JPH05186828A - 低鉄損方向性電磁鋼板の製造方法 - Google Patents

低鉄損方向性電磁鋼板の製造方法

Info

Publication number
JPH05186828A
JPH05186828A JP4003025A JP302592A JPH05186828A JP H05186828 A JPH05186828 A JP H05186828A JP 4003025 A JP4003025 A JP 4003025A JP 302592 A JP302592 A JP 302592A JP H05186828 A JPH05186828 A JP H05186828A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
hot
grain
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4003025A
Other languages
English (en)
Inventor
Hiroyoshi Yashiki
裕義 屋鋪
Teruo Kaneko
輝雄 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4003025A priority Critical patent/JPH05186828A/ja
Publication of JPH05186828A publication Critical patent/JPH05186828A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1227Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing

Abstract

(57)【要約】 【目的】鉄損が極めて低く、鉄心材料として好適な方向
性電磁鋼板を、冷間加工時に破断等のトラブルを生じる
ことなく製造することができる方法を提供する。 【構成】重量%で、C:0.01%以下、Si: 3.0%を超え
て 6.0%以下、Mn:2.0%を超えて 8.0%以下、S:0.0
1%以下、酸可溶性Al: 0.003〜0.015 %、N: 0.001
〜0.010 %で、かつSi(%)− 0.5×Mn(%)≦ 2.0
で、残部はFeおよび不純物からなる鋼スラブを熱間圧延
し、得られた鋼板を熱間圧延のままあるいは熱間圧延後
に焼鈍した後、1回または中間焼鈍を挟んだ2回以上の
冷間圧延を70〜300 ℃の鋼板温度で行い、次いで連続焼
鈍により一次再結晶させた後、仕上げ焼鈍を行う。仕上
げ焼鈍を、N2を含む雰囲気中で 825〜925 ℃の温度域で
行い、次いでH2雰囲気中で 925℃を超え、1050℃までの
温度域で行えば、鉄損の更に低い方向性電磁鋼板を製造
することができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、変圧器や発電機、電動
機の鉄心材料や、磁気シールド材として広く用いられる
方向性電磁鋼板の製造方法に関するものである。
【0002】
【従来の技術】方向性電磁鋼板は、ゴス方位と呼ばれる
{110}<001>方位を主方位とする結晶配向を持
ち、圧延方向に著しく優れた励磁特性と鉄損特性を有す
る軟磁性材料である。一般にはSiを 3.0重量%(以下、
「%」は「重量%」を意味する)程度含有する鋼スラブ
を熱間圧延し、そのままあるいは焼鈍(熱延板焼鈍)を
行った後、1回または中間焼鈍を挟んで2回以上の冷間
圧延を施して最終板厚とし、その後連続脱炭焼鈍を施し
て一次再結晶させた後、焼き付き防止のための焼鈍分離
剤を塗布してコイルに巻取り、更に1100℃を超える超高
温での仕上げ焼鈍を行う。仕上げ焼鈍の目的は、二次再
結晶を発生させてゴス方位に集積した集合組織を形成す
ることと、そのあと二次再結晶を発生させるのに用いた
インヒビターと呼ばれる析出物を除去することにある。
この析出物の除去工程は純化焼鈍とも呼ばれ、二次再結
