO2024025245A1 (ko) 무방향성 전기강판 및 그 제조 방법
WO2022139359A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2024019478A1 (ko) 무방향성 전기강판 및 그 제조 방법
WO2024019490A1 (ko) 무방향성 전기강판 및 그 제조 방법
WO2021125856A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2024063574A1 (ko) 무방향성 전기강판 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890722

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2021531074

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019890722

Country of ref document: EP

Effective date: 20210630