晶の発生と共に良好な磁気特性を得るためには必須の工
程と言える。
【0003】以上のような製造法により作られた方向性
電磁鋼板は、その製造過程で効率の悪い連続脱炭焼鈍や
1100℃を超える超高温での仕上げ焼鈍というような特殊
な工程が必要であり、極めてコストの高いものになる。
【0004】このコストの問題を解決すべく、従来から
種々の研究開発が進められている。
【0005】例えば、本発明者らは先に、C:0.01%以
下、Si: 0.5〜2.5 %、Mn: 1.0〜2.0 %、S:0.01%
以下、sol.Al: 0.003〜0.015 %、N: 0.001〜0.010
%、残部はFeおよび不可避的不純物からなることを特徴
とする方向性電磁鋼板と、この組成の熱延鋼板に、1回
または中間焼鈍を挟んだ2回以上の冷間圧延を施し、次
いで 650〜950 ℃での連続焼鈍を行い、その後 800〜95
0 ℃での仕上げ焼鈍を行う方向性電磁鋼板の製造方法を
提案した(特開平1−119644号公報)。この方法は、連
続脱炭焼鈍の省略と仕上げ焼鈍温度の低下が可能であ
り、方向性電磁鋼板のコスト低減に大きく貢献し得るも
のである。
【0006】
【発明が解決しようとする課題】近年、省エネルギーの
気運が一段と高まる趨勢の中で、方向性電磁鋼板に対し
てはその鉄損を小さくすることが強く要望されるように
なってきている。本発明は、上記の特開平1−119644号
公報に示した電磁鋼板の製造方法を更に改善することを
課題とし、鉄損が極めて低い方向性電磁鋼板の製造方法
を提供することを目的とする。
【0007】
【課題を解決するための手段】鉄損は大きく分けて、ヒ
ステリシス損と渦電流損の2種類の損失成分からなって
おり、鉄損を低減するためにはこれらの2つの鉄損成分
を減少させることで達成される。そして、ヒステリシス
損を低減するためには、ゴス方位への集積度を上げた
り、不純物の量を減少させることが有効であり、渦電流
損を低減するためには、鋼板の固有抵抗を増加させるこ
とと板厚を薄くすることが有効である。しかしながら、
ゴス方位への集積度の向上および不純物の減少に関して
はほぼ限界に近いところまで改善が進んできており、板
厚の薄手化による鉄損の低減については更に改善の余地
が残されているものの、板厚の薄手化は製造コストの上
昇が避けられない。
【0008】固有抵抗の増加は、一般にSi含有量の増加
でなされるが、Si含有量を増加すると鋼板の加工性が劣
化して冷間圧延が困難となるため、実際には 3.3%を超
えてSiを含有させることは困難である。前述の特開平1
−119644号公報に記載の先願発明の電磁鋼板のSi含有量
を 2.5%以下に限定しているのはこの観点からである。
従って、Si含有量を増加し、固有抵抗を増加させること
による鉄損低減も限界にきている。
【0009】ところが、本発明者らは特開平1−119644
号公報に記載の先願発明の電磁鋼板をベースに、加工性
を劣化させることなく固有抵抗を増加して鉄損を低減す
る方法を検討した結果、下記の知見を得た。
【0010】(イ)3%を超えるSi含有量の場合でも、
Si(%)− 0.5×Mn(%)≦ 2.0の範囲を満たす量のMn
を含有させることにより、加工性の劣化が抑えられると
ともに、仕上げ焼鈍時の二次再結晶の発達が安定化す
る。
【0011】(ロ)前記の(イ)に示した量のSi、Mnを
含有する鋼に対して、更に、冷間圧延を70〜300 ℃の鋼
板温度で行うことにより、冷間圧延時の加工性が著しく
改善される。
【0012】(ハ)MnはSiと同様に鋼板の固有抵抗を増
加させる作用を有しており、鉄損の低減にも極めて有効
な元素である。
【0013】(ニ)このような高Si・高Mn鋼の場合、イ
ンヒビターとなる窒化物を除去するために仕上げ焼鈍の
後半で、H2雰囲気中で 925℃を超え、1050℃までの温度
域で純化焼鈍を行うのが有効である。
【0014】(ホ)但し、二次再結晶を発生させるため
には、仕上げ焼鈍の前半にN2を含む雰囲気中で 825〜92
5 ℃の温度域で加熱することが必要である。
【0015】上記の知見に基づく本発明は、下記(1) お
よび(2) の方向性電磁鋼板の製造方法を要旨とする。
【0016】(1) C:0.01%以下、Si: 3.0%を超えて
6.0%以下、Mn: 2.0%を超えて 8.0%以下、S:0.01
%以下、酸可溶性Al:0.003 〜 0.015%、N:0.001 〜
0.010%で、かつSi(%)− 0.5×Mn(%)≦ 2.0で、
残部はFeおよび不可避的不純物からなる鋼スラブを熱間
圧延し、得られた鋼板を熱間圧延のままあるいは熱間圧
延後に焼鈍した後、1回または中間焼鈍を挟んだ2回以
上の冷延を70〜300 ℃の鋼板温度で行い、次いで連続焼
鈍により一次再結晶させた後、焼鈍分離剤を塗布して仕
上げ焼鈍を行うことを特徴とする方向性電磁鋼板の製造
方法。
【0017】(2) 仕上げ焼鈍を、N2を含む雰囲気中で 8
25〜925 ℃の温度域で4〜100 時間保持した後、更にH2
雰囲気中で 925℃を超え、1050℃までの温度域で4〜10
0 時間保持する条件下で行う前記(1) 記載の方向性電磁
鋼板の製造方法。
【0018】
【作用】以下に、本発明の構成要件ごとに作用効果を説
明する。
【0019】I.鋼スラブまたは製品の組成 (a) CおよびN 製品中のC、Nは鉄損に悪影響を及ぼすため、Cは 0.0
05%以下、望ましくは0.003%以下、Nは 0.010%以
下、望ましくは 0.003%以下にする必要がある。
【0020】その理由は、製品段階で残存したC、Nは
炭窒化物として磁壁移動の障害物となり鉄損が増加する
ためである。
【0021】しかし、鋼スラブの段階では、C含有量が
0.01%以下であれば、一次再結晶のための連続焼鈍を脱
炭焼鈍としなくても、仕上げ焼鈍中に 0.005%以下に減
少させることができるので、鋼スラブのC含有量は0.01
%以下とする。
【0022】一方、Nはインヒビターとなる窒化物を形
成する重要な元素で、二次再結晶が完了するまでは適当
量含有させることが必要である。N含有量が 0.001%未
満では窒化物の析出量が少なすぎて所望のインヒビター
効果が得られず、 0.010%を超えて含有させてもその効
果は飽和するので、鋼スラブのN含有量は 0.001〜0.01
0 %の範囲とする。
【0023】(b) Si Siは磁気特性に大きな影響を与える元素であり、含有量
が増加するほど鋼板の電気抵抗は上昇して渦電流損が低
下し、結果として鉄損が低減する。しかし、6%を超え
る含有量では、本発明で規定する素材としての鋼スラブ
を用いても加工性が低下して冷間圧延が困難となる。一
方、 3.0%以下の含有量では鋼板の電気抵抗が低く、低
鉄損の方向性電磁鋼板を製造することができない。従っ
て、Si含有量は 3.0を超えて 6.0%以下の範囲が適当で
ある。
【0024】(c) Mn Mnは本発明方法により製造される電磁鋼板のような高Si
の極低炭素鋼スラブにおいてα−γ変態を生じさせるの
に有効な元素であり、変態の発生が熱間圧延中の熱延板
の組織の微細化と均質化を促進し、この結果として仕上
げ焼鈍でゴス方位への集積度の高い二次再結晶が安定し
て発生するとともに、高Si鋼の加工性も改善される。前
記のα−γ変態が生じるか否かはフェライト形成元素で
あるSiとオーステナイト形成元素であるMnの含有量のバ
ランスで決まり、Si(%)− 0.5×Mn(%)≦ 2.0とな
るようにMnを含有させることが、変態の発生に必要であ
る。この式を満たすためには、Siの含有量が 3.0%を超
える場合には 2.0%を超えるMnが必要になり、同じくSi
の含有量が 6.0%の場合は 8.0%以上のMnが必要にな
る。しかし、 8.0%を超えるMnは冷間加工性を劣化させ
るので、Mn含有量の上限は 8.0%とする。また、MnはSi
と同様に鋼板の電気抵抗を上昇させるのに有効な元素で
あり、鉄損低減の目的からも 2.0%を超えるMnの含有が
必須となる。従って、Mn含有量は 2.0%を超えて 8.0%
以下で、かつSi(%)− 0.5×Mn(%)≦ 2.0の条件を
満足させることが必要である。
【0025】(d) S SはMnとともにMnSを形成する。本発明では主要なイン
ヒビターとしてAlN、(Al、Si)NやMnを含む窒化物を
使っている。従って、一般の方向性電磁鋼板のようにMn
Sを主要なインヒビターとして使わないので、Sを多量
に添加する必要はない。製品段階で多量のMnS粒子が鋼
中に残存すると鉄損の劣化をきたす。更に、本発明では
仕上げ焼鈍が1050℃以下と低いため、純化焼鈍において
脱硫効果は期待できない。このため、S含有量は製品に
おいても、素材の鋼スラブにおいても 0.010%以下とす
る。なお、鉄損低減に望ましいのは 0.005%以下であ
る。
【0026】(e) sol.Al Alは二次再結晶の発生に重要な役割を果たす主要なイン
ヒビターであるAlNや(Al、Si)Nのような窒化物を形
成する重要な元素である。sol.Alで 0.003%未満では十
分なインヒビター効果が得られない。しかし、sol.Alで
0.015%を超えるとインヒビター量が多くなりすぎると
ともにその分散状態も不適切になり安定した二次再結晶
が生じない。
【0027】II. 製造工程 (a) 熱間圧延 素材の鋼スラブは前記の組成を持つものである。これ
は、転炉、電気炉等で溶製し、必要があれば真空脱ガス
等の処理を施した溶鋼を、連続鋳造法でスラブにしたも
の、インゴットにして分塊圧延したもののいずれでもよ
い。
【0028】(b) 熱延板焼鈍 熱間圧延で得られた鋼板(熱延板)を熱間圧延のまま或
いは熱間圧延後に焼鈍(熱延板焼鈍)した後、1回また
は複数回の冷間圧延によって、所定の製品板厚まで圧延
する。
【0029】熱延板焼鈍は、最終製品の集合組織を改善
し良好な磁気特性を得るのに有効である。箱焼鈍で行う
場合は 650〜950 ℃の温度域での均熱が、また、熱延板
焼鈍を連続焼鈍で行う場合は 700〜1100℃の温度域での
均熱が望ましい。
【0030】(c) 冷間圧延および中間焼鈍 冷間圧延時の鋼板温度を70℃以上に高めてやると、鋼板
の加工性が改善され、圧延時の破断が著しく減少する。
鋼板温度が高いほど冷間圧延性の改善効果は大きいが 3
00℃を超える温度で圧延を行うと鋼板の表面が酸化され
るので好ましくない。従って、冷間圧延は70〜300 ℃の
鋼板温度で行う。
【0031】複数回の冷間圧延を行う場合には、各冷間
圧延毎に鋼板の温度を上記の温度範囲まで加熱して圧延
を行うことが望ましい。少なくとも冷間圧延前の板厚が
1.0mm以上の場合には、上記の鋼板温度で冷間圧延を行
うことが必要である。
【0032】複数回の冷間圧延を行う場合は中間に焼鈍
工程を挟む。この中間焼鈍は、 700〜1000℃の温度域で
行うのが望ましい。
【0033】冷間圧延時における鋼板の加熱は、例えば
高周波による誘導加熱、ロールを電極として鋼板に直接
電流を流す直接通電加熱、あるいは焼鈍炉内での加熱等
により行えばよく、特定の方法に限定されない。
【0034】(d) 仕上げ焼鈍前の連続焼鈍 仕上げ焼鈍で安定した二次再結晶を発生させるために
は、急速加熱による一次再結晶が必要であり、このため
に連続焼鈍が有効である。焼鈍温度としては、 700〜10
00℃が望ましい。
【0035】(e) 仕上げ焼鈍 仕上げ焼鈍の目的は二次再結晶を生じさせてゴス方位に
集積した集合組織を形成させることにある。本発明(前
記(2) の発明)ではこの仕上げ焼鈍を下記の条件で行
う。
【0036】一般に、仕上げ焼鈍は、二次再結晶の発生
を目的とする前半の焼鈍(第1の焼鈍)とその後の析出
物の除去(純化)を目的とする焼鈍(第2の焼鈍)とに
分けられる。
【0037】二次再結晶を発生させるためには、N2含有
雰囲気中で焼鈍する必要がある。その理由は、インヒビ
ターである窒化物が脱窒により減少し二次再結晶が不安
定になるのを防止するためである。更に積極的な意味と
しては、焼鈍雰囲気からの吸窒によりインヒビターとな
る窒化物の析出量を増加させて、ゴス方位への集積度の
高い二次再結晶を発生させるためである。このためには
焼鈍雰囲気中のN2含有量は、10%以上であることが望ま
しい。
【0038】二次再結晶の発生温度としては 825〜925
℃の範囲が有効で、 825℃未満ではインヒビターの粒成
長抑制力が強すぎて二次再結晶が発生しない。一方、 9
25℃を超える温度域ではインヒビター効果が弱いため、
ゴス方位の集積度の弱い二次再結晶が発生するか、正常
粒の成長により一次再結晶が粗大化するだけである。
【0039】825〜925 ℃の範囲での保持時間は少なく
とも4時間は必要であるが、 100時間を超える保持は意
味がなく経済的にも不利である。これらの理由で、仕上
げ焼鈍の前半(第1の焼鈍)は、二次再結晶の発生を目
的に、N2含有雰囲気中において825〜925 ℃で4〜100
時間保持することとする。
【0040】二次再結晶が発生した後は、インヒビター
の窒化物は磁気特性上有害なものであり、除去する必要
がある。このためには 100%のH2雰囲気中で 925℃を超
える温度域、望ましくは 950℃以上の温度域での焼鈍が
有効である。しかし、1050℃を超える温度にしても窒化
物の除去効果は飽和するので意味がない。純化焼鈍の保
持時間は少なくとも4時間は必要であるが、 100時間を
超える保持は不必要である。従って、仕上げ焼鈍の後半
(第2の焼鈍)は 100%のH2雰囲気中において925℃を
超える温度から1050℃までの温度域で4〜100 時間の純
化焼鈍を行うこととした。
【0041】なお、仕上げ焼鈍の前に焼鈍時の焼き付き
防止のための焼鈍分離剤を塗布することは、通常の方向
性電磁鋼板の製造方法と同じである。
【0042】仕上げ焼鈍後の工程としては通常の方向性
電磁鋼板と同様に、焼鈍分離剤を除去した後、必要に応
じて絶縁コーティングを施したり平坦化焼鈍を行うこと
になる。
【0043】
【実施例1】表1に示す組成の鋼スラブを熱間圧延し
2.0mm厚に仕上げた。これらの供試鋼は、低鉄損化を図
るために一般の方向性電磁鋼板(固有抵抗が約50μΩ・
cm)に比べ大幅に固有抵抗を増加しており、しかも、ほ
ぼ同一の固有抵抗を持つようにSiとMnのバランスを種々
に変えてある。
【0044】次いで、連続焼鈍により 880℃で1分間均
熱する熱延板焼鈍を行った後、酸洗により脱スケール
し、さらに、0.30mm厚まで冷間圧延した。なお、冷間圧
延の際の鋼板の加熱は、圧延前に鋼板(コイル)を箱焼
鈍炉に装入して加熱することにより行い、冷間圧延時の
鋼板温度は全て 120〜150 ℃の範囲とした。
【0045】その結果、本発明で規定する組成範囲から
外れる試験番号1〜3の熱延板は、冷間圧延中に鋼板エ
ッジ部から亀裂が入ったり、破断したりしたため、所定
の板厚まで冷間圧延ができなかった。これに対し、本発
明で規定する組成範囲内の試験番号4および5の熱延板
は、破断することなく所定の板厚に冷間圧延することが
できた。
【0046】
【表1】
【0047】
【実施例2】表1の試験番号4の組成を有する実施例1
で得られた冷延板(0.30mm厚)を、露点−20℃以下で75
%N2+25%H2の非脱炭雰囲気中、 880℃で30秒間均熱す
る連続焼鈍に付し、一次再結晶させた後、焼鈍分離剤を
塗布して仕上げ焼鈍を実施した。仕上げ焼鈍は、50%N2
+50%H2雰囲気中で 885℃で24時間均熱する第1の焼鈍
と、その後、 100%のH2雰囲気に切り替えて、更に表2
に示す種々の温度で24時間均熱する第2の焼鈍(純化焼
鈍)を行った。得られた鋼板の圧延方向の磁気特性を表
2に併せて示す。
【0048】表2に示すとおり、いずれも良好な磁気特
性を示したが、仕上げ焼鈍後半の純化焼鈍温度を本発明
(前記の(2) の発明)で規定した温度域で行った場合
(試験番号4〜7)は、更に良好な鉄損値が得られるこ
とがわかる。
【0049】
【表2】
【0050】
【実施例3】表3に示すように、sol.Al以外の組成はほ
ぼ同一でいずれも本発明で定める範囲内にあり、sol.Al
量を変化させた3鋼種のスラブを熱間圧延して 2.3mm厚
に仕上げた。この熱延板を酸洗により脱スケールした
後、 800℃で2時間均熱する熱延板焼鈍を行い、誘導加
熱により 130℃に加熱し、冷間圧延して0.35mm厚とし
た。
【0051】上記の冷延板を露点−25℃以下で80%N2
20%H2の非脱炭雰囲気中、 875℃で30秒間均熱する連続
焼鈍に付し一次再結晶させた後、焼鈍分離剤を塗布して
仕上げ焼鈍を行った。仕上げ焼鈍では、75%N2+25%H2
雰囲気中で 875℃で24時間均熱した後、H2雰囲気に切り
替えて更に 950℃で24時間均熱する純化焼鈍を行った。
得られた鋼板の圧延方向の磁気特性を表4に示す。
【0052】表4に示すとおり、sol.Alが本発明で定め
る量よりも低い試験番号1の鋼板は、インヒビター効果
が弱いためゴス方位に集積した二次再結晶が得られず、
良好な磁気特性を示さない。また、sol.Alが本発明で定
める量よりも多い試験番号3の鋼板は、二次再結晶が発
生していないので磁気特性は非常に悪くなっている。
【0053】これらに対して、本発明の電磁鋼板の例に
相当する試験番号2の鋼板は、極めて良好な磁気特性を
示している。
【0054】
【表3】
【0055】
【表4】
【0056】
【実施例4】実施例1と同じ方法で溶製したC:0.0050
%、Si:3.51%、Mn:4.25%、S:0.0006%、sol.Al:
0.006%、N:0.0035%で、残部はFeおよび不可避的不
純物からなる本発明で定める範囲内の化学組成をもつ鋼
スラブを熱間圧延し 2.3mm厚に仕上げた。この熱延板を
酸洗して脱スケールした後、 1.4mm厚に冷間圧延し、85
0℃で1分間均熱する中間焼鈍を行い、0.27mm厚に冷間
圧延した。
【0057】次に、冷延板を露点−15℃以下で70%N2
30%H2の非脱炭雰囲気中、 875℃で30秒均熱する連続焼
鈍に付し、一次再結晶させた後、焼鈍分離剤を塗布して
仕上げ焼鈍を実施した。
【0058】仕上げ焼鈍は表5に示す3種類の条件で実
施した。これらの条件は二次再結晶を目的として50%N2
+50%H2雰囲気での第1の焼鈍と、純化焼鈍を目的とし
たH2雰囲気での第2の焼鈍の均熱温度の組合わせを変化
させたものである。得られた鋼板の圧延方向の磁気特性
を表6に示す。
【0059】表6から、第1の焼鈍の均熱温度が前記
(2)の発明で定める範囲から高めに外れた試験番号1の
鋼板は、インヒビター効果が弱く正常粒成長が進行し二
次再結晶が発生しなかったため、良好な磁気特性は得ら
れていない。また、第2の焼鈍の均熱温度が (2)の発明
で定める範囲から低めに外れた試験番号3の鋼板は、二
次再結晶はしているものの純化が十分に行われなかった
ため、十分な磁気特性は得られていない。これらに対
し、 (2)の発明の実施例に相当する試験番号2の鋼板は
磁気特性に優れている。
【0060】
【表5】
【0061】
【表6】
【0062】
【実施例5】実施例4と同一組成の板厚2mmの熱延板を
880℃で1分間均熱する熱延板焼鈍を行った後、酸洗に
より脱スケールし、焼鈍炉で表7に示す種々の温度に加
熱し、冷間圧延して0.30mm厚に仕上げた。この冷間圧延
の際の破断トラブルの発生比率を表7に併せて示す。
【0063】表7の結果から、鋼板温度が70℃未満の試
験番号1および2の鋼板では非常に高い破断率を示した
が、鋼板温度が70℃以上の本発明で定める範囲の鋼板温
度で冷間圧延を実施した試験番号3〜5の鋼板では破断
トラブルの発生はほとんど皆無であった。
【0064】
【表7】
【0065】
【発明の効果】本発明方法により、鉄損が極めて低く、
鉄心材料として好適な方向性電磁鋼板を、冷間圧延時に
破断等のトラブルを生じることなく製造することができ
る。この方法は、長時間を要する脱炭焼鈍工程や1150〜
1200℃のような超高温での仕上げ焼鈍工程を経ずに行う
ことができるので、製造コストを低くできるという利点
も有している。
【0066】

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】重量%で、C:0.01%以下、Si: 3.0%を
    超えて 6.0%以下、Mn: 2.0%を超えて 8.0%以下、
    S:0.01%以下、酸可溶性Al: 0.003〜0.015 %、N:
    0.001〜0.010 %で、かつSi(%)− 0.5×Mn(%)≦
    2.0で、残部はFeおよび不可避的不純物からなる鋼スラ
    ブを熱間圧延し、得られた鋼板を熱間圧延のままあるい
    は熱間圧延後に焼鈍した後、1回または中間焼鈍を挟ん
    だ2回以上の冷間圧延を70〜300 ℃の鋼板温度で行い、
    次いで連続焼鈍により一次再結晶させた後、焼鈍分離剤
    を塗布して仕上げ焼鈍を行うことを特徴とする方向性電
    磁鋼板の製造方法。
  2. 【請求項2】仕上げ焼鈍を、N2を含む雰囲気中で 825〜
    925 ℃の温度域で4〜100 時間保持した後、更にH2雰囲
    気中で 925℃を超え、1050℃までの温度域で4〜100 時
    間保持する条件下で行う請求項1記載の方向性電磁鋼板
    の製造方法。
JP4003025A 1992-01-10 1992-01-10 低鉄損方向性電磁鋼板の製造方法 Pending JPH05186828A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4003025A JPH05186828A (ja) 1992-01-10 1992-01-10 低鉄損方向性電磁鋼板の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4003025A JPH05186828A (ja) 1992-01-10 1992-01-10 低鉄損方向性電磁鋼板の製造方法
US08/001,618 US5425820A (en) 1992-01-10 1993-01-08 Oriented magnetic steel sheets and manufacturing process therefor
DE69310218T DE69310218T2 (de) 1992-01-10 1993-01-11 Orientierte magnetische Stahlbleche und Verfahren zu ihrer Herstellung
EP93100305A EP0551141B1 (en) 1992-01-10 1993-01-11 Oriented magnetic steel sheets and manufacturing process therefor

Publications (1)

Publication Number Publication Date
JPH05186828A true JPH05186828A (ja) 1993-07-27

Family

ID=11545787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4003025A Pending JPH05186828A (ja) 1992-01-10 1992-01-10 低鉄損方向性電磁鋼板の製造方法

Country Status (4)

Country Link
US (1) US5425820A (ja)
EP (1) EP0551141B1 (ja)
JP (1) JPH05186828A (ja)
DE (1) DE69310218T2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666842A (en) * 1993-07-22 1997-09-16 Kawasaki Steel Corporation Method of cold rolling grain-oriented silicon steel sheet having excellent and uniform magnetic characteristics along rolling direction of coil and a roll cooling controller for cold rolling mill using the cold rolling method
US5643370A (en) * 1995-05-16 1997-07-01 Armco Inc. Grain oriented electrical steel having high volume resistivity and method for producing same
KR100449575B1 (ko) * 1997-08-15 2004-11-16 제이에프이 스틸 가부시키가이샤 자기특성이 우수한 전기강판 및 그 제조방법
DE10164716C2 (de) * 2001-03-02 2003-06-18 Draeger Medical Inc Gehäuseanordnung
BR112016029465B1 (pt) * 2014-06-26 2021-03-23 Nippon Steel Corporation Chapa de aço elétrica

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2172626A (en) * 1939-09-12 Magnetic material
GB487254A (en) * 1936-08-05 1938-06-17 Cleveland Twist Drill Co Improvements relating to ferrous alloys
GB1100771A (en) * 1966-01-13 1968-01-24 Steel Co Of Wales Ltd Improvements in or relating to iron-manganese alloys for magnetic purposes
JPH0564701B2 (ja) * 1987-10-30 1993-09-16 Sumitomo Metal Ind
JP2590533B2 (ja) * 1988-06-22 1997-03-12 住友金属工業株式会社 珪素鋼板の製造方法
JPH03140442A (en) * 1989-10-25 1991-06-14 Sumitomo Metal Ind Ltd Silicon steel sheet having excellent magnetic characteristics and its manufacture
JP2639226B2 (ja) * 1991-03-15 1997-08-06 住友金属工業株式会社 方向性電磁鋼板およびその製造方法

Also Published As

Publication number Publication date
DE69310218D1 (de) 1997-06-05
US5425820A (en) 1995-06-20
EP0551141A1 (en) 1993-07-14
EP0551141B1 (en) 1997-05-02
DE69310218T2 (de) 1997-10-16

Similar Documents

Publication Publication Date Title
EP3404124B1 (en) Non-oriented electrical steel sheet and production method thereof
JP3172439B2 (ja) 高い体積抵抗率を有する粒子方向性珪素鋼およびその製造法
JPH0717961B2 (ja) 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
JP2639226B2 (ja) 方向性電磁鋼板およびその製造方法
EP0076109B1 (en) Method of producing grain-oriented silicon steel sheets having excellent magnetic properties
JPH05186828A (ja) 低鉄損方向性電磁鋼板の製造方法
JP2712913B2 (ja) 方向性電磁鋼板およびその製造方法
JP2713028B2 (ja) 方向性電磁鋼板およびその製造方法
JPH0949023A (ja) 鉄損が優れた一方向性電磁鋼板の製造方法
JP2000017330A (ja) 鉄損の低い無方向性電磁鋼板の製造方法
KR100340548B1 (ko) 자성이우수한무방향성전기강판의제조방법
JP2819994B2 (ja) 優れた磁気特性を有する電磁鋼板の製造方法
JP6950748B2 (ja) 無方向性電磁鋼板の製造方法
JP2501219B2 (ja) 無方向性電磁鋼板の製造方法
JPH1161257A (ja) 鉄損が低く且つ磁気異方性の小さい無方向性電磁鋼板の製造方法
JPH0625747A (ja) 薄手高磁束密度一方向性電磁鋼板の製造方法
JP2671717B2 (ja) 方向性電磁鋼板の製造方法
JPH09263908A (ja) 無方向性電磁鋼板およびその製造方法
JP2666626B2 (ja) 低鉄損無方向性電磁鋼板およびその製造方法
JP2819993B2 (ja) 優れた磁気特性を有する電磁鋼板の製造方法
JPH0643614B2 (ja) セミプロセス電磁鋼板の製造方法
JPH06184707A (ja) 方向性電磁鋼板およびその製造方法
JP3507232B2 (ja) 製品板厚の厚い一方向性電磁鋼板の製造方法
JP3300034B2 (ja) 磁束密度の極めて高い方向性珪素鋼板の製造方法
JPH10158740A (ja) 磁気特性の優れた方向性電磁鋼板の製造方法